WO2013146176A1 - Controller for hybrid vehicle motor drive system - Google Patents

Controller for hybrid vehicle motor drive system Download PDF

Info

Publication number
WO2013146176A1
WO2013146176A1 PCT/JP2013/056389 JP2013056389W WO2013146176A1 WO 2013146176 A1 WO2013146176 A1 WO 2013146176A1 JP 2013056389 W JP2013056389 W JP 2013056389W WO 2013146176 A1 WO2013146176 A1 WO 2013146176A1
Authority
WO
WIPO (PCT)
Prior art keywords
engagement
disengagement
electric motor
hybrid vehicle
coupling
Prior art date
Application number
PCT/JP2013/056389
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 芳章
隆之 奥田
亮 高野
真二郎 大木
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Publication of WO2013146176A1 publication Critical patent/WO2013146176A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/182Conjoint control of vehicle sub-units of different type or different function including control of braking systems including control of parking brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4808Electric machine connected or connectable to gearbox output shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention is for a hybrid vehicle equipped with an engine and an electric motor as a power source and capable of selecting an electric travel mode (EV mode) using only the electric motor and a hybrid travel mode (HEV mode) based on cooperation between the electric motor and the engine.
  • EV mode electric travel mode
  • HEV mode hybrid travel mode
  • the present invention relates to a motor drive system control device.
  • a vehicle as described in Patent Document 1 is conventionally known.
  • This hybrid vehicle is of a type in which an engine, which is one power source, is detachably connected to a wheel by a clutch, and an electric motor, which is the other power source, is always coupled to the wheel.
  • Such a hybrid vehicle is capable of electric travel (EV travel) in the EV mode using only the electric motor by releasing the clutch and stopping the engine, and is electrically operated by starting the engine and engaging the clutch.
  • Hybrid running (HEV running) in HEV mode is possible by cooperation of motor and engine.
  • Patent Document 2 discloses an interlock shaft that rotates integrally with a motor shaft of an electric motor in an electric vehicle in which an electric motor drives wheels via a planetary gear type reduction gear during EV traveling. Is disengaged along the motor shaft to bring the sun gear and the planetary gear of the planetary gear type reduction gear into an interlocked state, whereby a park lock state in which the wheels are rotationally locked is disclosed.
  • the control device for a hybrid vehicle motor transmission system is configured as follows.
  • a hybrid vehicle as a premise of the present invention will be described.
  • This vehicle includes an engine and an electric motor as power sources, and the engine is drive-coupled to wheels in a detachable manner, and the electric motor has a differential gear mechanism.
  • a hybrid by cooperation of the electric motor and engine by drivingly coupling the engine and the wheel. It can run.
  • the present invention relates to a drive coupling engagement / disengagement mechanism for bringing the differential gear mechanism into a state where the electric motor and wheels are coupled with each other in the hybrid vehicle, and the differential gear mechanism to the entire differential gear mechanism.
  • the engagement / disengagement switching element of the disengagement mechanism is configured to be shared, and is configured by one common engagement / disengagement switching element disposed between the engagement / disengagement mechanisms, and the common engagement / disengagement switching element is connected to the engagement / disengagement mechanism for drive coupling
  • the drive coupling engagement / disengagement mechanism is engaged at a position close to the drive coupling position where the drive coupling is performed between the electric motor and the wheel, and the position is close to the interlock engagement / disengagement mechanism.
  • the common engagement / disengagement switching element is set to the drive coupling position close to the drive coupling engagement / disengagement mechanism so that the drive coupling engagement / disengagement mechanism is in the engaged state.
  • the motor can be driven by connecting the electric motor and the wheels, and the common engagement / disengagement switching element is set to the interlock position near the interlock engagement / disengagement mechanism so that the interlock engagement / disengagement mechanism is An interlock state (park lock state) can be realized by making the engagement state.
  • the common engagement / disengagement switching element is set to a neutral position between the drive engagement / disengagement mechanism and the interlock engagement / disengagement mechanism. The electric motor can be separated from the wheels to prevent over-rotation by bringing both the engagement / disengagement mechanisms into the detached state.
  • the above three modes can be realized by the three-position operation of the common engagement / disengagement switching element, that is, the state control of the differential gear mechanism by the three-position operation of a single actuator, and a plurality of actuators are necessary.
  • the three-position operation of the common engagement / disengagement switching element that is, the state control of the differential gear mechanism by the three-position operation of a single actuator, and a plurality of actuators are necessary.
  • there are cost problems controllability problems due to an increase in the number of objects to be controlled, problems related to reliability reduction due to increased failure frequency, and the number of types of faults as many as the number of combinations of actuators. Therefore, it is possible to solve all the problems that it is difficult to take countermeasures against failure.
  • FIG. 1 is a schematic system diagram showing an overall drive system of a hybrid vehicle including a motor drive system control device according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing details of a switching mechanism in FIG. 3 is a flowchart showing a motor drive system control program executed by the transmission controller in FIG.
  • FIG. 1 is a schematic system diagram showing an overall drive system of a hybrid vehicle including a motor drive system control device according to an embodiment of the present invention.
  • the hybrid vehicle is mounted with the engine 1 and the electric motor 2 as power sources, and the engine 1 is started by the starter motor 3.
  • the engine 1 is drive-coupled to the driving wheel 5 through a V-belt type continuously variable transmission 4 so as to be appropriately separable, and the V-belt type continuously variable transmission 4 is as outlined below.
  • the V-belt type continuously variable transmission 4 includes a continuously variable transmission mechanism CVT including a primary pulley 6, a secondary pulley 7, and a V belt 8 spanned between the pulleys 6 and 7 as main components.
  • the primary pulley 6 is coupled to the crankshaft of the engine 1 via the torque converter T / C
  • the secondary pulley 7 is coupled to the drive wheel 5 via the clutch CL and the final gear set 9 in order.
  • the clutch CL engaged, the power from the engine 1 is input to the primary pulley 6 via the torque converter T / C, and then reaches the drive wheel 5 via the V belt 8, the clutch CL and the final gear set 9 in sequence. Used for running hybrid vehicles.
  • the pulley V groove of the secondary pulley 7 is enlarged while the pulley V groove of the primary pulley 6 is reduced, so that the V belt 8 is wound around the primary pulley 6 and the arc diameter is increased.
  • the winding arc diameter with the secondary pulley 7 is reduced, and the V-belt continuously variable transmission 4 performs an upshift to the high pulley ratio.
  • the electric motor 2 is drivably coupled to the driving wheel 5 via the switching mechanism 10 and the final gear set 11 in order, so that the driving wheel 5 can be driven by the motor.
  • the switching mechanism 10 is configured as described in detail later with reference to FIG. 2, and the electric motor 2 is disconnected from the drive coupling state with respect to the drive wheel 5 to prevent the above-described over-rotation of the electric motor 2, or the electric motor 2 and It is assumed that the parked state of the vehicle (which can also be used for stopping on an uphill road, so-called hill hold) can be realized by rotationally locking the driving wheel 5.
  • the electric motor 2 is driven and controlled via the inverter 13 by the power of the battery 12.
  • the inverter 13 converts the DC power of the battery 12 into AC power and supplies it to the electric motor 2 and adjusts the power supplied to the electric motor 2 to control the driving force and the rotational direction of the electric motor 2.
  • the electric motor 2 functions as a generator in addition to the motor drive described above, and is also used for regenerative braking described in detail later. During this regenerative braking, the inverter 13 applies a power generation load corresponding to the regenerative braking force to the electric motor 2 to act as a generator, and the generated power of the electric motor 2 is stored in the battery 12.
  • the switching mechanism 10 includes a planetary gear set 31 as a differential gear mechanism, and this planetary gear set 31 is a simple structure comprising three rotating members, that is, a sun gear 31s, a ring gear 31r, and a carrier 31c.
  • a ring gear 31r is arranged concentrically around the sun gear 31s in the center, and the pinion 31P meshed with the outer peripheral teeth of the sun gear 31s and the inner peripheral teeth of the ring gear 31r is freely rotatable on the carrier 31c. Support and configure.
  • the ring gear 31r functions as a reaction force receiver by fixing its outer periphery to the housing 31h and making it non-rotatable. From the side closer to the planetary gear set 31 to the one side in the axial direction of the planetary gear set 31 (right side in FIGS. 1 and 2), the motor side gear of the final gear set 11 (indicated by reference numeral 11 in FIG. 2) and electric The motor 2 is arranged coaxially, and the motor side gear 11 is bound to the carrier 31c so as to rotate.
  • the sun gear 31s and the motor-side gear 11 are hollow, and the output shaft (motor shaft) 2a of the electric motor 2 is loosely fitted in these center holes to extend to the opposite side of the planetary gear set 31 in the axial direction.
  • a hollow intermediate shaft 32 and an outer shaft 33 are provided so as to wrap around the extended portion of the motor shaft 2a on the opposite side in the axial direction of the planetary gear set 31, and the hollow intermediate shaft 32 is rotated with the sun gear 31s.
  • the hollow outer shaft 33 is bound to the carrier 31c so as to rotate with the carrier 31c.
  • a clutch hub 34 is concentrically connected to the tip of the hollow intermediate shaft 32 far from the sun gear 31s, and the inner peripheral teeth of the coupling sleeve 35 are engaged with the outer peripheral teeth of the clutch hub 34, so that the coupling sleeve 35 is connected to the clutch hub 34.
  • Rotatingly engages so as to be relatively displaceable in the axial direction.
  • the tip of the motor shaft 2a far from the electric motor 2 is inserted into and protrudes from the center hole of the clutch hub 34, and the clutch gear 36 is concentrically connected to the tip of the motor shaft 2a.
  • a clutch gear 37 is disposed opposite to the clutch gear 36 across the clutch hub 34, and the clutch gear 37 is attached to the tip of the hollow outer shaft 33 far from the carrier 31c.
  • the coupling sleeve 35 When the coupling sleeve 35 is in the drive coupling (L) position displaced from the neutral (N) position shown in FIG. 2 to the left in the figure, the coupling sleeve 35 meshes with the outer peripheral teeth of the clutch gear 36 and the clutch hub 34 and the clutch gear. As a result, the electric motor 2 is driven and connected to the final gear set 11 (drive wheel 5), and the final gear set 11 is rotated from the motor shaft 2a as follows. After that, it goes to the driving wheel 5.
  • the rotation from the motor shaft 2a reaches the sun gear 31s via the clutch gear 36, the coupling sleeve 35, the clutch hub 34, and the intermediate shaft 32.
  • the sun gear 31s rolls the pinion 31p along the inner periphery of the fixed ring gear 31r in the same direction as the sun gear 31s under the deceleration determined by the gear ratio between the sun gear 31s and the ring gear 31r.
  • the coupling sleeve 35 When the coupling sleeve 35 is in the parking (P) position displaced from the neutral (N) position shown in FIG. 2 to the right in the drawing, the coupling sleeve 35 meshes with the outer peripheral teeth of the clutch gear 37 to engage the clutch hub 34 and the clutch gear 37.
  • the sun gear 31s and the carrier 31c are coupled to each other so that they cannot be rotated via the fixed ring gear 31r, and the planetary gear set 31 can be in an interlock state.
  • the final gear set 11 (drive wheel 5) is rotationally locked, and the vehicle can be placed in a park lock state or in a hill hold state that can prevent retreat on an uphill road. Therefore, the coupling sleeve 35 and the clutch gear 37 constitute an interlock engagement / disengagement mechanism in the present invention, and the parking (P) position corresponds to the interlock position in the present invention.
  • the drive coupling engagement / disengagement mechanism including the coupling sleeve 35 and the clutch gear 36 and the interlock engagement / disengagement mechanism including the coupling sleeve 35 and the clutch gear 37 are common to the coupling sleeve 35.
  • the coupling sleeve 35 corresponds to an engagement / disengagement switching element common to the drive coupling engagement / disengagement mechanism and the interlock engagement / disengagement mechanism.
  • ⁇ Driving mode> The hybrid vehicle having the drive system described above with reference to FIGS. 1 and 2 releases the clutch CL, stops the engine 1, and places the coupling sleeve 35 in the drive coupling (L) position of FIG. 2 by an actuator not shown. Meanwhile, electric traveling (EV traveling) by only the electric motor 2 can be performed as follows.
  • the power of the electric motor 2 reaches the sun gear 31s from the motor shaft 2a through the clutch gear 36, the coupling sleeve 35, the clutch hub 34, and the intermediate shaft 32.
  • the sun gear 31s causes the carrier 31c to rotate at a reduced speed according to the gear ratio between the sun gear 31s and the ring gear 31r by rolling the pinion 31p along the inner periphery of the fixed ring gear 31r in the same direction as the sun gear 31s.
  • the decelerated rotation of the carrier 31c reaches the drive wheel 5 through the final gear set 11, and the hybrid vehicle can be electrically driven (EV traveling) only by the electric motor 2.
  • the clutch CL it is possible to suppress power consumption during EV traveling without causing the stopped engine 1 to rotate.
  • the coupling sleeve 35 When the vehicle speed is in a high vehicle speed range that causes the electric motor 2 to over-rotate in the HEV running state, the coupling sleeve 35 is neutralized between the clutch gears 36 and 37 (N ) Position. In this case, the coupling sleeve 35 is detached from the clutch gear 36, does not mesh with any of the outer peripheral teeth of the clutch gears 36, 37, and the electric motor 2 is separated from the final gear set 11 (drive wheel 5).
  • the final gear set 11 (drive wheel 5) is set in a free state in which the final gear set 11 (drive wheel 5) can freely rotate. As a result, the electric motor 2 can be prevented from over-rotating in the high vehicle speed range in the HEV traveling state, and the electric motor 2 can be protected.
  • the brake disk 14 that rotates together with the drive wheel 5 is clamped by the caliper 15 to be braked.
  • the caliper 15 is connected to a master cylinder 18 that responds to the depressing force of the brake pedal 16 that the driver depresses and outputs a brake hydraulic pressure corresponding to the brake pedal depressing force under the boost of the negative pressure type brake booster 17.
  • the caliper 15 is operated to brake the brake disc 14. In braking, regenerative braking by the electric motor 2 may be performed, braking by the brake disk 14 and cooperative control, or regenerative braking by the electric motor 2 alone may be performed.
  • the coupling sleeve 35 When the vehicle is parked after the vehicle is stopped or the vehicle is prevented from moving backward (hill-holding) on the uphill road, the coupling sleeve 35 is displaced to the parking (P) position in FIG. 2 by the same actuator as described above. In this case, the coupling sleeve 35 meshes with the outer peripheral teeth of the clutch gear 37 to drive-couple the clutch hub 34 and the clutch gear 37, thereby coupling the sun gear 31s and the carrier 31c. As a result, the sun gear 31s and the carrier 31c becomes non-rotatable via the fixed ring gear 31r, and the planetary gear set 31 can be in an interlock state. Therefore, the final gear set 11 (drive wheel 5) is locked in rotation, and the vehicle can be put into a park lock state or in a hill hold state that can prevent the vehicle from moving backward on an uphill road.
  • the hybrid controller 21 has a signal from a normally open brake switch 26 that switches from OFF to ON during braking when the brake pedal 16 is depressed, and an accelerator opening sensor 27 that detects the accelerator pedal depression amount (accelerator opening) APO.
  • a signal and a signal from the vehicle speed sensor 28 for detecting the vehicle speed VSP are input.
  • the hybrid controller 21 further exchanges internal information with the engine controller 22, the motor controller 23, the transmission controller 24, and the battery controller 25.
  • the engine controller 22 controls the output of the engine 1 in response to a command from the hybrid controller 21, and the motor controller 23 controls the rotational direction of the electric motor 2 via the inverter 13 in response to the command from the hybrid controller 21. Perform output control.
  • the transmission controller 24 responds to a command from the hybrid controller 21 and controls the transmission of the continuously variable transmission 4 (V-belt continuously variable transmission mechanism CVT) using oil from the oil pump O / P driven by the engine as a medium. And clutch CL engagement / release control and switching control of the switching mechanism 10 (coupling sleeve 35).
  • the battery controller 25 performs charge / discharge control of the battery 12 in response to a command from the hybrid controller 21.
  • Control of the motor drive system related to the electric motor 2 of the hybrid vehicle will be described below.
  • the motor drive system is controlled by the transmission controller 24 by controlling the stroke of the coupling sleeve 35 in the switching mechanism 10 as shown in FIG. As described above, the coupling sleeve 35 is stroked by a single actuator (not shown).
  • step S12 of FIG. 3 it is checked whether the hybrid vehicle is running or stopped. While it is determined that the vehicle is traveling in step S12, it is checked in step S14 whether or not the vehicle speed VSP is in a high vehicle speed range equal to or higher than the set vehicle speed VSPs that causes the electric motor 2 to over-rotate. While it is determined that VSP ⁇ VSPs and the electric motor 2 is not over-rotated, in step S13, the coupling sleeve 35 is moved to the drive coupling (L) position by an actuator (not shown).
  • the hybrid vehicle can be electrically driven (EV traveling) only by the electric motor 2 or can be hybrid driven (HEV traveling) by the cooperation of the engine 1 and the electric motor 2.
  • step S15 When it is determined in step S14 that VSP ⁇ VSPs (high vehicle speed range in which the electric motor 2 is over-rotated), in step S15, the coupling sleeve 35 is moved to the neutral (N) position as shown in FIG. The motor 2 is disconnected from the final gear set 11 (drive wheel 5), and the final gear set 11 (drive wheel 5) is freely rotated. As a result, the electric motor 2 can be prevented from over-rotating in the high vehicle speed range (VSP ⁇ VSPs) in the HEV traveling state, and the electric motor 2 can be protected. Even when the vehicle speed increases during regenerative braking in the EV traveling state, it is possible to prevent over-rotation in the high vehicle speed range (VSP ⁇ VSPs).
  • step S16 If it is determined in step S12 in FIG. 3 that the vehicle is stopped, it is checked in step S16 whether there is a parking (parking) request or a hill hold request. Hold 35 at the current stroke position. If it is determined in step S16 that there is a parking (parking) request or a hill hold request, the planetary gear set 31 is interlocked by displacing the coupling sleeve 35 to the parking (P) position in FIG. 2 in step S17. The final gear set 11 (drive wheel 5) is rotationally locked in the state. As a result, the vehicle enters a park lock state, and the above-described parking (parking) request and a reverse prevention (hill hold) request on an uphill road can be realized.
  • the same coupling sleeve 35 is set to the neutral (N) position between the engagement / disengagement mechanism for the drive coupling and the engagement / disengagement mechanism for the interlock.
  • the electric motor 2 can be separated from the drive wheel 5 to prevent over-rotation during HEV traveling by bringing both the engagement / disengagement mechanisms into the detached state.
  • the above three modes can be realized by the state control of the planetary gear set 31 by the operation of the common coupling sleeve 35 to the three positions (L, N, P), that is, the three positions of the single actuator. It will be. Therefore, when multiple actuators are required as in the past, there are cost problems, controllability problems due to an increase in the number of objects to be controlled, problems related to deterioration in reliability due to increased failure frequency, and the number of combinations of actuators. It is possible to solve all the problems that it is difficult to specify the type of failure due to the presence of the type of failure, and it becomes difficult to take measures against the failure.
  • the electric motor 2 the drive coupling engagement / disengagement mechanisms 35, 36 and the interlock engagement / disengagement mechanisms 35, 37 are coaxially arranged on both sides in the axial direction across the planetary gear set 31, the motor transmission system
  • the switching mechanism 10 as a whole is balanced in weight in the axial direction, so that the bearing load is not concentrated at a specific location, and the durability of the motor transmission system switching mechanism 10 can be improved.
  • the coupling sleeve 35 is configured to realize the park lock state by coupling the sun gear 31s and the carrier 31c in the interlock (P) position as in the illustrated example described above, the shafts 2a, 32, and 33 Although it is advantageous to minimize the number of overlaps and the planetary gear set 31 is not always rotated, the power loss can be reduced. Instead, the coupling sleeve 35 is connected to the sun gear 31s and the ring gear 31r in the interlock (P) position. It goes without saying that the park lock state may be realized by combining the intervals. Further, as in the illustrated example described above, the electric motor 2 can be arranged not on the final gear set 11 side but on the clutch gear 36 side. As described above, when the electric motor 2 is disposed on the clutch gear 36 side, the motor shaft 2a can be shortened to make the hollow intermediate shaft 32 have a solid structure.
  • the simple planetary gear set 31 is used as the differential gear mechanism.
  • the present invention is not limited to this, and other types of gear mechanisms may be used as long as the gear mechanism has a differential function. Good thing, of course.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

Ring gears (31r) of a planetary gear set (31) are fixed, carriers (31c) are coupled to drive wheels via final gear sets (11), and sun gears (31s) are coupled to clutch hubs (34). The inner teeth of coupling sleeves (35) mesh with outer teeth of the clutch hubs (34), and clutch gears (36, 37) are concentrically positioned on either side of the clutch hubs (34) in the axis direction so as to face each other. The clutch gears (36, 37) are fastened to a motor shaft (2a) and the carriers (31c). The coupling sleeves (35): put the hybrid vehicle motor drive system into a motor drive system cut-off state in which an electric motor (2) is disconnected from the final gear sets (11) (i.e., the drive wheels (5)) in a neutral (N) position; put the hybrid vehicle motor drive system into a motor drive system connection state in which the coupling sleeves mesh with the outer teeth of the clutch gear (36) in a drive coupling (L) position, forcing the electric motor (2) to couple with the final gear sets (11) (i.e., the drive wheels (5)); and mesh with the outer teeth of the clutch gears (37) in a parking (P) position so as to put the planetary gear set (31) into an interlocked state.

Description

ハイブリッド車両用モータ駆動系の制御装置Control device for motor drive system for hybrid vehicle
 本発明は、エンジンおよび電動モータを動力源として搭載され、電動モータのみによる電気走行モード(EVモード)と、電動モータおよびエンジンの協調によるハイブリッド走行モード(HEVモード)とを選択可能なハイブリッド車両用モータ駆動系の制御装置に関するものである。 The present invention is for a hybrid vehicle equipped with an engine and an electric motor as a power source and capable of selecting an electric travel mode (EV mode) using only the electric motor and a hybrid travel mode (HEV mode) based on cooperation between the electric motor and the engine. The present invention relates to a motor drive system control device.
 このようなハイブリッド車両としては従来、例えば特許文献1に記載のようなものが知られている。
 このハイブリッド車両は、一方の動力源であるエンジンをクラッチにより切り離し可能にして車輪に駆動結合し、他方の動力源である電動モータを当該車輪に常時結合した型式のものである。
As such a hybrid vehicle, a vehicle as described in Patent Document 1, for example, is conventionally known.
This hybrid vehicle is of a type in which an engine, which is one power source, is detachably connected to a wheel by a clutch, and an electric motor, which is the other power source, is always coupled to the wheel.
 かかるハイブリッド車両は、上記のクラッチを解放してエンジンを停止することで電動モータのみによるEVモードでの電気走行(EV走行)が可能であり、エンジンを始動させて当該クラッチを締結することで電動モータおよびエンジンの協調によるHEVモードでのハイブリッド走行(HEV走行)が可能である。 Such a hybrid vehicle is capable of electric travel (EV travel) in the EV mode using only the electric motor by releasing the clutch and stopping the engine, and is electrically operated by starting the engine and engaging the clutch. Hybrid running (HEV running) in HEV mode is possible by cooperation of motor and engine.
 なお、EV走行中にクラッチを上記のごとく解放することで、エンジンが(変速機が存在している場合は変速機も)車輪から切り離されていることとなり、当該エンジン(変速機)をEV走行中に連れ回す(引き摺る)ことがなく、その分のエネルギー損失を回避し得てエネルギー効率を高めることができる。 By releasing the clutch as described above during EV travel, the engine (and transmission if a transmission is present) is disconnected from the wheel, and the engine (transmission) is driven by EV. Without being dragged in (drawn), energy loss can be avoided and energy efficiency can be increased.
 一方で特許文献2には、EV走行中に電動モータが遊星歯車式の減速機を介し車輪を駆動するようになした電気自動車において、電動モータのモータ軸と一体回転するインターロックシャフトを、アクチュエータによりモータ軸に沿って変位させることで、遊星歯車式減速機のサンギヤとプラネタリギヤとをインターロック状態にし、これにより車輪を回転ロックしたパークロック状態が得られるようになす技術が開示されている。 On the other hand, Patent Document 2 discloses an interlock shaft that rotates integrally with a motor shaft of an electric motor in an electric vehicle in which an electric motor drives wheels via a planetary gear type reduction gear during EV traveling. Is disengaged along the motor shaft to bring the sun gear and the planetary gear of the planetary gear type reduction gear into an interlocked state, whereby a park lock state in which the wheels are rotationally locked is disclosed.
 ところで、特許文献1に記載のハイブリッド車両において電動モータの小型化のために車輪の終減速比を大きくするという要求がある。
 しかしこの場合、実用車速内の高速HEV走行中において電動モータが車輪により高回転され、この電動モータが永久磁石式モータなどのように許容上限回転数の比較的低いものである場合は、電動モータが高速HEV走行中に許容上限回転数を超えた過回転状態になってしまい、耐久性を損なわれる。
Incidentally, in the hybrid vehicle described in Patent Document 1, there is a demand to increase the final reduction ratio of the wheels in order to reduce the size of the electric motor.
However, in this case, when the electric motor is rotated at high speed by the wheel during high-speed HEV running within the practical vehicle speed, and the electric motor has a relatively low allowable upper limit rotational speed such as a permanent magnet motor, the electric motor However, during high-speed HEV traveling, an over-rotation state exceeding the allowable upper limit rotational speed is caused, and durability is impaired.
 かかるHEV走行中のモータ過回転を防止するためには、モータ駆動系にクラッチを介挿し、高速HEV走行になったら当該クラッチの解放により電動モータを駆動車輪から切り離す必要がある。 In order to prevent the motor from over-rotating during HEV traveling, it is necessary to insert a clutch in the motor drive system and disconnect the electric motor from the driving wheel by releasing the clutch when high-speed HEV traveling is achieved.
 他方でハイブリッド車両のパークロック装置として、その小型化に係わる要求がある場合、特許文献2に記載のようなパークロック装置を用いることが考えられる。
 しかしこの場合、当該パークロック装置を構成する遊星歯車式減速機のサンギヤとプラネタリギヤとをインターロック状態にするためのアクチュエータと、高速HEV走行中に電動モータを駆動車輪から切り離すに際し上記のクラッチを解放するためのアクチュエータとの、複数個のアクチュエータが必要になる。
On the other hand, when there is a demand for downsizing the parking lock device of a hybrid vehicle, it is conceivable to use a parking lock device as described in Patent Document 2.
However, in this case, the sun gear and planetary gear of the planetary gear type reduction gear constituting the park lock device are interlocked, and the clutch is released when the electric motor is disconnected from the drive wheel during high-speed HEV traveling. A plurality of actuators are required together with an actuator for the purpose.
 このように複数個のアクチュエータが必要な場合は、単にコスト上の問題だけでなく、以下のような問題も生ずる。
 つまりアクチュエータが複数個存在すると、制御対象が増えて制御が面倒、且つ複雑になると共に、故障の確率も高くなって、信頼性の低下に繋がる。
 更に、アクチュエータの組み合わせ数だけ故障の種類が存在すると共に、これら故障が同時並行的に発生する可能性もあり、故障時において、故障の種類を判定し難くなり、そのため故障対策も困難になるという問題を生ずる。
When a plurality of actuators are required in this way, the following problems arise in addition to cost problems.
That is, if there are a plurality of actuators, the number of objects to be controlled increases, the control becomes troublesome and complicated, and the probability of failure increases, leading to a decrease in reliability.
Furthermore, there are as many types of failures as the number of combinations of actuators, and these failures may occur in parallel, making it difficult to determine the type of failure at the time of failure, thus making it difficult to take measures against failure. Cause problems.
 本発明は、モータ駆動系に前記クラッチを介挿する代わりに、差動歯車機構を介して電動モータを車輪に駆動結合すれば、この車輪駆動結合状態と、電動モータを前記過回転防止用に車輪から切り離した状態と、前記したパークロック状態との3態様を、単一アクチュエータの3位置操作による差動歯車機構の状態制御によって実現可能であるとの観点から、この着想を具体化して上記の問題を一挙に解消したハイブリッド車両用モータ伝動系の制御装置を提案することを目的とする。 In the present invention, instead of inserting the clutch in the motor drive system, if the electric motor is drive-coupled to the wheels via a differential gear mechanism, this wheel drive coupling state and the electric motor are used for preventing the over-rotation. From the viewpoint that the three states of the state separated from the wheel and the park lock state described above can be realized by the state control of the differential gear mechanism by three-position operation of a single actuator, the idea is embodied and described above. It aims at proposing the control apparatus of the motor transmission system for hybrid vehicles which solved the problem of 1 at a stretch.
特開2000-199442号公報JP 2000-199442 A 特開2007-314037号公報JP 2007-314037 A
 この目的のため、本発明によるハイブリッド車両用モータ伝動系の制御装置は、これを以下のごとくに構成する。
 先ず本発明の前提となるハイブリッド車両を説明するに、これは、動力源としてエンジンおよび電動モータを具え、前記エンジンは切り離し可能な態様で車輪に駆動結合し、前記電動モータは差動歯車機構を介して前記車輪に駆動結合し、前記エンジンを前記車輪から切り離して前記電動モータのみによる電気走行が可能であるほか、前記エンジンおよび車輪間を駆動結合することで前記電動モータおよびエンジンの協調によるハイブリッド走行が可能なものである。
For this purpose, the control device for a hybrid vehicle motor transmission system according to the present invention is configured as follows.
First, a hybrid vehicle as a premise of the present invention will be described. This vehicle includes an engine and an electric motor as power sources, and the engine is drive-coupled to wheels in a detachable manner, and the electric motor has a differential gear mechanism. In addition to being able to drive-couple to the wheel and disconnect the engine from the wheel to allow electric traveling only by the electric motor, a hybrid by cooperation of the electric motor and engine by drivingly coupling the engine and the wheel. It can run.
 本発明は、当該ハイブリッド車両において前記差動歯車機構を電動モータおよび車輪間の駆動結合が行われた状態にする駆動結合用係脱機構と、前記差動歯車機構を当該差動歯車機構の全回転メンバが回転ロックされたインターロック状態にするインターロック用係脱機構と、を具え、これら駆動結合用係脱機構およびインターロック用係脱機構を相互に隣り合わせて同軸配置すると共に、これら両係脱機構の係脱切り替え要素を共用可能に構成して該係脱機構間に配した1個の共通な係脱切り替え要素により構成し、該共通な係脱切り替え要素に、駆動結合用係脱機構寄りの位置で該駆動結合用係脱機構を係合状態にすることにより電動モータおよび車輪間の駆動結合を行う駆動結合位置と、インターロック用係脱機構寄りの位置で該インターロック用係脱機構を係合状態にすることにより上記インターロック状態を生起させるインターロック位置と、上記両係脱機構間の位置でこれら係脱機構を共に外脱状態にする中立位置とを設定した構成に特徴づけられる。 The present invention relates to a drive coupling engagement / disengagement mechanism for bringing the differential gear mechanism into a state where the electric motor and wheels are coupled with each other in the hybrid vehicle, and the differential gear mechanism to the entire differential gear mechanism. An interlocking engagement / disengagement mechanism in which the rotating member is locked in rotation, and the drive coupling engagement / disengagement mechanism and the interlock engagement / disengagement mechanism are coaxially arranged next to each other, The engagement / disengagement switching element of the disengagement mechanism is configured to be shared, and is configured by one common engagement / disengagement switching element disposed between the engagement / disengagement mechanisms, and the common engagement / disengagement switching element is connected to the engagement / disengagement mechanism for drive coupling The drive coupling engagement / disengagement mechanism is engaged at a position close to the drive coupling position where the drive coupling is performed between the electric motor and the wheel, and the position is close to the interlock engagement / disengagement mechanism. Set the interlock position to cause the interlock state by bringing the turlock engagement / disengagement mechanism into the engaged state, and the neutral position to bring the engagement / disengagement mechanism into the disengagement state at the position between the engagement / disengagement mechanisms. It is characterized by the configuration.
 本発明によるハイブリッド車両用モータ駆動系の制御装置にあっては、上記共通な係脱切り替え要素を駆動結合用係脱機構寄りの駆動結合位置にして当該駆動結合用係脱機構を係合状態にすることで電動モータおよび車輪間の駆動結合を行ってモータ駆動可能となり、また、上記共通な係脱切り替え要素をインターロック用係脱機構寄りのインターロック位置にして当該インターロック用係脱機構を係合状態にすることでインターロック状態(パークロック状態)を実現可能であり、更に、上記共通な係脱切り替え要素を駆動結合用係脱機構およびインターロック用係脱機構間の中立位置にしてこれら両係脱機構を共に外脱状態にすることで電動モータを過回転防止用に車輪から切り離すことができる。 In the control device for a hybrid vehicle motor drive system according to the present invention, the common engagement / disengagement switching element is set to the drive coupling position close to the drive coupling engagement / disengagement mechanism so that the drive coupling engagement / disengagement mechanism is in the engaged state. By doing so, the motor can be driven by connecting the electric motor and the wheels, and the common engagement / disengagement switching element is set to the interlock position near the interlock engagement / disengagement mechanism so that the interlock engagement / disengagement mechanism is An interlock state (park lock state) can be realized by making the engagement state. Further, the common engagement / disengagement switching element is set to a neutral position between the drive engagement / disengagement mechanism and the interlock engagement / disengagement mechanism. The electric motor can be separated from the wheels to prevent over-rotation by bringing both the engagement / disengagement mechanisms into the detached state.
 そのため、上記共通な係脱切り替え要素の3位置操作による、つまり単一アクチュエータの3位置操作による差動歯車機構の状態制御によって、上記の3態様を実現し得ることとなり、複数個のアクチュエータが必要な場合における、コスト上の問題、および制御対象の増大による制御性の問題、更に故障頻度増大による信頼性の低下に関する問題、そしてアクチュエータの組み合わせ数だけ故障の種類が存在して故障の種類を特定し難く、故障対策が困難になるという問題をことごとく解消することができる。 Therefore, the above three modes can be realized by the three-position operation of the common engagement / disengagement switching element, that is, the state control of the differential gear mechanism by the three-position operation of a single actuator, and a plurality of actuators are necessary. In such cases, there are cost problems, controllability problems due to an increase in the number of objects to be controlled, problems related to reliability reduction due to increased failure frequency, and the number of types of faults as many as the number of combinations of actuators. Therefore, it is possible to solve all the problems that it is difficult to take countermeasures against failure.
本発明の一実施例になるモータ駆動系の制御装置を具えたハイブリッド車両の全体的な駆動系を示す概略システム図である。1 is a schematic system diagram showing an overall drive system of a hybrid vehicle including a motor drive system control device according to an embodiment of the present invention. 図1における切り替え機構の詳細を示す略線図である。FIG. 2 is a schematic diagram showing details of a switching mechanism in FIG. 図1における変速機コントローラが実行するモータ駆動系の制御プログラムを示すフローチャートである。3 is a flowchart showing a motor drive system control program executed by the transmission controller in FIG.
 以下、本発明の実施の形態を、図面に示す実施例に基づき詳細に説明する。
<実施例の構成>
 図1は、本発明の一実施例になるモータ駆動系の制御装置を具えたハイブリッド車両の全体的な駆動系を示す概略システム図である。
Hereinafter, embodiments of the present invention will be described in detail based on examples shown in the drawings.
<Configuration of Example>
FIG. 1 is a schematic system diagram showing an overall drive system of a hybrid vehicle including a motor drive system control device according to an embodiment of the present invention.
 ハイブリッド車両は、エンジン1および電動モータ2を動力源として搭載され、エンジン1は、スタータモータ3により始動する。
 エンジン1は、Vベルト式無段変速機4を介して駆動車輪5に適宜切り離し可能に駆動結合し、Vベルト式無段変速機4は、概略を以下に説明するようなものとする。
The hybrid vehicle is mounted with the engine 1 and the electric motor 2 as power sources, and the engine 1 is started by the starter motor 3.
The engine 1 is drive-coupled to the driving wheel 5 through a V-belt type continuously variable transmission 4 so as to be appropriately separable, and the V-belt type continuously variable transmission 4 is as outlined below.
 Vベルト式無段変速機4は、プライマリプーリ6と、セカンダリプーリ7と、これらプーリ6,7間に掛け渡したVベルト8とからなる無段変速機構CVTを主たる構成要素とする。
 プライマリプーリ6はトルクコンバータT/Cを介してエンジン1のクランクシャフトに結合し、セカンダリプーリ7はクラッチCLおよびファイナルギヤ組9を順次介して駆動車輪5に結合する。
The V-belt type continuously variable transmission 4 includes a continuously variable transmission mechanism CVT including a primary pulley 6, a secondary pulley 7, and a V belt 8 spanned between the pulleys 6 and 7 as main components.
The primary pulley 6 is coupled to the crankshaft of the engine 1 via the torque converter T / C, and the secondary pulley 7 is coupled to the drive wheel 5 via the clutch CL and the final gear set 9 in order.
 かくしてクラッチCLの締結状態で、エンジン1からの動力はトルクコンバータT/Cを経てプライマリプーリ6へ入力され、その後Vベルト8、クラッチCLおよびファイナルギヤ組9を順次経て駆動車輪5に達して、ハイブリッド車両の走行に供される。 Thus, with the clutch CL engaged, the power from the engine 1 is input to the primary pulley 6 via the torque converter T / C, and then reaches the drive wheel 5 via the V belt 8, the clutch CL and the final gear set 9 in sequence. Used for running hybrid vehicles.
 かかるエンジン動力伝達中、プライマリプーリ6のプーリV溝を小さくしつつ、セカンダリプーリ7のプーリV溝を大きくすることで、Vベルト8がプライマリプーリ6との巻き掛け円弧径を大きくされると同時にセカンダリプーリ7との巻き掛け円弧径を小さくされ、Vベルト式無段変速機4はハイ側プーリ比へのアップシフトを行う。
 逆にプライマリプーリ6のプーリV溝を大きくしつつ、セカンダリプーリ7のプーリV溝を小さくすることで、Vベルト8がプライマリプーリ6との巻き掛け円弧径を小さくされると同時にセカンダリプーリ7との巻き掛け円弧径を大きくされ、Vベルト式無段変速機4はロー側プーリ比へのダウンシフトを行う。
While the engine power is being transmitted, the pulley V groove of the secondary pulley 7 is enlarged while the pulley V groove of the primary pulley 6 is reduced, so that the V belt 8 is wound around the primary pulley 6 and the arc diameter is increased. The winding arc diameter with the secondary pulley 7 is reduced, and the V-belt continuously variable transmission 4 performs an upshift to the high pulley ratio.
Conversely, by enlarging the pulley V groove of the primary pulley 6 and reducing the pulley V groove of the secondary pulley 7, the winding belt V diameter of the V belt 8 with the primary pulley 6 is reduced and at the same time the secondary pulley 7 The V-belt continuously variable transmission 4 is downshifted to a low pulley ratio.
 電動モータ2は切り替え機構10およびファイナルギヤ組11を順次介し駆動車輪5に駆動結合して駆動車輪5のモータ駆動を可能にする。
 切り替え機構10は図2につき後で詳述するような構成とし、電動モータ2を駆動車輪5に対し駆動結合状態から切り離して電動モータ2の前記した過回転を防止したり、これら電動モータ2および駆動車輪5を回転ロックして車両の前記パークロック状態(登坂路での停車、所謂ヒルホールドにも用い得る)を実現し得るものとする。
The electric motor 2 is drivably coupled to the driving wheel 5 via the switching mechanism 10 and the final gear set 11 in order, so that the driving wheel 5 can be driven by the motor.
The switching mechanism 10 is configured as described in detail later with reference to FIG. 2, and the electric motor 2 is disconnected from the drive coupling state with respect to the drive wheel 5 to prevent the above-described over-rotation of the electric motor 2, or the electric motor 2 and It is assumed that the parked state of the vehicle (which can also be used for stopping on an uphill road, so-called hill hold) can be realized by rotationally locking the driving wheel 5.
 なお電動モータ2は、バッテリ12の電力によりインバータ13を介して駆動制御する。
 インバータ13は、バッテリ12の直流電力を交流電力に変換して電動モータ2へ供給すると共に電動モータ2への供給電力を加減して、電動モータ2を駆動力制御および回転方向制御する。
The electric motor 2 is driven and controlled via the inverter 13 by the power of the battery 12.
The inverter 13 converts the DC power of the battery 12 into AC power and supplies it to the electric motor 2 and adjusts the power supplied to the electric motor 2 to control the driving force and the rotational direction of the electric motor 2.
 なお電動モータ2は、上記のモータ駆動のほかに発電機としても機能し、後で詳述する回生制動の用にも供する。
 この回生制動時はインバータ13が、電動モータ2に回生制動力分の発電負荷をかけてこれを発電機として作用させ、電動モータ2の発電電力をバッテリ12に蓄電する。
The electric motor 2 functions as a generator in addition to the motor drive described above, and is also used for regenerative braking described in detail later.
During this regenerative braking, the inverter 13 applies a power generation load corresponding to the regenerative braking force to the electric motor 2 to act as a generator, and the generated power of the electric motor 2 is stored in the battery 12.
 切り替え機構10は図2に示すごとく、差動歯車機構としての遊星歯車組31を具え、この遊星歯車組31は3個の回転メンバ、つまりサンギヤ31sと、リングギヤ31rと、キャリア31cとから成る単純遊星歯車組とし、中心部のサンギヤ31sに同心に、これを包囲するようリングギヤ31rを配置し、サンギヤ31sの外周歯およびリングギヤ31rの内周歯に噛合させたピニオン31Pをキャリア31cに回転自在に支持して構成する。 As shown in FIG. 2, the switching mechanism 10 includes a planetary gear set 31 as a differential gear mechanism, and this planetary gear set 31 is a simple structure comprising three rotating members, that is, a sun gear 31s, a ring gear 31r, and a carrier 31c. As a planetary gear set, a ring gear 31r is arranged concentrically around the sun gear 31s in the center, and the pinion 31P meshed with the outer peripheral teeth of the sun gear 31s and the inner peripheral teeth of the ring gear 31r is freely rotatable on the carrier 31c. Support and configure.
 リングギヤ31rは、その外周をハウジング31hに固定して回転不能にすることにより反力受けとして機能させる。
 遊星歯車組31の軸線方向一方側(図1,2の右側)へ、遊星歯車組31に近い側から順次、ファイナルギヤ組11のモータ側歯車(図2では同符号11により示した)および電動モータ2を同軸に配置し、このモータ側歯車11をキャリア31cと共に回転するようこれに結着する。
The ring gear 31r functions as a reaction force receiver by fixing its outer periphery to the housing 31h and making it non-rotatable.
From the side closer to the planetary gear set 31 to the one side in the axial direction of the planetary gear set 31 (right side in FIGS. 1 and 2), the motor side gear of the final gear set 11 (indicated by reference numeral 11 in FIG. 2) and electric The motor 2 is arranged coaxially, and the motor side gear 11 is bound to the carrier 31c so as to rotate.
 サンギヤ31sおよびモータ側歯車11は中空とし、これらの中心孔に電動モータ2の出力軸(モータ軸)2aを遊嵌して遊星歯車組31の軸線方向反対側まで延在させる。
 遊星歯車組31の当該軸線方向反対側におけるモータ軸2aの延長部分を包套するよう配して中空の中間軸32および外側軸33を設け、中空中間軸32は、サンギヤ31sと共に回転するようこれに結着し、中空外側軸33は、キャリア31cと共に回転するようこれに結着する。
The sun gear 31s and the motor-side gear 11 are hollow, and the output shaft (motor shaft) 2a of the electric motor 2 is loosely fitted in these center holes to extend to the opposite side of the planetary gear set 31 in the axial direction.
A hollow intermediate shaft 32 and an outer shaft 33 are provided so as to wrap around the extended portion of the motor shaft 2a on the opposite side in the axial direction of the planetary gear set 31, and the hollow intermediate shaft 32 is rotated with the sun gear 31s. The hollow outer shaft 33 is bound to the carrier 31c so as to rotate with the carrier 31c.
 サンギヤ31sから遠い中空中間軸32の先端にクラッチハブ34を同心に結着し、該クラッチハブ34の外周歯にカップリングスリーブ35の内周歯を噛合させて、カップリングスリーブ35をクラッチハブ34に対し軸線方向相対変位可能に回転係合させる。
 電動モータ2から遠いモータ軸2aの先端は、クラッチハブ34の中心孔に貫通させてこれから突出させ、当該モータ軸2aの先端にクラッチギヤ36を同心に結着する。
 クラッチハブ34を挟んでクラッチギヤ36と反対の側にクラッチギヤ37を対向配置し、キャリア31cから遠い中空外側軸33の先端にクラッチギヤ37を結着する。
A clutch hub 34 is concentrically connected to the tip of the hollow intermediate shaft 32 far from the sun gear 31s, and the inner peripheral teeth of the coupling sleeve 35 are engaged with the outer peripheral teeth of the clutch hub 34, so that the coupling sleeve 35 is connected to the clutch hub 34. Rotatingly engages so as to be relatively displaceable in the axial direction.
The tip of the motor shaft 2a far from the electric motor 2 is inserted into and protrudes from the center hole of the clutch hub 34, and the clutch gear 36 is concentrically connected to the tip of the motor shaft 2a.
A clutch gear 37 is disposed opposite to the clutch gear 36 across the clutch hub 34, and the clutch gear 37 is attached to the tip of the hollow outer shaft 33 far from the carrier 31c.
 クラッチギヤ36,37の外周には、カップリングスリーブ35の内周歯が噛合するクラッチハブ34の外周歯と同仕様の外周歯を刻設する。
 カップリングスリーブ35は、クラッチギヤ36,37間における図示の中立(N)位置にあるとき、クラッチギヤ36,37の外周歯の何れとも噛合せず、電動モータ2をファイナルギヤ組11(駆動車輪5)から切り離したモータ駆動系遮断状態にすると共にファイナルギヤ組11(駆動車輪5)を自由に回転可能な状態にする。
On the outer periphery of the clutch gears 36 and 37, outer peripheral teeth having the same specifications as the outer peripheral teeth of the clutch hub 34 with which the inner peripheral teeth of the coupling sleeve 35 mesh are engraved.
When the coupling sleeve 35 is in the illustrated neutral (N) position between the clutch gears 36 and 37, it does not mesh with any of the outer peripheral teeth of the clutch gears 36 and 37, and the electric motor 2 is connected to the final gear set 11 (drive wheel). The motor drive system is disconnected from 5) and the final gear set 11 (drive wheel 5) is freely rotatable.
 カップリングスリーブ35は、図2に示す中立(N)位置から図の左方へ変位させた駆動結合(L)位置にあるとき、クラッチギヤ36の外周歯に噛合してクラッチハブ34およびクラッチギヤ36間を駆動結合し、結果として電動モータ2をファイナルギヤ組11(駆動車輪5)に駆動結合させたモータ駆動系接続状態にし、モータ軸2aからの回転を以下のようにファイナルギヤ組11を経て駆動車輪5へ向かわせる。 When the coupling sleeve 35 is in the drive coupling (L) position displaced from the neutral (N) position shown in FIG. 2 to the left in the figure, the coupling sleeve 35 meshes with the outer peripheral teeth of the clutch gear 36 and the clutch hub 34 and the clutch gear. As a result, the electric motor 2 is driven and connected to the final gear set 11 (drive wheel 5), and the final gear set 11 is rotated from the motor shaft 2a as follows. After that, it goes to the driving wheel 5.
 つまりモータ軸2aからの回転はクラッチギヤ36、カップリングスリーブ35、クラッチハブ34、および中間軸32を経てサンギヤ31sに達する。
 この時サンギヤ31sは、ピニオン31pを固定リングギヤ31rの内周に沿って、サンギヤ31sおよびリングギヤ31r間のギヤ比で決まる減速下に、サンギヤ31sと同方向へ転動させ、この転動をキャリア31cによってファイナルギヤ組11(駆動車輪5)へ出力することができる。
 従って、カップリングスリーブ35およびクラッチギヤ36は、本発明における駆動結合用係脱機構を構成する。
That is, the rotation from the motor shaft 2a reaches the sun gear 31s via the clutch gear 36, the coupling sleeve 35, the clutch hub 34, and the intermediate shaft 32.
At this time, the sun gear 31s rolls the pinion 31p along the inner periphery of the fixed ring gear 31r in the same direction as the sun gear 31s under the deceleration determined by the gear ratio between the sun gear 31s and the ring gear 31r. Can be output to the final gear set 11 (drive wheel 5).
Therefore, the coupling sleeve 35 and the clutch gear 36 constitute a drive coupling engagement / disengagement mechanism in the present invention.
 カップリングスリーブ35は、図2に示す中立(N)位置から図の右方へ変位させた駐車(P)位置にあるとき、クラッチギヤ37の外周歯に噛合してクラッチハブ34およびクラッチギヤ37間を駆動結合し、結果としてサンギヤ31sおよびキャリア31c間を結合することによりこれらが固定リングギヤ31rを介し回転不能にされ、遊星歯車組31をインターロック状態にすることができる。
 この場合、ファイナルギヤ組11(駆動車輪5)が回転ロックされ、車両をパークロック状態にしたり、登坂路で後退防止可能なヒルホールド状態にすることができる。
 従って、カップリングスリーブ35およびクラッチギヤ37は、本発明におけるインターロック用係脱機構を構成し、駐車(P)位置は、本発明におけるインターロック位置に相当する。
When the coupling sleeve 35 is in the parking (P) position displaced from the neutral (N) position shown in FIG. 2 to the right in the drawing, the coupling sleeve 35 meshes with the outer peripheral teeth of the clutch gear 37 to engage the clutch hub 34 and the clutch gear 37. As a result, the sun gear 31s and the carrier 31c are coupled to each other so that they cannot be rotated via the fixed ring gear 31r, and the planetary gear set 31 can be in an interlock state.
In this case, the final gear set 11 (drive wheel 5) is rotationally locked, and the vehicle can be placed in a park lock state or in a hill hold state that can prevent retreat on an uphill road.
Therefore, the coupling sleeve 35 and the clutch gear 37 constitute an interlock engagement / disengagement mechanism in the present invention, and the parking (P) position corresponds to the interlock position in the present invention.
 上記から明らかなように、カップリングスリーブ35およびクラッチギヤ36から成る駆動結合用係脱機構と、カップリングスリーブ35およびクラッチギヤ37から成るインターロック用係脱機構は、共通なカップリングスリーブ35の上記変位により係脱切り替えされ、従ってカップリングスリーブ35は、駆動結合用係脱機構およびインターロック用係脱機構に共通な係脱切り替え要素に相当する。 As is apparent from the above description, the drive coupling engagement / disengagement mechanism including the coupling sleeve 35 and the clutch gear 36 and the interlock engagement / disengagement mechanism including the coupling sleeve 35 and the clutch gear 37 are common to the coupling sleeve 35. The coupling sleeve 35 corresponds to an engagement / disengagement switching element common to the drive coupling engagement / disengagement mechanism and the interlock engagement / disengagement mechanism.
<走行モード>
 図1,2につき上記した駆動系を具えるハイブリッド車両は、クラッチCLを解放してエンジン1を停止させ、カップリングスリーブ35を図示せざるアクチュエータにより図2の駆動結合(L)位置にしている間、以下のごとく電動モータ2のみによる電気走行(EV走行)を行うことができる。
<Driving mode>
The hybrid vehicle having the drive system described above with reference to FIGS. 1 and 2 releases the clutch CL, stops the engine 1, and places the coupling sleeve 35 in the drive coupling (L) position of FIG. 2 by an actuator not shown. Meanwhile, electric traveling (EV traveling) by only the electric motor 2 can be performed as follows.
 つまり、電動モータ2の動力はモータ軸2aからクラッチギヤ36、カップリングスリーブ35、クラッチハブ34、および中間軸32を経てサンギヤ31sに達する。
 この時サンギヤ31sは、ピニオン31pを固定リングギヤ31rの内周に沿って、サンギヤ31sと同方向へ転動させることで、キャリア31cを、サンギヤ31sおよびリングギヤ31r間のギヤ比により減速回転させる。
 キャリア31cの減速回転はファイナルギヤ組11を経て駆動車輪5に達し、ハイブリッド車両を電動モータ2のみにより電気走行(EV走行)させることができる。
 この間、クラッチCLを解放していることで、停止状態のエンジン1を連れ回すことがなく、EV走行中の電力消費を抑制することができる。
That is, the power of the electric motor 2 reaches the sun gear 31s from the motor shaft 2a through the clutch gear 36, the coupling sleeve 35, the clutch hub 34, and the intermediate shaft 32.
At this time, the sun gear 31s causes the carrier 31c to rotate at a reduced speed according to the gear ratio between the sun gear 31s and the ring gear 31r by rolling the pinion 31p along the inner periphery of the fixed ring gear 31r in the same direction as the sun gear 31s.
The decelerated rotation of the carrier 31c reaches the drive wheel 5 through the final gear set 11, and the hybrid vehicle can be electrically driven (EV traveling) only by the electric motor 2.
During this time, by disengaging the clutch CL, it is possible to suppress power consumption during EV traveling without causing the stopped engine 1 to rotate.
 上記のEV走行状態で、エンジン1をスタータモータ3により始動させると共にクラッチCLを締結させると、エンジン1からの動力がトルクコンバータT/C、プライマリプーリ6、Vベルト8、セカンダリプーリ7、クラッチCLおよびファイナルギヤ組9を順次経て駆動車輪5に達し、ハイブリッド車両はエンジン1および電動モータ2の協調によるハイブリッド走行(HEV走行)を行うことができる。 When the engine 1 is started by the starter motor 3 and the clutch CL is engaged in the above EV running state, the power from the engine 1 is converted to the torque converter T / C, primary pulley 6, V belt 8, secondary pulley 7, clutch CL. Then, the vehicle reaches the drive wheel 5 through the final gear set 9 in sequence, and the hybrid vehicle can perform hybrid travel (HEV travel) by cooperation of the engine 1 and the electric motor 2.
 HEV走行状態で、車速が電動モータ2を過回転させるような高車速域になると、カップリングスリーブ35を上記したと同じアクチュエータで図2に示すように、クラッチギヤ36,37間における中立(N)位置にする。
 この場合カップリングスリーブ35が、クラッチギヤ36から外脱し、クラッチギヤ36,37の外周歯の何れにも噛合せず、電動モータ2をファイナルギヤ組11(駆動車輪5)から切り離したモータ駆動系遮断状態にすると共にファイナルギヤ組11(駆動車輪5)を自由に回転可能な自由状態にする。
 これにより電動モータ2が、HEV走行状態での高車速域において過回転されるのを防止することができ、電動モータ2の保護を図ることができる。
When the vehicle speed is in a high vehicle speed range that causes the electric motor 2 to over-rotate in the HEV running state, the coupling sleeve 35 is neutralized between the clutch gears 36 and 37 (N ) Position.
In this case, the coupling sleeve 35 is detached from the clutch gear 36, does not mesh with any of the outer peripheral teeth of the clutch gears 36, 37, and the electric motor 2 is separated from the final gear set 11 (drive wheel 5). The final gear set 11 (drive wheel 5) is set in a free state in which the final gear set 11 (drive wheel 5) can freely rotate.
As a result, the electric motor 2 can be prevented from over-rotating in the high vehicle speed range in the HEV traveling state, and the electric motor 2 can be protected.
 ハイブリッド車両を上記の走行状態から停車させたり、この停車状態に保つに際しては、駆動車輪5と共に回転するブレーキディスク14をキャリパ15により挟圧して制動することで目的を達する。
 キャリパ15は、運転者が踏み込むブレーキペダル16の踏力に応動して負圧式ブレーキブースタ17による倍力下でブレーキペダル踏力対応のブレーキ液圧を出力するマスターシリンダ18に接続し、このブレーキ液圧でキャリパ15を作動させてブレーキディスク14の制動を行う。
 制動に際しては、電動モータ2による回生制動を行ってもよく、ブレーキディスク14による制動と協調制御や、電動モータ2の単独による回生制動を行うこともできる。
When the hybrid vehicle is stopped from the above running state or kept in this stopped state, the brake disk 14 that rotates together with the drive wheel 5 is clamped by the caliper 15 to be braked.
The caliper 15 is connected to a master cylinder 18 that responds to the depressing force of the brake pedal 16 that the driver depresses and outputs a brake hydraulic pressure corresponding to the brake pedal depressing force under the boost of the negative pressure type brake booster 17. The caliper 15 is operated to brake the brake disc 14.
In braking, regenerative braking by the electric motor 2 may be performed, braking by the brake disk 14 and cooperative control, or regenerative braking by the electric motor 2 alone may be performed.
 上記の停車後に車両を駐車させたり、登坂路で後退防止(ヒルホールド)させるに際しては、カップリングスリーブ35を上記したと同じアクチュエータで図2の駐車(P)位置に変位させる。
 この場合、カップリングスリーブ35がクラッチギヤ37の外周歯に噛合してクラッチハブ34およびクラッチギヤ37間を駆動結合することによりサンギヤ31sおよびキャリア31c間を結合し、結果としてこれらサンギヤ31sおよびキャリア31cが固定リングギヤ31rを介し回転不能となり、遊星歯車組31をインターロック状態にすることができる。
 よって、ファイナルギヤ組11(駆動車輪5)が回転ロックされ、車両をパークロック状態にしたり、登坂路で後退防止可能なヒルホールド状態にすることができる。
When the vehicle is parked after the vehicle is stopped or the vehicle is prevented from moving backward (hill-holding) on the uphill road, the coupling sleeve 35 is displaced to the parking (P) position in FIG. 2 by the same actuator as described above.
In this case, the coupling sleeve 35 meshes with the outer peripheral teeth of the clutch gear 37 to drive-couple the clutch hub 34 and the clutch gear 37, thereby coupling the sun gear 31s and the carrier 31c. As a result, the sun gear 31s and the carrier 31c Becomes non-rotatable via the fixed ring gear 31r, and the planetary gear set 31 can be in an interlock state.
Therefore, the final gear set 11 (drive wheel 5) is locked in rotation, and the vehicle can be put into a park lock state or in a hill hold state that can prevent the vehicle from moving backward on an uphill road.
<制御システム>
 ハイブリッド車両の走行モード選択と、エンジン1の出力制御と、電動モータ2の回転方向制御および出力制御と、無段変速機4の変速制御およびクラッチCLの締結、解放制御並びに切り替え機構10(カップリングスリーブ35)の切り替え制御と、バッテリ12の充放電制御はそれぞれ、ハイブリッドコントローラ21が、対応するエンジンコントローラ22、モータコントローラ23、変速機コントローラ24、およびバッテリコントローラ25を介して行う。
<Control system>
Hybrid vehicle travel mode selection, engine 1 output control, electric motor 2 rotational direction control and output control, continuously variable transmission 4 shift control and clutch CL engagement / release control, and switching mechanism 10 (coupling The switching control of the sleeve 35) and the charge / discharge control of the battery 12 are performed by the hybrid controller 21 via the corresponding engine controller 22, motor controller 23, transmission controller 24, and battery controller 25, respectively.
 そのためハイブリッドコントローラ21には、ブレーキペダル16を踏み込む制動時にOFFからONに切り替わる常開式ブレーキスイッチ26からの信号と、アクセルペダル踏み込み量(アクセル開度)APOを検出するアクセル開度センサ27からの信号と、車速VSPを検出する車速センサ28からの信号とを入力する。
 ハイブリッドコントローラ21は更に、エンジンコントローラ22、モータコントローラ23、変速機コントローラ24、およびバッテリコントローラ25との間で、内部情報のやり取りを行う。
Therefore, the hybrid controller 21 has a signal from a normally open brake switch 26 that switches from OFF to ON during braking when the brake pedal 16 is depressed, and an accelerator opening sensor 27 that detects the accelerator pedal depression amount (accelerator opening) APO. A signal and a signal from the vehicle speed sensor 28 for detecting the vehicle speed VSP are input.
The hybrid controller 21 further exchanges internal information with the engine controller 22, the motor controller 23, the transmission controller 24, and the battery controller 25.
 エンジンコントローラ22は、ハイブリッドコントローラ21からの指令に応答して、エンジン1を出力制御し、モータコントローラ23は、ハイブリッドコントローラ21からの指令に応答してインバータ13を介し電動モータ2の回転方向制御および出力制御を行う。 The engine controller 22 controls the output of the engine 1 in response to a command from the hybrid controller 21, and the motor controller 23 controls the rotational direction of the electric motor 2 via the inverter 13 in response to the command from the hybrid controller 21. Perform output control.
 変速機コントローラ24は、ハイブリッドコントローラ21からの指令に応答し、エンジン駆動されるオイルポンプO/Pからのオイルを媒体として、無段変速機4(Vベルト式無段変速機構CVT)の変速制御、およびクラッチCLの締結、解放制御、並びに切り替え機構10(カップリングスリーブ35)の切り替え制御を行う。
 バッテリコントローラ25は、ハイブリッドコントローラ21からの指令に応答し、バッテリ12の充放電制御を行う。
The transmission controller 24 responds to a command from the hybrid controller 21 and controls the transmission of the continuously variable transmission 4 (V-belt continuously variable transmission mechanism CVT) using oil from the oil pump O / P driven by the engine as a medium. And clutch CL engagement / release control and switching control of the switching mechanism 10 (coupling sleeve 35).
The battery controller 25 performs charge / discharge control of the battery 12 in response to a command from the hybrid controller 21.
<モータ駆動系の制御>
 上記ハイブリッド車両の電動モータ2に係わるモータ駆動系の制御を以下に説明する。
 当該モータ駆動系の制御は、変速機コントローラ24が切り替え機構10内におけるカップリングスリーブ35を図3のようにストローク制御して遂行するものとする。
 なおカップリングスリーブ35は前述した通り、1個の図示せざるアクチュエータによりストロークさせるものである。
<Control of motor drive system>
Control of the motor drive system related to the electric motor 2 of the hybrid vehicle will be described below.
The motor drive system is controlled by the transmission controller 24 by controlling the stroke of the coupling sleeve 35 in the switching mechanism 10 as shown in FIG.
As described above, the coupling sleeve 35 is stroked by a single actuator (not shown).
 図3のステップS12においては、ハイブリッド車両が走行中か、停車中かをチェックする。
 ステップS12で走行中と判別する間は、ステップS14において車速VSPが電動モータ2を過回転させる設定車速VSPs以上の高車速域か否かをチェックする。
 VSP<VSPsで、電動モータ2を過回転させることがないと判定する間は、ステップS13においてカップリングスリーブ35を図示せざるアクチュエータにより駆動結合(L)位置にする。
 この間、電動モータ2の動力がクラッチギヤ36、カップリングスリーブ35、クラッチハブ34、および中間軸32を経てサンギヤ31sに達し、その後遊星歯車組31により減速されてファイナルギヤ組11を介し駆動車輪5に達し得る。
 よってハイブリッド車両を、電動モータ2のみにより電気走行(EV走行)させたり、エンジン1および電動モータ2の協調によるハイブリッド走行(HEV走行)させることができる。
In step S12 of FIG. 3, it is checked whether the hybrid vehicle is running or stopped.
While it is determined that the vehicle is traveling in step S12, it is checked in step S14 whether or not the vehicle speed VSP is in a high vehicle speed range equal to or higher than the set vehicle speed VSPs that causes the electric motor 2 to over-rotate.
While it is determined that VSP <VSPs and the electric motor 2 is not over-rotated, in step S13, the coupling sleeve 35 is moved to the drive coupling (L) position by an actuator (not shown).
During this time, the power of the electric motor 2 reaches the sun gear 31s via the clutch gear 36, the coupling sleeve 35, the clutch hub 34, and the intermediate shaft 32, and then is decelerated by the planetary gear set 31 and driven through the final gear set 11 to drive wheels 5 Can reach.
Therefore, the hybrid vehicle can be electrically driven (EV traveling) only by the electric motor 2 or can be hybrid driven (HEV traveling) by the cooperation of the engine 1 and the electric motor 2.
 ステップS14でVSP≧VSPs(電動モータ2が過回転される高車速域)と判定する場合は、ステップS15においてカップリングスリーブ35を図2に示すような中立(N)位置にすることにより、電動モータ2をファイナルギヤ組11(駆動車輪5)から切り離すと共にファイナルギヤ組11(駆動車輪5)を自由に回転可能な自由状態にする。
 これにより電動モータ2が、HEV走行状態での高車速域(VSP≧VSPs)において過回転されるのを防止することができ、電動モータ2の保護を図ることができる。
 なおEV走行状態で回生制動中に車速が高くなった場合にも、高車速域(VSP≧VSPs)において過回転されるのを防止することができる。
When it is determined in step S14 that VSP ≧ VSPs (high vehicle speed range in which the electric motor 2 is over-rotated), in step S15, the coupling sleeve 35 is moved to the neutral (N) position as shown in FIG. The motor 2 is disconnected from the final gear set 11 (drive wheel 5), and the final gear set 11 (drive wheel 5) is freely rotated.
As a result, the electric motor 2 can be prevented from over-rotating in the high vehicle speed range (VSP ≧ VSPs) in the HEV traveling state, and the electric motor 2 can be protected.
Even when the vehicle speed increases during regenerative braking in the EV traveling state, it is possible to prevent over-rotation in the high vehicle speed range (VSP ≧ VSPs).
 図3のステップS12において停車中と判別する場合は、ステップS16においてパーキング(駐車)要求、またはヒルホールド要求があるか否かをチェックし、これら要求がなければ制御をそのまま終了してカップリングスリーブ35を今のストローク位置のままに保持する。
 ステップS16でパーキング(駐車)要求、またはヒルホールド要求があると判別する場合は、ステップS17においてカップリングスリーブ35を図2の駐車(P)位置に変位させることにより、遊星歯車組31をインターロック状態にしてファイナルギヤ組11(駆動車輪5)を回転ロックする。
 これにより車両はパークロック状態になり、上記のパーキング(駐車)要求や、登坂路での後退防止(ヒルホールド)要求を実現することができる。
If it is determined in step S12 in FIG. 3 that the vehicle is stopped, it is checked in step S16 whether there is a parking (parking) request or a hill hold request. Hold 35 at the current stroke position.
If it is determined in step S16 that there is a parking (parking) request or a hill hold request, the planetary gear set 31 is interlocked by displacing the coupling sleeve 35 to the parking (P) position in FIG. 2 in step S17. The final gear set 11 (drive wheel 5) is rotationally locked in the state.
As a result, the vehicle enters a park lock state, and the above-described parking (parking) request and a reverse prevention (hill hold) request on an uphill road can be realized.
<実施例の効果>
 上記した本実施例によるモータ伝動系の制御装置においては、
 1個の共通なカップリングスリーブ35をクラッチギヤ36と噛合した駆動結合(L)位置にして、これらにより構成される駆動結合用係脱機構を係合状態にすることで電動モータ2およびファイナルギヤ組11(駆動車輪5)間の駆動結合によりモータ駆動が可能であり、また、同じカップリングスリーブ35をクラッチギヤ37と噛合したインターロック(P)位置にして、これらにより構成されるインターロック用係脱機構を係合状態にすることでパークロック状態を実現可能であり、更に、同じカップリングスリーブ35を駆動結合用係脱機構およびインターロック用係脱機構間の中立(N)位置にして、これら両係脱機構を共に外脱状態にすることで電動モータ2をHEV走行中の過回転防止用に駆動車輪5から切り離し可能である。
<Effect of Example>
In the motor transmission system control device according to the above-described embodiment,
The drive coupling (L) position where one common coupling sleeve 35 meshes with the clutch gear 36 and the engagement / disengagement mechanism for drive coupling constituted by these is engaged, and the electric motor 2 and final gear are engaged. The motor can be driven by the drive coupling between the group 11 (drive wheels 5), and the same coupling sleeve 35 is placed in the interlock (P) position engaged with the clutch gear 37, and the interlock is constituted by these. The park lock state can be realized by engaging / disengaging the engagement / disengagement mechanism. Further, the same coupling sleeve 35 is set to the neutral (N) position between the engagement / disengagement mechanism for the drive coupling and the engagement / disengagement mechanism for the interlock. The electric motor 2 can be separated from the drive wheel 5 to prevent over-rotation during HEV traveling by bringing both the engagement / disengagement mechanisms into the detached state.
 そのため、上記共通なカップリングスリーブ35の3位置(L,N,P)への操作による、つまり単一アクチュエータの3位置操作による遊星歯車組31の状態制御によって、上記の3態様を実現し得ることとなる。
 よって、従来のように複数個のアクチュエータが必要な場合における、コスト上の問題、および制御対象の増大による制御性の問題、更に故障頻度増大による信頼性の低下に関する問題、そしてアクチュエータの組み合わせ数だけ故障の種類が存在して故障の種類を特定し難く、故障対策が困難になるという問題をことごとく解消することができる。
Therefore, the above three modes can be realized by the state control of the planetary gear set 31 by the operation of the common coupling sleeve 35 to the three positions (L, N, P), that is, the three positions of the single actuator. It will be.
Therefore, when multiple actuators are required as in the past, there are cost problems, controllability problems due to an increase in the number of objects to be controlled, problems related to deterioration in reliability due to increased failure frequency, and the number of combinations of actuators. It is possible to solve all the problems that it is difficult to specify the type of failure due to the presence of the type of failure, and it becomes difficult to take measures against the failure.
 また、遊星歯車組31を挟んでその軸線方向両側に、電動モータ2と、駆動結合用係脱機構35,36およびインターロック用係脱機構35,37とを、同軸対向配置したため、モータ伝動系の切り替え機構10が全体として軸線方向に重量バランスのとれたものとなり、特定の箇所に軸受負荷が集中せず、モータ伝動系切り替え機構10の耐久性を向上させることができる。 Further, since the electric motor 2, the drive coupling engagement / disengagement mechanisms 35, 36 and the interlock engagement / disengagement mechanisms 35, 37 are coaxially arranged on both sides in the axial direction across the planetary gear set 31, the motor transmission system The switching mechanism 10 as a whole is balanced in weight in the axial direction, so that the bearing load is not concentrated at a specific location, and the durability of the motor transmission system switching mechanism 10 can be improved.
<その他の実施例>
 なお上記した図示例のように、カップリングスリーブ35がインターロック(P)位置においてサンギヤ31sおよびキャリア31c間を結合することでパークロック状態を実現するよう構成する場合、軸2a,32,33の重なり数を最少にし得て有利であると共に遊星歯車組31を常に連れ回すことがなくて動力損失を少なくし得るが、この代わりにカップリングスリーブ35がインターロック(P)位置においてサンギヤ31sおよびリングギヤ31r間を結合することでパークロック状態を実現するよう構成してもよいのは言うまでもない。
 また、上記した図示例のように、電動モータ2をファイナルギヤ組11側ではなく、クラッチギヤ36側に配置することもできる。このように、電動モータ2をクラッチギヤ36側に配置した場合、モータ軸2a を短くして、中空構造の中間軸32を中実構造とすることもできる。
<Other examples>
When the coupling sleeve 35 is configured to realize the park lock state by coupling the sun gear 31s and the carrier 31c in the interlock (P) position as in the illustrated example described above, the shafts 2a, 32, and 33 Although it is advantageous to minimize the number of overlaps and the planetary gear set 31 is not always rotated, the power loss can be reduced. Instead, the coupling sleeve 35 is connected to the sun gear 31s and the ring gear 31r in the interlock (P) position. It goes without saying that the park lock state may be realized by combining the intervals.
Further, as in the illustrated example described above, the electric motor 2 can be arranged not on the final gear set 11 side but on the clutch gear 36 side. As described above, when the electric motor 2 is disposed on the clutch gear 36 side, the motor shaft 2a can be shortened to make the hollow intermediate shaft 32 have a solid structure.
 また上記した図示例では、差動歯車機構として単純遊星歯車組31を用いたが、これに限られるものではなく、差動機能を持つ歯車機構であれば、他の型式のものを用いてもよいこと、勿論である。 In the illustrated example, the simple planetary gear set 31 is used as the differential gear mechanism. However, the present invention is not limited to this, and other types of gear mechanisms may be used as long as the gear mechanism has a differential function. Good thing, of course.

Claims (6)

  1.  動力源としてエンジンおよび電動モータを具え、前記エンジンは切り離し可能な態様で車輪に駆動結合し、前記電動モータは差動歯車機構を介して前記車輪に駆動結合し、前記エンジンを前記車輪から切り離して前記電動モータのみによる電気走行が可能であるほか、前記エンジンおよび車輪間を駆動結合することで前記電動モータおよびエンジンの協調によるハイブリッド走行が可能なハイブリッド車両において、
     前記差動歯車機構を前記電動モータおよび車輪間の駆動結合が行われた状態にする駆動結合用係脱機構と、
     前記差動歯車機構を当該差動歯車機構の全回転メンバが回転ロックされたインターロック状態にするインターロック用係脱機構と、を具え、
     これら駆動結合用係脱機構およびインターロック用係脱機構を相互に隣り合わせて同軸配置すると共に、これら両係脱機構の係脱切り替え要素を共用可能に構成して該係脱機構間に配した1個の共通な係脱切り替え要素により構成し、
     該共通な係脱切り替え要素に、前記駆動結合用係脱機構寄りの位置で該駆動結合用係脱機構を係合状態にすることにより前記電動モータおよび車輪間の駆動結合を行う駆動結合位置と、前記インターロック用係脱機構寄りの位置で該インターロック用係脱機構を係合状態にすることにより前記インターロック状態を生起させるインターロック位置と、前記両係脱機構間の位置でこれら係脱機構を共に外脱状態にする中立位置とを設定してなるハイブリッド車両用モータ駆動系の制御装置。
    An engine and an electric motor are provided as power sources, the engine is drivingly coupled to the wheels in a detachable manner, the electric motor is drivingly coupled to the wheels via a differential gear mechanism, and the engine is separated from the wheels. In addition to being capable of electric traveling only by the electric motor, in a hybrid vehicle capable of hybrid traveling by cooperation of the electric motor and the engine by drivingly coupling the engine and wheels,
    An engagement / disengagement mechanism for driving coupling that brings the differential gear mechanism into a state in which driving coupling between the electric motor and wheels is performed;
    An interlocking engagement / disengagement mechanism for bringing the differential gear mechanism into an interlocked state in which all the rotation members of the differential gear mechanism are rotationally locked,
    The drive coupling engagement / disengagement mechanism and the interlock engagement / disengagement mechanism are arranged coaxially next to each other, and the engagement / disengagement switching elements of both the engagement / disengagement mechanisms are configured to be shared and arranged between the engagement / disengagement mechanisms. Consists of a common engagement / disengagement switching element,
    A drive coupling position for coupling the electric motor and the wheels to the common engagement / disengagement switching element by engaging the engagement / disengagement mechanism for driving coupling at a position near the coupling mechanism for driving coupling; The interlock engagement / disengagement mechanism is brought into the engaged state at a position near the interlock engagement / disengagement mechanism, and the engagement position is generated between the interlock position and the engagement / disengagement mechanism. A control apparatus for a motor drive system for a hybrid vehicle, which is set with a neutral position in which both disengagement mechanisms are in a disengagement state.
  2.  請求項1に記載された、ハイブリッド車両用モータ駆動系の制御装置において、
     前記差動歯車機構は、サンギヤ、リングギヤおよびキャリアを前記回転メンバとして具えた遊星歯車組により構成し、
     これらサンギヤ、リングギヤおよびキャリアの1つを反力受けとして機能するよう固定し、
     残りの2つのうち、一方を出力回転メンバとして前記車輪に駆動結合し、他方を入力回転メンバとして前記駆動結合用係脱機構が前記電動モータに対し係脱するものであり、
     前記インターロック用係脱機構が、前記サンギヤ、リングギヤおよびキャリアのうち、任意の少なくとも2個を相互に結合して前記インターロック状態を生起させるものであるハイブリッド車両用モータ駆動系の制御装置。
    In the control device for the hybrid vehicle motor drive system according to claim 1,
    The differential gear mechanism is constituted by a planetary gear set including a sun gear, a ring gear and a carrier as the rotating member,
    Fix one of these sun gear, ring gear and carrier to function as a reaction force receiver,
    Of the remaining two, one is an output rotating member that is drivingly coupled to the wheel, and the other is an input rotating member, and the drive coupling engagement / disengagement mechanism is engaged / disengaged with respect to the electric motor,
    A control device for a motor drive system for a hybrid vehicle, wherein the interlock engagement / disengagement mechanism couples at least two of the sun gear, ring gear, and carrier to each other to cause the interlock state.
  3.  請求項2に記載された、ハイブリッド車両用モータ駆動系の制御装置において、
     前記サンギヤ、リングギヤおよびキャリアのうち、リングギヤを反力受けとして機能するよう固定し、
     前記キャリアを出力回転メンバとして前記車輪に駆動結合し、
     前記駆動結合用係脱機構は、前記サンギヤを入力回転メンバとして、前記電動モータに対し係脱するものであるハイブリッド車両用モータ駆動系の制御装置。
    In the control device for the hybrid vehicle motor drive system according to claim 2,
    Among the sun gear, ring gear and carrier, the ring gear is fixed to function as a reaction force receiver,
    The carrier is drivingly coupled to the wheel as an output rotating member,
    The drive coupling engagement / disengagement mechanism is a control device for a hybrid vehicle motor drive system that engages / disengages with respect to the electric motor using the sun gear as an input rotation member.
  4.  請求項3に記載された、ハイブリッド車両用モータ駆動系の制御装置において、
     前記インターロック用係脱機構は、前記サンギヤおよびキャリアを相互に結合して前記インターロック状態を生起させるものであるハイブリッド車両用モータ駆動系の制御装置。
    In the control device for the hybrid vehicle motor drive system according to claim 3,
    The interlock engagement / disengagement mechanism is a control device for a hybrid vehicle motor drive system in which the sun gear and the carrier are coupled to each other to cause the interlock state.
  5.  請求項3に記載された、ハイブリッド車両用モータ駆動系の制御装置において、
     前記インターロック用係脱機構は、前記サンギヤおよびリングギヤを相互に結合して前記インターロック状態を生起させるものであるハイブリッド車両用モータ駆動系の制御装置。
    In the control device for the hybrid vehicle motor drive system according to claim 3,
    The interlock engagement / disengagement mechanism is a control device for a hybrid vehicle motor drive system in which the sun gear and the ring gear are coupled to each other to cause the interlock state.
  6.  請求項1~5のいずれか1項に記載された、ハイブリッド車両用モータ駆動系の制御装置において、
     前記差動歯車機構を挟んで軸線方向両側に、前記電動モータと、前記駆動結合用係脱機構およびインターロック用係脱機構とを同軸に対向配置し、
     前記電動モータからのモータ軸を、前記差動歯車機構の中心部に遊嵌して前記駆動結合用係脱機構まで延在させることにより、該駆動結合用係脱機構が対応する回転メンバおよび電動モータ間の相互結合を行い得るようにしたハイブリッド車両用モータ駆動系の制御装置。
    In the control device for a hybrid vehicle motor drive system according to any one of claims 1 to 5,
    On both sides in the axial direction across the differential gear mechanism, the electric motor, the drive coupling engagement mechanism and the interlock engagement mechanism are coaxially disposed opposite to each other,
    The motor shaft from the electric motor is loosely fitted in the center of the differential gear mechanism and extends to the drive coupling engagement / disengagement mechanism, whereby the drive coupling engagement / disengagement mechanism corresponds to the rotating member and the electric motor. A motor control system for a hybrid vehicle motor drive system capable of mutual coupling between motors.
PCT/JP2013/056389 2012-03-26 2013-03-08 Controller for hybrid vehicle motor drive system WO2013146176A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-068991 2012-03-26
JP2012068991A JP2015134509A (en) 2012-03-26 2012-03-26 Controller of motor drive system for hybrid vehicle

Publications (1)

Publication Number Publication Date
WO2013146176A1 true WO2013146176A1 (en) 2013-10-03

Family

ID=49259444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056389 WO2013146176A1 (en) 2012-03-26 2013-03-08 Controller for hybrid vehicle motor drive system

Country Status (2)

Country Link
JP (1) JP2015134509A (en)
WO (1) WO2013146176A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5889438B2 (en) * 2012-12-21 2016-03-22 日産自動車株式会社 Drive device for hybrid vehicle
CN111619334A (en) * 2020-06-01 2020-09-04 奇瑞汽车股份有限公司 Hybrid powertrain system and control method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6965792B2 (en) 2018-02-28 2021-11-10 トヨタ自動車株式会社 Vehicle drive
WO2020052734A1 (en) * 2018-09-11 2020-03-19 Volvo Construction Equipment Ab A wheel hub drive system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000199442A (en) * 1998-12-28 2000-07-18 Honda Motor Co Ltd Hybrid vehicle
JP2009051263A (en) * 2007-08-23 2009-03-12 Toyota Motor Corp Power output device
JP2011031741A (en) * 2009-07-31 2011-02-17 Toyota Motor Corp Hybrid vehicle
JP2011230713A (en) * 2010-04-28 2011-11-17 Toyota Motor Corp Power transmission device for hybrid vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000199442A (en) * 1998-12-28 2000-07-18 Honda Motor Co Ltd Hybrid vehicle
JP2009051263A (en) * 2007-08-23 2009-03-12 Toyota Motor Corp Power output device
JP2011031741A (en) * 2009-07-31 2011-02-17 Toyota Motor Corp Hybrid vehicle
JP2011230713A (en) * 2010-04-28 2011-11-17 Toyota Motor Corp Power transmission device for hybrid vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5889438B2 (en) * 2012-12-21 2016-03-22 日産自動車株式会社 Drive device for hybrid vehicle
CN111619334A (en) * 2020-06-01 2020-09-04 奇瑞汽车股份有限公司 Hybrid powertrain system and control method
CN111619334B (en) * 2020-06-01 2022-07-12 奇瑞汽车股份有限公司 Hybrid powertrain system and control method

Also Published As

Publication number Publication date
JP2015134509A (en) 2015-07-27

Similar Documents

Publication Publication Date Title
US7201690B2 (en) Drive unit for vehicle
US8475311B2 (en) Hybrid power driving system and gear position operation method thereof
KR101828984B1 (en) Method of controling a hybrid driveline for reducing electrical losses
US7255186B2 (en) Hybrid drive system and vehicle equipped therewith
JP6315692B2 (en) Vehicle transmission
EP2508378B1 (en) Hybrid electric drive unit, hybrid drive system and control method thereof
US9975545B2 (en) Hybrid vehicle
EP2444266A1 (en) Series/parallel bi-motor dual-clutch hybrid electrical driving unit for automobile
WO2011021517A1 (en) Engine starting control device for hybrid vehicle
JP5391959B2 (en) Drive device for hybrid vehicle
US20150038296A1 (en) Shift control system for electric vehicle
WO2011125446A1 (en) Vehicle drive device
JP2014503417A (en) Drive device for vehicle auxiliary device
JP6743617B2 (en) Power transmission device
KR101794897B1 (en) Propulsion system for a vehicle
JP2007331632A (en) Vehicle driving device and system
WO2013146176A1 (en) Controller for hybrid vehicle motor drive system
WO2014003657A1 (en) Method for simultaneous control of torque from combustion engine and electric machine in a hybrid vehicle
KR101794898B1 (en) Propulsion system for a vehicle
US10246082B2 (en) Propulsion system for a vehicle
JP5478329B2 (en) Vehicle drive device
JP5972091B2 (en) Hybrid vehicle
JP2011213162A (en) Device for controlling vehicle-driving apparatus
CN110469640B (en) Hybrid power type planetary gear slope slipping prevention mechanism with relieving function
CN113775712B (en) Mechanical transmission and control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13768740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP