WO2013145777A1 - Fuel storage body - Google Patents

Fuel storage body Download PDF

Info

Publication number
WO2013145777A1
WO2013145777A1 PCT/JP2013/002177 JP2013002177W WO2013145777A1 WO 2013145777 A1 WO2013145777 A1 WO 2013145777A1 JP 2013002177 W JP2013002177 W JP 2013002177W WO 2013145777 A1 WO2013145777 A1 WO 2013145777A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
supply path
fuel supply
predetermined temperature
melting point
Prior art date
Application number
PCT/JP2013/002177
Other languages
French (fr)
Japanese (ja)
Inventor
博晶 鈴木
安尾 耕司
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2013145777A1 publication Critical patent/WO2013145777A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/36Safety valves; Equalising valves, e.g. pressure relief valves actuated in consequence of extraneous circumstances, e.g. shock, change of position
    • F16K17/38Safety valves; Equalising valves, e.g. pressure relief valves actuated in consequence of extraneous circumstances, e.g. shock, change of position of excessive temperature
    • F16K17/383Safety valves; Equalising valves, e.g. pressure relief valves actuated in consequence of extraneous circumstances, e.g. shock, change of position of excessive temperature the valve comprising fusible, softening or meltable elements, e.g. used as link, blocking element, seal, closure plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0311Closure means
    • F17C2205/0317Closure means fusing or melting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel storage body. More specifically, the present invention relates to a fuel storage body used for a fuel cell.
  • Fuel cells are devices that generate electrical energy from hydrogen and oxygen, and can achieve high power generation efficiency.
  • the main features of the fuel cell are direct power generation that does not go through the process of thermal energy and kinetic energy as in the conventional power generation method, so that high power generation efficiency can be expected even on a small scale, and there is little emission of nitrogen compounds, Noise and vibration are also small, so the environmental performance is good.
  • the fuel cell can effectively use the chemical energy of the fuel and has environmentally friendly characteristics, it is expected as an energy supply system for the 21st century.
  • Fuel cells are attracting attention as a promising new power generation system that can be used in a variety of applications, from space use to automobiles and portable devices, from large-scale power generation to small-scale power generation. It is in full swing.
  • solid polymer fuel cells are characterized by low operating temperature and high output density compared to other types of fuel cells.
  • mobile devices cell phones, notebook personal computers, PDAs, It is expected to be used for power sources such as MP3 players, digital cameras, electronic dictionaries, and electronic books.
  • a planar array type fuel cell in which a plurality of single cells are arranged in a planar shape is known.
  • Patent Document 1 discloses a fuel cartridge in which a fuel ejection suppressing portion that suppresses a fuel ejection speed is disposed adjacent to a pressure release valve. In this fuel cartridge, it is supposed that by having the fuel ejection suppressing portion, the hydrogen storage alloy can be prevented from being ejected outside during the operation of the pressure release valve.
  • the present invention has been made in view of these problems, and its purpose is to prevent the user from reusing the fuel storage body when a thermal abnormality occurs in the fuel supply path and the temperature once exceeds a predetermined temperature. It is to provide a technology that can.
  • An aspect of the present invention is a fuel storage body.
  • the fuel storage unit includes a fuel storage unit for storing fuel to be supplied to the fuel cell, a fuel supply path for supplying fuel from the fuel storage unit to the fuel cell, and a fuel supply path adjacent to the fuel supply path.
  • Closing means disposed inside the path and closing the fuel supply path when the fuel supply path reaches a predetermined temperature or higher.
  • the closing means includes a low melting point member that melts when the fuel supply path reaches or exceeds a predetermined temperature. The fuel supply path is blocked by the melted low melting point member when the temperature exceeds a predetermined temperature.
  • the fuel storage unit includes a fuel storage unit for storing fuel to be supplied to the fuel cell, a fuel supply path for supplying fuel from the fuel storage unit to the fuel cell, and a fuel supply path adjacent to the fuel supply path.
  • Closing means disposed inside the path and closing the fuel supply path when the fuel supply path reaches a predetermined temperature or higher.
  • the closing means includes an opening / closing part that opens and closes the fuel supply path, and a low melting point member that presses the opening / closing part to control the open / close state of the opening / closing part and melts when the fuel supply path reaches a predetermined temperature or higher.
  • the low melting point member is disposed between the opening / closing portion and the pressing portion of the fuel cell when the fuel cell is connected to the fuel storage body.
  • the low melting point member melts, the pressing of the opening / closing part via the low melting point member by the pressing part of the fuel cell is suppressed, and the opening / closing part is closed, thereby The passage of fuel in the supply path is suppressed.
  • the supply of fuel from the fuel storage body can be more efficiently prevented.
  • leakage of fuel from the fuel storage body can be prevented.
  • FIG. 2 is a perspective view schematically showing each member of the fuel storage body according to Embodiment 1.
  • FIG. 3 is a cross-sectional view showing a connection port of the fuel storage body according to Embodiment 1.
  • FIG. 2A is a cross-sectional view showing the connection port before the fuel supply path reaches a predetermined temperature or higher.
  • FIG. 2B is a cross-sectional view showing the connection port after the fuel supply path has reached a predetermined temperature or higher.
  • 6 is a cross-sectional view showing a connection port of a fuel storage body according to Embodiment 2.
  • FIG. FIG. 3A is a cross-sectional view showing the connection port before the fuel supply path reaches a predetermined temperature or higher.
  • FIG. 3B is a cross-sectional view showing the connection port before the fuel supply path reaches a predetermined temperature or more and the low melting point member is solidified.
  • FIG. 3C is a cross-sectional view showing the connection port after the fuel supply path is at a predetermined temperature or higher and the low melting point member is solidified.
  • 6 is a cross-sectional view showing a connection port of a fuel storage body according to Embodiment 3.
  • FIG. FIG. 4A is a cross-sectional view showing the connection port before the fuel supply path reaches a predetermined temperature or higher.
  • FIG. 4B is a cross-sectional view showing the connection port after the fuel supply path has reached a predetermined temperature or higher.
  • FIG. 5 (A) is a schematic view showing the air holes before the fuel supply path reaches a predetermined temperature or higher.
  • FIG. 5B is a schematic diagram showing the air holes after the fuel supply path has reached a predetermined temperature or higher.
  • FIG. 1 is a diagram schematically showing mainly the function and connection of each component, and does not limit the positional relationship or arrangement of each component.
  • the fuel storage body 1 of the present embodiment includes a fuel storage unit 2 for storing fuel supplied to the fuel cell, a fuel supply path for supplying fuel from the fuel storage unit 2 to the fuel cell, and a fuel supply path And a closing means that is disposed adjacent to or inside the fuel supply path and closes the fuel supply path when the fuel supply path reaches a predetermined temperature or higher.
  • the closing means includes a low melting point member 60 that melts when the fuel supply path reaches or exceeds a predetermined temperature. The fuel supply path is blocked by the melted low melting point member 60 when the temperature exceeds a predetermined temperature.
  • FIG. 1 is a perspective view schematically showing each member of the fuel storage body 1 according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing the connection port 8 of the fuel storage body 1 according to the first embodiment.
  • FIG. 2A is a cross-sectional view showing the connection port 8 before the fuel supply path reaches a predetermined temperature or higher.
  • FIG. 2B is a cross-sectional view showing the connection port 8 after the fuel supply path has reached a predetermined temperature or higher. 2, illustration of a part of the fuel cell side port 100 and the fuel storage unit 2 shown in FIG. 1 is omitted.
  • the fuel storage body 1 is mainly composed of a fuel storage portion 2, a port housing 10, a pin 20, an O-ring 30, a ball 40, an elastic body 50, a low melting point member 60, and a mesh 70. , An elastic body adjusting unit 80 and a filter 90.
  • the supply port 4 the port housing 10, the pin 20, the O-ring 30, the ball 40, the elastic body 50, provided in the fuel storage section 2.
  • a structure in which the low melting point member 60, the mesh 70, the elastic body adjusting unit 80, and the filter 90 are assembled is referred to as a connection port 8.
  • the fuel storage unit 2 is a fuel cartridge for storing fuel to be supplied to the fuel cell.
  • the fuel is hydrogen.
  • a hydrogen storage alloy (MH) is accommodated in the fuel storage unit 2.
  • the hydrogen storage alloy absorbs and stores hydrogen.
  • Hydrogen is stored and supplied through a supply port 4 provided in the fuel storage unit 2.
  • a pressure release valve 6 is attached to the fuel storage unit 2. The pressure release valve 6 is opened in order to prevent an increase in internal pressure when the temperature inside the fuel storage unit 2 rises. In this case, hydrogen as fuel is released from the inside of the fuel storage unit 2 to the outside.
  • the port housing 10 is a housing for the connection port 8.
  • the port housing 10 includes a concave portion 12, a cylindrical portion 16 having one end opened in a direction opposite to the concave portion 12, and a vent hole 14 that connects the bottom surface of the concave portion 12 and the bottom surface of the cylindrical portion 16.
  • the elastic body adjustment unit 80 is a member that connects the port housing 10 and the fuel storage unit 2.
  • the elastic body adjusting portion 80 includes a cylindrical portion 82 accommodated in the cylindrical portion 16 of the port housing 10, a recess 88 shown in FIG. 2 for inserting the supply port 4 of the fuel storage portion 2, and a bottom surface 84 of the cylindrical portion 82. And a recess 88 connecting the recess 88.
  • a path that leads from the fuel storage unit 2 to the fuel cell through a space formed inside the connection port 8 is referred to as a fuel supply path.
  • the pin 20 is slidably accommodated in the vent hole 14. Even when the pin 20 is accommodated, hydrogen as a fuel can pass through the vent hole 14.
  • the O-ring 30 is an elastic body having a ventilation hole 32, a circular cross section, and heat resistance.
  • the ball 40 is a metal sphere and has heat resistance. The diameter of the ball 40 is larger than the diameter of the vent hole 32 of the O-ring 30. When the O-ring 30 and the ball 40 are in contact with each other on the same axis, the fuel supply path is cut off, thereby preventing fuel from passing through the contact portion.
  • the elastic body 50 is a metal spring. One end of the elastic body 50 is fixed to the bottom surface 84 of the cylindrical portion 82 of the elastic body adjusting unit 80, and the other end is fixed to the ball 40.
  • the low melting point member 60 is a cylindrical member that melts when the fuel supply path reaches a predetermined temperature or higher.
  • the low melting point member 60 functions as a closing means.
  • the low melting point member 60 is disposed along the inner wall surface of the cylindrical portion 82.
  • the inner diameter of the low melting point member 60 is formed so as to accommodate the elastic body 50.
  • the melting point of the low melting point member 60 is preferably about 60 to about 70 ° C.
  • the low melting point member 60 is preferably gas impermeable.
  • a raw material of such a low melting point member 60 for example, wood metal, bismuth, tin, resin, or the like can be used.
  • the mesh 70 is fixed to the cylindrical portion 82 of the elastic body adjusting portion 80.
  • the mesh 70 permeates the fuel but does not permeate the melted low melting point member 60.
  • the filter 90 is fixed between the elastic body adjusting unit 80 and the supply port 4 of the fuel storage unit 2, so that the melted low melting point member 60 enters the fuel storage unit 2 and the fuel storage unit 2.
  • the hydrogen storage alloy inside is prevented from being ejected to the outside.
  • the fuel storage body 1 is formed by assembling the two so as to be coaxial.
  • the fuel storage body 1 is connected via a port housing 10 to a fuel cell side port 100 provided on the fuel cell side (not shown).
  • the convex portion 102 of the fuel cell side port 100 is inserted into the concave portion 12 of the port housing 10, and the pin 104 of the fuel cell side port 100 is inserted into the vent hole 14 of the port housing 10.
  • the fuel cell side port 100 may be provided in the fuel cell itself.
  • the fuel cell side port 100 may be provided in a gas fluid control component (such as a regulator) (not shown), and the fuel cell may be connected to the gas fluid control component.
  • the ball 40 is pressed in the direction of the O-ring 30 by the elastic body 50 (hereinafter, stress A).
  • stress A When the fuel storage body 1 is connected to the fuel cell side port 100, the ball 40 is also pressed in the direction opposite to the O-ring 30 by the pin 20 pressed by the pin 104 of the fuel cell side port 100 (not shown).
  • stress B In the present embodiment, the stress B is stronger than the stress A regardless of the temperature of the fuel supply path. Therefore, when the fuel storage body 1 is connected to the fuel cell side port 100, the state where the ball 40 and the O-ring 30 do not contact each other is maintained as shown in FIG.
  • the low melting point member 60 maintains a cylindrical shape. Therefore, a fuel supply path is formed as shown by the dotted line in FIG.
  • the fuel supply path reaches a predetermined temperature or higher, the melted low melting point member 60 moves on the bottom surface 84 and the vent hole 86 of the elastic body adjusting unit 80 and is held by the mesh 70 and the filter 90 in the vent hole 86.
  • the low melting point member 60 is solidified in a state where the vent hole 86 is blocked by the low melting point member 60. As a result, the fuel supply path is blocked, so that the supply of fuel to the fuel cell through the connection port 8 of the fuel storage body 1 is suppressed.
  • the present embodiment it is possible to prevent the user from reusing the fuel storage body and supplying the fuel from the fuel storage body when a thermal abnormality occurs in the fuel supply path and the temperature once exceeds a predetermined temperature. it can. Further, refilling of the fuel into the fuel storage body is also prevented. As a result, the safety of the fuel storage body can be improved.
  • the MH cartridge in which the hydrogen storage alloy is accommodated is illustrated as the fuel storage unit 2, but the fuel storage unit 2 is a fuel cartridge other than the MH cartridge, for example, a cartridge in which a pressure container is simply filled with fuel. It may be a liquid fuel cartridge.
  • the fuel may be substances other than hydrogen, for example, methanol.
  • a filter may be disposed, for example, around the O-ring 30.
  • FIG. 3 is a cross-sectional view showing the connection port 8 of the fuel storage body 1 according to the second embodiment.
  • FIG. 3A is a cross-sectional view showing the connection port 8 before the fuel supply path reaches a predetermined temperature or higher.
  • FIG. 3B is a cross-sectional view showing the connection port 8 before the fuel supply path reaches a predetermined temperature or more and the low melting point member 60 is solidified.
  • FIG. 3C is a cross-sectional view showing the connection port 8 after the fuel supply path reaches a predetermined temperature or more and the low melting point member 60 is solidified.
  • the connection port 8 of the fuel storage body 1 according to the second embodiment will be described with a focus on differences from the first embodiment.
  • the fuel storage body 1 of the second embodiment further includes a pressure release unit 62 that is branched from the fuel supply path or connected to the fuel supply path, and releases the pressure inside the fuel storage section.
  • the pressure release part 62 is formed on the side surfaces of the port housing 10 and the elastic body adjustment part 80 after assembly, and connects the space formed inside the connection port 8 to the outside.
  • the pressure release part 62 functions as the pressure release valve 6 provided in the fuel storage part 2 of FIG. Therefore, in the present embodiment, the fuel reservoir 2 is not provided with the pressure release valve 6.
  • the low melting point member 60 functioning as a closing means is disposed so as to close the pressure release portion 62 before melting. Therefore, the fuel is prevented from leaking outside from the pressure release portion 62 before the fuel supply path reaches a predetermined temperature or higher.
  • the low melting point member 60 melts and moves from the pressure release portion 62 to the bottom surface 84 and the vent hole 86.
  • the fuel can pass through the ventilation hole 86 through the gap of the low melting point member 60 or through the low melting point member 60. is there. Therefore, as indicated by the dotted line, the fuel is discharged from the vent hole 86 to the outside of the fuel storage body 1 through the pressure release portion 62. Thereby, it is suppressed that the fuel in the inside of the fuel storage body 1 becomes a high pressure.
  • a filter similar to the filter 90 may be provided outside the pressure release portion 62 to prevent the melted low melting point member 60 from flowing out.
  • FIG. 4 is a cross-sectional view showing the connection port 8 of the fuel storage body 1 according to the third embodiment.
  • FIG. 4A is a cross-sectional view showing the connection port 8 before the fuel supply path reaches a predetermined temperature or higher.
  • FIG. 4B is a cross-sectional view showing the connection port 8 after the fuel supply path has reached a predetermined temperature or higher.
  • the connection port 8 of the fuel storage body 1 according to the third embodiment will be described with a focus on differences from the first embodiment.
  • the cylindrical low melting point member 60 is not provided. Instead, the pin 20 is formed of a low melting point material. In the present embodiment, in addition to the pin 20, the ball 40 and the O-ring 30 that form the opening / closing portion of the fuel supply path also function as a closing means.
  • the pin 20 pressed by the pin 104 of the fuel cell side port 100 pushes the ball 40 in the same manner as in FIG. By pressing, the state where the ball 40 and the O-ring 30 are not in contact with each other is maintained. In this case, since the fuel can pass through the fuel supply path, the fuel is supplied from the fuel storage body 1 to the fuel cell. On the other hand, when the fuel supply path reaches a predetermined temperature or higher, the pin 20 melts as shown in FIG. Thereby, the pressing state with respect to the ball
  • the pin 104 cannot press the ball 40 even when it is pushed most. Therefore, as a result of the ball 40 being pressed against the O-ring 30 only by the stress A described above, the fuel supply path is blocked. Further, the melted low melting point material accumulates on the bonded ball 40 and O-ring 30 and then solidifies, so that the fuel supply path is more reliably blocked. Further, when the pin 20 is melted, the pin 104 cannot press the ball 40 even if the fuel storage body 1 is once removed from the fuel cell side port 100 and connected again.
  • the fuel supply from the fuel storage body can be more efficiently prevented. Further, refilling of fuel into the fuel storage body 1 is also prevented.
  • the melted low melting point material may move to block the vent hole 86.
  • FIG. 5 is a schematic view showing a modified example of the vent hole 86 provided in the bottom surface 84 of the cylindrical portion 82 of the elastic body adjusting portion 80.
  • FIG. 5A is a schematic diagram showing the air vent 86 before the fuel supply path reaches a predetermined temperature or higher.
  • FIG. 5B is a schematic diagram showing the air vent 86 after the fuel supply path has reached a predetermined temperature or higher.
  • the vent hole 86 is formed in an S-shape.
  • the low melting point member 60 does not exist in the vent hole 86 before the fuel supply path reaches a predetermined temperature or higher. Therefore, the fuel can pass through the vent hole 86.
  • FIG. 5B when the fuel supply path becomes a predetermined temperature or higher and the low melting point member 60 melts and flows into the vent hole 86, the curved portion of the vent hole 86 becomes a storage portion, and the low The melting point member 60 is efficiently stored. Therefore, fuel cannot pass through the vent hole 86. Thereby, it becomes possible to block the vent hole 86 more reliably.
  • the supply of fuel from the fuel storage body can be more efficiently prevented when a thermal abnormality occurs in the fuel supply path and the temperature once exceeds a predetermined temperature.
  • the present invention is applicable to a fuel storage body used for a fuel cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel Cell (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

A fuel storage body (1) is provided with: a fuel storage section (2) for storing fuel to be supplied to a fuel cell; a fuel supply path for supplying the fuel from the fuel storage section (2) to the fuel cell; and a closing means disposed adjacent to or within the fuel supply path and closing the fuel supply path when the temperature thereof is higher than or equal to a predetermined temperature. The closing means includes a low-melting-point member (60) which melts when the temperature of the fuel supply path is higher than or equal to the predetermined temperature. The fuel supply path is closed by the melted low-melting-point member (60) when the temperature of the fuel supply path is higher than or equal to the predetermined temperature.

Description

燃料貯蔵体Fuel storage
 本発明は、燃料貯蔵体に関する。より具体的には、本発明は、燃料電池に使用する燃料貯蔵体に関する。 The present invention relates to a fuel storage body. More specifically, the present invention relates to a fuel storage body used for a fuel cell.
 燃料電池は水素と酸素とから電気エネルギを発生させる装置であり、高い発電効率を得ることができる。燃料電池の主な特徴としては、従来の発電方式のように熱エネルギや運動エネルギの過程を経ない直接発電であるので、小規模でも高い発電効率が期待できること、窒素化合物等の排出が少なく、騒音や振動も小さいので環境性が良いことなどが挙げられる。このように、燃料電池は燃料のもつ化学エネルギを有効に利用でき、環境にやさしい特性を持っているので、21世紀を担うエネルギ供給システムとして期待されている。また、燃料電池は、宇宙用から自動車用、携帯機器用まで、大規模発電から小規模発電まで、種々の用途に使用できる将来有望な新しい発電システムとして注目され、実用化に向けて技術開発が本格化している。 Fuel cells are devices that generate electrical energy from hydrogen and oxygen, and can achieve high power generation efficiency. The main features of the fuel cell are direct power generation that does not go through the process of thermal energy and kinetic energy as in the conventional power generation method, so that high power generation efficiency can be expected even on a small scale, and there is little emission of nitrogen compounds, Noise and vibration are also small, so the environmental performance is good. Thus, since the fuel cell can effectively use the chemical energy of the fuel and has environmentally friendly characteristics, it is expected as an energy supply system for the 21st century. Fuel cells are attracting attention as a promising new power generation system that can be used in a variety of applications, from space use to automobiles and portable devices, from large-scale power generation to small-scale power generation. It is in full swing.
 中でも、固体高分子形燃料電池は、他の種類の燃料電池に比べて、作動温度が低く、高い出力密度を持つ特徴があり、特に近年、携帯機器(携帯電話、ノート型パーソナルコンピュータ、PDA、MP3プレーヤ、デジタルカメラあるいは電子辞書、電子書籍)などの電源への利用が期待されている。携帯機器用の固体高分子形燃料電池の一つの形態として、複数の単セルを平面状に配列した平面配列型の燃料電池が知られている。 Among them, solid polymer fuel cells are characterized by low operating temperature and high output density compared to other types of fuel cells. Especially, in recent years, mobile devices (cell phones, notebook personal computers, PDAs, It is expected to be used for power sources such as MP3 players, digital cameras, electronic dictionaries, and electronic books. As one form of a polymer electrolyte fuel cell for portable devices, a planar array type fuel cell in which a plurality of single cells are arranged in a planar shape is known.
特開2007-59326号公報JP 2007-59326 A
 燃料電池に燃料を供給するために、水素などの燃料が収容された燃料貯蔵体(以下、燃料カートリッジともいう)が使用されることが多い。燃料貯蔵体として、内容物が外部に漏出することを防止する構造が知られている。たとえば特許文献1には、燃料の噴出速度を抑制する燃料噴出抑制部を圧力開放弁に隣接して配置させた燃料カートリッジが開示されている。この燃料カートリッジでは、燃料噴出抑制部を有することにより、圧力開放弁の作動中に水素吸蔵合金の外部への噴出が防止できるとされている。 In order to supply fuel to a fuel cell, a fuel storage body (hereinafter also referred to as a fuel cartridge) in which a fuel such as hydrogen is accommodated is often used. As a fuel storage body, a structure for preventing contents from leaking to the outside is known. For example, Patent Document 1 discloses a fuel cartridge in which a fuel ejection suppressing portion that suppresses a fuel ejection speed is disposed adjacent to a pressure release valve. In this fuel cartridge, it is supposed that by having the fuel ejection suppressing portion, the hydrogen storage alloy can be prevented from being ejected outside during the operation of the pressure release valve.
 しかし、特許文献1に開示された燃料カートリッジでは、圧力開放弁の作動後に安全性を確保することができなかった。つまり、この燃料カートリッジは、一度作動させた後に再度使用すると、燃料である水素が漏出してしまうおそれがあるという問題があった。 However, in the fuel cartridge disclosed in Patent Document 1, safety cannot be ensured after the pressure release valve is operated. That is, when this fuel cartridge is operated once and then used again, there is a problem that hydrogen as a fuel may leak.
 本発明はこうした課題に鑑みてなされたものであり、その目的は、燃料供給経路に熱的な異常が生じて一度所定温度以上となった場合に、ユーザによる燃料貯蔵体の再利用を防止することができる技術を提供することにある。 The present invention has been made in view of these problems, and its purpose is to prevent the user from reusing the fuel storage body when a thermal abnormality occurs in the fuel supply path and the temperature once exceeds a predetermined temperature. It is to provide a technology that can.
 本発明のある態様は、燃料貯蔵体である。当該燃料貯蔵体は、燃料電池に供給する燃料を貯蔵するための燃料貯蔵部と、燃料貯蔵部から燃料電池に燃料を供給するための燃料供給経路と、燃料供給経路に隣接してまたは燃料供給経路の内部に配置され、燃料供給経路が所定温度以上となった場合に燃料供給経路を塞ぐ閉鎖手段と、を備える。閉鎖手段は、燃料供給経路が所定温度以上となった場合に融解する低融点部材を含む。燃料供給経路は、所定温度以上となった場合に、融解した低融点部材により塞がれる。 An aspect of the present invention is a fuel storage body. The fuel storage unit includes a fuel storage unit for storing fuel to be supplied to the fuel cell, a fuel supply path for supplying fuel from the fuel storage unit to the fuel cell, and a fuel supply path adjacent to the fuel supply path. Closing means disposed inside the path and closing the fuel supply path when the fuel supply path reaches a predetermined temperature or higher. The closing means includes a low melting point member that melts when the fuel supply path reaches or exceeds a predetermined temperature. The fuel supply path is blocked by the melted low melting point member when the temperature exceeds a predetermined temperature.
 この態様によれば、燃料供給経路に熱的な異常が生じて一度所定温度以上となった場合に、ユーザによる燃料貯蔵体の再利用および燃料貯蔵体からの燃料の漏出を防止することができる。また、燃料貯蔵体への燃料の再充填も防止される。その結果、燃料貯蔵体の安全性を向上させることができる。 According to this aspect, it is possible to prevent the user from reusing the fuel storage body and leaking fuel from the fuel storage body when a thermal abnormality occurs in the fuel supply path and the temperature once exceeds a predetermined temperature. . Further, refilling of the fuel into the fuel storage body is also prevented. As a result, the safety of the fuel storage body can be improved.
 本発明の別の態様も、燃料貯蔵体である。当該燃料貯蔵体は、燃料電池に供給する燃料を貯蔵するための燃料貯蔵部と、燃料貯蔵部から燃料電池に燃料を供給するための燃料供給経路と、燃料供給経路に隣接してまたは燃料供給経路の内部に配置され、燃料供給経路が所定温度以上となった場合に燃料供給経路を塞ぐ閉鎖手段と、を備える。閉鎖手段は、燃料供給経路を開閉する開閉部と、開閉部を押圧して開閉部の開閉状態を制御し燃料供給経路が所定温度以上となった場合に融解する低融点部材と、を含む。低融点部材は、燃料電池が燃料貯蔵体に接続された場合に、開閉部と燃料電池の押圧部との間に配置される。燃料供給経路が所定温度以上となった場合、低融点部材が融解して燃料電池の押圧部による低融点部材を介した開閉部の押圧が抑止されて開閉部が閉状態となることにより、燃料供給経路の燃料の通過が抑制される。 Another aspect of the present invention is also a fuel storage body. The fuel storage unit includes a fuel storage unit for storing fuel to be supplied to the fuel cell, a fuel supply path for supplying fuel from the fuel storage unit to the fuel cell, and a fuel supply path adjacent to the fuel supply path. Closing means disposed inside the path and closing the fuel supply path when the fuel supply path reaches a predetermined temperature or higher. The closing means includes an opening / closing part that opens and closes the fuel supply path, and a low melting point member that presses the opening / closing part to control the open / close state of the opening / closing part and melts when the fuel supply path reaches a predetermined temperature or higher. The low melting point member is disposed between the opening / closing portion and the pressing portion of the fuel cell when the fuel cell is connected to the fuel storage body. When the fuel supply path reaches a predetermined temperature or higher, the low melting point member melts, the pressing of the opening / closing part via the low melting point member by the pressing part of the fuel cell is suppressed, and the opening / closing part is closed, thereby The passage of fuel in the supply path is suppressed.
 この態様によれば、燃料供給経路に熱的な異常が生じて一度所定温度以上となった場合に、燃料貯蔵体からの燃料の供給をさらに効率的に防止することができる。 According to this aspect, when a thermal abnormality occurs in the fuel supply path and the temperature once exceeds a predetermined temperature, the supply of fuel from the fuel storage body can be more efficiently prevented.
 なお、上述した各要素を適宜組み合わせたものも、本件特許出願によって特許による保護を求める発明の範囲に含まれうる。 Note that a combination of the above-described elements as appropriate can be included in the scope of the invention for which protection by patent is sought by this patent application.
 本発明によれば、燃料貯蔵体からの燃料の漏出を防止することができる。 According to the present invention, leakage of fuel from the fuel storage body can be prevented.
実施の形態1に係る燃料貯蔵体の各部材を模式的に示す斜視図である。2 is a perspective view schematically showing each member of the fuel storage body according to Embodiment 1. FIG. 実施の形態1に係る燃料貯蔵体の接続ポートを示す断面図である。図2(A)は、燃料供給経路が所定温度以上となる前における接続ポートを示す断面図である。図2(B)は、燃料供給経路が所定温度以上となった後における接続ポートを示す断面図である。3 is a cross-sectional view showing a connection port of the fuel storage body according to Embodiment 1. FIG. FIG. 2A is a cross-sectional view showing the connection port before the fuel supply path reaches a predetermined temperature or higher. FIG. 2B is a cross-sectional view showing the connection port after the fuel supply path has reached a predetermined temperature or higher. 実施の形態2に係る燃料貯蔵体の接続ポートを示す断面図である。図3(A)は、燃料供給経路が所定温度以上となる前における接続ポートを示す断面図である。図3(B)は、燃料供給経路が所定温度以上となり、低融点部材が凝固する前における接続ポートを示す断面図である。図3(C)は、燃料供給経路が所定温度以上となり、低融点部材が凝固した後における接続ポートを示す断面図である。6 is a cross-sectional view showing a connection port of a fuel storage body according to Embodiment 2. FIG. FIG. 3A is a cross-sectional view showing the connection port before the fuel supply path reaches a predetermined temperature or higher. FIG. 3B is a cross-sectional view showing the connection port before the fuel supply path reaches a predetermined temperature or more and the low melting point member is solidified. FIG. 3C is a cross-sectional view showing the connection port after the fuel supply path is at a predetermined temperature or higher and the low melting point member is solidified. 実施の形態3に係る燃料貯蔵体の接続ポートを示す断面図である。図4(A)は、燃料供給経路が所定温度以上となる前における接続ポートを示す断面図である。図4(B)は、燃料供給経路が所定温度以上となった後における接続ポートを示す断面図である。6 is a cross-sectional view showing a connection port of a fuel storage body according to Embodiment 3. FIG. FIG. 4A is a cross-sectional view showing the connection port before the fuel supply path reaches a predetermined temperature or higher. FIG. 4B is a cross-sectional view showing the connection port after the fuel supply path has reached a predetermined temperature or higher. 弾性体調整部の円筒部の底面に設けられた通気孔の変形例を示す概略図である。図5(A)は、燃料供給経路が所定温度以上となる前における通気孔を示す概略図である。図5(B)は、燃料供給経路が所定温度以上となった後における通気孔を示す概略図である。It is the schematic which shows the modification of the vent provided in the bottom face of the cylindrical part of an elastic body adjustment part. FIG. 5 (A) is a schematic view showing the air holes before the fuel supply path reaches a predetermined temperature or higher. FIG. 5B is a schematic diagram showing the air holes after the fuel supply path has reached a predetermined temperature or higher.
 以下、本発明の実施の形態を、図面を参照して説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。なお、各図は、主に各構成の機能やつながりを模式的に示した図であり、各構成の位置関係または配置を限定するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate. Each figure is a diagram schematically showing mainly the function and connection of each component, and does not limit the positional relationship or arrangement of each component.
 (実施の形態1)
 本実施の形態の燃料貯蔵体1は、燃料電池に供給する燃料を貯蔵するための燃料貯蔵部2と、燃料貯蔵部2から燃料電池に燃料を供給するための燃料供給経路と、燃料供給経路に隣接してまたは燃料供給経路の内部に配置され、燃料供給経路が所定温度以上となった場合に燃料供給経路を塞ぐ閉鎖手段と、を備える。閉鎖手段は、燃料供給経路が所定温度以上となった場合に融解する低融点部材60を含む。燃料供給経路は、所定温度以上となった場合に、融解した低融点部材60により塞がれる。
(Embodiment 1)
The fuel storage body 1 of the present embodiment includes a fuel storage unit 2 for storing fuel supplied to the fuel cell, a fuel supply path for supplying fuel from the fuel storage unit 2 to the fuel cell, and a fuel supply path And a closing means that is disposed adjacent to or inside the fuel supply path and closes the fuel supply path when the fuel supply path reaches a predetermined temperature or higher. The closing means includes a low melting point member 60 that melts when the fuel supply path reaches or exceeds a predetermined temperature. The fuel supply path is blocked by the melted low melting point member 60 when the temperature exceeds a predetermined temperature.
 本実施の形態の燃料貯蔵体1を、図1および図2を参照して説明する。図1は、実施の形態1に係る燃料貯蔵体1の各部材を模式的に示す斜視図である。図2は、実施の形態1に係る燃料貯蔵体1の接続ポート8を示す断面図である。図2(A)は、燃料供給経路が所定温度以上となる前における接続ポート8を示す断面図である。図2(B)は、燃料供給経路が所定温度以上となった後における接続ポート8を示す断面図である。なお、図2では図1に示した燃料電池側ポート100および燃料貯蔵部2の一部の図示を省略する。 The fuel storage body 1 of the present embodiment will be described with reference to FIGS. FIG. 1 is a perspective view schematically showing each member of the fuel storage body 1 according to the first embodiment. FIG. 2 is a cross-sectional view showing the connection port 8 of the fuel storage body 1 according to the first embodiment. FIG. 2A is a cross-sectional view showing the connection port 8 before the fuel supply path reaches a predetermined temperature or higher. FIG. 2B is a cross-sectional view showing the connection port 8 after the fuel supply path has reached a predetermined temperature or higher. 2, illustration of a part of the fuel cell side port 100 and the fuel storage unit 2 shown in FIG. 1 is omitted.
 図1に示すように、燃料貯蔵体1は、主な構成として、燃料貯蔵部2、ポート筐体10、ピン20、O-リング30、ボール40、弾性体50、低融点部材60、メッシュ70、弾性体調整部80、フィルタ90を有する。ここでは、図1に示した燃料貯蔵体1の各部材のうち、燃料貯蔵部2に設けられた供給口4、ポート筐体10、ピン20、O-リング30、ボール40、弾性体50、低融点部材60、メッシュ70、弾性体調整部80、フィルタ90が組み付けられた構造を接続ポート8と呼ぶ。 As shown in FIG. 1, the fuel storage body 1 is mainly composed of a fuel storage portion 2, a port housing 10, a pin 20, an O-ring 30, a ball 40, an elastic body 50, a low melting point member 60, and a mesh 70. , An elastic body adjusting unit 80 and a filter 90. Here, among the members of the fuel storage body 1 shown in FIG. 1, the supply port 4, the port housing 10, the pin 20, the O-ring 30, the ball 40, the elastic body 50, provided in the fuel storage section 2. A structure in which the low melting point member 60, the mesh 70, the elastic body adjusting unit 80, and the filter 90 are assembled is referred to as a connection port 8.
 燃料貯蔵部2は、燃料電池に供給する燃料を貯蔵するための燃料カートリッジである。本実施の形態では、燃料は水素である。燃料貯蔵部2には、水素吸蔵合金(MH)が収容されている。水素吸蔵合金は、水素を吸収して貯蔵する。水素は、燃料貯蔵部2に設けられた供給口4を介して貯蔵および供給される。また、燃料貯蔵部2には、圧力開放弁6が取り付けられている。圧力開放弁6は、燃料貯蔵部2の内部の温度が上昇した場合に、内圧の上昇を防止するために開放される。この場合、燃料貯蔵部2の内部から外部へと燃料である水素が放出される。 The fuel storage unit 2 is a fuel cartridge for storing fuel to be supplied to the fuel cell. In the present embodiment, the fuel is hydrogen. A hydrogen storage alloy (MH) is accommodated in the fuel storage unit 2. The hydrogen storage alloy absorbs and stores hydrogen. Hydrogen is stored and supplied through a supply port 4 provided in the fuel storage unit 2. Further, a pressure release valve 6 is attached to the fuel storage unit 2. The pressure release valve 6 is opened in order to prevent an increase in internal pressure when the temperature inside the fuel storage unit 2 rises. In this case, hydrogen as fuel is released from the inside of the fuel storage unit 2 to the outside.
 ポート筐体10は、接続ポート8の筐体である。ポート筐体10は、凹部12、一端が凹部12とは反対方向に開放された円筒部16、凹部12の底面と円筒部16の底面とを接続する通気孔14を有する。弾性体調整部80は、ポート筐体10と燃料貯蔵部2とを接続する部材である。弾性体調整部80は、ポート筐体10の円筒部16に収容される円筒部82、燃料貯蔵部2の供給口4を挿入しするための図2に示す凹部88、円筒部82の底面84と凹部88とを接続する通気孔86を有する。円筒部16に円筒部82が収容されることによりポート筐体10と弾性体調整部80とが組み付けられた場合、図2に示すようにポート筐体10と弾性体調整部80の内部に空間が形成される。 The port housing 10 is a housing for the connection port 8. The port housing 10 includes a concave portion 12, a cylindrical portion 16 having one end opened in a direction opposite to the concave portion 12, and a vent hole 14 that connects the bottom surface of the concave portion 12 and the bottom surface of the cylindrical portion 16. The elastic body adjustment unit 80 is a member that connects the port housing 10 and the fuel storage unit 2. The elastic body adjusting portion 80 includes a cylindrical portion 82 accommodated in the cylindrical portion 16 of the port housing 10, a recess 88 shown in FIG. 2 for inserting the supply port 4 of the fuel storage portion 2, and a bottom surface 84 of the cylindrical portion 82. And a recess 88 connecting the recess 88. When the port housing 10 and the elastic body adjusting portion 80 are assembled by accommodating the cylindrical portion 82 in the cylindrical portion 16, a space is formed inside the port housing 10 and the elastic body adjusting portion 80 as shown in FIG. 2. Is formed.
 ポート筐体10と弾性体調整部80との内部に形成された空間には、ピン20、O-リング30、ボール40、弾性体50、低融点部材60、メッシュ70が収容される。図2(A)の点線で示すように、燃料貯蔵部2から接続ポート8の内部に形成された空間を通って燃料電池に通じる経路を、燃料供給経路と呼ぶ。 In the space formed inside the port housing 10 and the elastic body adjusting unit 80, the pin 20, the O-ring 30, the ball 40, the elastic body 50, the low melting point member 60, and the mesh 70 are accommodated. As shown by a dotted line in FIG. 2A, a path that leads from the fuel storage unit 2 to the fuel cell through a space formed inside the connection port 8 is referred to as a fuel supply path.
 ピン20は、通気孔14にスライド可能に収容される。ピン20が収容された状態でも、燃料である水素は通気孔14を通過可能である。O-リング30は、通気孔32を有し、断面が円形で耐熱性を有する弾性体である。ボール40は、金属製の球体であり、耐熱性を有する。ボール40の直径は、O-リング30の通気孔32の直径より大きい。O-リング30とボール40とが同軸にて接触した場合、燃料供給経路が遮断されることにより、接触部における燃料の通過が防止される。弾性体50は、金属製のバネである。弾性体50は、一端が弾性体調整部80の円筒部82の底面84に固定され、他端がボール40に固定されている。 The pin 20 is slidably accommodated in the vent hole 14. Even when the pin 20 is accommodated, hydrogen as a fuel can pass through the vent hole 14. The O-ring 30 is an elastic body having a ventilation hole 32, a circular cross section, and heat resistance. The ball 40 is a metal sphere and has heat resistance. The diameter of the ball 40 is larger than the diameter of the vent hole 32 of the O-ring 30. When the O-ring 30 and the ball 40 are in contact with each other on the same axis, the fuel supply path is cut off, thereby preventing fuel from passing through the contact portion. The elastic body 50 is a metal spring. One end of the elastic body 50 is fixed to the bottom surface 84 of the cylindrical portion 82 of the elastic body adjusting unit 80, and the other end is fixed to the ball 40.
 低融点部材60は、燃料供給経路が所定温度以上となった場合に融解する円筒形状の部材である。本実施の形態では、低融点部材60が閉鎖手段として機能する。低融点部材60は円筒部82の内壁面に沿うように配置される。一方、低融点部材60の内径は、弾性体50を収容可能に形成されている。低融点部材60の融点は、約60~約70℃であることが好ましい。また、低融点部材60はガス不透過性であることが好ましい。このような低融点部材60の原料として、たとえばウッドメタル、ビスマス、スズ、樹脂などを使用することができる。 The low melting point member 60 is a cylindrical member that melts when the fuel supply path reaches a predetermined temperature or higher. In the present embodiment, the low melting point member 60 functions as a closing means. The low melting point member 60 is disposed along the inner wall surface of the cylindrical portion 82. On the other hand, the inner diameter of the low melting point member 60 is formed so as to accommodate the elastic body 50. The melting point of the low melting point member 60 is preferably about 60 to about 70 ° C. The low melting point member 60 is preferably gas impermeable. As a raw material of such a low melting point member 60, for example, wood metal, bismuth, tin, resin, or the like can be used.
 メッシュ70は、弾性体調整部80の円筒部82に固定される。メッシュ70は、燃料を透過させるが融解した低融点部材60を透過させない。フィルタ90は、弾性体調整部80と燃料貯蔵部2の供給口4との間に固定されることにより、融解した低融点部材60が燃料貯蔵部2の内部に入ること、および燃料貯蔵部2の内部の水素吸蔵合金が外部に噴出されることを防止する。フィルタ90が通気孔86の一端に固定されることにより、融解した低融点部材60の貯溜部が形成される。 The mesh 70 is fixed to the cylindrical portion 82 of the elastic body adjusting portion 80. The mesh 70 permeates the fuel but does not permeate the melted low melting point member 60. The filter 90 is fixed between the elastic body adjusting unit 80 and the supply port 4 of the fuel storage unit 2, so that the melted low melting point member 60 enters the fuel storage unit 2 and the fuel storage unit 2. The hydrogen storage alloy inside is prevented from being ejected to the outside. When the filter 90 is fixed to one end of the vent hole 86, a storage portion for the melted low melting point member 60 is formed.
 図1の軸Lで示すように、ポート筐体10、ピン20、O-リング30、ボール40、弾性体50、低融点部材60、メッシュ70、弾性体調整部80、フィルタ90、燃料貯蔵部2が同軸となるように組み付けられ、燃料貯蔵体1が形成される。また、燃料貯蔵体1は、ポート筐体10を介して、図示しない燃料電池側に設けられた燃料電池側ポート100に接続される。具体的には、燃料電池側ポート100の凸部102がポート筐体10の凹部12に、燃料電池側ポート100のピン104がポート筐体10の通気孔14に、それぞれ挿入される。燃料電池側ポート100は、燃料電池自体に備えられていてもよい。または、燃料電池側ポート100が図示しないガス流体制御部品(レギュレータなど)に備えられ、燃料電池がガス流体制御部品に接続されていてもよい。 As shown by the axis L in FIG. 1, the port housing 10, the pin 20, the O-ring 30, the ball 40, the elastic body 50, the low melting point member 60, the mesh 70, the elastic body adjusting section 80, the filter 90, and the fuel storage section. The fuel storage body 1 is formed by assembling the two so as to be coaxial. The fuel storage body 1 is connected via a port housing 10 to a fuel cell side port 100 provided on the fuel cell side (not shown). Specifically, the convex portion 102 of the fuel cell side port 100 is inserted into the concave portion 12 of the port housing 10, and the pin 104 of the fuel cell side port 100 is inserted into the vent hole 14 of the port housing 10. The fuel cell side port 100 may be provided in the fuel cell itself. Alternatively, the fuel cell side port 100 may be provided in a gas fluid control component (such as a regulator) (not shown), and the fuel cell may be connected to the gas fluid control component.
 ボール40は弾性体50によってO-リング30の方向に押圧されている(以下、応力A)。燃料貯蔵体1が燃料電池側ポート100に接続された場合、図示しない燃料電池側ポート100のピン104により押圧されたピン20によって、ボール40はO-リング30とは反対の方向にも押圧されている(以下、応力B)。本実施の形態では、燃料供給経路の温度にかかわらず、応力Aよりも応力Bの方が強い。そのため、燃料貯蔵体1が燃料電池側ポート100に接続された場合には、図2に示すように、ボール40とO-リング30とが接触しない状態が維持されている。 The ball 40 is pressed in the direction of the O-ring 30 by the elastic body 50 (hereinafter, stress A). When the fuel storage body 1 is connected to the fuel cell side port 100, the ball 40 is also pressed in the direction opposite to the O-ring 30 by the pin 20 pressed by the pin 104 of the fuel cell side port 100 (not shown). (Hereinafter, stress B). In the present embodiment, the stress B is stronger than the stress A regardless of the temperature of the fuel supply path. Therefore, when the fuel storage body 1 is connected to the fuel cell side port 100, the state where the ball 40 and the O-ring 30 do not contact each other is maintained as shown in FIG.
 また、燃料供給経路が所定温度以上となる前には、低融点部材60は円筒形状を維持している。そのため、図2(A)の点線で示したように、燃料供給経路が形成されている。一方、燃料供給経路が所定温度以上となった場合、融解した低融点部材60は弾性体調整部80の底面84および通気孔86を移動し、通気孔86内のメッシュ70やフィルタ90により保持される。その後、再び燃料供給経路が所定温度未満となった場合、通気孔86が低融点部材60により塞がれた状態にて低融点部材60が凝固する。これにより、燃料供給経路が遮断されることにより、燃料貯蔵体1の接続ポート8を通じた燃料電池への燃料の供給が抑制される。 Further, before the fuel supply path reaches a predetermined temperature or more, the low melting point member 60 maintains a cylindrical shape. Therefore, a fuel supply path is formed as shown by the dotted line in FIG. On the other hand, when the fuel supply path reaches a predetermined temperature or higher, the melted low melting point member 60 moves on the bottom surface 84 and the vent hole 86 of the elastic body adjusting unit 80 and is held by the mesh 70 and the filter 90 in the vent hole 86. The Thereafter, when the fuel supply path again becomes lower than the predetermined temperature, the low melting point member 60 is solidified in a state where the vent hole 86 is blocked by the low melting point member 60. As a result, the fuel supply path is blocked, so that the supply of fuel to the fuel cell through the connection port 8 of the fuel storage body 1 is suppressed.
 本実施の形態によると、燃料供給経路に熱的な異常が生じて一度所定温度以上となった場合に、ユーザによる燃料貯蔵体の再利用および燃料貯蔵体からの燃料の供給を防止することができる。また、燃料貯蔵体への燃料の再充填も防止される。その結果、燃料貯蔵体の安全性を向上させることができる。 According to the present embodiment, it is possible to prevent the user from reusing the fuel storage body and supplying the fuel from the fuel storage body when a thermal abnormality occurs in the fuel supply path and the temperature once exceeds a predetermined temperature. it can. Further, refilling of the fuel into the fuel storage body is also prevented. As a result, the safety of the fuel storage body can be improved.
 なお、本実施の形態では燃料貯蔵部2として水素吸蔵合金が収容されたMHカートリッジを例示したが、燃料貯蔵部2はMHカートリッジ以外の燃料カートリッジ、たとえば燃料を単純に耐圧容器に充填したカートリッジまたは液体燃料カートリッジなどであってもよい。また、本実施の形態では燃料貯蔵部2に収容される燃料が水素である場合を示したが、燃料は水素以外の物質、たとえばメタノールなどであってもよい。また、燃料貯蔵体1が上下逆向きに使用される可能性がある場合、フィルタをたとえばO-リング30の周辺などにも配置してもよい。 In the present embodiment, the MH cartridge in which the hydrogen storage alloy is accommodated is illustrated as the fuel storage unit 2, but the fuel storage unit 2 is a fuel cartridge other than the MH cartridge, for example, a cartridge in which a pressure container is simply filled with fuel. It may be a liquid fuel cartridge. Moreover, although the case where the fuel accommodated in the fuel storage part 2 was hydrogen was shown in this Embodiment, the fuel may be substances other than hydrogen, for example, methanol. Further, when the fuel storage body 1 may be used upside down, a filter may be disposed, for example, around the O-ring 30.
 (実施の形態2)
 図3は、実施の形態2に係る燃料貯蔵体1の接続ポート8を示す断面図である。図3(A)は、燃料供給経路が所定温度以上となる前における接続ポート8を示す断面図である。図3(B)は、燃料供給経路が所定温度以上となり、低融点部材60が凝固する前における接続ポート8を示す断面図である。図3(C)は、燃料供給経路が所定温度以上となり、低融点部材60が凝固した後における接続ポート8を示す断面図である。以下、実施の形態2に係る燃料貯蔵体1の接続ポート8について、実施の形態1と異なる点を中心に説明する。
(Embodiment 2)
FIG. 3 is a cross-sectional view showing the connection port 8 of the fuel storage body 1 according to the second embodiment. FIG. 3A is a cross-sectional view showing the connection port 8 before the fuel supply path reaches a predetermined temperature or higher. FIG. 3B is a cross-sectional view showing the connection port 8 before the fuel supply path reaches a predetermined temperature or more and the low melting point member 60 is solidified. FIG. 3C is a cross-sectional view showing the connection port 8 after the fuel supply path reaches a predetermined temperature or more and the low melting point member 60 is solidified. Hereinafter, the connection port 8 of the fuel storage body 1 according to the second embodiment will be described with a focus on differences from the first embodiment.
 実施の形態2の燃料貯蔵体1では、燃料供給経路から分岐しまたは燃料供給経路に接続され、燃料貯蔵部の内部の圧力を解放するための圧力開放部62をさらに備えている。圧力開放部62は、組み付け後のポート筐体10および弾性体調整部80の側面に形成され、接続ポート8の内部に形成された空間と外部とを接続している。圧力開放部62は、図1の燃料貯蔵部2に設けられた圧力開放弁6として機能する。そのため、本実施の形態では、燃料貯蔵部2には圧力開放弁6が設けられていない。 The fuel storage body 1 of the second embodiment further includes a pressure release unit 62 that is branched from the fuel supply path or connected to the fuel supply path, and releases the pressure inside the fuel storage section. The pressure release part 62 is formed on the side surfaces of the port housing 10 and the elastic body adjustment part 80 after assembly, and connects the space formed inside the connection port 8 to the outside. The pressure release part 62 functions as the pressure release valve 6 provided in the fuel storage part 2 of FIG. Therefore, in the present embodiment, the fuel reservoir 2 is not provided with the pressure release valve 6.
 図3(A)に示すように、本実施の形態では、閉鎖手段として機能する低融点部材60は、融解前には圧力開放部62を塞ぐように配置されている。そのため、燃料供給経路が所定温度以上となる前には、圧力開放部62から燃料が外部に漏れることが抑制される。 As shown in FIG. 3 (A), in the present embodiment, the low melting point member 60 functioning as a closing means is disposed so as to close the pressure release portion 62 before melting. Therefore, the fuel is prevented from leaking outside from the pressure release portion 62 before the fuel supply path reaches a predetermined temperature or higher.
 一方、燃料供給経路が所定温度以上となった場合、低融点部材60が融解して圧力開放部62から底面84、通気孔86へと移動する。図3(B)に示すように、低融点部材60が凝固する前には、低融点部材60の隙間を通って、または低融点部材60を貫通して、燃料が通気孔86を通過可能である。そのため、点線で示すように、燃料は通気孔86から圧力開放部62を経て燃料貯蔵体1の外へと放出される。これにより、燃料貯蔵体1の内部における燃料が高圧になることが抑制される。 On the other hand, when the fuel supply path reaches a predetermined temperature or higher, the low melting point member 60 melts and moves from the pressure release portion 62 to the bottom surface 84 and the vent hole 86. As shown in FIG. 3B, before the low melting point member 60 is solidified, the fuel can pass through the ventilation hole 86 through the gap of the low melting point member 60 or through the low melting point member 60. is there. Therefore, as indicated by the dotted line, the fuel is discharged from the vent hole 86 to the outside of the fuel storage body 1 through the pressure release portion 62. Thereby, it is suppressed that the fuel in the inside of the fuel storage body 1 becomes a high pressure.
 その後、図3(C)に示すように、低融点部材が凝固した場合には、通気孔86が塞がれる。これにより、図2(B)と同様に、燃料貯蔵体1の接続ポート8を通じて燃料電池への燃料の供給が抑制される。また、燃料貯蔵体1への燃料の再充填も防止される。 Thereafter, as shown in FIG. 3C, when the low melting point member is solidified, the vent hole 86 is closed. Thereby, similarly to FIG. 2 (B), the supply of fuel to the fuel cell through the connection port 8 of the fuel storage body 1 is suppressed. Further, refilling of fuel into the fuel storage body 1 is also prevented.
 本実施の形態によると、実施の形態1の効果に加えて、燃料貯蔵体1の内部が高圧になることを簡易に抑制することができる。 According to the present embodiment, in addition to the effects of the first embodiment, it is possible to easily suppress the inside of the fuel storage body 1 from becoming a high pressure.
 なお、フィルタ90と同様のフィルタを圧力開放部62の外側に設け、融解した低融点部材60の流失を防止してもよい。 A filter similar to the filter 90 may be provided outside the pressure release portion 62 to prevent the melted low melting point member 60 from flowing out.
 (実施の形態3)
 図4は、実施の形態3に係る燃料貯蔵体1の接続ポート8を示す断面図である。図4(A)は、燃料供給経路が所定温度以上となる前における接続ポート8を示す断面図である。図4(B)は、燃料供給経路が所定温度以上となった後における接続ポート8を示す断面図である。以下、実施の形態3に係る燃料貯蔵体1の接続ポート8について、実施の形態1と異なる点を中心に説明する。
(Embodiment 3)
FIG. 4 is a cross-sectional view showing the connection port 8 of the fuel storage body 1 according to the third embodiment. FIG. 4A is a cross-sectional view showing the connection port 8 before the fuel supply path reaches a predetermined temperature or higher. FIG. 4B is a cross-sectional view showing the connection port 8 after the fuel supply path has reached a predetermined temperature or higher. Hereinafter, the connection port 8 of the fuel storage body 1 according to the third embodiment will be described with a focus on differences from the first embodiment.
 実施の形態3の燃料貯蔵体1では、円筒形状の低融点部材60が設けられていない。これに代えて、ピン20が低融点材料により形成されている。本実施の形態では、ピン20に加えて、燃料供給経路の開閉部を形成するボール40およびO-リング30も閉鎖手段として機能する。 In the fuel storage body 1 according to the third embodiment, the cylindrical low melting point member 60 is not provided. Instead, the pin 20 is formed of a low melting point material. In the present embodiment, in addition to the pin 20, the ball 40 and the O-ring 30 that form the opening / closing portion of the fuel supply path also function as a closing means.
 図4(A)に示すように、燃料供給経路が所定温度以上となる前には、図2(A)と同様に、燃料電池側ポート100のピン104により押圧されたピン20がボール40を押圧することにより、ボール40とO-リング30とが接触しない状態が維持される。この場合、燃料供給経路を燃料が通過可能であるため、燃料貯蔵体1から燃料電池へと燃料が供給される。一方、燃料供給経路が所定温度以上となった場合、図4(B)に示すようにピン20が融解する。これにより、ピン20を介した燃料電池側ポート100のピン104からボール40に対する押圧状態が解除され、ボール40の押圧が抑止される。つまり、ピン104は、最も押し込まれた状態となっても、ボール40を押圧することができない。そのため、上述した応力Aのみによりボール40がO-リング30に押圧される結果、燃料供給経路が塞がれる。また、融解した低融点材料が、接合した状態にあるボール40とO-リング30の上に溜まり、その後凝固することにより、さらに確実に燃料供給経路が塞がれる。また、ピン20が融解した場合、燃料貯蔵体1を燃料電池側ポート100から一度取り外して再度接続したとしても、ピン104がボール40を押圧することはできない。 As shown in FIG. 4A, before the fuel supply path reaches a predetermined temperature or higher, the pin 20 pressed by the pin 104 of the fuel cell side port 100 pushes the ball 40 in the same manner as in FIG. By pressing, the state where the ball 40 and the O-ring 30 are not in contact with each other is maintained. In this case, since the fuel can pass through the fuel supply path, the fuel is supplied from the fuel storage body 1 to the fuel cell. On the other hand, when the fuel supply path reaches a predetermined temperature or higher, the pin 20 melts as shown in FIG. Thereby, the pressing state with respect to the ball | bowl 40 is cancelled | released from the pin 104 of the fuel cell side port 100 via the pin 20, and the press of the ball | bowl 40 is suppressed. That is, the pin 104 cannot press the ball 40 even when it is pushed most. Therefore, as a result of the ball 40 being pressed against the O-ring 30 only by the stress A described above, the fuel supply path is blocked. Further, the melted low melting point material accumulates on the bonded ball 40 and O-ring 30 and then solidifies, so that the fuel supply path is more reliably blocked. Further, when the pin 20 is melted, the pin 104 cannot press the ball 40 even if the fuel storage body 1 is once removed from the fuel cell side port 100 and connected again.
 本実施の形態によると、燃料供給経路に熱的な異常が生じて一度所定温度以上となった場合に、燃料貯蔵体からの燃料の供給をさらに効率的に防止することができる。また、燃料貯蔵体1への燃料の再充填も防止される。 According to the present embodiment, when a thermal abnormality occurs in the fuel supply path and the temperature once exceeds a predetermined temperature, the fuel supply from the fuel storage body can be more efficiently prevented. Further, refilling of fuel into the fuel storage body 1 is also prevented.
 なお、実施の形態1の燃料貯蔵体1と同様に、融解した低融点材料が移動して通気孔86を塞ぐようにしてもよい。 Note that, similarly to the fuel storage body 1 of the first embodiment, the melted low melting point material may move to block the vent hole 86.
 (変形例1)
 図5は、弾性体調整部80の円筒部82の底面84に設けられた通気孔86の変形例を示す概略図である。図5(A)は、燃料供給経路が所定温度以上となる前における通気孔86を示す概略図である。図5(B)は、燃料供給経路が所定温度以上となった後における通気孔86を示す概略図である。
(Modification 1)
FIG. 5 is a schematic view showing a modified example of the vent hole 86 provided in the bottom surface 84 of the cylindrical portion 82 of the elastic body adjusting portion 80. FIG. 5A is a schematic diagram showing the air vent 86 before the fuel supply path reaches a predetermined temperature or higher. FIG. 5B is a schematic diagram showing the air vent 86 after the fuel supply path has reached a predetermined temperature or higher.
 本変形例では、通気孔86はS字管状に形成されている。図5(A)に示すように、燃料供給経路が所定温度以上となる前には、通気孔86には低融点部材60が存在しない。そのため、燃料は通気孔86を通過することができる。一方、図5(B)に示すように、燃料供給経路が所定温度以上となって低融点部材60が融解して通気孔86に流入した場合、通気孔86の湾曲部が貯溜部となり、低融点部材60が効率的に貯溜される。そのため、燃料は通気孔86を通過することができない。これにより、さらに確実に通気孔86を塞ぐことが可能となる。 In the present modification, the vent hole 86 is formed in an S-shape. As shown in FIG. 5A, the low melting point member 60 does not exist in the vent hole 86 before the fuel supply path reaches a predetermined temperature or higher. Therefore, the fuel can pass through the vent hole 86. On the other hand, as shown in FIG. 5B, when the fuel supply path becomes a predetermined temperature or higher and the low melting point member 60 melts and flows into the vent hole 86, the curved portion of the vent hole 86 becomes a storage portion, and the low The melting point member 60 is efficiently stored. Therefore, fuel cannot pass through the vent hole 86. Thereby, it becomes possible to block the vent hole 86 more reliably.
 本変形例によると、燃料供給経路に熱的な異常が生じて一度所定温度以上となった場合に、燃料貯蔵体からの燃料の供給をさらに効率的に防止することができる。 According to this modification, the supply of fuel from the fuel storage body can be more efficiently prevented when a thermal abnormality occurs in the fuel supply path and the temperature once exceeds a predetermined temperature.
 本発明は、上述の各実施の形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうるものである。 The present invention is not limited to the above-described embodiments, and various modifications such as design changes can be added based on the knowledge of those skilled in the art. The form can also be included in the scope of the present invention.
1 燃料貯蔵体、2 燃料貯蔵部、4 供給口、6 圧力開放弁、8 接続ポート、10 ポート筐体、20 ピン、30 O-リング、40 ボール、50 弾性体、60 低融点部材、70 メッシュ、80 弾性体調整部、90 フィルタ、100 燃料電池側ポート 1 fuel storage body, 2 fuel storage section, 4 supply port, 6 pressure release valve, 8 connection port, 10 port housing, 20 pin, 30 O-ring, 40 ball, 50 elastic body, 60 low melting point member, 70 mesh , 80 Elastic body adjustment part, 90 filter, 100 Fuel cell side port
 本発明は、燃料電池に使用する燃料貯蔵体に利用可能である。 The present invention is applicable to a fuel storage body used for a fuel cell.

Claims (4)

  1.  燃料電池に供給する燃料を貯蔵するための燃料貯蔵部と、
     前記燃料貯蔵部から燃料電池に燃料を供給するための燃料供給経路と、
     前記燃料供給経路に隣接してまたは前記燃料供給経路の内部に配置され、前記燃料供給経路が所定温度以上となった場合に前記燃料供給経路を塞ぐ閉鎖手段と、を備え、
     前記閉鎖手段は、前記燃料供給経路が所定温度以上となった場合に融解する低融点部材を含み、
     前記燃料供給経路は、所定温度以上となった場合に、融解した低融点部材により塞がれることを特徴とする燃料貯蔵体。
    A fuel storage unit for storing fuel to be supplied to the fuel cell;
    A fuel supply path for supplying fuel from the fuel storage unit to the fuel cell;
    A closing means disposed adjacent to or inside the fuel supply path, and closing the fuel supply path when the fuel supply path reaches a predetermined temperature or more,
    The closing means includes a low melting point member that melts when the fuel supply path reaches a predetermined temperature or higher,
    The fuel supply path, wherein the fuel supply path is blocked by a melted low melting point member when the temperature exceeds a predetermined temperature.
  2.  前記低融点部材は、融解前には燃料が前記燃料供給経路を通過可能な状態にて前記燃料供給経路の周囲に配置されていることを特徴とする請求項1に記載の燃料貯蔵体。 The fuel storage body according to claim 1, wherein the low-melting-point member is arranged around the fuel supply path in a state where fuel can pass through the fuel supply path before melting.
  3.  前記燃料供給経路から分岐しまたは前記燃料供給経路に接続され、前記燃料貯蔵部の内部の圧力を解放するための圧力開放部をさらに備え、
     前記低融点部材は、融解前には前記圧力開放部を塞ぐように配置され、前記燃料供給経路が所定温度以上となった場合に融解して前記圧力開放部から前記燃料供給経路へと移動することにより、前記圧力開放部から燃料を放出可能にするとともに、前記燃料供給経路を塞ぐことを特徴とする請求項1に記載の燃料貯蔵体。
    A pressure release part that is branched from the fuel supply path or connected to the fuel supply path and for releasing the pressure inside the fuel storage part;
    The low melting point member is disposed so as to close the pressure release part before melting, and melts and moves from the pressure release part to the fuel supply path when the fuel supply path reaches a predetermined temperature or higher. Accordingly, the fuel storage body according to claim 1, wherein fuel can be released from the pressure release portion and the fuel supply path is closed.
  4.  燃料電池に供給する燃料を貯蔵するための燃料貯蔵部と、
     前記燃料貯蔵部から燃料電池に燃料を供給するための燃料供給経路と、
     前記燃料供給経路に隣接してまたは前記燃料供給経路の内部に配置され、前記燃料供給経路が所定温度以上となった場合に前記燃料供給経路を塞ぐ閉鎖手段と、を備える燃料貯蔵体であって、
     前記閉鎖手段は、前記燃料供給経路を開閉する開閉部と、前記開閉部を押圧して前記開閉部の開閉状態を制御し前記燃料供給経路が所定温度以上となった場合に融解する低融点部材と、を含み、
     前記低融点部材は、前記燃料電池が前記燃料貯蔵体に接続された場合に、前記開閉部と前記燃料電池の押圧部との間に配置され、
     前記燃料供給経路が所定温度以上となった場合、前記低融点部材が融解して前記燃料電池側の押圧部による前記低融点部材を介した前記開閉部の押圧が抑止されて前記開閉部が閉状態となることにより、前記燃料供給経路の燃料の通過が抑制されることを特徴とする燃料貯蔵体。
    A fuel storage unit for storing fuel to be supplied to the fuel cell;
    A fuel supply path for supplying fuel from the fuel storage unit to the fuel cell;
    A fuel storage body comprising: closing means disposed adjacent to or inside the fuel supply path, and closing the fuel supply path when the fuel supply path reaches a predetermined temperature or higher. ,
    The closing means includes an opening / closing portion that opens and closes the fuel supply path, and a low melting point member that melts when the fuel supply path reaches a predetermined temperature or more by controlling the opening / closing state of the opening / closing section by pressing the opening / closing portion. And including
    When the fuel cell is connected to the fuel storage body, the low melting point member is disposed between the opening / closing portion and the pressing portion of the fuel cell,
    When the fuel supply path reaches a predetermined temperature or more, the low melting point member is melted, and the pressing of the opening / closing part via the low melting point member by the pressing part on the fuel cell side is suppressed, and the opening / closing part is closed. The fuel storage body is characterized in that the passage of the fuel in the fuel supply path is suppressed by entering the state.
PCT/JP2013/002177 2012-03-29 2013-03-29 Fuel storage body WO2013145777A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-076326 2012-03-29
JP2012076326A JP2015111494A (en) 2012-03-29 2012-03-29 Fuel storage body

Publications (1)

Publication Number Publication Date
WO2013145777A1 true WO2013145777A1 (en) 2013-10-03

Family

ID=49259069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002177 WO2013145777A1 (en) 2012-03-29 2013-03-29 Fuel storage body

Country Status (2)

Country Link
JP (1) JP2015111494A (en)
WO (1) WO2013145777A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201700010577A1 (en) * 2017-01-31 2018-07-31 Atf S R L SAFETY DEVICE FOR A GAS TANK IN PRESSURE AND OPERATING METHOD OF THE SAFETY DEVICE
WO2021055274A1 (en) * 2019-09-18 2021-03-25 Saudi Arabian Oil Company Mechanisms and methods for closure of a flow control device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101714501B1 (en) * 2016-09-22 2017-03-23 오제이씨(주) Gas vessel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009524208A (en) * 2006-01-23 2009-06-25 ブルーム エナジー コーポレーション Modular fuel cell system
JP2010097867A (en) * 2008-10-17 2010-04-30 Sony Corp Fuel cell and electronic device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009524208A (en) * 2006-01-23 2009-06-25 ブルーム エナジー コーポレーション Modular fuel cell system
JP2010097867A (en) * 2008-10-17 2010-04-30 Sony Corp Fuel cell and electronic device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201700010577A1 (en) * 2017-01-31 2018-07-31 Atf S R L SAFETY DEVICE FOR A GAS TANK IN PRESSURE AND OPERATING METHOD OF THE SAFETY DEVICE
EP3358240A1 (en) * 2017-01-31 2018-08-08 Atf S.R.L. Safety device for a pressurized gas tank and method for operating said safety device
WO2021055274A1 (en) * 2019-09-18 2021-03-25 Saudi Arabian Oil Company Mechanisms and methods for closure of a flow control device
US11371623B2 (en) 2019-09-18 2022-06-28 Saudi Arabian Oil Company Mechanisms and methods for closure of a flow control device

Also Published As

Publication number Publication date
JP2015111494A (en) 2015-06-18

Similar Documents

Publication Publication Date Title
JP5710012B2 (en) Relief valve for fuel cell system
JP4900534B2 (en) Battery module and battery module assembly using the same
TWI250687B (en) Fuel cell supply having fuel compatible materials
WO2013001585A1 (en) Battery module
JP4872034B2 (en) Sealed battery
KR101011700B1 (en) Fuel cell and manufacturing method thereof
US20080160371A1 (en) Check Valves for Fuel Cartridges
JP2008516400A (en) Fuel cartridge with environmentally responsive valve
WO2013145777A1 (en) Fuel storage body
US9490491B2 (en) Separable fuel cartridge
JP6094589B2 (en) Sealed battery
JP4764045B2 (en) coupler
JP5254771B2 (en) Fuel cell
JP2006017269A (en) Joint device for feeding and accepting liquid
JP2012119279A (en) Fuel supply device, fuel cartridge, and joint
Swaminathan et al. Integrated micro fuel cell with on-demand hydrogen production and passive control MEMS
JP2007059326A (en) Fuel cartridge, fuel cartridge pressure release device, and fuel cell
WO2007139059A1 (en) Fuel cell
JP5507236B2 (en) Portable electronic devices
JP2006302615A (en) Attachment for refill container
JP2009170145A (en) Cartridge for fuel cell, and fuel cell
KR20120130987A (en) An air valve for energy storage device and energy storage device including the same
JP2007273092A (en) Fuel cartridge for fuel cell and fuel cell using it
JP2011133085A (en) Fuel storage unit and fuel cell module
JP2011096559A (en) Fuel cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13768447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP