WO2013146252A1 - ソフトウェア延命時期決定システム、ソフトウェア延命時期決定方法、およびプログラム - Google Patents
ソフトウェア延命時期決定システム、ソフトウェア延命時期決定方法、およびプログラム Download PDFInfo
- Publication number
- WO2013146252A1 WO2013146252A1 PCT/JP2013/056957 JP2013056957W WO2013146252A1 WO 2013146252 A1 WO2013146252 A1 WO 2013146252A1 JP 2013056957 W JP2013056957 W JP 2013056957W WO 2013146252 A1 WO2013146252 A1 WO 2013146252A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- software
- state model
- life extension
- state
- software life
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/008—Reliability or availability analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/34—Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment
Definitions
- the present invention relates to a software life extension time determination system, a software life extension time determination method, and a program.
- An aging bug is known as a typical example of a software bug that occurs in the operation stage.
- An aging bug is a bug that causes a deterioration phenomenon in the execution environment of software due to long-term continuous operation of software, and causes a significant performance degradation and system failure.
- a bug in which memory consumption gradually increases due to continuous operation for a long time and a memory leak occurs is a kind of aging bug.
- Another example of an aging bug is that the counter value in the program overflows beyond the limit value due to long-term continuous operation.
- Patent Literature 1 and Patent Literature 2 describe software rejuvenation.
- the software rejuvenation described in Patent Documents 1 and 2 is a technique that prevents failures and performance degradation by returning the operating environment of software that deteriorates due to aging to an initial state by reboot or reset. Specifically, it is often implemented by restarting an application server that runs software or an operating system (OS). Software rejuvenation can avoid or postpone IT system failures due to aging bugs. However, since it is necessary to stop and restart the software in the operating state, if the software is rejuvenated unnecessarily, the operating rate of the system is lowered.
- an object of the present invention is to implement an optimum software aging countermeasure in consideration of both system availability (operation rate) and performance.
- a software life extension time determination system includes an aging state model storage unit that stores a first state model representing a software state change due to software aging, and a second state that represents a software state change due to software life extension processing.
- a software life extension state model storage unit for storing a model, a parameter input unit for receiving parameter values of the first state model and the second state model, and an evaluation for determining performance and availability values targeted by the system
- An evaluation function storage unit for storing a function; a state model analysis unit for analyzing the first state model and the second state model using the parameter value and the evaluation function;
- a software life extension time determination unit that determines whether or not to perform software life extension processing based on the analysis results of the first state model and the second state model.
- a software life extension time determination system includes an aging state model storage unit that stores a first state model representing a software state change due to software aging, and a second state that represents a software state change due to software life extension processing.
- a software life extension state model storage unit for storing a model; an evaluation function storage unit for storing an evaluation function for determining performance and availability values targeted by the system; the first state model; and the second state model;
- a software life extension determination formula derivation unit that derives a software life extension determination formula based on the evaluation function, a parameter input unit that receives input of parameter values of the first state model and the second state model, and the parameter Software life extension processing is executed using the value and the software life extension judgment formula.
- software survival time determination unit that determines the power sale period, but with a.
- the software life extension time determination method includes a first state model representing a change in software state due to software aging, a second state model representing a change in software state due to a software life extension process, and the first state model. And a parameter value of the second state model and an evaluation function that determines performance and availability values targeted by the system, and the first state model and the second state model And a step of determining whether to perform software life extension processing based on the analysis result.
- a program includes an aging state model storage unit that stores a first state model that represents a software state change due to software aging, and a second state model that represents a software state change due to software life extension processing.
- Software life extension state model storage unit a parameter input unit for receiving parameter values of the first state model and the second state model, and an evaluation function for determining performance and availability values targeted by the system Using the parameter value and the evaluation function, the state model analysis unit for analyzing the first state model and the second state model, the first state model, and the Based on the analysis result of the second state model, it is determined whether or not software life extension processing is to be performed.
- software survival time determination unit which is intended for causing to function.
- FIG. 1 is a block diagram showing a configuration of a software life extension time determination system 10 according to Embodiment 1 of the present invention.
- the software life extension time determination system 10 includes an aging state model storage unit 101, a software life extension state model storage unit 102, a parameter input unit 103, an evaluation function storage unit 104, a state model analysis unit 105, a software life extension time.
- a determination unit 106 and a software life extension processing policy storage unit 107 are provided.
- the software life extension time determination system 10 uses a dedicated or general-purpose computer having a CPU, a memory such as a ROM and a RAM, an external storage device for storing various information, an input interface, an output interface, a communication interface, and a bus connecting them. be able to.
- the software life extension time determination system 10 may be configured by a single computer or may be configured by a plurality of computers connected to each other via a communication line.
- the parameter input unit 103, the state model analysis unit 105, and the software life extension time determination unit 106 correspond to modules of functions realized by the CPU executing a predetermined program stored in a ROM or the like.
- the aging state model storage unit 101, the software life extension state model storage unit 102, the evaluation function storage unit 104, and the software life extension processing policy storage unit 107 are implemented by an external storage device.
- the aging state model storage unit 101 stores a model that captures state changes due to software aging.
- the software life extension state model storage unit 102 stores a model that captures the behavior of software life extension processing.
- the parameter input unit 103 receives input of model parameters such as a software failure rate and a recovery rate.
- the evaluation function storage unit 104 stores an evaluation function for determining values of availability and performance targeted by the system.
- the state model analysis unit 105 analyzes a transient state or a steady state of the state model, and obtains an evaluation function value based on the input parameter value.
- the software life extension time determination unit 106 determines the execution of software life extension processing based on the result of the state model analysis.
- the software life extension processing policy storage unit 107 stores a software life extension processing policy that holds the result determined by the software life extension time determination unit 106.
- software life extension is a method for dealing with aging bugs.
- Software rejuvenation prevents failures and performance degradation by restoring the software operating environment to the initial state by rebooting or resetting, while software life extension delays failures while maintaining the system operating state as much as possible. It is a technique to make it.
- the process of reducing the workload and suppressing the increase in memory consumption and prolonging the time until the memory leak is a software life extension process. It is an example.
- Such software life extension processing can be used in a therapeutic manner in the operation management of the software system, but it is desirable to use it systematically in consideration of system availability (operation rate) and performance. That is, when considering the availability and performance of the system, it is important to determine at which point the software life extension process is to be performed.
- life extension processing involves costs such as a reduction in workload processing capacity and the addition of additional resources, so it is not appropriate to run software in a degenerate state (or overspecial state) for life extension from the beginning. Absent.
- the failure rate of the system increases as the operating time continues, it is desirable to shift to a degenerated state (or add resources) at any point in time. As described above, it is desirable that the software life extension processing is performed at the most effective timing from the viewpoint of system availability and performance.
- the state model analysis unit 105 acquires the evaluation function F from the evaluation function storage unit 104 (FIG. 2, step 1001).
- the state model analysis unit 105 reads parameter values necessary for analysis via the parameter input unit 103 (step 1002).
- the parameter value includes at least a software failure rate, an aging rate, a recovery rate, a life extension process execution rate, and a failure rate after the life extension process.
- the state model analysis unit 105 acquires an aging state model from the aging state model storage unit 101 (step 1003), and analyzes the state model using the input parameter value (step 1004). For example, in a steady state analysis, a method of directly analyzing simultaneous equations, a method of numerical analysis using an iterative solution method, a method of analyzing by discrete event simulation, and the like can be applied.
- the evaluation function value Fa in the aging state model is obtained by the state model analysis (step 1005).
- the state model analysis unit 105 acquires a software life extension state model from the software life extension state model storage unit 102 (step 1006), and analyzes the state model in the same manner as step 1004 (step 1007).
- An evaluation function value Fb is obtained by analysis (step 1008).
- the state model analysis unit 105 compares the evaluation function values Fa and Fb (step 1009). If Fb is larger than Fa (Yes), the state model analysis unit 105 determines that the software life extension process is valid, and sets the software life extension process policy. It is set and stored in the software life extension processing policy storage unit 107 (step 1010).
- the software life extension process is effective from the viewpoint of system availability (operation rate) and performance.
- FIG. FIG. 3 is a flowchart of the operation of the software life extension time determination system 10 according to the second embodiment of the present invention.
- variable parameters include software life extension execution rate (number of times software life extension processing is executed per unit time) and average software life extension processing execution interval.
- the state model analysis unit 105 sequentially sets parameter values xi (1 ⁇ i ⁇ n) within the input domain X, and derives an evaluation function value Fb (xi) by state model analysis ( Steps 1023-1025). Steps 1023 to 1025 are repeated for all xi in the domain X (steps 1026 and 1027).
- xi that maximizes the evaluation function value is obtained, and the value of i at this time is set to iopt (step 1028). Further, a software life extension processing policy for executing software life extension processing is set based on xiopt (step 1029).
- an average software life extension process execution interval is obtained from the reciprocal of the rate, and a policy for executing the software life extension process is set based on the execution interval.
- the software life extension process is performed by obtaining the optimum parameter value xiopt that maximizes or minimizes the target index by the state model analysis from the variable parameter domain indicating the life extension time. Since it is implemented, it is possible to determine the software life extension processing timing that optimizes system availability and performance.
- FIG. FIG. 4 is a block diagram showing the configuration of the software life extension time determination system 30 according to the third embodiment of the present invention.
- the same reference numerals as those in FIG. 1 represent similar components.
- the software life extension time determination system 30 is different from the first embodiment in that a software life extension determination formula deriving unit 108 and a software life extension determination formula storage unit 109 are provided.
- the software life extension determination formula deriving unit 108 is based on the aging state model acquired from the aging state model 101, the software life extension state model acquired from the software life extension state model storage unit 102, and the evaluation function acquired from the evaluation function storage unit 104.
- the software life extension determination formula is derived and stored in advance, and is stored in the software life extension determination formula storage unit 109.
- the software life extension time determination unit 106 determines the software life extension time based on the parameter value read via the parameter input unit 103 and the software life extension determination formula acquired from the software life extension determination formula storage unit 109.
- the software life extension determination formula deriving unit 108 acquires the evaluation function F from the evaluation function storage unit 104 (FIG. 5, Step 2001), and acquires the aging state model from the aging state model storage unit 101 (Step 2002).
- the software life extension judgment formula deriving unit 108 derives an evaluation function in the aging state model by formula analysis (step 2003).
- the software life extension determination formula deriving unit 108 acquires the software life extension state model from the software life extension state model storage unit 102 (step 2004), and derives the analysis result Fb ( ⁇ ) of the evaluation function as in step 2003. (Step 2005).
- the software life extension determination formula deriving unit 108 compares Fa ( ⁇ ) and Fb ( ⁇ ), derives a condition ⁇ x ( ⁇ ) for ⁇ such that Fa ( ⁇ ) ⁇ Fb ( ⁇ ), and determines the software life extension determination formula.
- the data is stored in the storage unit 109 (step 2006).
- the above processing can be performed in advance even before determining the software life extension processing time, that is, even when the parameter value is unknown.
- the software life extension time determination unit 106 refers to the software life extension determination formula ⁇ x ( ⁇ ) (FIG. 6, step 2007).
- the parameter value is read via the parameter input unit 103 (step 2008), and is input to the determination formula ⁇ x ( ⁇ ) for determination (step 2009).
- a software life extension process execution policy is set (step 2010). If the condition is not satisfied, the life extension process is not performed (step 2011).
- the conditions for enabling the software life extension process and the conditions for the parameter values for performing the optimum life extension process are derived and stored in advance by the expression analysis. For this reason, when determining the effectiveness of the life extension process, the determination process can be simplified if a parameter value is given, so that the determination process can be simplified. Moreover, in this embodiment, since the effectiveness of the life extension process can be determined only by the parameter value, the derived determination formula can be reused as a determination criterion in various systems.
- FIG. 7 is a block diagram showing a configuration of the software life extension time determination system 40 according to the fourth embodiment of the present invention.
- the software life extension time determination system 40 includes a software rejuvenation state model storage unit 110, an aging countermeasure determination unit 111, and a software rejuvenation processing policy storage unit 112. Is different.
- the state model analysis unit 105 derives the evaluation functions Fa and Fb using the aging state model and the software life extension state model as in the first embodiment. Further, the state model analysis unit 105 acquires a software rejuvenation state model from the software rejuvenation state model storage unit 110, and derives a value Fc of the evaluation function F based on the input parameters.
- the aging countermeasure determining unit 111 determines whether to extend software life or perform software rejuvenation from the evaluation of the magnitude relationship of Fa, Fb, Fc, or neither Determine. Depending on the status of the system, it may be more effective to perform software rejuvenation than to software life extension processing.
- an effective means for dealing with software aging is determined in consideration of the software rejuvenation state model, so that aging countermeasures that are more effective in terms of system availability and performance are determined.
- the means can be determined.
- FIG. FIG. 8 is a block diagram showing a configuration of the software life extension time determination system 50 according to the fifth embodiment of the present invention.
- the same reference numerals as those in FIG. 1 represent similar components.
- the software life extension time determination system 50 is different from the first embodiment in that it includes a software operating state monitoring unit 113, a software execution device 114, and a software life extension processing execution unit 115.
- the software execution device 114 is a device that executes software having a deterioration phenomenon due to aging, and the software operation state monitoring unit 113 monitors the operation state of the software in the software execution device 114.
- the software operating state monitoring unit 113 determines a parameter value to be input to the model from monitoring information statistics, and supplies the parameter value to the parameter input unit 103.
- the software life extension processing execution unit 115 refers to the software life extension processing policy set by the software life extension time determination unit 106 and performs software life extension processing on the software execution device 114 at the timing specified by the policy.
- the software life extension process includes a load applied to software and a workload, a dynamic resource addition, a transition to a specified degenerate configuration, and the like.
- the parameter value is determined based on the monitoring information of the operating software, and whether or not the software life extension process can be performed is determined dynamically. The effectiveness of the software life extension process can be determined.
- FIG. 9 is an example in which a software aging state model is expressed using a continuous-time Markov chain (CTMC).
- CTMC continuous-time Markov chain
- the circle represents a state
- the arrow represents a state transition path
- the time taken for the state transition follows an exponential distribution with a labeled value as a parameter value.
- State UP represents a normal operating state of software
- state FP represents a state deteriorated by software aging
- a state F represents a state in which a software failure has occurred due to the progress of aging.
- Parameter values representing rates such as ⁇ 1, ⁇ 2, and ⁇ are equivalent to the inverse of the average transition time, and can be obtained from the software average aging state transition time, the average failure time, and the average recovery time.
- the software operating state is the state UP and the state FP.
- the availability of the system is expressed as the sum of the probability that this software is in the state UP and the probability that the software is in the state FP.
- the probability of the state UP in the steady state PaiUP if indicated the probability of state FP and PaiFP, availability A N is determined by ⁇ UP + ⁇ FP.
- the values of ⁇ UP and ⁇ FP can be obtained by steady state analysis of CTMC.
- FIG. 10 is a diagram showing an example in which the behavior of software life extension processing is modeled by CTMC.
- CTMC the software aging state model
- it has a state LP after the life extension process is performed.
- the state FP is transited to the state LP at the rate of ⁇
- the state F is transited at the rate of ⁇ 3.
- state LP state is also one of the software operation status
- availability A L systems obtained by ⁇ UP + ⁇ FP + ⁇ LP.
- values of ⁇ UP and ⁇ FP are different from the values of ⁇ UP and ⁇ FP of the software aging state model.
- CTMC steady state analysis methods include a method of analytically solving a state equation, a method of solving by numerical analysis using an iterative method, and a method of solving by discrete time simulation.
- an example of an analytical solution is shown.
- a N and A L are respectively determined as shown in Equation 1 below.
- ⁇ 3 ⁇ ⁇ 2 indicates that the software failure rate after the life extension process is smaller than the failure rate when the life extension process is not performed, and is consistent with intuitive judgment.
- a model representing software aging or a model representing life extension processing is more complex, or when an evaluation function includes performance or cost, it is not always possible to make an intuitive determination.
- FIG. 11 shows an example in which the state transition of software aging is modeled by a semi-Markov process (SMP).
- State U represents an operating state
- state F represents a software failure state.
- the state transition time from the state U to the state F follows the probability distribution F f (t), and the state transition time representing the recovery from the state F to the state U follows the probability distribution F r (t).
- Software failure has a failure rate that gradually increases due to aging, so a probability distribution of a type in which the failure rate increases with time (for example, a hypo-exponential distribution) is used.
- the availability of this system is represented by the probability of being in the state U in a steady state and can be determined by the following equation.
- FIG. 12 is a diagram showing an example in which the behavior of this system is modeled by SMP.
- the model of FIG. 12 in addition to the software aging SMP model, the model has a state L after software life extension processing is performed.
- the state transition time from the state U to the state L follows the probability distribution F pr (t), and the state transition time from the state L to the state F follows the probability distribution F f2 (t).
- F pr the probability distribution
- F f2 the probability distribution from the state U to the state L
- An aging state model storage unit that stores a first state model representing software state change due to software aging;
- a software life extension state model storage unit for storing a second state model representing a software state change due to software life extension processing;
- a parameter input unit for receiving input of parameter values of the first state model and the second state model;
- An evaluation function storage unit for storing an evaluation function for determining performance and availability values targeted by the system;
- a state model analysis unit that analyzes the first state model and the second state model using the parameter value and the evaluation function;
- a software life extension time determination system comprising: a software life extension time determination unit that determines whether or not to perform software life extension processing based on an analysis result of the first state model and the second state model.
- An aging state model storage unit that stores a first state model representing software state change due to software aging;
- a software life extension state model storage unit for storing a second state model representing a software state change due to software life extension processing;
- An evaluation function storage unit for storing an evaluation function for determining performance and availability values targeted by the system;
- a software life extension determination formula deriving unit for deriving a software life extension determination formula based on the first state model, the second state model, and the evaluation function;
- a parameter input unit for receiving input of parameter values of the first state model and the second state model;
- a software life extension time determination system comprising: a software life extension time determination unit that determines a time for performing software life extension processing using the parameter value and the software life extension determination formula.
- Appendix 4 The software life extension time determination system according to any one of appendices 1 to 3, A software execution device for executing the software; A software operating state monitoring unit that monitors the operating state of the software in the software execution device and determines the parameter value based on the operating state; A software life extension time determination system further comprising: a software life extension processing execution unit that performs software life extension processing determined by the software life extension time determination system for the software execution device.
- An aging state model storage unit for storing a first state model representing software state change due to software aging;
- a software life extension state model storage unit for storing a second state model representing a software state change due to software life extension processing;
- a parameter input unit for receiving input of parameter values of the first state model and the second state model;
- An evaluation function storage unit for storing an evaluation function for determining performance and availability values targeted by the system;
- a state model analysis unit that analyzes the first state model and the second state model using the parameter value and the evaluation function;
- a program for functioning as a software life extension time determination unit that determines whether to perform software life extension processing based on the analysis results of the first state model and the second state model.
- the present invention can be applied to a highly reliable design tool for a system for operating software continuously for a long period of time. It can also be applied to a system management tool that monitors the operating status of software and performs appropriate management operations.
- Software life extension time determination system 101 Aging state model storage unit, 102 Software life extension state model storage unit, 103 Parameter input unit, 104 Evaluation function storage unit, 105 State model analysis unit, 106 Software life extension time determination 107, software life extension processing policy storage unit, 108 software life extension determination formula derivation unit, 109 software life extension determination formula storage unit, 110 software rejuvenation state model storage unit, 111 aging countermeasure determination unit, 112 software rejuvenation processing policy storage unit, 113 Software operation state monitoring unit, 114 Software execution device, 115 Software life extension processing execution unit
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Quality & Reliability (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Debugging And Monitoring (AREA)
Abstract
Description
前記第1の状態モデルおよび前記第2の状態モデルの解析結果に基づいてソフトウェア延命処理の実施を行うか否かを判定するソフトウェア延命時期決定部と、を備えたものである。
次に、本発明を実施するための形態について、図面を参照して詳細に説明する。
図1は、本発明の実施の形態1によるソフトウェア延命時期決定システム10の構成を示すブロック図である。図1に示すように、ソフトウェア延命時期決定システム10は、エージング状態モデル記憶部101、ソフトウェア延命状態モデル記憶部102、パラメタ入力部103、評価関数記憶部104、状態モデル解析部105、ソフトウェア延命時期決定部106、およびソフトウェア延命処理ポリシ記憶部107を備えている。
ソフトウェア延命状態モデル記憶部102は、ソフトウェア延命処理の振る舞いを捉えたモデルを格納している。
評価関数記憶部104は、システムが目標とする可用性や性能の値を定めるための評価関数を格納している。
ソフトウェア延命時期決定部106は、状態モデル解析の結果に基づいてソフトウェア延命処理の実施を判定する。
ソフトウェア延命処理ポリシ記憶部107は、ソフトウェア延命時期決定部106が決定した結果を保持するソフトウェア延命処理ポリシを格納する。
まず、状態モデル解析部105は、評価関数記憶部104から評価関数Fを取得する(図2、ステップ1001)。
図3は本発明の実施の形態2によるソフトウェア延命時期決定システム10の動作のフローチャートである。
実施の形態2では、まず、状態モデル解析部105は、パラメタ入力部103を介して延命時期を表す可変パラメタの定義域X=(x1,x2,… ,xn)を読み込む(ステップ1021)。可変パラメタの例としては、ソフトウェア延命実行レート(単位時間あたりのソフトウェア延命処理実行回数)や平均ソフトウェア延命処理実施間隔などがある。
図4は、本発明の実施の形態3によるソフトウェア延命時期決定システム30の構成を示すブロック図である。図1と同一の符号は同様の構成要素を表している。
図4に示すように、ソフトウェア延命時期決定システム30は、ソフトウェア延命判定式導出部108と、ソフトウェア延命判定式記憶部109を備えている点が実施の形態1と異なっている。
まず、ソフトウェア延命判定式導出部108は、評価関数記憶部104から評価関数Fを取得し(図5、ステップ2001)、エージング状態モデル記憶部101からエージング状態モデルを取得する(ステップ2002)。
図7は、本発明の実施の形態4によるソフトウェア延命時期決定システム40の構成を示すブロック図である。図1と同一の符号は同様の構成要素を表している。
図7に示すように、ソフトウェア延命時期決定システム40は、ソフトウェア若化状態モデル記憶部110、エージング対処決定部111、およびソフトウェア若化処理ポリシ記憶部112を備えている点が実施の形態1と異なっている。
状態モデル解析部105は、実施の形態1と同様にエージング状態モデルおよびソフトウェア延命状態モデルを用いて評価関数Fa,Fbを導出する。さらに、状態モデル解析部105は、ソフトウェア若化状態モデル記憶部110からソフトウェア若化状態モデルを取得し、入力パラメタに基づいて評価関数Fの値Fcを導出する。
図8は、本発明の実施の形態5によるソフトウェア延命時期決定システム50の構成を示すブロック図である。図1と同一の符号は同様の構成要素を表している。
図8に示すように、ソフトウェア延命時期決定システム50は、ソフトウェア稼働状態監視部113、ソフトウェア実行装置114、およびソフトウェア延命処理実施部115を備えている点が実施の形態1と異なっている。
図9は、連続時間マルコフ連鎖(CTMC)を用いてソフトウェアエージング状態モデルを表現した例である。図中の丸は状態を、矢印は状態の遷移パスを表しており、状態の遷移にかかる時間はラベル付けされた値をパラメタ値とする指数分布に従うものとする。
(付記1)ソフトウェアのエージングによるソフトウェアの状態変化を表す第1の状態モデルを格納するエージング状態モデル記憶部と、
ソフトウェア延命処理によるソフトウェアの状態変化を表す第2の状態モデルを格納するソフトウェア延命状態モデル記憶部と、
前記第1の状態モデルおよび前記第2の状態モデルのパラメタ値の入力を受けるパラメタ入力部と、
システムが目標とする性能や可用性の値を定める評価関数を格納する評価関数記憶部と、
前記パラメタ値と前記評価関数を用いて、前記第1の状態モデルおよび前記第2の状態モデルを解析する状態モデル解析部と、
前記第1の状態モデルおよび前記第2の状態モデルの解析結果に基づいてソフトウェア延命処理の実施を行うか否かを判定するソフトウェア延命時期決定部と、を備えたソフトウェア延命時期決定システム。
ソフトウェア延命処理によるソフトウェアの状態変化を表す第2の状態モデルを格納するソフトウェア延命状態モデル記憶部と、
システムが目標とする性能や可用性の値を定める評価関数を格納する評価関数記憶部と、
前記第1の状態モデルと、前記第2の状態モデルと、前記評価関数に基づいて、ソフトウェア延命判定式を導出するソフトウェア延命判定式導出部と、
前記第1の状態モデルおよび前記第2の状態モデルのパラメタ値の入力を受けるパラメタ入力部と、
前記パラメタ値と前記ソフトウェア延命判定式を用いて、ソフトウェア延命処理の実施を行う時期を決定するソフトウェア延命時期決定部と、を備えたソフトウェア延命時期決定システム。
前記状態モデル解析部は、
前記パラメタ値と前記評価関数を用いて、ソフトウェア若化処理によるソフトウェアの状態変化を表す第3の状態モデルをさらに解析し、
前記第1の状態モデル、前記第2の状態モデル、および前記第3の状態モデルの解析結果に基づいて、ソフトウェア延命処理またはソフトウェア若化処理の実施を行うか否かを判定するエージング対処決定部と、を備えたソフトウェア延命時期決定システム。
ソフトウェアを実行させるソフトウェア実行装置と、
前記ソフトウェア実行装置における前記ソフトウェアの稼働状態を監視し、前記稼動状態に基づいて、前記パラメタ値を決定するソフトウェア稼働状態監視部と、
前記ソフトウェア実行装置に対し、前記ソフトウェア延命時期決定システムで決定されたソフトウェア延命処理を実施するソフトウェア延命処理実施部と、をさらに備えたソフトウェア延命時期決定システム。
前記第1の状態モデルおよび前記第2の状態モデルの解析結果に基づいてソフトウェア延命処理の実施を行うか否かを判定する工程と、を備えたソフトウェア延命時期決定方法。
ソフトウェアのエージングによるソフトウェアの状態変化を表す第1の状態モデルを格納するエージング状態モデル記憶部と、
ソフトウェア延命処理によるソフトウェアの状態変化を表す第2の状態モデルを格納するソフトウェア延命状態モデル記憶部と、
前記第1の状態モデルおよび前記第2の状態モデルのパラメタ値の入力を受けるパラメタ入力部と、
システムが目標とする性能や可用性の値を定める評価関数を格納する評価関数記憶部と、
前記パラメタ値と前記評価関数を用いて、前記第1の状態モデルおよび前記第2の状態モデルを解析する状態モデル解析部と、
前記第1の状態モデルおよび前記第2の状態モデルの解析結果に基づいてソフトウェア延命処理の実施を行うか否かを判定するソフトウェア延命時期決定部と、して機能させるためのプログラム。
Claims (6)
- ソフトウェアのエージングによるソフトウェアの状態変化を表す第1の状態モデルを格納するエージング状態モデル記憶部と、
ソフトウェア延命処理によるソフトウェアの状態変化を表す第2の状態モデルを格納するソフトウェア延命状態モデル記憶部と、
前記第1の状態モデルおよび前記第2の状態モデルのパラメタ値の入力を受けるパラメタ入力部と、
システムが目標とする性能や可用性の値を定める評価関数を格納する評価関数記憶部と、
前記パラメタ値と前記評価関数を用いて、前記第1の状態モデルおよび前記第2の状態モデルを解析する状態モデル解析部と、
前記第1の状態モデルおよび前記第2の状態モデルの解析結果に基づいてソフトウェア延命処理の実施を行うか否かを判定するソフトウェア延命時期決定部と、を備えたソフトウェア延命時期決定システム。 - ソフトウェアのエージングによるソフトウェアの状態変化を表す第1の状態モデルを格納するエージング状態モデル記憶部と、
ソフトウェア延命処理によるソフトウェアの状態変化を表す第2の状態モデルを格納するソフトウェア延命状態モデル記憶部と、
システムが目標とする性能や可用性の値を定める評価関数を格納する評価関数記憶部と、
前記第1の状態モデルと、前記第2の状態モデルと、前記評価関数に基づいて、ソフトウェア延命判定式を導出するソフトウェア延命判定式導出部と、
前記第1の状態モデルおよび前記第2の状態モデルのパラメタ値の入力を受けるパラメタ入力部と、
前記パラメタ値と前記ソフトウェア延命判定式を用いて、ソフトウェア延命処理の実施を行う時期を決定するソフトウェア延命時期決定部と、を備えたソフトウェア延命時期決定システム。 - 請求項1に記載のソフトウェア延命時期決定システムであって、
前記状態モデル解析部は、
前記パラメタ値と前記評価関数を用いて、ソフトウェア若化処理によるソフトウェアの状態変化を表す第3の状態モデルをさらに解析し、
前記第1の状態モデル、前記第2の状態モデル、および前記第3の状態モデルの解析結果に基づいて、ソフトウェア延命処理またはソフトウェア若化処理の実施を行うか否かを判定するエージング対処決定部と、を備えたソフトウェア延命時期決定システム。 - 請求項1から3のいずれか1項に記載のソフトウェア延命時期決定システムであって、
ソフトウェアを実行させるソフトウェア実行装置と、
前記ソフトウェア実行装置における前記ソフトウェアの稼働状態を監視し、前記稼動状態に基づいて、前記パラメタ値を決定するソフトウェア稼働状態監視部と、
前記ソフトウェア実行装置に対し、前記ソフトウェア延命時期決定システムで決定されたソフトウェア延命処理を実施するソフトウェア延命処理実施部と、をさらに備えたソフトウェア延命時期決定システム。 - ソフトウェアのエージングによるソフトウェアの状態変化を表す第1の状態モデル、およびソフトウェア延命処理によるソフトウェアの状態変化を表す第2の状態モデル、前記第1の状態モデルおよび前記第2の状態モデルのパラメタ値と、システムが目標とする性能や可用性の値を定める評価関数と、を用いて解析する工程と、
前記第1の状態モデルおよび前記第2の状態モデルの解析結果に基づいてソフトウェア延命処理の実施を行うか否かを判定する工程と、を備えたソフトウェア延命時期決定方法。 - コンピュータを、
ソフトウェアのエージングによるソフトウェアの状態変化を表す第1の状態モデルを格納するエージング状態モデル記憶部と、
ソフトウェア延命処理によるソフトウェアの状態変化を表す第2の状態モデルを格納するソフトウェア延命状態モデル記憶部と、
前記第1の状態モデルおよび前記第2の状態モデルのパラメタ値の入力を受けるパラメタ入力部と、
システムが目標とする性能や可用性の値を定める評価関数を格納する評価関数記憶部と、
前記パラメタ値と前記評価関数を用いて、前記第1の状態モデルおよび前記第2の状態モデルを解析する状態モデル解析部と、
前記第1の状態モデルおよび前記第2の状態モデルの解析結果に基づいてソフトウェア延命処理の実施を行うか否かを判定するソフトウェア延命時期決定部と、して機能させるためのプログラム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013546520A JP5445726B1 (ja) | 2012-03-30 | 2013-03-13 | ソフトウェア延命時期決定システム、ソフトウェア延命時期決定方法、およびプログラム |
US14/122,148 US20150347210A1 (en) | 2012-03-30 | 2013-03-13 | Software life extension time determination system, software life extension time determination method, and program |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-080198 | 2012-03-30 | ||
JP2012080198 | 2012-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013146252A1 true WO2013146252A1 (ja) | 2013-10-03 |
Family
ID=49259518
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/056957 WO2013146252A1 (ja) | 2012-03-30 | 2013-03-13 | ソフトウェア延命時期決定システム、ソフトウェア延命時期決定方法、およびプログラム |
Country Status (3)
Country | Link |
---|---|
US (1) | US20150347210A1 (ja) |
JP (1) | JP5445726B1 (ja) |
WO (1) | WO2013146252A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0895814A (ja) * | 1994-09-08 | 1996-04-12 | At & T Corp | ソフトウエアの更新のための装置及び方法 |
JP2009199478A (ja) * | 2008-02-25 | 2009-09-03 | Hitachi Ltd | メモリミラーリング自動構成制御方式 |
JP2011048590A (ja) * | 2009-08-26 | 2011-03-10 | Ricoh Co Ltd | 画像形成装置 |
-
2013
- 2013-03-13 US US14/122,148 patent/US20150347210A1/en not_active Abandoned
- 2013-03-13 WO PCT/JP2013/056957 patent/WO2013146252A1/ja active Application Filing
- 2013-03-13 JP JP2013546520A patent/JP5445726B1/ja not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0895814A (ja) * | 1994-09-08 | 1996-04-12 | At & T Corp | ソフトウエアの更新のための装置及び方法 |
JP2009199478A (ja) * | 2008-02-25 | 2009-09-03 | Hitachi Ltd | メモリミラーリング自動構成制御方式 |
JP2011048590A (ja) * | 2009-08-26 | 2011-03-10 | Ricoh Co Ltd | 画像形成装置 |
Non-Patent Citations (3)
Title |
---|
TADASHI DOHI: "Analysis of software cost models with rejuvenation, High Assurance Systems Engineering, 2000", FIFTH IEEE INTERNATIONAL SYMPOSIUM ON HIGH ASSURANCE SYSTEMS ENGINEERING, 2000, HASE 2000, 15 November 2000 (2000-11-15), pages 25 - 34 * |
TADASHI DOHI: "Determination of Cost-Effective Preventive Maintenance Schedule for a Telecommunication Software System", THE TRANSACTIONS OF THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, vol. J85-A, no. 2, 1 February 2002 (2002-02-01), pages 197 - 206 * |
YENNUN HUANG: "Software rejuvenation: analysis, module and applications", FAULT-TOLERANT COMPUTING, 1995. FTCS-25. TWENTY-FIFTH INTERNATIONAL SYMPOSIUM ON DIGEST OF PAPERS, 27 June 1995 (1995-06-27), pages 381 - 390 * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2013146252A1 (ja) | 2015-12-10 |
US20150347210A1 (en) | 2015-12-03 |
JP5445726B1 (ja) | 2014-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9329981B2 (en) | Testing program, testing method, and testing device | |
EP4016308B1 (en) | Systems and methods for micro-scheduler testing framework | |
US20150161385A1 (en) | Memory Management Parameters Derived from System Modeling | |
US9128747B2 (en) | Methods and systems for optimizing the performance of software applications at runtime | |
US20130283090A1 (en) | Monitoring and resolving deadlocks, contention, runaway cpu and other virtual machine production issues | |
US9600795B2 (en) | Measuring process model performance and enforcing process performance policy | |
US11171852B2 (en) | Computer system productivity monitoring | |
US9396095B2 (en) | Software verification | |
US20110016455A1 (en) | Power Profiling for Embedded System Design | |
da Silva et al. | Self-healing of workflow activity incidents on distributed computing infrastructures | |
US10318731B2 (en) | Detection system and detection method | |
Kim et al. | Smartphone analysis and optimization based on user activity recognition | |
US20160306670A1 (en) | Dynamically choosing data to collect in a system | |
Soualhia et al. | ATLAS: An adaptive failure-aware scheduler for hadoop | |
US11354201B2 (en) | Effective selection of a virtual machine to be moved outside influence range of a failure | |
Mouallem et al. | A fault-tolerance architecture for kepler-based distributed scientific workflows | |
JP5445726B1 (ja) | ソフトウェア延命時期決定システム、ソフトウェア延命時期決定方法、およびプログラム | |
CN113141407B (zh) | 一种页面资源加载方法、装置和电子设备 | |
JP6103060B2 (ja) | 管理装置、管理方法及びプログラム | |
Wu et al. | Modeling the virtual machine launching overhead under fermicloud | |
Pinto et al. | Hadoop cluster monitoring and fault analysis in real time | |
CN104268057A (zh) | 一种Android平台下的模块化系统的监控系统及方法 | |
WO2016038802A1 (ja) | 情報処理装置、情報処理方法、及び、記録媒体 | |
Li et al. | Selective checkpointing for minimizing recovery energy and efforts of smartphone apps | |
Gavua et al. | ASM-based Formal Model for Analysing Cloud Auto-Scaling Mechanisms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2013546520 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13767413 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14122148 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13767413 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |