WO2013146248A1 - Soc estimation device - Google Patents

Soc estimation device Download PDF

Info

Publication number
WO2013146248A1
WO2013146248A1 PCT/JP2013/056942 JP2013056942W WO2013146248A1 WO 2013146248 A1 WO2013146248 A1 WO 2013146248A1 JP 2013056942 W JP2013056942 W JP 2013056942W WO 2013146248 A1 WO2013146248 A1 WO 2013146248A1
Authority
WO
WIPO (PCT)
Prior art keywords
soc
target value
amount
charge
integration coefficient
Prior art date
Application number
PCT/JP2013/056942
Other languages
French (fr)
Japanese (ja)
Inventor
尚人 右田
智哉 寺内
晶彦 山田
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2013146248A1 publication Critical patent/WO2013146248A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • G01R31/3832Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration without measurement of battery voltage

Definitions

  • the present invention relates to an SOC estimation device for a storage battery.
  • the storage battery can be used efficiently by performing charge / discharge control based on the remaining capacity of the storage battery (hereinafter referred to as SOC: State of Charge). Therefore, it is necessary to accurately estimate the SOC.
  • SOC State of Charge
  • a current integration method of charge / discharge current is known.
  • the internal resistance of a storage battery changes with states, such as temperature and an electric current.
  • the chargeable / dischargeable capacity also changes, so that an error occurs between the actually measured remaining capacity and the estimated SOC. For this reason, it is also known that the efficiency corresponding to the charge / discharge characteristics of the storage battery is calculated based on the current and temperature of the storage battery, and the remaining capacity is calculated in consideration of the capacity that can be discharged using the efficiency.
  • Patent Document 1 an apparatus and a method for estimating SOC using efficiency by a current integration method are disclosed.
  • the current integration value is corrected so that the values match at 0% and 100% of the SOC. For this reason, the SOC estimation accuracy is good in the vicinity of 0% and 100% of the SOC, but the SOC estimation error increases as the SOC moves away from the vicinity of 0% and 100%, and the SOC estimation accuracy deteriorates.
  • an object of the present invention is to improve the estimation accuracy not only in the vicinity of 0% and 100% of the SOC but also in the entire SOC range.
  • the SOC estimation apparatus detects the current and temperature of the storage battery, a table that defines the dependency between the efficiency of correcting the amount of electricity of the storage battery when fully charged, the temperature and the current, and the detection unit.
  • the table is referred to based on the current and the temperature, and a table reference unit for acquiring the efficiency, and the charge amount corrected with the efficiency acquired by the table reference unit is set as the first target value, which is smaller than the first target value.
  • the second target value, the third target value, and the fourth target value are set in order, and the first SOC, the second target value, and the fourth target value corresponding to the first to fourth target values are stopped.
  • the first SOC to the fourth SO A target value and a first calculation unit that calculates the SOC, and a difference amount between the target value obtained from the first calculation unit and the amount of charged electricity estimated before time T1
  • a second calculation unit that calculates an integration coefficient from a ratio between the target SOC and a difference amount between the SOC estimated before time T1 and the integration coefficient calculated by the calculation unit and detected at time T1
  • An SOC estimation unit that obtains the SOC from the current integrated value obtained by adding the product of the current to the current integrated value before time T1.
  • the SOC estimation apparatus can reduce errors throughout the SOC estimation and improve the SOC estimation accuracy.
  • the embodiment relates to a storage battery used in a power distribution system equipped with an industrial / residential storage battery, HEV (Hybrid Electric vehicle), or the like.
  • HEV Hybrid Electric vehicle
  • Such a device is used, for example, in such a manner that power is discharged when a user wants to use it, and power is charged when he wants to charge. Therefore, it is considered that the SOC of the storage battery is not charged / discharged between 100% and 0%, and the SOC of the storage battery is repeatedly charged / discharged between 70% and 30%. Therefore, if the SOC is estimated using the efficiency in the current integration method, an error from the actual amount of electricity occurs in the middle region of the SOC where the SOC is between 70% and 30%. Therefore, regarding the storage battery used in the above-mentioned device, it is desired to eliminate the error in the amount of electricity in the intermediate region of the SOC of the storage battery.
  • FIG. 1 is a diagram for explaining a configuration of an SOC estimation apparatus 60 according to an embodiment of the present invention.
  • Storage battery unit 50 is connected to SOC estimation device 60 through connection terminals 10 and 20.
  • the connection terminal 10 is connected to the positive terminal of the storage battery unit 50, and the connection terminal 20 is connected to the negative terminal of the storage battery unit 50.
  • the connection terminal 10 is connected to the output-side connection terminal 30 via the SOC estimation device 60, and the connection terminal 20 is connected to the output-side connection terminal 40 via the SOC estimation device 60.
  • the electric power of the storage battery unit 50 is charged and discharged from the connection terminals 30 and 40.
  • the storage battery unit 50 charges and discharges DC power supplied from the outside.
  • the storage battery unit 50 is supplied with DC power converted by a bidirectional power conditioner (not shown) that converts AC power into DC power.
  • the storage battery unit 50 may be composed of at least one storage battery, but a storage battery unit 50 may be formed by connecting a plurality of storage batteries in series or in parallel.
  • a storage battery should just be a secondary battery, for example, there exist a lithium ion battery, a nickel metal hydride battery, a lead acid battery, etc.
  • the storage battery unit 50 is composed of a plurality of storage batteries, the number of storage batteries is arbitrary and is determined by the designer.
  • the SOC estimation device 60 includes at least a control unit 80 and a detection unit 70.
  • the SOC estimation device 60 may be configured to include the storage battery unit 50.
  • the detection unit 70 detects at least the current and temperature of the storage battery unit 50.
  • the temperature detection the method of detecting the temperature of the storage battery unit 50 from the current flowing through the storage battery unit 50 using a thermistor, and the current detection, the storage battery unit 50 is detected by a current detection resistor.
  • a description will be given using a method of detecting a charged / discharged current, A / D converting the detected current via an A / D conversion terminal, and calculating a current by the control unit 80.
  • the detection unit 70 determines that charging is performed if the current is a positive value, and discharging is performed if the current is a negative value.
  • the detection unit 70 may be any detection method as long as it can detect temperature and current.
  • the control unit 80 acquires the current and temperature values detected by the detection unit 70.
  • the control unit 80 includes a communication terminal 90 that outputs data acquired from the detection unit 70 or data calculated in the control unit 80 to the outside. As data to be output to the outside, current, temperature, SOC calculated by the control unit 80, and the like can be considered.
  • FIG. 2 is a block diagram showing processing for SOC estimation according to Embodiment 1 of the present invention.
  • the control unit 80 includes at least a table reference unit 81, a first calculation unit 82, a second calculation unit 83, and an SOC estimation unit 84.
  • the table reference unit 81 has a table that defines the dependency relationship between the efficiency of correcting the amount of electricity when the storage battery unit 50 is fully charged and the current and temperature of the storage battery unit 50. (Not shown)
  • the table reference unit 81 refers to the table from the current and temperature values acquired at time T1, and acquires the efficiency.
  • the table is described as one table, but the table includes a table of current and temperature when the storage battery unit 50 is charged, and charging efficiency for correcting the amount of electricity when the storage battery unit 50 is fully charged, and a storage battery.
  • the unit 50 may be divided into a table of current and temperature when discharging, and discharge efficiency for correcting the amount of electricity when the storage battery unit 50 is fully charged.
  • the first calculation unit 82 calculates the SOC associated with the target point of charge electricity amount and the target point of charge electricity amount at the time of charging or discharging.
  • the amount of electricity charged is a percentage of the amount of electricity of the storage battery unit 50 obtained by dividing a full charge capacity (hereinafter referred to as FCC: Full Charge Capacity) by a value obtained by integrating the current flowing through the storage battery unit 50.
  • FCC Full Charge Capacity
  • the first calculation unit 82 calculates a first charge electricity amount that is a charge electricity amount at which charging is terminated from the efficiency acquired by the table reference unit 81.
  • the efficiency acquired by the table reference unit 81 is multiplied by the current integrated value calculated immediately before time T1, and the percentage obtained by dividing the multiplied value by the FCC is obtained. it can.
  • the current detected by the detection unit 70 at time T1 is a positive value, the amount of charge to be in a predetermined discharge end state at time T1. If the current detected by the detection unit 70 is a negative value, the charge amount that is in a predetermined charge termination state may be set as the first charge amount. Or you may obtain
  • the first calculation unit 82 defines the SOC when the amount of charge electricity is in the state of charge termination as 100%, when the first amount of charge electricity is obtained, the first charge amount corresponding to the first amount of charge electricity is calculated.
  • the SOC can also be obtained.
  • the first calculator 82 has a first table that defines the relationship between the amount of charge electricity and SOC during charging, and a second table that defines the relationship between the amount of charge electricity and SOC during discharge.
  • the first charge electric quantity and the first SOC are the coordinates when the electric charge is indicated by a coordinate on a plane (refer to FIG. 5) with the horizontal axis of the SOC and the vertical axis of the SOC.
  • the target point By obtaining the first target point, the second, third, and fourth target points can also be obtained by a calculation method defined in advance. Hereinafter, how to obtain the second, third, and fourth target points will be described.
  • the fourth target point calculation method can obtain the fourth charge electricity amount that is in the discharge end state by subtracting the first charge electricity amount from 100%.
  • the SOC corresponding to the fourth charge electricity amount is defined as 0%
  • a point that coordinates the fourth charge electricity amount and the fourth SOC is set as a fourth target point.
  • the second target point is calculated by subtracting a preset value X from the first charge electricity amount to obtain the second charge electricity amount.
  • the second SOC corresponding to the second charge electricity amount is set to be the same value as the second charge electricity amount. Therefore, at the second target point, the second charge electricity amount and the second SOC are the same value, and a point having the second charge electricity amount and the second SOC as coordinates is set as the second target point.
  • the calculation method of the third target point is obtained by adding the preset value X used at the second target point to the fourth charge electricity amount. Further, the third SOC corresponding to the third target point of the charged electricity amount is set to be the same value as the third target point of the charged electricity amount. A point having the third charge electricity amount and the third SOC as coordinates is set as a third target point.
  • the preset value X is freely changed depending on the usage state of the storage battery, but it is desirable to set it so that an intermediate region of the SOC exists. Further, the preset value X may be set so that the value subtracted from the first charge electricity amount does not become less than 50%, or the value added from the third charge electricity amount does not become 50% or more. desirable.
  • FIG. 3 is a drawing of a first table that defines the relationship between the amount of charged electricity and SOC during charging according to the embodiment of the present invention.
  • the horizontal axis of the first table indicates the amount of charged electricity
  • the vertical axis indicates the SOC.
  • the first table is selected by determining whether charging or discharging is performed based on the positive and negative values of the current detected by the detection unit 70.
  • the amount of charged electricity and the SOC are each divided in a preset area, and a target point is set for each divided area.
  • each of the charge amount and SOC is divided into three areas, and the first table is set to be divided into nine areas.
  • the boundary lines of the regions for dividing into three regions are calculated based on the efficiency acquired from the table reference unit 81, the calculated second charging electricity amount and the third charging electricity amount, the second SOC, and the third SOC. Set by the SOC.
  • target points are set in advance for each divided area. For example, 2 is displayed in the area 500, which indicates the number of the target point, and the target point in the area 500 is 2.
  • a target point number is set for each of the divided areas, but the target point number may be set so as to reduce an error between the charge / discharge electricity amount and the SOC.
  • the target point in the region 100 is a target point from 1 to 3, and the target point 3 closest to the region 100 among the candidates is set as the target point.
  • the target points 1 and 2 are candidate targets, and the target point 2 closest to the regions 200, 400, and 500 is set as the target point.
  • the target candidate is only 1, and 1 is set as the target point.
  • the target point is set to 1 to 4 in a region to which a point having the coordinates of the charged electric energy and SOC obtained immediately before time T1 belongs.
  • the drawing that defines the relationship between the amount of charged electricity and SOC during charging according to Embodiment 1 of the present invention shown in FIG. 4 also sets the target point with the same setting as in FIG.
  • the second calculation unit 83 is a coefficient for correcting the current integrated value at the time T1 from the target point calculated by the first calculation unit 82, the charge amount estimated immediately before the time T1, and the SOC value. Calculate the integration coefficient. The method for calculating the integration coefficient will be described in detail with reference to FIG.
  • FIG. 5 is a drawing that defines the relationship between the amount of charged electricity during discharging and the SOC according to the embodiment of the present invention.
  • the relationship between the charge electricity amount and the SOC is based on the charge electricity amount and the SOC calculated by the first calculation unit 82.
  • Points 1 to 4 shown in the figure indicate the coordinate relationship of the SOC corresponding to the target value of the charge electricity amount and the charge electricity amount in the first calculation unit 82. From the largest, they are the first target point, the second target point, the third target point, and the fourth target point.
  • the SOC estimation unit 84 acquires the current value detected at time T1. Moreover, the integrated current value calculated immediately before time T1 is stored.
  • the integration coefficient is obtained by subtracting the SOC corresponding to the target point from the SOC measured before time T1 and the difference amount when the charging electricity amount at the target point is subtracted from the charging electricity amount measured immediately before time T1. It is calculated
  • the SOC multiplies the current value acquired at time T1 by the integration coefficient calculated by the second calculation unit 83, and adds the current integration value immediately before time T1 to the multiplied value.
  • the added value is divided by the FCC and can be obtained from the percentage of the divided value.
  • FIG. 6 is a flowchart showing a process of the control unit 80 for estimating the SOC according to the embodiment of the present invention.
  • the table reference unit 81 acquires the current and temperature detected by the detection unit 70 at time T1. Moreover, the table reference part 81 judges whether the storage battery part 50 is a charge state or a discharge state from the positive / negative value of the acquired electric current, and sends the charging / discharging information of the storage battery part 50 to a 1st calculation part.
  • the table reference unit 81 refers to the table based on the acquired current and temperature, and acquires the efficiency.
  • the first calculation unit 82 selects the first table or the second table based on the positive and negative values of the current acquired from the detection unit 70. Then, based on the efficiency acquired from the table reference unit 81, the first to fourth charge electricity amounts and the first to fourth SOC are calculated.
  • the selected table is divided for each region, and a target point is set for each region.
  • the first to fourth targets corresponding to the first to fourth charge electricity amounts and the first to fourth SOCs based on the calculated first to fourth charge electricity amounts and the first to fourth SOCs. Calculate points.
  • the first calculation unit 82 determines a target point from the first to the fourth based on the corresponding positional relationship between the SOC and the SOC calculated one time before the time T1 in each divided table area. .
  • the second calculation unit 83 obtains the difference amount of the charge electricity amount and the difference amount of the SOC from the target point calculated by the first calculation unit 82 and the charge amount and SOC calculated immediately before the time T1.
  • the integration coefficient is calculated from the difference amount ratio.
  • the SOC estimation unit 84 obtains a value obtained by multiplying the integration coefficient calculated by the second calculation unit 83 by the current detected at time T1. The value is added to the current integrated value obtained immediately before time T1, and the SOC at time T1 is obtained from the ratio of the added value and FCC.
  • S7 The above processing is executed at a constant cycle, for example, at a cycle of 1 ms.
  • the present invention can reduce the estimation error of the entire SOC and improve the SOC estimation accuracy.
  • the second target point and the third target point are set by matching the values of the second target point and the second SOC and the values of the third target point and the third SOC. It is possible to reduce the estimation error in the region. Therefore, the SOC estimation accuracy is improved particularly in the middle region of the SOC.
  • the coordinates of the amount of charge electricity calculated before the time T1 and the SOC are the amount of charge electricity.
  • the SOC estimation is continued without eliminating the error generated between the charged electric charge and the SOC.
  • the second table that defines the relationship between the charged electric charge during discharging and the SOC according to the first embodiment shown in FIG. 4
  • the coordinates of the charged electric charge and SOC calculated immediately before time T1 are charged. Even when the SOC value is smaller than the amount of electricity, the SOC estimation is continued without eliminating the error between the charged amount of electricity and the SOC.
  • Embodiment 2 of the present invention corresponding to the case where an error occurring between the amount of charged electricity and the SOC is included can be solved.
  • FIG. 7 is a drawing of a third table that defines the relationship between the amount of charged electricity and SOC during charging according to the second embodiment.
  • FIG. 8 is a drawing of a fourth table that defines the relationship between the amount of charged electricity during discharging and the SOC according to the second embodiment.
  • the horizontal axis of the third table and the fourth table indicates the amount of charged electricity
  • the vertical axis indicates the SOC.
  • the third table shown in FIGS. 7 and 8 is the same setting as the first table
  • the fourth table is the same as the second table, so the description is omitted.
  • the target point is the time T1.
  • a target value that is larger and closest to the amount of charged electricity calculated immediately before is selected.
  • the target point is one at time T1.
  • a target value that is smaller and closest to the amount of charge electricity calculated previously is selected.
  • the setting of the target point for each area of the third table and the fourth table is set depending only on the amount of charged electricity. Therefore, the error can be quickly eliminated as compared with the first table and the second table.
  • the first calculation unit 82 has first to fourth tables, and the first table is changed to the third table or the second table is changed to the third table depending on the temperature and current values detected by the detection unit 70. You may enable it to change to the table of 4.
  • the first table and the second table described in the first embodiment of the present invention and the third table and the fourth table described in the second embodiment of the present invention are divided into nine setting areas. You may increase or decrease. If the target point is set to two and the setting area is divided into two areas for the charge electricity amount and the SOC area is divided into four areas, the charge electricity amount is 50% and the SOC is 50%, which are intermediate values. Corresponds by positional relationship. In addition, if the target point is set to four, and the setting area is divided into four charging electric charge areas and the SOC area into four 16 areas, the charging electric power is more than that in the case of dividing into nine setting areas. The error in the area where the amount and the SOC do not match can be reduced.
  • connection terminal 50 storage battery unit, 60 SOC estimation device, 70 detection unit, 80 control unit, 81 table reference unit, 82 first calculation unit, 83 third calculation unit, 84 SOC estimation unit , 90 communication terminals, 100, 200, 300, 400, 500, 600, 700, 800, 900 areas.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

[Problem] To improve the estimation accuracy not only in the vicinity of 0% and 100% of the SOC but also over the entire range of the SOC. [Solution] A second calculation unit (83) acquires the target values of targeted charge electricity quantity and SOC from among the target values of a charge electricity quantity and the SOC calculated by a first calculation unit (82). Further, the second calculation unit (83) calculates an integrating factor from the ratio between the quantity of a difference between the target value of the targeted charge electricity quantity and a charge electricity quantity calculated at the last time before a time (T1), and the quantity of a difference between the target value of the targeted SOC and the SOC calculated at the last time before the time (T1). An SOC estimation unit (84) calculates the SOC by a current integration method using the integrating factor acquired from the second calculation unit.

Description

SOC推定装置SOC estimation device
 本発明は、蓄電池のSOC推定装置に関する。 The present invention relates to an SOC estimation device for a storage battery.
 蓄電池を用いた機器を使用する場合、蓄電池の残存容量(以下SOC:State of Charge)に基づいた充放電制御をすることで、蓄電池を効率よく使用することができる。そのため、SOCは精度良く推定することが必要とされている。蓄電池のSOC推定の算出方法としては、充放電電流の電流積算方式が知られている。また、蓄電池は温度や電流等の状態によって蓄電池の内部抵抗が変化する。蓄電池の内部抵抗が変化すると、充放電可能な容量も変化してしまうため、実際に測定した残容量と推定したSOCとで誤差が生じてしまう。そのため、蓄電池の電流や温度を基に、蓄電池の充放電特性に対応した効率を算出し、効率を用いて放電可能な容量を考慮して残存容量は算出されることも知られている。 When using a device using a storage battery, the storage battery can be used efficiently by performing charge / discharge control based on the remaining capacity of the storage battery (hereinafter referred to as SOC: State of Charge). Therefore, it is necessary to accurately estimate the SOC. As a method for calculating the SOC estimation of a storage battery, a current integration method of charge / discharge current is known. Moreover, the internal resistance of a storage battery changes with states, such as temperature and an electric current. When the internal resistance of the storage battery changes, the chargeable / dischargeable capacity also changes, so that an error occurs between the actually measured remaining capacity and the estimated SOC. For this reason, it is also known that the efficiency corresponding to the charge / discharge characteristics of the storage battery is calculated based on the current and temperature of the storage battery, and the remaining capacity is calculated in consideration of the capacity that can be discharged using the efficiency.
 下記の特許文献1に示されるように、電流積算方式で効率を用いてSOCを推定する装置及び方法が開示されている。 As disclosed in Patent Document 1 below, an apparatus and a method for estimating SOC using efficiency by a current integration method are disclosed.
特開2008-190995JP2008-190995
 さて、電流積算方式で効率を用いてSOC推定すると、SOCの0%および100%で一致するように電流積算値の補正を行う。そのため、SOCの0%および100%近傍ではSOC推定精度は良いが、SOCの0%および100%近傍を離れるに従ってSOC推定の誤差が増加し、SOC推定精度は悪くなる。 Now, when the SOC is estimated using the efficiency in the current integration method, the current integration value is corrected so that the values match at 0% and 100% of the SOC. For this reason, the SOC estimation accuracy is good in the vicinity of 0% and 100% of the SOC, but the SOC estimation error increases as the SOC moves away from the vicinity of 0% and 100%, and the SOC estimation accuracy deteriorates.
 そこで、本発明はSOCの0%および100%近傍だけではなく、SOCの全範囲にわたって推定精度を良くすることを目的とする。 Therefore, an object of the present invention is to improve the estimation accuracy not only in the vicinity of 0% and 100% of the SOC but also in the entire SOC range.
 SOC推定装置は、蓄電池の電流と温度を検出する検出部と、満充電時の蓄電池の電気量を補正する効率と、温度および電流との依存関係を規定するテーブルと、前記検出部で検出した電流および温度に基づき前記テーブルを参照し、効率を取得するテーブル参照部と、前記テーブル参照部で取得した効率で補正した充電電気量を第1の目標値として、前記第1の目標値より小さい順に第2の目標値、第3の目標値、及び第4の目標値を設定すると共に、前記第1から第4の目標値に対応するように充電終止の状態にある第1のSOC、第2のSOC、第3のSOC、放電終止の状態にある第4のSOCを設定し、時刻T1より以前に求めた充電電気量とSOCより、前記第1の目標値から第4の目標値と前記第1のSOCから第4のSOCの中から目標とする目標値とSOCを算出する第1の算出部と、前記第1の算出部から取得した前記目標とする目標値と時刻T1より以前に推定した充電電気量との差分量、及び前記目標とするSOCと時刻T1より以前に推定したSOCとの差分量との比率から積算係数を演算する第2の算出部と、前記算出部で算出した積算係数と時刻T1で検出した電流の積を時刻T1より前までの電流積算値に加算した電流積算値からSOCを求めるSOC推定部と、を備える。 The SOC estimation apparatus detects the current and temperature of the storage battery, a table that defines the dependency between the efficiency of correcting the amount of electricity of the storage battery when fully charged, the temperature and the current, and the detection unit. The table is referred to based on the current and the temperature, and a table reference unit for acquiring the efficiency, and the charge amount corrected with the efficiency acquired by the table reference unit is set as the first target value, which is smaller than the first target value. The second target value, the third target value, and the fourth target value are set in order, and the first SOC, the second target value, and the fourth target value corresponding to the first to fourth target values are stopped. 2 SOC, 3rd SOC, 4th SOC in the state of the end of discharge, and from the first target value to the 4th target value from the charge amount and SOC obtained before time T1, The first SOC to the fourth SO A target value and a first calculation unit that calculates the SOC, and a difference amount between the target value obtained from the first calculation unit and the amount of charged electricity estimated before time T1 And a second calculation unit that calculates an integration coefficient from a ratio between the target SOC and a difference amount between the SOC estimated before time T1 and the integration coefficient calculated by the calculation unit and detected at time T1 An SOC estimation unit that obtains the SOC from the current integrated value obtained by adding the product of the current to the current integrated value before time T1.
 本発明に係るSOC推定装置は、SOC推定の全体にわたる誤差を減らし、SOC推定精度を向上させることが出来る。 The SOC estimation apparatus according to the present invention can reduce errors throughout the SOC estimation and improve the SOC estimation accuracy.
本発明の実施の形態1に係るSOC推定装置の構成を説明する図面である。It is drawing explaining the structure of the SOC estimation apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るSOC推定するための処理を示すブロック図である。It is a block diagram which shows the process for SOC estimation which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る充電電気量とSOCの関係を規定した図面である。It is drawing which prescribed | regulated the relationship between the amount of electric charge and SOC which concern on Embodiment 1 of this invention. 本発明の実施の形態1に係る充電時の充電電気量とSOCの関係を規定した図面である。It is drawing which prescribed | regulated the relationship between the amount of charge electricity at the time of charge and SOC concerning Embodiment 1 of this invention. 本発明の実施の形態1に係る放電時の充電電気量とSOCの関係を規定した図面である。It is drawing which prescribed | regulated the relationship between the amount of charge electricity at the time of discharge and SOC concerning Embodiment 1 of this invention. 本発明の実施の形態1に係るSOC推定するための処理を説明するためのフローチャートを示した図面である。It is drawing which showed the flowchart for demonstrating the process for SOC estimation which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る充電時の充電電気量とSOCの関係を規定した図面である。It is drawing which prescribed | regulated the relationship between the amount of charge electricity at the time of charge and SOC concerning Embodiment 2 of this invention. 本発明の実施の形態2に係る放電時の充電電気量とSOCの関係を規定した図面である。It is drawing which prescribed | regulated the relationship between the amount of charge electricity at the time of discharge and SOC concerning Embodiment 2 of this invention.
 本発明の実施の形態の概要を述べる。実施の形態は産業用・住宅用の蓄電池を備えた配電システムやHEV(Hybrid Electric vehicle)等に用いられる蓄電池に関する。このような機器は、例えば、使用者が使用したいときに電力は放電され、充電したいときに電力は充電されるような用途に用いられる。そのため、蓄電池のSOCは100%から0%の間で充放電されず、蓄電池のSOCは70%から30%の間で充放電が繰り返されることが考えられる。そのため、電流積算方式で効率を用いてSOC推定すると、SOCが70%から30%の間のようなSOCの中間領域で実際の電気量との誤差が生じてしまう。そのため、上記の機器に用いられるような蓄電池に関して、蓄電池のSOCの中間領域での電気量の誤差を解消することが望まれる。 An outline of the embodiment of the present invention will be described. The embodiment relates to a storage battery used in a power distribution system equipped with an industrial / residential storage battery, HEV (Hybrid Electric vehicle), or the like. Such a device is used, for example, in such a manner that power is discharged when a user wants to use it, and power is charged when he wants to charge. Therefore, it is considered that the SOC of the storage battery is not charged / discharged between 100% and 0%, and the SOC of the storage battery is repeatedly charged / discharged between 70% and 30%. Therefore, if the SOC is estimated using the efficiency in the current integration method, an error from the actual amount of electricity occurs in the middle region of the SOC where the SOC is between 70% and 30%. Therefore, regarding the storage battery used in the above-mentioned device, it is desired to eliminate the error in the amount of electricity in the intermediate region of the SOC of the storage battery.
 図1は本発明の実施の形態に係るSOC推定装置60の構成を説明するための図である。 FIG. 1 is a diagram for explaining a configuration of an SOC estimation apparatus 60 according to an embodiment of the present invention.
 蓄電池部50は接続端子10および20によりSOC推定装置60に接続される。接続端子10は蓄電池部50の正極端子に接続され、接続端子20は蓄電池部50の負極端子に接続される。接続端子10はSOC推定装置60を介して出力側の接続端子30に接続され、接続端子20はSOC推定装置60を介して出力側の接続端子40に接続される。接続端子30および40から蓄電池部50の電力は充電及び放電される。 Storage battery unit 50 is connected to SOC estimation device 60 through connection terminals 10 and 20. The connection terminal 10 is connected to the positive terminal of the storage battery unit 50, and the connection terminal 20 is connected to the negative terminal of the storage battery unit 50. The connection terminal 10 is connected to the output-side connection terminal 30 via the SOC estimation device 60, and the connection terminal 20 is connected to the output-side connection terminal 40 via the SOC estimation device 60. The electric power of the storage battery unit 50 is charged and discharged from the connection terminals 30 and 40.
 蓄電池部50は外部から供給される直流電力を充電および放電する。供給される電力が交流の場合、蓄電池部50は交流電力を直流電力に変換する双方向パワーコンディショナ(図示せず)により変換された直流電力が供給される。 The storage battery unit 50 charges and discharges DC power supplied from the outside. When the supplied power is AC, the storage battery unit 50 is supplied with DC power converted by a bidirectional power conditioner (not shown) that converts AC power into DC power.
 蓄電池部50は少なくとも一つの蓄電池で構成されていれば良いが、複数の蓄電池を直列もしくは並列接続したものを蓄電池部50としても良い。なお、蓄電池は二次電池であればよく、例えばリチウムイオン電池、ニッケル水素電池、鉛蓄電池等がある。蓄電池部50を複数の蓄電池で構成する場合、蓄電池の数は任意であり、設計者により決定される。 The storage battery unit 50 may be composed of at least one storage battery, but a storage battery unit 50 may be formed by connecting a plurality of storage batteries in series or in parallel. In addition, a storage battery should just be a secondary battery, for example, there exist a lithium ion battery, a nickel metal hydride battery, a lead acid battery, etc. When the storage battery unit 50 is composed of a plurality of storage batteries, the number of storage batteries is arbitrary and is determined by the designer.
 SOC推定装置60は少なくとも、制御部80、および検出部70を含む。ただし、SOC推定装置60は蓄電池部50を含んで構成されていてもよい。検出部70は少なくとも蓄電池部50の電流及び温度を検出する。本発明の実施の形態では、温度の検出に関しては、サーミスタを用いて蓄電池部50に流れる電流から蓄電池部50の温度を検出する方法、および電流の検出に関しては、電流検出抵抗により蓄電池部50が充放電した電流を検出し、検出した電流をA/D変換端子を介してA/D変換して制御部80で電流を演算する方法を用いて説明する。また、電流を検出する際に電流が正の値ならば充電、電流が負の値ならば放電と検出部70は判断する。なお、温度および電流のほかに電圧等を検出しても良い。検出部70は温度及び電流を検出できるものなら如何なる検出方法でも良い。 The SOC estimation device 60 includes at least a control unit 80 and a detection unit 70. However, the SOC estimation device 60 may be configured to include the storage battery unit 50. The detection unit 70 detects at least the current and temperature of the storage battery unit 50. In the embodiment of the present invention, regarding the temperature detection, the method of detecting the temperature of the storage battery unit 50 from the current flowing through the storage battery unit 50 using a thermistor, and the current detection, the storage battery unit 50 is detected by a current detection resistor. A description will be given using a method of detecting a charged / discharged current, A / D converting the detected current via an A / D conversion terminal, and calculating a current by the control unit 80. Further, when the current is detected, the detection unit 70 determines that charging is performed if the current is a positive value, and discharging is performed if the current is a negative value. In addition to temperature and current, voltage or the like may be detected. The detection unit 70 may be any detection method as long as it can detect temperature and current.
 制御部80は検出部70が検出した電流及び温度の値を取得する。制御部80は検出部70から取得したデータもしくは制御部80内で算出したデータを外部に出力する通信端子90を備えている。外部に出力するデータとしては、電流、温度、制御部80で算出したSOC等が考えられる。 The control unit 80 acquires the current and temperature values detected by the detection unit 70. The control unit 80 includes a communication terminal 90 that outputs data acquired from the detection unit 70 or data calculated in the control unit 80 to the outside. As data to be output to the outside, current, temperature, SOC calculated by the control unit 80, and the like can be considered.
 次に制御部80内でおこなわれるSOC推定の処理を説明する。図2は本発明の実施の形態1に係るSOC推定するための処理を示すブロック図である。 Next, the SOC estimation process performed in the control unit 80 will be described. FIG. 2 is a block diagram showing processing for SOC estimation according to Embodiment 1 of the present invention.
 制御部80は少なくともテーブル参照部81、第1の算出部82、第2の算出部83、およびSOC推定部84を含む。 The control unit 80 includes at least a table reference unit 81, a first calculation unit 82, a second calculation unit 83, and an SOC estimation unit 84.
 テーブル参照部81は、蓄電池部50が満充電時の電気量を補正する効率と、蓄電池部50の電流および温度との依存関係を規定するテーブルを持つ。(図示せず)テーブル参照部81は時刻T1に取得した電流および温度の値からテーブルを参照し、効率を取得する。 The table reference unit 81 has a table that defines the dependency relationship between the efficiency of correcting the amount of electricity when the storage battery unit 50 is fully charged and the current and temperature of the storage battery unit 50. (Not shown) The table reference unit 81 refers to the table from the current and temperature values acquired at time T1, and acquires the efficiency.
 なお、以下の説明ではテーブルは一つとして説明するが、テーブルは蓄電池部50が充電時の電流および温度と、蓄電池部50が満充電時の電気量を補正する充電効率とのテーブルと、蓄電池部50が放電時の電流および温度と、蓄電池部50が満充電時の電気量を補正する放電効率とのテーブルに分けてもよい。 In the following description, the table is described as one table, but the table includes a table of current and temperature when the storage battery unit 50 is charged, and charging efficiency for correcting the amount of electricity when the storage battery unit 50 is fully charged, and a storage battery. The unit 50 may be divided into a table of current and temperature when discharging, and discharge efficiency for correcting the amount of electricity when the storage battery unit 50 is fully charged.
 第1の算出部82は、充電時もしくは放電時の充電電気量の目標点と充電電気量の目標点に対応付けされたSOCを算出する。ここで、充電電気量とは蓄電池部50に流れた電流を積算した値に満充電容量(以下FCC:Full Charge Capacity)を除算して求めた蓄電池部50の電気量の百分率のことである。 The first calculation unit 82 calculates the SOC associated with the target point of charge electricity amount and the target point of charge electricity amount at the time of charging or discharging. Here, the amount of electricity charged is a percentage of the amount of electricity of the storage battery unit 50 obtained by dividing a full charge capacity (hereinafter referred to as FCC: Full Charge Capacity) by a value obtained by integrating the current flowing through the storage battery unit 50.
 充電時及び放電時の充電電気量は同じ算出方法のため、以下の説明では効率を用いた充電時の充電電気量についての算出方法について述べる。第1の算出部82はテーブル参照部81が取得した効率から充電終止の状態になる充電電気量である第1の充電電気量を算出する。 Since the charge electricity amount at the time of charging and discharging is the same calculation method, the following description will describe a calculation method for the charge electricity amount at the time of charging using efficiency. The first calculation unit 82 calculates a first charge electricity amount that is a charge electricity amount at which charging is terminated from the efficiency acquired by the table reference unit 81.
 第1の充電電気量の算出方法は、テーブル参照部81で取得した効率に時刻T1のひとつ前に算出した電流積算値を乗算し、乗算した値からFCCを除算した値の百分率で求めることができる。なお、時刻T1のひとつ前に算出した電流積算値が存在しない場合、時刻T1に検出部70で検出した電流が正の値ならば予め規定した放電終止の状態になる充電電気量、時刻T1に検出部70で検出した電流が負の値ならば予め規定した充電終止の状態になる充電電気量を第1の充電電気量としてもよい。もしくは、開放電圧を検出できる検出部70をさらに備えることで、開放電圧の値と充電電気量との関係を規定したテーブルから充電電気量を求めてもよい。 In the first method for calculating the amount of charged electricity, the efficiency acquired by the table reference unit 81 is multiplied by the current integrated value calculated immediately before time T1, and the percentage obtained by dividing the multiplied value by the FCC is obtained. it can. In addition, when there is no current integrated value calculated immediately before time T1, if the current detected by the detection unit 70 at time T1 is a positive value, the amount of charge to be in a predetermined discharge end state at time T1. If the current detected by the detection unit 70 is a negative value, the charge amount that is in a predetermined charge termination state may be set as the first charge amount. Or you may obtain | require charge electric energy from the table which prescribed | regulated the relationship between the value of open circuit voltage, and charge electricity by further providing the detection part 70 which can detect open circuit voltage.
 第1の算出部82は充電電気量が充電終止の状態になる場合のSOCを100%と規定するため、第1の充電電気量が求められると第1の充電電気量に対応する第1のSOCも求めることが出来る。また、第1の算出部82は充電時の充電電気量とSOCの関係を規定した第1のテーブルと放電時の充電電気量とSOCの関係を規定した第2のテーブルを持つ。ここで、充電電気量を横軸、SOCを縦軸にとった平面上の座標(図5参考)で示したときに第1の充電電気量と第1のSOCを座標とする点を第1の目標点とする。第1の目標点が求められることで予め規定された算出方法によって、第2,第3,第4の目標点も求めることができる。以下、第2,第3,第4の目標点の求め方を説明する。 Since the first calculation unit 82 defines the SOC when the amount of charge electricity is in the state of charge termination as 100%, when the first amount of charge electricity is obtained, the first charge amount corresponding to the first amount of charge electricity is calculated. The SOC can also be obtained. The first calculator 82 has a first table that defines the relationship between the amount of charge electricity and SOC during charging, and a second table that defines the relationship between the amount of charge electricity and SOC during discharge. Here, the first charge electric quantity and the first SOC are the coordinates when the electric charge is indicated by a coordinate on a plane (refer to FIG. 5) with the horizontal axis of the SOC and the vertical axis of the SOC. The target point. By obtaining the first target point, the second, third, and fourth target points can also be obtained by a calculation method defined in advance. Hereinafter, how to obtain the second, third, and fourth target points will be described.
 第4の目標点の算出方法は、100%から第1の充電電気量を減算することで放電終止状態になる第4の充電電気量を求めることができる。また、第4の充電電気量に対応するSOCは0%と規定しているため、第4の充電電気量と第4のSOCを座標する点を第4の目標点とする。 The fourth target point calculation method can obtain the fourth charge electricity amount that is in the discharge end state by subtracting the first charge electricity amount from 100%. In addition, since the SOC corresponding to the fourth charge electricity amount is defined as 0%, a point that coordinates the fourth charge electricity amount and the fourth SOC is set as a fourth target point.
 第2の目標点の算出方法は、第1の充電電気量に予め設定した値Xを減算して求めることで第2の充電電気量を求めることができる。第2の充電電気量に対応する第2のSOCは第2の充電電気量と同じ値になるように設定される。そのため、第2の目標点では第2の充電電気量と第2のSOCは同じ値になり、第2の充電電気量と第2のSOCを座標とする点を第2の目標点とする。 The second target point is calculated by subtracting a preset value X from the first charge electricity amount to obtain the second charge electricity amount. The second SOC corresponding to the second charge electricity amount is set to be the same value as the second charge electricity amount. Therefore, at the second target point, the second charge electricity amount and the second SOC are the same value, and a point having the second charge electricity amount and the second SOC as coordinates is set as the second target point.
 第3の目標点の算出方法は、第4の充電電気量に第2の目標点で用いた予め設定した値Xを加算して求める。また、充電電気量の第3の目標点に対応する第3のSOCは充電電気量の第3の目標点と同じ値になるように設定される。第3の充電電気量と第3のSOCを座標とする点を第3の目標点とする。なお、予め設定した値Xは蓄電池の使用状況によって自由に変更されるが、SOCの中間領域が存在するように設定することが望ましい。また、予め設定した値Xは第1の充電電気量から減算した値が50%未満にならないよう、あるいは第3の充電電気量から加算した値が50%以上にならないように設定されることが望ましい。 The calculation method of the third target point is obtained by adding the preset value X used at the second target point to the fourth charge electricity amount. Further, the third SOC corresponding to the third target point of the charged electricity amount is set to be the same value as the third target point of the charged electricity amount. A point having the third charge electricity amount and the third SOC as coordinates is set as a third target point. Note that the preset value X is freely changed depending on the usage state of the storage battery, but it is desirable to set it so that an intermediate region of the SOC exists. Further, the preset value X may be set so that the value subtracted from the first charge electricity amount does not become less than 50%, or the value added from the third charge electricity amount does not become 50% or more. desirable.
 第1の算出部82で求めた第1から第4の充電電気量と第1から第4のSOC、時刻T1のひとつ前に求めた充電電気量およびSOC、充電時の充電電気量とSOCの関係を規定したテーブルに基づいて第1の目標点から第4の目標点の中から時刻T1における目標とする目標点を決定する。目標点の決定の仕方は図3を用いて詳しく説明する。 The first to fourth charge electricity amounts and the first to fourth SOC obtained by the first calculation unit 82, the charge electricity amount and SOC obtained immediately before the time T1, the charge electricity amount and SOC at the time of charge, Based on a table that defines the relationship, a target point at the time T1 is determined from the first target point to the fourth target point. A method of determining the target point will be described in detail with reference to FIG.
 図3は、本発明の実施の形態に係る充電時の充電電気量とSOCの関係を規定した第1のテーブルの図面である。 FIG. 3 is a drawing of a first table that defines the relationship between the amount of charged electricity and SOC during charging according to the embodiment of the present invention.
 図3の第1のテーブルの横軸は充電電気量、縦軸はSOCを示している。第1のテーブルの選択方法は検出部70が検出した電流の正負の値に基づいて充電か放電か判断して、テーブルが選択される。第1のテーブルはそれぞれ充電電気量およびSOCを予め設定した領域で分割し、分割した領域ごとに目標点を設定している。 In FIG. 3, the horizontal axis of the first table indicates the amount of charged electricity, and the vertical axis indicates the SOC. The first table is selected by determining whether charging or discharging is performed based on the positive and negative values of the current detected by the detection unit 70. In the first table, the amount of charged electricity and the SOC are each divided in a preset area, and a target point is set for each divided area.
 ここで、予め設定した領域は、充電電気量およびSOCのそれぞれを3つの領域に分割し、第1のテーブルは9つの領域に分割されて設定されている。3つの領域に分割するための領域の境界線は、テーブル参照部81から取得した効率に基づいて、算出した第2の充電電気量および第3の充電電気量と、第2のSOCおよび第3のSOCによって設定される。 Here, in the preset area, each of the charge amount and SOC is divided into three areas, and the first table is set to be divided into nine areas. The boundary lines of the regions for dividing into three regions are calculated based on the efficiency acquired from the table reference unit 81, the calculated second charging electricity amount and the third charging electricity amount, the second SOC, and the third SOC. Set by the SOC.
 第1のテーブルは分割した領域ごとに予め目標点が設定される。例えば、領域500には2と表示してあり、これは目標点の数字を示しており、領域500での目標点は2である。それぞれの分割した領域ごとに目標点の数字が設定されているが、目標点の数字は充放電電気量とSOCの誤差が少なくなるように合わせて設定すればよい。例えば、蓄電池部50が充電している場合、領域100は、目標点は1から3が目標の候補となり、候補の中から領域100に最も近い目標点である3が目標点に設定される。また、領域200、400、500は、目標点は1と2が目標の候補となり、候補の中から領域200、400、500に最も近い目標点である2が目標点に設定される。また、領域300、600、700、800、900は、目標の候補は1のみのため、1が目標点と設定される。 In the first table, target points are set in advance for each divided area. For example, 2 is displayed in the area 500, which indicates the number of the target point, and the target point in the area 500 is 2. A target point number is set for each of the divided areas, but the target point number may be set so as to reduce an error between the charge / discharge electricity amount and the SOC. For example, when the storage battery unit 50 is charged, the target point in the region 100 is a target point from 1 to 3, and the target point 3 closest to the region 100 among the candidates is set as the target point. In the regions 200, 400, and 500, the target points 1 and 2 are candidate targets, and the target point 2 closest to the regions 200, 400, and 500 is set as the target point. In the regions 300, 600, 700, 800, and 900, the target candidate is only 1, and 1 is set as the target point.
 時刻T1のひとつ前に求めた充電電気量とSOCを座標とする点が属する領域で、目標点は1から4が設定される。図4に示す本発明の実施の形態1に係る充電時の充電電気量とSOCの関係を規定した図面も図3と同様の設定で目標点を設定するため説明は省略する。 The target point is set to 1 to 4 in a region to which a point having the coordinates of the charged electric energy and SOC obtained immediately before time T1 belongs. The drawing that defines the relationship between the amount of charged electricity and SOC during charging according to Embodiment 1 of the present invention shown in FIG. 4 also sets the target point with the same setting as in FIG.
 第2の算出部83は、第1の算出部82で算出した目標点と時刻T1のひとつ前に推定した充電電気量とSOCの値から時刻T1における電流積算値を補正するための係数である積算係数を算出する。積算係数の算出方法については図5を用いて詳しく説明する。 The second calculation unit 83 is a coefficient for correcting the current integrated value at the time T1 from the target point calculated by the first calculation unit 82, the charge amount estimated immediately before the time T1, and the SOC value. Calculate the integration coefficient. The method for calculating the integration coefficient will be described in detail with reference to FIG.
 図5は本発明の実施の形態に係る放電時の充電電気量とSOCの関係を規定した図面である。充電電気量とSOCの関係は第1の算出部82で算出される充電電気量およびSOCに基づいている。 FIG. 5 is a drawing that defines the relationship between the amount of charged electricity during discharging and the SOC according to the embodiment of the present invention. The relationship between the charge electricity amount and the SOC is based on the charge electricity amount and the SOC calculated by the first calculation unit 82.
 図5の横軸は充電電気量、縦軸はSOCを示している。図に示す1から4の点は第1の算出部82で充電電気量の目標値と充電電気量に対応したSOCの座標関係を示している。大きいほうから第1の目標点、第2の目標点、第3の目標点、第4の目標点となっている。 5, the horizontal axis indicates the amount of charged electricity, and the vertical axis indicates the SOC. Points 1 to 4 shown in the figure indicate the coordinate relationship of the SOC corresponding to the target value of the charge electricity amount and the charge electricity amount in the first calculation unit 82. From the largest, they are the first target point, the second target point, the third target point, and the fourth target point.
 SOC推定部84は、時刻T1で検出した電流値を取得する。また、時刻T1のひとつ前に算出した電流積算値を格納している。 The SOC estimation unit 84 acquires the current value detected at time T1. Moreover, the integrated current value calculated immediately before time T1 is stored.
 積算係数は、時刻T1よりひとつ前に測定した充電電気量から目標点の充電電気量を減算したときの差分量と、時刻T1より前に測定したSOCから目標点に対応するSOCを減算したときの差分量との比率から求められる。 The integration coefficient is obtained by subtracting the SOC corresponding to the target point from the SOC measured before time T1 and the difference amount when the charging electricity amount at the target point is subtracted from the charging electricity amount measured immediately before time T1. It is calculated | required from the ratio with the difference amount.
 SOCは、時刻T1に取得した電流値に第2の算出部83で算出した積算係数を乗算し、乗算した値に時刻T1のひとつ前の電流積算値を加算する。加算した値をFCCで除算し、その除算した値の百分率から求めることができる。 The SOC multiplies the current value acquired at time T1 by the integration coefficient calculated by the second calculation unit 83, and adds the current integration value immediately before time T1 to the multiplied value. The added value is divided by the FCC and can be obtained from the percentage of the divided value.
 図6は本発明の実施の形態に係るSOC推定するための制御部80の処理をフローチャートで示した図面である。 FIG. 6 is a flowchart showing a process of the control unit 80 for estimating the SOC according to the embodiment of the present invention.
 テーブル参照部81は時刻T1に検出部70が検出した電流および温度を取得する。また、テーブル参照部81は取得した電流の正負の値から蓄電池部50が充電状態か放電状態かを判断し、蓄電池部50の充放電の情報を第1算出部に送る。(S1)
 テーブル参照部81は取得した電流および温度に基づいて、テーブルを参照し、効率を取得する。(S2)
 第1の算出部82は、検出部70から取得した電流の正負の値に基づいて、第1テーブルもしくは第2テーブルを選択する。そして、テーブル参照部81から取得した効率に基づき、第1から第4の充電電気量および第1から第4のSOCを算出する。選択したテーブルと算出した第1から第4の充電電気量および第1から第4のSOCに基づいて、選択したテーブルをそれぞれの領域ごとに分割し、それぞれの領域ごとに目標点を設定する。(S3)
 算出した第1から第4の充電電気量および第1から第4のSOCに基づいて、第1から第4の充電電気量と第1から第4のSOCに対応する第1から第4の目標点を算出する。(S4)
 第1の算出部82は、分割したそれぞれのテーブル領域に時刻T1よりひとつ前に算出した充電電気量とSOCとの対応位置関係に基づいて、第1から第4の中から目標点を決定する。(S5)
 第2の算出部83は、第1の算出部82で算出した目標点と時刻T1のひとつ前に算出した充電電気量とSOCから、充電電気量の差分量とSOCの差分量を求め、ふたつの差分量の比率から積算係数を算出する。(S6)
 SOC推定部84は、第2の算出部83が算出した積算係数に時刻T1に検出した電流を乗算した値を求める。その値を時刻T1よりひとつ前に求めた電流積算値に加算し、加算した値とFCCの比より時刻T1でのSOCを求める。(S7)
 以上の処理は一定周期で実行され、例えば、1ms周期で実行される。
The table reference unit 81 acquires the current and temperature detected by the detection unit 70 at time T1. Moreover, the table reference part 81 judges whether the storage battery part 50 is a charge state or a discharge state from the positive / negative value of the acquired electric current, and sends the charging / discharging information of the storage battery part 50 to a 1st calculation part. (S1)
The table reference unit 81 refers to the table based on the acquired current and temperature, and acquires the efficiency. (S2)
The first calculation unit 82 selects the first table or the second table based on the positive and negative values of the current acquired from the detection unit 70. Then, based on the efficiency acquired from the table reference unit 81, the first to fourth charge electricity amounts and the first to fourth SOC are calculated. Based on the selected table, the calculated first to fourth charge amounts and the first to fourth SOCs, the selected table is divided for each region, and a target point is set for each region. (S3)
The first to fourth targets corresponding to the first to fourth charge electricity amounts and the first to fourth SOCs based on the calculated first to fourth charge electricity amounts and the first to fourth SOCs. Calculate points. (S4)
The first calculation unit 82 determines a target point from the first to the fourth based on the corresponding positional relationship between the SOC and the SOC calculated one time before the time T1 in each divided table area. . (S5)
The second calculation unit 83 obtains the difference amount of the charge electricity amount and the difference amount of the SOC from the target point calculated by the first calculation unit 82 and the charge amount and SOC calculated immediately before the time T1. The integration coefficient is calculated from the difference amount ratio. (S6)
The SOC estimation unit 84 obtains a value obtained by multiplying the integration coefficient calculated by the second calculation unit 83 by the current detected at time T1. The value is added to the current integrated value obtained immediately before time T1, and the SOC at time T1 is obtained from the ratio of the added value and FCC. (S7)
The above processing is executed at a constant cycle, for example, at a cycle of 1 ms.
 以上、説明したように実施の形態に係るSOC推定装置60によれば、本発明は、SOC全体の推定誤差を減らし、SOC推定精度を向上させることが出来る。 As described above, according to the SOC estimation apparatus 60 according to the embodiment as described above, the present invention can reduce the estimation error of the entire SOC and improve the SOC estimation accuracy.
 また、第2の目標点と第2のSOCとの値、および第3の目標点と第3のSOCとの値を一致させる設定をすることで、第2の目標点と第3の目標点の領域内で推定誤差を減らすことができる。そのため、特にSOCの中間領域でSOC推定精度が向上する。 Further, the second target point and the third target point are set by matching the values of the second target point and the second SOC and the values of the third target point and the third SOC. It is possible to reduce the estimation error in the region. Therefore, the SOC estimation accuracy is improved particularly in the middle region of the SOC.
 図3で示した実施の形態1に係る充電時の充電電気量とSOCの関係を規定した第1のテーブルは、時刻T1のひとつ前に算出した充電電気量とSOCとの座標が充電電気量よりもSOCの値が大きい領域に属する場合、充電電気量とSOCの間に発生している誤差を解消できないままSOC推定を続けてしまう。また、図4で示した実施の形態1に係る放電時の充電電気量とSOCの関係を規定した第2のテーブルでは、時刻T1のひとつ前に算出した充電電気量とSOCとの座標が充電電気量よりもSOCの値が小さい領域に属する場合も、充電電気量とSOCの間の誤差を解消できないままSOC推定を続けてしまう。充電電気量とSOCとの間に発生している誤差を含んでいる場合に解消できるように対応した本発明の実施の形態2を示す。 In the first table that defines the relationship between the amount of charge electricity and SOC during charging according to the first embodiment shown in FIG. 3, the coordinates of the amount of charge electricity calculated before the time T1 and the SOC are the amount of charge electricity. In the case where the SOC value is larger than the range, the SOC estimation is continued without eliminating the error generated between the charged electric charge and the SOC. Further, in the second table that defines the relationship between the charged electric charge during discharging and the SOC according to the first embodiment shown in FIG. 4, the coordinates of the charged electric charge and SOC calculated immediately before time T1 are charged. Even when the SOC value is smaller than the amount of electricity, the SOC estimation is continued without eliminating the error between the charged amount of electricity and the SOC. Embodiment 2 of the present invention corresponding to the case where an error occurring between the amount of charged electricity and the SOC is included can be solved.
 図7は実施の形態2に係る充電時の充電電気量とSOCの関係を規定した第3のテーブルの図面である。また、図8は実施の形態2に係る放電時の充電電気量とSOCの関係を規定した第4のテーブルの図面である。 FIG. 7 is a drawing of a third table that defines the relationship between the amount of charged electricity and SOC during charging according to the second embodiment. FIG. 8 is a drawing of a fourth table that defines the relationship between the amount of charged electricity during discharging and the SOC according to the second embodiment.
 図7および図8の第3のテーブルおよび第4のテーブルの横軸は充電電気量、縦軸はSOCを示している。図7および図8に示す第3のテーブルは第1のテーブル、第4のテーブルは第2のテーブルと同様の設定のため、説明を省略する。ここで、第3のテーブルが選択され、時刻T1のひとつ前に算出した充電電気量とSOCとの位置関係が充電電気量よりもSOCの値が大きい領域に属する場合、目標点は時刻T1のひとつ前に算出した充電電気量より大きく且つ最も近い目標値が選択される。また、第4のテーブルが選択され、時刻T1のひとつ前に算出した充電電気量とSOCとの位置関係が充電電気量よりもSOCの値が小さい領域に属する場合、目標点は時刻T1のひとつ前に算出した充電電気量より小さく且つ最も近い目標値が選択される。 7 and 8, the horizontal axis of the third table and the fourth table indicates the amount of charged electricity, and the vertical axis indicates the SOC. The third table shown in FIGS. 7 and 8 is the same setting as the first table, and the fourth table is the same as the second table, so the description is omitted. Here, when the third table is selected, and the positional relationship between the SOC and the SOC calculated just before time T1 belongs to a region where the SOC value is larger than the SOC, the target point is the time T1. A target value that is larger and closest to the amount of charged electricity calculated immediately before is selected. When the fourth table is selected and the positional relationship between the SOC and the SOC calculated just before time T1 belongs to a region where the SOC value is smaller than the SOC, the target point is one at time T1. A target value that is smaller and closest to the amount of charge electricity calculated previously is selected.
 第3のテーブルおよび第4のテーブルの領域ごとの目標点の設定は充電電気量のみに依存して設定されている。そのため、第1のテーブルおよび第2のテーブルに比べてはやく誤差を解消できる。 The setting of the target point for each area of the third table and the fourth table is set depending only on the amount of charged electricity. Therefore, the error can be quickly eliminated as compared with the first table and the second table.
 なお、第1の算出部82は第1から第4のテーブルを持ち、検出部70が検出した温度や電流の値によって、第1のテーブルを第3のテーブルに、もしくは第2のテーブルを第4のテーブルに変更できるようにしても良い。 The first calculation unit 82 has first to fourth tables, and the first table is changed to the third table or the second table is changed to the third table depending on the temperature and current values detected by the detection unit 70. You may enable it to change to the table of 4.
 以上、本発明を実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲に入ることは当業者に理解されるところである。 The present invention has been described based on the embodiments. This embodiment is an exemplification, and it will be understood by those skilled in the art that various modifications can be made to combinations of the respective constituent elements and processing processes, and such modifications are also within the scope of the present invention. is there.
 例えば、本発明の実施形態1で説明した第1のテーブルおよび第2のテーブル、本発明の実施形態2で説明した第3のテーブルおよび第4のテーブルを9つの設定領域に分割したが設定領域を増減しても構わない。目標点は2つに設定して、設定領域は充電電気量の領域を2つ、SOCの領域を2つの4つの領域に分割すると、それぞれの中間値である充電電気量50%、SOC50%の位置関係で対応する。また、目標点は4つに設定して、設定領域は充電電気量の領域を4つ、SOCの領域を4つの16の領域に分割すると9つの設定領域に分割していたときよりも充電電気量とSOCの一致していない領域の誤差を小さくすることができる。 For example, the first table and the second table described in the first embodiment of the present invention and the third table and the fourth table described in the second embodiment of the present invention are divided into nine setting areas. You may increase or decrease. If the target point is set to two and the setting area is divided into two areas for the charge electricity amount and the SOC area is divided into four areas, the charge electricity amount is 50% and the SOC is 50%, which are intermediate values. Corresponds by positional relationship. In addition, if the target point is set to four, and the setting area is divided into four charging electric charge areas and the SOC area into four 16 areas, the charging electric power is more than that in the case of dividing into nine setting areas. The error in the area where the amount and the SOC do not match can be reduced.
 10、 20、 30、 40 接続端子、 50 蓄電池部、 60 SOC推定装置、 70 検出部、 80 制御部、 81 テーブル参照部、 82 第1の算出部、 83 第3の算出部、 84 SOC推定部、 90 通信端子、 100、 200、 300、 400、 500、 600、 700、 800、 900 領域。 10, 20, 30, 40 connection terminal, 50 storage battery unit, 60 SOC estimation device, 70 detection unit, 80 control unit, 81 table reference unit, 82 first calculation unit, 83 third calculation unit, 84 SOC estimation unit , 90 communication terminals, 100, 200, 300, 400, 500, 600, 700, 800, 900 areas.

Claims (4)

  1.  蓄電池の電流と温度を検出する検出部と、
     満充電時の蓄電池の電気量を補正する効率と、温度および電流との依存関係を規定するテーブルと、
     前記検出部で検出した電流および温度に基づき前記テーブルを参照し、効率を取得するテーブル参照部と、
     前記テーブル参照部で取得した効率で補正した充電電気量を第1の目標値として、前記第1の目標値より小さい順に第2の目標値、第3の目標値、及び第4の目標値を設定すると共に、前記第1から第4の目標値に対応するように充電終止の状態にある第1のSOC、第2のSOC、第3のSOC、放電終止の状態にある第4のSOCを設定し、
     時刻T1より以前に求めた充電電気量とSOCより、前記第1の目標値から第4の目標値と前記第1のSOCから第4のSOCの中から目標とする目標値とSOCを算出する第1の算出部と、
     前記第1の算出部から取得した前記目標とする目標値と時刻T1より以前に推定した充電電気量との差分量、及び前記目標とするSOCと時刻T1より以前に推定したSOCとの差分量との比率から積算係数を演算する第2の算出部と、
     前記算出部で算出した積算係数と時刻T1で検出した電流の積を時刻T1より前までの電流積算値に加算した電流積算値からSOCを求めるSOC推定部84と、
     を備えるSOC推定装置。
    A detection unit for detecting the current and temperature of the storage battery;
    A table that defines the efficiency of correcting the amount of electricity of the storage battery at full charge, and the dependence relationship between temperature and current;
    Referring to the table based on the current and temperature detected by the detection unit, and a table reference unit for obtaining efficiency;
    The amount of charged electricity corrected by the efficiency acquired by the table reference unit is set as the first target value, and the second target value, the third target value, and the fourth target value are set in order from the first target value. The first SOC, the second SOC, the third SOC, and the fourth SOC in the end of discharge state are set to correspond to the first to fourth target values. Set,
    A target value and SOC are calculated from the first target value to the fourth target value and from the first SOC to the fourth SOC from the charged electricity amount and SOC obtained before time T1. A first calculation unit;
    The amount of difference between the target value obtained as a target obtained from the first calculation unit and the amount of charged electricity estimated before time T1, and the amount of difference between the target SOC and the SOC estimated before time T1 A second calculation unit that calculates the integration coefficient from the ratio of:
    An SOC estimation unit 84 for obtaining SOC from a current integrated value obtained by adding the product of the integration coefficient calculated by the calculation unit and the current detected at time T1 to the current integrated value before time T1,
    An SOC estimation apparatus comprising:
  2.  前記第1の算出部は、前記第1の目標値から第4の目標値と前記第1のSOCから第4のSOCの中から蓄電池の充放電状態に合わせた目標とする目標値とSOCを算出するためのテーブルをさらに備え、
     前記テーブルから、蓄電池は充放電状態を考慮して前記目標とする目標値とSOCを算出することを特徴とする請求項1に記載のSOC推定装置。
    The first calculation unit calculates a target value and an SOC that are targets according to a charge / discharge state of a storage battery from the first target value to the fourth target value and from the first SOC to the fourth SOC. A table for calculating,
    The SOC estimation apparatus according to claim 1, wherein the storage battery calculates the target value and SOC as the target in consideration of a charge / discharge state from the table.
  3.  前記積算係数は、前記第1の目標値と第2の目標値との間で求めた積算係数を第1の積算係数とし、前記第2の目標値と第3の目標値との間で求めた積算係数を第2の積算係数とし、前記第3の目標値と第4の目標値との間で求めた積算係数を第3の積算係数として、前記第2の積算係数は前記第1の積算係数及び前記第3の積算係数よりも小さい値を持つことを特徴とする請求項1もしくは2に記載のSOC推定装置。
    The integration coefficient is determined between the second target value and the third target value, with the integration coefficient determined between the first target value and the second target value as the first integration coefficient. The second integration coefficient is the second integration coefficient, the integration coefficient obtained between the third target value and the fourth target value is the third integration coefficient, and the second integration coefficient is the first integration coefficient. 3. The SOC estimation apparatus according to claim 1, wherein the SOC estimation device has a value smaller than an integration coefficient and the third integration coefficient.
  4.  前記第2の積算係数の値が1となることを特徴とする請求項3に記載のSOC推定装置。 4. The SOC estimation apparatus according to claim 3, wherein the value of the second integration coefficient is 1.
PCT/JP2013/056942 2012-03-26 2013-03-13 Soc estimation device WO2013146248A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012068548 2012-03-26
JP2012-068548 2012-03-26

Publications (1)

Publication Number Publication Date
WO2013146248A1 true WO2013146248A1 (en) 2013-10-03

Family

ID=49259514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056942 WO2013146248A1 (en) 2012-03-26 2013-03-13 Soc estimation device

Country Status (1)

Country Link
WO (1) WO2013146248A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111624492A (en) * 2019-02-28 2020-09-04 北京新能源汽车股份有限公司 Battery charge state correction method and device and electric vehicle
CN117565748A (en) * 2024-01-15 2024-02-20 南昌大学 Lithium ion battery charging control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02163680A (en) * 1988-12-19 1990-06-22 Meidensha Corp Display system for residual capacity of battery
JP2003197272A (en) * 2001-12-27 2003-07-11 Panasonic Ev Energy Co Ltd Estimating method and device of residual capacity of secondary battery, as well as battery pack system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02163680A (en) * 1988-12-19 1990-06-22 Meidensha Corp Display system for residual capacity of battery
JP2003197272A (en) * 2001-12-27 2003-07-11 Panasonic Ev Energy Co Ltd Estimating method and device of residual capacity of secondary battery, as well as battery pack system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111624492A (en) * 2019-02-28 2020-09-04 北京新能源汽车股份有限公司 Battery charge state correction method and device and electric vehicle
CN111624492B (en) * 2019-02-28 2022-04-12 北京新能源汽车股份有限公司 Battery charge state correction method and device and electric vehicle
CN117565748A (en) * 2024-01-15 2024-02-20 南昌大学 Lithium ion battery charging control method
CN117565748B (en) * 2024-01-15 2024-03-26 南昌大学 Lithium ion battery charging control method

Similar Documents

Publication Publication Date Title
JP5708668B2 (en) Power storage system
JP5492291B2 (en) Secondary battery deterioration diagnosis method and deterioration diagnosis device
JP6029745B2 (en) Secondary battery charge state estimation device and secondary battery charge state estimation method
JP6155830B2 (en) State estimation device and state estimation method
US20180120361A1 (en) Method for preventing battery overcharge and overdischarge and increasing battery efficiency
JP2020060581A (en) Power storage element managing device, method for resetting soc, power storage element module, power storage element management program, and moving body
CN105143898B (en) Estimate the method and system of battery SOC
US20160041229A1 (en) Apparatus and method for estimating a battery state of charge
CN102565716A (en) Apparatus for calculating residual capacity of secondary battery
JP2013238402A (en) Battery charge ratio estimation device
JP2015040832A (en) Power storage system and method of estimating full charge capacity of power storage device
JP2014036497A (en) Power storage system and equalization method
JPWO2014115294A1 (en) Battery control device, battery system
JP2014044149A (en) Method for estimating deterioration of lithium ion battery
CN113678009A (en) Battery state estimating device and method
JP2022167921A (en) Storage cell control device and control method
JP2014052186A (en) Method for estimating capacity maintenance rate of secondary battery
WO2013146248A1 (en) Soc estimation device
CN109782182A (en) A kind of series-connected cell group energy state On-line Estimation method and apparatus
JP2014171369A (en) Power supply system
WO2019012930A1 (en) Secondary battery control device
JP2013096785A (en) Battery deterioration determination device and battery deterioration determination method
KR101352841B1 (en) Method and System for Calculating SOC of Battery
JP5768772B2 (en) Power storage system and charging rate estimation method
JP6434245B2 (en) Charging rate estimation device and power supply system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13769285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP