WO2013145792A1 - Electric power conversion device - Google Patents

Electric power conversion device Download PDF

Info

Publication number
WO2013145792A1
WO2013145792A1 PCT/JP2013/050160 JP2013050160W WO2013145792A1 WO 2013145792 A1 WO2013145792 A1 WO 2013145792A1 JP 2013050160 W JP2013050160 W JP 2013050160W WO 2013145792 A1 WO2013145792 A1 WO 2013145792A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
circuit
gate
gate drive
power semiconductor
Prior art date
Application number
PCT/JP2013/050160
Other languages
French (fr)
Japanese (ja)
Inventor
裕章 市川
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Publication of WO2013145792A1 publication Critical patent/WO2013145792A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/12Modifications for increasing the maximum permissible switched current
    • H03K17/127Modifications for increasing the maximum permissible switched current in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/168Modifications for eliminating interference voltages or currents in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/689Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors with galvanic isolation between the control circuit and the output circuit
    • H03K17/691Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors with galvanic isolation between the control circuit and the output circuit using transformer coupling
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/162Modifications for eliminating interference voltages or currents in field-effect transistor switches without feedback from the output circuit to the control circuit

Definitions

  • the present invention relates to a power conversion device that controls power semiconductor elements connected in parallel by individual gate drive circuits.
  • FIG. 3 shows an example of a main circuit of a conventional power converter (for example, a three-phase inverter).
  • the main circuit includes a DC power supply 100 and an intelligent power module (hereinafter abbreviated as IPM) 200.
  • the IPM 200 includes three arm pairs connected in parallel between the positive electrode and the negative electrode of the power supply 100, and a gate driving circuit 203 (only one in the figure) connected to each of the power semiconductor elements 201 constituting the arm pairs. Is shown).
  • an insulated gate bipolar transistor (IGBT) is used as the power semiconductor element 201.
  • a diode 202 is connected in antiparallel to each power semiconductor element 201, and a power supply 300 is connected to the gate drive circuit 203.
  • Each gate drive circuit 203 generates a gate drive signal in response to a command signal Sc from an external device (not shown) and controls the corresponding power semiconductor element 201 on and off.
  • IPM intelligent power module
  • FIG. 4 shows a configuration example of the gate drive circuit 203.
  • the gate drive circuit 203 includes output stage switch elements S1 and S2 connected in series between the positive and negative electrodes of the power supply 300.
  • the switch element S1 When the switch element S1 is turned on, the power semiconductor element 201 is turned on, and the switch element S2 is turned on.
  • the power semiconductor element 201 When turned on, the power semiconductor element 201 is turned off.
  • MOSFET metal oxide field effect transistor
  • the delay circuit D1 inputs the command signal Sc through the buffer B1, and delays the rise of the command signal Sc.
  • the delay circuit D2 inputs the command signal Sc via the buffer B1 and the inverter I2, and delays the fall of the control signal Sc.
  • the output signal of the delay circuit D1 is inverted by the inverter I1 and then applied to the switch element S1, while the output signal of the delay circuit D2 is directly applied to the switch element S2.
  • the delay circuits D1 and D2 are provided to prevent the switch elements S1 and S2 from being turned on simultaneously and to prevent malfunction due to noise.
  • FIG. 5 shows a configuration in which IPM 200A and IPM 200B are connected in parallel in order to increase the capacity.
  • FIG. 3 reference numerals corresponding to elements common to the elements shown in FIG. 4 are given.
  • a NAND circuit N1A is provided between the delay circuit D1A and the switch element S1A
  • an AND circuit A2A is provided between the delay circuit D2A and the switch element S2A.
  • the gate drive circuit 203B of the IPM 200B has a NAND circuit N1B and an AND circuit A2B corresponding to the NAND circuit N1A and the AND circuit A2A.
  • the output signal of the delay circuit D1A is input to one input terminal of the NAND circuit N1A and one input terminal of the NAND circuit N1B, and the output signal of the delay circuit D2A is input to one input terminal of the AND circuit A1A and the AND circuit A1B. Input to one input terminal.
  • the output signal of the delay circuit D1B is input to the other input terminal of the NAND circuit N1B and the other input terminal of the NAND circuit N1A, and the output signal of the delay circuit D2B is input to the other input terminal of the AND circuit A1B and the AND circuit. It is input to the other input terminal of A1A.
  • the switch elements S1A, S1B or S2A, S2B of the gate drive circuits 203A, 203B are turned on and off almost simultaneously, so that the power semiconductor elements 201A of the IPM 200A and the power semiconductor elements 201B of the IPM 200B connected in parallel are connected. Variations in switching time are suppressed.
  • the NAND circuit N1A and the AND circuit A1A of the IPM 200A are supplied with power from the power source 300A, and the NAND circuit N1B and the AND circuit A1B of the IPM 200B are supplied with power from the power source 300B. Further, since signals are transmitted between the gate drive circuits 203A and 203B, the ground lines of the circuits 203A and 203B are shared as shown by dotted lines.
  • the currents flowing through the power semiconductor elements 201A and 201B of the IPMs 200A and 200B are not balanced due to the influence of variations in delay times of circuit elements constituting the IPMs 200A and 200B.
  • the electromotive voltage in the wiring WA leading to the load L There is a difference between the electromotive voltage in the wiring WA leading to the load L and the electromotive voltage in the wiring WB leading from the emitter of the power semiconductor element 201B to the load L.
  • a loop current Ic as indicated by an arrow flows in the loop circuit including the ground lines of the gate drive circuits 203A and 203B.
  • the loop current Ic is about 20A.
  • the difference between the electromotive voltage in the wiring WA and the electromotive voltage in the wiring WB induced based on the loop current Ic results in the difference between the gate voltage of the power semiconductor element 201A and the gate voltage of the power semiconductor element 201B. There is a possibility that the switching loss may be extremely increased by causing a malfunction of the turn-on timing.
  • an object of the present invention is to provide a power conversion device capable of improving the operation reliability by suppressing variations in gate voltage of power semiconductor elements connected in parallel.
  • the present invention relates to an improvement of a power conversion apparatus that controls power semiconductor elements connected in parallel by using individual gate drive circuits.
  • Each of the gate driving devices is configured such that the return paths of the gate currents of the power semiconductor elements are separated from each other.
  • Each of the gate drive circuits according to the embodiment includes a transmission circuit element that transmits an instruction signal and an output circuit that operates according to a signal output from the transmission circuit element.
  • the synchronization of the operation of each power semiconductor element can be improved by sharing the transmission circuit element of each gate drive circuit.
  • the output circuit can be configured to selectively output a predetermined forward bias voltage and reverse bias voltage to the gate of the corresponding power semiconductor element.
  • the return paths of the gate currents of the power semiconductor elements are separated from each other, a loop circuit including these return paths is not formed. Therefore, variation in gate voltage of each power semiconductor element is suppressed, and operation reliability is improved.
  • FIG. 1 is a circuit diagram showing a configuration of a power conversion device according to an embodiment of the present invention.
  • This power conversion device includes a DC power source 1, power modules 2A and 2B, and gate drive modules 3A and 3B.
  • the output power of the DC power source 1 is changed to a desired power by switching operation of power semiconductor elements in the power modules 2A and 2B. Convert.
  • the electric power converted by this power conversion device is supplied to the load 4.
  • the power module 2A includes power semiconductor elements 21 and 22 connected in series, and free wheel diodes 23 and 24 connected in reverse parallel to the power semiconductor elements 21 and 22, respectively.
  • a series connection point of the power semiconductor elements 21 and 22 is connected to one end of the load 4 via a terminal 27.
  • the power module 2B has the same configuration.
  • the power modules 2 ⁇ / b> A and 2 ⁇ / b> B are connected in parallel between the positive electrode and the negative electrode of the DC power supply 1. The reason why the two power modules 2A and 2B are connected in parallel is to increase the capacity.
  • IGBTs insulated gate bipolar transistors
  • the gate drive module 3A includes a gate drive circuit 30AU and a gate drive circuit 30AL.
  • the gate drive circuit 30AU includes a power supply unit 31 that outputs positive and negative voltages (for example, ⁇ 15 V), and receives an upper arm command signal SU from a control circuit (not shown) via the inverter 4AU.
  • the output signal of the inverter 4AU is input to the output circuit 34 that functions as a buffer via the photocoupler 32 and the amplifier 33.
  • the output circuit 34 includes a complementary pair of transistors connected between the positive electrode and the negative electrode of the power supply unit 31.
  • the output circuit 34 has a gate-on signal (about + 15V) and a gate-off signal (about -15V) are output between the terminals 35 and 36.
  • the terminal 36 is connected to the intermediate pole (0 V) of the power supply unit 31.
  • the terminal 35 is connected to the terminal 25 of the power module 2A via the gate resistor 41 and the diode 42, and the terminal 36 is connected to the terminal 26 of the power module 2A.
  • the gates and emitters of the power semiconductor element 21 are connected to the terminals 25 and 26 of the power module 2A, respectively. Therefore, the gate drive signal (gate on signal or gate off signal) output from the gate drive circuit 30 is the power It is input between the gate and emitter of the semiconductor element 21.
  • the other gate drive circuit 30AL of the gate drive module 3A has the same configuration. Since the gate drive circuit 30AL receives the lower arm command signal SL from the control circuit via the inverter 4AL, the gate drive signal corresponding to the command of the command signal SL is supplied to the power on the lower arm side of the power module 2A. Output between the gate and emitter of the semiconductor element 22.
  • the gate drive module 3B includes gate drive circuits 30BU and 30BL having the same configuration as the gate drive circuits 30AU and 30AL of the gate drive module 3A.
  • the gate drive circuits 30BU and 30BL receive the command signals SU and SL via the inverters 4BU and 4BL, respectively. Therefore, the gate drive circuit 30BU outputs a gate drive signal corresponding to the command of the command signal SU to the upper arm side power semiconductor element 21 of the power module 2B, and the gate drive circuit 30BL corresponds to the command of the command signal SL.
  • the gate drive signal to be output is output to the lower arm side power semiconductor element 22 of the power module 2B.
  • the line constitutes a loop circuit together with a line from the terminal 27 of the power module 2A to the load 4 and a line from the terminal 27 of the power module 2B to the load 4.
  • a voltage induced based on the wiring inductance of the line from the terminal 27 of the power module 2A to the load 4 and a voltage induced based on the wiring inductance of the line from the terminal 27 of the power module 2B to the load 4 A loop current based on the difference flows in the loop circuit.
  • This loop current results in a difference between the gate voltage of the power semiconductor element 21 of the power module 2A and the gate voltage of the power semiconductor element 21 of the power module 2B, which causes a malfunction in turn-on timing.
  • a line from the terminal 36 of the gate drive circuit 30AU to the terminal 26 of the power module 2A, and a line from the terminal 36 of the gate drive circuit 30BU to the terminal 26 of the power module 2B. are separated from each other, that is, the return paths of the gate currents of the power semiconductor elements 21 in the power modules 2A and 2B are separated from each other. Reliability is improved.
  • FIG. 2 shows another embodiment of the present invention.
  • the power converter according to this embodiment is different from the power converter shown in FIG. 1 in the following points. That is, in the power conversion device according to the present embodiment, the inverters 4BU and 4BL shown in FIG. 1 are omitted, the output terminal of the amplifier 33 of the gate drive circuit 30AU, and the input terminal of the buffer 34 of the gate drive circuit 30BU. Are connected by a wiring 51, the negative electrode of the power supply 31 of the gate drive circuit 30AU and the negative electrode of the power supply 31 of the gate drive circuit 30BU are connected by a wiring 52, and the gate drive circuit 30AL and the gate drive circuit. It differs from the power converter shown in FIG. 1 in that connection according to the above is made between 30BL.
  • the transmission circuit elements (the photocoupler 32 and the amplifier 33) that transmit the instruction signal SU are shared by the gate drive circuits 30AU and 30BU, and the transmission circuit element that transmits the instruction signal SL is provided. It is shared by the gate drive circuits 30AL and 30BL. Therefore, the synchronism between the gate drive signals output from the gate drive modules 3A and 3B is improved, and as a result, the synchronism of the operations of the power modules 2A and 2B is improved.
  • the number of parallel connections of the power modules is 2, but the present invention can also be applied when the number of parallel connections is 3 or more.

Abstract

In order to suppress fluctuations in gate voltage and enhance reliability of operation of parallel-connected power semiconductor elements, the present invention is an electric power conversion device for controlling parallel-connected power semiconductor elements (21), using individual gate drive circuits (30AU, 30BU). The gate drive devices (30AU, 30BU) are configured so that gate current return paths of the parallel-connected power semiconductor elements (21) are separated from each other.

Description

電力変換装置Power converter
 本発明は、並列接続されたパワー半導体素子を個別のゲート駆動回路によって制御する電力変換装置に関する。 The present invention relates to a power conversion device that controls power semiconductor elements connected in parallel by individual gate drive circuits.
 図3に、従来の電力変換装置(例えば、三相インバータ)の主回路の一例を示す。この主回路は、直流電源100とインテリジェントパワーモジュール(以下、IPMと略称する)200とを有する。IPM200は、電源100の正極と負極間に並列接続した3つのアーム対と、それらのアーム対を構成するパワー半導体素子201のそれぞれに対して接続されたゲート駆動回路203(図では、1個のみが示されている)とを備えている。パワー半導体素子201としては、例えば絶縁ゲートバイポーラトランジスタ(IGBT)が使用される。各パワー半導体素子201にはダイオード202が逆並列接続され、また、ゲート駆動回路203には電源300が接続されている。
 各ゲート駆動回路203は、図示しない外部装置からの指令信号Scに応じてゲート駆動信号を発生し、対応するパワー半導体素子201をオンオフ制御する。
FIG. 3 shows an example of a main circuit of a conventional power converter (for example, a three-phase inverter). The main circuit includes a DC power supply 100 and an intelligent power module (hereinafter abbreviated as IPM) 200. The IPM 200 includes three arm pairs connected in parallel between the positive electrode and the negative electrode of the power supply 100, and a gate driving circuit 203 (only one in the figure) connected to each of the power semiconductor elements 201 constituting the arm pairs. Is shown). For example, an insulated gate bipolar transistor (IGBT) is used as the power semiconductor element 201. A diode 202 is connected in antiparallel to each power semiconductor element 201, and a power supply 300 is connected to the gate drive circuit 203.
Each gate drive circuit 203 generates a gate drive signal in response to a command signal Sc from an external device (not shown) and controls the corresponding power semiconductor element 201 on and off.
 図4にゲート駆動回路203の構成例を示す。このゲート駆動回路203は、電源300の正極と負極間に直列接続された出力段スイッチ素子S1,S2を備え、スイッチ素子S1がオンした場合にパワー半導体素子201がオンするとともに、スイッチ素子S2がオンした場合にパワー半導体素子201がオフする。スイッチ素子S1,S2には、例えばMOSFET(金属酸化膜型電界効果トランジスタ)が使用される。
 遅延回路D1は、指令信号ScをバッファB1を介して入力して、この指令信号Scの立ち上がりを遅延させる。また、遅延回路D2は、指令信号ScをバッファB1及びインバータI2を介して入力して、この制御信号Scの立ち下がりを遅延させる。遅延回路D1の出力信号はインバータI1によって反転されたのちスイッチ素子S1に与えられ、一方、遅延回路D2の出力信号はスイッチ素子S2に直接与えられる。この遅延回路D1,D2は、スイッチ素子S1,S2を同時オンさせないためと、ノイズによる誤動作を防止するために設けられている。
FIG. 4 shows a configuration example of the gate drive circuit 203. The gate drive circuit 203 includes output stage switch elements S1 and S2 connected in series between the positive and negative electrodes of the power supply 300. When the switch element S1 is turned on, the power semiconductor element 201 is turned on, and the switch element S2 is turned on. When turned on, the power semiconductor element 201 is turned off. For example, MOSFET (metal oxide field effect transistor) is used for the switch elements S1 and S2.
The delay circuit D1 inputs the command signal Sc through the buffer B1, and delays the rise of the command signal Sc. The delay circuit D2 inputs the command signal Sc via the buffer B1 and the inverter I2, and delays the fall of the control signal Sc. The output signal of the delay circuit D1 is inverted by the inverter I1 and then applied to the switch element S1, while the output signal of the delay circuit D2 is directly applied to the switch element S2. The delay circuits D1 and D2 are provided to prevent the switch elements S1 and S2 from being turned on simultaneously and to prevent malfunction due to noise.
 図5は、大容量化を図るためにIPM200A,IPM200Bを並列接続した構成を示す。この図3においては、図4に示す要素と共通する要素に対応する符号を付してある。IPM200Aのゲート駆動回路203Aは、遅延回路D1Aとスイッチ素子S1Aとの間にナンド回路N1Aを設けるとともに、遅延回路D2Aとスイッチ素子S2Aとの間にアンド回路A2Aを設けてある。IPM200Bのゲート駆動回路203Bは、上記ナンド回路N1A及びアンド回路A2Aに対応するナンド回路N1B及びアンド回路A2Bを有する。 FIG. 5 shows a configuration in which IPM 200A and IPM 200B are connected in parallel in order to increase the capacity. In FIG. 3, reference numerals corresponding to elements common to the elements shown in FIG. 4 are given. In the gate drive circuit 203A of the IPM 200A, a NAND circuit N1A is provided between the delay circuit D1A and the switch element S1A, and an AND circuit A2A is provided between the delay circuit D2A and the switch element S2A. The gate drive circuit 203B of the IPM 200B has a NAND circuit N1B and an AND circuit A2B corresponding to the NAND circuit N1A and the AND circuit A2A.
 遅延回路D1Aの出力信号は、ナンド回路N1Aの一方の入力端子とナンド回路N1Bの一方の入力端子に入力され、遅延回路D2Aの出力信号は、アンド回路A1Aの一方の入力端子とアンド回路A1Bの一方の入力端子に入力される。また、遅延回路D1Bの出力信号は、ナンド回路N1Bの他方の入力端子とナンド回路N1Aの他方の入力端子に入力され、遅延回路D2Bの出力信号は、アンド回路A1Bの他方の入力端子とアンド回路A1Aの他方の入力端子に入力される。
 この結果、ゲート駆動回路203A,203Bのスイッチ素子S1A,S1BまたはS2A,S2Bがほぼ同時にオン,オフされることになるので、並列接続されたIPM200Aのパワー半導体素子201AとIPM200Bのパワー半導体素子201Bのスイッチング時間のばらつきが抑制される。
The output signal of the delay circuit D1A is input to one input terminal of the NAND circuit N1A and one input terminal of the NAND circuit N1B, and the output signal of the delay circuit D2A is input to one input terminal of the AND circuit A1A and the AND circuit A1B. Input to one input terminal. The output signal of the delay circuit D1B is input to the other input terminal of the NAND circuit N1B and the other input terminal of the NAND circuit N1A, and the output signal of the delay circuit D2B is input to the other input terminal of the AND circuit A1B and the AND circuit. It is input to the other input terminal of A1A.
As a result, the switch elements S1A, S1B or S2A, S2B of the gate drive circuits 203A, 203B are turned on and off almost simultaneously, so that the power semiconductor elements 201A of the IPM 200A and the power semiconductor elements 201B of the IPM 200B connected in parallel are connected. Variations in switching time are suppressed.
特開2002-369496号公報Japanese Patent Laid-Open No. 2002-369496
 図5に点線で示すように、IPM200Aのナンド回路N1A及びアンド回路A1Aは電源300Aから給電され、IPM200Bのナンド回路N1B及びアンド回路A1Bは電源300Bから給電される。また、ゲート駆動回路203A,203B間で信号の伝送が行なわれることから、該回路203A,203Bのグランドライン相互は点線で示すように共通化されている。 5, the NAND circuit N1A and the AND circuit A1A of the IPM 200A are supplied with power from the power source 300A, and the NAND circuit N1B and the AND circuit A1B of the IPM 200B are supplied with power from the power source 300B. Further, since signals are transmitted between the gate drive circuits 203A and 203B, the ground lines of the circuits 203A and 203B are shared as shown by dotted lines.
 IPM200A,200Bのパワー半導体素子201A,201Bを流れる電流は、該IPM200A,200Bを構成する回路要素の遅延時間のばらつきの影響でバランスしないのが通常であり、この場合、パワー半導体素子201Aのエミッタから負荷Lに至る配線WAでの起電圧と、パワー半導体素子201Bのエミッタから負荷Lに至る配線WBでの起電圧とに差を生じる。そして、例えば、配線WAでの起電圧が配線WBでの起電圧よりも高い場合、ゲート駆動回路203A,203Bのグランドラインを含むループ回路に矢印で示すようなループ電流Icが流れることになる。パワー半導体素子201A,201Bの定格電流が1000Aである場合、このループ電流Icは20A程度になることが確認されている。
 このループ電流Icに基づいて誘起される配線WAでの起電圧と配線WBでの起電圧の差は、パワー半導体素子201Aのゲート電圧とパワー半導体素子201Bのゲート電圧の差をもたらし、これは、ターンオンタイミングについての誤動作を招いて、スイッチング損失を極端に増加させるおそれがある。
Normally, the currents flowing through the power semiconductor elements 201A and 201B of the IPMs 200A and 200B are not balanced due to the influence of variations in delay times of circuit elements constituting the IPMs 200A and 200B. In this case, from the emitter of the power semiconductor element 201A There is a difference between the electromotive voltage in the wiring WA leading to the load L and the electromotive voltage in the wiring WB leading from the emitter of the power semiconductor element 201B to the load L. For example, when the electromotive voltage in the wiring WA is higher than the electromotive voltage in the wiring WB, a loop current Ic as indicated by an arrow flows in the loop circuit including the ground lines of the gate drive circuits 203A and 203B. When the rated current of the power semiconductor elements 201A and 201B is 1000A, it is confirmed that the loop current Ic is about 20A.
The difference between the electromotive voltage in the wiring WA and the electromotive voltage in the wiring WB induced based on the loop current Ic results in the difference between the gate voltage of the power semiconductor element 201A and the gate voltage of the power semiconductor element 201B. There is a possibility that the switching loss may be extremely increased by causing a malfunction of the turn-on timing.
 そこで、本発明の課題は、並列接続されたパワー半導体素子のゲート電圧のばらつきを抑制して動作の信頼性を向上することができる電力変換装置を提供することにある。 Therefore, an object of the present invention is to provide a power conversion device capable of improving the operation reliability by suppressing variations in gate voltage of power semiconductor elements connected in parallel.
 本発明は、並列接続されたパワー半導体素子を個別のゲート駆動回路を用いて制御する電力変換装置の改良に係るものである。前記各ゲート駆動装置は、前記各パワー半導体素子のゲート電流の帰路が互いに分離されるように構成される。 The present invention relates to an improvement of a power conversion apparatus that controls power semiconductor elements connected in parallel by using individual gate drive circuits. Each of the gate driving devices is configured such that the return paths of the gate currents of the power semiconductor elements are separated from each other.
 実施形態に係る前記各ゲート駆動回路は、指示信号を伝達する伝達回路要素と、この伝達回路要素から出力される信号に応じて作動する出力回路とを備える。この場合、前記各ゲート駆動回路の前記伝達回路要素を共通化することによって、前記各パワー半導体素子の動作の同期性を向上することができる。 Each of the gate drive circuits according to the embodiment includes a transmission circuit element that transmits an instruction signal and an output circuit that operates according to a signal output from the transmission circuit element. In this case, the synchronization of the operation of each power semiconductor element can be improved by sharing the transmission circuit element of each gate drive circuit.
 前記出力回路は、対応する前記パワー半導体素子のゲートに対して所定の順バイアス電圧と逆バイアス電圧を選択的に出力するように構成することができる。 The output circuit can be configured to selectively output a predetermined forward bias voltage and reverse bias voltage to the gate of the corresponding power semiconductor element.
 本発明によれば、各パワー半導体素子のゲート電流の帰路が互いに分離されているので、それらの帰路を含むループ回路か形成されない。従って、各パワー半導体素子のゲート電圧のばらつきが抑制されて動作の信頼性が向上する。 According to the present invention, since the return paths of the gate currents of the power semiconductor elements are separated from each other, a loop circuit including these return paths is not formed. Therefore, variation in gate voltage of each power semiconductor element is suppressed, and operation reliability is improved.
本発明に係る電力変換装置の実施形態を示す回路図である。It is a circuit diagram showing an embodiment of a power converter concerning the present invention. 本発明に係る電力変換装置の他の実施形態を示す回路図である。It is a circuit diagram which shows other embodiment of the power converter device which concerns on this invention. インテリジェントパワーモジュールを用いた従来の電力変換装置の一例を示す回路図である。It is a circuit diagram which shows an example of the conventional power converter device using an intelligent power module. 図3の電力変換装置におけるゲート駆動回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the gate drive circuit in the power converter device of FIG. インテリジェントパワーモジュールを並列接続した電力変換装置の構成を示す回路図である。It is a circuit diagram which shows the structure of the power converter device which connected the intelligent power module in parallel.
 以下、図面を参照しながら本発明の一実施形態を説明する。
 図1は、本発明の一実施形態に係る電力変換装置の構成を示す回路図である。この電力変換装置は、直流電源1、パワーモジュール2A,2B及びゲート駆動モジュール3A,3Bを備え、パワーモジュール2A,2B内のパワー半導体素子のスイッチング動作によって直流電源1の出力電力を所望の電力に変換する。この電力変換装置によって変換された電力は、負荷4に供給される。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a circuit diagram showing a configuration of a power conversion device according to an embodiment of the present invention. This power conversion device includes a DC power source 1, power modules 2A and 2B, and gate drive modules 3A and 3B. The output power of the DC power source 1 is changed to a desired power by switching operation of power semiconductor elements in the power modules 2A and 2B. Convert. The electric power converted by this power conversion device is supplied to the load 4.
 パワーモジュール2Aは、直列接続されたパワー半導体素子21,22と、これらのパワー半導体素子21,22にそれぞれ逆並列接続されたフリーホイール・ダイオード23,24とを備えている。パワー半導体素子21,22の直列接続点は、端子27を介して負荷4の一端に接続されている。パワーモジュール2Bも同様の構成を有する。
 パワーモジュール2A,2Bは、直流電源1の正極と負極間に互いに並列に接続されている。このように2つのパワーモジュール2A,2Bを並列接続するのは、大容量化を図るためである。本実施形態においては、パワー半導体素子21,22としてIGBT(絶縁ゲートバイポーラトランジスタ)が使用されている。
The power module 2A includes power semiconductor elements 21 and 22 connected in series, and free wheel diodes 23 and 24 connected in reverse parallel to the power semiconductor elements 21 and 22, respectively. A series connection point of the power semiconductor elements 21 and 22 is connected to one end of the load 4 via a terminal 27. The power module 2B has the same configuration.
The power modules 2 </ b> A and 2 </ b> B are connected in parallel between the positive electrode and the negative electrode of the DC power supply 1. The reason why the two power modules 2A and 2B are connected in parallel is to increase the capacity. In the present embodiment, IGBTs (insulated gate bipolar transistors) are used as the power semiconductor elements 21 and 22.
 ゲート駆動モジュール3Aは、ゲート駆動回路30AU及びゲート駆動回路30ALを有する。ゲート駆動回路30AUは、正負の電圧(例えば±15V)を出力する電源部31を備え、図示していない制御回路からの上アーム用指令信号SUをインバータ4AUを介して入力する。インバータ4AUの出力信号は、フォトカプラ32及び増幅器33を介してバッファとして機能する出力回路34に入力される。
 出力回路34は、電源部31の正極と負極間に接続されたトランジスタの相補対を備え、指令信号SUがゲートオンを指令している場合及びゲートオフを指令している場合に、それぞれゲートオン信号(約+15V)及びゲートオフ信号(約-15V)を端子35,36間に出力する。なお、端子36は電源部31の中間極(0V)に接続されている。
 端子35はゲート抵抗41及びダイオード42を介してパワーモジュール2Aの端子25に接続され、端子36は該パワーモジュール2Aの端子26に接続されている。パワーモジュール2Aの端子25,26には、パワー半導体素子21のゲート、エミッタがそれぞれ接続されており、従って、ゲート駆動回路30から出力されるゲート駆動信号(ゲートオン信号またはゲートオフ信号)は、該パワー半導体素子21のゲート・エミッタ間に入力される。
The gate drive module 3A includes a gate drive circuit 30AU and a gate drive circuit 30AL. The gate drive circuit 30AU includes a power supply unit 31 that outputs positive and negative voltages (for example, ± 15 V), and receives an upper arm command signal SU from a control circuit (not shown) via the inverter 4AU. The output signal of the inverter 4AU is input to the output circuit 34 that functions as a buffer via the photocoupler 32 and the amplifier 33.
The output circuit 34 includes a complementary pair of transistors connected between the positive electrode and the negative electrode of the power supply unit 31. When the command signal SU commands the gate-on and when the gate-off command, the output circuit 34 has a gate-on signal (about + 15V) and a gate-off signal (about -15V) are output between the terminals 35 and 36. The terminal 36 is connected to the intermediate pole (0 V) of the power supply unit 31.
The terminal 35 is connected to the terminal 25 of the power module 2A via the gate resistor 41 and the diode 42, and the terminal 36 is connected to the terminal 26 of the power module 2A. The gates and emitters of the power semiconductor element 21 are connected to the terminals 25 and 26 of the power module 2A, respectively. Therefore, the gate drive signal (gate on signal or gate off signal) output from the gate drive circuit 30 is the power It is input between the gate and emitter of the semiconductor element 21.
 ゲート駆動モジュール3Aの他方のゲート駆動回路30ALも同様の構成を有する。このゲート駆動回路30ALは、上記制御回路からの下アーム用指令信号SLをインバータ4ALを介して入力するので、この指令信号SLの指令に対応するゲート駆動信号をパワーモジュール2Aの下アーム側のパワー半導体素子22のゲート・エミッタ間に出力する。 The other gate drive circuit 30AL of the gate drive module 3A has the same configuration. Since the gate drive circuit 30AL receives the lower arm command signal SL from the control circuit via the inverter 4AL, the gate drive signal corresponding to the command of the command signal SL is supplied to the power on the lower arm side of the power module 2A. Output between the gate and emitter of the semiconductor element 22.
 ゲート駆動モジュール3Bは、ゲート駆動モジュール3Aのゲート駆動回路30AU,30ALと同一の構成を有するゲート駆動回路30BU,30BLを備えている。
 ゲート駆動回路30BU,30BLは、それぞれ指令信号SU,SLをインバータ4BU,4BLを介して入力する。従って、ゲート駆動回路30BUは、指令信号SUの指令に対応するゲート駆動信号をパワーモジュール2Bの上アーム側パワー半導体素子21に出力し、また、ゲート駆動回路30BLは、指令信号SLの指令に対応するゲート駆動信号をパワーモジュール2Bの下アーム側パワー半導体素子22に出力する。
The gate drive module 3B includes gate drive circuits 30BU and 30BL having the same configuration as the gate drive circuits 30AU and 30AL of the gate drive module 3A.
The gate drive circuits 30BU and 30BL receive the command signals SU and SL via the inverters 4BU and 4BL, respectively. Therefore, the gate drive circuit 30BU outputs a gate drive signal corresponding to the command of the command signal SU to the upper arm side power semiconductor element 21 of the power module 2B, and the gate drive circuit 30BL corresponds to the command of the command signal SL. The gate drive signal to be output is output to the lower arm side power semiconductor element 22 of the power module 2B.
 ここで、ゲート駆動回路30AUの端子36からパワーモジュール2Aの端子26に至るラインと、ゲート駆動回路30BUの端子36からパワーモジュール2Bの端子26に至るラインとが分離していないとすると、これらのラインは、パワーモジュール2Aの端子27から負荷4に至るラインと、パワーモジュール2Bの端子27から負荷4に至るラインと共にループ回路を構成することになる。
 この場合、パワーモジュール2Aの端子27から負荷4に至るラインの配線インダクタンスに基づいて誘起される電圧と、パワーモジュール2Bの端子27から負荷4に至るラインの配線インダクタンスに基づいて誘起される電圧との差に基づくループ電流が上記ループ回路に流れることになる。そして、このループ電流は、結果的にパワーモジュール2Aのパワー半導体素子21のゲート電圧とパワーモジュール2Bのパワー半導体素子21のゲート電圧の差をもたらすので、ターンオンタイミングについての誤動作を招く要因になる。
Here, if the line from the terminal 36 of the gate drive circuit 30AU to the terminal 26 of the power module 2A and the line from the terminal 36 of the gate drive circuit 30BU to the terminal 26 of the power module 2B are not separated, The line constitutes a loop circuit together with a line from the terminal 27 of the power module 2A to the load 4 and a line from the terminal 27 of the power module 2B to the load 4.
In this case, a voltage induced based on the wiring inductance of the line from the terminal 27 of the power module 2A to the load 4 and a voltage induced based on the wiring inductance of the line from the terminal 27 of the power module 2B to the load 4 A loop current based on the difference flows in the loop circuit. This loop current results in a difference between the gate voltage of the power semiconductor element 21 of the power module 2A and the gate voltage of the power semiconductor element 21 of the power module 2B, which causes a malfunction in turn-on timing.
 しかし、本実施形態に係る電力変換装置によれば、ゲート駆動回路30AUの端子36からパワーモジュール2Aの端子26に至るラインと、ゲート駆動回路30BUの端子36からパワーモジュール2Bの端子26に至るラインとが分離されているので、つまり、パワーモジュール2A、2Bにおける各パワー半導体素子21のゲート電流の帰路が互いに分離されているので、上記のようなループ回路が構成されることがなく、従って動作の信頼性が向上する。 However, according to the power converter according to the present embodiment, a line from the terminal 36 of the gate drive circuit 30AU to the terminal 26 of the power module 2A, and a line from the terminal 36 of the gate drive circuit 30BU to the terminal 26 of the power module 2B. Are separated from each other, that is, the return paths of the gate currents of the power semiconductor elements 21 in the power modules 2A and 2B are separated from each other. Reliability is improved.
 図2に本発明の他の実施形態を示す。本実施形態に係る電力変換装置は、図1に示した電力変換装置と次の点で相違する。
 すなわち、本実施形態に係る電力変換装置は、図1に示すインバータ4BU,4BLが省略されている点と、ゲート駆動回路30AUの増幅器33の出力端子とゲート駆動回路30BUのバッファ34の入力端子とが配線51によって接続されている点と、ゲート駆動回路30AUの電源31の負極とゲート駆動回路30BUの電源31の負極とが配線52によって接続されている点と、ゲート駆動回路30ALとゲート駆動回路30BL相互間において上記に準じた接続がなされている点と、において図1に示した電力変換装置と相違している。
FIG. 2 shows another embodiment of the present invention. The power converter according to this embodiment is different from the power converter shown in FIG. 1 in the following points.
That is, in the power conversion device according to the present embodiment, the inverters 4BU and 4BL shown in FIG. 1 are omitted, the output terminal of the amplifier 33 of the gate drive circuit 30AU, and the input terminal of the buffer 34 of the gate drive circuit 30BU. Are connected by a wiring 51, the negative electrode of the power supply 31 of the gate drive circuit 30AU and the negative electrode of the power supply 31 of the gate drive circuit 30BU are connected by a wiring 52, and the gate drive circuit 30AL and the gate drive circuit. It differs from the power converter shown in FIG. 1 in that connection according to the above is made between 30BL.
 本実施形態に係る電力変換装置によれば、指示信号SUを伝達する伝達回路要素(フォトカプラ32及び増幅器33)がゲート駆動回路30AU,30BUによって共用され、指示信号SLを伝達する伝達回路要素がゲート駆動回路30AL,30BLによって共用される。従って、ゲート駆動モジュール3A,3Bから出力されるゲート駆動信号相互の同期性が向上し、結果的に、パワーモジュール2A,2Bの動作の同期性が向上する。
 なお、上記各実施形態では、パワーモジュールの並列接続数が2であるが、本発明はこの並列接続数が3以上の場合においても適用することができる。
According to the power conversion device according to the present embodiment, the transmission circuit elements (the photocoupler 32 and the amplifier 33) that transmit the instruction signal SU are shared by the gate drive circuits 30AU and 30BU, and the transmission circuit element that transmits the instruction signal SL is provided. It is shared by the gate drive circuits 30AL and 30BL. Therefore, the synchronism between the gate drive signals output from the gate drive modules 3A and 3B is improved, and as a result, the synchronism of the operations of the power modules 2A and 2B is improved.
In each of the above embodiments, the number of parallel connections of the power modules is 2, but the present invention can also be applied when the number of parallel connections is 3 or more.
 1 直流電源
 2A,2B パワーモジュール
 21,22 パワー半導体素子
 23,24 フリーホイール・ダイオード
 3A,3B ゲート駆動モジュール
 30AU,30AL ゲート駆動回路
 31 電源部
 32 フォトカプラ
 33 増幅器
 34 出力回路
 4 負荷
 41 ゲート抵抗
 42 ダイオード
 51,52 ライン
DESCRIPTION OF SYMBOLS 1 DC power supply 2A, 2B Power module 21, 22 Power semiconductor element 23, 24 Freewheel diode 3A, 3B Gate drive module 30AU, 30AL Gate drive circuit 31 Power supply part 32 Photocoupler 33 Amplifier 34 Output circuit 4 Load 41 Gate resistance 42 Diode 51,52 lines

Claims (3)

  1.  並列接続されたパワー半導体素子を個別のゲート駆動回路を用いて制御する電力変換装置であって、
     前記各ゲート駆動装置は、前記各パワー半導体素子のゲート電流の帰路が互いに分離されるように構成されていることを特徴とする電力変換装置。
    A power conversion device for controlling power semiconductor elements connected in parallel using individual gate drive circuits,
    Each of the gate driving devices is configured such that the return paths of the gate currents of the power semiconductor elements are separated from each other.
  2.  前記各ゲート駆動回路は、指示信号を伝達する伝達回路要素と、この伝達回路要素から出力される信号に応じて作動する出力回路とを備え、前記各ゲート駆動回路の前記伝達回路要素を共通化したことを特徴とする請求項1に記載の電力変換装置。 Each of the gate driving circuits includes a transmission circuit element that transmits an instruction signal and an output circuit that operates according to a signal output from the transmission circuit element, and the transmission circuit elements of the gate driving circuits are shared. The power conversion device according to claim 1, wherein:
  3.  前記出力回路は、対応する前記パワー半導体素子のゲートに対して所定の順バイアス電圧と逆バイアス電圧を選択的に出力するように構成されていることを特徴とする請求項2に記載の電力変換装置。 3. The power conversion according to claim 2, wherein the output circuit is configured to selectively output a predetermined forward bias voltage and a reverse bias voltage to a gate of the corresponding power semiconductor element. apparatus.
PCT/JP2013/050160 2012-03-30 2013-01-09 Electric power conversion device WO2013145792A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012081719A JP2015111963A (en) 2012-03-30 2012-03-30 Power conversion device
JP2012-081719 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013145792A1 true WO2013145792A1 (en) 2013-10-03

Family

ID=49259079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050160 WO2013145792A1 (en) 2012-03-30 2013-01-09 Electric power conversion device

Country Status (2)

Country Link
JP (1) JP2015111963A (en)
WO (1) WO2013145792A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108258885A (en) * 2016-12-28 2018-07-06 上海沪工焊接集团股份有限公司 Inversion welding source drive dynamic control device
WO2020219857A1 (en) 2019-04-25 2020-10-29 Magna International Inc. Motor drive topologies for traction and charging in electrified vehicles

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3049786B1 (en) * 2016-04-01 2019-08-30 Alstom Transport Technologies ELECTRIC POWER CONVERTER, TRACTION CHAIN COMPRISING SUCH A CONVERTER AND ELECTRICAL TRANSPORT VEHICLE THEREFOR
FR3049785B1 (en) * 2016-04-01 2019-08-30 Alstom Transport Technologies ELECTRIC POWER CONVERTER, TRACTION CHAIN COMPRISING SUCH A CONVERTER AND ELECTRICAL TRANSPORT VEHICLE THEREFOR
DE102022201640A1 (en) 2022-02-17 2023-08-17 Zf Friedrichshafen Ag Low-impedance clamp circuit for a semiconductor switching element in a power converter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213890A (en) * 1995-02-01 1996-08-20 Toshiba Corp Drive circuit for voltage-driven transistor
JP2004056977A (en) * 2002-07-24 2004-02-19 Mitsubishi Electric Corp Power device drive circuit
JP2008301681A (en) * 2007-06-04 2008-12-11 Mitsubishi Electric Corp Driving device, and ac power supply equipment having the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213890A (en) * 1995-02-01 1996-08-20 Toshiba Corp Drive circuit for voltage-driven transistor
JP2004056977A (en) * 2002-07-24 2004-02-19 Mitsubishi Electric Corp Power device drive circuit
JP2008301681A (en) * 2007-06-04 2008-12-11 Mitsubishi Electric Corp Driving device, and ac power supply equipment having the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108258885A (en) * 2016-12-28 2018-07-06 上海沪工焊接集团股份有限公司 Inversion welding source drive dynamic control device
WO2020219857A1 (en) 2019-04-25 2020-10-29 Magna International Inc. Motor drive topologies for traction and charging in electrified vehicles
EP3915188A4 (en) * 2019-04-25 2022-05-18 Magna International Inc. Motor drive topologies for traction and charging in electrified vehicles

Also Published As

Publication number Publication date
JP2015111963A (en) 2015-06-18

Similar Documents

Publication Publication Date Title
US7746158B2 (en) Driving device of voltage drive type semiconductor device
CN108400721B (en) Electric drive, grid drive and inverter for a vehicle
WO2012153836A1 (en) Switching circuit and semiconductor module
WO2013145792A1 (en) Electric power conversion device
JP2014090006A (en) Power module
US9496801B2 (en) Power conversion device including bidirectional switch having reverse-blocking insulated gate bipolar transistors
KR101643492B1 (en) Composite semiconductor switch device
CA2930188A1 (en) Compensation circuit, commutation cell and power converter controlling turn-on and turn-off of a power electronic switch
WO2015015721A1 (en) Semiconductor device and power conversion device
US9143078B2 (en) Power inverter including SiC JFETs
JP2018007403A (en) Power converter
US8829951B2 (en) Drive circuit for switching element
US8994437B2 (en) Semiconductor device and circuit for controlling potential of gate of insulated gate type switching device
JP5790472B2 (en) Switching element drive circuit
JP5254386B2 (en) Gate drive circuit and power semiconductor module
JP6512193B2 (en) Transistor drive circuit
US10224804B1 (en) Driving circuit, power conversion device and driving method of power switch
JP6769350B2 (en) Semiconductor switch drive
KR100723373B1 (en) Integrated circuit arrangement for controlling power semiconductor switch
JP2020141550A (en) Drive device for switch
JP6739865B2 (en) Semiconductor device
JP5313796B2 (en) Power semiconductor drive circuit and drive method
CN102739218A (en) Switching device and switching module
JP5563050B2 (en) Gate drive circuit and power semiconductor module
JP2019088078A (en) Driver circuit and power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13767309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP