WO2013145675A1 - Copolymer for gypsum dispersant and method for producing same, gypsum dispersant, and gypsum composition - Google Patents

Copolymer for gypsum dispersant and method for producing same, gypsum dispersant, and gypsum composition Download PDF

Info

Publication number
WO2013145675A1
WO2013145675A1 PCT/JP2013/001967 JP2013001967W WO2013145675A1 WO 2013145675 A1 WO2013145675 A1 WO 2013145675A1 JP 2013001967 W JP2013001967 W JP 2013001967W WO 2013145675 A1 WO2013145675 A1 WO 2013145675A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
monomer
gypsum
weight
general formula
Prior art date
Application number
PCT/JP2013/001967
Other languages
French (fr)
Japanese (ja)
Inventor
和伸 河原
林谷 俊男
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to JP2014507417A priority Critical patent/JP5947374B2/en
Publication of WO2013145675A1 publication Critical patent/WO2013145675A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2641Polyacrylates; Polymethacrylates
    • C04B24/2647Polyacrylates; Polymethacrylates containing polyether side chains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/062Polyethers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/10Accelerators; Activators
    • C04B2103/12Set accelerators
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/40Surface-active agents, dispersants
    • C04B2103/408Dispersants

Definitions

  • the present invention relates to a copolymer used as a gypsum dispersant, a method for producing the same, a gypsum dispersant, and a gypsum composition.
  • Gypsum molded products such as gypsum board, gypsum plaster and gypsum block are manufactured by a method in which gypsum slurry is poured into a mold, and dried and coagulated. At this time, in order to facilitate the pouring of the gypsum slurry into the mold, it is necessary to impart sufficient fluidity to the gypsum slurry.
  • As a method of increasing the fluidity of the gypsum slurry it is conceivable to increase the amount of water, but if the ratio of water is increased, the strength of the gypsum molded product will decrease, so instead of increasing the water, A technique of adding a gypsum dispersant is widely used.
  • a gypsum dispersant for example, a copolymer of polyalkylene glycol mono (meth) acrylic acid ester and (meth) acrylic acid is known (for example, see Patent Document 1).
  • the gypsum dispersant is required to improve the fluidity of the gypsum slurry and to shorten the setting time of the gypsum slurry.
  • the conventional copolymer for gypsum dispersant can improve the fluidity, it still has a problem that the setting time is long.
  • an object of the present invention is to provide a copolymer for a gypsum dispersant that can achieve both improvement in fluidity of gypsum slurry and shortening of the setting time, and a method for producing the same.
  • the copolymer for a gypsum dispersant according to the present invention comprises a structural unit derived from the monomer (a) represented by the following general formula (A) and a monomer (b) represented by the following general formula (B). ) And a copolymer having a weight average molecular weight of 1 to 200,000, and the amount of sulfur element in the copolymer is 0.2% by weight or less based on the copolymer. .
  • a method for producing a copolymer for a gypsum dispersant having a weight average molecular weight of 1 to 200,000 includes a monomer (a) represented by the following general formula (A), a general formula ( The monomer component containing the monomer (b) represented by B) is polymerized by mixing the polymerization initiator, and the addition amount of the thiol compound added to the monomer component is It is 1.2 mol% or less with respect to a monomer component.
  • R 1 and R 2 are the same or different and represent hydrogen or a methyl group
  • AO is the same or different and is one or more types of oxyalkylene groups having 2 or more carbon atoms or two or more types having 2 or more carbon atoms.
  • X represents an integer of 0 to 2
  • y represents 0 or 1
  • n is a number of 15 to 200 representing the average number of moles added of the oxyalkylene group
  • R 3 Represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.
  • R 4 , R 5 and R 6 are the same or different and each represents a hydrogen atom, a methyl group or — (CH 2 ) n COOM 2
  • — (CH 2 ) m COOM 2 represents —COOM 1 or other -(CH 2 ) n COOM 2 may form an anhydride, and in this case, M 1 and M 2 of these groups are not present.
  • m represents an integer of 0 to 2
  • M 1 and M 2 are the same or different and each represents a hydrogen atom, an alkali metal, an alkaline earth metal, an ammonium group, or an organic ammonium group.
  • (meth) acrylic acid is used as a generic term for both “acrylic acid” and “methacrylic acid”.
  • (meth) acrylate is used as a generic term for both “acrylate” and “methacrylate”.
  • Chain transfer agents are often added for the purpose of adjusting the degree of polymerization.
  • An example of this chain transfer agent is a relatively inexpensive thiol compound.
  • mercaptoethanol is used as an accelerator together with a polymerization initiator, and mercaptoethanol as an accelerator corresponds to a chain transfer agent.
  • the present inventors have made polyalkylene glycol alkenyl ester / (meth) acrylic acid copolymer or polyalkylene glycol alkenyl ether / (meta) with the addition amount of thiol chain transfer agent reduced to 0 or as much as possible. ) It has been found that when an acrylic acid copolymer is used as a gypsum dispersant, the curing time can be shortened without reducing the fluidity of the gypsum slurry.
  • the copolymer for gypsum dispersant of the present invention comprises a structural unit derived from the monomer (a) represented by the following general formula (A), and a monomer (b) represented by the following general formula (B). Including a copolymer having a structural unit derived from a copolymer having a weight average molecular weight of 1 to 200,000, and the amount of sulfur element in the copolymer is 0 to 0.2% by weight based on the weight of the copolymer .
  • R 1 and R 2 are the same or different and represent hydrogen or a methyl group
  • AO is the same or different and is one or more types of oxyalkylene groups having 2 or more carbon atoms or two or more types having 2 or more carbon atoms.
  • X represents an integer of 0 to 2
  • y represents 0 or 1
  • n is a number of 15 to 200 representing the average number of moles added of the oxyalkylene group
  • R 3 Represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.
  • R 4 , R 5 and R 6 are the same or different and each represents a hydrogen atom, a methyl group or — (CH 2 ) n COOM 2
  • — (CH 2 ) m COOM 2 represents —COOM 1 or other -(CH 2 ) n COOM 2 may form an anhydride, and in this case, M 1 and M 2 of these groups are not present.
  • m represents an integer of 0 to 2
  • M 1 and M 2 are the same or different and each represents a hydrogen atom, an alkali metal, an alkaline earth metal, an ammonium group, or an organic ammonium group.
  • the amount of sulfur element in the copolymer is a value determined by the following procedure.
  • Amount of sulfur element in copolymer [(XY) / Z] ⁇ 100 here, X: Amount of sulfur element in the measurement sample quantified by fluorescent X-ray analysis (wt%) Y: Amount of sulfur element in the measurement sample quantified by ion chromatography analysis (wt%) Z: Solid content (% by weight) in the measurement sample It is.
  • the amount of elemental sulfur in the copolymer exceeds 0.2% by weight with respect to the copolymer, the curing time of the gypsum slurry becomes longer when the obtained copolymer is used as a dispersant for gypsum. Therefore, it is not preferable.
  • the amount of elemental sulfur in the copolymer is preferably 0.17% by weight or less with respect to the copolymer, and is preferably less than 0.1% by weight with respect to the copolymer. It is more preferably 10% by weight or less, and particularly preferably 0.08% by weight or less.
  • the lower limit of the amount of sulfur element in the copolymer is preferably as small as possible, and therefore is substantially preferably 0. However, from the viewpoint of molecular design or production, 0.01% by weight, more preferably 0 It may be set to 0.001% by weight.
  • the average addition mole number n of the oxyalkylene group is 15 to 200.
  • the lower limit of the average added mole number n is preferably 20.
  • the upper limit of the average added mole number n is preferably 100, more preferably 80.
  • the average addition mole number n of oxyalkylene groups is less than 15, it is not preferable because the fluidity of the gypsum slurry becomes insufficient when the obtained copolymer is used as a gypsum dispersant.
  • the average addition mole number n of the oxyalkylene group exceeds 200, it is not preferable because the productivity and production cost of the monomer (a) are inferior.
  • Examples of the polyalkylene glycol alkenyl ester monomer represented by the general formula (A) include polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, polybutylene glycol mono (meth) acrylate, methoxypolyethylene glycol mono ( (Meth) acrylate, methoxypolypropylene glycol mono (meth) acrylate, methoxypolybutylene glycol mono (meth) acrylate, ethoxypolyethylene glycol mono (meth) acrylate, ethoxypolypropylene glycol mono (meth) acrylate, ethoxypolybutylene glycol mono (meth) acrylate , Methoxypolyethylenepolypropylene glycol mono (meth) acrylate, methoxypolyethylenepolypropylene Can be exemplified glycol mono (meth) acrylate, it can be used alone or in combination of two or more thereof.
  • Examples of the polyalkylene glycol alkenyl ether monomer represented by the general formula (A) include polyethylene glycol-3-methyl-3-butenyl ether, polyethylene glycol-3-butenyl ether, and polyethylene glycol-2-methyl.
  • Examples include ether, polypropylene glycol-3-propenyl ether, polypropylene glycol vinyl ether, and the like, and one or more of these can be used.
  • the monomer (a) is preferably an ester represented by the general formula (A) when the value of y is 1.
  • Examples of the monomer (b) represented by the general formula (B) include (meth) acrylic acid, maleic acid, fumaric acid, itaconic acid, their monovalent metal salts, divalent metal salts, ammonium salts, and Organic amine salts, maleic anhydride, itaconic anhydride and the like can be mentioned, and one or more of these can be used.
  • a carboxylic acid is used as the monomer (b)
  • the structural unit derived from the monomer (b) is obtained by neutralizing the reaction solution after the polymerization reaction with an alkali, an amine, or the like. Become.
  • the monomer (b) is preferably a monocarboxylic acid, an alkali metal salt / alkaline earth metal salt / ammonium salt of a monocarboxylic acid, and acrylic acid, methacrylic acid, and an alkali metal salt / alkaline earth metal thereof. More preferred are salts and ammonium salts.
  • the monomer (c) In addition to the monomer (a) represented by the general formula (A) and the monomer (b) represented by the general formula (B), as the monomer (c), styrene, vinyl acetate, hydroxyethyl ( A (meth) acrylate, an alkyl (meth) acrylate, or the like can be used in combination. However, the blending ratio of the monomer (c) is 30% by weight or less of the total of the monomers (a) to (c).
  • the weight average molecular weight of the copolymer for a gypsum dispersant according to the present invention is 10,000 to 200,000, but it is preferable that the copolymer is also 15,000 to 100,000 within this range.
  • the copolymer for gypsum dispersant according to the present invention comprises a monomer (a) represented by the general formula (A) and a monomer (b) represented by the general formula (B). It is obtained by adding a polymerization initiator to a body component and copolymerizing it.
  • the weight ratio of the monomer (a) represented by the general formula (A) and the monomer (b) represented by the general formula (B) is 60:40 to 90 in terms of improving fluidity. : 10 is preferable. If the weight ratio is out of the range, the effect of improving the fluidity of the gypsum slurry by the obtained copolymer is lowered, which is not preferable. In order to obtain a higher fluidity improving effect, the weight ratio of the monomer (a) to the monomer (b) is more preferably 70:30 to 90:10.
  • polymerization initiator examples include persulfates such as ammonium persulfate, sodium persulfate, and potassium persulfate, hydrogen peroxide, azo compounds such as azobis-2-methylpropionamidine hydrochloride, azobisisobutyronitrile, benzoyl peroxide, Examples include peroxides such as lauroyl peroxide and cumene hydroperoxide. Among these, it is preferable to use a persulfate.
  • a small amount of a thiol compound that functions as a chain transfer agent may be used in combination with the polymerization initiator.
  • the amount of the thiol compound added during the production of the copolymer is 0 to 1.2 mol%, preferably 0 to 0.7 mol, based on all monomer components including the monomers (a) and (b). Mol%.
  • the added amount of the thiol compound exceeds 1.2 mol% with respect to the monomer component, it is preferable because the curing time of the gypsum slurry becomes longer when the obtained copolymer is used as a dispersant for gypsum. Absent.
  • the addition amount of the thiol compound is preferably 0 to 0.15 mol%, more preferably 0 to 0.1 mol%, more preferably 0 to 0.1 mol% within the above range. 0.05% is particularly preferred.
  • thiol compound used as the chain transfer agent those represented by the following general formula (C) can be used.
  • R 7 represents a branched or straight chain alkyl group having 2 to 10 carbon atoms having 1 to 3 carboxyl groups, and a branched or straight chain alkyl group having 1 to 10 carbon atoms having 1 to 3 hydroxyl groups. And a branched or straight chain alkyl group having 1 to 10 carbon atoms having 1 to 3 sulfonic acid groups.
  • thiol compound examples include mercaptoethanol, thioglycerol, thioglycolic acid, 2-mercaptopropionic acid, 3-mercaptopropionic acid, thiomalic acid, octyl thioglycolate, octyl 3-mercaptopropionate, and the like. These 1 type (s) or 2 or more types can be used. Other examples include the thiol compounds described in “POLYMER HANDBOOK Fourth edition, Volume 1, II150 to II157”.
  • Examples of the solvent for solution polymerization include water, lower alcohols such as methyl alcohol, ethyl alcohol, and 2-propanol, aromatic hydrocarbons such as benzene, toluene, and xylene, and aliphatic carbonization such as cyclohexane and n-hexane.
  • One or two or more of esters such as hydrogen and ethyl acetate; ketones such as acetone and methyl ethyl ketone can be used.
  • water, methyl alcohol, ethyl alcohol, 2-propanol and the like are particularly preferable.
  • the copolymer according to the present invention can be used as a constituent of a dispersant for gypsum such as natural gypsum and by-product gypsum.
  • gypsum includes, for example, hemihydrate gypsum, dihydrate gypsum, anhydrous gypsum, phosphate gypsum, hydrofluoric gypsum, and the like.
  • the dispersant for gypsum according to the present invention contains the above-mentioned copolymer.
  • the gypsum composition according to the present invention contains at least gypsum, water, and the above-described copolymer.
  • the copolymer obtained by the polymerization of the monomers (a) and (b) is not limited to those produced by the production method disclosed in the present specification. It only has to be included.
  • a monomer-derived structural unit corresponds to a structure in which a polymerizable double bond of each monomer is converted to a single bond by a polymerization reaction.
  • Table 1 shows the monomers (a) and (b) used in Examples and Comparative Examples.
  • Table 2 shows the copolymers according to Examples 1 to 10 and Comparative Examples 1 to 4.
  • Constuent components of copolymer and “Constitutional ratio (weight ratio) of copolymer” in Table 2, it is derived from each monomer after neutralizing the reaction solution with sodium hydroxide. A structural unit and a weight ratio are shown.
  • SMAA substitutional ratio
  • Example 1 141 parts of water was charged into a glass reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube and a reflux condenser, and nitrogen substitution was performed. After the temperature was raised to 95 ° C. in a nitrogen atmosphere, a single unit for dropping was prepared by mixing 78.4 parts by weight of monomer PGM25E listed in Table 1, 17.6 parts by weight of methacrylic acid (MAA), and 176 parts by weight of water. Two liquids, a meter liquid and 33.7 parts by weight of a 2.3% ammonium persulfate aqueous solution, were dropped simultaneously over 4 hours.
  • monomer PGM25E listed in Table 1
  • MAA methacrylic acid
  • Example 2 141 parts of water was charged into a glass reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube and a reflux condenser, and nitrogen substitution was performed. After raising the temperature to 95 ° C. under a nitrogen atmosphere, 78.4 parts by weight of monomer PGM25E listed in Table 1, 17.6 parts by weight of methacrylic acid, 176 parts by weight of water, 0.03 of ⁇ -mercaptopropionic acid Two liquids, a monomer solution for dropping mixed with parts by weight and 33.7 parts by weight of a 4.2% aqueous ammonium persulfate solution, were dropped simultaneously over 4 hours.
  • Example 3 A copolymer was obtained by the same production method as in Example 2, using 0.02 parts by weight of thiomalic acid instead of ⁇ -mercaptopropionic acid.
  • Example 4 A copolymer was obtained by the same production method as in Example 2 using 0.01 parts by weight of thioglycolic acid instead of ⁇ -mercaptopropionic acid.
  • Example 5 A copolymer was obtained by the same production method as in Example 2 using 0.01 parts by weight of mercaptoethanol instead of ⁇ -mercaptopropionic acid.
  • Example 6 A copolymer was obtained by the same production method as in Example 1, using 70 parts by weight of PGM75E as the monomer (a) and 23.9 parts by weight of methacrylic acid as the monomer (b).
  • Example 7 A copolymer was obtained by the same production method as in Example 2, using 70 parts by weight of PGM75E as the monomer (a) and 23.9 parts by weight of methacrylic acid as the monomer (b).
  • Example 8 A copolymer was obtained by the same production method as in Example 2, using 96 parts by weight of PGM120E as the monomer (a) and 3.2 parts by weight of methacrylic acid as the monomer (b).
  • Example 9 The monomer (a) was 67 parts by weight of PGM75E, the monomer (b) was 26.3 parts by weight of methacrylic acid, and ⁇ -mercaptopropionic acid 0.35 parts by weight. A polymer was obtained.
  • the monomer (a) was 67 parts by weight of PGM75E, the monomer (b) was 26.3 parts by weight of methacrylic acid, and 0.41 part by weight of ⁇ -mercaptopropionic acid. A polymer was obtained.
  • Example 2 was used with 70 parts by weight of PGM75E as the monomer (a), 23.9 parts by weight of methacrylic acid as the monomer (b), and 0.45 parts by weight of ⁇ -mercaptopropionic acid. A copolymer was obtained by the same production method.
  • Example 3 Example 2 was conducted using 70 parts by weight of PGM75E as the monomer (a), 23.9 parts by weight of methacrylic acid as the monomer (b), and 0.48 parts by weight of ⁇ -mercaptopropionic acid. A copolymer was obtained by the same production method.
  • a gypsum slurry was prepared by charging 264 g of hemihydrate gypsum and 158 g of kneaded water obtained by mixing 0.53 g of any of the above copolymers with water into a small juicer mixer and mixing for 10 seconds.
  • ⁇ Fluidity> Fill a cone with a bottom diameter of 50 mm and a height of 50 mm with gypsum slurry, lift the cone from a state where the bottom of the cone is pressed on a flat surface, and immediately after that, measure the diameter of the figure formed by spreading the gypsum slurry.
  • the average value was used as the paste flow value. The higher the average value, the better the fluidity.
  • the setting time of the gypsum slurry was evaluated based on the start time and the apparent end time measured according to JIS R 9112 using a bigger needle device. More specifically, the initial time and the apparent end time are determined with a bigger needle device using a gypsum slurry poured into a cylindrical plastic container with an inner diameter of 94 mm and a height of 44 mm so that the depth is 38 mm. Measured, and 1 ⁇ 2 of the sum of the measured start time and apparent end time was taken as the curing time.
  • the starting time is the time from the water injection until the standard needle of the bigger needle device stops at a height of 1 mm from the bottom surface of the co-test body
  • the apparent end time is the standard needle of the bigger needle device. Is the time from the water injection until it stops at a height of 1 mm from the surface of the sample.
  • the standard needle of the bigger needle device was 45 mm long and 2 mm in diameter, with its head cut flat. The total mass of what cures with the standard needle is 300 ⁇ 1 g.
  • Table 3 shows the flowability and curability test results of the gypsum slurry to which the copolymers according to Examples 1 to 8 and Comparative Examples 1 to 4 were added.
  • the gypsum slurry to which the copolymers according to Examples 1 to 10 were added had a maximum curing time of 18.6 minutes, and when the copolymers according to Comparative Examples 1 to 4 were added, Compared with, the curing time was shortened.
  • the copolymers according to Comparative Examples 1 to 3 synthesized using a thiol chain transfer agent in an amount exceeding 1.2 mol% with respect to the total amount of the monomers (a) and (b) were added.
  • the curing time was longer than 30.0 minutes, indicating that the curing time was very long. This is presumably because the increase in the content of thiol-derived sulfur atoms bonded to the copolymer caused inhibition of setting of the gypsum slurry.
  • the paste flow value of the gypsum slurry to which the copolymers according to Comparative Examples 1 to 4 are added is 190 to 220 mm, whereas the copolymers according to Examples 1 to 8 are added.
  • the paste flow value of the gypsum slurry thus obtained was in the range of 210 to 227 mm, and it was confirmed that there was almost no influence on the fluidity even if the amount of the thiol chain transfer agent was reduced as compared with the conventional case.
  • liquidity of the copolymer which concerns on the comparative example 4 is a low value compared with each Example and another comparative example, this is the chain length of the oxyalkylene group of a monomer (a). Is considered to be as short as 10 mol.
  • Table 4 shows the copolymers according to Examples 11 to 14 and Comparative Example 5.
  • Constuent components of copolymer and “Constituent ratio (weight ratio) of copolymer” in Table 4, it is derived from each monomer after neutralizing the reaction solution with sodium hydroxide. A structural unit and a weight ratio are shown. Further, “SMA” in Table 4 means sodium maleate.
  • Example 11 A copolymer was obtained by the same production method as in Example 1, using 67 parts by weight of PGM25E as the monomer (a) and 26.3 parts by weight of methacrylic acid as the monomer (b).
  • Example 12 The monomer (a) was 67 parts by weight of PGM25E, the monomer (b) was 26.3 parts by weight of methacrylic acid, and 0.27 parts by weight of ⁇ -mercaptopropionic acid was used. A polymer was obtained.
  • Example 13 By using 67 parts by weight of PGM25E as the monomer (a), 26.3 parts by weight of methacrylic acid and 0.353 parts by weight of ⁇ -mercaptopropionic acid as the monomer (b), the same production method as in Example 2 was used. A polymer was obtained.
  • Example 14 A copolymer was obtained by the same production method as in Example 1, using 82.5 parts by weight of IPN50 as the monomer (a) and 12.7 parts by weight of maleic acid as the monomer (b).
  • the monomer (a) was 75 parts by weight of PGM75E, the monomer (b) was 19.9 parts by weight of methacrylic acid, and 1.0 part by weight of ⁇ -mercaptopropionic acid. Coalescence was obtained.
  • Ultrafiltration was performed to remove sulfur ionic substances in the aqueous copolymer solution obtained by the above synthesis method.
  • As the filtration membrane an ultrafiltration membrane vivaflow200 (VF20PO) manufactured by Sartorius was connected in parallel. Before the start of filtration, the tube, pump, and filter membrane of the filtration device were filled with ion-exchanged water (74 g of water).
  • the aqueous copolymer solution prepared to a solid content concentration of 3.0% by weight was placed in a circulation concentration side container, and filtration was started. By filtration, the sulfur ionic substance was removed from the aqueous copolymer solution as a filtrate (waste liquid). As the filtration progressed, the aqueous solution in the circulation concentration side container decreased, so that ion exchange water was added successively so that the weight of the aqueous copolymer solution was 100 g. Filtration was terminated when the total weight of the discharged filtrate reached 260 g.
  • PW2404 x-ray spectrometer manufactured by PHILIPS was used for fluorescent X-ray analysis.
  • ICS-3000 analyzer
  • IonPac AS20 columnumn
  • aqueous solution (eluent) 13 to 25 mmol / liter KOH manufactured by Dionex were used.
  • the solid content Z (% by weight) in the measurement sample A is determined by measuring the weight of the residual solid content obtained by drying the measurement sample A in a nitrogen atmosphere at 130 ° C. for 70 minutes. It was determined as a ratio of the weight of the residual solid content to the weight.
  • Table 5 shows the fluidity and curability test results of the gypsum slurry to which the copolymers according to Examples 11 to 14 and Comparative Example 5 were added.
  • the gypsum slurry to which the copolymers according to Examples 11 to 14 were added had a maximum curing time of 18.0 minutes, which was higher than that when the copolymer according to Comparative Example 5 was added. Time has been shortened.
  • the addition amount of the thiol chain transfer agent is 1.2 mol% or less with respect to the total amount of the monomers (a) and (b), and the amount of elemental sulfur relative to the copolymer weight is 0.2% by weight. % Or less of the copolymers according to Examples 11 to 14 were confirmed to significantly improve the fluidity of the gypsum slurry.
  • the addition amount of the thiol-based chain transfer agent exceeds 1.2 mol% with respect to the total amount of the monomers (a) and (b), and the amount of elemental sulfur relative to the copolymer weight is 0.2 wt%.
  • the curing time was longer than 30.0 minutes, and it was found that the curing time was very long. This is presumably because the increase in the content of thiol-derived sulfur atoms bonded to the copolymer caused inhibition of setting of the gypsum slurry.
  • the paste flow values of the copolymers according to Examples 11 to 14 are equivalent to the paste flow value of the gypsum slurry to which the copolymer according to Comparative Example 5 is added, and the thiol chain transfer agent. It was confirmed that there was almost no influence on the fluidity even if the amount of addition was reduced as compared with the conventional case.
  • the amount of the thiol chain transfer agent to be added during the production of the copolymer having the structural unit derived from the monomer (a) and the structural unit derived from the monomer (b) is determined based on the monomer ( By making 1.2 mol% or less with respect to a) and (b), and making the amount of sulfur element contained in the copolymer 0.2 wt% or less, without impairing the fluidity of the gypsum slurry, It was confirmed that a copolymer capable of shortening the setting time of the gypsum slurry was obtained.
  • the present invention can be used for a gypsum dispersant for improving the dispersibility of gypsum in a gypsum slurry, and a gypsum composition containing gypsum, water, and a preaching dispersant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

Provided are: a copolymer for a gypsum dispersant with which it is possible to achieve both improvement of fluidity of a gypsum slurry and shortening of the setting time; and a method for producing the same. This copolymer for a gypsum dispersant comprises a structural unit derived from a monomer (a) represented by general formula (A) and a structural unit derived from a monomer (b) represented by general formula (B), and contains a copolymer with a weight average molecular weight of 1 to 200,000, the amount of elemental sulfur in the copolymer being 0.2 weight% or less with respect to the copolymer.

Description

石膏分散剤用共重合体及びその製造方法、石膏分散剤、石膏組成物Copolymer for gypsum dispersant and method for producing the same, gypsum dispersant, gypsum composition
 本発明は、石膏分散剤として使用される共重合体及びその製造方法、石膏分散剤、石膏組成物に関する。 The present invention relates to a copolymer used as a gypsum dispersant, a method for producing the same, a gypsum dispersant, and a gypsum composition.
 石膏ボード、石膏プラスター、石膏ブロック等の石膏成形物は、石膏スラリーを型枠内へ注入して、乾燥及び凝結硬化させる方法により製造されている。この際、石膏スラリーを型枠内に流し込みやすくするために、石膏スラリーには十分な流動性を付与する必要がある。石膏スラリーの流動性を高くする方法としては、水の量を増やすことが考えられるが、水の比率を増やした場合には石膏成形物の強度の低下を来すため、水を増やす代わりに、石膏用分散剤を添加する手法が広く採用されている。石膏用分散剤としては、例えば、ポリアルキレングリコールモノ(メタ)アクリル酸エステルと、(メタ)アクリル酸との共重合体が知られている(例えば、特許文献1参照)。 Gypsum molded products such as gypsum board, gypsum plaster and gypsum block are manufactured by a method in which gypsum slurry is poured into a mold, and dried and coagulated. At this time, in order to facilitate the pouring of the gypsum slurry into the mold, it is necessary to impart sufficient fluidity to the gypsum slurry. As a method of increasing the fluidity of the gypsum slurry, it is conceivable to increase the amount of water, but if the ratio of water is increased, the strength of the gypsum molded product will decrease, so instead of increasing the water, A technique of adding a gypsum dispersant is widely used. As a gypsum dispersant, for example, a copolymer of polyalkylene glycol mono (meth) acrylic acid ester and (meth) acrylic acid is known (for example, see Patent Document 1).
特開平8-217505号公報JP-A-8-217505
 石膏用分散剤には、石膏スラリーの流動性を向上させることと同時に、石膏スラリーの凝結時間を短縮化できることが求められる。しかしながら、従来の石膏分散剤用共重合体では、流動性の向上は図れるものの、依然として凝結時間が長いという問題がある。 The gypsum dispersant is required to improve the fluidity of the gypsum slurry and to shorten the setting time of the gypsum slurry. However, although the conventional copolymer for gypsum dispersant can improve the fluidity, it still has a problem that the setting time is long.
 それ故に、本発明は、石膏スラリーの流動性の向上と、凝結時間の短縮化とを両立できる石膏分散剤用共重合体及びその製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a copolymer for a gypsum dispersant that can achieve both improvement in fluidity of gypsum slurry and shortening of the setting time, and a method for producing the same.
 本発明に係る石膏分散剤用共重合体は、下記一般式(A)で表される単量体(a)由来の構成単位と、下記一般式(B)で表される単量体(b)由来の構成単位とを有し、重量平均分子量が1~20万である共重合体を含み、共重合体中の硫黄元素量が、共重合体に対して0.2重量%以下である。 The copolymer for a gypsum dispersant according to the present invention comprises a structural unit derived from the monomer (a) represented by the following general formula (A) and a monomer (b) represented by the following general formula (B). ) And a copolymer having a weight average molecular weight of 1 to 200,000, and the amount of sulfur element in the copolymer is 0.2% by weight or less based on the copolymer. .
 また、本発明に係る重量平均分子量が1~20万である石膏分散剤用共重合体の製造方法は、下記一般式(A)で表される単量体(a)と、下記一般式(B)で表される単量体(b)とを含む単量体成分と、重合開始剤とを混合することによって重合を行い、単量体成分に添加されるチオール系化合物の添加量が、単量体成分に対して1.2モル%以下である。 In addition, a method for producing a copolymer for a gypsum dispersant having a weight average molecular weight of 1 to 200,000 according to the present invention includes a monomer (a) represented by the following general formula (A), a general formula ( The monomer component containing the monomer (b) represented by B) is polymerized by mixing the polymerization initiator, and the addition amount of the thiol compound added to the monomer component is It is 1.2 mol% or less with respect to a monomer component.
Figure JPOXMLDOC01-appb-C000001
 式中、R1、R2は、同一または異なって、水素又はメチル基を表し、AOは、同一又は異なって、炭素数2以上の1種類のオキシアルキレン基または炭素数2以上の2種類以上のオキシアルキレン基の混合物を表し、xは、0~2の整数を表し、yは、0または1を表し、nは、オキシアルキレン基の平均付加モル数を表す15~200の数であり、R3
は水素原子または炭素数1~20の炭化水素基を表す。
Figure JPOXMLDOC01-appb-C000001
In the formula, R 1 and R 2 are the same or different and represent hydrogen or a methyl group, and AO is the same or different and is one or more types of oxyalkylene groups having 2 or more carbon atoms or two or more types having 2 or more carbon atoms. X represents an integer of 0 to 2, y represents 0 or 1, n is a number of 15 to 200 representing the average number of moles added of the oxyalkylene group, R 3
Represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.
Figure JPOXMLDOC01-appb-C000002
 式中、R4、R5及びR6は、同一又は異なって、水素原子、メチル基または-(CH2nCOOM2を表し、-(CH2mCOOM2は、-COOM1またはその他の-(CH2nCOOM2と無水物を形成していてもよく、この場合、それらの基のM1、M2は存在しな
い。mは、0~2の整数を表し、M1、M2は、同一又は異なって、水素原子、アルカリ金属、アルカリ土類金属、アンモニウム基または有機アンモニウム基を表す。
Figure JPOXMLDOC01-appb-C000002
In the formula, R 4 , R 5 and R 6 are the same or different and each represents a hydrogen atom, a methyl group or — (CH 2 ) n COOM 2 , and — (CH 2 ) m COOM 2 represents —COOM 1 or other -(CH 2 ) n COOM 2 may form an anhydride, and in this case, M 1 and M 2 of these groups are not present. m represents an integer of 0 to 2, and M 1 and M 2 are the same or different and each represents a hydrogen atom, an alkali metal, an alkaline earth metal, an ammonium group, or an organic ammonium group.
 本発明によれば、石膏スラリーの流動性の向上と、凝結時間の短縮化とを両立できる石膏分散剤用共重合体及びその製造方法を実現できる。 According to the present invention, it is possible to realize a copolymer for a gypsum dispersant that can improve both the fluidity of the gypsum slurry and shorten the setting time, and a method for producing the same.
 以下、本発明の実施形態を説明する。本明細書において、「(メタ)アクリル酸」は、「アクリル酸」と「メタクリル酸」の両方を総称する用語として使用する。同様に、「(メタ)アクリレート」は、「アクリレート」と「メタクリレート」の両方を総称する用語として用いる。 Hereinafter, embodiments of the present invention will be described. In this specification, “(meth) acrylic acid” is used as a generic term for both “acrylic acid” and “methacrylic acid”. Similarly, “(meth) acrylate” is used as a generic term for both “acrylate” and “methacrylate”.
 上記の特許文献1に記載されるような(メタ)アクリル酸ポリアルキレングリコールモノエステルと、(メタ)アクリル酸との共重合体の重合反応には、重合開始剤と共に、生成する共重合体の重合度を調整する目的で連鎖移動剤が添加されることが多い。この連鎖移動剤の例としては、比較的安価なチオール系化合物がある。上記の特許文献1においては、重合開始剤と共に、促進剤としてメルカプトエタノールを使用することが記載されているが、この促進剤としてのメルカプトエタノールが連鎖移動剤に相当する。 In the polymerization reaction of the copolymer of (meth) acrylic acid polyalkylene glycol monoester and (meth) acrylic acid as described in Patent Document 1 above, together with the polymerization initiator, Chain transfer agents are often added for the purpose of adjusting the degree of polymerization. An example of this chain transfer agent is a relatively inexpensive thiol compound. In the above-mentioned Patent Document 1, it is described that mercaptoethanol is used as an accelerator together with a polymerization initiator, and mercaptoethanol as an accelerator corresponds to a chain transfer agent.
 本発明者らは、チオール系連鎖移動剤の添加量を0または限りなく低減して重合させたポリアルキレングリコールアルケニルエステル/(メタ)アクリル酸共重合体、または、ポリアルキレングリコールアルケニルエーテル/(メタ)アクリル酸共重合体を石膏分散剤として使用した場合に、石膏スラリーの流動性を低下させることなく、硬化時間を短縮化できることを見出した。 The present inventors have made polyalkylene glycol alkenyl ester / (meth) acrylic acid copolymer or polyalkylene glycol alkenyl ether / (meta) with the addition amount of thiol chain transfer agent reduced to 0 or as much as possible. ) It has been found that when an acrylic acid copolymer is used as a gypsum dispersant, the curing time can be shortened without reducing the fluidity of the gypsum slurry.
 本発明の石膏分散剤用共重合体は、下記一般式(A)で表される単量体(a)由来の構成単位と、下記一般式(B)で表される単量体(b)由来の構成単位とを有する重量平均分子量が1~20万である共重合体を含み、共重合体中の硫黄元素量が、共重合体の重量に対して0~0.2重量%である。 The copolymer for gypsum dispersant of the present invention comprises a structural unit derived from the monomer (a) represented by the following general formula (A), and a monomer (b) represented by the following general formula (B). Including a copolymer having a structural unit derived from a copolymer having a weight average molecular weight of 1 to 200,000, and the amount of sulfur element in the copolymer is 0 to 0.2% by weight based on the weight of the copolymer .
Figure JPOXMLDOC01-appb-C000003
 式中、R1、R2は、同一または異なって、水素又はメチル基を表し、AOは、同一又は異なって、炭素数2以上の1種類のオキシアルキレン基または炭素数2以上の2種類以上のオキシアルキレン基の混合物を表し、xは、0~2の整数を表し、yは、0または1を表し、nは、オキシアルキレン基の平均付加モル数を表す15~200の数であり、R3
は水素原子または炭素数1~20の炭化水素基を表す。
Figure JPOXMLDOC01-appb-C000003
In the formula, R 1 and R 2 are the same or different and represent hydrogen or a methyl group, and AO is the same or different and is one or more types of oxyalkylene groups having 2 or more carbon atoms or two or more types having 2 or more carbon atoms. X represents an integer of 0 to 2, y represents 0 or 1, n is a number of 15 to 200 representing the average number of moles added of the oxyalkylene group, R 3
Represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.
Figure JPOXMLDOC01-appb-C000004
 式中、R4、R5及びR6は、同一又は異なって、水素原子、メチル基または-(CH2nCOOM2を表し、-(CH2mCOOM2は、-COOM1またはその他の-(CH2nCOOM2と無水物を形成していてもよく、この場合、それらの基のM1、M2は存在しな
い。mは、0~2の整数を表し、M1、M2は、同一又は異なって、水素原子、アルカリ金属、アルカリ土類金属、アンモニウム基または有機アンモニウム基を表す。
Figure JPOXMLDOC01-appb-C000004
In the formula, R 4 , R 5 and R 6 are the same or different and each represents a hydrogen atom, a methyl group or — (CH 2 ) n COOM 2 , and — (CH 2 ) m COOM 2 represents —COOM 1 or other -(CH 2 ) n COOM 2 may form an anhydride, and in this case, M 1 and M 2 of these groups are not present. m represents an integer of 0 to 2, and M 1 and M 2 are the same or different and each represents a hydrogen atom, an alkali metal, an alkaline earth metal, an ammonium group, or an organic ammonium group.
 ここで、共重合体中の硫黄元素量は、以下の手順によって求められる値である。 Here, the amount of sulfur element in the copolymer is a value determined by the following procedure.
 まず、限外濾過を行うことによって、合成後の共重合体水溶液中に含まれる硫黄イオン性物質を除去し、測定試料を調製する。次に、蛍光X線分析及びイオンクロマト分析をそれぞれ行い、調製した測定試料中の硫黄元素量を定量する。定量された硫黄元素量を用いて、共重合体中の硫黄元素量は、以下の数式により算出される。 First, ultrafiltration is performed to remove sulfur ionic substances contained in the aqueous copolymer solution, and a measurement sample is prepared. Next, fluorescent X-ray analysis and ion chromatography analysis are performed, respectively, and the amount of sulfur element in the prepared measurement sample is quantified. Using the quantified amount of sulfur element, the amount of sulfur element in the copolymer is calculated by the following mathematical formula.
  共重合体中の硫黄元素量(重量%)=[(X-Y)/Z]×100
ここで、
X:蛍光X線分析により定量した測定試料中の硫黄元素量(重量%)
Y:イオンクロマト分析により定量した測定試料中の硫黄元素量(重量%)
Z:測定試料中の固形分量(重量%)
である。
Amount of sulfur element in copolymer (% by weight) = [(XY) / Z] × 100
here,
X: Amount of sulfur element in the measurement sample quantified by fluorescent X-ray analysis (wt%)
Y: Amount of sulfur element in the measurement sample quantified by ion chromatography analysis (wt%)
Z: Solid content (% by weight) in the measurement sample
It is.
 共重合体中の硫黄元素量が、共重合体に対して0.2重量%を越えると、得られた共重合体を石膏用分散剤として使用した際に、石膏スラリーの硬化時間が長くなるので好ましくない。また、石膏スラリーの硬化時間を短縮するためには、共重合体中の硫黄元素量は、共重合体に対して0.17重量%以下であることが好ましく、共重合体に対して0.10重量%以下であることがより好ましく、0.08重量%以下であることが特に好ましい。また、共重合体中の硫黄元素量の下限値は、なるべく少ない方が好ましいため、実質的に0が好ましいが、分子設計あるいは製造上の観点から、0.01重量%、より好ましくは、0.001重量%と設定しても良い。 If the amount of elemental sulfur in the copolymer exceeds 0.2% by weight with respect to the copolymer, the curing time of the gypsum slurry becomes longer when the obtained copolymer is used as a dispersant for gypsum. Therefore, it is not preferable. In order to shorten the setting time of the gypsum slurry, the amount of elemental sulfur in the copolymer is preferably 0.17% by weight or less with respect to the copolymer, and is preferably less than 0.1% by weight with respect to the copolymer. It is more preferably 10% by weight or less, and particularly preferably 0.08% by weight or less. Further, the lower limit of the amount of sulfur element in the copolymer is preferably as small as possible, and therefore is substantially preferably 0. However, from the viewpoint of molecular design or production, 0.01% by weight, more preferably 0 It may be set to 0.001% by weight.
 一般式(A)で表される単量体(a)において、オキシアルキレン基の平均付加モル数nは、15~200である。平均付加モル数nの下限値は、好ましくは20である。また、平均付加モル数nの上限値は、好ましくは100であり、更に好ましくは80である。オキシアルキレン基の平均付加モル数nが15を下回ると、得られる共重合体を石膏分散剤として使用した際に、石膏スラリーの流動性が不十分となるため好ましくない。一方、オキシアルキレン基の平均付加モル数nが200を越えると、単量体(a)の生産性及び製造コストの面で劣るので好ましくない。 In the monomer (a) represented by the general formula (A), the average addition mole number n of the oxyalkylene group is 15 to 200. The lower limit of the average added mole number n is preferably 20. The upper limit of the average added mole number n is preferably 100, more preferably 80. When the average addition mole number n of oxyalkylene groups is less than 15, it is not preferable because the fluidity of the gypsum slurry becomes insufficient when the obtained copolymer is used as a gypsum dispersant. On the other hand, when the average addition mole number n of the oxyalkylene group exceeds 200, it is not preferable because the productivity and production cost of the monomer (a) are inferior.
 一般式(A)で表されるポリアルキレングリコールアルケニルエステル単量体としては、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ポリブチレングリコールモノ(メタ)アクリレート、メトキシポリエチレングリコールモノ(メタ)アクリレート、メトキシポリプロピレングリコールモノ(メタ)アクリレート、メトキシポリブチレングリコールモノ(メタ)アクリレート、エトキシポリエチレングリコールモノ(メタ)アクリレート、エトキシポリプロピレングリコールモノ(メタ)アクリレート、エトキシポリブチレングリコールモノ(メタ)アクリレート、メトキシポリエチレンポリプロピレングリコールモノ(メタ)アクリレート、メトキシポリエチレンポリプロピレングリコールモノ(メタ)アクリレート等を例示することができ、これらの1種または2種以上を用いることができる。 Examples of the polyalkylene glycol alkenyl ester monomer represented by the general formula (A) include polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, polybutylene glycol mono (meth) acrylate, methoxypolyethylene glycol mono ( (Meth) acrylate, methoxypolypropylene glycol mono (meth) acrylate, methoxypolybutylene glycol mono (meth) acrylate, ethoxypolyethylene glycol mono (meth) acrylate, ethoxypolypropylene glycol mono (meth) acrylate, ethoxypolybutylene glycol mono (meth) acrylate , Methoxypolyethylenepolypropylene glycol mono (meth) acrylate, methoxypolyethylenepolypropylene Can be exemplified glycol mono (meth) acrylate, it can be used alone or in combination of two or more thereof.
 また、一般式(A)で表されるポリアルキレングリコールアルケニルエーテル単量体としては、ポリエチレングリコール-3-メチル-3-ブテニルエーテル、ポリエチレングリコール-3-ブテニルエーテル、ポリエチレングリコール-2-メチル-2-プロペニルエーテル、ポリエチレングリコール-3-プロペニルエーテル、ポリエチレングリコールビニルエーテル、ポリプロピレングリコール-3-メチル-3-ブテニルエーテル、ポリプロピレングリコール-3-ブテニルエーテル、ポリプロピレングリコール-2-メチル-2-プロペニルエーテル、ポリプロピレングリコール-3-プロペニルエーテル、ポリプロピレングリコールビニルエーテル等を例示することができ、これらの1種または2種以上を用いることができる。 Examples of the polyalkylene glycol alkenyl ether monomer represented by the general formula (A) include polyethylene glycol-3-methyl-3-butenyl ether, polyethylene glycol-3-butenyl ether, and polyethylene glycol-2-methyl. -2-propenyl ether, polyethylene glycol-3-propenyl ether, polyethylene glycol vinyl ether, polypropylene glycol-3-methyl-3-butenyl ether, polypropylene glycol-3-butenyl ether, polypropylene glycol-2-methyl-2-propenyl Examples include ether, polypropylene glycol-3-propenyl ether, polypropylene glycol vinyl ether, and the like, and one or more of these can be used.
 上記の単量体(a)は、yの値を1とした場合に上記一般式(A)で表されるエステルであることが好ましい。 The monomer (a) is preferably an ester represented by the general formula (A) when the value of y is 1.
 一般式(B)で表される単量体(b)の例としては、(メタ)アクリル酸、マレイン酸、フマル酸、イタコン酸、これらの一価金属塩、二価金属塩、アンモニウム塩及び有機アミン塩、マレイン酸無水物、イタコン酸無水物等を挙げることができ、これらの1種または2種以上を用いることができる。単量体(b)としてカルボン酸を用いた場合、重合反応後の反応液をアルカリやアミン等で中和することにより、単量体(b)由来の構成単位は、金属塩やアミン塩となる。 Examples of the monomer (b) represented by the general formula (B) include (meth) acrylic acid, maleic acid, fumaric acid, itaconic acid, their monovalent metal salts, divalent metal salts, ammonium salts, and Organic amine salts, maleic anhydride, itaconic anhydride and the like can be mentioned, and one or more of these can be used. When a carboxylic acid is used as the monomer (b), the structural unit derived from the monomer (b) is obtained by neutralizing the reaction solution after the polymerization reaction with an alkali, an amine, or the like. Become.
 単量体(b)は、モノカルボン酸、モノカルボン酸のアルカリ金属塩・アルカリ土類金属塩・アンモニウム塩であることが好ましく、アクリル酸、メタクリル酸及びこれらのアルカリ金属塩・アルカリ土類金属塩・アンモニウム塩であることがより好ましい。 The monomer (b) is preferably a monocarboxylic acid, an alkali metal salt / alkaline earth metal salt / ammonium salt of a monocarboxylic acid, and acrylic acid, methacrylic acid, and an alkali metal salt / alkaline earth metal thereof. More preferred are salts and ammonium salts.
 一般式(A)で表される単量体(a)及び一般式(B)で表される単量体(b)以外に、単量体(c)として、スチレン、酢酸ビニル、ヒドロキシエチル(メタ)アクリレート、アルキル(メタ)アクリレートなどを併用することができる。ただし、単量体(c)の配合比は、単量体(a)~(c)の合計の30重量%以下である。 In addition to the monomer (a) represented by the general formula (A) and the monomer (b) represented by the general formula (B), as the monomer (c), styrene, vinyl acetate, hydroxyethyl ( A (meth) acrylate, an alkyl (meth) acrylate, or the like can be used in combination. However, the blending ratio of the monomer (c) is 30% by weight or less of the total of the monomers (a) to (c).
 本発明に係る石膏分散剤用共重合体の重量平均分子量は、10000~200000であるが、この範囲内でも15000~100000であることが好ましい。 The weight average molecular weight of the copolymer for a gypsum dispersant according to the present invention is 10,000 to 200,000, but it is preferable that the copolymer is also 15,000 to 100,000 within this range.
 本発明に係る石膏分散剤用共重合体は、一般式(A)で表される単量体(a)と、一般式(B)で表される単量体(b)とを含む単量体成分に重合開始剤を添加して共重合させることによって得られる。 The copolymer for gypsum dispersant according to the present invention comprises a monomer (a) represented by the general formula (A) and a monomer (b) represented by the general formula (B). It is obtained by adding a polymerization initiator to a body component and copolymerizing it.
 一般式(A)で表される単量体(a)と、一般式(B)で表される単量体(b)との重量比は、流動性向上の面で、60:40~90:10であることが好ましい。この重量比の範囲を外れると、得られた共重合体による石膏スラリーの流動性向上効果が低下するため好ましくない。また、より高い流動性向上効果を得るために、単量体(a)と単量体(b)との重量比は、70:30~90:10であることがより好ましい。 The weight ratio of the monomer (a) represented by the general formula (A) and the monomer (b) represented by the general formula (B) is 60:40 to 90 in terms of improving fluidity. : 10 is preferable. If the weight ratio is out of the range, the effect of improving the fluidity of the gypsum slurry by the obtained copolymer is lowered, which is not preferable. In order to obtain a higher fluidity improving effect, the weight ratio of the monomer (a) to the monomer (b) is more preferably 70:30 to 90:10.
 重合開始剤としては、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム等の過硫酸塩、過酸化水素、アゾビス-2メチルプロピオンアミジン塩酸塩、アゾビスイソブチロニトリル等のアゾ化合物、ベンゾイルパーオキシド、ラウロイルパーオキシド、クメンハイドロパーオキシド等のパーオキシドを例示できる。これらの中でも、過硫酸塩を用いることが好ましい。 Examples of the polymerization initiator include persulfates such as ammonium persulfate, sodium persulfate, and potassium persulfate, hydrogen peroxide, azo compounds such as azobis-2-methylpropionamidine hydrochloride, azobisisobutyronitrile, benzoyl peroxide, Examples include peroxides such as lauroyl peroxide and cumene hydroperoxide. Among these, it is preferable to use a persulfate.
 重合時には、重合開始剤と共に、連鎖移動剤として機能するチオール系化合物を少量併用しても良い。共重合体の製造時におけるチオール系化合物の添加量は、単量体(a)及び(b)を含む全単量体成分に対して0~1.2モル%、好ましくは0~0.7モル%である。チオール系化合物の添加量が単量体成分に対して1.2モル%を越えると、得られた共重合体を石膏用分散剤として使用した際に、石膏スラリーの硬化時間が長くなるので好ましくない。石膏スラリーの硬化時間を短くするために、チオール系化合物の添加量は、上記の範囲内のうち、0~0.15モル%がより好ましく、0~0.1モル%が更に好ましく、0~0.05%が特に好ましい。 During polymerization, a small amount of a thiol compound that functions as a chain transfer agent may be used in combination with the polymerization initiator. The amount of the thiol compound added during the production of the copolymer is 0 to 1.2 mol%, preferably 0 to 0.7 mol, based on all monomer components including the monomers (a) and (b). Mol%. When the added amount of the thiol compound exceeds 1.2 mol% with respect to the monomer component, it is preferable because the curing time of the gypsum slurry becomes longer when the obtained copolymer is used as a dispersant for gypsum. Absent. In order to shorten the setting time of the gypsum slurry, the addition amount of the thiol compound is preferably 0 to 0.15 mol%, more preferably 0 to 0.1 mol%, more preferably 0 to 0.1 mol% within the above range. 0.05% is particularly preferred.
 連鎖移動剤として使用するチオール系化合物としては、以下の一般式(C)で表されるものを用いることができる。 As the thiol compound used as the chain transfer agent, those represented by the following general formula (C) can be used.
Figure JPOXMLDOC01-appb-C000005
 式中、R7は、1~3個のカルボキシル基を有する炭素数2~10の分岐もしくは直鎖
のアルキル基、1~3個の水酸基を有する炭素数1~10の分岐もしくは直鎖のアルキル基、1~3個のスルホン酸基を有する炭素数1~10の分岐もしくは直鎖のアルキル基のいずれかを表す。
Figure JPOXMLDOC01-appb-C000005
In the formula, R 7 represents a branched or straight chain alkyl group having 2 to 10 carbon atoms having 1 to 3 carboxyl groups, and a branched or straight chain alkyl group having 1 to 10 carbon atoms having 1 to 3 hydroxyl groups. And a branched or straight chain alkyl group having 1 to 10 carbon atoms having 1 to 3 sulfonic acid groups.
 チオール系化合物の具体例としては、メルカプトエタノール、チオグリセロール、チオグリコール酸、2-メルカプトプロピオン酸、3-メルカプトプロピオン酸、チオリンゴ酸、チオグリコール酸オクチル、3-メルカプトプロピオン酸オクチル等が挙げられ、これらの1種または2種以上を用いることができる。これ以外の例としては、”POLYMER HANDBOOK Fourth edition,Volume 1,II150~II157”に記載のチオール化合物を挙げることができる。 Specific examples of the thiol compound include mercaptoethanol, thioglycerol, thioglycolic acid, 2-mercaptopropionic acid, 3-mercaptopropionic acid, thiomalic acid, octyl thioglycolate, octyl 3-mercaptopropionate, and the like. These 1 type (s) or 2 or more types can be used. Other examples include the thiol compounds described in “POLYMER HANDBOOK Fourth edition, Volume 1, II150 to II157”.
 溶液重合を行う場合の溶媒としては、例えば、水、メチルアルコール、エチルアルコール、2-プロパノール等の低級アルコール、ベンゼン、トルエン、キシレン等の芳香族炭化水素、シクロヘキサン、n-ヘキサン等の脂肪族炭化水素、酢酸エチル等のエステル;アセトン、メチルエチルケトン等のケトン等の1種または2種以上を用いることができる。これらの中でも、水、メチルアルコール、エチルアルコール、2-プロパノールなどが特に好ましい。 Examples of the solvent for solution polymerization include water, lower alcohols such as methyl alcohol, ethyl alcohol, and 2-propanol, aromatic hydrocarbons such as benzene, toluene, and xylene, and aliphatic carbonization such as cyclohexane and n-hexane. One or two or more of esters such as hydrogen and ethyl acetate; ketones such as acetone and methyl ethyl ketone can be used. Among these, water, methyl alcohol, ethyl alcohol, 2-propanol and the like are particularly preferable.
 本発明に係る共重合体は、例えば天然石膏や副生石膏等の石膏用分散剤の構成成分として使用することができる。尚、本明細書において、石膏は、例えば半水石膏、二水石膏、無水石膏、リン酸石膏、フッ酸石膏等を含む。 The copolymer according to the present invention can be used as a constituent of a dispersant for gypsum such as natural gypsum and by-product gypsum. In the present specification, gypsum includes, for example, hemihydrate gypsum, dihydrate gypsum, anhydrous gypsum, phosphate gypsum, hydrofluoric gypsum, and the like.
 また、本発明に係る石膏用分散剤は、上述した共重合体を含有するものである。本発明に係る石膏組成物は、少なくとも、石膏と、水と、上述した共重合体とを含有するものである。 Moreover, the dispersant for gypsum according to the present invention contains the above-mentioned copolymer. The gypsum composition according to the present invention contains at least gypsum, water, and the above-described copolymer.
 尚、上記単量体(a)及び(b)の重合により得られる共重合体は、本明細書に開示の製造方法によって製造されたものに限定されず、上記単量体由来の構成単位を含むものであればよい。単量体由来の構成単位とは、重合反応によって、各単量体の重合性2重結合が単結合となった構造)に相当する。 The copolymer obtained by the polymerization of the monomers (a) and (b) is not limited to those produced by the production method disclosed in the present specification. It only has to be included. A monomer-derived structural unit corresponds to a structure in which a polymerizable double bond of each monomer is converted to a single bond by a polymerization reaction.
 以下、本発明に係る石膏分散剤用組成物を具体的に実施した実施例を説明する。 Hereinafter, examples in which the composition for a gypsum dispersant according to the present invention was specifically implemented will be described.
 [実施例1~10]
 表1に、実施例及び比較例で用いた単量体(a)及び(b)を示す。また、表2に、実施例1~10及び比較例1~4に係る共重合体を示す。尚、表2の「共重合体の構成成分」及び「共重合体の構成比(重量比)」の欄には、反応液を水酸化ナトリウムで中和した後における、各単量体由来の構成単位及び重量比を示す。また、表2中の「SMAA」は、メタクリル酸ナトリウムを意味する。
[Examples 1 to 10]
Table 1 shows the monomers (a) and (b) used in Examples and Comparative Examples. Table 2 shows the copolymers according to Examples 1 to 10 and Comparative Examples 1 to 4. In the column of “Constituent components of copolymer” and “Constitutional ratio (weight ratio) of copolymer” in Table 2, it is derived from each monomer after neutralizing the reaction solution with sodium hydroxide. A structural unit and a weight ratio are shown. In addition, “SMAA” in Table 2 means sodium methacrylate.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 <製造方法>
 実施例1~10及び比較例1~4に係る共重合体の合成方法は、次の通りである。
<Manufacturing method>
The methods for synthesizing the copolymers according to Examples 1 to 10 and Comparative Examples 1 to 4 are as follows.
 (実施例1)
 温度計、撹拌機、滴下装置、窒素導入管及び還流冷却器を備えたガラス製反応容器に水141部を仕込み、窒素置換を行った。窒素雰囲気下で95℃まで昇温させた後、表1に記載の単量体PGM25Eを78.4重量部、メタクリル酸(MAA)17.6重量部、水176重量部を混合した滴下用単量体液と、2.3%過硫酸アンモニウム水溶液33.7重量部との2液を同時に4時間かけて滴下した。次に、2.3%過硫酸アンモニウム水溶液8.4重量部を1時間かけて滴下した後、95℃で1時間熟成させた。熟成終了後、30%水酸化ナトリウム水溶液を用いてpH7に調整することによって、共重合体を得た。
Example 1
141 parts of water was charged into a glass reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube and a reflux condenser, and nitrogen substitution was performed. After the temperature was raised to 95 ° C. in a nitrogen atmosphere, a single unit for dropping was prepared by mixing 78.4 parts by weight of monomer PGM25E listed in Table 1, 17.6 parts by weight of methacrylic acid (MAA), and 176 parts by weight of water. Two liquids, a meter liquid and 33.7 parts by weight of a 2.3% ammonium persulfate aqueous solution, were dropped simultaneously over 4 hours. Next, 8.4 parts by weight of a 2.3% ammonium persulfate aqueous solution was dropped over 1 hour, and then aged at 95 ° C. for 1 hour. After completion of aging, the copolymer was obtained by adjusting the pH to 7 using a 30% aqueous sodium hydroxide solution.
 (実施例2)
 温度計、撹拌機、滴下装置、窒素導入管及び還流冷却器を備えたガラス製反応容器に水141部を仕込み、窒素置換を行った。窒素雰囲気下で95℃まで昇温させた後、表1に記載の単量体PGM25Eを78.4重量部、メタクリル酸17.6重量部、水176重量部、β-メルカプトプロピオン酸0.03重量部を混合した滴下用単量体液と、4.2%過硫酸アンモニウム水溶液33.7重量部との2液を同時に4時間かけて滴下した。次に、4.2%過硫酸アンモニウム水溶液8.4重量部を1時間かけて滴下した後、95℃で1時間熟成させた。熟成終了後、30%水酸化ナトリウム水溶液を用いてpH7に調整することによって、共重合体を得た。
(Example 2)
141 parts of water was charged into a glass reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube and a reflux condenser, and nitrogen substitution was performed. After raising the temperature to 95 ° C. under a nitrogen atmosphere, 78.4 parts by weight of monomer PGM25E listed in Table 1, 17.6 parts by weight of methacrylic acid, 176 parts by weight of water, 0.03 of β-mercaptopropionic acid Two liquids, a monomer solution for dropping mixed with parts by weight and 33.7 parts by weight of a 4.2% aqueous ammonium persulfate solution, were dropped simultaneously over 4 hours. Next, 8.4 parts by weight of a 4.2% ammonium persulfate aqueous solution was dropped over 1 hour, and then aged at 95 ° C. for 1 hour. After completion of aging, the copolymer was obtained by adjusting the pH to 7 using a 30% aqueous sodium hydroxide solution.
 (実施例3)
 β-メルカプトプロピオン酸に代えてチオリンゴ酸0.02重量部を用い、実施例2と同じ製造方法により共重合体を得た。
(Example 3)
A copolymer was obtained by the same production method as in Example 2, using 0.02 parts by weight of thiomalic acid instead of β-mercaptopropionic acid.
 (実施例4)
 β-メルカプトプロピオン酸に代えてチオグリコール酸0.01重量部を用い、実施例2と同じ製造方法により共重合体を得た。
(Example 4)
A copolymer was obtained by the same production method as in Example 2 using 0.01 parts by weight of thioglycolic acid instead of β-mercaptopropionic acid.
 (実施例5)
 β-メルカプトプロピオン酸に代えてメルカプトエタノール0.01重量部を用い、実施例2と同じ製造方法により共重合体を得た。
(Example 5)
A copolymer was obtained by the same production method as in Example 2 using 0.01 parts by weight of mercaptoethanol instead of β-mercaptopropionic acid.
 (実施例6)
 単量体(a)としてPGM75Eを70重量部、単量体(b)としてメタクリル酸23.9重量部を用い、実施例1と同じ製造方法により共重合体を得た。
(Example 6)
A copolymer was obtained by the same production method as in Example 1, using 70 parts by weight of PGM75E as the monomer (a) and 23.9 parts by weight of methacrylic acid as the monomer (b).
 (実施例7)
 単量体(a)としてPGM75Eを70重量部、単量体(b)としてメタクリル酸23.9重量部を用い、実施例2と同じ製造方法で共重合体を得た。
(Example 7)
A copolymer was obtained by the same production method as in Example 2, using 70 parts by weight of PGM75E as the monomer (a) and 23.9 parts by weight of methacrylic acid as the monomer (b).
 (実施例8)
 単量体(a)としてPGM120Eを96重量部、単量体(b)としてメタクリル酸3.2重量部を用い、実施例2と同じ製造方法で共重合体を得た。
(Example 8)
A copolymer was obtained by the same production method as in Example 2, using 96 parts by weight of PGM120E as the monomer (a) and 3.2 parts by weight of methacrylic acid as the monomer (b).
 (実施例9)
 単量体(a)としてPGM75Eを67重量部、単量体(b)としてメタクリル酸26.3重量部、β-メルカプトプロピオン酸0.35重量部を用い、実施例2と同じ製造方法により共重合体を得た。
Example 9
The monomer (a) was 67 parts by weight of PGM75E, the monomer (b) was 26.3 parts by weight of methacrylic acid, and β-mercaptopropionic acid 0.35 parts by weight. A polymer was obtained.
 (実施例10)
 単量体(a)としてPGM75Eを67重量部、単量体(b)としてメタクリル酸26.3重量部、β-メルカプトプロピオン酸0.41重量部を用い、実施例2と同じ製造方法により共重合体を得た。
(Example 10)
The monomer (a) was 67 parts by weight of PGM75E, the monomer (b) was 26.3 parts by weight of methacrylic acid, and 0.41 part by weight of β-mercaptopropionic acid. A polymer was obtained.
 (比較例1)
 β-メルカプトプロピオン酸の使用量を0.41重量部として、実施例2と同じ製造方法により共重合体を得た。
(Comparative Example 1)
A copolymer was obtained by the same production method as in Example 2, with the amount of β-mercaptopropionic acid used being 0.41 parts by weight.
 (比較例2)
 単量体(a)としてPGM75Eを70重量部、単量体(b)としてメタクリル酸23.9重量部を用い、β-メルカプトプロピオン酸の使用量を0.45重量部として、実施例2と同じ製造方法により共重合体を得た。
(Comparative Example 2)
Example 2 was used with 70 parts by weight of PGM75E as the monomer (a), 23.9 parts by weight of methacrylic acid as the monomer (b), and 0.45 parts by weight of β-mercaptopropionic acid. A copolymer was obtained by the same production method.
 (比較例3)
 単量体(a)としてPGM75Eを70重量部、単量体(b)としてメタクリル酸23.9重量部を用い、β-メルカプトプロピオン酸の使用量を0.48重量部として、実施例2と同じ製造方法により共重合体を得た。
(Comparative Example 3)
Example 2 was conducted using 70 parts by weight of PGM75E as the monomer (a), 23.9 parts by weight of methacrylic acid as the monomer (b), and 0.48 parts by weight of β-mercaptopropionic acid. A copolymer was obtained by the same production method.
 (比較例4)
 単量体(a)としてPGM10Eを80重量部、単量体(b)としてメタクリル酸15.9重量部を用い、実施例1と同じ製造方法により共重合体を得た。
(Comparative Example 4)
A copolymer was obtained by the same production method as in Example 1, using 80 parts by weight of PGM10E as the monomer (a) and 15.9 parts by weight of methacrylic acid as the monomer (b).
 <石膏スラリーの調整>
 半水石膏264gと、上記のいずれかの共重合体0.53gを水に混合した混練水158gとを小型ジューサーミキサーに投入し、10秒間混合することによって石膏スラリーを調整した。
<Adjustment of gypsum slurry>
A gypsum slurry was prepared by charging 264 g of hemihydrate gypsum and 158 g of kneaded water obtained by mixing 0.53 g of any of the above copolymers with water into a small juicer mixer and mixing for 10 seconds.
 <流動性>
 底面の直径50mm、高さ50mmのコーンに石膏スラリーを充填し、コーンの底面を平面上に押し当てた状態からコーンを引き上げ、その直後に石膏スラリーが広がってできた図形の直径を2箇所測定し、その平均値をペーストフロー値とした。この平均値の数値が高いほど、流動性が良好である。
<Fluidity>
Fill a cone with a bottom diameter of 50 mm and a height of 50 mm with gypsum slurry, lift the cone from a state where the bottom of the cone is pressed on a flat surface, and immediately after that, measure the diameter of the figure formed by spreading the gypsum slurry. The average value was used as the paste flow value. The higher the average value, the better the fluidity.
 <硬化性>
 石膏スラリーの硬化時間は、ビガー針装置を用いて、JIS R 9112に従って測定した始発時間及び見かけの終結時間に基づいて評価した。具体的には、内径94mm、高さ44mmの円筒形プラスチック容器に、深さが38mmとなるように石膏スラリーを注ぎ込んだものを共試体とし、ビガー針装置で始発時間と見かけの終結時間とを測定し、測定した始発時間及び見かけの終結時間の和の1/2を硬化時間とした。ここで、始発時間は、ビガー針装置の標準針が共試体の底面から1mmの高さに止まるようになるまでの、注水からの時間であり、見かけの終結時間は、ビガー針装置の標準針が共試体の表面から1mmの高さに止まるようになるまでの、注水からの時間である。ビガー針装置の標準針としては、長さ45mm、直径2mmで、その頭を平らに切ったものを使用した。標準針と共に硬化するものの全質量量は、300±1gである。
<Curing property>
The setting time of the gypsum slurry was evaluated based on the start time and the apparent end time measured according to JIS R 9112 using a bigger needle device. More specifically, the initial time and the apparent end time are determined with a bigger needle device using a gypsum slurry poured into a cylindrical plastic container with an inner diameter of 94 mm and a height of 44 mm so that the depth is 38 mm. Measured, and ½ of the sum of the measured start time and apparent end time was taken as the curing time. Here, the starting time is the time from the water injection until the standard needle of the bigger needle device stops at a height of 1 mm from the bottom surface of the co-test body, and the apparent end time is the standard needle of the bigger needle device. Is the time from the water injection until it stops at a height of 1 mm from the surface of the sample. The standard needle of the bigger needle device was 45 mm long and 2 mm in diameter, with its head cut flat. The total mass of what cures with the standard needle is 300 ± 1 g.
 以下の表3に、実施例1~8及び比較例1~4に係る共重合体を添加した石膏スラリーの流動性及び硬化性の試験結果を示す。 Table 3 below shows the flowability and curability test results of the gypsum slurry to which the copolymers according to Examples 1 to 8 and Comparative Examples 1 to 4 were added.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 まず、硬化性についてみると、実施例1~10に係る共重合体を添加した石膏スラリーでは、硬化時間が最大で18.6分であり、比較例1~4に係る共重合体の添加時と比べて、硬化時間が短縮された。単量体(a)及び(b)の物質量合計に対して1.2モル%を超える量のチオール系連鎖移動剤を用いて合成した、比較例1~3に係る共重合体を添加した石膏スラリーでは、硬化時間が30.0分より長くなっており、硬化時間が非常に長いことがわかった。これは、共重合体に結合しているチオール由来の硫黄原子の含有量が増えることによって、石膏スラリーの硬化阻害を引き起こしたためと考えられる。 First, in terms of curability, the gypsum slurry to which the copolymers according to Examples 1 to 10 were added had a maximum curing time of 18.6 minutes, and when the copolymers according to Comparative Examples 1 to 4 were added, Compared with, the curing time was shortened. The copolymers according to Comparative Examples 1 to 3 synthesized using a thiol chain transfer agent in an amount exceeding 1.2 mol% with respect to the total amount of the monomers (a) and (b) were added. In the gypsum slurry, the curing time was longer than 30.0 minutes, indicating that the curing time was very long. This is presumably because the increase in the content of thiol-derived sulfur atoms bonded to the copolymer caused inhibition of setting of the gypsum slurry.
 次に、流動性についてみると、比較例1~4に係る共重合体を添加した石膏スラリーのペーストフロー値が190~220mmであるのに対し、実施例1~8に係る共重合体を添加した石膏スラリーのペーストフロー値は、210~227mmの範囲であり、チオール系連鎖移動剤の添加量を従来と比べて減らしても、流動性に与える影響は殆どないことが確認された。尚、比較例4に係る共重合体の流動性は、各実施例及び他の比較例と比べて低い値となっているが、これは、単量体(a)のオキシアルキレン基の鎖長が10molと短くなっているためであると考えられる。 Next, regarding the fluidity, the paste flow value of the gypsum slurry to which the copolymers according to Comparative Examples 1 to 4 are added is 190 to 220 mm, whereas the copolymers according to Examples 1 to 8 are added. The paste flow value of the gypsum slurry thus obtained was in the range of 210 to 227 mm, and it was confirmed that there was almost no influence on the fluidity even if the amount of the thiol chain transfer agent was reduced as compared with the conventional case. In addition, although the fluidity | liquidity of the copolymer which concerns on the comparative example 4 is a low value compared with each Example and another comparative example, this is the chain length of the oxyalkylene group of a monomer (a). Is considered to be as short as 10 mol.
 [実施例11~14]
 表4に、実施例11~14及び比較例5に係る共重合体を示す。尚、表4の「共重合体の構成成分」及び「共重合体の構成比(重量比)」の欄には、反応液を水酸化ナトリウムで中和した後における、各単量体由来の構成単位及び重量比を示す。また、表4中の「SMA」は、マレイン酸ナトリウムを意味する。
[Examples 11 to 14]
Table 4 shows the copolymers according to Examples 11 to 14 and Comparative Example 5. In the columns of “Constituent components of copolymer” and “Constituent ratio (weight ratio) of copolymer” in Table 4, it is derived from each monomer after neutralizing the reaction solution with sodium hydroxide. A structural unit and a weight ratio are shown. Further, “SMA” in Table 4 means sodium maleate.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 <製造方法>
 実施例11~14及び比較例5に係る共重合体の合成方法は、次の通りである。
<Manufacturing method>
The methods for synthesizing the copolymers according to Examples 11 to 14 and Comparative Example 5 are as follows.
 (実施例11)
 単量体(a)としてPGM25Eを67重量部、単量体(b)としてメタクリル酸26.3重量部を用い、実施例1と同じ製造方法により共重合体を得た。
(Example 11)
A copolymer was obtained by the same production method as in Example 1, using 67 parts by weight of PGM25E as the monomer (a) and 26.3 parts by weight of methacrylic acid as the monomer (b).
 (実施例12)
 単量体(a)としてPGM25Eを67重量部、単量体(b)としてメタクリル酸26.3重量部、β-メルカプトプロピオン酸0.27重量部を用い、実施例2と同じ製造方法により共重合体を得た。
Example 12
The monomer (a) was 67 parts by weight of PGM25E, the monomer (b) was 26.3 parts by weight of methacrylic acid, and 0.27 parts by weight of β-mercaptopropionic acid was used. A polymer was obtained.
 (実施例13)
 単量体(a)としてPGM25Eを67重量部、単量体(b)としてメタクリル酸26.3重量部、β-メルカプトプロピオン酸0.353重量部を用い、実施例2と同じ製造方法により共重合体を得た。
(Example 13)
By using 67 parts by weight of PGM25E as the monomer (a), 26.3 parts by weight of methacrylic acid and 0.353 parts by weight of β-mercaptopropionic acid as the monomer (b), the same production method as in Example 2 was used. A polymer was obtained.
 (実施例14)
 単量体(a)としてIPN50を82.5重量部、単量体(b)としてマレイン酸12.7重量部を用い、実施例1と同じ製造方法により共重合体を得た。
(Example 14)
A copolymer was obtained by the same production method as in Example 1, using 82.5 parts by weight of IPN50 as the monomer (a) and 12.7 parts by weight of maleic acid as the monomer (b).
 (比較例5)
 単量体(a)としてPGM75Eを75重量部、単量体(b)としてメタクリル酸19.9重量部、βメルカプトプロピオン酸1.0重量部を用い、実施例2と同じ製造方法により共重合体を得た。
(Comparative Example 5)
The monomer (a) was 75 parts by weight of PGM75E, the monomer (b) was 19.9 parts by weight of methacrylic acid, and 1.0 part by weight of β-mercaptopropionic acid. Coalescence was obtained.
 <共重合体中の硫黄元素量の測定方法>
 上記の合成方法により得られた共重合体水溶液中の硫黄イオン性物質を除去するため限外濾過を行った。濾過膜として、Sartorius社製の限外濾過膜vivaflow200(VF20PO)を2ユニット並列に接続したものを使用した。濾過開始前に、濾過装置のチューブ、ポンプ、濾過膜中をイオン交換水(水量74g)で満たした。
<Method for measuring the amount of sulfur element in the copolymer>
Ultrafiltration was performed to remove sulfur ionic substances in the aqueous copolymer solution obtained by the above synthesis method. As the filtration membrane, an ultrafiltration membrane vivaflow200 (VF20PO) manufactured by Sartorius was connected in parallel. Before the start of filtration, the tube, pump, and filter membrane of the filtration device were filled with ion-exchanged water (74 g of water).
 固形分濃度を3.0重量%に調製した共重合体水溶液を循環濃縮側容器に入れ、濾過を開始した。濾過により、硫黄イオン性物質を、濾液(廃液)として共重合体水溶液から除去した。濾過が進むにつれて、循環濃縮側容器中の水溶液が減少するので、逐次イオン交換水を追加して共重合体水溶液の重量が100gとなるように調製した。濾過は、排出された濾液の総重量が260gとなった時点で終了した。 The aqueous copolymer solution prepared to a solid content concentration of 3.0% by weight was placed in a circulation concentration side container, and filtration was started. By filtration, the sulfur ionic substance was removed from the aqueous copolymer solution as a filtrate (waste liquid). As the filtration progressed, the aqueous solution in the circulation concentration side container decreased, so that ion exchange water was added successively so that the weight of the aqueous copolymer solution was 100 g. Filtration was terminated when the total weight of the discharged filtrate reached 260 g.
 濾過終了後、循環濃縮側容器中の共重合体水溶液にイオン交換水を追加して、再度総重量が100gとなるように調製し、測定試料Aを得た。この測定試料Aを、蛍光X線分析及びイオンクロマト分析に処して、イオン元素量を定量した。蛍光X線分析による定量値X(重量%)から、イオンクロマト分析による定量値Y(重量%)を差し引いた値を、共重合体に導入された硫黄元素量とした。 After completion of filtration, ion exchange water was added to the aqueous copolymer solution in the circulation concentration side container, and the total weight was again adjusted to 100 g. This measurement sample A was subjected to fluorescent X-ray analysis and ion chromatography analysis to quantify the amount of ion elements. A value obtained by subtracting the quantitative value Y (weight%) obtained by ion chromatography analysis from the quantitative value X (weight%) obtained by fluorescent X-ray analysis was defined as the amount of sulfur element introduced into the copolymer.
 尚、蛍光X線分析には、PHILIPS社製のPW2404 x-ray spectrometerを使用した。また、イオンクロマト分析には、ダイオネクス社製のICS-3000(分析装置)、ダイオネクス社製IonPac AS20(カラム)、ダイオネクス社製KOH13~25ミリモル/リットル水溶液(溶離液)を使用した。 In addition, PW2404 x-ray spectrometer manufactured by PHILIPS was used for fluorescent X-ray analysis. For ion chromatographic analysis, ICS-3000 (analyzer) manufactured by Dionex, IonPac AS20 (column) manufactured by Dionex, and an aqueous solution (eluent) of 13 to 25 mmol / liter KOH manufactured by Dionex were used.
 また、測定試料A中の固形分量Z(重量%)は、測定試料Aを窒素雰囲気下、130℃で70分間乾燥させて得た残留固形分の重量を測定し、乾燥前の測定試料Aの重量に対する残留固形分の重量の割合として求めた。 The solid content Z (% by weight) in the measurement sample A is determined by measuring the weight of the residual solid content obtained by drying the measurement sample A in a nitrogen atmosphere at 130 ° C. for 70 minutes. It was determined as a ratio of the weight of the residual solid content to the weight.
 上記のように求めた定量値X、Y及びZを、以下の数式に当てはめて、共重合体中の硫黄元素量を計算した。
  共重合体中の硫黄元素量(重量%)=[(X-Y)/Z]×100
The quantitative values X, Y, and Z obtained as described above were applied to the following mathematical formula to calculate the amount of sulfur element in the copolymer.
Amount of sulfur element in copolymer (% by weight) = [(XY) / Z] × 100
 石膏スラリーの調整、流動性及び効果性の測定は、上述した実施例1~10及び比較例1~4と同じ方法により行った。 The adjustment of the gypsum slurry and the measurement of fluidity and effectiveness were performed by the same methods as in Examples 1 to 10 and Comparative Examples 1 to 4 described above.
 以下の表5に、実施例11~14及び比較例5に係る共重合体を添加した石膏スラリーの流動性及び硬化性の試験結果を示す。 Table 5 below shows the fluidity and curability test results of the gypsum slurry to which the copolymers according to Examples 11 to 14 and Comparative Example 5 were added.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 硬化性については、実施例11~14に係る共重合体を添加した石膏スラリーでは、硬化時間が最大で18.0分であり、比較例5に係る共重合体の添加時と比べて、硬化時間が短縮された。これにより、チオール系連鎖移動剤の添加量を単量体(a)及び(b)の物質量合計に対して1.2モル%以下とし、共重合体重量に対する硫黄元素量を0.2重量%以下とした、実施例11~14に係る共重合体が石膏スラリーの流動性を顕著に向上させることが確認された。一方、チオール系連鎖移動剤の添加量が単量体(a)及び(b)の物質量合計に対して1.2モル%を超え、共重合体重量に対する硫黄元素量が0.2重量%を超える、比較例5に係る共重合体を添加した石膏スラリーでは、硬化時間が30.0分より長くなっており、硬化時間が非常に長いことがわかった。これは、共重合体に結合しているチオール由来の硫黄原子の含有量が増えることによって、石膏スラリーの硬化阻害を引き起こしたためと考えられる。 With respect to curability, the gypsum slurry to which the copolymers according to Examples 11 to 14 were added had a maximum curing time of 18.0 minutes, which was higher than that when the copolymer according to Comparative Example 5 was added. Time has been shortened. Thereby, the addition amount of the thiol chain transfer agent is 1.2 mol% or less with respect to the total amount of the monomers (a) and (b), and the amount of elemental sulfur relative to the copolymer weight is 0.2% by weight. % Or less of the copolymers according to Examples 11 to 14 were confirmed to significantly improve the fluidity of the gypsum slurry. On the other hand, the addition amount of the thiol-based chain transfer agent exceeds 1.2 mol% with respect to the total amount of the monomers (a) and (b), and the amount of elemental sulfur relative to the copolymer weight is 0.2 wt%. In the gypsum slurry to which the copolymer according to Comparative Example 5 was added, the curing time was longer than 30.0 minutes, and it was found that the curing time was very long. This is presumably because the increase in the content of thiol-derived sulfur atoms bonded to the copolymer caused inhibition of setting of the gypsum slurry.
 また、流動性については、実施例11~14に係る共重合体のペーストフロー値は、比較例5に係る共重合体を添加した石膏スラリーのペーストフロー値と同等であり、チオール系連鎖移動剤の添加量を従来と比べて減らしても、流動性に与える影響は殆どないことが確認された。 Regarding the fluidity, the paste flow values of the copolymers according to Examples 11 to 14 are equivalent to the paste flow value of the gypsum slurry to which the copolymer according to Comparative Example 5 is added, and the thiol chain transfer agent. It was confirmed that there was almost no influence on the fluidity even if the amount of addition was reduced as compared with the conventional case.
 以上の結果から、単量体(a)由来の構成単位及び単量体(b)由来の構成単位を有する共重合体の製造時に、添加するチオール系連鎖移動剤の添加量を単量体(a)及び(b)に対して1.2モル%以下とし、共重合体中に含有される硫黄元素量を0.2重量%以下とすることによって、石膏スラリーの流動性を損なうことなく、石膏スラリーの硬化時間を短縮できる共重合体が得られることが確認された。 From the above results, the amount of the thiol chain transfer agent to be added during the production of the copolymer having the structural unit derived from the monomer (a) and the structural unit derived from the monomer (b) is determined based on the monomer ( By making 1.2 mol% or less with respect to a) and (b), and making the amount of sulfur element contained in the copolymer 0.2 wt% or less, without impairing the fluidity of the gypsum slurry, It was confirmed that a copolymer capable of shortening the setting time of the gypsum slurry was obtained.
 本発明は、石膏スラリー中の石膏の分散性を向上させるための石膏用分散剤、また、石膏と水と説教用分散剤とを含有する石膏組成物に利用できる。 The present invention can be used for a gypsum dispersant for improving the dispersibility of gypsum in a gypsum slurry, and a gypsum composition containing gypsum, water, and a preaching dispersant.

Claims (15)

  1.  石膏分散剤用共重合体であって、
     下記一般式(A)で表される単量体(a)由来の構成単位と、下記一般式(B)で表される単量体(b)由来の構成単位とを有し、重量平均分子量が1~20万である共重合体を含み、
     前記共重合体中の硫黄元素量が、前記共重合体に対して0.2重量%以下である、石膏分散剤用共重合体。
    Figure JPOXMLDOC01-appb-C000006
     式中、R1、R2は、同一または異なって、水素又はメチル基を表し、AOは、同一又は異なって、炭素数2以上の1種類のオキシアルキレン基または炭素数2以上の2種類以上のオキシアルキレン基の混合物を表し、xは、0~2の整数を表し、yは、0または1を表し、nは、オキシアルキレン基の平均付加モル数を表す15~200の数であり、R3
    は水素原子または炭素数1~20の炭化水素基を表す。
    Figure JPOXMLDOC01-appb-C000007
     式中、R4、R5及びR6は、同一又は異なって、水素原子、メチル基または-(CH2nCOOM2を表し、-(CH2mCOOM2は、-COOM1またはその他の-(CH2nCOOM2と無水物を形成していてもよく、この場合、それらの基のM1、M2は存在しな
    い。mは、0~2の整数を表し、M1、M2は、同一又は異なって、水素原子、アルカリ金属、アルカリ土類金属、アンモニウム基または有機アンモニウム基を表す。
    A copolymer for a gypsum dispersant,
    It has a structural unit derived from the monomer (a) represented by the following general formula (A) and a structural unit derived from the monomer (b) represented by the following general formula (B), and has a weight average molecular weight. Including a copolymer of 1 to 200,000,
    A copolymer for gypsum dispersant, wherein the amount of elemental sulfur in the copolymer is 0.2% by weight or less with respect to the copolymer.
    Figure JPOXMLDOC01-appb-C000006
    In the formula, R 1 and R 2 are the same or different and represent hydrogen or a methyl group, and AO is the same or different and is one or more types of oxyalkylene groups having 2 or more carbon atoms or two or more types having 2 or more carbon atoms. X represents an integer of 0 to 2, y represents 0 or 1, n is a number of 15 to 200 representing the average number of moles added of the oxyalkylene group, R 3
    Represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.
    Figure JPOXMLDOC01-appb-C000007
    In the formula, R 4 , R 5 and R 6 are the same or different and each represents a hydrogen atom, a methyl group or — (CH 2 ) n COOM 2 , and — (CH 2 ) m COOM 2 represents —COOM 1 or other -(CH 2 ) n COOM 2 may form an anhydride, and in this case, M 1 and M 2 of these groups are not present. m represents an integer of 0 to 2, and M 1 and M 2 are the same or different and each represents a hydrogen atom, an alkali metal, an alkaline earth metal, an ammonium group, or an organic ammonium group.
  2.  前記一般式(A)においてオキシアルキレン基の平均付加モル数を表すnの値が、15~80である、請求項1に記載の石膏分散剤用共重合体。 The copolymer for gypsum dispersant according to claim 1, wherein the value of n representing the average added mole number of the oxyalkylene group in the general formula (A) is 15 to 80.
  3.  前記共重合体中の硫黄元素量が、前記共重合体に対して0.17重量%以下である、請求項1に記載の石膏分散剤用共重合体。 The copolymer for gypsum dispersant according to claim 1, wherein the amount of sulfur element in the copolymer is 0.17% by weight or less with respect to the copolymer.
  4.  前記単量体(a)が、yの値を1とした場合に上記一般式(A)で表されるエステルである、請求項1に記載の石膏分散剤用共重合体。 The copolymer for gypsum dispersant according to claim 1, wherein the monomer (a) is an ester represented by the general formula (A) when the value of y is 1.
  5.  前記単量体(b)がモノカルボン酸またはモノカルボン酸塩である、請求項1に記載の石膏分散剤用共重合体。 The copolymer for gypsum dispersant according to claim 1, wherein the monomer (b) is a monocarboxylic acid or a monocarboxylate.
  6.  前記単量体(b)がアクリル酸、メタクリル酸、アクリル酸塩、メタクリル酸塩のいずれかである、請求項5に記載の石膏分散剤用共重合体。 The copolymer for gypsum dispersant according to claim 5, wherein the monomer (b) is any one of acrylic acid, methacrylic acid, acrylate, and methacrylate.
  7.  重量平均分子量が1~20万である石膏分散剤用共重合体の製造方法であって、
     下記一般式(A)で表される単量体(a)と、下記一般式(B)で表される単量体(b)とを含む単量体成分と、重合開始剤とを混合することによって重合を行い、
     前記単量体成分に添加されるチオール系化合物の添加量が、前記単量体成分に対して1.2モル%以下である、石膏分散剤用共重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000008
     式中、R1、R2は、同一または異なって、水素又はメチル基を表し、AOは、同一又は異なって、炭素数2以上の1種類のオキシアルキレン基または炭素数2以上の2種類以上のオキシアルキレン基の混合物を表し、xは、0~2の整数を表し、yは、0または1を表し、nは、オキシアルキレン基の平均付加モル数を表す15~200の数であり、R3
    は水素原子または炭素数1~20の炭化水素基を表す。
    Figure JPOXMLDOC01-appb-C000009
     式中、R4、R5及びR6は、同一又は異なって、水素原子、メチル基または-(CH2nCOOM2を表し、-(CH2mCOOM2は、-COOM1またはその他の-(CH2nCOOM2と無水物を形成していてもよく、この場合、それらの基のM1、M2は存在しな
    い。mは、0~2の整数を表し、M1、M2は、同一又は異なって、水素原子、アルカリ金属、アルカリ土類金属、アンモニウム基または有機アンモニウム基を表す。
    A method for producing a copolymer for a gypsum dispersant having a weight average molecular weight of 1 to 200,000,
    A monomer component containing a monomer (a) represented by the following general formula (A) and a monomer (b) represented by the following general formula (B) is mixed with a polymerization initiator. Polymerization by
    The method for producing a copolymer for a gypsum dispersant, wherein the addition amount of the thiol compound added to the monomer component is 1.2 mol% or less with respect to the monomer component.
    Figure JPOXMLDOC01-appb-C000008
    In the formula, R 1 and R 2 are the same or different and represent hydrogen or a methyl group, and AO is the same or different and is one or more types of oxyalkylene groups having 2 or more carbon atoms or two or more types having 2 or more carbon atoms. X represents an integer of 0 to 2, y represents 0 or 1, n is a number of 15 to 200 representing the average number of moles added of the oxyalkylene group, R 3
    Represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.
    Figure JPOXMLDOC01-appb-C000009
    In the formula, R 4 , R 5 and R 6 are the same or different and each represents a hydrogen atom, a methyl group or — (CH 2 ) n COOM 2 , and — (CH 2 ) m COOM 2 represents —COOM 1 or other -(CH 2 ) n COOM 2 may form an anhydride, and in this case, M 1 and M 2 of these groups are not present. m represents an integer of 0 to 2, and M 1 and M 2 are the same or different and each represents a hydrogen atom, an alkali metal, an alkaline earth metal, an ammonium group, or an organic ammonium group.
  8.  前記単量体成分に添加されるチオール系化合物の添加量が、前記単量体成分に対して0.7モル%以下である、石膏分散剤用共重合体の製造方法。 A method for producing a copolymer for a gypsum dispersant, wherein the amount of the thiol compound added to the monomer component is 0.7 mol% or less with respect to the monomer component.
  9.  前記単量体(a)が、yの値を1とした場合に上記一般式(A)で表されるエステルである、請求項7に記載の石膏分散剤用共重合体の製造方法。 The method for producing a copolymer for a gypsum dispersant according to claim 7, wherein the monomer (a) is an ester represented by the general formula (A) when the value of y is 1.
  10.  前記単量体(b)がモノカルボン酸またはモノカルボン酸塩である、請求項7に記載の石膏分散剤用共重合体の製造方法。 The method for producing a copolymer for a gypsum dispersant according to claim 7, wherein the monomer (b) is a monocarboxylic acid or a monocarboxylate.
  11.  前記単量体(b)がアクリル酸、メタクリル酸、アクリル酸塩、メタクリル酸塩のいずれかである、請求項10に記載の石膏分散剤用共重合体の製造方法。 The method for producing a copolymer for a gypsum dispersant according to claim 10, wherein the monomer (b) is any one of acrylic acid, methacrylic acid, acrylate, and methacrylate.
  12.  前記一般式(A)においてオキシアルキレン基の平均付加モル数を表すnの値が、15~80である、請求項3に記載の石膏分散剤用共重合体の製造方法。 The method for producing a copolymer for a gypsum dispersant according to claim 3, wherein the value of n representing the average number of added moles of the oxyalkylene group in the general formula (A) is 15 to 80.
  13.  前記単量体(a)と前記単量体(b)との重量比が、60:40~90:10である、請求項7に記載の石膏分散剤用共重合体の製造方法。 The method for producing a copolymer for a gypsum dispersant according to claim 7, wherein the weight ratio of the monomer (a) to the monomer (b) is 60:40 to 90:10.
  14.  請求項1に記載の石膏分散剤用共重合体を含有する、石膏用分散剤。 A gypsum dispersant containing the copolymer for gypsum dispersant according to claim 1.
  15.  石膏と、請求項1に記載の石膏用分散剤用共重合体と、水とを含有する、石膏組成物。 A gypsum composition comprising gypsum, the copolymer for a dispersant for gypsum according to claim 1, and water.
PCT/JP2013/001967 2012-03-28 2013-03-22 Copolymer for gypsum dispersant and method for producing same, gypsum dispersant, and gypsum composition WO2013145675A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014507417A JP5947374B2 (en) 2012-03-28 2013-03-22 Copolymer for gypsum dispersant and method for producing the same, gypsum dispersant, gypsum composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-074768 2012-03-28
JP2012074768 2012-03-28

Publications (1)

Publication Number Publication Date
WO2013145675A1 true WO2013145675A1 (en) 2013-10-03

Family

ID=49258980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001967 WO2013145675A1 (en) 2012-03-28 2013-03-22 Copolymer for gypsum dispersant and method for producing same, gypsum dispersant, and gypsum composition

Country Status (2)

Country Link
JP (1) JP5947374B2 (en)
WO (1) WO2013145675A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112358578A (en) * 2020-11-17 2021-02-12 山西佳维新材料股份有限公司 Polycarboxylate gypsum water reducer and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001354461A (en) * 2000-06-13 2001-12-25 Taiheiyo Cement Corp Dispersant for gypsum
JP2003002718A (en) * 2001-06-22 2003-01-08 Kao Corp Admixture for gypsum composition
JP2008291078A (en) * 2007-05-23 2008-12-04 Kyoto Univ Manufacturing method for polymer
JP2011529432A (en) * 2008-07-30 2011-12-08 シーカ・テクノロジー・アーゲー Dispersant for gypsum composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001354461A (en) * 2000-06-13 2001-12-25 Taiheiyo Cement Corp Dispersant for gypsum
JP2003002718A (en) * 2001-06-22 2003-01-08 Kao Corp Admixture for gypsum composition
JP2008291078A (en) * 2007-05-23 2008-12-04 Kyoto Univ Manufacturing method for polymer
JP2011529432A (en) * 2008-07-30 2011-12-08 シーカ・テクノロジー・アーゲー Dispersant for gypsum composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112358578A (en) * 2020-11-17 2021-02-12 山西佳维新材料股份有限公司 Polycarboxylate gypsum water reducer and preparation method and application thereof

Also Published As

Publication number Publication date
JP5947374B2 (en) 2016-07-06
JPWO2013145675A1 (en) 2015-12-10

Similar Documents

Publication Publication Date Title
US6869998B2 (en) Concrete or cement dispersant and method of use
JP4993149B2 (en) Copolymer and cement dispersant comprising the copolymer
US8541518B2 (en) Semi continuous operational method for producing copolymers
JP6161733B2 (en) Dental glass ionomer cement filler and method for producing the same
JP5559192B2 (en) Process for producing a semi-continuously operated copolymer
JP5947374B2 (en) Copolymer for gypsum dispersant and method for producing the same, gypsum dispersant, gypsum composition
JP2005132955A (en) Multifunctional admixture for hydraulic cement composition
FR2792932A1 (en) NOVEL ACETHOLIC COPOLYMER AGENTS BASED ON URETHANE FOR IMPROVING THE HANDLING OF HYDRAULIC BINDERS, THEIR PREPARATION METHOD, THE BINDERS CONTAINING THEM AND THEIR APPLICATIONS
WO2019244951A1 (en) Composition containing bleaching ingredient and production method therefor
JP6367353B2 (en) Cement dispersant, production method, and mortar / concrete admixture using the same
JP2000095822A (en) Water-soluble acrylic copolymer
JP6666114B2 (en) Cement composition for premix cement
JP4542235B2 (en) Method for producing cement additive
WO2010066576A1 (en) Semi-continuous method for producing copolymers
JP6204176B2 (en) Gypsum slurry
JP6186228B2 (en) Method for producing cement dispersant
JP2021525288A (en) A method for producing a comb-shaped polymer with a well-controlled structure.
KR101717180B1 (en) Cement Composition Additive Including Polycarboxylic Copolymer And Methode for Preparing the Same
JP4381565B2 (en) Cement dispersant
JP2020529503A (en) Concrete fluidity improver and water reducer
KR101648255B1 (en) Copolymer for cement admixture, method for preparing the same, and cement composition containing the same
JP2018154711A (en) Polycarboxylic acid-based copolymer, cement dispersion agent, concrete admixture, and concrete composition
JP2012511062A (en) Semi-continuous process for producing copolymers
JP2012233075A (en) Sulfonic acid group-containing polyalkylene glycol-based polymer
CN107628764A (en) A kind of production method of the new high performance water reducing agent of polyocarboxy acid of concrete tubular pile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768911

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014507417

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13768911

Country of ref document: EP

Kind code of ref document: A1