WO2013146390A1 - Method for producing 3-alkoxy-3-methyl-1-butanol - Google Patents

Method for producing 3-alkoxy-3-methyl-1-butanol Download PDF

Info

Publication number
WO2013146390A1
WO2013146390A1 PCT/JP2013/057536 JP2013057536W WO2013146390A1 WO 2013146390 A1 WO2013146390 A1 WO 2013146390A1 JP 2013057536 W JP2013057536 W JP 2013057536W WO 2013146390 A1 WO2013146390 A1 WO 2013146390A1
Authority
WO
WIPO (PCT)
Prior art keywords
methyl
alkoxy
reaction
butanol
reaction mixture
Prior art date
Application number
PCT/JP2013/057536
Other languages
French (fr)
Japanese (ja)
Inventor
史彦 岡部
雄高 鈴木
矢田 和之
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2014507720A priority Critical patent/JP6097278B2/en
Priority to CN201380015567.XA priority patent/CN104203890A/en
Publication of WO2013146390A1 publication Critical patent/WO2013146390A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/05Preparation of ethers by addition of compounds to unsaturated compounds
    • C07C41/06Preparation of ethers by addition of compounds to unsaturated compounds by addition of organic compounds only
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment

Definitions

  • the present invention relates to a method for producing 3-alkoxy-3-methyl-1-butanol which is useful as a raw material for intermediates for medical and agricultural chemicals and various detergents.
  • an object of the present invention is to provide a method for producing 3-alkoxy-3-methyl-1-butanol with high selectivity and high yield.
  • the present invention provides the following [1] to [4].
  • [1] At least one methylbutenol selected from 3-methyl-3-buten-1-ol and 3-methyl-2-buten-1-ol and a primary alcohol having 1 to 5 carbon atoms
  • a method for producing 3-alkoxy-3-methyl-1-butanol which is characterized.
  • 3-alkoxy-3-methyl-1-butanol can be produced with higher selectivity and higher yield than before.
  • FIG. 1 is a schematic view of a reaction apparatus used in Example 1.
  • FIG. 1 is a schematic view of a reaction apparatus used in Example 1.
  • methylbutenol selected from 3-methyl-3-buten-1-ol (IPEA) and 3-methyl-2-buten-1-ol (PNA) and a carbon number of 1 to 5 are used.
  • IPEA 3-methyl-3-buten-1-ol
  • PNA 3-methyl-2-buten-1-ol
  • the production method of the present invention is represented by the following chemical reaction formula. (In the formula, two carbon-carbon bonds consisting of a solid line and a broken line indicate that one of them is a carbon-carbon double bond.)
  • Examples of the primary alcohol having 1 to 5 carbon atoms used in the method of the present invention include methanol, ethanol, n-propanol, n-butanol, and isobutanol. Of these, methanol, ethanol, and n-propanol are preferable from the viewpoint of selectivity and yield of 3-alkoxy-3-methyl-1-butanol. If a secondary alcohol (for example, isopropanol) or a tertiary alcohol is used instead of the primary alcohol, the selectivity and yield of 3-alkoxy-3-methyl-1-butanol are greatly reduced.
  • a secondary alcohol for example, isopropanol
  • a tertiary alcohol is used instead of the primary alcohol, the selectivity and yield of 3-alkoxy-3-methyl-1-butanol are greatly reduced.
  • the amount of the primary alcohol having 1 to 5 carbon atoms is preferably 0.5 to 40 mol, more preferably 0.7 to 1 mol of at least one methylbutenol selected from IPEA and PNA. -30 mol, more preferably 0.8-25 mol.
  • the lower limit of the amount of primary alcohol having 1 to 5 carbon atoms to 1 mol of at least one methylbutenol selected from IPEA and PNA is, in addition to the lower limit, from the viewpoint of conversion, Preferably it is 2 mol, More preferably, it is 5 mol.
  • the primary alcohol having 1 to 5 carbon atoms When the primary alcohol having 1 to 5 carbon atoms is excessive with respect to IPEA or PNA, the primary alcohol itself functions as a solvent, and there is no need to use another solvent, so that the reaction can be carried out efficiently. Is preferable.
  • a solvent can also be used.
  • the solvent include aliphatic hydrocarbons such as hexane, heptane, and octane; aromatic hydrocarbons such as benzene, toluene, xylene, and mesitylene; diethyl ether, dipropyl ether, dibutyl ether, tetrahydrofuran, dioxane, 1,2-dimethoxy.
  • Examples include ethane, ethers such as diethylene glycol dimethyl ether (diglyme), triethylene glycol dimethyl ether (triglyme), and tetraethylene glycol dimethyl ether (tetraglyme), which do not adversely affect the reaction of the present invention.
  • a solvent may be used individually by 1 type and may use 2 or more types together. When using a solvent, it is preferable to use it after sufficient dehydration.
  • the process according to the invention is carried out in the presence of an acid.
  • the acid is preferably a strong acid or a strong acid-generating substance, and examples thereof include inorganic acids such as sulfuric acid and phosphoric acid; organic acids such as sulfonic acid; solid acids such as natural zeolite, synthetic zeolite and acidic cation exchange resin. It is done. Among these, it is preferable to use a solid acid from the viewpoint of easy separation after completion of the reaction.
  • the synthetic zeolite include, but are not limited to, ⁇ type, A type, X type, Y type, L type, ZSM-5 type, mordenite type, and ferrierite type.
  • Zeolite may be proton type (H type) or ammonium ion type (NH 4 + type), alkali metals such as sodium and potassium; alkaline earth metals such as magnesium and calcium; Group 8 metals such as iron; It may be a “metal substitution type” substituted with a Group 9 metal such as cobalt; a Group 10 metal such as nickel.
  • H type proton type
  • NH 4 + type ammonium ion type
  • alkali metals such as sodium and potassium
  • alkaline earth metals such as magnesium and calcium
  • Group 8 metals such as iron
  • It may be a “metal substitution type” substituted with a Group 9 metal such as cobalt
  • a Group 10 metal such as nickel.
  • the amount of acid used is such that when the above inorganic acid or organic acid is used, the concentration of the acid in the reaction mixture is preferably 0.01 to 40% by mass, more preferably 0.1 to 15% by mass. It is better to do so.
  • the reaction is preferably performed in a fixed bed. In this case, as described later, IPEA and / or PNA LHSV (Liquid Hourly Space Velocity; liquid space velocity; hr ⁇ 1 ) is important.
  • the amount of solid acid used is preferably 1 part by mass of the raw material (IPEA and / or PNA). The amount is 0.001 to 10 parts by mass, more preferably 0.01 to 3 parts by mass.
  • the water content in the reaction mixture is preferably 0.25% by mass or less, more preferably 0.2% by mass or less, and still more preferably 0.15% by mass or less.
  • the selectivity and yield of 3-alkoxy-3-methyl-1-butanol are greatly improved by controlling the water content in the reaction mixture within the above range.
  • the lower limit of the moisture content in the reaction mixture is naturally preferably 0% by mass, but it is not practically 0% by mass because water is generated by the side reaction. Therefore, even if the moisture content is controlled as described above, the lower limit is preferably about 0.04% by mass.
  • dehydration method for controlling the water content in the reaction mixture within the above range.
  • the above method (1) includes (1-1) a reaction in the presence of a dehydrating agent, and (1-2) withdrawing from the reactor a reaction mixture that has partially reacted by contacting with an acid. There is a method of returning to the original reactor after contacting with a dehydrating agent.
  • the dehydrating agent include molecular sieves (3A, 4A, 5A, 13X), alumina, calcium chloride, calcium sulfate, anhydrous magnesium sulfate, anhydrous sodium sulfate, calcium hydride, sodium hydroxide, potassium hydroxide, potassium carbonate,
  • a dehydrating agent generally used for dehydrating liquid organic compounds or mixtures, such as sodium hydrogen carbonate, can be suitably used.
  • the liquid mixture is brought into contact with one side (supply side) of the separation membrane and the opposite side (permeation side) is depressurized to vaporize and separate a specific liquid (permeation substance). Separation is performed by a pervaporation method (pervaporation method) or the like.
  • a pervaporation method pervaporation method
  • Such a membrane separation method is effective for separating an azeotropic mixture that could not be easily separated by distillation, or for separating a mixture having a small relative volatility and a near boiling point.
  • the water content in the reaction mixture can be measured with a Karl Fischer moisture meter.
  • the reaction temperature when carrying out the method of the present invention is usually preferably 40 to 100 ° C., more preferably 40 to 80 ° C. Although there is no restriction
  • the embodiment of the method for producing 3-alkoxy-3-methyl-1-butanol of the present invention is not particularly limited, and known methods such as a batch method, a semi-continuous method, and a continuous method can be applied.
  • known methods such as a batch method, a semi-continuous method, and a continuous method can be applied.
  • preferred embodiments according to the respective methods will be specifically described, but the present invention is not particularly limited thereto.
  • IPEA and / or PNA When the method of the present invention is carried out in a batch mode, for example, IPEA and / or PNA, primary alcohol, acid (preferably the inorganic acid or organic acid), a dehydrating agent, and, if necessary, a solvent are added to the reactor. All are charged and heated to a predetermined temperature and stirred.
  • the conversion rate of IPEA or PNA is appropriately monitored by gas chromatography or the like, and the conversion rate is preferably 55% or more, more preferably 60% or more, still more preferably 70% or more, particularly The reaction is preferably carried out until it reaches 80% or more.
  • the process of the present invention is carried out in a semi-continuous manner, for example, at least a part of IPEA and / or PNA, at least a part of a primary alcohol, an acid (preferably the inorganic acid or organic acid), dehydration,
  • the reactor is charged with an agent and, if necessary, at least a part of the solvent, and stirred at a predetermined temperature to carry out the reaction, while continuously or intermittently reacting IPEA and / or PNA, primary alcohol and, if necessary, the solvent.
  • the dehydrating agent can be added later.
  • a tubular reaction apparatus in which a jacketed tubular reactor is filled with a solid acid as an acid and a dehydrating agent is filled together with the solid acid, or a dehydrating agent is separately charged. Connect the device. While flowing a heating medium at a predetermined temperature through the jacket, the liquid mixture of IPEA and / or PNA and primary alcohol is preferably LHSV of 0.1 to 70 hr ⁇ 1 , more preferably 0.1 to 50 hr ⁇ 1.
  • the tubular reactor filled with the solid acid so as to be 1 to 50 hr ⁇ 1 , then passed through the tubular reactor filled with the dehydrating agent, or the tubular reactor filled with both the solid acid and the dehydrating agent.
  • a continuous system may be implemented by a “one-pass system” in which a mixed liquid of IPEA and / or PNA and primary alcohol is circulated only once in a tubular reactor filled with a solid acid and a dehydrating agent. Then, at least part or all of the reaction mixture obtained by passing through the tubular reactor filled with the solid acid and then the tubular reactor filled with the dehydrating agent is circulated through the tubular reactor again.
  • the above operation may be repeated in a “circulation type”.
  • the solid acid and the dehydrating agent (preferably molecular sieves) packed together in the tubular reactor may be mixed together or “solid acid layer-dehydrating agent layer-solid. It may be in a laminated state such as “acid layer—dehydrating agent layer—.
  • the LHSV of the mixed solution of IPEA and / or PNA and primary alcohol is dehydration efficiency, conversion rate of IPEA and / or PNA, 3-alkoxy-3 From the viewpoint of the selectivity of -methyl-1-butanol, it is preferably 0.1 to 5 hr -1 .
  • LHSV is preferable from the viewpoint of control of the water content in the reaction mixture, conversion of IPEA and / or PNA, selectivity of 3-alkoxy-3-methyl-1-butanol, and the like. Is 3 to 70 hr ⁇ 1 , more preferably 5 to 50 hr ⁇ 1 , still more preferably 10 to 50 hr ⁇ 1 , and particularly preferably 20 to 40 hr ⁇ 1 .
  • any of the batch method, the semi-continuous method, and the continuous method instead of the above-described method of contacting the reaction mixture with a dehydrating agent, the above-described dehydrating method may be adopted, and the dehydrating agent may be contacted. You may employ
  • the selectivity for 3-alkoxy-3-methyl-1-butanol tends to increase.
  • 3-alkoxy-3-methyl-1-butanol can be separated by applying a known separation method to the resulting reaction mixture.
  • the obtained 3-alkoxy-3-methyl-1-butanol can be further purified by subjecting it to purification techniques such as column chromatography and distillation.
  • Example 1 Continuous system (circulation), using ethanol
  • 100 mL of a strongly acidic ion exchange resin “Diaion PK212LH” (manufactured by Mitsubishi Chemical Corporation) is packed in a jacketed tubular reactor.
  • the solid acid layer A another jacketed tubular reactor was charged with 100 mL of molecular sieves 3A (hereinafter referred to as a dehydrating agent layer), and both were connected.
  • Hot water (heat medium) of 50 ° C. is allowed to flow through the jacket of the tubular reactor filled with the strongly acidic ion exchange resin, and cooling water (refrigerant) of about 10 ° C.
  • the reaction mixture after the reaction for 10 hours was analyzed by gas chromatography.
  • the conversion rate of IPEA was 91.1%, and the yield of 3-ethoxy-3-methyl-1-butanol was 62.9%. It was.
  • the results are shown in Table 1. Further, every 1 hour, the reaction mixture before passing through the dehydrating agent layer, circulated by a pump, and supplied to the solid acid layer A again is sampled, and the moisture content in the reaction mixture is measured by the Karl Fischer moisture meter.
  • “AQV-7” manufactured by Hiranuma Sangyo Co., Ltd.
  • Table 2 the water content was always 0.14% by mass or less.
  • the structure and selectivity of each product including by-products will be described later.
  • Example 1 Continuous system (circulation), use of ethanol, no dehydration treatment
  • a reaction operation was performed in the same manner as in Example 1 except that no dehydrating agent layer was provided and only the solid acid layer A was used. Went.
  • the results are shown in Table 1.
  • the water content in the reaction mixture after reacting for 10 hours was 0.83% by mass.
  • the selectivity of each product containing a by-product is described collectively later.
  • Example 2 Continuous system (circulation), use of ethanol, no dehydration treatment
  • a reaction operation was performed in the same manner as in Example 1 except that no dehydrating agent layer was provided and only the solid acid layer A was used. Went.
  • the results are shown in Table 1.
  • the water content in the reaction mixture after reacting for 10 hours was 0.35% by mass.
  • the selectivity of each product containing a by-product is described collectively later.
  • Example 3 Continuous system (circulation), using methanol
  • Example 2 the same procedure as in Example 2 was used except that 320 g (9.99 mol) of methanol was used instead of 460 g (9.99 mol) of ethanol. Reaction operation was performed. During the reaction, the water content in the reaction mixture was always 0.15% by mass or less. The results are shown in Table 1.
  • Example 3 Continuous system (circulation), use of methanol, no dehydration treatment
  • a reaction operation was performed in the same manner as in Example 3 except that no dehydrating agent layer was provided and only the solid acid layer A was used. Was done.
  • the water content in the reaction mixture after reacting for 10 hours was 0.36% by mass. The results are shown in Table 1.
  • Example 4 Continuous system (circulation), using n-propanol
  • Example 2 was used except that 600 g (9.99 mol) of n-propanol was used instead of 460 g (9.99 mol) of ethanol.
  • the reaction operation was carried out in the same manner as above. During the reaction, the water content in the reaction mixture was always 0.15% by mass or less. The results are shown in Table 1.
  • Example 4 Continuous method (circulation), use of n-propanol, no dehydration treatment In Example 4, except that the dehydrating agent layer was not provided and only the solid acid layer A was used, the same as in Example 1 Reaction operation was performed. The water content in the reaction mixture after reacting for 10 hours was 0.35% by mass. The results are shown in Table 1.
  • Example 5 Continuous system (circulation), using isopropanol
  • 600 g (9.99 mol) of isopropanol was used instead of 460 g (9.99 mol) of ethanol
  • Reaction operation was performed.
  • the water content in the reaction mixture was always 0.15% by mass or less.
  • Table 1 From Table 1, in the case of using isopropanol, which is a secondary alcohol, instead of the primary alcohol, 3-alkoxy-3- by maintaining the water content in the reaction mixture at 0.3% by mass or less. It can be seen that the effect of improving the selectivity of methyl-1-butanol is not sufficiently exhibited.
  • Example 5 Continuous system (circulation), use of PNA
  • the reaction operation was performed in the same manner as in Example 2. During the reaction, the water content in the reaction mixture was always 0.15% by mass or less. The results are shown in Table 5.
  • Example 6 Continuous system (circulation type), ethanol, ⁇ -type zeolite used In Example 2, instead of the strongly acidic ion exchange resin “Diaion PK212LH”, a pellet-shaped ⁇ -type zeolite “BEA-25” Except that the temperature of the hot water (heating medium) flowing through the jacket of the tubular reactor filled with the pellet-shaped ⁇ -type zeolite was set to 70 ° C. using 100 mL (manufactured by the company) (hereinafter referred to as solid acid layer B). The reaction operation was performed in the same manner as in Example 2. During the reaction, the water content in the reaction mixture was always 0.15% by mass or less. The results are shown in Table 6.
  • Example 7 Continuous system (circulation type), ethanol, ⁇ -type zeolite used In Example 2, instead of the strongly acidic ion exchange resin “Diaion PK212LH”, pellet type ⁇ -type zeolite “BEA-150” This was carried out except that 100 mL (made by the company) (hereinafter referred to as solid acid layer C) was used, and the temperature of the hot water (heating medium) passed through the jacket of the tubular reactor filled with the ⁇ -type zeolite was set to 70 ° C. The reaction operation was carried out in the same manner as in Example 2. During the reaction, the water content in the reaction mixture was always 0.15% by mass or less. The results are shown in Table 6.
  • the 3-alkoxy-3-methyl-1-butanol obtained by the method of the present invention is useful as an intermediate for medical and agricultural chemicals and as a raw material for various cleaning agents.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Provided is a method for producing 3-alkoxy-3-methyl-1-butanol with high selectivity and high yield. Specifically provided is a method for producing 3-alkoxy-3-methyl-1-butanol, wherein at least one kind of methyl butenol that is selected from among 3-methyl-3-buten-1-ol and 3-methyl-2-buten-1-ol is reacted with a primary alcohol having 1-5 carbon atoms in the presence of an acid. In this method for producing 3-alkoxy-3-methyl-1-butanol, the reaction is carried out, while controlling the water content in the reaction mixture to 0.3% by mass or less.

Description

3-アルコキシ-3-メチル-1-ブタノールの製造方法Method for producing 3-alkoxy-3-methyl-1-butanol
 本発明は、医農薬中間体や各種洗浄剤の原料などとして有用な3-アルコキシ-3-メチル-1-ブタノールの製造方法に関する。 The present invention relates to a method for producing 3-alkoxy-3-methyl-1-butanol which is useful as a raw material for intermediates for medical and agricultural chemicals and various detergents.
 3-メチル-3-ブテン-1-オール(以下、IPEAと称することがある。)または3-メチル-2-ブテン-1-オール(以下、PNAと称することがある。)と第一級アルコールとの反応において、硫酸、燐酸、スルホン酸、カチオン系イオン交換樹脂などの酸の存在下に実施することにより、異性化反応や脱水反応、さらに二重結合への水酸基の付加反応などを抑制しながら3-アルコキシ-3-メチル-1-ブタノールを製造し得ることが知られている(特許文献1参照)。 3-methyl-3-buten-1-ol (hereinafter sometimes referred to as IPEA) or 3-methyl-2-buten-1-ol (hereinafter sometimes referred to as PNA) and primary alcohol In the presence of acids such as sulfuric acid, phosphoric acid, sulfonic acid, and cationic ion exchange resins, to suppress isomerization and dehydration reactions, and addition of hydroxyl groups to double bonds. However, it is known that 3-alkoxy-3-methyl-1-butanol can be produced (see Patent Document 1).
特開昭50-59309号公報JP 50-59309 A
 しかしながら、特許文献1に記載の方法では、転化率は高いものの、3-アルコキシ-3-メチル-1-ブタノールの選択率が不十分であり、より高収率で3-アルコキシ-3-メチル-1-ブタノールを得るためには、更なる改良の余地があった。
 そこで、本発明の課題は、3-アルコキシ-3-メチル-1-ブタノールを高選択率および高収率で製造する方法を提供することにある。
However, in the method described in Patent Document 1, although the conversion rate is high, the selectivity of 3-alkoxy-3-methyl-1-butanol is insufficient, and 3-alkoxy-3-methyl- There was room for further improvement in order to obtain 1-butanol.
Accordingly, an object of the present invention is to provide a method for producing 3-alkoxy-3-methyl-1-butanol with high selectivity and high yield.
 本発明者らが鋭意検討した結果、酸存在下でのIPEAまたはPNAと第一級アルコールとの反応においては、副反応によって水が生成し、反応混合液中の含水率が一定値を超えると3-アルコキシ-3-メチル-1-ブタノールの選択率が低下することをつきとめた。かかる知見に基づき、本発明者らは、反応混合液中の含水率を一定値以下に制御しながら反応を行なうことにより、前記課題を解決できることを見出し、本発明を完成した。 As a result of intensive studies by the present inventors, in the reaction of IPEA or PNA with a primary alcohol in the presence of an acid, water is generated by a side reaction, and the water content in the reaction mixture exceeds a certain value. It has been found that the selectivity of 3-alkoxy-3-methyl-1-butanol decreases. Based on this finding, the present inventors have found that the above-mentioned problems can be solved by carrying out the reaction while controlling the water content in the reaction mixture to a certain value or less, and have completed the present invention.
 即ち、本発明は、下記[1]~[4]を提供する。
[1]3-メチル-3-ブテン-1-オールおよび3-メチル-2-ブテン-1-オールから選択される少なくとも1種のメチルブテノールと炭素数1~5の第一級アルコールとを酸の存在下に反応させることによる3-アルコキシ-3-メチル-1-ブタノールの製造方法であって、反応混合液中の含水率を0.3質量%以下に制御して反応を行なうことを特徴とする、3-アルコキシ-3-メチル-1-ブタノールの製造方法。
[2]前記炭素数1~5の第一級アルコールが、メタノール、エタノールまたはn-プロパノールである、上記[1]の3-アルコキシ-3-メチル-1-ブタノールの製造方法。
[3]前記炭素数1~5の第一級アルコールの使用量が、3-メチル-3-ブテン-1-オールおよび3-メチル-2-ブテン-1-オールから選択される少なくとも1種のメチルブテノール1モルに対して0.5~40モルである、上記[1]または[2]の3-アルコキシ-3-メチル-1-ブタノールの製造方法。
[4]前記酸が、天然ゼオライト、合成ゼオライトおよび酸性陽イオン交換樹脂から選択される少なくとも1種の固体酸である、上記[1]~[3]のいずれかの3-アルコキシ-3-メチル-1-ブタノールの製造方法。
That is, the present invention provides the following [1] to [4].
[1] At least one methylbutenol selected from 3-methyl-3-buten-1-ol and 3-methyl-2-buten-1-ol and a primary alcohol having 1 to 5 carbon atoms A process for producing 3-alkoxy-3-methyl-1-butanol by reacting in the presence of an acid, wherein the reaction is carried out by controlling the water content in the reaction mixture to 0.3% by mass or less. A method for producing 3-alkoxy-3-methyl-1-butanol, which is characterized.
[2] The process for producing 3-alkoxy-3-methyl-1-butanol according to the above [1], wherein the primary alcohol having 1 to 5 carbon atoms is methanol, ethanol or n-propanol.
[3] The use amount of the primary alcohol having 1 to 5 carbon atoms is at least one selected from 3-methyl-3-buten-1-ol and 3-methyl-2-buten-1-ol. The process for producing 3-alkoxy-3-methyl-1-butanol according to the above [1] or [2], which is 0.5 to 40 mol per 1 mol of methylbutenol.
[4] The 3-alkoxy-3-methyl of any one of [1] to [3], wherein the acid is at least one solid acid selected from natural zeolite, synthetic zeolite, and acidic cation exchange resin A process for producing 1-butanol.
 本発明によれば、3-アルコキシ-3-メチル-1-ブタノールを従来よりも高選択率および高収率で製造することができる。 According to the present invention, 3-alkoxy-3-methyl-1-butanol can be produced with higher selectivity and higher yield than before.
実施例1で用いた反応装置の概略図である。1 is a schematic view of a reaction apparatus used in Example 1. FIG.
 まず、本明細書において、好ましいとする規定は任意に採用することができ、好ましいとする規定同士の組み合わせは、より好ましいといえる。 First, in the present specification, it is possible to arbitrarily adopt a rule that is preferable, and it can be said that a combination of rules that are preferable is more preferable.
[3-アルコキシ-3-メチル-1-ブタノールの製造方法]
 本発明では、3-メチル-3-ブテン-1-オール(IPEA)および3-メチル-2-ブテン-1-オール(PNA)から選択される少なくとも1種のメチルブテノールと炭素数1~5の第一級アルコールとを酸の存在下に反応させる際に、反応混合液中の含水率を0.3質量%以下に制御しながら反応させることを特徴とする。
[Method for producing 3-alkoxy-3-methyl-1-butanol]
In the present invention, at least one methylbutenol selected from 3-methyl-3-buten-1-ol (IPEA) and 3-methyl-2-buten-1-ol (PNA) and a carbon number of 1 to 5 are used. When the primary alcohol is reacted in the presence of an acid, the reaction is performed while the water content in the reaction mixture is controlled to 0.3% by mass or less.
 第一級アルコールをR-CH2OH(Rは、水素原子または炭素数1~4のアルキル基を示す。)と表すと、本発明の製造方法は、以下の化学反応式で表される。
Figure JPOXMLDOC01-appb-C000001
(式中、実線と破線からなる2箇所の炭素-炭素結合は、いずれか一方が炭素-炭素二重結合になっていることを示す。)
When the primary alcohol is represented by R—CH 2 OH (R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms), the production method of the present invention is represented by the following chemical reaction formula.
Figure JPOXMLDOC01-appb-C000001
(In the formula, two carbon-carbon bonds consisting of a solid line and a broken line indicate that one of them is a carbon-carbon double bond.)
(炭素数1~5の第一級アルコール)
 本発明の方法で用いる炭素数1~5の第一級アルコールとしては、メタノール、エタノール、n-プロパノール、n-ブタノール、イソブタノールなどが挙げられる。中でも、3-アルコキシ-3-メチル-1-ブタノールの選択率および収率の観点から、好ましくはメタノール、エタノール、n-プロパノールである。なお、第一級アルコールの代わりに第二級アルコール(例えばイソプロパノール)または第三級アルコールを用いると、3-アルコキシ-3-メチル-1-ブタノールの選択率および収率が大幅に低減する。
(Primary alcohol with 1 to 5 carbon atoms)
Examples of the primary alcohol having 1 to 5 carbon atoms used in the method of the present invention include methanol, ethanol, n-propanol, n-butanol, and isobutanol. Of these, methanol, ethanol, and n-propanol are preferable from the viewpoint of selectivity and yield of 3-alkoxy-3-methyl-1-butanol. If a secondary alcohol (for example, isopropanol) or a tertiary alcohol is used instead of the primary alcohol, the selectivity and yield of 3-alkoxy-3-methyl-1-butanol are greatly reduced.
 炭素数1~5の第一級アルコールの使用量は、IPEAおよびPNAから選択される少なくとも1種のメチルブテノール1モルに対して、好ましくは0.5~40モル、より好ましくは0.7~30モル、さらに好ましくは0.8~25モルである。特に、IPEAおよびPNAから選択される少なくとも1種のメチルブテノール1モルに対する炭素数1~5の第一級アルコールの使用量の下限値は、転化率の観点から、前記下限値に加え、より好ましくは2モル、さらに好ましくは5モルである。炭素数1~5の第一級アルコールを、IPEAやPNAに対して過剰量とすると、第一級アルコール自体が溶媒としても機能し、他に溶媒を用いる必要がなくなり、効率良く反応を行なうことができて好ましい。
 なお、本発明の方法においては、溶媒を用いることもできる。溶媒としては、例えばヘキサン、ヘプタン、オクタンなどの脂肪族炭化水素;ベンゼン、トルエン、キシレン、メシチレンなどの芳香族炭化水素;ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサン、1,2-ジメトキシエタン、ジエチレングリコールジメチルエーテル(ジグライム)、トリエチレングリコールジメチルエーテル(トリグライム)、テトラエチレングリコールジメチルエーテル(テトラグライム)などのエーテルなどの、本発明の反応に悪影響を及ぼさない溶媒が挙げられる。溶媒は、1種を単独で使用してもよいし、2種以上を併用してもよい。溶媒を使用する場合は、充分に脱水処理をしてから使用するのが好ましい。
The amount of the primary alcohol having 1 to 5 carbon atoms is preferably 0.5 to 40 mol, more preferably 0.7 to 1 mol of at least one methylbutenol selected from IPEA and PNA. -30 mol, more preferably 0.8-25 mol. In particular, the lower limit of the amount of primary alcohol having 1 to 5 carbon atoms to 1 mol of at least one methylbutenol selected from IPEA and PNA is, in addition to the lower limit, from the viewpoint of conversion, Preferably it is 2 mol, More preferably, it is 5 mol. When the primary alcohol having 1 to 5 carbon atoms is excessive with respect to IPEA or PNA, the primary alcohol itself functions as a solvent, and there is no need to use another solvent, so that the reaction can be carried out efficiently. Is preferable.
In the method of the present invention, a solvent can also be used. Examples of the solvent include aliphatic hydrocarbons such as hexane, heptane, and octane; aromatic hydrocarbons such as benzene, toluene, xylene, and mesitylene; diethyl ether, dipropyl ether, dibutyl ether, tetrahydrofuran, dioxane, 1,2-dimethoxy. Examples include ethane, ethers such as diethylene glycol dimethyl ether (diglyme), triethylene glycol dimethyl ether (triglyme), and tetraethylene glycol dimethyl ether (tetraglyme), which do not adversely affect the reaction of the present invention. A solvent may be used individually by 1 type and may use 2 or more types together. When using a solvent, it is preferable to use it after sufficient dehydration.
(酸)
 本発明の方法は、酸の存在下に行う。酸としては、強酸または強酸生成物質であることが好ましく、例えば、硫酸、燐酸などの無機酸;スルホン酸などの有機酸;天然ゼオライト、合成ゼオライト、酸性陽イオン交換樹脂などの固体酸などが挙げられる。中でも、反応終了後における分離容易性の観点から、固体酸を用いることが好ましい。
 なお、合成ゼオライトとしては、例えば、β型、A型、X型、Y型、L型、ZSM-5型、モルデナイト型、フェリエライト型などが挙げられるが、特にこれらに制限されない。ゼオライトは、プロトン型(H型)またはアンモニウムイオン型(NH4 +型)であってもよく、ナトリウムやカリウム等のアルカリ金属;マグネシウムやカルシウム等のアルカリ土類金属;鉄等の8族金属;コバルト等の9族金属;ニッケル等の10族金属などによって置換された「金属置換型」であってもよい。
(acid)
The process according to the invention is carried out in the presence of an acid. The acid is preferably a strong acid or a strong acid-generating substance, and examples thereof include inorganic acids such as sulfuric acid and phosphoric acid; organic acids such as sulfonic acid; solid acids such as natural zeolite, synthetic zeolite and acidic cation exchange resin. It is done. Among these, it is preferable to use a solid acid from the viewpoint of easy separation after completion of the reaction.
Examples of the synthetic zeolite include, but are not limited to, β type, A type, X type, Y type, L type, ZSM-5 type, mordenite type, and ferrierite type. Zeolite may be proton type (H type) or ammonium ion type (NH 4 + type), alkali metals such as sodium and potassium; alkaline earth metals such as magnesium and calcium; Group 8 metals such as iron; It may be a “metal substitution type” substituted with a Group 9 metal such as cobalt; a Group 10 metal such as nickel.
 酸の使用量は、上記無機酸や有機酸を使用する場合には、反応混合液中の酸の濃度が好ましくは0.01~40質量%、より好ましくは0.1~15質量%となるようにするのがよい。なお、上記固体酸を使用する場合には固定床にて反応を行うことが好ましく、この場合には、後述するようにIPEAおよび/またはPNAのLHSV(Liquid Hourly Space Velocity;液空間速度;hr-1)が重要となる。一方、固体酸を使用して流動床、懸濁床または移動床にて反応を行う場合には、固体酸の使用量は、原料(IPEAおよび/またはPNA)1質量部に対して、好ましくは0.001~10質量部、より好ましくは0.01~3質量部である。 The amount of acid used is such that when the above inorganic acid or organic acid is used, the concentration of the acid in the reaction mixture is preferably 0.01 to 40% by mass, more preferably 0.1 to 15% by mass. It is better to do so. When the solid acid is used, the reaction is preferably performed in a fixed bed. In this case, as described later, IPEA and / or PNA LHSV (Liquid Hourly Space Velocity; liquid space velocity; hr − 1 ) is important. On the other hand, when the reaction is carried out in a fluidized bed, suspension bed or moving bed using a solid acid, the amount of solid acid used is preferably 1 part by mass of the raw material (IPEA and / or PNA). The amount is 0.001 to 10 parts by mass, more preferably 0.01 to 3 parts by mass.
 本発明の方法では、3-アルコキシ-3-メチル-1-ブタノールの選択率および収率を向上させるために、反応混合液中の含水率を0.3質量%以下に制御することが重要である。反応混合液中の含水率は、好ましくは0.25質量%以下、より好ましくは0.2質量%以下、さらに好ましくは0.15質量%以下である。本発明の方法では、反応混合液中の含水率を上記範囲に制御することによって、3-アルコキシ-3-メチル-1-ブタノールの選択率および収率が大幅に改善される。
 なお、反応混合液中の含水率の下限値としては、当然0質量%が好ましいことになるが、副反応によって水が生成するために、現実的には0質量%にはならない。そのため、上記のように含水率を制御したとしても、該下限値としては、好ましくは0.04質量%程度といえる。
In the method of the present invention, in order to improve the selectivity and yield of 3-alkoxy-3-methyl-1-butanol, it is important to control the water content in the reaction mixture to 0.3% by mass or less. is there. The water content in the reaction mixture is preferably 0.25% by mass or less, more preferably 0.2% by mass or less, and still more preferably 0.15% by mass or less. In the method of the present invention, the selectivity and yield of 3-alkoxy-3-methyl-1-butanol are greatly improved by controlling the water content in the reaction mixture within the above range.
The lower limit of the moisture content in the reaction mixture is naturally preferably 0% by mass, but it is not practically 0% by mass because water is generated by the side reaction. Therefore, even if the moisture content is controlled as described above, the lower limit is preferably about 0.04% by mass.
 反応混合液中の含水率を上記範囲に制御するための脱水方法に特に制限はないが、(1)反応混合液を脱水剤に接触させる方法、(2)反応混合液をポリイミド膜、ゼオライト膜などを用いた膜分離法によって脱水する方法、(3)反応混合液を蒸留により脱水する方法、(4)前記(1)~(3)から選択される少なくとも2つの組合せなどが挙げられる。 There is no particular limitation on the dehydration method for controlling the water content in the reaction mixture within the above range. And (3) a method of dehydrating the reaction mixture by distillation, (4) a combination of at least two selected from the above (1) to (3), and the like.
 上記(1)の方法としては、(1-1)脱水剤の存在下に反応を行う方法、および(1-2)酸と接触して一部反応が進行した反応混合液を反応器から抜き取り、脱水剤と接触させてから元の反応器へ戻す方法とがある。脱水剤としては、例えば、モレキュラーシーブス(3A、4A、5A、13X)、アルミナ、塩化カルシウム、硫酸カルシウム、無水硫酸マグネシウム、無水硫酸ナトリウム、水素化カルシウム、水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸水素ナトリウムなどの、液体の有機化合物または混合物の脱水に一般的に使用される脱水剤を好適に用いることができる。
 上記(2)の膜分離法では、液体混合物を分離膜の片側(供給側)に接触させて、反対側(透過側)を減圧することにより、特定の液体(透過物質)を気化させ分離するパーベーパレーション法(浸透気化法)等により分離が行われる。このような膜分離法は、蒸留では簡単に分離できなかった共沸混合物の分離や、比揮発度が小さい沸点の近い混合物の分離に有効である。
 上記(3)の蒸留では、水と第一級アルコールなどとの分離が容易ではないことがあるため、多段蒸留を行うことが好ましい。また、上記(3)の方法と、上記(1)の方法または(2)の方法とを併用することが好ましい。
 なお、反応混合液中の含水率は、カールフィッシャー水分計によって測定することができる。
The above method (1) includes (1-1) a reaction in the presence of a dehydrating agent, and (1-2) withdrawing from the reactor a reaction mixture that has partially reacted by contacting with an acid. There is a method of returning to the original reactor after contacting with a dehydrating agent. Examples of the dehydrating agent include molecular sieves (3A, 4A, 5A, 13X), alumina, calcium chloride, calcium sulfate, anhydrous magnesium sulfate, anhydrous sodium sulfate, calcium hydride, sodium hydroxide, potassium hydroxide, potassium carbonate, A dehydrating agent generally used for dehydrating liquid organic compounds or mixtures, such as sodium hydrogen carbonate, can be suitably used.
In the membrane separation method of (2) above, the liquid mixture is brought into contact with one side (supply side) of the separation membrane and the opposite side (permeation side) is depressurized to vaporize and separate a specific liquid (permeation substance). Separation is performed by a pervaporation method (pervaporation method) or the like. Such a membrane separation method is effective for separating an azeotropic mixture that could not be easily separated by distillation, or for separating a mixture having a small relative volatility and a near boiling point.
In the distillation of the above (3), it is not easy to separate water from primary alcohol and the like, so it is preferable to perform multistage distillation. Moreover, it is preferable to use together the method (3) and the method (1) or (2).
The water content in the reaction mixture can be measured with a Karl Fischer moisture meter.
 本発明の方法を実施する際の反応温度は、通常、好ましくは40~100℃、より好ましくは40~80℃である。反応圧力に特に制限はないが、通常、常圧下で実施するのが簡便であり好ましい。 The reaction temperature when carrying out the method of the present invention is usually preferably 40 to 100 ° C., more preferably 40 to 80 ° C. Although there is no restriction | limiting in particular in reaction pressure, Usually, it is simple and preferable to implement under a normal pressure.
 本発明の3-アルコキシ-3-メチル-1-ブタノールの製造方法の実施形態に特に制限はなく、例えば、バッチ方式、セミ連続方式、連続方式など、公知の方法を適用できる。以下に、それぞれの方式による好ましい実施形態について具体的に説明するが、特にこれらに制限されるものではない。 The embodiment of the method for producing 3-alkoxy-3-methyl-1-butanol of the present invention is not particularly limited, and known methods such as a batch method, a semi-continuous method, and a continuous method can be applied. Hereinafter, preferred embodiments according to the respective methods will be specifically described, but the present invention is not particularly limited thereto.
 本発明の方法をバッチ方式により実施する場合、例えば、反応器にIPEAおよび/またはPNA、第一級アルコール、酸(好ましくは前記無機酸または有機酸)、脱水剤、さらに必要に応じて溶媒を全て仕込み、所定温度に加熱して攪拌する。反応時間に特に制限はないが、適宜、ガスクロマトグラフィーなどによってIPEAやPNAの転化率を追跡し、転化率が好ましくは55%以上、より好ましくは60%以上、さらに好ましくは70%以上、特に好ましくは80%以上になるまで反応を行う。 When the method of the present invention is carried out in a batch mode, for example, IPEA and / or PNA, primary alcohol, acid (preferably the inorganic acid or organic acid), a dehydrating agent, and, if necessary, a solvent are added to the reactor. All are charged and heated to a predetermined temperature and stirred. Although there is no particular limitation on the reaction time, the conversion rate of IPEA or PNA is appropriately monitored by gas chromatography or the like, and the conversion rate is preferably 55% or more, more preferably 60% or more, still more preferably 70% or more, particularly The reaction is preferably carried out until it reaches 80% or more.
 本発明の方法をセミ連続方式により実施する場合、例えば、反応器にIPEAおよび/またはPNAの少なくとも一部、第一級アルコールの少なくとも一部、酸(好ましくは前記無機酸または有機酸)、脱水剤、さらに必要に応じて溶媒の少なくとも一部を仕込み、所定温度で攪拌して反応を行ないながら、連続的又は断続的にIPEAおよび/またはPNA、第一級アルコールおよび必要に応じ溶媒を反応器に供給する。反応時間については、前記バッチ方式の場合と同様に説明される。
 なお、バッチ方式およびセミ連続方式のいずれにおいても、脱水剤を後から追加することができる。
When the process of the present invention is carried out in a semi-continuous manner, for example, at least a part of IPEA and / or PNA, at least a part of a primary alcohol, an acid (preferably the inorganic acid or organic acid), dehydration, The reactor is charged with an agent and, if necessary, at least a part of the solvent, and stirred at a predetermined temperature to carry out the reaction, while continuously or intermittently reacting IPEA and / or PNA, primary alcohol and, if necessary, the solvent. To supply. About reaction time, it demonstrates similarly to the case of the said batch system.
In both the batch method and the semi-continuous method, the dehydrating agent can be added later.
 本発明の方法を連続方式により実施する場合、例えば、ジャケット付き管型反応装置に酸として固体酸を充填し、脱水剤を前記固体酸と共に充填するか、または別途脱水剤を充填した管型反応装置を接続する。前記ジャケットに所定温度の熱媒を流しながら、IPEAおよび/またはPNAと第一級アルコールとの混合液を、LHSVが好ましくは0.1~70hr-1、より好ましくは0.1~50hr-1、さらに好ましくは1~50hr-1となるように前記固体酸を充填した管型反応装置次いで脱水剤を充填した管型反応装置に流通させるか、または固体酸および脱水剤を共に充填した管型反応装置に流通させる。かかる連続方式は、IPEAおよび/またはPNAと第一級アルコールとの混合液を、固体酸および脱水剤を共に充填した管型反応装置に1回のみ流通させる「ワンパス式」で実施してもよいし、固体酸を充填した管型反応装置次いで脱水剤を充填した管型反応装置を通過させて得られる反応混合液の少なくとも一部または全部を再び該管型反応装置に流通させ、必要に応じて前記操作を繰り返して行う「循環式」で実施してもよい。なお、ワンパス式で実施する場合、管型反応装置に共に充填する固体酸および脱水剤(好ましくはモレキュラーシーブス)は、両者が混合されていてもよいし、「固体酸層-脱水剤層-固体酸層-脱水剤層-・・・」のように積層状態であってもよい。 When the method of the present invention is carried out in a continuous mode, for example, a tubular reaction apparatus in which a jacketed tubular reactor is filled with a solid acid as an acid and a dehydrating agent is filled together with the solid acid, or a dehydrating agent is separately charged. Connect the device. While flowing a heating medium at a predetermined temperature through the jacket, the liquid mixture of IPEA and / or PNA and primary alcohol is preferably LHSV of 0.1 to 70 hr −1 , more preferably 0.1 to 50 hr −1. More preferably, the tubular reactor filled with the solid acid so as to be 1 to 50 hr −1 , then passed through the tubular reactor filled with the dehydrating agent, or the tubular reactor filled with both the solid acid and the dehydrating agent. Distribute to the reactor. Such a continuous system may be implemented by a “one-pass system” in which a mixed liquid of IPEA and / or PNA and primary alcohol is circulated only once in a tubular reactor filled with a solid acid and a dehydrating agent. Then, at least part or all of the reaction mixture obtained by passing through the tubular reactor filled with the solid acid and then the tubular reactor filled with the dehydrating agent is circulated through the tubular reactor again. The above operation may be repeated in a “circulation type”. When the one-pass system is used, the solid acid and the dehydrating agent (preferably molecular sieves) packed together in the tubular reactor may be mixed together or “solid acid layer-dehydrating agent layer-solid. It may be in a laminated state such as “acid layer—dehydrating agent layer—.
 本発明の方法を連続方式にてワンパス式で行う場合、IPEAおよび/またはPNAと第一級アルコールとの混合液のLHSVは、脱水効率、IPEAおよび/またはPNAの転化率、3-アルコキシ-3-メチル-1-ブタノールの選択率の観点から、好ましくは0.1~5hr-1である。一方、循環式で行う場合、LHSVは、反応混合液中の含水率の制御、IPEAおよび/またはPNAの転化率、3-アルコキシ-3-メチル-1-ブタノールの選択率などの観点から、好ましくは3~70hr-1、より好ましくは5~50hr-1、さらに好ましくは10~50hr-1、特に好ましくは20~40hr-1である。 When the method of the present invention is carried out in a one-pass system in a continuous manner, the LHSV of the mixed solution of IPEA and / or PNA and primary alcohol is dehydration efficiency, conversion rate of IPEA and / or PNA, 3-alkoxy-3 From the viewpoint of the selectivity of -methyl-1-butanol, it is preferably 0.1 to 5 hr -1 . On the other hand, when carried out in a circulating manner, LHSV is preferable from the viewpoint of control of the water content in the reaction mixture, conversion of IPEA and / or PNA, selectivity of 3-alkoxy-3-methyl-1-butanol, and the like. Is 3 to 70 hr −1 , more preferably 5 to 50 hr −1 , still more preferably 10 to 50 hr −1 , and particularly preferably 20 to 40 hr −1 .
 バッチ方式、セミ連続方式および連続方式のいずれの方式も、上記した反応混合液を脱水剤と接触させる方法の代わりに、前記した脱水方法を採用してもよいし、脱水剤と接触させると共に、前記した脱水方法を採用してもよい。
 なお、本発明の方法を連続方式にて実施すると、3-アルコキシ-3-メチル-1-ブタノールの選択率が高まる傾向にある。
In any of the batch method, the semi-continuous method, and the continuous method, instead of the above-described method of contacting the reaction mixture with a dehydrating agent, the above-described dehydrating method may be adopted, and the dehydrating agent may be contacted. You may employ | adopt the above-mentioned dehydration method.
When the method of the present invention is carried out in a continuous manner, the selectivity for 3-alkoxy-3-methyl-1-butanol tends to increase.
 反応終了後、得られた反応混合液に公知の分離方法を適用することにより、3-アルコキシ-3-メチル-1-ブタノールを分離できる。得られた3-アルコキシ-3-メチル-1-ブタノールは、さらにカラムクロマトグラフィーや蒸留などの精製手法に付すことにより、その純度を高めることができる。 After completion of the reaction, 3-alkoxy-3-methyl-1-butanol can be separated by applying a known separation method to the resulting reaction mixture. The obtained 3-alkoxy-3-methyl-1-butanol can be further purified by subjecting it to purification techniques such as column chromatography and distillation.
 以下、実施例などにより本発明を具体的に説明するが、本発明はこれらの実施例に限定されない。なお、各例におけるガスクロマトグラフィー測定条件は以下の通りである。
(ガスクロマトグラフィー測定条件)
 装置   :GC-14B(株式会社島津製作所製)
 使用カラム:G-300(内径1.2mm×長さ20m)、化学物質評価研究機構社製
 分析条件 :注入口温度240℃、検出器温度240℃
 カラム温度:80℃から230℃まで5℃/分で昇温
 検出器  :水素炎イオン化検出器(FID)
EXAMPLES Hereinafter, although an Example etc. demonstrate this invention concretely, this invention is not limited to these Examples. In addition, the gas chromatography measurement conditions in each example are as follows.
(Gas chromatography measurement conditions)
Device: GC-14B (manufactured by Shimadzu Corporation)
Column used: G-300 (inner diameter: 1.2 mm × length: 20 m), manufactured by Chemical Substance Evaluation Research Organization, Inc. Analysis conditions: inlet temperature 240 ° C., detector temperature 240 ° C.
Column temperature: 80 ° C. to 230 ° C. at a rate of 5 ° C./min Detector: Hydrogen flame ionization detector (FID)
<実施例1>連続方式(循環式)、エタノール使用
 図1に示すように、ジャケット付き管型反応装置に、強酸性イオン交換樹脂「ダイヤイオンPK212LH」(三菱化学株式会社製)を100mL充填し(以下、固体酸層Aと称する)、別のジャケット付き管型反応装置に、モレキュラーシーブス3Aを100mL充填し(以下、脱水剤層と称する)、両者を接続した。強酸性イオン交換樹脂を充填した管型反応装置のジャケットに50℃の温水(熱媒)を流し、前記モレキュラーシーブス3Aを充填した管型反応装置のジャケットには約10℃の冷却水(冷媒)を流した。
 次いで、予めモレキュラーシーブス3Aを用いて脱水したエタノール460g(9.99mol)および3-メチル-3-ブテン-1-オール(IPEA)86g(0.998mol)の混合液[エタノール/IPEA=10(モル比)]を、LHSV30hr-1で、固体酸層A、次いで脱水剤層の順に供給して、通過させて得られた反応混合液の全量をポンプを用いて再び該固体酸層A次いで脱水剤層にLHSV30hr-1で流通されるようにして、循環させながら反応を行った。
 10時間反応させた後の反応混合液をガスクロマトグラフィーで分析したところ、IPEAの転化率は91.1%、3-エトキシ-3-メチル-1-ブタノールの収率は62.9%であった。結果を表1に示す。また、1時間毎に、脱水剤層を通過し、ポンプで循環させて再び固体酸層Aに供給される前の反応混合液をサンプリングして、反応混合液中の含水率をカールフィッシャー水分計「AQV-7」(平沼産業株式会社製)で分析したところ、表2のとおり、含水率は常に0.14質量%以下であった。なお、副生物を含む各生成物の構造および選択率を、後に纏めて記載する。
<Example 1> Continuous system (circulation), using ethanol As shown in FIG. 1, 100 mL of a strongly acidic ion exchange resin “Diaion PK212LH” (manufactured by Mitsubishi Chemical Corporation) is packed in a jacketed tubular reactor. (Hereinafter referred to as the solid acid layer A), another jacketed tubular reactor was charged with 100 mL of molecular sieves 3A (hereinafter referred to as a dehydrating agent layer), and both were connected. Hot water (heat medium) of 50 ° C. is allowed to flow through the jacket of the tubular reactor filled with the strongly acidic ion exchange resin, and cooling water (refrigerant) of about 10 ° C. is passed through the jacket of the tubular reactor filled with the molecular sieves 3A. Shed.
Next, a mixed solution of ethanol 460 g (9.99 mol) and 3-methyl-3-buten-1-ol (IPEA) 86 g (0.998 mol) dehydrated in advance using Molecular Sieves 3A [ethanol / IPEA = 10 (moles) Ratio)] at LHSV 30 hr −1 in the order of the solid acid layer A and then the dehydrating agent layer, and passing the entire amount of the reaction mixture obtained by passing through the pump again using the pump. The reaction was carried out while circulating in such a manner that it was passed through the layer at LHSV 30 hr −1 .
The reaction mixture after the reaction for 10 hours was analyzed by gas chromatography. The conversion rate of IPEA was 91.1%, and the yield of 3-ethoxy-3-methyl-1-butanol was 62.9%. It was. The results are shown in Table 1. Further, every 1 hour, the reaction mixture before passing through the dehydrating agent layer, circulated by a pump, and supplied to the solid acid layer A again is sampled, and the moisture content in the reaction mixture is measured by the Karl Fischer moisture meter. When analyzed with “AQV-7” (manufactured by Hiranuma Sangyo Co., Ltd.), as shown in Table 2, the water content was always 0.14% by mass or less. In addition, the structure and selectivity of each product including by-products will be described later.
<比較例1>連続方式(循環式)、エタノール使用、脱水処理無し
 実施例1において、脱水剤層を設けず、固体酸層Aのみを用いた以外は、実施例1と同様にして反応操作を行った。結果を表1に示す。10時間反応させた後の反応混合液中の含水率は0.83質量%であった。なお、副生物を含む各生成物の選択率を後に纏めて記載する。
<Comparative Example 1> Continuous system (circulation), use of ethanol, no dehydration treatment In Example 1, a reaction operation was performed in the same manner as in Example 1 except that no dehydrating agent layer was provided and only the solid acid layer A was used. Went. The results are shown in Table 1. The water content in the reaction mixture after reacting for 10 hours was 0.83% by mass. In addition, the selectivity of each product containing a by-product is described collectively later.
<実施例2>連続方式(循環式)、エタノール使用
 実施例1において、IPEAの使用量を43g(0.499mol)[エタノール/IPEA=20(モル比)]に変更したこと以外は、実施例1と同様にして反応操作を行った。結果を表1に示す。また、1時間毎に、反応混合液を実施例1と同様の方法でサンプリングして、含水率を分析した結果、表2のとおり、含水率は常に0.10質量%以下であった。なお、副生物を含む各生成物の選択率を後に纏めて記載する。
<Example 2> Continuous system (circulation type), ethanol use In Example 1, except that the amount of IPEA used was changed to 43 g (0.499 mol) [ethanol / IPEA = 20 (molar ratio)] The reaction was carried out in the same manner as in 1. The results are shown in Table 1. Moreover, as a result of sampling a reaction liquid mixture every hour by the method similar to Example 1, and analyzing a moisture content, as shown in Table 2, the moisture content was always 0.10 mass% or less. In addition, the selectivity of each product containing a by-product is described collectively later.
<比較例2>連続方式(循環式)、エタノール使用、脱水処理無し
 実施例2において、脱水剤層を設けず、固体酸層Aのみを用いた以外は、実施例1と同様にして反応操作を行った。結果を表1に示す。10時間反応させた後の反応混合液中の含水率は0.35質量%であった。なお、副生物を含む各生成物の選択率を後に纏めて記載する。
<Comparative example 2> Continuous system (circulation), use of ethanol, no dehydration treatment In Example 2, a reaction operation was performed in the same manner as in Example 1 except that no dehydrating agent layer was provided and only the solid acid layer A was used. Went. The results are shown in Table 1. The water content in the reaction mixture after reacting for 10 hours was 0.35% by mass. In addition, the selectivity of each product containing a by-product is described collectively later.
<実施例3>連続方式(循環式)、メタノール使用
 実施例2において、エタノール460g(9.99mol)の代わりにメタノール320g(9.99mol)を使用したこと以外は、実施例2と同様にして反応操作を行った。反応中において、反応混合液中の含水率は常に0.15質量%以下であった。結果を表1に示す。
<Example 3> Continuous system (circulation), using methanol In Example 2, the same procedure as in Example 2 was used except that 320 g (9.99 mol) of methanol was used instead of 460 g (9.99 mol) of ethanol. Reaction operation was performed. During the reaction, the water content in the reaction mixture was always 0.15% by mass or less. The results are shown in Table 1.
<比較例3>連続方式(循環式)、メタノール使用、脱水処理無し
 実施例3において、脱水剤層を設けず、固体酸層Aのみを用いた以外は、実施例3と同様にして反応操作を行なった。10時間反応させた後の反応混合液中の含水率は0.36質量%であった。結果を表1に示す。
<Comparative Example 3> Continuous system (circulation), use of methanol, no dehydration treatment In Example 3, a reaction operation was performed in the same manner as in Example 3 except that no dehydrating agent layer was provided and only the solid acid layer A was used. Was done. The water content in the reaction mixture after reacting for 10 hours was 0.36% by mass. The results are shown in Table 1.
<実施例4>連続方式(循環式)、n-プロパノール使用
 実施例2において、エタノール460g(9.99mol)の代わりにn-プロパノール600g(9.99mol)を使用したこと以外は、実施例2と同様にして反応操作を行った。反応中において、反応混合液中の含水率は常に0.15質量%以下であった。結果を表1に示す。
<Example 4> Continuous system (circulation), using n-propanol In Example 2, Example 2 was used except that 600 g (9.99 mol) of n-propanol was used instead of 460 g (9.99 mol) of ethanol. The reaction operation was carried out in the same manner as above. During the reaction, the water content in the reaction mixture was always 0.15% by mass or less. The results are shown in Table 1.
<比較例4>連続方式(循環式)、n-プロパノール使用、脱水処理無し
 実施例4において、脱水剤層を設けず、固体酸層Aのみを用いた以外は、実施例1と同様にして反応操作を行った。10時間反応させた後の反応混合液中の含水率は0.35質量%であった。結果を表1に示す。
<Comparative Example 4> Continuous method (circulation), use of n-propanol, no dehydration treatment In Example 4, except that the dehydrating agent layer was not provided and only the solid acid layer A was used, the same as in Example 1 Reaction operation was performed. The water content in the reaction mixture after reacting for 10 hours was 0.35% by mass. The results are shown in Table 1.
<比較例5>連続方式(循環式)、イソプロパノール使用
 実施例2において、エタノール460g(9.99mol)の代わりにイソプロパノール600g(9.99mol)を使用したこと以外は、実施例2と同様にして反応操作を行った。反応中において、反応混合液中の含水率は常に0.15質量%以下であった。結果を表1に示す。
 表1より、第一級アルコールの代わりに、第二級アルコールであるイソプロパノールを用いた場合では、反応混合液中の含水率を0.3質量%以下に維持することによる3-アルコキシ-3-メチル-1-ブタノールの選択率向上効果は、十分に発現しないことが分かる。
<Comparative Example 5> Continuous system (circulation), using isopropanol In Example 2, except that 600 g (9.99 mol) of isopropanol was used instead of 460 g (9.99 mol) of ethanol, the same procedure as in Example 2 was performed. Reaction operation was performed. During the reaction, the water content in the reaction mixture was always 0.15% by mass or less. The results are shown in Table 1.
From Table 1, in the case of using isopropanol, which is a secondary alcohol, instead of the primary alcohol, 3-alkoxy-3- by maintaining the water content in the reaction mixture at 0.3% by mass or less. It can be seen that the effect of improving the selectivity of methyl-1-butanol is not sufficiently exhibited.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
<比較例6>連続方式(ワンパス式)、エタノール使用、脱水処理無し
 実施例1において、脱水剤層を設けず、固体酸層Aのみを用い、かつLHSVを1.5hr-1に変更して、1回のみ流通させるワンパス式にて反応を実施したこと以外は実施例1と同様にして反応操作を行なった。結果を表3に示す。また、反応前の混合液、および反応終了後の反応混合液中の含水率を表4に示す。
<Comparative Example 6> Continuous system (one-pass system), use of ethanol, no dehydration treatment In Example 1, no dehydrating agent layer was provided, only the solid acid layer A was used, and LHSV was changed to 1.5 hr -1. The reaction operation was carried out in the same manner as in Example 1 except that the reaction was carried out by a one-pass system that was circulated only once. The results are shown in Table 3. Further, Table 4 shows the water content in the mixed solution before the reaction and in the reaction mixed solution after the completion of the reaction.
<比較例7>連続方式(ワンパス式2回)、エタノール使用、不十分な脱水処理
 比較例6において、LHSVを3.0hr-1に変更し、反応終了後に得られた反応混合液へモレキュラーシーブス3Aを10質量%添加して、0℃で4時間静置して脱水し、かかる反応混合液をLHSV3.0hr-1で固体酸層Aに供給してワンパス式にて反応を行った。結果を表3に示す。また、反応前および反応後の反応混合液中の含水率をカールフィッシャー水分計で分析した結果を表4に示す。
<Comparative Example 7> Continuous system (one-pass system twice), use of ethanol, insufficient dehydration treatment In Comparative Example 6, LHSV was changed to 3.0 hr -1 , and molecular sieves were added to the reaction mixture obtained after completion of the reaction. 10% by mass of 3A was added, and the mixture was allowed to stand at 0 ° C. for 4 hours for dehydration, and the reaction mixture was supplied to the solid acid layer A at LHSV 3.0 hr −1 to carry out a one-pass reaction. The results are shown in Table 3. Table 4 shows the results of analyzing the water content in the reaction mixture before and after the reaction with a Karl Fischer moisture meter.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表3および表4より、含水率を0.3質量%以下にまで制御しない場合には、3-アルコキシ-3-メチル-1-ブタノールの選択率および収率が低下することが分かる。 From Tables 3 and 4, it can be seen that the selectivity and yield of 3-alkoxy-3-methyl-1-butanol decrease when the water content is not controlled to 0.3% by mass or less.
<実施例5>連続方式(循環式)、PNA使用
 実施例2において、IPEA43g(0.499mol)の代わりにPNA43g(0.499mol)を使用[エタノール/PNA=20(モル比)]した以外は、実施例2と同様にして反応操作を行なった。反応中において、反応混合液中の含水率は常に0.15質量%以下であった。結果を表5に示す。
<Example 5> Continuous system (circulation), use of PNA In Example 2, PNA 43g (0.499 mol) was used instead of IPEA 43 g (0.499 mol) [ethanol / PNA = 20 (molar ratio)]. The reaction operation was performed in the same manner as in Example 2. During the reaction, the water content in the reaction mixture was always 0.15% by mass or less. The results are shown in Table 5.
<比較例8>連続方式(循環式)、PNA使用、脱水処理なし
 実施例5において、脱水剤層を設けず、固体酸層Aのみを用いた以外は、実施例5と同様にして反応操作を行なった。10時間後の反応混合液中の含水率は0.36質量%であった。結果を表5に示す。
<Comparative Example 8> Continuous system (circulation), use of PNA, no dehydration treatment In Example 5, a reaction operation was performed in the same manner as in Example 5 except that the dehydrating agent layer was not provided and only the solid acid layer A was used. Was done. The water content in the reaction mixture after 10 hours was 0.36% by mass. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
<実施例6>連続方式(循環式)、エタノール、β型ゼオライト使用
 実施例2において、強酸性イオン交換樹脂「ダイヤイオンPK212LH」の代わりにペレット状β型ゼオライト「BEA-25」(ズードケミー触媒株式会社製)100mLを使用し(以下、固体酸層Bと称する)、該ペレット状β型ゼオライトを充填した管型反応装置のジャケットに流す温水(熱媒)の温度を70℃にしたこと以外は、実施例2と同様にして反応操作を行った。反応中において、反応混合液中の含水率は常に0.15質量%以下であった。結果を表6に示す。
<Example 6> Continuous system (circulation type), ethanol, β-type zeolite used In Example 2, instead of the strongly acidic ion exchange resin “Diaion PK212LH”, a pellet-shaped β-type zeolite “BEA-25” Except that the temperature of the hot water (heating medium) flowing through the jacket of the tubular reactor filled with the pellet-shaped β-type zeolite was set to 70 ° C. using 100 mL (manufactured by the company) (hereinafter referred to as solid acid layer B). The reaction operation was performed in the same manner as in Example 2. During the reaction, the water content in the reaction mixture was always 0.15% by mass or less. The results are shown in Table 6.
<比較例9>連続方式(循環式)、エタノール、β型ゼオライト使用、脱水処理無し
 実施例6において、脱水剤層を設けず、固体酸層Bのみを用いた以外は、実施例6と同様にして反応操作を行なった。結果を表6に示す。10時間反応させた後の反応混合液中の含水率は0.35質量%であった。
<Comparative Example 9> Continuous method (circulation), ethanol, β-type zeolite used, no dehydration treatment In Example 6, except that the dehydrating agent layer was not provided and only the solid acid layer B was used, the same as Example 6 Then, the reaction operation was performed. The results are shown in Table 6. The water content in the reaction mixture after reacting for 10 hours was 0.35% by mass.
<実施例7>連続方式(循環式)、エタノール、β型ゼオライト使用
 実施例2において、強酸性イオン交換樹脂「ダイヤイオンPK212LH」の代わりにペレット状β型ゼオライト「BEA-150」(ズードケミー触媒株式会社製)100mLを使用し(以下、固体酸層Cと称する)、該β型ゼオライトを充填した管型反応装置のジャケットに流す温水(熱媒)の温度を70℃にしたこと以外は、実施例2と同様にして反応操作を行った。反応中において、反応混合液中の含水率は常に0.15質量%以下であった。結果を表6に示す。
<Example 7> Continuous system (circulation type), ethanol, β-type zeolite used In Example 2, instead of the strongly acidic ion exchange resin “Diaion PK212LH”, pellet type β-type zeolite “BEA-150” This was carried out except that 100 mL (made by the company) (hereinafter referred to as solid acid layer C) was used, and the temperature of the hot water (heating medium) passed through the jacket of the tubular reactor filled with the β-type zeolite was set to 70 ° C. The reaction operation was carried out in the same manner as in Example 2. During the reaction, the water content in the reaction mixture was always 0.15% by mass or less. The results are shown in Table 6.
<比較例10>連続方式(循環式)、エタノール、β型ゼオライト使用、脱水処理無し
 実施例7において、脱水剤層を設けず、固体酸層Cのみを用いた以外は、実施例7と同様にして反応操作を行なった。結果を表6に示す。10時間反応させた後の反応混合液中の含水率は0.34質量%であった。
<Comparative Example 10> Continuous method (circulation), ethanol, β-type zeolite used, no dehydration treatment In Example 7, except that the dehydrating agent layer was not provided and only the solid acid layer C was used, the same as Example 7 Then, the reaction operation was performed. The results are shown in Table 6. The water content in the reaction mixture after reacting for 10 hours was 0.34% by mass.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 本発明の方法により得られる3-アルコキシ-3-メチル-1-ブタノールは、医農薬中間体や各種洗浄剤の原料などとして有用である。 The 3-alkoxy-3-methyl-1-butanol obtained by the method of the present invention is useful as an intermediate for medical and agricultural chemicals and as a raw material for various cleaning agents.
1 固体酸層
2 脱水剤層
3 ポンプ
1 Solid acid layer 2 Dehydrating agent layer 3 Pump

Claims (4)

  1.  3-メチル-3-ブテン-1-オールおよび3-メチル-2-ブテン-1-オールから選択される少なくとも1種のメチルブテノールと炭素数1~5の第一級アルコールとを酸の存在下に反応させることによる3-アルコキシ-3-メチル-1-ブタノールの製造方法であって、反応混合液中の含水率を0.3質量%以下に制御して反応を行なうことを特徴とする、3-アルコキシ-3-メチル-1-ブタノールの製造方法。 Presence of an acid with at least one methylbutenol selected from 3-methyl-3-buten-1-ol and 3-methyl-2-buten-1-ol and a primary alcohol having 1 to 5 carbon atoms A process for producing 3-alkoxy-3-methyl-1-butanol by reacting under the conditions, characterized in that the reaction is carried out while controlling the water content in the reaction mixture to 0.3% by mass or less. , Method for producing 3-alkoxy-3-methyl-1-butanol.
  2.  前記炭素数1~5の第一級アルコールが、メタノール、エタノールまたはn-プロパノールである、請求項1に記載の3-アルコキシ-3-メチル-1-ブタノールの製造方法。 The method for producing 3-alkoxy-3-methyl-1-butanol according to claim 1, wherein the primary alcohol having 1 to 5 carbon atoms is methanol, ethanol or n-propanol.
  3.  前記炭素数1~5の第一級アルコールの使用量が、3-メチル-3-ブテン-1-オールおよび3-メチル-2-ブテン-1-オールから選択される少なくとも1種のメチルブテノール1モルに対して0.5~40モルである、請求項1または2に記載の3-アルコキシ-3-メチル-1-ブタノールの製造方法。 At least one methylbutenol selected from the group consisting of 3-methyl-3-buten-1-ol and 3-methyl-2-buten-1-ol, wherein the primary alcohol having 1 to 5 carbon atoms is used; The process for producing 3-alkoxy-3-methyl-1-butanol according to claim 1 or 2, wherein the amount is 0.5 to 40 mol per mol.
  4.  前記酸が、天然ゼオライト、合成ゼオライトおよび酸性陽イオン交換樹脂から選択される少なくとも1種の固体酸である、請求項1~3のいずれかに記載の3-アルコキシ-3-メチル-1-ブタノールの製造方法。 The 3-alkoxy-3-methyl-1-butanol according to any one of claims 1 to 3, wherein the acid is at least one solid acid selected from natural zeolite, synthetic zeolite and acidic cation exchange resin. Manufacturing method.
PCT/JP2013/057536 2012-03-27 2013-03-15 Method for producing 3-alkoxy-3-methyl-1-butanol WO2013146390A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014507720A JP6097278B2 (en) 2012-03-27 2013-03-15 Method for producing 3-alkoxy-3-methyl-1-butanol
CN201380015567.XA CN104203890A (en) 2012-03-27 2013-03-15 Method for producing 3-alkoxy-3-methyl-1-butanol

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012071905 2012-03-27
JP2012-071905 2012-03-27

Publications (1)

Publication Number Publication Date
WO2013146390A1 true WO2013146390A1 (en) 2013-10-03

Family

ID=49259651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057536 WO2013146390A1 (en) 2012-03-27 2013-03-15 Method for producing 3-alkoxy-3-methyl-1-butanol

Country Status (3)

Country Link
JP (1) JP6097278B2 (en)
CN (2) CN104203890A (en)
WO (1) WO2013146390A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020121261A (en) * 2019-01-30 2020-08-13 オルガノ株式会社 Pretreatment device for ion exchange resin and pretreatment method for ion exchange resin

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5059309A (en) * 1973-10-04 1975-05-22
JPS5424808A (en) * 1977-07-27 1979-02-24 Kuraray Co Ltd Preparation of 3-methyl-3-methoxybutanol
JPH11349512A (en) * 1998-06-04 1999-12-21 Nippon Shokubai Co Ltd Production of (poly)alkylene glycol monoalkyl ether
CN102206142A (en) * 2011-03-23 2011-10-05 中国科学院山西煤炭化学研究所 Method for preparing 3-methoxyl-3-methyl-1-butanol

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040012990A (en) * 2001-06-28 2004-02-11 제온 코포레이션 Solvents containing cycloalkyl alkyl ethers and process for production of the ethers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5059309A (en) * 1973-10-04 1975-05-22
JPS5424808A (en) * 1977-07-27 1979-02-24 Kuraray Co Ltd Preparation of 3-methyl-3-methoxybutanol
JPH11349512A (en) * 1998-06-04 1999-12-21 Nippon Shokubai Co Ltd Production of (poly)alkylene glycol monoalkyl ether
CN102206142A (en) * 2011-03-23 2011-10-05 中国科学院山西煤炭化学研究所 Method for preparing 3-methoxyl-3-methyl-1-butanol

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020121261A (en) * 2019-01-30 2020-08-13 オルガノ株式会社 Pretreatment device for ion exchange resin and pretreatment method for ion exchange resin
KR20210062080A (en) * 2019-01-30 2021-05-28 오르가노 코포레이션 Ion exchange resin pretreatment device and ion exchange resin pretreatment method
JP7153580B2 (en) 2019-01-30 2022-10-14 オルガノ株式会社 Apparatus for pretreatment of ion exchange resin and method for pretreatment of ion exchange resin
KR102497501B1 (en) 2019-01-30 2023-02-08 오르가노 코포레이션 Ion exchange resin pretreatment device and pretreatment method of ion exchange resin

Also Published As

Publication number Publication date
CN109081773A (en) 2018-12-25
JPWO2013146390A1 (en) 2015-12-10
JP6097278B2 (en) 2017-03-15
CN104203890A (en) 2014-12-10

Similar Documents

Publication Publication Date Title
RU2383526C2 (en) Method of producing carboxylic acids and derivatives thereof
JP6082035B2 (en) Process for producing acetic acid and dimethyl ether
CN104822683B (en) Method for preparing dialkyloxydianhyrohexitol by etherification of dianhydrohexitol using light alcohol, in presence of acidic catalyst
WO2017217279A1 (en) Method for producing isopropyl alcohol and isopropyl alcohol having reduced impurity content
JPH06157378A (en) Preparation of 1,3-propanediol
RU2656599C2 (en) Process for carbonylation of dimethyl ether
WO2011027105A1 (en) Process for producing acetic acid and dimethyl ether using a zeolite catalyst
EP3330246B1 (en) Method for directly preparing glycol dimethyl ether and co-producing ethylene glycol from ethylene glycol monomethyl ether
RU2673463C2 (en) Process for co-production of acetic acid and dimethyl ether
JP2015513536A (en) Catalyst and process for producing acetic acid and dimethyl ether
WO2013146370A1 (en) Method for producing 3-alkoxy-3-methyl-1-butanol
JP7092305B2 (en) Method for producing aromatic nitrile compound and method for producing carbonic acid ester
JP6097278B2 (en) Method for producing 3-alkoxy-3-methyl-1-butanol
EP3546441B1 (en) Method for preparing acrylic acid and methyl acrylate
US20170152216A1 (en) Method for preparing n,n&#39;-bis(2-cyanoethyl)-1,2-ethylenediamine by using cation exchange resin as catalyst
CN107814690B (en) Method for converting ethylene glycol monomethyl ether
KR101961055B1 (en) Method for prepaping double-sealed-end glycol ether
JP7021642B2 (en) Method for producing aromatic nitrile compound and method for producing carbonic acid ester
RU2771742C2 (en) Method for dimethyl ether carbonylation
CN109476579A (en) Produce the carbonylating process of methyl acetate
JP2013028590A (en) Method for producing amino alcohol compound
WO2012105204A1 (en) Catalyst and method for synthesizing alcohol
CN105688984A (en) Method for hydroformylation of 2-octanone
EP3909675A1 (en) Process and catalyst for the preparation of ethylene
KR20050027458A (en) Process and system for producing dimethyl ether from synthesis gas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768711

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507720

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13768711

Country of ref document: EP

Kind code of ref document: A1