WO2013146397A1 - Method for manufacturing long obliquely stretched film - Google Patents

Method for manufacturing long obliquely stretched film Download PDF

Info

Publication number
WO2013146397A1
WO2013146397A1 PCT/JP2013/057587 JP2013057587W WO2013146397A1 WO 2013146397 A1 WO2013146397 A1 WO 2013146397A1 JP 2013057587 W JP2013057587 W JP 2013057587W WO 2013146397 A1 WO2013146397 A1 WO 2013146397A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
long
stretching
rail
width direction
Prior art date
Application number
PCT/JP2013/057587
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 植野
博 南部
真治 稲垣
大介 北條
晋平 畠山
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014507724A priority Critical patent/JP5825426B2/en
Publication of WO2013146397A1 publication Critical patent/WO2013146397A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/045Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique in a direction which is not parallel or transverse to the direction of feed, e.g. oblique

Definitions

  • the present invention relates to a method for producing a long obliquely stretched film in which a long obliquely stretched film is produced by stretching a long film in an oblique direction with respect to the width direction.
  • a stretched film formed by stretching a resin is used as an optical film that performs various optical functions in various display devices by utilizing its optical anisotropy.
  • the stretched film is used as an optical compensation film for optical compensation such as anti-coloring and viewing angle expansion, or by bonding the stretched film and a polarizer, It is known to use as a retardation film that also serves as a polarizing plate protective film.
  • a self-luminous display device such as an organic EL (electroluminescence) display device has attracted attention as a new display device.
  • the self-luminous display device has a room for suppressing power consumption with respect to the liquid crystal display device in which the backlight is always turned on.
  • a self-luminous display device such as an organic EL display device in which a light source corresponding to each color is turned on, it is not necessary to install a color filter that causes a reduction in contrast, so that the contrast can be further increased. .
  • a reflector such as an aluminum plate is provided on the back side of the display in order to increase the light extraction efficiency. Therefore, external light incident on the display is reflected by the reflector and the image is reflected. There is a problem that the contrast of the image is lowered.
  • the stretched film and a polarizer are bonded to form a circularly polarizing plate, and this circularly polarizing plate is used on the surface side of the display.
  • the circularly polarizing plate is obtained by laminating the polarizer and the stretched film so that the in-plane slow axis of the stretched film is inclined at a desired angle with respect to the transmission axis of the polarizer. It is formed.
  • a general polarizer (polarizing film) is obtained by stretching at a high magnification in the transport direction, and its transmission axis coincides with the width direction.
  • a conventional retardation film (stretched film) is produced by longitudinal stretching or lateral stretching, and in principle, the in-plane slow axis is in the direction of 0 ° or 90 ° with respect to the longitudinal direction of the film. For this reason, in order to incline the transmission axis of the polarizer and the slow axis of the stretched film at a desired angle as described above, the long polarizing film and / or the stretched film are cut out at a specific angle and the film pieces are separated from each other.
  • a batch method in which sheets are bonded one by one has to be employed, and problems such as deterioration in productivity and reduction in product yield due to adhesion of chips and the like have been cited as problems.
  • the film is stretched in a desired angle direction (obliquely) with respect to the long direction, and the direction of the slow axis is not 0 ° or 90 ° with respect to the long direction of the film.
  • Various methods for producing a long retardation film that can be freely controlled have been proposed (see, for example, Patent Documents 1 to 3).
  • the resin film is unwound from a direction different from the winding direction of the stretched film, and both ends of the resin film are gripped by a pair of gripping tools and conveyed. And the resin film is extended
  • the elongate stretched film which has a slow axis in the desired angle of more than 0 degree and less than 90 degrees with respect to the elongate direction is manufactured.
  • a long polarizing film and a stretched film are attached in a roll-to-roll manner instead of conventional batch-type bonding.
  • a circularly polarizing plate can be manufactured. As a result, the productivity of the circularly polarizing plate can be dramatically improved, and the yield can be greatly improved.
  • both ends of the resin film are gripped by gripping tools, and the gripping tools at both ends are moved along a travel path such as a rail.
  • the stretching is performed by changing (expanding) the distance between the gripping tools.
  • the position of the pair of gripping tools that grip both ends at the start of gripping is a position that is parallel to the width direction. Since the gripping tools at both ends in the stretching process move at the same distance at a constant speed, the positional relationship of the gripping tool that was in a positional relationship parallel to the width direction at the gripping start position will not change until the gripping end (open position). Absent.
  • the rail to which the gripping tool is attached has a bent portion, and the moving distance of the gripping tool that grips both ends of the bent portion is different.
  • the resin film is stretched obliquely by the gripping tool that becomes shorter. Therefore, even if the left and right gripping tools are aligned in the width direction of the long film at the grip start position and the entrance to the bent portion, that is, the pair of gripping tools that grip both ends are positioned substantially parallel to the width direction of the film. Even if it is in the relationship, the position of the pair of gripping tools that was initially in a positional relationship parallel to the width direction inevitably has an oblique positional relationship with respect to the width direction of the film at the exit of the bent portion.
  • the principle of the oblique stretching apparatus cannot be avoided, but the movement distance of the right and left gripping tools is different, so the position of the gripping tool that grips both ends of the film after the diagonal stretching process is finished It turned out that it was a problem that it shifted in the direction.
  • the film that has been subjected to the oblique stretching process at the bent portion is conveyed with both ends held in the same manner as a normal widthwise stretching device, and the film is gradually cooled to fix the orientation direction in the film.
  • the orientation direction is adjusted by further stretching in the width direction.
  • a long diagonally stretched film having a uniform retardation characteristic can be obtained by preventing a non-uniform stress from being applied in the width direction of the film by a gripper after the oblique stretching process is finished. It aims at providing the manufacturing method of an isometrically stretched film.
  • the present invention grips both ends in the width direction of a long film to be fed by each gripping tool arranged at equal intervals, and each gripping tool is arranged along a facing rail. While transporting the long film while moving at a high speed, the long film is stretched in an oblique direction with respect to the width direction by changing the transport direction of the long film in the middle, and the long oblique stretched film.
  • a straight line connecting opposing gripping tools is substantially parallel to the width direction of the long obliquely stretched film at the end position of the oblique stretching step.
  • a straight line connecting opposing grippers is substantially parallel to the width direction of the long film at the start position of the obliquely stretched process.
  • the difference between the lengths of the opposing rails may be an integral multiple of the pitch of the gripping tool.
  • the length of the opposed rail is variable.
  • the rail preferably has a curved rail portion that can be arbitrarily bent.
  • the gripping tool does not apply uneven stress in the width direction of the long diagonally stretched film after the oblique stretching process, and the uniform A long obliquely stretched film having retardation characteristics can be obtained. Furthermore, wrinkles and the like are less likely to occur by aligning the left and right grippers at the start position of the oblique stretching process.
  • the manufacturing method of the elongate stretched film which concerns on this embodiment is the elongate which has an in-plane slow axis in arbitrary angles with respect to the width direction of the elongate film after extending
  • the “long” means a film having a length of at least about 5 times the width of the film, preferably a length of 10 times or more, and specifically wound in a roll shape. It is possible to have a length (film roll) that can be stored or transported. In the manufacturing method of a long film, a film can be manufactured to desired arbitrary length by manufacturing a film continuously.
  • the manufacturing method of a elongate stretched film after forming a elongate film, this is wound up around a core once, and it is set as a wound body (long film original fabric), and a long film is slanted from this wound body
  • An obliquely stretched film may be produced by supplying it to the stretching process, or by continuously feeding the obliquely stretched film from the film forming process to the obliquely stretched process without winding up the long film after film formation. It may be manufactured. Performing the film forming step and the oblique stretching step continuously can feed back the film thickness and optical value results of the stretched film, change the film forming conditions, and obtain a desired long stretched film. Therefore, it is preferable.
  • a long stretched film having a slow axis at an angle of more than 0 ° and less than 90 ° with respect to the width direction of the film is produced.
  • the angle with respect to the width direction of the film is an angle in the film plane.
  • the slow axis is usually expressed in the stretching direction or a direction perpendicular to the stretching direction, the production method according to this embodiment performs stretching at an angle of more than 0 ° and less than 90 ° with respect to the width direction of the film.
  • the angle formed by the width direction of the long stretched film and the slow axis that is, the orientation angle, can be arbitrarily set to a desired angle in the range of more than 0 ° and less than 90 °.
  • the present inventors have found that the above object can be achieved by making the positions of the gripping tools at both ends at the end of the oblique stretching process parallel to the width direction of the film. It was. And further examination was advanced and it came to complete this invention based on these knowledge.
  • both ends in the width direction of the supplied long film are gripped by each gripping tool arranged at equal intervals, and each gripping tool is fixed at a constant speed along the opposing rail.
  • the long film is transported while being moved at the same time, and the long film is stretched in an oblique direction with respect to the width direction by changing the transport direction of the long film in the middle,
  • the straight line connecting the opposing gripping tools is substantially parallel to the width direction of the long obliquely stretched film at the end position of the oblique stretching step. It is a manufacturing method of long slanting stretched film.
  • the long film to be stretched in the method for producing a long obliquely stretched film of the present embodiment is not particularly limited as long as it is a film made of a thermoplastic resin.
  • a film made of a resin having a property transparent to a desired wavelength is preferable.
  • resins include polycarbonate resins, polyether sulfone resins, polyethylene terephthalate resins, polyimide resins, polymethyl methacrylate resins, polysulfone resins, polyarylate resins, polyethylene resins, polyvinyl chloride resins.
  • resins include resins, olefin polymer resins having an alicyclic structure (alicyclic olefin polymer resins), and cellulose ester resins.
  • polycarbonate resins, alicyclic olefin polymer resins, and cellulose ester resins are preferable from the viewpoints of transparency and mechanical strength.
  • alicyclic olefin polymer resins and cellulose ester resins which can easily adjust the phase difference when an optical film is used, are more preferable.
  • the long film of this embodiment made of the above-described resin can be formed by either the solution casting method or the melt casting method described below. Hereinafter, each film forming method will be described. In addition, below, although the case where a cellulose ester-type resin film is formed into a film as a long film is demonstrated, for example, it is applicable also to film forming of another resin film.
  • Organic solvent An organic solvent useful for forming a dope when the cellulose ester resin film according to this embodiment is produced by a solution casting method is used without limitation as long as it dissolves cellulose acetate and other additives simultaneously. be able to.
  • methylene chloride as a non-chlorinated organic solvent, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro- 2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, etc.
  • Methylene chloride, methyl acetate, ethyl acetate and acetone can be preferably used.
  • the dope preferably contains 1 to 40% by mass of a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
  • a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
  • the proportion of alcohol in the dope increases, the web gels and becomes easy to peel off from the metal support.
  • the proportion of alcohol is small, the role of promoting cellulose acetate dissolution in non-chlorine organic solvent systems There is also.
  • the dope composition is dissolved in%.
  • linear or branched aliphatic alcohol having 1 to 4 carbon atoms examples include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Of these, ethanol is preferable because the stability of the dope can be ensured, the boiling point is relatively low, and the drying property is good.
  • the cellulose ester resin film according to this embodiment can be produced by a solution casting method.
  • a step of preparing a dope by dissolving a resin and an additive in a solvent a step of casting the dope on a belt-like or drum-like metal support, and a step of drying the cast dope as a web , A step of peeling from the metal support, a step of stretching or maintaining the width, a step of further drying, and a step of winding up the finished film.
  • the concentration of cellulose acetate in the dope is high because the drying load after casting on the metal support can be reduced. However, if the concentration is too high, the load during filtration increases and the filtration accuracy deteriorates.
  • the concentration that achieves both of these is preferably 10 to 35% by mass, and more preferably 15 to 25% by mass.
  • the metal support in the casting (casting) step preferably has a mirror-finished surface, and a stainless steel belt or a drum whose surface is plated with a casting is preferably used as the metal support.
  • the surface temperature of the metal support in the casting process is set to ⁇ 50 ° C. to a temperature at which the solvent boils and does not foam.
  • a higher support temperature is preferable because the web can be dried at a higher speed, but if it is too high, the web may foam or the flatness may deteriorate.
  • a preferable support temperature is appropriately determined at 0 to 100 ° C., and more preferably 5 to 30 ° C.
  • the method for controlling the temperature of the metal support is not particularly limited, and there are a method of blowing hot air or cold air, and a method of contacting hot water with the back side of the metal support. It is preferable to use hot water because heat is efficiently transmitted and the time until the temperature of the metal support becomes constant is shortened.
  • the amount of residual solvent when peeling the web from the metal support is preferably 10 to 150% by mass, more preferably 20 to 40% by mass or It is 60 to 130% by mass, and particularly preferably 20 to 30% by mass or 70 to 120% by mass.
  • M is the mass (g) of the sample collected at any time during or after the production of the web or film
  • N is the mass (g) after heating M at 115 ° C. for 1 hour.
  • the web is peeled off from the metal support, and further dried, and the residual solvent amount is preferably 1% by mass or less, more preferably 0.1% by mass or less. Particularly preferably, it is 0 to 0.01% by mass or less.
  • a roll drying method (a method in which webs are alternately passed through a plurality of rolls arranged above and below) and a method of drying while transporting the web by a tenter method are employed.
  • melt casting method The melt casting method is preferable from the viewpoint that it becomes easy to reduce the retardation Rt in the thickness direction of the film after oblique stretching, which will be described later, and that the amount of residual volatile components is small and the dimensional stability of the film is excellent. Is the law.
  • a composition containing an additive such as a resin and a plasticizer is heated and melted to a temperature showing fluidity, and then a melt containing fluid cellulose acetate is cast to form a film. How to do.
  • Methods formed by melt casting can be classified into melt extrusion (molding) methods, press molding methods, inflation methods, injection molding methods, blow molding methods, stretch molding methods, and the like. Among these, the melt extrusion method that can obtain a film having excellent mechanical strength and surface accuracy is preferable.
  • the plurality of raw materials used in the melt extrusion method are usually kneaded and pelletized in advance.
  • the pelletization may be performed by a known method. For example, dry cellulose acetate, plasticizer, and other additives are fed to the extruder with a feeder, kneaded using a single or twin screw extruder, extruded into a strand from a die, water-cooled or air-cooled, and cut. Can be pelletized.
  • Additives may be mixed before being supplied to the extruder, or may be supplied by individual feeders. Moreover, in order to mix a small amount of additives, such as particle
  • the extruder is preferably processed at as low a temperature as possible so that it can be pelletized so as to suppress the shearing force and prevent the resin from deteriorating (molecular weight reduction, coloring, gel formation, etc.).
  • a twin screw extruder it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
  • Film formation is performed using the pellets obtained as described above.
  • the raw material powder can be directly fed to the extruder by a feeder without being pelletized to form a film as it is.
  • the melting temperature at the time of extrusion is about 200 to 300 ° C, filtered through a leaf disk type filter, etc. to remove foreign matter, and then formed into a film from the T die. Then, the film is nipped between the cooling roll and the elastic touch roll and solidified on the cooling roll.
  • the extrusion flow rate is preferably carried out stably by introducing a gear pump.
  • a stainless fiber sintered filter is preferably used as a filter used for removing foreign substances.
  • the stainless steel fiber sintered filter is a united stainless steel fiber body that is intricately intertwined and compressed, and the contact points are sintered and integrated. The density of the fiber is changed depending on the thickness of the fiber and the amount of compression, and the filtration accuracy is improved. Can be adjusted.
  • Additives such as plasticizers and particles may be mixed with the resin in advance, or may be kneaded in the middle of the extruder. In order to add uniformly, it is preferable to use a mixing apparatus such as a static mixer.
  • the film temperature on the touch roll side when the film is nipped between the cooling roll and the elastic touch roll is preferably Tg (glass transition temperature) or higher and Tg + 110 ° C. or lower.
  • Tg glass transition temperature
  • a known roll can be used as the roll having an elastic surface used for such a purpose.
  • the elastic touch roll is also called a pinching rotator.
  • As the elastic touch roll a commercially available one can be used.
  • the long film formed by each film forming method described above may be a single layer or a laminated film of two or more layers.
  • the laminated film can be obtained by a known method such as a coextrusion molding method, a co-casting molding method, a film lamination method, or a coating method. Of these, the coextrusion molding method and the co-casting molding method are preferable.
  • the length of the long film in this embodiment is preferably 30 to 300 ⁇ m, more preferably 40 to 150 ⁇ m.
  • the thickness unevenness ⁇ m in the flow direction (conveying direction) of the long film supplied to the stretching zone described later maintains the film take-up tension at the oblique stretching tenter inlet described later, and the orientation angle. From the viewpoint of stabilizing optical properties such as retardation and retardation, it is preferably less than 0.30 ⁇ m, preferably less than 0.25 ⁇ m, more preferably less than 0.20 ⁇ m.
  • the thickness unevenness ⁇ m in the flow direction of the long film is 0.30 ⁇ m or more, variations in optical properties such as retardation and orientation angle of the long stretched film may be deteriorated.
  • a film having a thickness gradient in the width direction may be supplied as the long film.
  • the thickness gradient of the long film is empirically determined by stretching a film with various thickness gradients experimentally so that the film thickness at the position where the stretching in the subsequent process is completed can be made the most uniform. Can be sought.
  • the gradient of the thickness of the long film can be adjusted, for example, so that the end portion on the thick side is thicker by about 0.5 to 3% than the end portion on the thin side.
  • the width of the long film is not particularly limited, but can be 500 to 4000 mm, preferably 1000 to 2000 mm.
  • the preferable elastic modulus at the stretching temperature at the time of oblique stretching of the long film is 0.01 MPa or more and 5000 MPa or less, more preferably 0.1 MPa or more and 500 MPa or less, expressed as Young's modulus. If the elastic modulus is too low, the shrinkage rate during and after stretching becomes low and wrinkles are difficult to disappear. On the other hand, if the elastic modulus is too high, the tension applied during stretching increases, and it is necessary to increase the strength of the portions that hold the side edges of the film, which increases the load on the tenter in the subsequent step.
  • a non-oriented film may be used, or a film having an orientation in advance may be supplied. Further, if necessary, the distribution in the width direction of the orientation of the long film may be bow-shaped, so-called bowing. In short, the orientation state of the long film can be adjusted so that the orientation of the film at the position where the subsequent stretching has been completed can be made desirable.
  • FIG. 1 is a plan view schematically showing a schematic configuration of a manufacturing apparatus 1 for a long obliquely stretched film.
  • FIG. 2 is a plan view schematically showing another configuration of the manufacturing apparatus 1
  • FIG. 3 is a plan view schematically showing still another configuration of the manufacturing apparatus 1.
  • the manufacturing apparatus 1 includes, in order from the upstream side in the transport direction of a long film, a film feeding unit 2, a transport direction changing unit 3, a guide roll 4, a stretching unit 5, A guide roll 6, a conveyance direction changing unit 7, and a film winding unit 8 are provided. The details of the extending portion 5 will be described later.
  • the film feeding unit 2 feeds the above-described long film and supplies it to the stretching unit 5.
  • This film supply part 2 may be comprised separately from the film-forming apparatus of a long film, and may be comprised integrally. In the former case, after the long film is formed, the long film is drawn out from the film paying part 2 by loading the film wound part 2 into the film paying part 2 once wound around the core. On the other hand, in the latter case, the film feeding unit 2 feeds the long film to the stretching unit 5 without winding the long film after the long film is formed.
  • the conveyance direction changing unit 3 changes the conveyance direction of the long film fed from the film feeding unit 2 to a direction toward the entrance of the stretching unit 5 as an oblique stretching tenter.
  • a conveyance direction change part 3 is comprised including the turntable which rotates the turn bar which changes the conveyance direction by, for example, returning while conveying a film, and the turn bar in the surface parallel to a film.
  • the width of the entire manufacturing apparatus 1 can be made narrower, and the film feed position and angle are finely controlled.
  • the film feeding unit 2 and the conveyance direction changing unit 3 can be moved (slidable and turnable), the left and right clips (gripping tools) sandwiching both ends of the long film in the width direction in the stretching unit 5 can be used. It is possible to effectively prevent the biting into the film.
  • the above-described film feeding unit 2 may be slidable and turnable so that a long film can be fed out at a predetermined angle with respect to the entrance of the stretching unit 5.
  • FIGS. 2 and 3 it is possible to adopt a configuration in which the installation of the transport direction changing unit 3 is omitted.
  • At least one guide roll 4 is provided on the upstream side of the stretching portion 5 in order to stabilize the track during running of the long film.
  • the guide roll 4 may be comprised by a pair of upper and lower rolls which pinch
  • the guide roll 4 closest to the entrance of the extending portion 5 is a driven roll that guides the travel of the film, and is rotatably supported via a bearing portion (not shown).
  • a known material can be used as the material of the guide roll 4.
  • one of the rolls upstream of the guide roll 4 closest to the entrance of the extending portion 5 is nipped by pressing the rubber roll.
  • a pair of bearing portions at both ends (left and right) of the guide roll 4 closest to the entrance of the extending portion 5 includes a first tension detecting device as a film tension detecting device for detecting the tension generated in the film in the roll,
  • a second tension detecting device is provided.
  • a load cell can be used as the film tension detection device.
  • the load cell a known tensile or compression type can be used.
  • a load cell is a device that detects a load acting on an applied point by converting it into an electrical signal using a strain gauge attached to the strain generating body.
  • the load cell is installed in the left and right bearing portions of the guide roll 4 closest to the entrance of the extending portion 5, whereby the force of the running film on the roll, that is, in the film traveling direction generated in the vicinity of both side edges of the film.
  • the tension is detected independently on the left and right.
  • a strain gauge may be directly attached to a support that constitutes the bearing portion of the roll, and a load, that is, a film tension may be detected based on the strain generated in the support. The relationship between the generated strain and the film tension is measured in advance and is known.
  • the position and the transport direction of the film are changed by, for example, the transport direction changing unit 3 so that the difference in film tension between the left and right sides of the guide roll 4 closest to the entrance of the stretching unit 5 becomes equal.
  • the film can be stably held by the gripping tool at the entrance of the stretching portion 5, and the occurrence of obstacles such as detachment of the gripping tool can be reduced.
  • the physical properties in the width direction of the film after oblique stretching by the stretching portion 5 can be stabilized.
  • At least one guide roll 6 is provided on the downstream side of the stretching portion 5 in order to stabilize the trajectory during travel of the film (long oblique stretching film) that is obliquely stretched in the stretching portion 5.
  • the transport direction changing unit 7 changes the transport direction of the stretched film transported from the stretching unit 5 to a direction toward the film winding unit 8.
  • the conveyance direction change part 7 can be comprised by the folding
  • the film traveling direction at the entrance of the stretching portion 5 and the film traveling direction at the exit of the stretching portion 5 It is necessary to adjust the angle between the two.
  • the film formation and oblique stretching are continuously performed.
  • the traveling direction of the film is changed by the transport direction changing unit 3 and / or the transport direction changing unit 7, and the film is formed by the film forming process and the winding process. 1, that is, as shown in FIGS. 1 and 3, the traveling direction (feeding direction) of the film fed from the film feeding unit 2 and the film just before being wound by the film winding unit 8
  • the traveling direction (feeding direction) of the film fed from the film feeding unit 2 and the film just before being wound by the film winding unit 8 By matching the traveling direction (winding direction), the width of the entire apparatus with respect to the film traveling direction can be reduced.
  • the film traveling direction and the film winding process do not necessarily coincide with each other in the film forming process and the film winding process, but the transport direction changing unit 3 and the film feeding unit 2 and the film winding unit 8 are arranged so that the film feeding unit 2 and the film winding unit 8 do not interfere with each other. It is preferable that the traveling direction of the film is changed by the transport direction changing unit 7.
  • the transport direction changing units 3 and 7 as described above can be realized by a known method such as using an air flow roll.
  • the film take-up unit 8 takes up a film conveyed from the stretching unit 5 via the conveyance direction changing unit 7, and includes, for example, a winder device, an accumulator device, and a drive device. It is preferable that the film winding unit 8 has a structure that can be slid in the horizontal direction in order to adjust the film winding position.
  • the film take-up unit 8 can finely control the film take-up position and angle so that the film can be taken at a predetermined angle with respect to the outlet of the stretching unit 5. As a result, it is possible to obtain a long stretched film with small variations in film thickness and optical value. In addition, it is possible to effectively prevent wrinkling of the film and to improve the winding property of the film, so that the film can be wound up in a long length.
  • the take-up tension T (N / m) of the stretched film is preferably adjusted to 100 N / m ⁇ T ⁇ 700 N / m, preferably 150 N / m ⁇ T ⁇ 250 N / m.
  • the take-up tension When the take-up tension is 100 N / m or less, sagging and wrinkles of the film are likely to occur, and the retardation and orientation angle profile in the film width direction are also deteriorated. On the other hand, when the take-up tension is 700 N / m or more, the variation of the orientation angle in the film width direction may be deteriorated, and the width yield (taken efficiency in the width direction) may be deteriorated.
  • the fluctuation of the take-up tension T it is preferable to control the fluctuation of the take-up tension T with an accuracy of less than ⁇ 5%, preferably less than ⁇ 3%.
  • the variation in the take-up tension T is ⁇ 5% or more, the variation in the optical characteristics in the width direction and the flow direction (conveying direction) increases.
  • the load applied to the first roll (guide roll 6) on the outlet side of the stretching section 5, that is, the film tension is measured, and the value becomes constant.
  • the method of controlling the rotational speed of a take-up roll (winding roll of the film winding part 8) by a general PID control system is mentioned.
  • Examples of the method for measuring the load include a method in which a load cell is attached to the bearing portion of the guide roll 6 and a load applied to the guide roll 6, that is, a film tension is measured.
  • a load cell a known tensile type or compression type can be used.
  • the stretched film is released from the outlet of the stretching unit 5 by being held by the gripping tool of the stretching unit 5 and trimmed at both ends (both sides) of the film that has been gripped by the gripping tool. It is wound up by (winding roll) and becomes a wound body of a long stretched film. Note that the above trimming may be performed as necessary.
  • the masking film may be overlapped with the long stretched film and wound simultaneously, or at least of the long stretched film overlapping by winding. You may wind up, sticking a tape etc. on the edge of one (preferably both).
  • the masking film is not particularly limited as long as it can protect the long stretched film, and examples thereof include a polyethylene terephthalate film, a polyethylene film, and a polypropylene film.
  • FIG. 4 is a plan view schematically showing an example of the rail pattern of the extending portion 5.
  • this is an example, and the present invention is not limited to this.
  • the apparatus 1 for producing a long stretched film is performed using a tenter (an oblique stretching machine) capable of oblique stretching as the stretching section 5.
  • This tenter is an apparatus that heats a long film to an arbitrary temperature at which it can be stretched and obliquely stretches it.
  • This tenter is composed of a heating zone Z, a pair of rails Ri and Ro on the left and right, and a number of gripping tools Ci and Co that travel along the rails Ri and Ro (in FIG. 4, a set of gripping tools). Only). Details of the heating zone Z will be described later.
  • Each of the rails Ri and Ro is configured by connecting a plurality of rail portions with connecting portions (white circles in FIG. 4 are examples of connecting portions).
  • the gripping tool Ci / Co is composed of a clip that grips both ends of the film in the width direction.
  • the running direction (running direction before stretching) D1 of the long film when fed into the stretching device is the running direction (running direction after stretching) D2 of the long stretched film when fed from the stretching device.
  • the feeding angle ⁇ i is different from the running direction D2 after stretching.
  • the feeding angle ⁇ i can be arbitrarily set to a desired angle in the range of more than 0 ° and less than 90 °.
  • the rail pattern of the tenter has an asymmetric shape on the left and right. And according to orientation angle (theta) given to the elongate stretched film which should be manufactured, a draw ratio, etc., a rail pattern can be adjusted now manually or automatically.
  • orientation angle (theta) given to the elongate stretched film which should be manufactured, a draw ratio, etc.
  • a rail pattern can be adjusted now manually or automatically.
  • the positions of the rail portions and the rail connecting portions constituting the rails Ri and Ro can be freely set and the rail pattern can be arbitrarily changed.
  • the tenter gripping tool Ci ⁇ Co travels at a constant speed with a constant interval from the front and rear gripping tools Ci ⁇ Co.
  • the traveling speed of the gripping tool Ci / Co can be selected as appropriate, but is usually 1 to 150 m / min.
  • the difference in travel speed between the pair of left and right grippers Ci / Co is usually 1% or less, preferably 0.5% or less, more preferably 0.1% or less of the travel speed. This is because if there is a difference in the traveling speed between the left and right sides of the film at the exit of the stretching process, wrinkles and shifts will occur at the exit of the stretching process, so the speed difference between the right and left gripping tools is required to be substantially the same speed. Because.
  • a rail that regulates the trajectory of the gripping tool is often required to have a high bending rate, particularly in a portion where the film is transported obliquely.
  • the obliquely stretched tenter used for imparting the oblique orientation to the long film can freely set the orientation angle of the film by changing the rail pattern in various ways, and further, the orientation axis of the film It is preferred that the tenter be capable of orienting the (slow axis) in the left and right direction with high precision across the film width direction and controlling the film thickness and retardation with high precision.
  • Both ends of the long film are gripped by the left and right grippers Ci ⁇ Co, and are conveyed in the heating zone Z as the grippers Ci • Co travel.
  • the left and right gripping tools Ci and Co are opposed to a direction substantially perpendicular to the film traveling direction (traveling direction D1 before stretching) at the entrance of the stretching section 5 (position A in the drawing).
  • the film travels on the asymmetric rails Ri and Ro, and the film held at the exit portion (position B in the drawing) at the end of stretching is released.
  • the film released from the gripping tool Ci ⁇ Co is wound around the core by the film winding portion 8 described above.
  • Each of the pair of rails Ri and Ro has an endless continuous track, and the grippers Ci and Co that have released the film at the exit portion of the tenter travel on the outer rail and sequentially return to the entrance portion. It is supposed to be.
  • the left and right gripping tools Ci and Co which are opposed to each other at the position A in the drawing, move along the rails Ri and Ro.
  • the gripping tool Ci traveling on the Ri side is in a positional relationship that advances relative to the gripping tool Co traveling on the rail Ro side.
  • one gripping tool Ci is positioned at the position B at the end of stretching of the film.
  • the straight line connecting the grippers Ci and Co is inclined by an angle ⁇ L with respect to a direction substantially perpendicular to the running direction D2 after the film is stretched.
  • the long film is obliquely stretched at an angle of ⁇ L with respect to the width direction.
  • substantially vertical indicates that the angle is in a range of 90 ⁇ 1 °.
  • the heating zone Z of the stretching section 5 is composed of a preheating zone Z1, a stretching zone Z2, and a heat fixing zone Z3.
  • the film gripped by the gripping tool Ci / Co passes through the preheating zone Z1, the stretching zone Z2, and the heat fixing zone Z3 in this order.
  • the preheating zone Z1 refers to a section in which the gripping tool Ci / Co that grips both ends of the film travels at the left and right (in the film width direction) at a constant interval at the entrance of the heating zone Z.
  • the stretching zone Z2 refers to a section from when the gap between the gripping tools Ci and Co that grips both ends of the film opens until a predetermined gap is reached. At this time, the oblique stretching as described above is performed, but the stretching may be performed in the longitudinal direction or the transverse direction before and after the oblique stretching as necessary.
  • the heat fixing zone Z3 is a section in which the interval between the gripping tools Ci and Co after the stretching zone Z2 becomes constant again, and refers to a section in which the gripping tools Ci and Co at both ends travel while being parallel to each other.
  • the stretched film passes through the heat setting zone Z3 and then passes through a section (cooling zone) in which the temperature in the zone is set to be equal to or lower than the glass transition temperature Tg (° C.) of the thermoplastic resin constituting the film. May be.
  • a rail pattern that narrows the gap between the gripping tools Ci and Co facing each other in advance may be used.
  • the temperature of the preheating zone Z1 is set to Tg to Tg + 30 ° C
  • the temperature of the stretching zone Z2 is set to Tg to Tg + 30 ° C
  • the temperature of the heat setting zone Z3 is set to Tg-30 to Tg ° C with respect to the glass transition temperature Tg of the thermoplastic resin. Is preferred.
  • a temperature difference may be given in the width direction in the stretching zone Z2.
  • a method of adjusting the opening degree of the nozzle for sending warm air into the temperature-controlled room so as to make a difference in the width direction, or controlling the heating by arranging the heaters in the width direction is known. Can be used.
  • the lengths of the preheating zone Z1, the stretching zone Z2, and the heat setting zone Z3 can be appropriately selected.
  • the length of the preheating zone Z1 is usually 100 to 150% with respect to the length of the stretching zone Z2, and the length of the heat setting zone Z3. Is usually 50 to 100%.
  • the draw ratio R (W / Wo) in the stretching step is preferably 1.3 to 3. 0, more preferably 1.5 to 2.8.
  • the draw ratio is in this range, the thickness unevenness in the width direction of the film is preferably reduced.
  • said draw ratio R is equal to a magnification (W2 / W1) when the interval W1 between both ends of the clip held at the tenter inlet portion becomes the interval W2 at the tenter outlet portion.
  • the orientation angle ⁇ is inclined in the range of, for example, greater than 0 ° and less than 90 ° with respect to the winding direction, and is at least 1300 mm.
  • the variation in the in-plane retardation Ro in the width direction is 3 nm or less and the variation in the orientation angle ⁇ is less than 0.6 °.
  • the variation in the in-plane retardation Ro is 3 nm or less and preferably 1 nm or less at least 1300 mm in the width direction.
  • the variation in the orientation angle ⁇ is less than 0.6 ° and less than 0.4 ° in at least 1300 mm in the width direction. It is preferable.
  • a long stretched film with a variation in orientation angle ⁇ of 0.6 ° or more is bonded to a polarizer to form a circularly polarizing plate, and when this is installed on an image display device such as an organic EL display device, light leakage occurs, and light and dark Contrast may be reduced.
  • the average thickness of the long stretched film obtained by the production method according to the embodiment of the present invention is preferably 10 to 200 ⁇ m, more preferably 10 to 60 ⁇ m, and particularly preferably 10 to 35 ⁇ m from the viewpoint of mechanical strength and the like. is there. Moreover, since the thickness nonuniformity of the said elongate stretched film affects the propriety of winding, it is preferable that it is 3 micrometers or less, and it is more preferable that it is 2 micrometers or less.
  • a polarizing plate protective film, a polarizer, and a ⁇ / 4 retardation film are laminated in this order, and the slow axis of the ⁇ / 4 retardation film and the absorption axis of the polarizer ( Alternatively, the angle formed with the transmission axis is 45 °.
  • the polarizing plate protective film, the polarizer, and the ⁇ / 4 retardation film correspond to the protective film 313, the polarizer 312, and the ⁇ / 4 retardation film 311 in FIG. 5, respectively.
  • it is preferable that a long polarizing plate protective film, a long polarizer, and a long ⁇ / 4 retardation film (long stretched film) are laminated in this order.
  • the circularly polarizing plate of this embodiment is manufactured by using a stretched polyvinyl alcohol doped with iodine or a dichroic dye as a polarizer, and laminating with a configuration of ⁇ / 4 retardation film / polarizer. be able to.
  • the thickness of the polarizer is 5 to 40 ⁇ m, preferably 5 to 30 ⁇ m, particularly preferably 5 to 20 ⁇ m.
  • the polarizing plate can be produced by a general method.
  • the ⁇ / 4 retardation film subjected to the alkali saponification treatment is preferably bonded to one surface of a polarizer produced by immersing and stretching a polyvinyl alcohol film in an iodine solution using a completely saponified polyvinyl alcohol aqueous solution. .
  • the polarizing plate can be constituted by further bonding a release film on the opposite surface of the polarizing plate protective film of the polarizing plate.
  • the protective film and the release film are used for the purpose of protecting the polarizing plate at the time of shipping the polarizing plate, product inspection, and the like.
  • FIG. 5 is a cross-sectional view showing a schematic configuration of the organic EL image display device 100 of the present embodiment.
  • the configuration of the organic EL image display device 100 is not limited to this.
  • the organic EL image display device 100 is configured by forming a circularly polarizing plate 301 on an organic EL element 101 via an adhesive layer 201.
  • the organic EL element 101 includes a metal electrode 112, a light emitting layer 113, a transparent electrode (ITO, etc.) 114, and a sealing layer 115 on a substrate 111 made of glass, polyimide, or the like.
  • the metal electrode 112 may be composed of a reflective electrode and a transparent electrode.
  • the circularly polarizing plate 301 is formed by laminating a ⁇ / 4 retardation film 311, a polarizer 312, and a protective film 313 in order from the organic EL element 101 side.
  • the polarizer 312 is a ⁇ / 4 retardation film 311 and a protective film 313. It is pinched by. The two are bonded so that the angle formed by the transmission axis of the polarizer 312 and the slow axis of the ⁇ / 4 retardation film 311 made of the long stretched film of this embodiment is about 45 ° (or 135 °).
  • the circularly polarizing plate 301 is configured.
  • a cured layer is laminated on the protective film 313.
  • the cured layer not only prevents scratches on the surface of the organic EL image display device, but also has an effect of preventing warpage due to the circularly polarizing plate 301. Further, an antireflection layer may be provided on the cured layer.
  • the thickness of the organic EL element 101 itself is about 1 ⁇ m.
  • the light emitting layer is a laminate of various organic thin films, for example, a laminate of a hole injection layer made of a triphenylamine derivative and the like and a light emitting layer made of a fluorescent organic solid such as anthracene, Structures having various combinations such as a laminate of such a light emitting layer and an electron injection layer made of a perylene derivative, a hole injection layer, a light emitting layer, and a laminate of an electron injection layer are known.
  • holes and electrons are injected into the light-emitting layer by applying a voltage to the transparent electrode and metal electrode, and the energy generated by the recombination of these holes and electrons excites the fluorescent material. Then, light is emitted on the principle that the excited fluorescent material emits light when returning to the ground state.
  • the mechanism of recombination on the way is the same as that of a general diode, and as can be expected from this, the current and the light emission intensity show strong nonlinearity with rectification with respect to the applied voltage.
  • an organic EL image display device in order to extract light emitted from the light emitting layer, at least one of the electrodes must be transparent, and a transparent electrode usually formed of a transparent conductor such as indium tin oxide (ITO) is used as an anode. It is used as.
  • ITO indium tin oxide
  • metal electrodes such as Mg—Ag and Al—Li are used.
  • the light emitting layer is formed of a very thin film having a thickness of about 10 nm. For this reason, the light emitting layer transmits light almost completely like the transparent electrode. As a result, the light that is incident from the surface of the transparent substrate when not emitting light, passes through the transparent electrode and the light emitting layer, and is reflected by the metal electrode again exits to the surface side of the transparent substrate.
  • the display surface of the EL image display device looks like a mirror surface.
  • the circularly polarizing plate of this embodiment is suitable for an organic EL image display device in which such external light reflection is particularly problematic.
  • the organic EL element 101 when the organic EL element 101 is not emitting light, outside light incident from the outside of the organic EL element 101 due to indoor lighting or the like is absorbed by the polarizer 312 of the circularly polarizing plate 301 and the other half is transmitted as linearly polarized light. Then, the light enters the ⁇ / 4 retardation film 311.
  • the light incident on the ⁇ / 4 retardation film 311 is arranged so that the transmission axis of the polarizer 312 and the slow axis of the ⁇ / 4 retardation film 311 intersect at 45 ° (or 135 °). The light is converted into circularly polarized light by passing through the ⁇ / 4 retardation film 311.
  • the phase is inverted by 180 degrees and reflected as reverse circularly polarized light.
  • the reflected light is incident on the ⁇ / 4 retardation film 311 and converted into linearly polarized light perpendicular to the transmission axis of the polarizer 312 (parallel to the absorption axis). Will not be emitted. That is, external light reflection at the organic EL element 101 can be reduced by the circularly polarizing plate 301.
  • FIG. 6 is a plan view schematically showing an example of the rail pattern of the extended portion after the initial installation adjustment.
  • FIG. 7 is a plan view schematically showing an example of the rail pattern after changing the feeding angle in FIG. 6.
  • FIG. 8 is a plan view schematically showing an example of the rail pattern after the rail length is changed in FIG.
  • the left and right rails are endless rails.
  • the rail on the right side (the right side in the width direction of the long film) includes a going rail portion 11 that regulates the gripping tool 15 that travels in the traveling direction of the long film, and a gripping tool that travels in the direction opposite to the traveling direction of the long film.
  • a return rail portion 12 that regulates
  • the going rail part 11 is comprised from the entrance of the extending
  • the rail on the left side travels in a direction opposite to the traveling direction of the long film and the going rail portion 13 that regulates the gripping tool 15 that proceeds in the traveling direction of the long film. It is comprised with the return rail part 14 which controls a holding tool.
  • the going rail part 13 and the return rail part 14 shall be arrange
  • the going rail portion 13 is in order from the entrance of the extending portion, and the going rail portion 13 is in order from the entrance of the extending portion, the first rail portion 13a, the second rail portion 13b, the third rail portion (curved rail portion). ) 13c, a fourth rail portion 13d, and a fifth rail portion 13e.
  • the gripping tool 15 is a member that grips the film with pins or clips, and moves on the rail through a chain (not shown).
  • the gripping tool 15 is provided on the rail at regular intervals.
  • the chain is provided along the rail and meshes with a gear disposed in place.
  • the gear is driven by a motor or the like to drive the chain.
  • the left and right grips 15 are assumed to move at a constant speed.
  • This is the rail pattern of the extended portion after adjustment in the initial installation, and is a state in which the rail bending rate Ts is small.
  • the first rail portions 11a and 13a are parallel and isometric straight lines.
  • the second rail portions 11b and 13b are isometric straight lines that gradually spread in the lateral direction (the width direction of the long film), and correspond to a laterally stretched portion that laterally stretches the long film in the width direction.
  • Ld La.
  • the third rail portions 11c and 13c include a curved portion and correspond to an obliquely stretched portion that obliquely stretches a long film.
  • the 3rd rail part 11c consists only of a curved part, and makes the length Le.
  • the fourth rail part 11d and the fifth rail part 13e are parallel and isometric straight lines.
  • the fourth rail portion 13d on the left side is a straight rail facing the third rail portion 11c, and corresponds to an obliquely extending portion that obliquely extends a long film. That is, the fourth rail portion 13d corresponds to the left and right rail length difference of the obliquely extending portion.
  • Lc Lc
  • nP nP (n is an integer
  • P is the pitch of the gripping tool 15). That is, the difference in length between the left and right rails (bound rail portions 11 and 13) facing each other is an integral multiple of the pitch of the gripping tool.
  • the left and right gripping tools 15 are aligned at the entrance of the extending portion (the start ends of the first rail portions 11a and 13a), that is, a straight line connecting the left and right gripping tools 15 is a long film.
  • the left and right grips 15 remain aligned even at the start position of the oblique stretching process (starting ends of the third rail portions 11c, 13c), and the end position of the oblique stretching process (third rail).
  • the left and right gripping tools 15 are aligned even at the end of the portion 11c and the fourth rail 13d.
  • the left and right gripping tools 15 are aligned (substantially parallel) at the end position of the oblique stretching step means that the end portions on the downstream side in the transport direction of the pair of gripping tools closest to the position parallel to the width direction of the film
  • the angle Tc formed by the straight line connecting the two and the width direction of the film is 0 ° or more and 0.2 ° or less.
  • the first rail portions 11a and 13a are parallel and isometric straight lines.
  • the second rail portions 11b and 13b are isometric straight lines that gradually spread in the lateral direction (the width direction of the long film), and correspond to a laterally stretched portion that laterally stretches the long film in the width direction.
  • Ld La.
  • the third rail portions 11c and 13c include a curved portion and correspond to an obliquely stretched portion that obliquely stretches a long film.
  • the 3rd rail part 11c consists only of a curved part, and makes the length Le.
  • the fourth rail portion 11d and the fifth rail portion 13e are parallel straight lines.
  • the fourth rail portion 13d on the left side is a straight rail facing the third rail portion 11c, and corresponds to an obliquely extending portion that obliquely extends a long film. That is, the fourth rail portion 13d corresponds to the left and right rail length difference of the obliquely extending portion.
  • the length is Lc
  • P is an integer
  • P is the pitch of the gripping tool 15. That is, the difference between the lengths of the left and right rails facing each other in the obliquely extending portion is deviated from an integer multiple of the pitch of the gripping tool.
  • the left and right gripping tools 15 are aligned at the entrance of the extending portion (the start ends of the first rail portions 11a and 13a), that is, the straight line connecting the left and right gripping tools 15 is the length of the long film.
  • the left and right gripping tools 15 remain aligned at the start position of the oblique stretching process (starting ends of the third rail portions 11c and 13c), but the end position of the oblique stretching process (third rail).
  • the left and right grips 15 are displaced and are not substantially parallel.
  • the left and right gripping tools 15 being displaced (not substantially parallel) at the end position of the oblique stretching process means that the angle Tc exceeds 0.2 °.
  • the gripping tool 15 is fed either forward or backward while the apparatus is stopped, and the right and left gripping tools at the end position of the oblique stretching process (the end of the third rail portion 11c and the fourth rail 13d). 15 is aligned, that is, adjusted so as to be arranged at a position substantially parallel to the width direction of the film. In this case, the left and right gripping tools 15 are not aligned at the start position of the oblique stretching process (the start ends of the third rail portions 11c and 13c).
  • FIG. 8 This is a rail pattern after the rail length is changed from the state shown in FIG. 7, and is a state in which the right going rail portion 11 is shortened.
  • the shortening of the rail is performed by increasing the overlap at the connecting portion of the rail. Note that the angle Ts is not changed.
  • the first rail portions 11a and 13a are parallel and isometric straight lines.
  • the second rail portions 11b and 13b are isometric straight lines that gradually spread in the lateral direction (the width direction of the long film), and correspond to a laterally stretched portion that laterally stretches the long film in the width direction.
  • the second rail portion 11b is shortened.
  • Ld ' and the length of the second rail portion 13b is La'
  • Ld ' La'.
  • the rail part to be shortened may be the first rail part 11a or the third rail part 11c.
  • the third rail portions 11c and 13c include a curved portion and correspond to an obliquely stretched portion that obliquely stretches a long film.
  • the 3rd rail part 11c is comprised by the bending part and the linear part in order of the movement of the holding
  • the fourth rail part 11d and the fifth rail part 13e are parallel and isometric straight lines.
  • the fourth rail portion 13d on the left side is a straight rail facing the third rail portion 11c, and corresponds to an obliquely extending portion that obliquely extends a long film. That is, the fourth rail portion 13d corresponds to the left and right rail length difference of the obliquely extending portion.
  • Lc Lc
  • mP m is an integer
  • P is the pitch of the gripping tool 15). That is, the difference in length between the left and right rails (bound rail portions 11 and 13) facing each other is an integral multiple of the pitch of the gripping tool.
  • the left and right gripping tools 15 are aligned at the entrance of the extending portion (the start ends of the first rail portions 11a and 13a), that is, a straight line connecting the left and right gripping tools 15 is a long film.
  • the left and right grips 15 remain aligned even at the start position of the oblique stretching process (starting ends of the third rail portions 11c, 13c), and the end position of the oblique stretching process (third rail).
  • the left and right gripping tools 15 are also aligned at the portion 11c and the end of the fourth rail 13d.
  • a straight line connecting the left and right grips 15 at the end position of the oblique stretching process can be made substantially parallel to the width direction of the film.
  • the gripping tool 15 is sent to extend diagonally.
  • a straight line connecting the left and right grips 15 at the end position of the process can be substantially parallel to the width direction of the long obliquely stretched film.
  • the left and right grips 15 can be aligned at the end of the oblique stretching step, non-uniform stress is applied by the gripper 15 to the width of the long obliquely stretched film and the transport direction after the end of the oblique stretching step.
  • a long obliquely stretched film having uniform retardation characteristics can be obtained.
  • the left and right gripping tools 15 are aligned at the start position of the oblique stretching process, wrinkles and the like are unlikely to occur.
  • long films A1 to C1 were prepared by the following method.
  • the long film A1 is an alicyclic olefin polymer resin film, and was produced by the following production method.
  • DCP dicyclopentadiene
  • MTF 9a-tetrahydrofluorene
  • MTD 8-methyl-tetracyclo [4.4.0.12, 5.17,10] -dodec-3-ene
  • a norbornene-based monomer mixture composed of parts and 40 parts by mass of tungsten hexachloride (0.7% toluene solution) were continuously added over 2 hours for polymerization.
  • 1.06 parts by mass of butyl glycidyl ether and 0.52 parts by mass of isopropyl alcohol were added to deactivate the polymerization catalyst and stop the polymerization reaction.
  • a soft polymer manufactured by Kuraray Co., Ltd .; Septon 2002
  • an antioxidant manufactured by Ciba Specialty Chemicals Co., Ltd .; Irganox 1010
  • cyclohexane and other volatile components which are solvents, are removed from the solution using a cylindrical concentration dryer (manufactured by Hitachi, Ltd.), and the hydrogenated polymer is extruded in a strand form from an extruder in a molten state. After cooling, it was pelletized and collected.
  • the obtained ring-opened polymer hydrogenated pellets were dried at 70 ° C. for 2 hours using a hot air dryer in which air was circulated to remove moisture.
  • the pellets were melted by using a short-shaft extruder having a coat hanger type T die (manufactured by Mitsubishi Heavy Industries, Ltd .: screw diameter 90 mm, T die lip member quality is tungsten carbide, peel strength 44N from molten resin).
  • Extrusion molding produced a cycloolefin polymer film having a thickness of 75 ⁇ m (the thickness of the long film after drying obtained by the film forming step, not the thickness of the long stretched film produced through the stretching step).
  • a long film A1 having a width of 1000 mm was obtained in a clean room of class 10,000 or less under molding conditions of a molten resin temperature of 240 ° C. and a T-die temperature of 240 ° C.
  • the long film B1 is a cellulose ester resin film and was produced by the following production method.
  • Fine particles (Aerosil R972V manufactured by Nippon Aerosil Co., Ltd.) 11 parts by mass Ethanol 89 parts by mass The above was stirred and mixed with a dissolver for 50 minutes, and then dispersed with Manton Gorin.
  • ⁇ Fine particle additive solution Based on the following composition, the fine particle dispersion was slowly added to a dissolution tank containing methylene chloride with sufficient stirring. Further, the particles were dispersed by an attritor so that the secondary particles had a predetermined particle size. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution. 99 parts by mass of methylene chloride 5 parts by mass of fine particle dispersion 1
  • a main dope solution having the following composition was prepared. First, methylene chloride and ethanol were added to the pressure dissolution tank. Cellulose acetate was added to a pressurized dissolution tank containing a solvent while stirring. This is completely dissolved with heating and stirring. This was designated as Azumi Filter Paper No.
  • the main dope solution was prepared by filtration using 244.
  • combined by the following synthesis examples was used for the sugar ester compound and the ester compound. Moreover, the following were used for the compound (B).
  • Composition of main dope solution Methylene chloride 340 parts by mass Ethanol 64 parts by mass Cellulose acetate propionate (acetyl group substitution degree 1.39, propionyl group substitution degree 0.50, total substitution degree 1.89) 100 parts by mass Compound (B) 5.0 parts by mass Sugar ester compound 5.0 parts by mass Ester compound 2.5 parts by mass Particulate additive solution 1 1 part by mass
  • the inside of the Kolben was depressurized to 4 ⁇ 10 2 Pa or less, and after excess pyridine was distilled off at 60 ° C., the inside of the Kolben was depressurized to 1.3 ⁇ 10 Pa or less and the temperature was raised to 120 ° C. Most of the acid and benzoic acid formed were distilled off.
  • LC section Equipment Column oven (JASCO CO-965) manufactured by JASCO Corporation, detector (JASCO UV-970-240 nm), pump (JASCO PU-980), degasser (JASCO DG-980-50) Column: Inertsil ODS-3 Particle size 5 ⁇ m 4.6 ⁇ 250 mm (manufactured by GL Sciences Inc.) Column temperature: 40 ° C Flow rate: 1 ml / min Mobile phase: THF (1% acetic acid): H 2 O (50:50) Injection volume: 3 ⁇ l 2) MS unit Device: LCQ DECA (manufactured by Thermo Quest Co., Ltd.) Ionization method: Electrospray ionization (ESI) method Spray Voltage: 5 kV Capillary temperature: 180 ° C Vaporizer temperature: 450 ° C
  • the ester compound had an ester of benzoic acid at the end of the polyester chain formed by condensation of 1,2-propylene glycol, phthalic anhydride and adipic acid.
  • the acid value of the ester compound was 0.10, and the number average molecular weight was 450.
  • the main dope solution was cast uniformly on a stainless steel belt support.
  • the solvent is evaporated until the residual solvent amount in the cast (cast) long film reaches 75%, peeled off from the stainless steel belt support, and transported by many rolls. Drying was terminated, and a long film B1 having a width of 1000 mm was obtained.
  • the film thickness of the long film B1 was 75 ⁇ m (the thickness of the long film after drying obtained by the film forming process, not the thickness of the long stretched film produced through the stretching process).
  • the long film C1 is a polycarbonate resin film, and was produced by the following production method.
  • ⁇ Dope composition Polycarbonate resin (viscosity average molecular weight 40,000, bisphenol A type) 100 parts by mass 2- (2′hydroxy-3 ′, 5′-di-t-butylphenyl) -benzotriazole 1.0 part by mass Methylene chloride 430 parts by mass Methanol 90 parts by mass
  • the above composition was put into a sealed container, kept at 80 ° C. under pressure, and completely dissolved with stirring to obtain a dope composition.
  • this dope composition was filtered, cooled and kept at 33 ° C., cast uniformly on a stainless steel band, and dried at 33 ° C. for 5 minutes. Thereafter, the drying time was adjusted so that the retardation was 5 nm at 65 ° C., and after peeling from the stainless steel band, drying was completed while being conveyed by a number of rolls, and the film thickness was 75 ⁇ m (the length after drying obtained by the film forming process). This is the thickness of the long film, not the thickness of the long stretched film produced through the stretching step), and a long film C1 having a width of 1000 mm was obtained.
  • Example 1 The norbornene-based unstretched film A1 obtained above was stretched under the conditions shown in Table 1 using the oblique stretching apparatus described in FIGS. 6 and 7 to obtain a first long stretched film.
  • the width of the gripping tool in the transport direction was 40 mm, and the pitch of the gripping tool in the transport direction was 50 mm (that is, the distance between adjacent gripping tools was 10 mm).
  • the stretching part (length from the start of gripping to the grip opening) was 4345 mm for the inner circumference (right side in FIG. 6), 5094 mm for the outer circumference (left side in FIG. 6), and the stretching angle was set to 30 °.
  • the angle formed by the orientation angle (in-plane slow axis) of the obtained film and the film width direction is defined as the stretching angle.
  • the width of the long film A1 before being put into the oblique stretching apparatus was 1000 mm, and the width after stretching was 1534 mm.
  • Diagonal stretching was performed under the above stretching conditions, but at that time, the position was adjusted by moving only the inner gripping tool before starting stretching, and the shift in the conveyance direction of the left and right gripping tools at the end of diagonal stretching was performed. It adjusted so that it might become 1 mm.
  • the angle formed by the width direction of the film and the straight line connecting the grips at both ends was 0.037 °.
  • Example 2 A second long stretched film was obtained under the same conditions as in Example 1 except that the long film A1 was used as in Example 1 and the conditions in the oblique stretching step were changed as shown in Table 1.
  • Example 1 A third long stretched film was obtained under the same conditions as in Example 1 except that the long film A1 was used as in Example 1 and the conditions in the oblique stretching step were changed as shown in Table 1.
  • Example 2 A fourth long stretched film was obtained under the same conditions as in Example 1 except that the long film A1 was used in the same manner as in Example 1 and the conditions in the oblique stretching step were changed as shown in Table 1.
  • the orientation angle ⁇ of the produced first to fourth long stretched films was measured using a phase difference measuring device (manufactured by Oji Scientific Co., Ltd., KOBRA-WXK). As an evaluation method, measurement was performed at an interval of 50 mm in the film width direction of the long stretched film, and the difference between the maximum value and the minimum value of all measured values was regarded as variation. The same measurement was performed at 10 locations in the long direction of the film at intervals of 50 mm, and the average value was defined as the width distribution of the orientation angle of the long stretched film.
  • the width distribution of the orientation angle obtained by the above measurement is shown in Table 1 as ⁇ , ⁇ , ⁇ , ⁇ by the following indices.
  • The width distribution of the orientation angle is 0 ° or more and less than 0.4 ° ⁇ : The width distribution of the orientation angle is 0.4 ° or more and less than 0.6 ° ⁇ : The width distribution of the orientation angle is 0.6 ° or more Less than 0.8 ° x: width distribution of orientation angle is 0.8 ° or more
  • the width distribution of the orientation angle is less than 0.6 °, there is no practical problem, but it is preferably less than 0.4 °.
  • the present invention can be used for the production of a long obliquely stretched film applied to a circularly polarizing plate for preventing external light reflection of an organic EL image display device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Polarising Elements (AREA)

Abstract

A method for manufacturing a long obliquely stretched film has an obliquely stretching step in which both ends of a supplied long film in the width direction thereof are gripped by grippers arranged at equal intervals, the long film is conveyed while the grippers are moved at a constant speed along opposing rails, and the long film is stretched in the direction oblique to the width direction by changing the conveyance direction of the long film during the conveyance. At the position at which the obliquely stretching step terminates, a line which connects opposing grippers is substantially parallel to the width direction of the long obliquely stretched film.

Description

長尺斜め延伸フィルムの製造方法Manufacturing method of long diagonally stretched film
 本発明は、長尺フィルムを幅手方向に対して斜め方向に延伸して長尺斜め延伸フィルムを製造する長尺斜め延伸フィルムの製造方法に関する。 The present invention relates to a method for producing a long obliquely stretched film in which a long obliquely stretched film is produced by stretching a long film in an oblique direction with respect to the width direction.
 樹脂を延伸してなる延伸フィルムは、その光学異方性を利用して、各種ディスプレイ装置において様々な光学的機能を果たす光学フィルムとして用いられている。例えば、液晶表示装置において、該延伸フィルムを着色防止、視野角拡大などの光学補償などのための光学補償フィルムとして用いたり、該延伸フィルムと偏光子とを貼り合わせることで、該延伸フィルムを、偏光板保護フィルムを兼ねた位相差フィルムとして用いたりすることが知られている。 A stretched film formed by stretching a resin is used as an optical film that performs various optical functions in various display devices by utilizing its optical anisotropy. For example, in a liquid crystal display device, the stretched film is used as an optical compensation film for optical compensation such as anti-coloring and viewing angle expansion, or by bonding the stretched film and a polarizer, It is known to use as a retardation film that also serves as a polarizing plate protective film.
 一方、近年では、新たなディスプレイ装置として、有機EL(エレクトロルミネッセンス)表示装置のような自発光型の表示装置が注目されている。自発光型表示装置は、バックライトが常に点灯している液晶表示装置に対して消費電力を抑制できる余地がある。更に、有機EL表示装置のような、各色に対応した光源がそれぞれ点灯する自発光表示装置では、コントラスト低減の要因となるカラーフィルターを設置する必要がないため、コントラストを更に高めることが可能である。 On the other hand, in recent years, a self-luminous display device such as an organic EL (electroluminescence) display device has attracted attention as a new display device. The self-luminous display device has a room for suppressing power consumption with respect to the liquid crystal display device in which the backlight is always turned on. Furthermore, in a self-luminous display device such as an organic EL display device in which a light source corresponding to each color is turned on, it is not necessary to install a color filter that causes a reduction in contrast, so that the contrast can be further increased. .
 しかしながら、有機EL表示装置においては、光の取り出し効率を高めるべく、ディスプレイの背面側にアルミニウム板等の反射体が設けられるため、ディスプレイに入射した外光がこの反射体で反射されることで画像のコントラストが低下する問題がある。 However, in an organic EL display device, a reflector such as an aluminum plate is provided on the back side of the display in order to increase the light extraction efficiency. Therefore, external light incident on the display is reflected by the reflector and the image is reflected. There is a problem that the contrast of the image is lowered.
 そこで、外光反射防止による明暗コントラスト向上のために、該延伸フィルムと偏光子とを貼り合わせて円偏光板を形成し、この円偏光板をディスプレイの表面側に用いることが知られている。このとき、上記の円偏光板は、偏光子の透過軸に対して、該延伸フィルムの面内遅相軸が所望の角度で傾斜するように、偏光子と該延伸フィルムとを貼り合わせることによって形成される。 Therefore, in order to improve contrast of light and darkness by preventing external light reflection, it is known that the stretched film and a polarizer are bonded to form a circularly polarizing plate, and this circularly polarizing plate is used on the surface side of the display. At this time, the circularly polarizing plate is obtained by laminating the polarizer and the stretched film so that the in-plane slow axis of the stretched film is inclined at a desired angle with respect to the transmission axis of the polarizer. It is formed.
 ところが、一般的な偏光子(偏光フィルム)は、搬送方向に高倍率延伸することで得られるものであり、その透過軸が幅手方向と一致している。一方、従来の位相差フィルム(延伸フィルム)は、縦延伸または横延伸によって製造され、原理的に面内の遅相軸がフィルムの長尺方向に対して0°または90°の方向になる。このため、上記のように偏光子の透過軸と延伸フィルムの遅相軸とを所望の角度で傾斜させるには、長尺の偏光フィルムおよび/または延伸フィルムを特定の角度で切り出してフィルム片同士を1枚ずつ貼り合せるバッチ式を採用せざるを得ず、生産性の悪化や切り屑等の付着による製品の歩留まりの低下が問題として挙げられていた。 However, a general polarizer (polarizing film) is obtained by stretching at a high magnification in the transport direction, and its transmission axis coincides with the width direction. On the other hand, a conventional retardation film (stretched film) is produced by longitudinal stretching or lateral stretching, and in principle, the in-plane slow axis is in the direction of 0 ° or 90 ° with respect to the longitudinal direction of the film. For this reason, in order to incline the transmission axis of the polarizer and the slow axis of the stretched film at a desired angle as described above, the long polarizing film and / or the stretched film are cut out at a specific angle and the film pieces are separated from each other. A batch method in which sheets are bonded one by one has to be employed, and problems such as deterioration in productivity and reduction in product yield due to adhesion of chips and the like have been cited as problems.
 これに対して、長尺方向に対して所望の角度の方向に(斜め方向に)フィルムを延伸し、遅相軸の方向を、フィルムの長尺方向に対して0°でも90°でもない方向に自在に制御可能な長尺の位相差フィルムの製造方法が種々提案されている(例えば特許文献1~3参照。)。これらの方法では、樹脂フィルムを延伸後のフィルムの巻き取り方向とは異なる方向から繰り出して、該樹脂フィルムの両端部を一対の把持具によって把持して搬送する。そして、樹脂フィルムの搬送方向を途中で変えることにより、樹脂フィルムを斜め方向に延伸する。これにより、長尺方向に対して0°を超え90°未満の所望の角度に遅相軸を有する長尺状の延伸フィルムが製造される。 On the other hand, the film is stretched in a desired angle direction (obliquely) with respect to the long direction, and the direction of the slow axis is not 0 ° or 90 ° with respect to the long direction of the film. Various methods for producing a long retardation film that can be freely controlled have been proposed (see, for example, Patent Documents 1 to 3). In these methods, the resin film is unwound from a direction different from the winding direction of the stretched film, and both ends of the resin film are gripped by a pair of gripping tools and conveyed. And the resin film is extended | stretched in the diagonal direction by changing the conveyance direction of a resin film in the middle. Thereby, the elongate stretched film which has a slow axis in the desired angle of more than 0 degree and less than 90 degrees with respect to the elongate direction is manufactured.
 このような長尺方向に対して遅相軸が傾斜した延伸フィルムを使用することにより、従来のバッチ式の貼り合わせではなく、長尺の偏光フィルムと延伸フィルムとをロール・トゥ・ロールで貼り合わせて円偏光板を製造することが可能になる。その結果、円偏光板の生産性は飛躍的に向上し、歩留まりも大幅に改善することができる。 By using a stretched film whose slow axis is inclined with respect to the long direction, a long polarizing film and a stretched film are attached in a roll-to-roll manner instead of conventional batch-type bonding. In addition, a circularly polarizing plate can be manufactured. As a result, the productivity of the circularly polarizing plate can be dramatically improved, and the yield can be greatly improved.
特開2008-80674号公報JP 2008-80674 A 特開2009-78474号公報JP 2009-78474 A 特開2010-173261号公報JP 2010-173261 A
 一般的に、樹脂フィルムを幅手方向に延伸する場合に用いられる延伸装置においては、樹脂フィルムの両端を把持具によって把持し、両端の把持具をレール等の走行経路に沿って移動させる際に、把持具間の距離を変える(拡げる)ことで延伸が行われる。このような幅手方向の延伸装置では、把持開始時に両端を把持する一対の把持具の位置は、幅手方向に平行となる位置とされている。延伸工程における両端の把持具は等速で同じ距離を移動する為、把持開始位置において幅手方向に平行な位置関係にあった把持具は把持終了(開放位置)までその位置関係が変わることはない。 In general, in a stretching apparatus used when stretching a resin film in the width direction, both ends of the resin film are gripped by gripping tools, and the gripping tools at both ends are moved along a travel path such as a rail. The stretching is performed by changing (expanding) the distance between the gripping tools. In such a stretching apparatus in the width direction, the position of the pair of gripping tools that grip both ends at the start of gripping is a position that is parallel to the width direction. Since the gripping tools at both ends in the stretching process move at the same distance at a constant speed, the positional relationship of the gripping tool that was in a positional relationship parallel to the width direction at the gripping start position will not change until the gripping end (open position). Absent.
 しかしながら、上述のような樹脂フィルムを斜め方向に延伸する装置においては、把持具が取り付けられるレールに屈曲部分が存在し、その屈曲部分における両端を把持する把持具の移動距離が異なる為、移動距離が短くなる把持具が先行することで樹脂フィルムが斜めに延伸されることになる。そのため、把持開始位置や屈曲部分の入口で左右の把持具が長尺フィルムの幅手方向に揃っていても、即ち、両端を把持する一対の把持具がフィルムの幅手方向に略平行な位置関係になっていても、当初幅手方向に平行な位置関係にあった一対の把持具の位置は、必然的に屈曲部分の出口ではフィルムの幅手方向に対して斜めの位置関係となる。 However, in the apparatus for stretching the resin film in the oblique direction as described above, the rail to which the gripping tool is attached has a bent portion, and the moving distance of the gripping tool that grips both ends of the bent portion is different. The resin film is stretched obliquely by the gripping tool that becomes shorter. Therefore, even if the left and right gripping tools are aligned in the width direction of the long film at the grip start position and the entrance to the bent portion, that is, the pair of gripping tools that grip both ends are positioned substantially parallel to the width direction of the film. Even if it is in the relationship, the position of the pair of gripping tools that was initially in a positional relationship parallel to the width direction inevitably has an oblique positional relationship with respect to the width direction of the film at the exit of the bent portion.
 それ自体は、斜め延伸装置の原理上回避できないものであるが、左右の把持具の移動距離が異なったことで、斜め延伸工程終了後におけるフィルムの両端を把持する把持具の位置がフィルムの搬送方向にずれていることが問題となることが判明した。即ち、屈曲部分における斜め延伸工程が終了されたフィルムは、通常の幅手方向の延伸装置と同様に両端を把持された状態で搬送され、徐々にフィルムを冷却することでフィルムにおける配向方向が固定されるか、場合によっては更に幅手方向に延伸されることで配向方向が調整される。 As such, the principle of the oblique stretching apparatus cannot be avoided, but the movement distance of the right and left gripping tools is different, so the position of the gripping tool that grips both ends of the film after the diagonal stretching process is finished It turned out that it was a problem that it shifted in the direction. In other words, the film that has been subjected to the oblique stretching process at the bent portion is conveyed with both ends held in the same manner as a normal widthwise stretching device, and the film is gradually cooled to fix the orientation direction in the film. In some cases, the orientation direction is adjusted by further stretching in the width direction.
 その際に、斜め延伸工程を終えた左右の把持具の位置がフィルムの搬送方向にずれていると、屈曲部分の出口後の直線部分、即ち、配向方向を固定する場合や更に幅手方向に延伸することで配向方向を調整する工程において、搬送方向にずれた把持具によってフィルムの幅手方向に不均一な応力が掛かり、均一な位相差特性をもつ長尺延伸フィルムを得ることができないという問題が発生することが判明した。 At that time, if the positions of the left and right gripping tools after the oblique stretching process are shifted in the film transport direction, the straight portion after the exit of the bent portion, that is, when fixing the orientation direction or in the width direction In the process of adjusting the orientation direction by stretching, a non-uniform stress is applied in the width direction of the film by the gripping tool shifted in the transport direction, and a long stretched film having uniform retardation characteristics cannot be obtained. It turns out that a problem occurs.
 本発明は、斜め延伸工程の終了後に把持具によってフィルムの幅手方向に不均一な応力が掛からないようにすることで、均一な位相差特性をもつ長尺斜め延伸フィルムを得ることができる長尺斜め延伸フィルムの製造方法を提供することを目的とする。 In the present invention, a long diagonally stretched film having a uniform retardation characteristic can be obtained by preventing a non-uniform stress from being applied in the width direction of the film by a gripper after the oblique stretching process is finished. It aims at providing the manufacturing method of an isometrically stretched film.
 上記目的を達成するために本発明は、供給される長尺フィルムの幅手方向の両端部を等間隔に配設された各把持具によって把持し、各把持具を対向するレールに沿って等速で移動させながら前記長尺フィルムを搬送するとともに、前記長尺フィルムの搬送方向を途中で変えることにより、前記長尺フィルムを幅手方向に対して斜め方向に延伸して長尺斜め延伸フィルムとする斜め延伸工程を有する長尺斜め延伸フィルムの製造方法において、前記斜め延伸工程の終了位置で、対向する把持具を結ぶ直線が長尺斜め延伸フィルムの幅手方向と略平行であることを特徴とする。 In order to achieve the above object, the present invention grips both ends in the width direction of a long film to be fed by each gripping tool arranged at equal intervals, and each gripping tool is arranged along a facing rail. While transporting the long film while moving at a high speed, the long film is stretched in an oblique direction with respect to the width direction by changing the transport direction of the long film in the middle, and the long oblique stretched film In the manufacturing method of a long obliquely stretched film having an oblique stretching step, a straight line connecting opposing gripping tools is substantially parallel to the width direction of the long obliquely stretched film at the end position of the oblique stretching step. Features.
 上記の長尺斜め延伸フィルムの製造方法において、前記斜め延伸工程の開始位置で、対向する把持具を結ぶ直線が長尺フィルムの幅手方向と略平行であることが望ましい。 In the above method for producing a long obliquely stretched film, it is desirable that a straight line connecting opposing grippers is substantially parallel to the width direction of the long film at the start position of the obliquely stretched process.
 また上記の長尺斜め延伸フィルムの製造方法において、前記斜め延伸工程の終了位置で、対向する把持具を結ぶ直線が長尺フィルムの幅手方向と略平行になるようにするために、具体的には、前記対向するレールの長さの差を前記把持具のピッチの整数倍とすればよい。 Further, in the manufacturing method of the above-mentioned long oblique stretched film, in order to make the straight line connecting the opposing gripping tools substantially parallel to the width direction of the long film at the end position of the oblique stretching step, For this, the difference between the lengths of the opposing rails may be an integral multiple of the pitch of the gripping tool.
 また上記の長尺斜め延伸フィルムの製造方法において、前記対向するレールの長さが可変であることが望ましい。 Also, in the above-described method for producing a long obliquely stretched film, it is desirable that the length of the opposed rail is variable.
 また上記の長尺斜め延伸フィルムの製造方法において、前記レールは、任意に湾曲可能な湾曲レール部を有することが望ましい。 In the above method for producing a long obliquely stretched film, the rail preferably has a curved rail portion that can be arbitrarily bent.
 本発明によると、斜め延伸工程の終了位置で左右の把持具を揃えることにより、斜め延伸工程の終了後に把持具によって長尺斜め延伸フィルムの幅手方向に不均一な応力が掛からず、均一な位相差特性をもつ長尺斜め延伸フィルムを得ることができる。さらに、斜め延伸工程の開始位置で左右の把持具を揃えることにより、シワ等も発生しにくくなる。 According to the present invention, by aligning the left and right gripping tools at the end position of the oblique stretching process, the gripping tool does not apply uneven stress in the width direction of the long diagonally stretched film after the oblique stretching process, and the uniform A long obliquely stretched film having retardation characteristics can be obtained. Furthermore, wrinkles and the like are less likely to occur by aligning the left and right grippers at the start position of the oblique stretching process.
本発明の実施形態に係る長尺斜め延伸フィルムの製造装置の概略の構成を模式的に示す平面図である。It is a top view which shows typically the structure of the outline of the manufacturing apparatus of the elongate stretched film which concerns on embodiment of this invention. 上記製造装置の他の構成を模式的に示す平面図である。It is a top view which shows typically the other structure of the said manufacturing apparatus. 上記製造装置のさらに他の構成を模式的に示す平面図である。It is a top view which shows typically the other structure of the said manufacturing apparatus. 上記製造装置の延伸部のレールパターンの一例を模式的に示す平面図である。It is a top view which shows typically an example of the rail pattern of the extending | stretching part of the said manufacturing apparatus. 上記実施形態に係る有機EL画像表示装置の概略の構成を示す断面図である。It is sectional drawing which shows the schematic structure of the organic electroluminescent image display apparatus which concerns on the said embodiment. 上記実施形態に係る初期据付調整後の延伸部のレールパターンの一例を模式的に示す平面図である。It is a top view which shows typically an example of the rail pattern of the extending | stretching part after the initial installation adjustment which concerns on the said embodiment. 図6において繰出角度変更後のレールパターンの一例を模式的に示す平面図である。It is a top view which shows typically an example of the rail pattern after a feed angle change in FIG. 図7においてレール長変更後のレールパターンの一例を模式的に示す平面図である。It is a top view which shows typically an example of the rail pattern after rail length change in FIG.
 以下、本発明を実施するための形態について詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, although the form for implementing this invention is demonstrated in detail, this invention is not limited to these.
 本実施形態に係る長尺延伸フィルムの製造方法は、長尺フィルムを斜め延伸することによって、延伸後の長尺フィルムの幅手方向に対して任意の角度に面内遅相軸を有する長尺延伸フィルムの製造方法である。 The manufacturing method of the elongate stretched film which concerns on this embodiment is the elongate which has an in-plane slow axis in arbitrary angles with respect to the width direction of the elongate film after extending | stretching the elongate film diagonally. It is a manufacturing method of a stretched film.
 ここで長尺とは、フィルムの幅に対し、少なくとも5倍程度以上の長さを有するものをいい、好ましくは10倍もしくはそれ以上の長さを有し、具体的にはロール状に巻回されて保管または運搬される程度の長さを有するもの(フィルムロール)としうる。長尺のフィルムの製造方法では、フィルムを連続的に製造することにより、所望の任意の長さにフィルムを製造しうる。なお、長尺延伸フィルムの製造方法は、長尺フィルムを製膜した後にこれを一度巻芯に巻き取って巻回体(長尺フィルム原反)とし、この巻回体から長尺フィルムを斜め延伸工程に供給して斜め延伸フィルムを製造するようにしてもよいし、製膜後の長尺フィルムを巻き取ることなく、製膜工程から連続して斜め延伸工程に供給して斜め延伸フィルムを製造してもよい。製膜工程と斜め延伸工程とを連続して行うことは、延伸後のフィルムの膜厚や光学値の結果をフィードバックして製膜条件を変更し、所望の長尺延伸フィルムを得ることができるので好ましい。 Here, the “long” means a film having a length of at least about 5 times the width of the film, preferably a length of 10 times or more, and specifically wound in a roll shape. It is possible to have a length (film roll) that can be stored or transported. In the manufacturing method of a long film, a film can be manufactured to desired arbitrary length by manufacturing a film continuously. In addition, the manufacturing method of a elongate stretched film, after forming a elongate film, this is wound up around a core once, and it is set as a wound body (long film original fabric), and a long film is slanted from this wound body An obliquely stretched film may be produced by supplying it to the stretching process, or by continuously feeding the obliquely stretched film from the film forming process to the obliquely stretched process without winding up the long film after film formation. It may be manufactured. Performing the film forming step and the oblique stretching step continuously can feed back the film thickness and optical value results of the stretched film, change the film forming conditions, and obtain a desired long stretched film. Therefore, it is preferable.
 本実施形態に係る長尺延伸フィルムの製造方法では、フィルムの幅手方向に対して0°を超え90°未満の角度に遅相軸を有する長尺延伸フィルムを製造する。ここで、フィルムの幅手方向に対する角度とは、フィルム面内における角度である。遅相軸は、通常延伸方向または延伸方向に直角な方向に発現するので、本実施形態に係る製造方法では、フィルムの幅手方向に対して0°を超え90°未満の角度で延伸を行うことにより、かかる遅相軸を有する長尺延伸フィルムを製造しうる。長尺延伸フィルムの幅手方向と遅相軸とがなす角度、すなわち配向角は、0°を超え90°未満の範囲で、所望の角度に任意に設定することができる。 In the method for producing a long stretched film according to the present embodiment, a long stretched film having a slow axis at an angle of more than 0 ° and less than 90 ° with respect to the width direction of the film is produced. Here, the angle with respect to the width direction of the film is an angle in the film plane. Since the slow axis is usually expressed in the stretching direction or a direction perpendicular to the stretching direction, the production method according to this embodiment performs stretching at an angle of more than 0 ° and less than 90 ° with respect to the width direction of the film. Thus, a long stretched film having such a slow axis can be produced. The angle formed by the width direction of the long stretched film and the slow axis, that is, the orientation angle, can be arbitrarily set to a desired angle in the range of more than 0 ° and less than 90 °.
 本発明者等は、上記目的を達成するために鋭意検討した結果、斜め延伸工程終了時点における両端の把持具の位置をフィルムの幅手方向と平行とすることで、上記目的を達成できることを見出した。そして、さらに検討を進め、これらの知見に基づいて本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventors have found that the above object can be achieved by making the positions of the gripping tools at both ends at the end of the oblique stretching process parallel to the width direction of the film. It was. And further examination was advanced and it came to complete this invention based on these knowledge.
 即ち、本発明に係る実施態様は、供給される長尺フィルムの幅手方向の両端部を等間隔に配設された各把持具によって把持し、各把持具を対向するレールに沿って等速で移動させながら前記長尺フィルムを搬送するとともに、前記長尺フィルムの搬送方向を途中で変えることにより、前記長尺フィルムを幅手方向に対して斜め方向に延伸して長尺斜め延伸フィルムとする斜め延伸工程を有する長尺斜め延伸フィルムの製造方法において、前記斜め延伸工程の終了位置で、対向する把持具を結ぶ直線が長尺斜め延伸フィルムの幅手方向と略平行であることを特徴とする長尺斜め延伸フィルムの製造方法である。以下、本発明の実施態様を、適宜図面を参照して具体的に説明する。なお、本実施形態において、「長尺フィルム」と記載したときは、斜め延伸前の長尺フィルムを指すものとする。 That is, according to the embodiment of the present invention, both ends in the width direction of the supplied long film are gripped by each gripping tool arranged at equal intervals, and each gripping tool is fixed at a constant speed along the opposing rail. The long film is transported while being moved at the same time, and the long film is stretched in an oblique direction with respect to the width direction by changing the transport direction of the long film in the middle, In the manufacturing method of a long obliquely stretched film having an oblique stretching step, the straight line connecting the opposing gripping tools is substantially parallel to the width direction of the long obliquely stretched film at the end position of the oblique stretching step. It is a manufacturing method of long slanting stretched film. Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings as appropriate. In the present embodiment, when “long film” is described, it means a long film before oblique stretching.
 <長尺フィルムについて>
 まず、本実施形態で延伸対象となる長尺フィルムについて説明する。
<About long film>
First, the long film used as the extending | stretching object in this embodiment is demonstrated.
 本実施形態の長尺斜め延伸フィルムの製造方法(詳細は後述する)にて延伸対象となる長尺フィルムとしては、特に限定されず、熱可塑性樹脂から構成されているフィルムであれば何でも良いが、例えば、延伸後のフィルムを光学用途に使用する場合には、所望の波長に対して透明な性質を有する樹脂からなるフィルムが好ましい。このような樹脂としては、ポリカーボネート系樹脂、ポリエーテルスルフォン系樹脂、ポリエチレンテレフタレート系樹脂、ポリイミド系樹脂、ポリメチルメタクリレート系樹脂、ポリスルフォン系樹脂、ポリアリレート系樹脂、ポリエチレン系樹脂、ポリ塩化ビニル系樹脂、脂環構造を有するオレフィンポリマー系樹脂(脂環式オレフィンポリマー系樹脂)、セルロースエステル系樹脂などが挙げられる。 The long film to be stretched in the method for producing a long obliquely stretched film of the present embodiment (details will be described later) is not particularly limited as long as it is a film made of a thermoplastic resin. For example, when the stretched film is used for optical applications, a film made of a resin having a property transparent to a desired wavelength is preferable. Such resins include polycarbonate resins, polyether sulfone resins, polyethylene terephthalate resins, polyimide resins, polymethyl methacrylate resins, polysulfone resins, polyarylate resins, polyethylene resins, polyvinyl chloride resins. Examples thereof include resins, olefin polymer resins having an alicyclic structure (alicyclic olefin polymer resins), and cellulose ester resins.
 これらの中でも、透明性や機械強度などの観点から、ポリカーボネート系樹脂、脂環式オレフィンポリマー系樹脂、セルロースエステル系樹脂が好ましい。その中でも、光学フィルムとした場合の位相差を調整することが容易である、脂環式オレフィンポリマー系樹脂、セルロースエステル系樹脂が更に好ましい。 Among these, polycarbonate resins, alicyclic olefin polymer resins, and cellulose ester resins are preferable from the viewpoints of transparency and mechanical strength. Among these, alicyclic olefin polymer resins and cellulose ester resins, which can easily adjust the phase difference when an optical film is used, are more preferable.
 <長尺フィルムの製膜法>
 上述した樹脂からなる本実施形態の長尺フィルムは、以下に示す溶液流延法、溶融流延法のどちらでも製膜することができる。以下、各製膜法について説明する。なお、以下では、長尺フィルムとして、例えばセルロースエステル系樹脂フィルムを製膜する場合について説明するが、他の樹脂フィルムの製膜についても勿論適用することができる。
<Long film production method>
The long film of this embodiment made of the above-described resin can be formed by either the solution casting method or the melt casting method described below. Hereinafter, each film forming method will be described. In addition, below, although the case where a cellulose ester-type resin film is formed into a film as a long film is demonstrated, for example, it is applicable also to film forming of another resin film.
 〔溶液流延法〕
 フィルムの着色抑制、異物欠点の抑制、ダイラインなどの光学欠点の抑制、フィルムの平面性、透明度に優れるなどの観点からは、長尺フィルムを溶液流延法で製膜することが好ましい。
[Solution casting method]
From the viewpoints of suppression of film coloring, suppression of foreign matter defects, suppression of optical defects such as die lines, excellent film flatness, and transparency, it is preferable to form a long film by a solution casting method.
 (有機溶媒)
 本実施形態に係るセルロースエステル系樹脂フィルムを溶液流延法で製造する場合のドープを形成するのに有用な有機溶媒は、セルロースアセテート、その他の添加剤を同時に溶解するものであれば制限なく用いることができる。
(Organic solvent)
An organic solvent useful for forming a dope when the cellulose ester resin film according to this embodiment is produced by a solution casting method is used without limitation as long as it dissolves cellulose acetate and other additives simultaneously. be able to.
 例えば、塩素系有機溶媒としては、塩化メチレン、非塩素系有機溶媒としては、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン等を挙げることができ、塩化メチレン、酢酸メチル、酢酸エチル、アセトンを好ましく使用し得る。 For example, as a chlorinated organic solvent, methylene chloride, as a non-chlorinated organic solvent, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro- 2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, etc. Methylene chloride, methyl acetate, ethyl acetate and acetone can be preferably used.
 ドープには、上記有機溶媒の他に、1~40質量%の炭素原子数1~4の直鎖または分岐鎖状の脂肪族アルコールを含有させることが好ましい。ドープ中のアルコールの比率が高くなるとウェブがゲル化し、金属支持体からの剥離が容易になり、また、アルコールの割合が少ない時は非塩素系有機溶媒系でのセルロースアセテートの溶解を促進する役割もある。 In addition to the organic solvent, the dope preferably contains 1 to 40% by mass of a linear or branched aliphatic alcohol having 1 to 4 carbon atoms. When the proportion of alcohol in the dope increases, the web gels and becomes easy to peel off from the metal support. When the proportion of alcohol is small, the role of promoting cellulose acetate dissolution in non-chlorine organic solvent systems There is also.
 特に、メチレンクロライド、および炭素数1~4の直鎖または分岐鎖状の脂肪族アルコールを含有する溶媒に、アクリル樹脂と、セルロースエステル樹脂と、アクリル粒子の3種を、少なくとも計15~45質量%溶解させたドープ組成物であることが好ましい。 In particular, in a solvent containing methylene chloride and a linear or branched aliphatic alcohol having 1 to 4 carbon atoms, at least 15 to 45 mass in total of at least three kinds of acrylic resin, cellulose ester resin, and acrylic particles are used. It is preferable that the dope composition is dissolved in%.
 炭素原子数1~4の直鎖または分岐鎖状の脂肪族アルコールとしては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノールを挙げることができる。これらのうち、ドープの安定性を確保でき、沸点も比較的低く、乾燥性もよいこと等から、エタノールが好ましい。 Examples of the linear or branched aliphatic alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Of these, ethanol is preferable because the stability of the dope can be ensured, the boiling point is relatively low, and the drying property is good.
 (溶液流延)
 本実施形態に係るセルロースエステル系樹脂フィルムは、溶液流延法によって製造することができる。溶液流延法では、樹脂および添加剤を溶剤に溶解させてドープを調製する工程、ドープをベルト状もしくはドラム状の金属支持体上に流延する工程、流延したドープをウェブとして乾燥する工程、金属支持体から剥離する工程、延伸または幅保持する工程、更に乾燥する工程、仕上がったフィルムを巻き取る工程により行われる。
(Solution casting)
The cellulose ester resin film according to this embodiment can be produced by a solution casting method. In the solution casting method, a step of preparing a dope by dissolving a resin and an additive in a solvent, a step of casting the dope on a belt-like or drum-like metal support, and a step of drying the cast dope as a web , A step of peeling from the metal support, a step of stretching or maintaining the width, a step of further drying, and a step of winding up the finished film.
 ドープ中のセルロースアセテートの濃度は高いほうが、金属支持体に流延した後の乾燥負荷が低減できて好ましいが、濃度が高過ぎると濾過時の負荷が増えて、濾過精度が悪くなる。これらを両立する濃度としては、10~35質量%が好ましく、更に好ましくは、15~25質量%である。流延(キャスト)工程における金属支持体は、表面を鏡面仕上げしたものが好ましく、金属支持体としては、ステンレススティールベルト若しくは鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。 It is preferable that the concentration of cellulose acetate in the dope is high because the drying load after casting on the metal support can be reduced. However, if the concentration is too high, the load during filtration increases and the filtration accuracy deteriorates. The concentration that achieves both of these is preferably 10 to 35% by mass, and more preferably 15 to 25% by mass. The metal support in the casting (casting) step preferably has a mirror-finished surface, and a stainless steel belt or a drum whose surface is plated with a casting is preferably used as the metal support.
 流延工程の金属支持体の表面温度は、-50℃~溶剤が沸騰して発泡しない温度以下に設定される。支持体温度が高いほうがウェブの乾燥速度が速くできるので好ましいが、余り高すぎるとウェブが発泡したり、平面性が劣化したりする場合がある。 The surface temperature of the metal support in the casting process is set to −50 ° C. to a temperature at which the solvent boils and does not foam. A higher support temperature is preferable because the web can be dried at a higher speed, but if it is too high, the web may foam or the flatness may deteriorate.
 好ましい支持体温度としては、0~100℃で適宜決定され、5~30℃が更に好ましい。または、冷却することによってウェブをゲル化させて残留溶媒を多く含んだ状態でドラムから剥離することも好ましい方法である。金属支持体の温度を制御する方法は特に制限されないが、温風または冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。温水を用いるほうが、熱の伝達が効率的に行われ、金属支持体の温度が一定になるまでの時間が短くなるため、好ましい。 A preferable support temperature is appropriately determined at 0 to 100 ° C., and more preferably 5 to 30 ° C. Alternatively, it is also a preferable method that the web is gelled by cooling and peeled from the drum in a state containing a large amount of residual solvent. The method for controlling the temperature of the metal support is not particularly limited, and there are a method of blowing hot air or cold air, and a method of contacting hot water with the back side of the metal support. It is preferable to use hot water because heat is efficiently transmitted and the time until the temperature of the metal support becomes constant is shortened.
 温風を用いる場合は、溶媒の蒸発潜熱によるウェブの温度低下を考慮して、溶媒の沸点以上の温風を使用しつつ、発泡も防ぎながら目的の温度よりも高い温度の風を使う場合がある。 When using warm air, considering the temperature drop of the web due to the latent heat of vaporization of the solvent, while using warm air above the boiling point of the solvent, there is a case where wind at a temperature higher than the target temperature is used while preventing foaming. is there.
 特に、流延から剥離するまでの間で支持体の温度および乾燥風の温度を変更し、効率的に乾燥を行うことが好ましい。 Particularly, it is preferable to efficiently dry by changing the temperature of the support and the temperature of the drying air during the period from casting to peeling.
 セルロースエステル系樹脂フィルムが良好な平面性を示すためには、金属支持体からウェブを剥離する際の残留溶媒量が10~150質量%であることが好ましく、更に好ましくは20~40質量%または60~130質量%であり、特に好ましくは、20~30質量%または70~120質量%である。ここで、残留溶媒量は、下記式で定義される。
 残留溶媒量(質量%)={(M-N)/N}×100
 なお、Mはウェブまたはフィルムを製造中または製造後の任意の時点で採取した試料の質量(g)であり、NはMを115℃で1時間の加熱した後の質量(g)である。
In order for the cellulose ester resin film to exhibit good planarity, the amount of residual solvent when peeling the web from the metal support is preferably 10 to 150% by mass, more preferably 20 to 40% by mass or It is 60 to 130% by mass, and particularly preferably 20 to 30% by mass or 70 to 120% by mass. Here, the residual solvent amount is defined by the following equation.
Residual solvent amount (% by mass) = {(MN) / N} × 100
In addition, M is the mass (g) of the sample collected at any time during or after the production of the web or film, and N is the mass (g) after heating M at 115 ° C. for 1 hour.
 また、セルロース系樹脂フィルムの乾燥工程においては、ウェブを金属支持体より剥離し、更に乾燥し、残留溶媒量を1質量%以下にすることが好ましく、更に好ましくは0.1質量%以下であり、特に好ましくは0~0.01質量%以下である。 In the drying step of the cellulose resin film, the web is peeled off from the metal support, and further dried, and the residual solvent amount is preferably 1% by mass or less, more preferably 0.1% by mass or less. Particularly preferably, it is 0 to 0.01% by mass or less.
 フィルム乾燥工程では、一般にロール乾燥方式(上下に配置した多数のロールにウェブを交互に通し乾燥させる方式)やテンター方式でウェブを搬送させながら乾燥する方式が採られる。 In the film drying process, generally, a roll drying method (a method in which webs are alternately passed through a plurality of rolls arranged above and below) and a method of drying while transporting the web by a tenter method are employed.
 〔溶融流延法〕
 溶融流延法は、後述する斜め延伸後のフィルムの厚み方向のリタデーションRtを小さくすることが容易となり、残留揮発性成分量が少なくフィルムの寸法安定性にも優れる等の観点から、好ましい製膜法である。溶融流延法は、樹脂および可塑剤などの添加剤を含む組成物を、流動性を示す温度まで加熱溶融し、その後、流動性のセルロースアセテートを含む溶融物を流延してフィルムを製膜する方法をいう。溶融流延によって形成される方法は、溶融押出(成形)法、プレス成形法、インフレーション法、射出成形法、ブロー成形法、延伸成形法などに分類できる。これらの中で、機械的強度および表面精度などに優れるフィルムが得られる溶融押出法が好ましい。また、溶融押出法で用いる複数の原材料は、通常、予め混錬してペレット化しておくことが好ましい。
[Melt casting method]
The melt casting method is preferable from the viewpoint that it becomes easy to reduce the retardation Rt in the thickness direction of the film after oblique stretching, which will be described later, and that the amount of residual volatile components is small and the dimensional stability of the film is excellent. Is the law. In the melt casting method, a composition containing an additive such as a resin and a plasticizer is heated and melted to a temperature showing fluidity, and then a melt containing fluid cellulose acetate is cast to form a film. How to do. Methods formed by melt casting can be classified into melt extrusion (molding) methods, press molding methods, inflation methods, injection molding methods, blow molding methods, stretch molding methods, and the like. Among these, the melt extrusion method that can obtain a film having excellent mechanical strength and surface accuracy is preferable. Moreover, it is preferable that the plurality of raw materials used in the melt extrusion method are usually kneaded and pelletized in advance.
 ペレット化は、公知の方法で行えばよい。例えば、乾燥セルロースアセテートや可塑剤、その他添加剤をフィーダーで押出し機に供給し、1軸や2軸の押出し機を用いて混錬し、ダイからストランド状に押出し、水冷または空冷し、カッティングすることでペレット化できる。 The pelletization may be performed by a known method. For example, dry cellulose acetate, plasticizer, and other additives are fed to the extruder with a feeder, kneaded using a single or twin screw extruder, extruded into a strand from a die, water-cooled or air-cooled, and cut. Can be pelletized.
 添加剤は、押出し機に供給する前に混合しておいてもよいし、それぞれ個別のフィーダーで供給してもよい。また、粒子や酸化防止剤等の少量の添加剤は、均一に混合するため、事前に混合しておくことが好ましい。 Additives may be mixed before being supplied to the extruder, or may be supplied by individual feeders. Moreover, in order to mix a small amount of additives, such as particle | grains and antioxidant, uniformly, it is preferable to mix beforehand.
 押出し機は、剪断力を抑え、樹脂が劣化(分子量低下、着色、ゲル生成等)しないようにペレット化可能でなるべく低温で加工することが好ましい。例えば、2軸押出し機の場合、深溝タイプのスクリューを用いて、同方向に回転させることが好ましい。混錬の均一性から、噛み合いタイプが好ましい。 The extruder is preferably processed at as low a temperature as possible so that it can be pelletized so as to suppress the shearing force and prevent the resin from deteriorating (molecular weight reduction, coloring, gel formation, etc.). For example, in the case of a twin screw extruder, it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
 以上のようにして得られたペレットを用いてフィルム製膜を行う。もちろんペレット化せず、原材料の粉末をそのままフィーダーで押出し機に供給し、そのままフィルム製膜することも可能である。 Film formation is performed using the pellets obtained as described above. Of course, the raw material powder can be directly fed to the extruder by a feeder without being pelletized to form a film as it is.
 上記ペレットを1軸や2軸タイプの押出し機を用いて、押出す際の溶融温度を200~300℃程度とし、リーフディスクタイプのフィルターなどで濾過し異物を除去した後、Tダイからフィルム状に流延し、冷却ロールと弾性タッチロールとでフィルムをニップし、冷却ロール上で固化させる。 Using a single-screw or twin-screw type extruder, the melting temperature at the time of extrusion is about 200 to 300 ° C, filtered through a leaf disk type filter, etc. to remove foreign matter, and then formed into a film from the T die. Then, the film is nipped between the cooling roll and the elastic touch roll and solidified on the cooling roll.
 供給ホッパーから押出し機へ上記ペレットを導入する際は、真空下または減圧下や不活性ガス雰囲気下にして酸化分解等を防止することが好ましい。 When the pellets are introduced from the supply hopper to the extruder, it is preferable to prevent oxidative decomposition or the like under vacuum, reduced pressure, or inert gas atmosphere.
 押出し流量は、ギヤポンプを導入するなどして安定に行うことが好ましい。また、異物の除去に用いるフィルターは、ステンレス繊維焼結フィルターが好ましく用いられる。ステンレス繊維焼結フィルターは、ステンレス繊維体を複雑に絡み合った状態を作り出した上で圧縮し接触箇所を焼結し一体化したもので、その繊維の太さと圧縮量により密度を変え、濾過精度を調整できる。 The extrusion flow rate is preferably carried out stably by introducing a gear pump. Further, a stainless fiber sintered filter is preferably used as a filter used for removing foreign substances. The stainless steel fiber sintered filter is a united stainless steel fiber body that is intricately intertwined and compressed, and the contact points are sintered and integrated. The density of the fiber is changed depending on the thickness of the fiber and the amount of compression, and the filtration accuracy is improved. Can be adjusted.
 可塑剤や粒子などの添加剤は、予め樹脂と混合しておいてもよいし、押出し機の途中で練り込んでもよい。均一に添加するために、スタチックミキサーなどの混合装置を用いることが好ましい。 Additives such as plasticizers and particles may be mixed with the resin in advance, or may be kneaded in the middle of the extruder. In order to add uniformly, it is preferable to use a mixing apparatus such as a static mixer.
 冷却ロールと弾性タッチロールとでフィルムをニップする際のタッチロール側のフィルム温度は、フィルムのTg(ガラス転移温度)以上Tg+110℃以下にすることが好ましい。このような目的で使用する弾性体表面を有するロールは、公知のロールを使用できる。 The film temperature on the touch roll side when the film is nipped between the cooling roll and the elastic touch roll is preferably Tg (glass transition temperature) or higher and Tg + 110 ° C. or lower. A known roll can be used as the roll having an elastic surface used for such a purpose.
 弾性タッチロールは挟圧回転体ともいう。弾性タッチロールとしては、市販されているものを用いることもできる。 The elastic touch roll is also called a pinching rotator. As the elastic touch roll, a commercially available one can be used.
 冷却ロールからフィルムを剥離する際は、張力を制御してフィルムの変形を防止することが好ましい。 When peeling the film from the cooling roll, it is preferable to control the tension to prevent deformation of the film.
 なお、上記した各製膜法で製膜される長尺フィルムは、単層若しくは2層以上の積層フィルムであってもよい。積層フィルムは共押出成形法、共流延成形法、フィルムラミネイション法、塗布法などの公知の方法で得ることができる。これらのうち共押出成形法、共流延成形法が好ましい。 In addition, the long film formed by each film forming method described above may be a single layer or a laminated film of two or more layers. The laminated film can be obtained by a known method such as a coextrusion molding method, a co-casting molding method, a film lamination method, or a coating method. Of these, the coextrusion molding method and the co-casting molding method are preferable.
 <長尺フィルムの仕様>
 本実施形態における長尺フィルムの厚さは、好ましくは30~300μm、より好ましくは40~150μmである。また、本実施形態では、後述する延伸ゾーンに供給される長尺フィルムの流れ方向(搬送方向)の厚みムラσmは、後述する斜め延伸テンター入口でのフィルムの引取張力を一定に保ち、配向角やリタデーションといった光学特性を安定させる観点から、0.30μm未満、好ましくは0.25μm未満、さらに好ましくは0.20μm未満であることが好ましい。長尺フィルムの流れ方向の厚みムラσmが0.30μm以上となると、長尺延伸フィルムのリタデーションや配向角といった光学特性のバラツキが悪化する場合がある。
<Specifications of long film>
The length of the long film in this embodiment is preferably 30 to 300 μm, more preferably 40 to 150 μm. In this embodiment, the thickness unevenness σm in the flow direction (conveying direction) of the long film supplied to the stretching zone described later maintains the film take-up tension at the oblique stretching tenter inlet described later, and the orientation angle. From the viewpoint of stabilizing optical properties such as retardation and retardation, it is preferably less than 0.30 μm, preferably less than 0.25 μm, more preferably less than 0.20 μm. When the thickness unevenness σm in the flow direction of the long film is 0.30 μm or more, variations in optical properties such as retardation and orientation angle of the long stretched film may be deteriorated.
 また、長尺フィルムとして、幅方向の厚み勾配を有するフィルムが供給されてもよい。長尺フィルムの厚みの勾配は、後工程の延伸が完了した位置におけるフィルム厚みを最も均一なものとしうるよう、実験的に厚み勾配を様々に変化させたフィルムを延伸することにより、経験的に求めることができる。長尺フィルムの厚みの勾配は、例えば、厚みの厚い側の端部の厚みが、厚みの薄い側の端部よりも0.5~3%程度厚くなるように調整することができる。 Further, a film having a thickness gradient in the width direction may be supplied as the long film. The thickness gradient of the long film is empirically determined by stretching a film with various thickness gradients experimentally so that the film thickness at the position where the stretching in the subsequent process is completed can be made the most uniform. Can be sought. The gradient of the thickness of the long film can be adjusted, for example, so that the end portion on the thick side is thicker by about 0.5 to 3% than the end portion on the thin side.
 長尺フィルムの幅は、特に限定されないが、500~4000mm、好ましくは1000~2000mmとすることができる。 The width of the long film is not particularly limited, but can be 500 to 4000 mm, preferably 1000 to 2000 mm.
 長尺フィルムの斜め延伸時の延伸温度での好ましい弾性率は、ヤング率で表して、0.01MPa以上5000MPa以下、更に好ましくは0.1MPa以上500MPa以下である。弾性率が低すぎると、延伸時・延伸後の収縮率が低くなり、シワが消えにくくなる。また、弾性率が高すぎると、延伸時にかかる張力が大きくなり、フィルムの両側縁部を保持する部分の強度を高くする必要が生じ、後工程のテンターに対する負荷が大きくなる。 The preferable elastic modulus at the stretching temperature at the time of oblique stretching of the long film is 0.01 MPa or more and 5000 MPa or less, more preferably 0.1 MPa or more and 500 MPa or less, expressed as Young's modulus. If the elastic modulus is too low, the shrinkage rate during and after stretching becomes low and wrinkles are difficult to disappear. On the other hand, if the elastic modulus is too high, the tension applied during stretching increases, and it is necessary to increase the strength of the portions that hold the side edges of the film, which increases the load on the tenter in the subsequent step.
 長尺フィルムとしては、無配向なものを用いてもよいし、あらかじめ配向を有するフィルムが供給されてもよい。また、必要であれば長尺フィルムの配向の幅手方向の分布が弓なり状、いわゆるボウイングを成していてもよい。要は、長尺フィルムの配向状態を、後工程の延伸が完了した位置におけるフィルムの配向を所望なものとしうるよう、調整することができる。 As the long film, a non-oriented film may be used, or a film having an orientation in advance may be supplied. Further, if necessary, the distribution in the width direction of the orientation of the long film may be bow-shaped, so-called bowing. In short, the orientation state of the long film can be adjusted so that the orientation of the film at the position where the subsequent stretching has been completed can be made desirable.
 <長尺斜め延伸フィルムの製造方法および製造装置>
 次に、上述した長尺フィルムを幅手方向に対して斜め方向に延伸して長尺斜め延伸フィルムを製造する、長尺斜め延伸フィルムの製造方法および製造装置について説明する。
<Manufacturing method and manufacturing apparatus for long diagonally stretched film>
Next, the manufacturing method and manufacturing apparatus of a long diagonally stretched film which manufactures a long diagonally stretched film by extending | stretching the long film mentioned above in the diagonal direction with respect to the width direction are demonstrated.
 (装置の概要)
 図1は、長尺斜め延伸フィルムの製造装置1の概略の構成を模式的に示す平面図である。また、図2は、製造装置1の他の構成を模式的に示す平面図であり、図3は、製造装置1のさらに他の構成を模式的に示す平面図である。図1に示すように、本実施形態の製造装置1は、長尺フィルムの搬送方向上流側から順に、フィルム繰り出し部2と、搬送方向変更部3と、ガイドロール4と、延伸部5と、ガイドロール6と、搬送方向変更部7と、フィルム巻き取り部8とを備えている。なお、延伸部5の詳細については後述する。
(Outline of the device)
FIG. 1 is a plan view schematically showing a schematic configuration of a manufacturing apparatus 1 for a long obliquely stretched film. FIG. 2 is a plan view schematically showing another configuration of the manufacturing apparatus 1, and FIG. 3 is a plan view schematically showing still another configuration of the manufacturing apparatus 1. As shown in FIG. 1, the manufacturing apparatus 1 according to this embodiment includes, in order from the upstream side in the transport direction of a long film, a film feeding unit 2, a transport direction changing unit 3, a guide roll 4, a stretching unit 5, A guide roll 6, a conveyance direction changing unit 7, and a film winding unit 8 are provided. The details of the extending portion 5 will be described later.
 フィルム繰り出し部2は、上述した長尺フィルムを繰り出して延伸部5に供給するものである。このフィルム繰り出し部2は、長尺フィルムの製膜装置と別体で構成されていてもよいし、一体的に構成されてもよい。前者の場合、長尺フィルムを製膜後に一度巻芯に巻き取って巻回体となったものをフィルム繰り出し部2に装填することで、フィルム繰り出し部2から長尺フィルムが繰り出される。一方、後者の場合、フィルム繰り出し部2は、長尺フィルムの製膜後、その長尺フィルムを巻き取ることなく、延伸部5に対して繰り出すことになる。 The film feeding unit 2 feeds the above-described long film and supplies it to the stretching unit 5. This film supply part 2 may be comprised separately from the film-forming apparatus of a long film, and may be comprised integrally. In the former case, after the long film is formed, the long film is drawn out from the film paying part 2 by loading the film wound part 2 into the film paying part 2 once wound around the core. On the other hand, in the latter case, the film feeding unit 2 feeds the long film to the stretching unit 5 without winding the long film after the long film is formed.
 搬送方向変更部3は、フィルム繰り出し部2から繰り出される長尺フィルムの搬送方向を、斜め延伸テンターとしての延伸部5の入口に向かう方向に変更するものである。このような搬送方向変更部3は、例えばフィルムを搬送しながら折り返すことによって搬送方向を変更するターンバーや、そのターンバーをフィルムに平行な面内で回転させる回転テーブルを含んで構成されている。 The conveyance direction changing unit 3 changes the conveyance direction of the long film fed from the film feeding unit 2 to a direction toward the entrance of the stretching unit 5 as an oblique stretching tenter. Such a conveyance direction change part 3 is comprised including the turntable which rotates the turn bar which changes the conveyance direction by, for example, returning while conveying a film, and the turn bar in the surface parallel to a film.
 搬送方向変更部3にて長尺フィルムの搬送方向を上記のように変更することにより、製造装置1全体の幅をより狭くすることが可能となるほか、フィルムの送り出し位置および角度を細かく制御することが可能となり、膜厚、光学値のバラツキが小さい長尺延伸フィルムを得ることが可能となる。また、フィルム繰り出し部2および搬送方向変更部3を移動可能(スライド可能、旋回可能)とすれば、延伸部5において長尺フィルムの幅手方向の両端部を挟む左右のクリップ(把持具)のフィルムへの噛込み不良を有効に防止することができる。 By changing the transport direction of the long film as described above by the transport direction changing unit 3, the width of the entire manufacturing apparatus 1 can be made narrower, and the film feed position and angle are finely controlled. Thus, it becomes possible to obtain a long stretched film with small variations in film thickness and optical value. Further, if the film feeding unit 2 and the conveyance direction changing unit 3 can be moved (slidable and turnable), the left and right clips (gripping tools) sandwiching both ends of the long film in the width direction in the stretching unit 5 can be used. It is possible to effectively prevent the biting into the film.
 なお、上記したフィルム繰り出し部2は、延伸部5の入口に対して所定角度で長尺フィルムを送り出せるように、スライドおよび旋回可能となっていてもよい。この場合は、図2および図3に示すように、搬送方向変更部3の設置を省略した構成とすることもできる。 In addition, the above-described film feeding unit 2 may be slidable and turnable so that a long film can be fed out at a predetermined angle with respect to the entrance of the stretching unit 5. In this case, as shown in FIGS. 2 and 3, it is possible to adopt a configuration in which the installation of the transport direction changing unit 3 is omitted.
 ガイドロール4は、長尺フィルムの走行時の軌道を安定させるために、延伸部5の上流側に少なくとも1本設けられている。なお、ガイドロール4は、フィルムを挟む上下一対のロール対で構成されてもよいし、複数のロール対で構成されてもよい。延伸部5の入口に最も近いガイドロール4は、フィルムの走行を案内する従動ロールであり、不図示の軸受部を介してそれぞれ回転自在に軸支される。ガイドロール4の材質としては、公知のものを用いることが可能である。なお、フィルムの傷つきを防止するために、ガイドロール4の表面にセラミックコートを施したり、アルミニウム等の軽金属にクロームメッキを施す等によってガイドロール4を軽量化することが好ましい。 At least one guide roll 4 is provided on the upstream side of the stretching portion 5 in order to stabilize the track during running of the long film. In addition, the guide roll 4 may be comprised by a pair of upper and lower rolls which pinch | interpose a film, and may be comprised by several roll pairs. The guide roll 4 closest to the entrance of the extending portion 5 is a driven roll that guides the travel of the film, and is rotatably supported via a bearing portion (not shown). A known material can be used as the material of the guide roll 4. In order to prevent the film from being damaged, it is preferable to reduce the weight of the guide roll 4 by applying a ceramic coat on the surface of the guide roll 4 or applying chrome plating to a light metal such as aluminum.
 また、延伸部5の入口に最も近いガイドロール4よりも上流側のロールのうちの1本は、ゴムロールを圧接させてニップすることが好ましい。このようなニップロールにすることで、フィルムの流れ方向における繰出張力の変動を抑えることが可能となる。 Further, it is preferable that one of the rolls upstream of the guide roll 4 closest to the entrance of the extending portion 5 is nipped by pressing the rubber roll. By setting it as such a nip roll, it becomes possible to suppress the fluctuation | variation of the drawing tension | tensile_strength in the flow direction of a film.
 延伸部5の入口に最も近いガイドロール4の両端(左右)の一対の軸受部には、当該ロールにおいてフィルムに生じている張力を検出するためのフィルム張力検出装置として、第1張力検出装置、第2張力検出装置がそれぞれ設けられている。フィルム張力検出装置としては、例えばロードセルを用いることができる。ロードセルとしては、引張または圧縮型の公知のものを用いることができる。ロードセルは、着力点に作用する荷重を起歪体に取り付けられた歪ゲージにより電気信号に変換して検出する装置である。 A pair of bearing portions at both ends (left and right) of the guide roll 4 closest to the entrance of the extending portion 5 includes a first tension detecting device as a film tension detecting device for detecting the tension generated in the film in the roll, A second tension detecting device is provided. For example, a load cell can be used as the film tension detection device. As the load cell, a known tensile or compression type can be used. A load cell is a device that detects a load acting on an applied point by converting it into an electrical signal using a strain gauge attached to the strain generating body.
 ロードセルは、延伸部5の入口に最も近いガイドロール4の左右の軸受部に設置されることにより、走行中のフィルムがロールに及ぼす力、即ちフィルムの両側縁近傍に生じているフィルム進行方向における張力を左右独立に検出する。なお、ロールの軸受部を構成する支持体に歪ゲージを直接取り付けて、該支持体に生じる歪に基づいて荷重、即ちフィルム張力を検出するようにしてもよい。発生する歪とフィルム張力との関係は、予め計測され、既知であるものとする。 The load cell is installed in the left and right bearing portions of the guide roll 4 closest to the entrance of the extending portion 5, whereby the force of the running film on the roll, that is, in the film traveling direction generated in the vicinity of both side edges of the film. The tension is detected independently on the left and right. In addition, a strain gauge may be directly attached to a support that constitutes the bearing portion of the roll, and a load, that is, a film tension may be detected based on the strain generated in the support. The relationship between the generated strain and the film tension is measured in advance and is known.
 フィルム繰り出し部2または搬送方向変更部3から延伸部5に供給されるフィルムの位置および搬送方向が、延伸部5の入口に向かう位置および搬送方向からズレている場合、このズレ量に応じて、延伸部5の入口に最も近いガイドロール4におけるフィルムの両側縁近傍の張力に差が生じることになる。したがって、上述したようなフィルム張力検出装置を設けて上記の張力差を検出することにより、当該ズレの程度を判別することができる。つまり、フィルムの搬送位置および搬送方向が適正であれば(延伸部5の入口に向かう位置および方向であれば)、上記ガイドロール4に作用する荷重は軸方向の両端で粗均等になるが、適正でなければ、左右でフィルム張力に差が生じる。 When the position and the transport direction of the film supplied from the film feeding unit 2 or the transport direction changing unit 3 to the stretching unit 5 are shifted from the position toward the entrance of the stretching unit 5 and the transport direction, according to the amount of shift, A difference will arise in the tension | tensile_strength near the both-sides edge of the film in the guide roll 4 nearest to the entrance of the extending | stretching part 5. FIG. Therefore, by providing the above-described film tension detecting device and detecting the above-described tension difference, the degree of the deviation can be determined. That is, if the transport position and transport direction of the film are appropriate (if it is the position and direction toward the entrance of the stretching unit 5), the load acting on the guide roll 4 is roughly uniform at both ends in the axial direction. If not appropriate, there will be a difference in film tension between left and right.
 したがって、延伸部5の入口に最も近いガイドロール4の左右のフィルム張力差が等しくなるように、例えば上記した搬送方向変更部3によってフィルムの位置および搬送方向(延伸部5の入口に対する角度)を適切に調整すれば、延伸部5の入口部の把持具によるフィルムの把持が安定し、把持具外れ等の障害の発生を少なくできる。更に、延伸部5による斜め延伸後のフィルムの幅方向における物性を安定させることができる。 Therefore, the position and the transport direction of the film (angle with respect to the entrance of the stretching unit 5) are changed by, for example, the transport direction changing unit 3 so that the difference in film tension between the left and right sides of the guide roll 4 closest to the entrance of the stretching unit 5 becomes equal. When properly adjusted, the film can be stably held by the gripping tool at the entrance of the stretching portion 5, and the occurrence of obstacles such as detachment of the gripping tool can be reduced. Furthermore, the physical properties in the width direction of the film after oblique stretching by the stretching portion 5 can be stabilized.
 ガイドロール6は、延伸部5にて斜め延伸されたフィルム(長尺斜め延伸フィルム)の走行時の軌道を安定させるために、延伸部5の下流側に少なくとも1本設けられている。 At least one guide roll 6 is provided on the downstream side of the stretching portion 5 in order to stabilize the trajectory during travel of the film (long oblique stretching film) that is obliquely stretched in the stretching portion 5.
 搬送方向変更部7は、延伸部5から搬送される延伸後のフィルムの搬送方向を、フィルム巻き取り部8に向かう方向に変更するものである。搬送方向変更部7は、例えば、長尺斜め延伸フィルムの面内で延伸方向に平行または垂直な方向に沿って、延伸後のフィルムを少なくとも1回折り返す折り返し機構で構成することができる。 The transport direction changing unit 7 changes the transport direction of the stretched film transported from the stretching unit 5 to a direction toward the film winding unit 8. The conveyance direction change part 7 can be comprised by the folding | turning mechanism which returns the film after extending | stretching at least 1 time along the direction parallel or perpendicular | vertical to a extending | stretching direction within the surface of a long diagonally stretched film, for example.
 ここで、配向角(フィルムの面内遅相軸の方向)の微調整や製品バリエーションに対応するために、延伸部5の入口でのフィルム進行方向と延伸部5の出口でのフィルム進行方向とがなす角度の調整が必要となる。 Here, in order to cope with fine adjustment of the orientation angle (in-plane slow axis direction of the film) and product variations, the film traveling direction at the entrance of the stretching portion 5 and the film traveling direction at the exit of the stretching portion 5 It is necessary to adjust the angle between the two.
 また、製膜および斜め延伸を連続して行うことが、生産性や収率の点で好ましい。製膜工程、斜め延伸工程、巻取工程を連続して行う場合、搬送方向変更部3および/または搬送方向変更部7によってフィルムの進行方向を変更し、製膜工程と巻取工程とでフィルムの進行方向を一致させる、つまり、図1および図3に示すように、フィルム繰り出し部2から繰り出されるフィルムの進行方向(繰り出し方向)と、フィルム巻き取り部8にて巻き取られる直前のフィルムの進行方向(巻き取り方向)とを一致させることにより、フィルム進行方向に対する装置全体の幅を小さくすることができる。 Moreover, it is preferable from the viewpoint of productivity and yield that the film formation and oblique stretching are continuously performed. When the film forming process, the oblique stretching process, and the winding process are continuously performed, the traveling direction of the film is changed by the transport direction changing unit 3 and / or the transport direction changing unit 7, and the film is formed by the film forming process and the winding process. 1, that is, as shown in FIGS. 1 and 3, the traveling direction (feeding direction) of the film fed from the film feeding unit 2 and the film just before being wound by the film winding unit 8 By matching the traveling direction (winding direction), the width of the entire apparatus with respect to the film traveling direction can be reduced.
 なお、製膜工程と巻取工程とでフィルムの進行方向は必ずしも一致させる必要はないが、フィルム繰り出し部2とフィルム巻き取り部8とが干渉しないレイアウトとなるように、搬送方向変更部3および/または搬送方向変更部7によってフィルムの進行方向を変更することが好ましい。 Note that the film traveling direction and the film winding process do not necessarily coincide with each other in the film forming process and the film winding process, but the transport direction changing unit 3 and the film feeding unit 2 and the film winding unit 8 are arranged so that the film feeding unit 2 and the film winding unit 8 do not interfere with each other. It is preferable that the traveling direction of the film is changed by the transport direction changing unit 7.
 上記のような搬送方向変更部3・7としては、エアーフローロールを用いるなど、公知の手法で実現することができる。 The transport direction changing units 3 and 7 as described above can be realized by a known method such as using an air flow roll.
 フィルム巻き取り部8は、延伸部5から搬送方向変更部7を介して搬送されるフィルムを巻き取るものであり、例えばワインダー装置、アキューム装置、ドライブ装置などで構成される。フィルム巻き取り部8は、フィルムの巻き取り位置を調整すべく、横方向にスライドできる構造であることが好ましい。 The film take-up unit 8 takes up a film conveyed from the stretching unit 5 via the conveyance direction changing unit 7, and includes, for example, a winder device, an accumulator device, and a drive device. It is preferable that the film winding unit 8 has a structure that can be slid in the horizontal direction in order to adjust the film winding position.
 フィルム巻き取り部8は、延伸部5の出口に対して所定角度でフィルムを引き取れるように、フィルムの引き取り位置および角度を細かく制御できるようになっている。これにより、膜厚、光学値のバラツキが小さい長尺延伸フィルムを得ることが可能となる。また、フィルムのシワの発生を有効に防止することができるとともに、フィルムの巻き取り性が向上するため、フィルムを長尺で巻き取ることが可能となる。本実施形態において、延伸後のフィルムの引取張力T(N/m)は、100N/m<T<700N/m、好ましくは150N/m<T<250N/mの間で調整することが好ましい。 The film take-up unit 8 can finely control the film take-up position and angle so that the film can be taken at a predetermined angle with respect to the outlet of the stretching unit 5. As a result, it is possible to obtain a long stretched film with small variations in film thickness and optical value. In addition, it is possible to effectively prevent wrinkling of the film and to improve the winding property of the film, so that the film can be wound up in a long length. In this embodiment, the take-up tension T (N / m) of the stretched film is preferably adjusted to 100 N / m <T <700 N / m, preferably 150 N / m <T <250 N / m.
 上記の引取張力が100N/m以下では、フィルムのたるみや皺が発生しやすく、リタデーション、配向角のフィルム幅方向のプロファイルも悪化する。逆に、引取張力が700N/m以上となると、配向角のフィルム幅方向のバラツキが悪化し、幅収率(幅方向の取り効率)を悪化させる場合がある。 When the take-up tension is 100 N / m or less, sagging and wrinkles of the film are likely to occur, and the retardation and orientation angle profile in the film width direction are also deteriorated. On the other hand, when the take-up tension is 700 N / m or more, the variation of the orientation angle in the film width direction may be deteriorated, and the width yield (taken efficiency in the width direction) may be deteriorated.
 また、本実施形態においては、上記引取張力Tの変動を±5%未満、好ましくは±3%未満の精度で制御することが好ましい。上記引取張力Tの変動が±5%以上であると、幅方向および流れ方向(搬送方向)の光学特性のバラツキが大きくなる。上記引取張力Tの変動を上記範囲内に制御する方法としては、延伸部5の出口側の最初のロール(ガイドロール6)にかかる荷重、すなわちフィルムの張力を測定し、その値が一定となるように、一般的なPID制御方式により引取ロール(フィルム巻き取り部8の巻取ロール)の回転速度を制御する方法が挙げられる。上記荷重を測定する方法としては、ガイドロール6の軸受部にロードセルを取り付け、ガイドロール6に加わる荷重、すなわちフィルムの張力を測定する方法が挙げられる。ロードセルとしては、引張型や圧縮型の公知のものを用いることができる。 In the present embodiment, it is preferable to control the fluctuation of the take-up tension T with an accuracy of less than ± 5%, preferably less than ± 3%. When the variation in the take-up tension T is ± 5% or more, the variation in the optical characteristics in the width direction and the flow direction (conveying direction) increases. As a method of controlling the fluctuation of the take-up tension T within the above range, the load applied to the first roll (guide roll 6) on the outlet side of the stretching section 5, that is, the film tension is measured, and the value becomes constant. Thus, the method of controlling the rotational speed of a take-up roll (winding roll of the film winding part 8) by a general PID control system is mentioned. Examples of the method for measuring the load include a method in which a load cell is attached to the bearing portion of the guide roll 6 and a load applied to the guide roll 6, that is, a film tension is measured. As the load cell, a known tensile type or compression type can be used.
 延伸後のフィルムは、延伸部5の把持具による把持が開放されて、延伸部5の出口から排出され、把持具で把持されていたフィルムの両端(両側)がトリミングされた後に、順次巻芯(巻取ロール)に巻き取られて、長尺延伸フィルムの巻回体となる。なお、上記のトリミングは、必要に応じて行われればよい。 The stretched film is released from the outlet of the stretching unit 5 by being held by the gripping tool of the stretching unit 5 and trimmed at both ends (both sides) of the film that has been gripped by the gripping tool. It is wound up by (winding roll) and becomes a wound body of a long stretched film. Note that the above trimming may be performed as necessary.
 また、長尺延伸フィルムを巻き取る前に、フィルム同士のブロッキングを防止する目的で、マスキングフィルムを長尺延伸フィルムに重ねて同時に巻き取ってもよいし、巻き取りによって重なる長尺延伸フィルムの少なくとも一方(好ましくは両方)の端にテープ等を貼り合わせながら巻き取ってもよい。マスキングフィルムとしては、長尺延伸フィルムを保護することができるものであれば特に制限されず、例えば、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルムなどが挙げられる。 In addition, before winding the long stretched film, for the purpose of preventing blocking between the films, the masking film may be overlapped with the long stretched film and wound simultaneously, or at least of the long stretched film overlapping by winding. You may wind up, sticking a tape etc. on the edge of one (preferably both). The masking film is not particularly limited as long as it can protect the long stretched film, and examples thereof include a polyethylene terephthalate film, a polyethylene film, and a polypropylene film.
 (延伸部の詳細)
 次に、上述した延伸部5の詳細について説明する。図4は、延伸部5のレールパターンの一例を模式的に示す平面図である。但し、これは一例であって、本発明はこれに限定されるものではない。
(Details of stretched part)
Next, the detail of the extending | stretching part 5 mentioned above is demonstrated. FIG. 4 is a plan view schematically showing an example of the rail pattern of the extending portion 5. However, this is an example, and the present invention is not limited to this.
 長尺延伸フィルムの製造装置1は、延伸部5として、斜め延伸可能なテンター(斜め延伸機)を用いて行われる。このテンターは、長尺フィルムを、延伸可能な任意の温度に加熱し、斜め延伸する装置である。このテンターは、加熱ゾーンZと、左右で一対のレールRi・Roと、レールRi・Roに沿って走行してフィルムを搬送する多数の把持具Ci・Co(図4では、1組の把持具のみを図示)とを備えている。なお、加熱ゾーンZの詳細については後述する。レールRi・Roは、それぞれ、複数のレール部を連結部で連結して構成されている(図4中の白丸は連結部の一例である)。把持具Ci・Coは、フィルムの幅手方向の両端を把持するクリップで構成されている。 The apparatus 1 for producing a long stretched film is performed using a tenter (an oblique stretching machine) capable of oblique stretching as the stretching section 5. This tenter is an apparatus that heats a long film to an arbitrary temperature at which it can be stretched and obliquely stretches it. This tenter is composed of a heating zone Z, a pair of rails Ri and Ro on the left and right, and a number of gripping tools Ci and Co that travel along the rails Ri and Ro (in FIG. 4, a set of gripping tools). Only). Details of the heating zone Z will be described later. Each of the rails Ri and Ro is configured by connecting a plurality of rail portions with connecting portions (white circles in FIG. 4 are examples of connecting portions). The gripping tool Ci / Co is composed of a clip that grips both ends of the film in the width direction.
 図4において、延伸装置に繰入る際の長尺フィルムの走行方向(延伸前の走行方向)D1は、延伸装置から繰出る際の長尺延伸フィルムの走行方向(延伸後の走行方向)D2と異なっており、延伸後の走行方向D2との間で繰出角度θiを成している。繰出角度θiは0°を超え90°未満の範囲で、所望の角度に任意に設定することができる。 In FIG. 4, the running direction (running direction before stretching) D1 of the long film when fed into the stretching device is the running direction (running direction after stretching) D2 of the long stretched film when fed from the stretching device. The feeding angle θi is different from the running direction D2 after stretching. The feeding angle θi can be arbitrarily set to a desired angle in the range of more than 0 ° and less than 90 °.
 このように、延伸前の走行方向D1と延伸後の走行方向D2とが異なっているため、テンターのレールパターンは左右で非対称な形状となっている。そして、製造すべき長尺延伸フィルムに与える配向角θ、延伸倍率等に応じて、レールパターンは手動または自動で調整できるようになっている。本実施形態で用いられる斜め延伸機では、レールRi・Roを構成する各レール部およびレール連結部の位置を自由に設定し、レールパターンを任意に変更できることが好ましい。 Thus, since the traveling direction D1 before stretching and the traveling direction D2 after stretching are different, the rail pattern of the tenter has an asymmetric shape on the left and right. And according to orientation angle (theta) given to the elongate stretched film which should be manufactured, a draw ratio, etc., a rail pattern can be adjusted now manually or automatically. In the oblique stretching machine used in the present embodiment, it is preferable that the positions of the rail portions and the rail connecting portions constituting the rails Ri and Ro can be freely set and the rail pattern can be arbitrarily changed.
 本実施形態において、テンターの把持具Ci・Coは、前後の把持具Ci・Coと一定間隔を保って、一定速度で走行するようになっている。把持具Ci・Coの走行速度は適宜選択できるが、通常、1~150m/分である。左右一対の把持具Ci・Coの走行速度の差は、走行速度の通常1%以下、好ましくは0.5%以下、より好ましくは0.1%以下である。これは、延伸工程出口でフィルムの左右に進行速度差があると、延伸工程出口におけるシワ、寄りが発生するため、左右の把持具の速度差は、実質的に同速度であることが求められるためである。一般的なテンター装置等では、チェーンを駆動するスプロケットの歯の周期、駆動モーターの周波数等に応じ、秒以下のオーダーで発生する速度ムラがあり、しばしば数%のムラを生ずるが、これらは本発明の実施形態で述べる速度差には該当しない。 In the present embodiment, the tenter gripping tool Ci · Co travels at a constant speed with a constant interval from the front and rear gripping tools Ci · Co. The traveling speed of the gripping tool Ci / Co can be selected as appropriate, but is usually 1 to 150 m / min. The difference in travel speed between the pair of left and right grippers Ci / Co is usually 1% or less, preferably 0.5% or less, more preferably 0.1% or less of the travel speed. This is because if there is a difference in the traveling speed between the left and right sides of the film at the exit of the stretching process, wrinkles and shifts will occur at the exit of the stretching process, so the speed difference between the right and left gripping tools is required to be substantially the same speed. Because. In general tenter devices, etc., there are speed irregularities that occur in the order of seconds or less depending on the period of the sprocket teeth that drive the chain, the frequency of the drive motor, etc. This does not correspond to the speed difference described in the embodiment of the invention.
 本発明の実施形態に係る製造方法で用いられる斜め延伸機において、特にフィルムの搬送が斜めになる箇所において、把持具の軌跡を規制するレールには、しばしば大きい屈曲率が求められる。急激な屈曲による把持具同士の干渉、あるいは局所的な応力集中を避ける目的から、屈曲部(湾曲部)では把持具の軌跡が滑らかな曲線を描くようにすることが望ましい。 In the oblique stretching machine used in the manufacturing method according to the embodiment of the present invention, a rail that regulates the trajectory of the gripping tool is often required to have a high bending rate, particularly in a portion where the film is transported obliquely. In order to avoid interference between gripping tools due to sudden bending or local stress concentration, it is desirable that the trajectory of the gripping tool draws a smooth curve at the bent portion (curved portion).
 このように、長尺フィルムに斜め方向の配向を付与するために用いられる斜め延伸テンターは、レールパターンを多様に変化させることにより、フィルムの配向角を自在に設定でき、さらに、フィルムの配向軸(遅相軸)をフィルム幅方向に渡って左右均等に高精度に配向させることができ、かつ、高精度でフィルム厚みやリタデーションを制御できるテンターであることが好ましい。 As described above, the obliquely stretched tenter used for imparting the oblique orientation to the long film can freely set the orientation angle of the film by changing the rail pattern in various ways, and further, the orientation axis of the film It is preferred that the tenter be capable of orienting the (slow axis) in the left and right direction with high precision across the film width direction and controlling the film thickness and retardation with high precision.
 次に、延伸部5での延伸動作について説明する。長尺フィルムは、その両端を左右の把持具Ci・Coによって把持され、加熱ゾーンZ内を把持具Ci・Coの走行に伴って搬送される。左右の把持具Ci・Coは、延伸部5の入口部(図中Aの位置)において、フィルムの進行方向(延伸前の走行方向D1)に対して略垂直な方向に相対しており、左右非対称なレールRi・Ro上をそれぞれ走行し、延伸終了時の出口部(図中Bの位置)で把持したフィルムを開放する。把持具Ci・Coから開放されたフィルムは、前述したフィルム巻き取り部8にて巻芯に巻き取られる。一対のレールRi・Roは、それぞれ無端状の連続軌道を有しており、テンターの出口部でフィルムの把持を開放した把持具Ci・Coは、外側のレールを走行して順次入口部に戻されるようになっている。 Next, the stretching operation in the stretching unit 5 will be described. Both ends of the long film are gripped by the left and right grippers Ci · Co, and are conveyed in the heating zone Z as the grippers Ci • Co travel. The left and right gripping tools Ci and Co are opposed to a direction substantially perpendicular to the film traveling direction (traveling direction D1 before stretching) at the entrance of the stretching section 5 (position A in the drawing). The film travels on the asymmetric rails Ri and Ro, and the film held at the exit portion (position B in the drawing) at the end of stretching is released. The film released from the gripping tool Ci · Co is wound around the core by the film winding portion 8 described above. Each of the pair of rails Ri and Ro has an endless continuous track, and the grippers Ci and Co that have released the film at the exit portion of the tenter travel on the outer rail and sequentially return to the entrance portion. It is supposed to be.
 このとき、レールRi・Roは左右非対称であるため、図4の例では、図中Aの位置で相対していた左右の把持具Ci・Coは、レールRi・Ro上を走行するにつれて、レールRi側を走行する把持具CiがレールRo側を走行する把持具Coに対して進行する位置関係となる。 At this time, since the rails Ri and Ro are asymmetrical in the left and right directions, in the example of FIG. 4, the left and right gripping tools Ci and Co, which are opposed to each other at the position A in the drawing, move along the rails Ri and Ro. The gripping tool Ci traveling on the Ri side is in a positional relationship that advances relative to the gripping tool Co traveling on the rail Ro side.
 すなわち、図中Aの位置でフィルムの延伸前の走行方向D1に対して略垂直な方向に相対していた把持具Ci・Coのうち、一方の把持具Ciがフィルムの延伸終了時の位置Bに先に到達したときには、把持具Ci・Coを結んだ直線がフィルムの延伸後の走行方向D2に略垂直な方向に対して、角度θLだけ傾斜している。以上の所作をもって、長尺フィルムが幅手方向に対してθLの角度で斜め延伸されることとなる。ここで、略垂直とは、90±1°の範囲にあることを示す。 That is, among gripping tools Ci and Co that are opposed to a direction substantially perpendicular to the traveling direction D1 before stretching of the film at the position A in the figure, one gripping tool Ci is positioned at the position B at the end of stretching of the film. First, the straight line connecting the grippers Ci and Co is inclined by an angle θL with respect to a direction substantially perpendicular to the running direction D2 after the film is stretched. With the above operation, the long film is obliquely stretched at an angle of θL with respect to the width direction. Here, “substantially vertical” indicates that the angle is in a range of 90 ± 1 °.
 次に、上記した加熱ゾーンZの詳細について説明する。延伸部5の加熱ゾーンZは、予熱ゾーンZ1、延伸ゾーンZ2および熱固定ゾーンZ3で構成されている。延伸部5では、把持具Ci・Coによって把持されたフィルムは、予熱ゾーンZ1、延伸ゾーンZ2、熱固定ゾーンZ3を順に通過する。 Next, the details of the heating zone Z will be described. The heating zone Z of the stretching section 5 is composed of a preheating zone Z1, a stretching zone Z2, and a heat fixing zone Z3. In the stretching unit 5, the film gripped by the gripping tool Ci / Co passes through the preheating zone Z1, the stretching zone Z2, and the heat fixing zone Z3 in this order.
 予熱ゾーンZ1とは、加熱ゾーンZの入口部において、フィルムの両端を把持した把持具Ci・Coが、左右で(フィルム幅方向に)一定の間隔を保ったまま走行する区間を指す。 The preheating zone Z1 refers to a section in which the gripping tool Ci / Co that grips both ends of the film travels at the left and right (in the film width direction) at a constant interval at the entrance of the heating zone Z.
 延伸ゾーンZ2とは、フィルムの両端を把持した把持具Ci・Coの間隔が開き出し、所定の間隔になるまでの区間を指す。このとき、上述のような斜め延伸が行われるが、必要に応じて斜め延伸前後において縦方向あるいは横方向に延伸してもよい。 The stretching zone Z2 refers to a section from when the gap between the gripping tools Ci and Co that grips both ends of the film opens until a predetermined gap is reached. At this time, the oblique stretching as described above is performed, but the stretching may be performed in the longitudinal direction or the transverse direction before and after the oblique stretching as necessary.
 熱固定ゾーンZ3とは、延伸ゾーンZ2より後の把持具Ci・Coの間隔が再び一定となる区間であって、両端の把持具Ci・Coが互いに平行を保ったまま走行する区間を指す。 The heat fixing zone Z3 is a section in which the interval between the gripping tools Ci and Co after the stretching zone Z2 becomes constant again, and refers to a section in which the gripping tools Ci and Co at both ends travel while being parallel to each other.
 なお、延伸後のフィルムは、熱固定ゾーンZ3を通過した後に、ゾーン内の温度がフィルムを構成する熱可塑性樹脂のガラス転移温度Tg(℃)以下に設定される区間(冷却ゾーン)を通過してもよい。このとき、冷却によるフィルムの縮みを考慮して、予め対向する把持具Ci・Coの間隔を狭めるようなレールパターンとしてもよい。 The stretched film passes through the heat setting zone Z3 and then passes through a section (cooling zone) in which the temperature in the zone is set to be equal to or lower than the glass transition temperature Tg (° C.) of the thermoplastic resin constituting the film. May be. At this time, considering the shrinkage of the film due to cooling, a rail pattern that narrows the gap between the gripping tools Ci and Co facing each other in advance may be used.
 熱可塑性樹脂のガラス転移温度Tgに対し、予熱ゾーンZ1の温度はTg~Tg+30℃、延伸ゾーンZ2の温度はTg~Tg+30℃、熱固定ゾーンZ3の温度はTg-30~Tg℃に設定することが好ましい。 The temperature of the preheating zone Z1 is set to Tg to Tg + 30 ° C, the temperature of the stretching zone Z2 is set to Tg to Tg + 30 ° C, and the temperature of the heat setting zone Z3 is set to Tg-30 to Tg ° C with respect to the glass transition temperature Tg of the thermoplastic resin. Is preferred.
 なお、幅方向のフィルムの厚みムラの制御のために、延伸ゾーンZ2において幅方向に温度差を付けてもよい。延伸ゾーンにおいて幅方向に温度差をつけるには、温風を恒温室内に送り込むノズルの開度を幅方向で差を付けるように調整する方法や、ヒーターを幅方向に並べて加熱制御するなどの公知の手法を用いることができる。予熱ゾーンZ1、延伸ゾーンZ2および熱固定ゾーンZ3の長さは適宜選択でき、延伸ゾーンZ2の長さに対して、予熱ゾーンZ1の長さは通常100~150%、熱固定ゾーンZ3の長さは通常50~100%である。 In addition, in order to control the thickness unevenness of the film in the width direction, a temperature difference may be given in the width direction in the stretching zone Z2. In order to create a temperature difference in the width direction in the stretching zone, a method of adjusting the opening degree of the nozzle for sending warm air into the temperature-controlled room so as to make a difference in the width direction, or controlling the heating by arranging the heaters in the width direction is known. Can be used. The lengths of the preheating zone Z1, the stretching zone Z2, and the heat setting zone Z3 can be appropriately selected. The length of the preheating zone Z1 is usually 100 to 150% with respect to the length of the stretching zone Z2, and the length of the heat setting zone Z3. Is usually 50 to 100%.
 また、延伸前のフィルムの幅をWo(mm)とし、延伸後のフィルムの幅をW(mm)とすると、延伸工程における延伸倍率R(W/Wo)は、好ましくは1.3~3.0、より好ましくは1.5~2.8である。延伸倍率がこの範囲にあると、フィルムの幅方向の厚みムラが小さくなるので好ましい。斜め延伸テンターの延伸ゾーンZ2において、幅方向で延伸温度に差を付けると、幅方向厚みムラをさらに良好なレベルにすることが可能になる。なお、上記の延伸倍率Rは、テンター入口部で把持したクリップ両端の間隔W1がテンター出口部において間隔W2となったときの倍率(W2/W1)に等しい。 When the width of the film before stretching is Wo (mm) and the width of the film after stretching is W (mm), the draw ratio R (W / Wo) in the stretching step is preferably 1.3 to 3. 0, more preferably 1.5 to 2.8. When the draw ratio is in this range, the thickness unevenness in the width direction of the film is preferably reduced. In the stretching zone Z2 of the oblique stretching tenter, if the stretching temperature is differentiated in the width direction, the width direction thickness unevenness can be further improved. In addition, said draw ratio R is equal to a magnification (W2 / W1) when the interval W1 between both ends of the clip held at the tenter inlet portion becomes the interval W2 at the tenter outlet portion.
 <長尺延伸フィルムの品質>
 本発明の実施形態に係る製造方法により得られた長尺延伸フィルムにおいては、配向角θが巻取方向に対して、例えば0°より大きく90°未満の範囲に傾斜しており、少なくとも1300mmの幅において、幅方向の、面内リタデーションRoのバラツキが3nm以下、配向角θのバラツキが0.6°未満であることが好ましい。
<Quality of long stretched film>
In the long stretched film obtained by the production method according to the embodiment of the present invention, the orientation angle θ is inclined in the range of, for example, greater than 0 ° and less than 90 ° with respect to the winding direction, and is at least 1300 mm. In the width, it is preferable that the variation in the in-plane retardation Ro in the width direction is 3 nm or less and the variation in the orientation angle θ is less than 0.6 °.
 すなわち、本発明の実施形態に係る製造方法により得られた長尺延伸フィルムにおいて、面内リタデーションRoのバラツキは、幅方向の少なくとも1300mmにおいて、3nm以下であり、1nm以下であることが好ましい。面内リタデーションRoのバラツキを上記範囲にすることにより、長尺延伸フィルムを偏光子と貼り合せて円偏光板とし、これを有機EL画像表示装置に適用したときに、黒表示時の外光反射光の漏れによる色ムラを抑えることができる。また、長尺延伸フィルムを例えば液晶表示装置用の位相差フィルムとして用いた場合に表示品質を良好なものにすることも可能になる。 That is, in the long stretched film obtained by the manufacturing method according to the embodiment of the present invention, the variation in the in-plane retardation Ro is 3 nm or less and preferably 1 nm or less at least 1300 mm in the width direction. By making the variation of the in-plane retardation Ro within the above range, a long stretched film is bonded to a polarizer to form a circularly polarizing plate. When this is applied to an organic EL image display device, external light reflection during black display Color unevenness due to light leakage can be suppressed. In addition, when the long stretched film is used as, for example, a retardation film for a liquid crystal display device, the display quality can be improved.
 また、本発明の実施形態に係る製造方法により得られた長尺延伸フィルムにおいて、配向角θのバラツキは、幅方向の少なくとも1300mmにおいて、0.6°未満であり、0.4°未満であることが好ましい。配向角θのバラツキが0.6°以上の長尺延伸フィルムを偏光子と貼り合せて円偏光板とし、これを有機EL表示装置などの画像表示装置に据え付けると、光漏れが生じ、明暗のコントラストを低下させることがある。 Moreover, in the long stretched film obtained by the manufacturing method according to the embodiment of the present invention, the variation in the orientation angle θ is less than 0.6 ° and less than 0.4 ° in at least 1300 mm in the width direction. It is preferable. A long stretched film with a variation in orientation angle θ of 0.6 ° or more is bonded to a polarizer to form a circularly polarizing plate, and when this is installed on an image display device such as an organic EL display device, light leakage occurs, and light and dark Contrast may be reduced.
 本発明の実施形態に係る製造方法により得られた長尺延伸フィルムの面内リタデーションRoは、用いられる表示装置の設計によって最適値が選択される。なお、前記Roは、面内遅相軸方向の屈折率nxと面内で前記遅相軸に直交する方向の屈折率nyとの差にフィルムの平均厚みdを乗算した値(Ro=(nx-ny)×d)である。 For the in-plane retardation Ro of the long stretched film obtained by the manufacturing method according to the embodiment of the present invention, an optimum value is selected depending on the design of the display device used. Note that Ro is a value obtained by multiplying the difference between the refractive index nx in the in-plane slow axis direction and the refractive index ny in the direction perpendicular to the slow axis by the average thickness d of the film (Ro = (nx −ny) × d).
 本発明の実施形態に係る製造方法により得られた長尺延伸フィルムの平均厚みは、機械的強度などの観点から、好ましくは10~200μm、さらに好ましくは10~60μm、特に好ましくは10~35μmである。また、上記長尺延伸フィルムの幅方向の厚みムラは、巻き取りの可否に影響を与えるため、3μm以下であることが好ましく、2μm以下であることがより好ましい。 The average thickness of the long stretched film obtained by the production method according to the embodiment of the present invention is preferably 10 to 200 μm, more preferably 10 to 60 μm, and particularly preferably 10 to 35 μm from the viewpoint of mechanical strength and the like. is there. Moreover, since the thickness nonuniformity of the said elongate stretched film affects the propriety of winding, it is preferable that it is 3 micrometers or less, and it is more preferable that it is 2 micrometers or less.
 <円偏光板>
 本実施形態の円偏光板は、偏光板保護フィルム、偏光子、λ/4位相差フィルムがこの順で積層されており、前記λ/4位相差フィルムの遅相軸と偏光子の吸収軸(または透過軸)とのなす角度が45°である。なお、上記の偏光板保護フィルム、偏光子、λ/4位相差フィルムは、それぞれ、図5の保護フィルム313、偏光子312、λ/4位相差フィルム311にそれぞれ対応している。本実施形態においては、長尺状偏光板保護フィルム、長尺状偏光子、長尺状λ/4位相差フィルム(長尺延伸フィルム)がこの順で積層して形成されることが好ましい。
<Circularly polarizing plate>
In the circularly polarizing plate of this embodiment, a polarizing plate protective film, a polarizer, and a λ / 4 retardation film are laminated in this order, and the slow axis of the λ / 4 retardation film and the absorption axis of the polarizer ( Alternatively, the angle formed with the transmission axis is 45 °. The polarizing plate protective film, the polarizer, and the λ / 4 retardation film correspond to the protective film 313, the polarizer 312, and the λ / 4 retardation film 311 in FIG. 5, respectively. In this embodiment, it is preferable that a long polarizing plate protective film, a long polarizer, and a long λ / 4 retardation film (long stretched film) are laminated in this order.
 本実施形態の円偏光板は、偏光子として、ヨウ素または二色性染料をドープしたポリビニルアルコールを延伸したものを使用し、λ/4位相差フィルム/偏光子の構成で貼合して製造することができる。偏光子の膜厚は、5~40μm、好ましくは5~30μmであり、特に好ましくは5~20μmである。 The circularly polarizing plate of this embodiment is manufactured by using a stretched polyvinyl alcohol doped with iodine or a dichroic dye as a polarizer, and laminating with a configuration of λ / 4 retardation film / polarizer. be able to. The thickness of the polarizer is 5 to 40 μm, preferably 5 to 30 μm, particularly preferably 5 to 20 μm.
 偏光板は、一般的な方法で作製することができる。アルカリ鹸化処理したλ/4位相差フィルムは、ポリビニルアルコール系フィルムをヨウ素溶液中に浸漬延伸して作製した偏光子の一方の面に、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わされることが好ましい。 The polarizing plate can be produced by a general method. The λ / 4 retardation film subjected to the alkali saponification treatment is preferably bonded to one surface of a polarizer produced by immersing and stretching a polyvinyl alcohol film in an iodine solution using a completely saponified polyvinyl alcohol aqueous solution. .
 偏光板は、更に当該偏光板の偏光板保護フィルムの反対面に剥離フィルムを貼合して構成することができる。保護フィルムおよび剥離フィルムは偏光板出荷時、製品検査時等において偏光板を保護する目的で用いられる。 The polarizing plate can be constituted by further bonding a release film on the opposite surface of the polarizing plate protective film of the polarizing plate. The protective film and the release film are used for the purpose of protecting the polarizing plate at the time of shipping the polarizing plate, product inspection, and the like.
 <有機EL画像表示装置>
 図5は、本実施形態の有機EL画像表示装置100の概略の構成を示す断面図である。なお、有機EL画像表示装置100の構成は、これに限定されるものではない。
<Organic EL image display device>
FIG. 5 is a cross-sectional view showing a schematic configuration of the organic EL image display device 100 of the present embodiment. The configuration of the organic EL image display device 100 is not limited to this.
 有機EL画像表示装置100は、有機EL素子101上に接着層201を介して円偏光板301を形成することによって構成されている。有機EL素子101は、ガラスやポリイミド等を用いた基板111上に、順に、金属電極112、発光層113、透明電極(ITO等)114、封止層115を有して構成されている。なお、金属電極112は、反射電極と透明電極とで構成されていてもよい。 The organic EL image display device 100 is configured by forming a circularly polarizing plate 301 on an organic EL element 101 via an adhesive layer 201. The organic EL element 101 includes a metal electrode 112, a light emitting layer 113, a transparent electrode (ITO, etc.) 114, and a sealing layer 115 on a substrate 111 made of glass, polyimide, or the like. The metal electrode 112 may be composed of a reflective electrode and a transparent electrode.
 円偏光板301は、有機EL素子101側から順に、λ/4位相差フィルム311、偏光子312、保護フィルム313を積層してなり、偏光子312がλ/4位相差フィルム311と保護フィルム313とによって挟持されている。偏光子312の透過軸と本実施形態の長尺延伸フィルムからなるλ/4位相差フィルム311の遅相軸とのなす角度が約45°(または135°)となるように両者を貼り合わせることで、円偏光板301が構成されている。 The circularly polarizing plate 301 is formed by laminating a λ / 4 retardation film 311, a polarizer 312, and a protective film 313 in order from the organic EL element 101 side. The polarizer 312 is a λ / 4 retardation film 311 and a protective film 313. It is pinched by. The two are bonded so that the angle formed by the transmission axis of the polarizer 312 and the slow axis of the λ / 4 retardation film 311 made of the long stretched film of this embodiment is about 45 ° (or 135 °). Thus, the circularly polarizing plate 301 is configured.
 上記の保護フィルム313には硬化層が積層されていることが好ましい。硬化層は、有機EL画像表示装置の表面のキズを防止するだけではなく、円偏光板301による反りを防止する効果を有する。更に、硬化層上には、反射防止層を有していてもよい。上記有機EL素子101自体の厚さは1μm程度である。 It is preferable that a cured layer is laminated on the protective film 313. The cured layer not only prevents scratches on the surface of the organic EL image display device, but also has an effect of preventing warpage due to the circularly polarizing plate 301. Further, an antireflection layer may be provided on the cured layer. The thickness of the organic EL element 101 itself is about 1 μm.
 上記の構成において、金属電極112と透明電極114とに電圧を印加すると、発光層113に対して、金属電極112および透明電極114のうちで陰極となる電極から電子が注入され、陽極となる電極から正孔が注入され、両者が発光層113で再結合することにより、発光層113の発光特性に対応した可視光線の発光が生じる。発光層113で生じた光は、直接または金属電極112で反射した後、透明電極114および円偏光板301を介して外部に取り出されることになる。 In the above configuration, when a voltage is applied to the metal electrode 112 and the transparent electrode 114, electrons are injected into the light emitting layer 113 from the electrode serving as the cathode among the metal electrode 112 and the transparent electrode 114, and the electrode serving as the anode. Holes are injected from and recombined in the light emitting layer 113, whereby visible light emission corresponding to the light emission characteristics of the light emitting layer 113 occurs. The light generated in the light emitting layer 113 is directly or after being reflected by the metal electrode 112 and then extracted to the outside through the transparent electrode 114 and the circularly polarizing plate 301.
 一般に、有機EL画像表示装置においては、透明基板上に金属電極と発光層と透明電極とを順に積層して発光体である素子(有機EL素子)が形成されている。ここで、発光層は、種々の有機薄膜の積層体であり、例えばトリフェニルアミン誘導体等からなる正孔注入層と、アントラセン等の蛍光性の有機固体からなる発光層との積層体や、このような発光層とペリレン誘導体等からなる電子注入層との積層体や、これらの正孔注入層、発光層、電子注入層の積層体等、種々の組み合わせをもった構成が知られている。 Generally, in an organic EL image display device, a metal electrode, a light emitting layer, and a transparent electrode are sequentially laminated on a transparent substrate to form a light emitting element (organic EL element). Here, the light emitting layer is a laminate of various organic thin films, for example, a laminate of a hole injection layer made of a triphenylamine derivative and the like and a light emitting layer made of a fluorescent organic solid such as anthracene, Structures having various combinations such as a laminate of such a light emitting layer and an electron injection layer made of a perylene derivative, a hole injection layer, a light emitting layer, and a laminate of an electron injection layer are known.
 有機EL画像表示装置は、透明電極と金属電極とに電圧を印加することによって、発光層に正孔と電子とが注入され、これら正孔と電子との再結合によって生じるエネルギーが蛍光物質を励起し、励起された蛍光物質が基底状態に戻るときに光を放射する、という原理で発光する。途中再結合というメカニズムは、一般のダイオードと同様であり、このことからも予想できるように、電流と発光強度は印加電圧に対して整流性を伴う強い非線形性を示す。 In organic EL image display devices, holes and electrons are injected into the light-emitting layer by applying a voltage to the transparent electrode and metal electrode, and the energy generated by the recombination of these holes and electrons excites the fluorescent material. Then, light is emitted on the principle that the excited fluorescent material emits light when returning to the ground state. The mechanism of recombination on the way is the same as that of a general diode, and as can be expected from this, the current and the light emission intensity show strong nonlinearity with rectification with respect to the applied voltage.
 有機EL画像表示装置においては、発光層での発光を取り出すために、少なくとも一方の電極が透明でなくてはならず、通常酸化インジウムスズ(ITO)などの透明導電体で形成した透明電極を陽極として用いている。一方、電子注入を容易にして発光効率を上げるには、陰極に仕事関数の小さな物質を用いることが重要で、通常Mg-Ag、Al-Liなどの金属電極を用いている。 In an organic EL image display device, in order to extract light emitted from the light emitting layer, at least one of the electrodes must be transparent, and a transparent electrode usually formed of a transparent conductor such as indium tin oxide (ITO) is used as an anode. It is used as. On the other hand, in order to facilitate electron injection and increase luminous efficiency, it is important to use a material having a small work function for the cathode, and usually metal electrodes such as Mg—Ag and Al—Li are used.
 このような構成の有機EL画像表示装置において、発光層は、厚さ10nm程度ときわめて薄い膜で形成されている。このため、発光層も透明電極と同様、光をほぼ完全に透過する。その結果、非発光時に透明基板の表面から入射し、透明電極と発光層とを透過して金属電極で反射した光が、再び透明基板の表面側へと出るため、外部から視認したとき、有機EL画像表示装置の表示面が鏡面のように見える。 In the organic EL image display device having such a configuration, the light emitting layer is formed of a very thin film having a thickness of about 10 nm. For this reason, the light emitting layer transmits light almost completely like the transparent electrode. As a result, the light that is incident from the surface of the transparent substrate when not emitting light, passes through the transparent electrode and the light emitting layer, and is reflected by the metal electrode again exits to the surface side of the transparent substrate. The display surface of the EL image display device looks like a mirror surface.
 本実施形態の円偏光板は、このような外光反射が特に問題となる有機EL画像表示装置に適している。 The circularly polarizing plate of this embodiment is suitable for an organic EL image display device in which such external light reflection is particularly problematic.
 すなわち、有機EL素子101の非発光時に、室内照明等により有機EL素子101の外部から入射した外光は、円偏光板301の偏光子312によって半分は吸収され、残りの半分は直線偏光として透過し、λ/4位相差フィルム311に入射する。λ/4位相差フィルム311に入射した光は、偏光子312の透過軸とλ/4位相差フィルム311の遅相軸とが45°(または135°)で交差するように配置されているため、λ/4位相差フィルム311を透過することにより円偏光に変換される。 That is, when the organic EL element 101 is not emitting light, outside light incident from the outside of the organic EL element 101 due to indoor lighting or the like is absorbed by the polarizer 312 of the circularly polarizing plate 301 and the other half is transmitted as linearly polarized light. Then, the light enters the λ / 4 retardation film 311. The light incident on the λ / 4 retardation film 311 is arranged so that the transmission axis of the polarizer 312 and the slow axis of the λ / 4 retardation film 311 intersect at 45 ° (or 135 °). The light is converted into circularly polarized light by passing through the λ / 4 retardation film 311.
 λ/4位相差フィルム311から出射された円偏光は、有機EL素子101の金属電極112で鏡面反射する際に、位相が180度反転し、逆回りの円偏光として反射される。この反射光は、λ/4位相差フィルム311に入射することにより、偏光子312の透過軸に垂直(吸収軸に平行)な直線偏光に変換されるため、偏光子312で全て吸収され、外部に出射されないことになる。つまり、円偏光板301により、有機EL素子101での外光反射を低減することができる。 When the circularly polarized light emitted from the λ / 4 retardation film 311 is specularly reflected by the metal electrode 112 of the organic EL element 101, the phase is inverted by 180 degrees and reflected as reverse circularly polarized light. The reflected light is incident on the λ / 4 retardation film 311 and converted into linearly polarized light perpendicular to the transmission axis of the polarizer 312 (parallel to the absorption axis). Will not be emitted. That is, external light reflection at the organic EL element 101 can be reduced by the circularly polarizing plate 301.
 <レールパターンの変更と把持具の位置関係>
 次に、上述した延伸部におけるレールパターンの変更と把持具の位置関係の詳細について説明する。図6は、初期据付調整後の延伸部のレールパターンの一例を模式的に示す平面図である。図7は、図6において繰出角度変更後のレールパターンの一例を模式的に示す平面図である。図8は、図7においてレール長変更後のレールパターンの一例を模式的に示す平面図である。
<Relationship between rail pattern and gripper position>
Next, the change of the rail pattern in the extending part and the details of the positional relationship of the gripping tool will be described. FIG. 6 is a plan view schematically showing an example of the rail pattern of the extended portion after the initial installation adjustment. FIG. 7 is a plan view schematically showing an example of the rail pattern after changing the feeding angle in FIG. 6. FIG. 8 is a plan view schematically showing an example of the rail pattern after the rail length is changed in FIG.
 左右のレールはそれぞれ無限軌道のレールである。右側(長尺フィルムの幅手方向の右側)のレールは、長尺フィルムの進行方向に進む把持具15を規制する行きレール部11と、長尺フィルムの進行方向とは逆方向に進む把持具を規制する戻りレール部12とで構成される。本実施形態では、行きレール部11と戻りレール部12とは略平行に配設されているものとする。そして、行きレール部11は、延伸部の入口から順に、第1レール部11a、第2レール部11b、第3レール部(湾曲レール部)11c、第4レール部11dで構成されている。 The left and right rails are endless rails. The rail on the right side (the right side in the width direction of the long film) includes a going rail portion 11 that regulates the gripping tool 15 that travels in the traveling direction of the long film, and a gripping tool that travels in the direction opposite to the traveling direction of the long film. And a return rail portion 12 that regulates In this embodiment, the going rail part 11 and the return rail part 12 shall be arrange | positioned substantially parallel. And the going rail part 11 is comprised from the entrance of the extending | stretching part in order from the 1st rail part 11a, the 2nd rail part 11b, the 3rd rail part (curved rail part) 11c, and the 4th rail part 11d.
 一方、左側(長尺フィルムの幅手方向の左側)のレールは、長尺フィルムの進行方向に進む把持具15を規制する行きレール部13と、長尺フィルムの進行方向とは逆方向に進む把持具を規制する戻りレール部14とで構成される。本実施形態では、行きレール部13と戻りレール部14とは略平行に配設されているものとする。そして、行きレール部13は、延伸部の入口から順に、そして、行きレール部13は、延伸部の入口から順に、第1レール部13a、第2レール部13b、第3レール部(湾曲レール部)13c、第4レール部13d、第5レール部13eで構成されている。 On the other hand, the rail on the left side (the left side in the width direction of the long film) travels in a direction opposite to the traveling direction of the long film and the going rail portion 13 that regulates the gripping tool 15 that proceeds in the traveling direction of the long film. It is comprised with the return rail part 14 which controls a holding tool. In this embodiment, the going rail part 13 and the return rail part 14 shall be arrange | positioned substantially parallel. The going rail portion 13 is in order from the entrance of the extending portion, and the going rail portion 13 is in order from the entrance of the extending portion, the first rail portion 13a, the second rail portion 13b, the third rail portion (curved rail portion). ) 13c, a fourth rail portion 13d, and a fifth rail portion 13e.
 把持具15は、ピン又はクリップでフィルムを把持する部材であり、チェーン(不図示)を介してレール上を移動するものである。把持具15はレール上に一定間隔で設けられている。チェーンは、レールに沿って設けられ、適所に配置された歯車に噛合している。そして、歯車がモーター等によって駆動されることでチェーンが駆動する。本実施形態では左右の把持具15は等速で移動するものとする。 The gripping tool 15 is a member that grips the film with pins or clips, and moves on the rail through a chain (not shown). The gripping tool 15 is provided on the rail at regular intervals. The chain is provided along the rail and meshes with a gear disposed in place. The gear is driven by a motor or the like to drive the chain. In the present embodiment, the left and right grips 15 are assumed to move at a constant speed.
 まず、図6の状態について説明する。これは初期の据付で調整した後の延伸部のレールパターンであり、レールの屈曲率Tsが小さい状態である。このとき行きレール部11、13を見ると、第1レール部11a、13aは平行で等長な直線である。第2レール部11b、13bは横方向(長尺フィルムの幅手方向)に徐々に広がる等長な直線であり、長尺フィルムを幅手方向に横延伸する横延伸部に相当する。第2レール部11bの長さをLd、第2レール部13bの長さをLaとすると、Ld=Laである。 First, the state of FIG. 6 will be described. This is the rail pattern of the extended portion after adjustment in the initial installation, and is a state in which the rail bending rate Ts is small. At this time, when the going rail portions 11 and 13 are viewed, the first rail portions 11a and 13a are parallel and isometric straight lines. The second rail portions 11b and 13b are isometric straight lines that gradually spread in the lateral direction (the width direction of the long film), and correspond to a laterally stretched portion that laterally stretches the long film in the width direction. When the length of the second rail portion 11b is Ld and the length of the second rail portion 13b is La, Ld = La.
 第3レール部11c、13cは湾曲部を含んでおり、長尺フィルムを斜め延伸する斜め延伸部に相当する。第3レール部11cは湾曲部のみからなり、その長さをLeとする。一方、第3レール部13cは把持具15の移動順に直線部、湾曲部、直線部で構成され、その長さをそれぞれLb1、Lb2、Lb3とする。そうすると、Le=Lb1+Lb2+Lb3である。 The third rail portions 11c and 13c include a curved portion and correspond to an obliquely stretched portion that obliquely stretches a long film. The 3rd rail part 11c consists only of a curved part, and makes the length Le. On the other hand, the third rail portion 13c is composed of a straight portion, a curved portion, and a straight portion in the order of movement of the gripping tool 15, and the lengths thereof are Lb1, Lb2, and Lb3, respectively. Then, Le = Lb1 + Lb2 + Lb3.
 第4レール部11dと第5レール部13eは平行で等長な直線である。また、左側の第4レール部13dは第3レール部11cに対向する直線レールであり、長尺フィルムを斜め延伸する斜め延伸部に相当する。つまり、第4レール部13dは斜め延伸部の左右レール長差に相当する。その長さをLcとすると、Lc=nP(nは整数、Pは把持具15のピッチ)となっている。すなわち、対向する左右のレール(行きレール部11、13)の長さの差が、把持具のピッチの整数倍である。 The fourth rail part 11d and the fifth rail part 13e are parallel and isometric straight lines. The fourth rail portion 13d on the left side is a straight rail facing the third rail portion 11c, and corresponds to an obliquely extending portion that obliquely extends a long film. That is, the fourth rail portion 13d corresponds to the left and right rail length difference of the obliquely extending portion. When the length is Lc, Lc = nP (n is an integer, P is the pitch of the gripping tool 15). That is, the difference in length between the left and right rails (bound rail portions 11 and 13) facing each other is an integral multiple of the pitch of the gripping tool.
 このようなレール長であるため、延伸部の入口(第1レール部11a、13aの始端)で左右の把持具15が揃っていると、つまり、左右の把持具15を結ぶ直線が長尺フィルムの幅手方向と略平行であると、斜め延伸工程の開始位置(第3レール部11c、13cの始端)でも左右の把持具15が揃ったままであり、斜め延伸工程の終了位置(第3レール部11c、第4レール13dの終端)でも左右の把持具15が揃う。ここで、斜め延伸工程の終了位置で左右の把持具15が揃う(略平行)とは、フィルムの幅手方向に対して平行な位置に最も近い一対の把持具の搬送方向下流側の端部を結んだ直線と、フィルムの幅手方向とのなす角度Tcの大きさが0°以上0.2°以下であることをいう。 Because of such a rail length, when the left and right gripping tools 15 are aligned at the entrance of the extending portion (the start ends of the first rail portions 11a and 13a), that is, a straight line connecting the left and right gripping tools 15 is a long film. The left and right grips 15 remain aligned even at the start position of the oblique stretching process (starting ends of the third rail portions 11c, 13c), and the end position of the oblique stretching process (third rail). The left and right gripping tools 15 are aligned even at the end of the portion 11c and the fourth rail 13d. Here, the left and right gripping tools 15 are aligned (substantially parallel) at the end position of the oblique stretching step means that the end portions on the downstream side in the transport direction of the pair of gripping tools closest to the position parallel to the width direction of the film The angle Tc formed by the straight line connecting the two and the width direction of the film is 0 ° or more and 0.2 ° or less.
 次に、図7の状態について説明する。これは図6の状態から繰出角度を変更した後のレールパターンであり、レールの屈曲率Tsが大きい状態である。このとき行きレール部11、13を見ると、第1レール部11a、13aは平行で等長な直線である。第2レール部11b、13bは横方向(長尺フィルムの幅手方向)に徐々に広がる等長な直線であり、長尺フィルムを幅手方向に横延伸する横延伸部に相当する。第2レール部11bの長さをLd、第2レール部13bの長さをLaとすると、Ld=Laである。 Next, the state of FIG. 7 will be described. This is a rail pattern after changing the feeding angle from the state of FIG. 6, and is a state in which the rail bending rate Ts is large. At this time, when the going rail portions 11 and 13 are viewed, the first rail portions 11a and 13a are parallel and isometric straight lines. The second rail portions 11b and 13b are isometric straight lines that gradually spread in the lateral direction (the width direction of the long film), and correspond to a laterally stretched portion that laterally stretches the long film in the width direction. When the length of the second rail portion 11b is Ld and the length of the second rail portion 13b is La, Ld = La.
 第3レール部11c、13cは湾曲部を含んでおり、長尺フィルムを斜め延伸する斜め延伸部に相当する。第3レール部11cは湾曲部のみからなり、その長さをLeとする。一方、第3レール部13cは把持具15の移動順に直線部、湾曲部、直線部で構成され、その長さをそれぞれLb1、Lb2、Lb3とする。そうすると、Le=Lb1+Lb2+Lb3である。 The third rail portions 11c and 13c include a curved portion and correspond to an obliquely stretched portion that obliquely stretches a long film. The 3rd rail part 11c consists only of a curved part, and makes the length Le. On the other hand, the third rail portion 13c is composed of a straight portion, a curved portion, and a straight portion in the order of movement of the gripping tool 15, and the lengths thereof are Lb1, Lb2, and Lb3, respectively. Then, Le = Lb1 + Lb2 + Lb3.
 第4レール部11dと第5レール部13eは平行な直線である。また、左側の第4レール部13dは第3レール部11cに対向する直線レールであり、長尺フィルムを斜め延伸する斜め延伸部に相当する。つまり、第4レール部13dは斜め延伸部の左右レール長差に相当する。その長さをLcとすると、mP<Lc<(m+1)P(mは整数、Pは把持具15のピッチ)である。すなわち、斜め延伸部で対向する左右のレールの長さの差が、把持具のピッチの整数倍からずれている。 The fourth rail portion 11d and the fifth rail portion 13e are parallel straight lines. The fourth rail portion 13d on the left side is a straight rail facing the third rail portion 11c, and corresponds to an obliquely extending portion that obliquely extends a long film. That is, the fourth rail portion 13d corresponds to the left and right rail length difference of the obliquely extending portion. When the length is Lc, mP <Lc <(m + 1) P (m is an integer, P is the pitch of the gripping tool 15). That is, the difference between the lengths of the left and right rails facing each other in the obliquely extending portion is deviated from an integer multiple of the pitch of the gripping tool.
 このようなレール長であるため、延伸部の入口(第1レール部11a、13aの始端)で左右の把持具15が揃っており、つまり、左右の把持具15を結ぶ直線が長尺フィルムの幅手方向と略平行である場合、斜め延伸工程の開始位置(第3レール部11c、13cの始端)では左右の把持具15が揃ったままであるが、斜め延伸工程の終了位置(第3レール部11c、第4レール13dの終端)では左右の把持具15がずれ、略平行とならない。ここで、斜め延伸工程の終了位置で左右の把持具15がずれる(略平行でない)とは、その角度Tcが0.2°を超えていることをいう。 Because of such a rail length, the left and right gripping tools 15 are aligned at the entrance of the extending portion (the start ends of the first rail portions 11a and 13a), that is, the straight line connecting the left and right gripping tools 15 is the length of the long film. When it is substantially parallel to the width direction, the left and right gripping tools 15 remain aligned at the start position of the oblique stretching process (starting ends of the third rail portions 11c and 13c), but the end position of the oblique stretching process (third rail). In the portion 11c and the end of the fourth rail 13d), the left and right grips 15 are displaced and are not substantially parallel. Here, the left and right gripping tools 15 being displaced (not substantially parallel) at the end position of the oblique stretching process means that the angle Tc exceeds 0.2 °.
 そこで、このような場合は、装置を停止させた状態で把持具15を前後どちらかに送り、斜め延伸工程の終了位置(第3レール部11c、第4レール13dの終端)で左右の把持具15が揃う、即ちフィルムの幅手方向に略平行な位置に配置されるように調整する。この場合、斜め延伸工程の開始位置(第3レール部11c、13cの始端)で左右の把持具15は揃わない。斜め延伸工程の開始位置で把持具15の位置が揃っていなくても、もともと斜め延伸工程で両端の把持具の位置は大きくずれながら進行する為、フィルムの特性には影響しない。 Therefore, in such a case, the gripping tool 15 is fed either forward or backward while the apparatus is stopped, and the right and left gripping tools at the end position of the oblique stretching process (the end of the third rail portion 11c and the fourth rail 13d). 15 is aligned, that is, adjusted so as to be arranged at a position substantially parallel to the width direction of the film. In this case, the left and right gripping tools 15 are not aligned at the start position of the oblique stretching process (the start ends of the third rail portions 11c and 13c). Even if the positions of the gripping tools 15 are not aligned at the start position of the oblique stretching process, the positions of the gripping tools at both ends of the oblique stretching process proceed while being largely deviated, so that the film characteristics are not affected.
 次に、図8の状態について説明する。これは図7の状態からレール長を変更した後のレールパターンであり、右側の行きレール部11が短縮された状態である。レールの短縮はレールの連結部における重なりを多くすることで行われる。なお、角度Tsは変更されていない。 Next, the state of FIG. 8 will be described. This is a rail pattern after the rail length is changed from the state shown in FIG. 7, and is a state in which the right going rail portion 11 is shortened. The shortening of the rail is performed by increasing the overlap at the connecting portion of the rail. Note that the angle Ts is not changed.
 このとき行きレール部11、13を見ると、第1レール部11a、13aは平行で等長な直線である。第2レール部11b、13bは横方向(長尺フィルムの幅手方向)に徐々に広がる等長な直線であり、長尺フィルムを幅手方向に横延伸する横延伸部に相当する。図7の状態から図8の状態にするために、第2レール部11bが短縮されている。第2レール部11bの長さをLd’、第2レール部13bの長さをLa’とすると、Ld’=La’である。なお、短縮するレール部は第1レール部11a又は第3レール部11cであってもよい。 At this time, when viewing the going rail portions 11 and 13, the first rail portions 11a and 13a are parallel and isometric straight lines. The second rail portions 11b and 13b are isometric straight lines that gradually spread in the lateral direction (the width direction of the long film), and correspond to a laterally stretched portion that laterally stretches the long film in the width direction. In order to change from the state of FIG. 7 to the state of FIG. 8, the second rail portion 11b is shortened. When the length of the second rail portion 11b is Ld 'and the length of the second rail portion 13b is La', Ld '= La'. The rail part to be shortened may be the first rail part 11a or the third rail part 11c.
 第3レール部11c、13cは湾曲部を含んでおり、長尺フィルムを斜め延伸する斜め延伸部に相当する。第3レール部11cは把持具15の移動順に湾曲部、直線部で構成され、その長さをそれぞれLe1、Le2とする。一方、第3レール部13cは把持具15の移動順に直線部、湾曲部、直線部で構成され、その長さをそれぞれLb1、Lb2、Lb3とする。そうすると、Le1+Le2=Lb1+Lb2+Lb3である。 The third rail portions 11c and 13c include a curved portion and correspond to an obliquely stretched portion that obliquely stretches a long film. The 3rd rail part 11c is comprised by the bending part and the linear part in order of the movement of the holding | gripping tool 15, and let the length be Le1 and Le2, respectively. On the other hand, the third rail portion 13c is composed of a straight portion, a curved portion, and a straight portion in the order of movement of the gripping tool 15, and the lengths thereof are Lb1, Lb2, and Lb3, respectively. Then, Le1 + Le2 = Lb1 + Lb2 + Lb3.
 第4レール部11dと第5レール部13eは平行で等長な直線である。また、左側の第4レール部13dは第3レール部11cに対向する直線レールであり、長尺フィルムを斜め延伸する斜め延伸部に相当する。つまり、第4レール部13dは斜め延伸部の左右レール長差に相当する。その長さをLcとすると、Lc=mP(mは整数、Pは把持具15のピッチ)である。すなわち、対向する左右のレール(行きレール部11、13)の長さの差が、把持具のピッチの整数倍である。 The fourth rail part 11d and the fifth rail part 13e are parallel and isometric straight lines. The fourth rail portion 13d on the left side is a straight rail facing the third rail portion 11c, and corresponds to an obliquely extending portion that obliquely extends a long film. That is, the fourth rail portion 13d corresponds to the left and right rail length difference of the obliquely extending portion. When the length is Lc, Lc = mP (m is an integer, P is the pitch of the gripping tool 15). That is, the difference in length between the left and right rails (bound rail portions 11 and 13) facing each other is an integral multiple of the pitch of the gripping tool.
 このようなレール長であるため、延伸部の入口(第1レール部11a、13aの始端)で左右の把持具15が揃っていると、つまり、左右の把持具15を結ぶ直線が長尺フィルムの幅手方向と略平行であると、斜め延伸工程の開始位置(第3レール部11c、13cの始端)でも左右の把持具15が揃ったままであり、斜め延伸工程の終了位置(第3レール部11c、第4レール13dの終端)でも左右の把持具15が揃う。ここで、斜め延伸工程の終了位置で左右の把持具15が揃う(略平行)とは、その角度が0°以上0.2°以下であることをいう。なお、左側の行きレール部13を伸ばすことによって左右のレール長差を調整してもよい。 Because of such a rail length, when the left and right gripping tools 15 are aligned at the entrance of the extending portion (the start ends of the first rail portions 11a and 13a), that is, a straight line connecting the left and right gripping tools 15 is a long film. The left and right grips 15 remain aligned even at the start position of the oblique stretching process (starting ends of the third rail portions 11c, 13c), and the end position of the oblique stretching process (third rail). The left and right gripping tools 15 are also aligned at the portion 11c and the end of the fourth rail 13d. Here, that the right and left gripping tools 15 are aligned (substantially parallel) at the end position of the oblique stretching step means that the angle is 0 ° or more and 0.2 ° or less. In addition, you may adjust the rail length difference on either side by extending the left going rail part 13. FIG.
 図6、図8を用いて説明したように、左右のレール長を調整して左右のレール長の差が把持具15のピッチの整数倍になるようにすれば、斜め延伸工程の開始位置及び斜め延伸工程の終了位置で左右の把持具15を結ぶ直線がフィルムの幅手方向と略平行とすることができる。一方、図7を用いて説明したように、左右のレール長を調整せず左右のレール長の差が把持具15のピッチの整数倍になっていなければ、把持具15を送ることにより斜め延伸工程の終了位置で左右の把持具15を結ぶ直線が長尺斜め延伸フィルムの幅手方向と略平行とすることができる。 As described with reference to FIGS. 6 and 8, if the left and right rail lengths are adjusted so that the difference between the left and right rail lengths is an integral multiple of the pitch of the gripping tool 15, A straight line connecting the left and right grips 15 at the end position of the oblique stretching process can be made substantially parallel to the width direction of the film. On the other hand, as described with reference to FIG. 7, if the left and right rail lengths are not adjusted and the difference between the left and right rail lengths is not an integral multiple of the pitch of the gripping tool 15, the gripping tool 15 is sent to extend diagonally. A straight line connecting the left and right grips 15 at the end position of the process can be substantially parallel to the width direction of the long obliquely stretched film.
 何れの場合も斜め延伸工程の終了位置で左右の把持具15を揃えることができるので、斜め延伸工程の終了後に把持具15によって長尺斜め延伸フィルムの幅手及び搬送方向に不均一な応力が掛からず、均一な位相差特性をもつ長尺斜め延伸フィルムを得ることができる。さらに、斜め延伸工程の開始位置で左右の把持具15が揃っていればシワ等も発生しにくい。 In any case, since the left and right grips 15 can be aligned at the end of the oblique stretching step, non-uniform stress is applied by the gripper 15 to the width of the long obliquely stretched film and the transport direction after the end of the oblique stretching step. Thus, a long obliquely stretched film having uniform retardation characteristics can be obtained. Furthermore, if the left and right gripping tools 15 are aligned at the start position of the oblique stretching process, wrinkles and the like are unlikely to occur.
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
 <長尺フィルムの作製>
 製膜工程では、以下の方法により、長尺フィルムA1~C1を作製した。
<Production of long film>
In the film forming process, long films A1 to C1 were prepared by the following method.
 (長尺フィルムA1)
 長尺フィルムA1は、脂環式オレフィンポリマー系樹脂フィルムであり、以下の製造方法により作製した。
(Long film A1)
The long film A1 is an alicyclic olefin polymer resin film, and was produced by the following production method.
 窒素雰囲気下、脱水したシクロヘキサン500質量部に、1-ヘキセン1.2質量部、ジブチルエーテル0.15質量部、トリイソブチルアルミニウム0.30質量部を室温で反応器に入れ混合した後、45℃に保ちながら、トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(ジシクロペンタジエン、以下、DCPと略記)20質量部、1,4-メタノ-1,4,4a,9a-テトラヒドロフルオレン(以下、MTFと略記)140質量部および8-メチル-テトラシクロ[4.4.0.12,5.17,10]-ドデカ-3-エン(以下、MTDと略記)40質量部からなるノルボルネン系モノマー混合物と、六塩化タングステン(0.7%トルエン溶液)40質量部とを、2時間かけて連続的に添加し重合した。重合溶液にブチルグリシジルエーテル1.06質量部とイソプロピルアルコール0.52質量部を加えて重合触媒を不活性化し重合反応を停止させた。 In a nitrogen atmosphere, 500 parts by mass of dehydrated cyclohexane, 1.2 parts by mass of 1-hexene, 0.15 parts by mass of dibutyl ether, and 0.30 parts by mass of triisobutylaluminum were mixed in a reactor at room temperature, and then mixed at 45 ° C. 20 parts by mass of tricyclo [4.3.0.12,5] deca-3,7-diene (dicyclopentadiene, hereinafter abbreviated as DCP), 1,4-methano-1,4,4a, 140 parts by mass of 9a-tetrahydrofluorene (hereinafter abbreviated as MTF) and 40 parts by mass of 8-methyl-tetracyclo [4.4.0.12, 5.17,10] -dodec-3-ene (hereinafter abbreviated as MTD) A norbornene-based monomer mixture composed of parts and 40 parts by mass of tungsten hexachloride (0.7% toluene solution) were continuously added over 2 hours for polymerization. To the polymerization solution, 1.06 parts by mass of butyl glycidyl ether and 0.52 parts by mass of isopropyl alcohol were added to deactivate the polymerization catalyst and stop the polymerization reaction.
 次いで、得られた開環重合体を含有する反応溶液100質量部に対して、シクロヘキサン270質量部を加え、さらに水素化触媒としてニッケル-アルミナ触媒(日揮触媒化成(株)製)5質量部を加え、水素により5MPaに加圧して攪拌しながら温度200℃まで加温した後、4時間反応させ、DCP/MTF/MTD開環重合体水素化ポリマーを20%含有する反応溶液を得た。 Next, 270 parts by mass of cyclohexane is added to 100 parts by mass of the resulting reaction solution containing the ring-opening polymer, and 5 parts by mass of a nickel-alumina catalyst (manufactured by JGC Catalysts & Chemicals) is added as a hydrogenation catalyst. In addition, the pressure was increased to 5 MPa with hydrogen and the mixture was heated to 200 ° C. with stirring and then reacted for 4 hours to obtain a reaction solution containing 20% of a DCP / MTF / MTD ring-opening polymer hydrogenated polymer.
 濾過により水素化触媒を除去した後、軟質重合体((株)クラレ製;セプトン2002)および酸化防止剤(チバスペシャリティ・ケミカルズ(株)製;イルガノックス1010)を、得られた溶液にそれぞれ添加して溶解させた(いずれも重合体100質量部あたり0.1質量部)。次いで、溶液から、溶媒であるシクロヘキサンおよびその他の揮発成分を、円筒型濃縮乾燥器((株)日立製作所製)を用いて除去し、水素化ポリマーを溶融状態で押出機からストランド状に押出し、冷却後ペレット化して回収した。重合体中の各ノルボルネン系モノマーの共重合比率を、重合後の溶液中の残留ノルボルネン類組成(ガスクロマトグラフィー法による)から計算したところ、DCP/MTF/MTD=10/70/20でほぼ仕込組成に等しかった。この開環重合体水素添加物の、重量平均分子量(Mw)は31,000、分子量分布(Mw/Mn)は2.5、水素添加率は99.9%、Tgは134℃であった。 After removing the hydrogenation catalyst by filtration, a soft polymer (manufactured by Kuraray Co., Ltd .; Septon 2002) and an antioxidant (manufactured by Ciba Specialty Chemicals Co., Ltd .; Irganox 1010) were added to the resulting solutions, respectively. And dissolved (both 0.1 parts by mass per 100 parts by mass of the polymer). Next, cyclohexane and other volatile components, which are solvents, are removed from the solution using a cylindrical concentration dryer (manufactured by Hitachi, Ltd.), and the hydrogenated polymer is extruded in a strand form from an extruder in a molten state. After cooling, it was pelletized and collected. When the copolymerization ratio of each norbornene monomer in the polymer was calculated from the composition of residual norbornenes in the solution after polymerization (by gas chromatography method), it was almost charged at DCP / MTF / MTD = 10/70/20. It was equal to the composition. This hydrogenated ring-opened polymer had a weight average molecular weight (Mw) of 31,000, a molecular weight distribution (Mw / Mn) of 2.5, a hydrogenation rate of 99.9%, and a Tg of 134 ° C.
 得られた開環重合体水素添加物のペレットを、空気を流通させた熱風乾燥器を用いて70℃で2時間乾燥して水分を除去した。次いで、前記ペレットを、コートハンガータイプのTダイを有する短軸押出機(三菱重工業(株)製:スクリュー径90mm、Tダイリップ部材質は炭化タングステン、溶融樹脂との剥離強度44N)を用いて溶融押出成形して厚み75μm(製膜工程により得られた乾燥後の長尺フィルムの厚みであり、延伸工程を経て作製される長尺延伸フィルムの厚みではない)のシクロオレフィンポリマーフィルムを製造した。押出成形は、クラス10,000以下のクリーンルーム内で、溶融樹脂温度240℃、Tダイ温度240℃の成形条件にて幅1000mmの長尺フィルムA1を得た。 The obtained ring-opened polymer hydrogenated pellets were dried at 70 ° C. for 2 hours using a hot air dryer in which air was circulated to remove moisture. Next, the pellets were melted by using a short-shaft extruder having a coat hanger type T die (manufactured by Mitsubishi Heavy Industries, Ltd .: screw diameter 90 mm, T die lip member quality is tungsten carbide, peel strength 44N from molten resin). Extrusion molding produced a cycloolefin polymer film having a thickness of 75 μm (the thickness of the long film after drying obtained by the film forming step, not the thickness of the long stretched film produced through the stretching step). In extrusion molding, a long film A1 having a width of 1000 mm was obtained in a clean room of class 10,000 or less under molding conditions of a molten resin temperature of 240 ° C. and a T-die temperature of 240 ° C.
 (長尺フィルムB1)
 長尺フィルムB1は、セルロースエステル系樹脂フィルムであり、以下の製造方法により作製した。
(Long film B1)
The long film B1 is a cellulose ester resin film and was produced by the following production method.
 <微粒子分散液>
 微粒子(アエロジル R972V 日本アエロジル(株)製)11質量部
 エタノール                       89質量部
 以上をディゾルバーで50分間攪拌混合した後、マントンゴーリンで分散を行った。
<Fine particle dispersion>
Fine particles (Aerosil R972V manufactured by Nippon Aerosil Co., Ltd.) 11 parts by mass Ethanol 89 parts by mass The above was stirred and mixed with a dissolver for 50 minutes, and then dispersed with Manton Gorin.
 <微粒子添加液>
 以下の組成に基づいて、メチレンクロライドを入れた溶解タンクに充分攪拌しながら、上記微粒子分散液をゆっくりと添加した。さらに二次粒子の粒径が所定の大きさとなるようにアトライターにて分散を行った。これを日本精線(株)製のファインメットNFで濾過し、微粒子添加液を調製した。
 メチレンクロライド                   99質量部
 微粒子分散液1                      5質量部
<Fine particle additive solution>
Based on the following composition, the fine particle dispersion was slowly added to a dissolution tank containing methylene chloride with sufficient stirring. Further, the particles were dispersed by an attritor so that the secondary particles had a predetermined particle size. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution.
99 parts by mass of methylene chloride 5 parts by mass of fine particle dispersion 1
 <主ドープ液>
 下記組成の主ドープ液を調製した。まず加圧溶解タンクにメチレンクロライドとエタノールを添加した。溶剤の入った加圧溶解タンクにセルロースアセテートを攪拌しながら投入した。これを加熱し、攪拌しながら、完全に溶解し。これを安積濾紙(株)製の安積濾紙No.244を使用して濾過し、主ドープ液を調製した。なお、糖エステル化合物およびエステル化合物は、以下の合成例により合成した化合物を用いた。また、化合物(B)は、以下のものを用いた。
<Main dope solution>
A main dope solution having the following composition was prepared. First, methylene chloride and ethanol were added to the pressure dissolution tank. Cellulose acetate was added to a pressurized dissolution tank containing a solvent while stirring. This is completely dissolved with heating and stirring. This was designated as Azumi Filter Paper No. The main dope solution was prepared by filtration using 244. In addition, the compound synthesize | combined by the following synthesis examples was used for the sugar ester compound and the ester compound. Moreover, the following were used for the compound (B).
 <主ドープ液の組成>
 メチレンクロライド                  340質量部
 エタノール                       64質量部
 セルロースアセテートプロピオネート(アセチル基置換度1.39、プロピオニル基置換度0.50、総置換度1.89)      100質量部
 化合物(B)                     5.0質量部
 糖エステル化合物                   5.0質量部
 エステル化合物                    2.5質量部
 微粒子添加液1                      1質量部
<Composition of main dope solution>
Methylene chloride 340 parts by mass Ethanol 64 parts by mass Cellulose acetate propionate (acetyl group substitution degree 1.39, propionyl group substitution degree 0.50, total substitution degree 1.89) 100 parts by mass Compound (B) 5.0 parts by mass Sugar ester compound 5.0 parts by mass Ester compound 2.5 parts by mass Particulate additive solution 1 1 part by mass
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 (糖エステル化合物の合成)
 以下の工程により、糖エステル化合物を合成した。
(Synthesis of sugar ester compounds)
A sugar ester compound was synthesized by the following steps.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 攪拌装置、還流冷却器、温度計および窒素ガス導入管を備えた四頭コルベンに、ショ糖34.2g(0.1モル)、無水安息香酸180.8g(0.6モル)、ピリジン379.7g(4.8モル)を仕込み、攪拌下に窒素ガス導入管から窒素ガスをバブリングさせながら昇温し、70℃で5時間エステル化反応を行った。 Four-headed Kolben equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen gas inlet tube was charged with 34.2 g (0.1 mol) of sucrose, 180.8 g (0.6 mol) of benzoic anhydride, pyridine 379. 7 g (4.8 mol) was charged, the temperature was raised while bubbling nitrogen gas through a nitrogen gas inlet tube with stirring, and an esterification reaction was carried out at 70 ° C. for 5 hours.
 次に、コルベン内を4×10Pa以下に減圧し、60℃で過剰のピリジンを留去した後に、コルベン内を1.3×10Pa以下に減圧し、120℃まで昇温させ、無水安息香酸、生成した安息香酸の大部分を留去した。 Next, the inside of the Kolben was depressurized to 4 × 10 2 Pa or less, and after excess pyridine was distilled off at 60 ° C., the inside of the Kolben was depressurized to 1.3 × 10 Pa or less and the temperature was raised to 120 ° C. Most of the acid and benzoic acid formed were distilled off.
 最後に、分取したトルエン層に水100gを添加し、常温で30分間水洗後、トルエン層を分取し、減圧下(4×10Pa以下)、60℃でトルエンを留去させ、化合物A-1、A-2、A-3、A-4およびA-5の混合物(糖エステル化合物)を得た。 Finally, 100 g of water is added to the collected toluene layer, and after washing with water at room temperature for 30 minutes, the toluene layer is separated, and toluene is distilled off at 60 ° C. under reduced pressure (4 × 10 2 Pa or less). A mixture (sugar ester compound) of A-1, A-2, A-3, A-4 and A-5 was obtained.
 得られた混合物をHPLCおよびLC-MASSで解析したところ、A-1が1.3質量%、A-2が13.4質量%、A-3が13.1質量%、A-4が31.7質量%、A-5が40.5質量%であった。平均置換度は5.5であった。 When the obtained mixture was analyzed by HPLC and LC-MASS, A-1 was 1.3% by mass, A-2 was 13.4% by mass, A-3 was 13.1% by mass, and A-4 was 31% by mass. 0.7% by mass and A-5 was 40.5% by mass. The average degree of substitution was 5.5.
 <HPLC-MSの測定条件>
 1)LC部
 装置:日本分光(株)製カラムオーブン(JASCO CO-965)、ディテクター(JASCO UV-970-240nm)、ポンプ(JASCO PU-980)、デガッサ-(JASCO DG-980-50)
 カラム:Inertsil ODS-3 粒子径5μm 4.6×250mm(ジーエルサイエンス(株)製)
 カラム温度:40℃
 流速:1ml/min
 移動相:THF(1%酢酸):HO(50:50)
 注入量:3μl
 2)MS部
 装置:LCQ DECA(Thermo Quest(株)製)
 イオン化法:エレクトロスプレーイオン化(ESI)法
 Spray Voltage:5kV
 Capillary温度:180℃
 Vaporizer温度:450℃
<Measurement conditions for HPLC-MS>
1) LC section Equipment: Column oven (JASCO CO-965) manufactured by JASCO Corporation, detector (JASCO UV-970-240 nm), pump (JASCO PU-980), degasser (JASCO DG-980-50)
Column: Inertsil ODS-3 Particle size 5 μm 4.6 × 250 mm (manufactured by GL Sciences Inc.)
Column temperature: 40 ° C
Flow rate: 1 ml / min
Mobile phase: THF (1% acetic acid): H 2 O (50:50)
Injection volume: 3 μl
2) MS unit Device: LCQ DECA (manufactured by Thermo Quest Co., Ltd.)
Ionization method: Electrospray ionization (ESI) method Spray Voltage: 5 kV
Capillary temperature: 180 ° C
Vaporizer temperature: 450 ° C
 (エステル化合物の合成)
 以下の工程により、エステル化合物を合成した。
(Synthesis of ester compounds)
An ester compound was synthesized by the following steps.
 1,2-プロピレングリコール251g、無水フタル酸278g、アジピン酸91g、安息香酸610g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、攪拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中230℃になるまで、攪拌しながら徐々に昇温する。15時間脱水縮合反応させ、反応終了後200℃で未反応の1,2-プロピレングリコールを減圧留去することにより、エステル化合物を得た。エステル化合物は、1,2-プロピレングリコール、無水フタル酸およびアジピン酸が縮合して形成されたポリエステル鎖の末端に安息香酸のエステルを有した。エステル化合物の酸価0.10、数平均分子量450であった。 251 g of 1,2-propylene glycol, 278 g of phthalic anhydride, 91 g of adipic acid, 610 g of benzoic acid, 0.191 g of tetraisopropyl titanate as an esterification catalyst, 2 L four-neck equipped with a thermometer, stirrer, and slow cooling tube The flask is charged and gradually heated while being stirred until it reaches 230 ° C. in a nitrogen stream. An ester compound was obtained by allowing dehydration condensation reaction for 15 hours, and distilling off unreacted 1,2-propylene glycol under reduced pressure at 200 ° C. after completion of the reaction. The ester compound had an ester of benzoic acid at the end of the polyester chain formed by condensation of 1,2-propylene glycol, phthalic anhydride and adipic acid. The acid value of the ester compound was 0.10, and the number average molecular weight was 450.
 次いで、無端ベルト流延装置を用い、ステンレスベルト支持体上に均一に流延した。 Then, using an endless belt casting apparatus, the casting was uniformly performed on a stainless belt support.
 無端ベルト流延装置では、上記主ドープ液をステンレススティールベルト支持体上に均一に流延した。ステンレススティールベルト支持体上で、流延(キャスト)した長尺フィルム中の残留溶媒量が75%になるまで溶媒を蒸発させ、ステンレススティールベルト支持体上から剥離し、多数のロールで搬送させながら乾燥を終了させ、幅1000mmの長尺フィルムB1を得た。このとき長尺フィルムB1の膜厚は75μm(製膜工程により得られた乾燥後の長尺フィルムの厚みであり、延伸工程を経て作製される長尺延伸フィルムの厚みではない)であった。 In the endless belt casting apparatus, the main dope solution was cast uniformly on a stainless steel belt support. On the stainless steel belt support, the solvent is evaporated until the residual solvent amount in the cast (cast) long film reaches 75%, peeled off from the stainless steel belt support, and transported by many rolls. Drying was terminated, and a long film B1 having a width of 1000 mm was obtained. At this time, the film thickness of the long film B1 was 75 μm (the thickness of the long film after drying obtained by the film forming process, not the thickness of the long stretched film produced through the stretching process).
 (長尺フィルムC1)
 長尺フィルムC1は、ポリカーボネート系樹脂フィルムであり、以下の製造方法により作製した。
(Long film C1)
The long film C1 is a polycarbonate resin film, and was produced by the following production method.
 <ドープ組成物>
 ポリカーボネート樹脂(粘度平均分子量4万、ビスフェノールA型)
                            100質量部
2-(2′ヒドロキシ-3′,5′-ジ-t-ブチルフェニル)-ベンゾトリアゾール                       1.0質量部
メチレンクロライド                   430質量部
メタノール                        90質量部
<Dope composition>
Polycarbonate resin (viscosity average molecular weight 40,000, bisphenol A type)
100 parts by mass 2- (2′hydroxy-3 ′, 5′-di-t-butylphenyl) -benzotriazole 1.0 part by mass Methylene chloride 430 parts by mass Methanol 90 parts by mass
 上記組成物を密閉容器に投入し、加圧下で80℃に保温し攪拌しながら完全に溶解して、ドープ組成物を得た。 The above composition was put into a sealed container, kept at 80 ° C. under pressure, and completely dissolved with stirring to obtain a dope composition.
 次いで、このドープ組成物を濾過し、冷却して33℃に保ち、ステンレスバンド上に均一に流延し、33℃で5分間乾燥した。その後、65℃でリタデーション5nmになるように乾燥時間を調整し、ステンレスバンド上から剥離後、多数のロールで搬送させながら乾燥を終了させ膜厚75μm(製膜工程により得られた乾燥後の長尺フィルムの厚みであり、延伸工程を経て作製される長尺延伸フィルムの厚みではない)、幅1000mmの長尺フィルムC1を得た。 Next, this dope composition was filtered, cooled and kept at 33 ° C., cast uniformly on a stainless steel band, and dried at 33 ° C. for 5 minutes. Thereafter, the drying time was adjusted so that the retardation was 5 nm at 65 ° C., and after peeling from the stainless steel band, drying was completed while being conveyed by a number of rolls, and the film thickness was 75 μm (the length after drying obtained by the film forming process). This is the thickness of the long film, not the thickness of the long stretched film produced through the stretching step), and a long film C1 having a width of 1000 mm was obtained.
 [実施例1]
 上記にて得られたノルボルネン系樹脂の未延伸フィルムA1を、図6及び図7に記載される斜め延伸装置により、表1に示す条件で延伸して、第1長尺延伸フィルムを得た。
[Example 1]
The norbornene-based unstretched film A1 obtained above was stretched under the conditions shown in Table 1 using the oblique stretching apparatus described in FIGS. 6 and 7 to obtain a first long stretched film.
 尚、把持具の搬送方向の幅は40mmとし、搬送方向の把持具のピッチは50mmとした(即ち、隣合う把持具間の距離を10mmとした)。また、延伸部(把持開始から把持開放までの長さ)は、内回り(図6右側)を4345mm、外回り(図6左側)を5094mmとし、延伸角度は30°に設定した。ここでは、得られたフィルムの配向角(面内遅相軸)とフィルム幅手方向とのなす角度を延伸角度とする。 The width of the gripping tool in the transport direction was 40 mm, and the pitch of the gripping tool in the transport direction was 50 mm (that is, the distance between adjacent gripping tools was 10 mm). The stretching part (length from the start of gripping to the grip opening) was 4345 mm for the inner circumference (right side in FIG. 6), 5094 mm for the outer circumference (left side in FIG. 6), and the stretching angle was set to 30 °. Here, the angle formed by the orientation angle (in-plane slow axis) of the obtained film and the film width direction is defined as the stretching angle.
 斜め延伸装置に入れられる前の長尺フィルムA1の幅は1000mmであり、延伸後の幅は1534mmとした。 The width of the long film A1 before being put into the oblique stretching apparatus was 1000 mm, and the width after stretching was 1534 mm.
 上記の延伸条件で、斜め延伸を行ったが、その際、延伸開始前に内回り側の把持具のみを動かすことで位置を調整し、斜め延伸終了時における左右の把持具の搬送方向のズレを1mmとなるように調整した。ここでは、フィルムの幅手方向と両端の把持具を結んだ直線とのなす角度は0.037°となった。 Diagonal stretching was performed under the above stretching conditions, but at that time, the position was adjusted by moving only the inner gripping tool before starting stretching, and the shift in the conveyance direction of the left and right gripping tools at the end of diagonal stretching was performed. It adjusted so that it might become 1 mm. Here, the angle formed by the width direction of the film and the straight line connecting the grips at both ends was 0.037 °.
 [実施例2]
 実施例1と同様に長尺フィルムA1を用い、斜め延伸工程における条件を表1に記載のように変更した以外は実施例1と同様の条件で、第2長尺延伸フィルムを得た。
[Example 2]
A second long stretched film was obtained under the same conditions as in Example 1 except that the long film A1 was used as in Example 1 and the conditions in the oblique stretching step were changed as shown in Table 1.
 [比較例1]
 実施例1と同様に長尺フィルムA1を用い、斜め延伸工程における条件を表1に記載のように変更した以外は実施例1と同様の条件で、第3長尺延伸フィルムを得た。
[Comparative Example 1]
A third long stretched film was obtained under the same conditions as in Example 1 except that the long film A1 was used as in Example 1 and the conditions in the oblique stretching step were changed as shown in Table 1.
 [比較例2]
 実施例1と同様に長尺フィルムA1を用い、斜め延伸工程における条件を表1に記載のように変更した以外は実施例1と同様の条件で、第4長尺延伸フィルムを得た。
[Comparative Example 2]
A fourth long stretched film was obtained under the same conditions as in Example 1 except that the long film A1 was used in the same manner as in Example 1 and the conditions in the oblique stretching step were changed as shown in Table 1.
 得られた第1~第4長尺延伸フィルムの配向角の幅手分布を測定した結果を表1に記載した。尚、配向角の幅手分布は以下のように測定した。 The results of measuring the width distribution of the orientation angles of the obtained first to fourth long stretched films are shown in Table 1. The width distribution of the orientation angle was measured as follows.
 (配向角の幅手分布)
 作製した第1~第4長尺延伸フィルムの配向角θを位相差測定装置(王子計測(株)製、KOBRA-WXK)を用いて測定した。評価方法としては、長尺延伸フィルムのフィルム幅方向に50mmの間隔で測定を行い、全測定値の最大値と最小値との差をばらつきとした。同様の測定をフィルムの長尺方向に50mm間隔で10か所行い、その平均値を長尺延伸フィルムの配向角の幅手分布とした。
(Width distribution of orientation angle)
The orientation angle θ of the produced first to fourth long stretched films was measured using a phase difference measuring device (manufactured by Oji Scientific Co., Ltd., KOBRA-WXK). As an evaluation method, measurement was performed at an interval of 50 mm in the film width direction of the long stretched film, and the difference between the maximum value and the minimum value of all measured values was regarded as variation. The same measurement was performed at 10 locations in the long direction of the film at intervals of 50 mm, and the average value was defined as the width distribution of the orientation angle of the long stretched film.
 尚、上記の測定により得られた配向角の幅手分布を以下の指標により◎、○、△、×として表1に示した。
◎:配向角の幅手分布が0°以上0.4°未満
○:配向角の幅手分布が0.4°以上0.6°未満
△:配向角の幅手分布が0.6°以上0.8°未満
×:配向角の幅手分布が0.8°以上
The width distribution of the orientation angle obtained by the above measurement is shown in Table 1 as ◎, ○, Δ, × by the following indices.
◎: The width distribution of the orientation angle is 0 ° or more and less than 0.4 ° ○: The width distribution of the orientation angle is 0.4 ° or more and less than 0.6 ° △: The width distribution of the orientation angle is 0.6 ° or more Less than 0.8 ° x: width distribution of orientation angle is 0.8 ° or more
 ここで、配向角の幅手分布は、0.6°未満であれば、実用上大きな問題はないが、0.4°未満であることが好ましい。 Here, if the width distribution of the orientation angle is less than 0.6 °, there is no practical problem, but it is preferably less than 0.4 °.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1の結果から明らかな通り、斜め延伸後の把持具の位置を略平行となるように設定した斜め延伸装置を用いることで、配向角のばらつきを低減できることが明らかになった。 As is clear from the results in Table 1, it was revealed that the variation in the orientation angle can be reduced by using an oblique stretching apparatus in which the position of the gripping tool after the oblique stretching is set to be approximately parallel.
 本発明は、有機EL画像表示装置の外光反射防止のための円偏光板に適用される長尺斜め延伸フィルムの製造に利用可能である。 The present invention can be used for the production of a long obliquely stretched film applied to a circularly polarizing plate for preventing external light reflection of an organic EL image display device.
   1  長尺斜め延伸フィルムの製造装置
   5  延伸部
   11c、13c  湾曲レール部
   11b、12b  第1レール部
   15、Ci、Co、  把持具
   Ri、Ro  レール
DESCRIPTION OF SYMBOLS 1 Manufacturing apparatus of elongate diagonally stretched film 5 Stretching part 11c, 13c Curved rail part 11b, 12b 1st rail part 15, Ci, Co, Holding tool Ri, Ro rail

Claims (5)

  1.  供給される長尺フィルムの幅手方向の両端部を等間隔に配設された各把持具によって把持し、各把持具を対向するレールに沿って等速で移動させながら前記長尺フィルムを搬送するとともに、前記長尺フィルムの搬送方向を途中で変えることにより、前記長尺フィルムを幅手方向に対して斜め方向に延伸して長尺斜め延伸フィルムとする斜め延伸工程を有する長尺斜め延伸フィルムの製造方法において、
     前記斜め延伸工程の終了位置で、対向する把持具を結ぶ直線が長尺斜め延伸フィルムの幅手方向と略平行であることを特徴とする長尺斜め延伸フィルムの製造方法。
    Gripping both ends of the supplied long film in the width direction with each holding tool arranged at equal intervals, and transporting the long film while moving each holding tool at a constant speed along the opposing rail In addition, by changing the transport direction of the long film in the middle, the slanting stretching process having a slanting stretching process in which the long film is stretched in a slanting direction with respect to the width direction to form a slanting stretching film. In the film manufacturing method,
    A method for producing a long diagonally stretched film, wherein a straight line connecting opposing gripping tools is substantially parallel to the width direction of the long diagonally stretched film at the end position of the obliquely stretching step.
  2.  前記斜め延伸工程の開始位置で、対向する把持具を結ぶ直線が長尺フィルムの幅手方向と略平行であることを特徴とする請求項1記載の長尺斜め延伸フィルムの製造方法。 The method for producing a long obliquely stretched film according to claim 1, wherein a straight line connecting opposing gripping tools is substantially parallel to the width direction of the long film at the start position of the obliquely stretching step.
  3.  前記対向するレールの長さの差が、前記把持具のピッチの整数倍であることを特徴とする請求項1又は2記載の長尺斜め延伸フィルムの製造方法。 The method for producing a long obliquely stretched film according to claim 1 or 2, wherein the difference between the lengths of the opposing rails is an integral multiple of the pitch of the gripping tool.
  4.  前記対向するレールの長さが可変であることを特徴とする請求項1~3の何れかに記載の長尺斜め延伸フィルムの製造方法。 The method for producing a long obliquely stretched film according to any one of claims 1 to 3, wherein the lengths of the opposing rails are variable.
  5.  前記レールは、任意に湾曲可能な湾曲レール部を有することを特徴とする請求項1~4の何れかに記載の長尺斜め延伸フィルムの製造方法。 The method for producing a long obliquely stretched film according to any one of claims 1 to 4, wherein the rail has a curved rail portion that can be arbitrarily bent.
PCT/JP2013/057587 2012-03-29 2013-03-18 Method for manufacturing long obliquely stretched film WO2013146397A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014507724A JP5825426B2 (en) 2012-03-29 2013-03-18 Manufacturing method of long diagonally stretched film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012075888 2012-03-29
JP2012-075888 2012-03-29

Publications (1)

Publication Number Publication Date
WO2013146397A1 true WO2013146397A1 (en) 2013-10-03

Family

ID=49259658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057587 WO2013146397A1 (en) 2012-03-29 2013-03-18 Method for manufacturing long obliquely stretched film

Country Status (2)

Country Link
JP (1) JP5825426B2 (en)
WO (1) WO2013146397A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147840A1 (en) * 2015-03-17 2016-09-22 コニカミノルタ株式会社 Method for producing obliquely stretched film
WO2016152384A1 (en) * 2015-03-20 2016-09-29 コニカミノルタ株式会社 Method for producing obliquely stretched film
JPWO2016152381A1 (en) * 2015-03-20 2018-01-11 コニカミノルタ株式会社 Manufacturing method of obliquely stretched film
JP7015950B1 (en) 2021-03-26 2022-02-14 日東電工株式会社 Method for manufacturing stretched film
CN115139503A (en) * 2021-03-30 2022-10-04 日东电工株式会社 Method for producing stretched film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6798195B2 (en) * 2016-08-30 2020-12-09 コニカミノルタ株式会社 Method for manufacturing diagonally stretched film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004106423A (en) * 2002-09-19 2004-04-08 Fuji Photo Film Co Ltd Tenter apparatus
JP2010046911A (en) * 2008-08-21 2010-03-04 Fujifilm Corp Tentering machine and solution film-forming method using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4348232B2 (en) * 2004-05-07 2009-10-21 積水化学工業株式会社 Manufacturing apparatus and manufacturing method for long optical film
JP4845619B2 (en) * 2006-07-19 2011-12-28 東芝機械株式会社 Sheet / film oblique stretching method and clip-type sheet / film stretching apparatus
JP5136490B2 (en) * 2009-03-25 2013-02-06 日本ゼオン株式会社 Optical film manufacturing equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004106423A (en) * 2002-09-19 2004-04-08 Fuji Photo Film Co Ltd Tenter apparatus
JP2010046911A (en) * 2008-08-21 2010-03-04 Fujifilm Corp Tentering machine and solution film-forming method using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147840A1 (en) * 2015-03-17 2016-09-22 コニカミノルタ株式会社 Method for producing obliquely stretched film
KR20170110675A (en) * 2015-03-17 2017-10-11 코니카 미놀타 가부시키가이샤 Method for producing oblique stretched film
JPWO2016147840A1 (en) * 2015-03-17 2018-01-11 コニカミノルタ株式会社 Manufacturing method of obliquely stretched film
KR101973884B1 (en) * 2015-03-17 2019-04-29 코니카 미놀타 가부시키가이샤 Method for producing oblique stretched film
WO2016152384A1 (en) * 2015-03-20 2016-09-29 コニカミノルタ株式会社 Method for producing obliquely stretched film
KR20170103935A (en) * 2015-03-20 2017-09-13 코니카 미놀타 가부시키가이샤 Method for producing oblique stretched film
JPWO2016152384A1 (en) * 2015-03-20 2017-12-28 コニカミノルタ株式会社 Manufacturing method of obliquely stretched film
JPWO2016152381A1 (en) * 2015-03-20 2018-01-11 コニカミノルタ株式会社 Manufacturing method of obliquely stretched film
KR101963067B1 (en) 2015-03-20 2019-03-27 코니카 미놀타 가부시키가이샤 Method for producing oblique stretched film
JP7015950B1 (en) 2021-03-26 2022-02-14 日東電工株式会社 Method for manufacturing stretched film
JP2022150149A (en) * 2021-03-26 2022-10-07 日東電工株式会社 Manufacturing method of stretched film
CN115139503A (en) * 2021-03-30 2022-10-04 日东电工株式会社 Method for producing stretched film

Also Published As

Publication number Publication date
JPWO2013146397A1 (en) 2015-12-10
JP5825426B2 (en) 2015-12-02

Similar Documents

Publication Publication Date Title
JP5339017B1 (en) Manufacturing method of long stretched film
JP5825426B2 (en) Manufacturing method of long diagonally stretched film
JP5333697B1 (en) Manufacturing method of long stretched film
JP6798195B2 (en) Method for manufacturing diagonally stretched film
JP5333699B1 (en) Manufacturing method of long stretched film
WO2013161581A1 (en) Process for manufacturing obliquely stretched film
JP5083483B1 (en) Manufacturing method of long stretched film
JP5088718B1 (en) Stretched film manufacturing method, stretched film manufacturing apparatus, and stretched film manufacturing system
JP6798196B2 (en) Method for manufacturing diagonally stretched film
JP5126456B1 (en) Manufacturing method and manufacturing apparatus for long diagonally stretched film
JP2013202979A (en) Method and apparatus for manufacturing obliquely stretched film
JP5825427B2 (en) Manufacturing apparatus and manufacturing method of long diagonally stretched film
KR102027692B1 (en) Optical film, polarizing plate, display device, and method of manufacturing optical film
JP5105034B1 (en) Stretched film manufacturing method, stretched film manufacturing apparatus, and stretched film manufacturing system
WO2014156416A1 (en) Method for manufacturing optical film
WO2013118186A1 (en) Method for producing long stretched film
JP5110234B1 (en) Manufacturing method and manufacturing apparatus for long diagonally stretched film
JP2013208771A (en) Apparatus and method of manufacturing long obliquely stretched film
JP2013208773A (en) Apparatus and method of manufacturing long obliquely stretched film
CN114764161A (en) Method for producing obliquely stretched film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13770171

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507724

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13770171

Country of ref document: EP

Kind code of ref document: A1