WO2013145073A1 - Particulate material feeder and method of supplying same - Google Patents

Particulate material feeder and method of supplying same Download PDF

Info

Publication number
WO2013145073A1
WO2013145073A1 PCT/JP2012/057723 JP2012057723W WO2013145073A1 WO 2013145073 A1 WO2013145073 A1 WO 2013145073A1 JP 2012057723 W JP2012057723 W JP 2012057723W WO 2013145073 A1 WO2013145073 A1 WO 2013145073A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating disk
granular material
groove
row
guide
Prior art date
Application number
PCT/JP2012/057723
Other languages
French (fr)
Japanese (ja)
Inventor
勝男 加藤
石川 悦朗
哲也 本溜
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to PCT/JP2012/057723 priority Critical patent/WO2013145073A1/en
Publication of WO2013145073A1 publication Critical patent/WO2013145073A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/02Manufacture of tobacco smoke filters
    • A24D3/0204Preliminary operations before the filter rod forming process, e.g. crimping, blooming
    • A24D3/0212Applying additives to filter materials
    • A24D3/0216Applying additives to filter materials the additive being in the form of capsules, beads or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/02Devices for feeding articles or materials to conveyors
    • B65G47/04Devices for feeding articles or materials to conveyors for feeding articles
    • B65G47/12Devices for feeding articles or materials to conveyors for feeding articles from disorderly-arranged article piles or from loose assemblages of articles
    • B65G47/14Devices for feeding articles or materials to conveyors for feeding articles from disorderly-arranged article piles or from loose assemblages of articles arranging or orientating the articles by mechanical or pneumatic means during feeding
    • B65G47/1407Devices for feeding articles or materials to conveyors for feeding articles from disorderly-arranged article piles or from loose assemblages of articles arranging or orientating the articles by mechanical or pneumatic means during feeding the articles being fed from a container, e.g. a bowl
    • B65G47/1442Devices for feeding articles or materials to conveyors for feeding articles from disorderly-arranged article piles or from loose assemblages of articles arranging or orientating the articles by mechanical or pneumatic means during feeding the articles being fed from a container, e.g. a bowl by means of movement of the bottom or a part of the wall of the container
    • B65G47/1457Rotating movement in the plane of the rotating part

Definitions

  • the present invention relates to a feeder for supplying granular materials in a row and a method for supplying the same, and more particularly to a feeder and supplying method for granular materials suitable for supplying easily fragile granular materials.
  • the feeder of Patent Document 1 includes a hopper for an object, and a vertical rotating wheel disposed immediately below the outlet of the hopper.
  • the rotating wheel has a plurality of pockets on an outer peripheral surface thereof. They are arranged at intervals in the circumferential direction. According to the feeder of Patent Document 1, during the rotation of the rotating wheel, each pocket receives an object one by one from the outlet of the hopper, and forms a row of articles extending in the circumferential direction of the rotating wheel on the outer periphery of the rotating wheel. Such a row of articles is supplied in the direction of rotation of the rotating wheel.
  • the feeder of Patent Document 2 includes a bead supply bowl and a plurality of bead passages that extend radially from the bead supply bowl and rotate together with the bead supply bowl.
  • the beads are supplied one by one to the pocket formed on the outer periphery of the bead supply wheel. Therefore, also in the case of the feeder of Patent Document 2, a row of beads extending in the circumferential direction is formed on the outer periphery of the bead supply wheel. Such a row of beads is supplied in the direction of rotation of the bead supply wheel.
  • the feeder of Patent Document 3 includes a rotating disk that receives a supply of parts, and this rotating disk is disposed to be inclined with respect to a horizontal plane.
  • the outer peripheral edge of the rotating disk has an alignment groove extending over the entire circumference. Since the rotating disk is inclined, the parts supplied onto the rotating disk move downward on the rotating disk and are received by the alignment grooves. Accordingly, the alignment grooves form a row of parts extending in the circumferential direction of the rotating disk. Such a row of parts is supplied in the direction of rotation of the rotating disk.
  • the supply speed of the rows of beads is limited by the rotation speed of the bead supply bowl, and it is difficult to increase the supply speed. That is, if the rotation speed of the bead supply bowl is increased, the beads cannot be discharged from the bead supply bowl to the bead passage.
  • the feeder of Patent Document 3 scoops up a row of parts, scoops it up with a claw, and removes it from the alignment groove.
  • the part is a granular material that easily rolls
  • the article rolls on the scooping claw, and the article cannot be stably guided to the subsequent discharge path. Therefore, the feeder of patent document 3 is not suitable for supply of a granular material.
  • An object of the present invention is to provide a feeder for granular materials that can be stably supplied in a line without breaking the granular materials, and a method for supplying the same.
  • a rotatable rotating disk that includes an upper surface that is inclined with respect to a horizontal plane and on which the granular material is supplied; An enclosure member that extends along the outer peripheral edge of the rotating disk and prevents the dropping of particulate matter from its upper surface; An alignment apparatus for forming a row in which the granular material is arranged in the circumferential direction of the rotating disk from the granular material on the upper surface, Formed on the outer periphery of the upper surface, and includes a plurality of grooves that are arranged at intervals in the circumferential direction of the rotating disk and that can receive the granular materials one by one; The granular materials received in the grooves are arranged along the circumferential direction of the rotating disk and form a row that moves in the circumferential direction of the rotating disk as the rotating disk rotates, and each groove is directed radially outward of the rotating disk.
  • An alignment device having a shape that allows the granular material received in A discharge device for discharging the row of granular materials from a rotating disk, A discharge position defined on the outer peripheral edge of the rotating disk; A discharge guide for deflecting the moving direction of the row of granular materials at the discharge position outward in the radial direction of the rotating disk, The discharge guide extends from the discharge position across the outer periphery of the rotating disk toward the radially outer side of the rotating disk, and defines a guide passage that guides the row of the granular materials.
  • the guide passage has a guide surface facing the radially outer side of the rotating disk, and the guide surface removes the granular material in the groove in the radially outer side of the rotating disk in a region from the discharge position to the outer periphery of the rotating disk. And a discharge device that pushes out toward the groove and pulls out from the groove.
  • the granular material supplied onto the rotating disk is received by the individual grooves using the inclination of the upper surface, and one row of granular objects is formed on the rotating disk.
  • Such a row of granular materials is moved in the circumferential direction of the rotating disk as the rotating disk rotates.
  • the discharge guide that is, the guide surface pushes out the granular materials forming the row and pulls out from the groove toward the radially outer side of the rotating disk.
  • the moving direction of the row is deflected from the circumferential direction of the rotating disk and guided into the grain guide passage.
  • the row of granular materials is supplied to the subsequent apparatus through the guide passage.
  • Each groove has an axis extending along the radial direction of the rotating disk, and this axis determines the direction in which the granular material comes out of the groove.
  • the axis of each groove is inclined so that the end of the groove located on the outer peripheral side of the rotating disk is shifted in the direction opposite to the rotating direction of the rotating disk.
  • the axis of the groove positioned at the discharge position is inclined at a predetermined clearance angle with respect to the normal line orthogonal to the guide surface. If the axis of the groove and the guide surface are in the above relationship, when the groove moves from the discharge position to the rotation direction of the rotary disk as the rotary disk rotates, the pushing direction of the granular material by the guide surface is the axis of the groove. The particulate matter smoothly exits from the groove.
  • the exit direction of the particulate matter from the groove does not necessarily coincide with the direction of the axis of the groove, and may be inclined upward or downward with a predetermined exit angle with respect to this axis. Furthermore, this invention also provides the supply method of a granular material.
  • the granular material feeder and its supply method of the present invention form a line in which the granular material is arranged in a line on the rotating disk without breaking the granular material, and thereafter stably supply the line of the granular material from the rotating disk.
  • FIG. 3 is a side view showing the feeder of FIG. 2 with a part broken away.
  • FIG. 3 is a plan view of the rotating disk of FIG. 2. It is the longitudinal cross-sectional view which showed the groove
  • the production system includes a horizontal production line 12 that includes an upstream conveyor 14 and a downstream conveyor 16.
  • the upstream conveyor 14 supplies a composite element row in which the filter elements Fpe and Fce are alternately arranged toward the downstream conveyor 16.
  • the filter element Fpe is obtained by cutting the filter rod Fp in the process in which the filter rod Fp taken out from the hopper 18 is transferred to the upstream conveyor 14.
  • the filter element Fce is obtained by cutting the filter rod Fc in the process in which the filter rod Fc taken out from the hopper 20 is transferred to the upstream conveyor 14.
  • the filter rod Fp includes an acetate fiber tow material and a web that wraps the tow material in a rod shape.
  • the filter rod Fc differs from the filter rod Fp only in that it contains activated carbon particles distributed in the tow material.
  • a spacer drum 22 is disposed at the end of the upstream conveyor 14.
  • the spacer drum 22 adjusts the space between the filter elements Fpe and Fce forming the element row to be constant. Thereafter, the element row is transferred from the upstream conveyor 14 onto the downstream conveyor 16 via the paper web W. That is, the element row is transported together with the paper web W onto the downstream conveyor 16 toward the subsequent wrapping section 24.
  • the paper web W is supplied to the downstream conveyor 16 from a roll (not shown).
  • a feeder 26 for supplying granular materials, for example, beads is disposed immediately above the downstream conveyor 16.
  • the feeder 26 includes two distributors 28 and 30. These distributors 28 and 30 have the same structure and are arranged side by side along the downstream conveyor 16.
  • the upstream distribution 28 supplies beads B to every other space in the element row, while the downstream distributor 30 supplies beads B to the remaining space. Therefore, when an element row is supplied to the wrapping section 24, the element row is formed into a composite element row in which beads B are distributed in all its spaces.
  • the beads B are, for example, spherical capsules containing a liquid fragrance, and have a diameter of about 3 to 5 mm, for example.
  • the distributors 28 and 30 will be described later.
  • the wrapping section 24 receives the composite element array and the paper web W, and wraps the composite element array continuously with the paper web W using a garnish tape (not shown), as is known, thereby providing a composite filter rod continuum C. Mold. After this, the continuum C is delivered from the wrapping section 24 and passes through the cutting section 32.
  • the cutting section 32 cuts the continuous body C at a predetermined length to manufacture a composite filter rod FR.
  • the composite filter rod FR has a length that is a multiple of the filter F used in one of the filter cigarettes.
  • the continuous body C of the composite filter rod FR is cut at the center of the filter element Fce, and each composite filter rod FR has a half body Fceh of the filter element Fce at both ends as is apparent from FIG.
  • the composite filter rod FR is supplied to a filter mounting machine (not shown) and used for manufacturing a filter cigarette. That is, the composite filter rod FR is further cut into a plurality of double filters DF.
  • the double filter DF includes a half Fceh of the filter element Fce at both ends thereof, and a bead B disposed between the filter element Fpe and the filter element Fpe and each half Fceh at the center.
  • Such a double filter DF forms a double filter cigarette together with two cigarettes by wrapping chip paper as is well known, and then the double filter cigarette is cut into individual filter cigarettes.
  • the distributor 28 includes a feeder 34, and the feeder 34 is disposed above the downstream conveyor 16. As will become clear from the following description, the feeder 34 discharges the beads B in a row. The discharged beads B are guided into a supply hose 36 having an antistatic function and transferred through the supply hose 36.
  • the supply hose 36 extends straight downward from the feeder 34, and the beads B in the supply hose 36 are stacked in a line.
  • An upper level sensor 38 and a lower level sensor 40 are disposed outside the supply hose 36. These level sensors 38 and 40 detect the bead B in the supply hose 36 and output a detection signal.
  • the detection signal here is used to control the supply of beads B from the feeder 34 to the supply hose 36. Therefore, the filling height of the beads B in the supply hose 36 is always maintained at the level position between the upper level sensor 38 and the lower level sensor 40.
  • a distribution unit 42 is disposed immediately above the downstream conveyor 16, and the distribution unit 42 includes a fixed plate 44 and a circular rotating plate 46.
  • the fixed plate 44 and the rotating plate 46 have inner surfaces that face each other.
  • the fixed plate 44 has a spiral groove 48 on its inner surface.
  • the spiral groove 48 is formed around the rotation shaft 50 of the rotary plate 46 and has an outer end that opens downward just above the downstream conveyor 16.
  • the rotating plate 46 has a large number of radiating grooves 52 on its inner surface, and these radiating grooves 52 extend from the rotating shaft 50 to the outer periphery of the rotating plate 46.
  • the inner end of the radiating groove 52 communicates with a guide passage (not shown) that penetrates the fixed plate 44.
  • the beads B are supplied through this guide passage. That is, the guide passage is connected to the lower end of the supply hose 36 described above.
  • the beads B are supplied to the inner end of the radiation groove 52 in this way, when the rotation of the rotating plate 46 proceeds, the beads B are sandwiched between the radiation groove 52 and the spiral groove 48. Thereafter, as the rotation of the rotating plate 46 further proceeds, the radiation groove 52 that has been supplied with the beads B cooperates with the spiral groove 48, and the beads B are directed toward the outer periphery of the rotating plate 46 according to the spiral shape of the groove 48. And is supplied to one space of the element row on the downstream conveyor 16 by its own weight from the outer end of the spiral groove 48.
  • the peripheral speed of the rotating plate 46 matches the transfer speed of the element row.
  • the distribution unit 42 includes a bead detection sensor 54.
  • the bead detection sensor 54 is disposed below the fixed plate 44, detects the bead B in the radiation groove 52 passing through the bead detection sensor 54, and outputs the detection signal.
  • the bead detection sensor 54 outputs a continuous signal and generates a pulse waveform with a constant pitch.
  • the feeder 34 includes a rotating disk 56.
  • the rotating disk 56 is formed with a predetermined angle ⁇ (for example, 5 to 20 °) with respect to a horizontal plane. That is, the rotating disk 56 has an upper surface 58 that is inclined with respect to a horizontal plane.
  • a supply cone 60 is arranged at the center of the upper surface 58, and the supply cone 60 can rotate independently of the rotating disk 56. That is, the rotating disk 56 has a hollow rotating shaft 62, while the rotating shaft 64 of the supply cone 60 passes through the rotating disk 56 and extends through the rotating shaft 62. These rotary shafts 62 and 64 are connected to separate drive sources 66 and 68. The outer periphery of the rotating disk 56 is surrounded by a surrounding member 70, and this surrounding member 70 is fixed to a base (not shown).
  • a hopper 72 is disposed above the supply cone 60.
  • the hopper 72 stores a large number of beads B therein and has an outlet 74 that opens toward the supply cone 60.
  • the outlet 74 is disposed between the outer peripheral edge of the supply cone 60 positioned below and the apex of the supply cone 60 as viewed in the circumferential direction of the supply cone 60, and is parallel to the upper surface 58. It has an opening edge 76. Accordingly, the clearance between the opening edge 76 and the supply cone 60 increases as the distance from the apex of the supply cone 60 increases.
  • a bead B bridge is formed between the outlet 74 of the hopper 72 and the feed cone 60, and such a bridge prevents the release of the bead B from the outlet 74.
  • the rotation of the supply cone 60 eliminates the bridge described above and allows the release of beads B from the outlet 74. To do.
  • the beads B discharged from the outlet 74 are guided onto the upper surface 58 of the rotating disk 56 while rolling on the supply cone 60.
  • the beads B are located in the lower region of the rotating disk 56, that is, in the collecting region G. Collect along the outer periphery of the upper surface 58.
  • the feeder 34 further includes an alignment device, and this alignment device forms one bead array on the upper surface 58 of the rotating disk 56.
  • the alignment device includes a plurality of grooves 78, which are formed on the outer peripheral edge of the upper surface 58 and are arranged at intervals in the circumferential direction of the rotating disk 56.
  • the groove 78 has a size capable of receiving the beads B one by one.
  • each groove 78 receives one bead B in the collecting area G. be able to. Therefore, the grooves 78 that have passed through the collecting region G receive the beads B in all of them, and form one bead row R.
  • Such a bead array R is moved in the counterclockwise direction CC of the rotating disk 56 along the circumferential direction of the rotating disk 56.
  • a remaining amount detection sensor 80 is disposed above the collecting area G, and this remaining amount detection sensor 80 detects the amount of beads B remaining in the collecting area G. And output a remaining amount signal. Such a remaining amount signal is used to control the rotation of the supply cone 60 and appropriately maintains the remaining amount of the beads B in the collecting area G.
  • the beads B in the gathering area G will not be excessively deposited. Will not be lifted up.
  • the beads B in the collecting area G are quickly received by the grooves 78 passing through the collecting area G even if the rotational speed of the rotating disk 56 is increased, and a stable bead array R can be formed. .
  • each groove 78 allows the received beads B to be pulled out radially outward of the rotating disk.
  • each groove 78 has an axis line along the radial direction of the rotating disk 56, and has an open end opened at the outer periphery of the rotating disk 56. That is, the opening edge of each groove 78 has a U-shape that is open at the outer periphery of the rotating disk 56 when viewed from above, while each groove 78 also has a U-shape when viewed in cross section. .
  • each groove 78 is shorter than the diameter of the bead B, and therefore, a part of the bead B in the groove 78 protrudes from the upper surface of the rotating disk 56.
  • the bottom of each groove 78 is parallel to the upper surface 58 of the rotating disk 56.
  • the bottom of each groove 78 may have, for example, an upward gradient toward the opening end of the groove 78, that is, a slip-out angle ⁇ 1 (see FIG. 5). Selected from the range of ° C.
  • the feeder 34 further includes a discharge device, which discharges the bead row R from the rotary disk 56 at the discharge position E of the rotary disk 56.
  • the discharge position E is positioned above the horizontal plane that is separated from the above-described remaining amount detection sensor 80 in the diameter direction of the rotary disk 56 and includes the rotation center of the rotary disk 56.
  • the discharge device includes a discharge guide 82, and the discharge guide 82 extends from the discharge position E to the outer periphery of the rotating disk 56, that is, across the enclosure member 70 and radially outward of the rotating disk 56.
  • the extending direction of the discharge guide 82 is preferably parallel to the tangential direction with respect to the rotating disk 56 at the discharge position E, for example.
  • the discharge guide 82 has two plate members extending in parallel with each other, and these plate members extend along the upper surface 58 immediately above the rotary disk 56.
  • the two plate members cooperate to define a guide passage 84, and the width of the guide passage 84 is set so as to maintain the row state of the bead row R described above.
  • the guide passage 84 has an inner end 86 positioned at the discharge position E and an outer end 88 positioned outside the rotating disk 56, and the outer end 88 is described above. It is connected to a supply hose 36 (see FIG. 2).
  • the inner end 86 opens in a direction facing the rotational direction CC of the rotary disk 56, and when the beads B forming the bead row R reach the discharge position E, the beads B are received. Guided inside. That is, the moving direction of the bead row R is deflected from the circumferential direction of the rotating disk 56 to the extending direction of the guide passage 84 at the discharge position E. Thereafter, the bead row R is guided into the supply hose 36 from the guide passage 84 and supplied to the distribution unit 42 through the supply hose 36. Needless to say, the portion of the guide passage 84 located outside the rotating disk 56 has a bottom.
  • the guide passage 84 has a guide surface 90, and the guide surface 90 is formed by an inner surface of a plate member positioned on the inner side in the radial direction of the rotating disk 56, and faces the outer side in the radial direction of the rotating disk 56.
  • the axis of the groove 78 at the discharge position E is inclined with a predetermined clearance angle ⁇ 2 with respect to the normal line.
  • the axis and normal of the groove 78 are indicated by reference signs A and N, respectively.
  • the guide passage 84 that is, the guide surface 90 extends in parallel to the tangential direction at the discharge position E
  • the direction of the normal N is the discharge position E and the rotation center of the rotary disk 56. Coincides with the line segment of the rotating disk 56 connecting the two.
  • the axis A of the groove 78 is inclined with respect to the normal N, and the opening end of the groove 78 is opposite to the rotational direction CC of the rotating disk 56 than the closed inner end of the groove 78.
  • the angle formed by the axis A and the normal N that is, the clearance angle ⁇ 2 is selected from the range of 0 to 30 °, for example.
  • the beads B forming the bead row R are positioned at the inner end 86 of the guide passage 84 or thereafter, when the rotation of the rotating disk 56 further proceeds, the beads B are rotated at the rotating disk 56.
  • the guide surface 90 is brought into contact with a portion projecting from the upper surface 58.
  • the guide surface 90 contacts the bead B from below.
  • the guide surface 90 pushes the beads B toward the radially outer side of the rotating disk 56, that is, toward the opening end of the groove 78.
  • Such extrusion of the beads B is continued until the guide surface 90 crosses the outer periphery of the rotating disk 56 (see FIG. 6).
  • the clearance angle ⁇ 2 described above is secured between the axis A and the normal line N of the groove 78, so that the rotating disk 56 advances in the pushing direction of the beads B applied from the guide surface 90. Accordingly, it changes toward the axis A of the groove 78. Therefore, an excessive force is not applied to the bead B from the inner surface of the groove 78, and the bead B can be smoothly removed from the groove 78 without breaking. As a result, the above-described discharge guide 82 can stably and continuously discharge the bead array R from the rotating disk 56.
  • the pushing direction of the bead B applied from the guide surface 90 is the opening end of the groove 78. Instead, it is directed to the inner surface of the groove 78, that is, the inner surface of the groove 78 located on the rear side in the rotational direction CC of the rotary disk 56. Therefore, the pushing direction in this case works so as to sandwich the bead B between the inner surface of the groove 78 and the guide surface 90, and the bead B is also crushed.
  • the groove 78 shown in FIG. 9 has a tapered droplet shape toward the outer periphery of the rotating disk 56 when viewed from above. That is, the groove 78 of FIG. 9 has a closed opening edge. In this case, as shown in FIG. 10, the bottom of the groove 78 has a part (solid line) on the outer peripheral side of the rotary disk 56 or the whole (two-dot chain line) inclined with respect to the axis of the groove 78 at an exit angle ⁇ 1. Yes.
  • Such a groove 78 also allows the received beads B to come out toward the outer periphery of the rotating disk 56.
  • the bead array R is similarly stably formed on the rotating disk 56 and can be smoothly discharged from the rotating disk 56.
  • the bottom of the groove 78 described above is inclined upward, but may be inclined downward, and the exit angle ⁇ 1 in this case is also selected from the above range.
  • the discharging device described above can include air assist, which has a nozzle hole 92 as shown in FIG.
  • the nozzle hole 92 is formed in the discharge guide 82 and opens toward the downstream side of the guide passage 84 on the inner surface of the guide passage 84 facing the guide surface 90.
  • the nozzle hole 92 is connected to a compressed air source 96 through an air supply path 94, and an electromagnetic valve 98 is disposed in the air supply path 94.
  • an electromagnetic valve 98 is opened, compressed air is supplied from the compressed air source 96 to the nozzle hole 92 through the air supply path 94, and compressed air is supplied from the nozzle hole 92 to the guide passage 84. Is done.
  • Such compressed air facilitates the supply of the bead row R from the guide passage 84 to the supply hose 36.
  • a part of the bead B protrudes upward from the groove 78, but the portion of the guide surface 90 extending from the discharge position E to the outer periphery of the rotating disk 56 is disposed in the rotating disk 56.
  • the bead B does not need to protrude upward from the groove 78.
  • a circumferential groove is formed on the outer periphery of the rotating disk 56, and this circumferential groove allows the portion of the guide surface 90 to enter.
  • the feeder of the present invention is not limited to beads including a material for a composite filter rod, but can be applied to supply of various granular materials that are fragile.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Feeding Of Articles To Conveyors (AREA)

Abstract

This particulate material feeder (34) comprises: an inclined rotating disc (56); multiple grooves (78) which are formed upon the outer circumference edge of the rotating disc (56) with interstices present in the circumferential direction thereof, which individually receive spherical beads (B) as a particulate material which is supplied upon the rotating disc (56), and form one line of the beads (R); and a discharge guide (82) which discharges the line of the beads (R) from the rotating disc (56). This discharge guide (82) deflects the movement direction of the line of the beads (R) upon the rotating disc (56) from the circumferential direction of the rotating disc (56), and guide the line of the beads (R) toward a guide path (84) therewithin.

Description

粒状物のフィーダ及びその供給方法Granular feeder and method for supplying the same
 本発明は、粒状物を一列にして供給するフィーダ及びその供給方法に係わり、特に、壊れ易い粒状物の供給に好適した粒状物のフィーダ及び供給方法に関する。 The present invention relates to a feeder for supplying granular materials in a row and a method for supplying the same, and more particularly to a feeder and supplying method for granular materials suitable for supplying easily fragile granular materials.
 この種のフィーダは例えば、以下の特許文献1~3のそれぞれに開示されている。
 特許文献1のフィーダは、物体のホッパと、このホッパの出口直下に配置された垂直な回転ホイールとを含み、この回転ホイールはその外周面に複数のポケットを有し、これらポケットは回転ホイールの周方向に間隔を存して配置されている。
 特許文献1のフィーダによれば、回転ホイールの回転中、各ポケットはホッパの出口から物体を1個ずつ受け取り、回転ホイールの外周上に回転ホイールの周方向に延びる物品の列を形成する。このような物品の列は回転ホイールの回転方向に供給される。
This type of feeder is disclosed in each of the following Patent Documents 1 to 3, for example.
The feeder of Patent Document 1 includes a hopper for an object, and a vertical rotating wheel disposed immediately below the outlet of the hopper. The rotating wheel has a plurality of pockets on an outer peripheral surface thereof. They are arranged at intervals in the circumferential direction.
According to the feeder of Patent Document 1, during the rotation of the rotating wheel, each pocket receives an object one by one from the outlet of the hopper, and forms a row of articles extending in the circumferential direction of the rotating wheel on the outer periphery of the rotating wheel. Such a row of articles is supplied in the direction of rotation of the rotating wheel.
 特許文献2のフィーダは、ビーズ供給ボウルと、ビーズ供給ボウルから放射状に延び、ビーズ供給ボウルと一緒に回転する複数のビーズ通路とを含み、これらビーズ通路はビーズ供給ボウルからビーズを一列にして取り出し、ビーズ供給ホイールの外周に形成されたポケットにビーズを1個ずつ供給する。従って、特許文献2のフィーダの場合にも、ビーズ供給ホイールの外周上にその周方向に延びるビーズの列が形成される。このようなビーズの列はビーズ供給ホイールの回転方向に供給される。 The feeder of Patent Document 2 includes a bead supply bowl and a plurality of bead passages that extend radially from the bead supply bowl and rotate together with the bead supply bowl. The beads are supplied one by one to the pocket formed on the outer periphery of the bead supply wheel. Therefore, also in the case of the feeder of Patent Document 2, a row of beads extending in the circumferential direction is formed on the outer periphery of the bead supply wheel. Such a row of beads is supplied in the direction of rotation of the bead supply wheel.
 特許文献3のフィーダは、部品の供給を受ける回転円盤を含み、この回転円盤は水平面に対して傾斜して配置される。回転円盤の外周縁にはその全周に亘って延びる整列溝を有する。回転円盤が傾斜されているので、回転円盤上に供給された部品は回転円盤上にて下方に移動し、整列溝に受け取られる。従って、整列溝は回転円盤の周方向に延びる部品の列を形成する。このような部品の列は回転円盤の回転方向に供給される。 The feeder of Patent Document 3 includes a rotating disk that receives a supply of parts, and this rotating disk is disposed to be inclined with respect to a horizontal plane. The outer peripheral edge of the rotating disk has an alignment groove extending over the entire circumference. Since the rotating disk is inclined, the parts supplied onto the rotating disk move downward on the rotating disk and are received by the alignment grooves. Accordingly, the alignment grooves form a row of parts extending in the circumferential direction of the rotating disk. Such a row of parts is supplied in the direction of rotation of the rotating disk.
JP2009-508524AJP2009-508524A JP2011-505154AJP2011-505154A JP2003-095420AJP2003-095420A
 特許文献1のフィーダの場合、回転ホイールの回転はホッパ内の物体を掻き上げてしまうので、ホッパ内にて物体同士の衝突、またホッパ壁と物体との衝突が避けられない。それ故、特許文献1のフィーダは壊れ易い物体に適用できない。 In the case of the feeder of Patent Document 1, since the rotation of the rotating wheel scrapes up the object in the hopper, collision between objects in the hopper and collision between the hopper wall and the object cannot be avoided. Therefore, the feeder of Patent Document 1 cannot be applied to a fragile object.
 特許文献2のフィーダの場合、ビーズにおける列の供給速度がビーズ供給ボウルの回転速度に制約され、供給速度の高速化が困難である。即ち、ビーズ供給ボウルの回転速度が速くなれば、ビーズ供給ボウルからビーズ通路へのビーズの排出が不能になる。 In the case of the feeder of Patent Document 2, the supply speed of the rows of beads is limited by the rotation speed of the bead supply bowl, and it is difficult to increase the supply speed. That is, if the rotation speed of the bead supply bowl is increased, the beads cannot be discharged from the bead supply bowl to the bead passage.
 特許文献3のフィーダは部品の列を掬い上げ爪をよって掬い上げ、整列溝から取り出す。しかしながら、部品が転がり易い粒状物である場合、掬い上げ爪上にて物品が転がり、後段の排出経路に物品を安定して導くことができない。それ故、特許文献3のフィーダは粒状物の供給に適していない。 The feeder of Patent Document 3 scoops up a row of parts, scoops it up with a claw, and removes it from the alignment groove. However, when the part is a granular material that easily rolls, the article rolls on the scooping claw, and the article cannot be stably guided to the subsequent discharge path. Therefore, the feeder of patent document 3 is not suitable for supply of a granular material.
 本発明の目的は、粒状物を壊すことなく、一列にして安定して供給することができる粒状物のフィーダ及びその供給方法を提供することにある。 An object of the present invention is to provide a feeder for granular materials that can be stably supplied in a line without breaking the granular materials, and a method for supplying the same.
 上述の目的は本発明の粒状物のフィーダによって達成され、このフィーダは、
 水平面に対して傾斜した上面を含み、この上面上に粒状物が供給される回転可能な回転円盤と、
 回転円盤の外周縁に沿って延び、その上面から粒状物の脱落を阻止する囲い部材と、
 前記上面上の粒状物から回転円盤の周方向に粒状物が並ぶ列を形成する整列装置であって、
 前記上面の外周縁に形成され、回転円盤の周方向に互いに間隔を存して並び且つ粒状物を1個ずつ受取り可能な多数の溝を含み、
 前記溝に受取られた粒状物が回転円盤の周方向に沿って並び且つ回転円盤の回転に連れて回転円盤の周方向に移動する列を形成し、各溝が回転円盤の径方向外側に向けて受取った粒状物の抜け出しを許容した形状を有する、整列装置と、
 回転円盤上から粒状物の前記列を排出する排出装置であって、
 回転円盤の前記外周縁に規定された排出位置と、
 排出位置にて粒状物の前記列の移動方向を回転円盤の径方向外側に偏向させる排出ガイドとを含み、
 排出ガイドは、前記排出位置から前記回転円盤の外周を横断して前記回転円盤の径方向外側に向けて延び、前記粒状物の前記列を案内するガイド通路を規定し、
 ガイド通路は回転円盤の径方向外側を向いたガイド面を有し、このガイド面は排出位置から前記回転円盤の前記外周に至る領域にて、前記溝内の粒状物を回転円盤の径方向外側に向けて押し出し、その溝から抜け出させる、排出装置と
を備える。
The above objective is accomplished by a granular feeder according to the present invention,
A rotatable rotating disk that includes an upper surface that is inclined with respect to a horizontal plane and on which the granular material is supplied;
An enclosure member that extends along the outer peripheral edge of the rotating disk and prevents the dropping of particulate matter from its upper surface;
An alignment apparatus for forming a row in which the granular material is arranged in the circumferential direction of the rotating disk from the granular material on the upper surface,
Formed on the outer periphery of the upper surface, and includes a plurality of grooves that are arranged at intervals in the circumferential direction of the rotating disk and that can receive the granular materials one by one;
The granular materials received in the grooves are arranged along the circumferential direction of the rotating disk and form a row that moves in the circumferential direction of the rotating disk as the rotating disk rotates, and each groove is directed radially outward of the rotating disk. An alignment device having a shape that allows the granular material received in
A discharge device for discharging the row of granular materials from a rotating disk,
A discharge position defined on the outer peripheral edge of the rotating disk;
A discharge guide for deflecting the moving direction of the row of granular materials at the discharge position outward in the radial direction of the rotating disk,
The discharge guide extends from the discharge position across the outer periphery of the rotating disk toward the radially outer side of the rotating disk, and defines a guide passage that guides the row of the granular materials.
The guide passage has a guide surface facing the radially outer side of the rotating disk, and the guide surface removes the granular material in the groove in the radially outer side of the rotating disk in a region from the discharge position to the outer periphery of the rotating disk. And a discharge device that pushes out toward the groove and pulls out from the groove.
 上述のフィーダによれば、回転円盤上に供給された粒状物は上面の傾斜を利用して個々の溝に受け取られ、回転円盤上に粒状物の列が1つ形成される。このような粒状物の列は回転円盤の回転に連れ、回転円盤の周方向に移動される。
 この後、粒状物の列が排出位置に到達した後、排出ガイド、即ち、そのガイド面は前記列を形成する粒状物を押し出す、回転円盤の径方向外側に向けて溝から抜け出させる。この結果、前記列はその移動方向が回転円盤の周方向から偏向され、粒ガイド通路内に導かれる。この後、粒状物の列はガイド通路を通じて後段の装置に供給される。
According to the above-mentioned feeder, the granular material supplied onto the rotating disk is received by the individual grooves using the inclination of the upper surface, and one row of granular objects is formed on the rotating disk. Such a row of granular materials is moved in the circumferential direction of the rotating disk as the rotating disk rotates.
After that, after the row of granular materials reaches the discharge position, the discharge guide, that is, the guide surface pushes out the granular materials forming the row and pulls out from the groove toward the radially outer side of the rotating disk. As a result, the moving direction of the row is deflected from the circumferential direction of the rotating disk and guided into the grain guide passage. Thereafter, the row of granular materials is supplied to the subsequent apparatus through the guide passage.
 各溝は、回転円盤の径方向に沿って延びる軸線を有し、この軸線はその溝からの粒状物の抜け出し方向を決定する。
 各溝の軸線は、回転円盤の外周側に位置する溝の端が回転円盤の回転方向とは逆方向にシフトすべく傾斜している。例えば、排出位置に位置付けられた溝の軸線は、ガイド面に直交する法線に対して所定の逃げ角で傾斜されている。
 溝の軸線とガイド面とが上述の関係にあれば、回転円盤の回転に連れて、溝が排出位置から回転円盤の回転方向に移動するとき、ガイド面による粒状物の押し出し方向は溝の軸線に向けて変化し、粒状物は溝から円滑に抜け出す。
Each groove has an axis extending along the radial direction of the rotating disk, and this axis determines the direction in which the granular material comes out of the groove.
The axis of each groove is inclined so that the end of the groove located on the outer peripheral side of the rotating disk is shifted in the direction opposite to the rotating direction of the rotating disk. For example, the axis of the groove positioned at the discharge position is inclined at a predetermined clearance angle with respect to the normal line orthogonal to the guide surface.
If the axis of the groove and the guide surface are in the above relationship, when the groove moves from the discharge position to the rotation direction of the rotary disk as the rotary disk rotates, the pushing direction of the granular material by the guide surface is the axis of the groove. The particulate matter smoothly exits from the groove.
 溝からの粒状物の抜け出し方向は、必ずしも溝の軸線の方向に一致している必要はなく、この軸線に対して所定の抜け出し角で上方又は下方に傾斜されていてもよい。
 更に、本発明は粒状物の供給方法をも併せて提供する。
The exit direction of the particulate matter from the groove does not necessarily coincide with the direction of the axis of the groove, and may be inclined upward or downward with a predetermined exit angle with respect to this axis.
Furthermore, this invention also provides the supply method of a granular material.
 本発明の粒状物のフィーダ及びその供給方法は粒状物を壊すことなく、回転円盤上にて粒状物が一列に並ぶ列を形成し、この後、粒状物の列を回転円盤から安定して供給する。
 本発明の他の目的及び利点は、添付図面及び以下の発明を実施するための形態の説明から明らかになる。
The granular material feeder and its supply method of the present invention form a line in which the granular material is arranged in a line on the rotating disk without breaking the granular material, and thereafter stably supply the line of the granular material from the rotating disk. To do.
Other objects and advantages of the present invention will become apparent from the accompanying drawings and the following description of the modes for carrying out the invention.
複合フィルタロッドの製造システムを示した概略図である。It is the schematic which showed the manufacturing system of the composite filter rod. 図1の分配器の構造を示した概略図である。It is the schematic which showed the structure of the divider | distributor of FIG. 図2のフィーダを一部破断して示した側面図である。FIG. 3 is a side view showing the feeder of FIG. 2 with a part broken away. 図2の回転円盤の平面図である。FIG. 3 is a plan view of the rotating disk of FIG. 2. 回転円盤の溝を示した縦断面図である。It is the longitudinal cross-sectional view which showed the groove | channel of the rotating disk. 回転円盤の排出位置に配置された排出ガイドを示す概略図である。It is the schematic which shows the discharge guide arrange | positioned in the discharge position of a rotary disk. 排出位置での溝と排出ガイドのガイド面との位置関係を示した図である。It is the figure which showed the positional relationship of the groove | channel in a discharge position, and the guide surface of a discharge guide. 図7の位置関係とは異なる位置関係を示した図である。It is the figure which showed the positional relationship different from the positional relationship of FIG. 変形例の溝を示した平面図である。It is the top view which showed the groove | channel of the modification. 図9の溝の縦断面図である。It is a longitudinal cross-sectional view of the groove | channel of FIG. 排出ガイドのためのエアアシストを説明するための図である。It is a figure for demonstrating the air assist for a discharge guide.
 図1を参照すれば、本発明の粒状物のフィーダ及びその供給方法が適用された複合フィルタロッドの製造システムが概略的に示されている。フィーダ及び供給方法を説明する前に、製造システムについて以下に簡単に説明する。
 製造システムは水平な製造ライン12を含み、この製造ライン12は上流コンベア14及び下流コンベア16を含む。上流コンベア14は、フィルタ要素Fpe,Fceが交互に並ぶ複合要素列を下流コンベア16に向けて供給する。
Referring to FIG. 1, there is schematically shown a composite filter rod manufacturing system to which a granular material feeder and its supply method of the present invention are applied. Before describing the feeder and the supply method, the manufacturing system will be briefly described below.
The production system includes a horizontal production line 12 that includes an upstream conveyor 14 and a downstream conveyor 16. The upstream conveyor 14 supplies a composite element row in which the filter elements Fpe and Fce are alternately arranged toward the downstream conveyor 16.
 フィルタ要素Fpeは、ホッパ18から取り出されたフィルタロッドFpが上流コンベア14に移送される過程で、フィルタロッドFpを切断して得られる。同様に、フィルタ要素Fceはホッパ20から取り出されたフィルタロッドFcが上流コンベア14に移送される過程で、フィルタロッドFcを切断して得られる。フィルタロッドFpは、アセテート繊維のトウ材料と、このトウ材料をロッド形状に包み込む巻取紙とを有する。一方、フィルタロッドFcは、トウ材料中に分布された活性炭の粒子を含む点のみで、フィルタロッドFpと相違する。 The filter element Fpe is obtained by cutting the filter rod Fp in the process in which the filter rod Fp taken out from the hopper 18 is transferred to the upstream conveyor 14. Similarly, the filter element Fce is obtained by cutting the filter rod Fc in the process in which the filter rod Fc taken out from the hopper 20 is transferred to the upstream conveyor 14. The filter rod Fp includes an acetate fiber tow material and a web that wraps the tow material in a rod shape. On the other hand, the filter rod Fc differs from the filter rod Fp only in that it contains activated carbon particles distributed in the tow material.
 更に、上流コンベア14の終端にはスペーサドラム22が配置されている。要素列がスペーサドラム22を通過するとき、スペーサドラム22は要素列を形成するフィルタ要素Fpe,Fce間のスペースを一定に調整する。
 この後、要素列は上流コンベア14から下流コンベア16上にペーパウエブWを介して乗り移る。即ち、要素列はペーパウエブWとともに下流コンベア16上を後段のラッピングセクション24に向けて移送される。なお、ペーパウエブWは図示しないロールから下流コンベア16に供給される。
Further, a spacer drum 22 is disposed at the end of the upstream conveyor 14. When the element row passes through the spacer drum 22, the spacer drum 22 adjusts the space between the filter elements Fpe and Fce forming the element row to be constant.
Thereafter, the element row is transferred from the upstream conveyor 14 onto the downstream conveyor 16 via the paper web W. That is, the element row is transported together with the paper web W onto the downstream conveyor 16 toward the subsequent wrapping section 24. The paper web W is supplied to the downstream conveyor 16 from a roll (not shown).
 一方、下流コンベア16の直上には粒状物、例えばビーズを供給する供給機26が配置されている。本実施例の場合、供給機26は2つの分配器28,30を含む。これら分配器28,30は同一の構造を有し、下流コンベア16に沿い並んで配置されている。
 上流側の分配28は要素列のスペースのうち、1つ置きのスペースにビーズBを供給し、一方、下流側の分配器30は残りのスペースにビーズBを供給する。それ故、要素列がラッピングセクション24に供給されるとき、要素列は、その全てのスペースにビーズBが分配された複合要素列に形成される。
On the other hand, a feeder 26 for supplying granular materials, for example, beads, is disposed immediately above the downstream conveyor 16. In the case of the present embodiment, the feeder 26 includes two distributors 28 and 30. These distributors 28 and 30 have the same structure and are arranged side by side along the downstream conveyor 16.
The upstream distribution 28 supplies beads B to every other space in the element row, while the downstream distributor 30 supplies beads B to the remaining space. Therefore, when an element row is supplied to the wrapping section 24, the element row is formed into a composite element row in which beads B are distributed in all its spaces.
 ここで、ビーズBは、例えば、液状の香料を内包した球状のカプセルであり、例えば略3~5mmの直径を有する。
 なお、分配器28,30については後述する。
Here, the beads B are, for example, spherical capsules containing a liquid fragrance, and have a diameter of about 3 to 5 mm, for example.
The distributors 28 and 30 will be described later.
 ラッピングセクション24は、複合要素列及びペーパウエブWを受け取り、公知のようにガニチャテープ(図示しない)を使用して複合要素列をペーパウエブWで連続的に包み込み、これにより、複合フィルタロッドの連続体Cを成形する。
 この後、連続体Cはラッピングセクション24から送出され、切断セクション32を通過する。この切断セクション32は連続体Cを所定の長さ毎に切断し、複合フィルタロッドFRを製造する。複合フィルタロッドFRはフィルタシガレットの1本に使用されるフィルタFの複数倍の長さを有する。
The wrapping section 24 receives the composite element array and the paper web W, and wraps the composite element array continuously with the paper web W using a garnish tape (not shown), as is known, thereby providing a composite filter rod continuum C. Mold.
After this, the continuum C is delivered from the wrapping section 24 and passes through the cutting section 32. The cutting section 32 cuts the continuous body C at a predetermined length to manufacture a composite filter rod FR. The composite filter rod FR has a length that is a multiple of the filter F used in one of the filter cigarettes.
 詳しくは、複合フィルタロッドFRの連続体Cは、フィルタ要素Fceの中央にて切断され、図1から明らかなように個々の複合フィルタロッドFRはその両端にフィルタ要素Fceの半体Fcehを有する。複合フィルタロッドFRは、フィルタ取付け機(図示しない)に供給され、フィルタシガレットの製造に使用される。即ち、複合フィルタロッドFRは複数のダブルフィルタDFに更に切断される。 More specifically, the continuous body C of the composite filter rod FR is cut at the center of the filter element Fce, and each composite filter rod FR has a half body Fceh of the filter element Fce at both ends as is apparent from FIG. The composite filter rod FR is supplied to a filter mounting machine (not shown) and used for manufacturing a filter cigarette. That is, the composite filter rod FR is further cut into a plurality of double filters DF.
 ダブルフィルタDFはその両端にフィルタ要素Fceの半体Fceh、中央にフィルタ要素Fpe及びィルタ要素Fpeと各半体Fcehとの間にそれぞれ配置されたビーズBを含む。このようなダブルフィルタDFは公知のようにチップペーパの巻き付けによって2本のシガレットとともにダブルフィルタシガレットを形成し、この後、ダブルフィルタシガレットは個々のフィルタシガレットに切断される。 The double filter DF includes a half Fceh of the filter element Fce at both ends thereof, and a bead B disposed between the filter element Fpe and the filter element Fpe and each half Fceh at the center. Such a double filter DF forms a double filter cigarette together with two cigarettes by wrapping chip paper as is well known, and then the double filter cigarette is cut into individual filter cigarettes.
 次に、前述した分配器28,30について詳述する。
 分配器28,30は同一の構造を有していることから、説明の重複を避けるため、分配器28についてのみ、図2を参照しながら以下に説明する。
Next, the distributors 28 and 30 will be described in detail.
Since the distributors 28 and 30 have the same structure, only the distributor 28 will be described below with reference to FIG.
 図2に示されているように分配器28はフィーダ34を備えており、このフィーダ34は下流コンベア16の上方に配置されている。後述の説明から明らかになるように、フィーダ34はビーズBを一列にして排出する。排出されたビーズBは帯電防止機能を有した供給ホース36内に導かれ、この供給ホース36を通じて移送される。 2, the distributor 28 includes a feeder 34, and the feeder 34 is disposed above the downstream conveyor 16. As will become clear from the following description, the feeder 34 discharges the beads B in a row. The discharged beads B are guided into a supply hose 36 having an antistatic function and transferred through the supply hose 36.
 供給ホース36はフィーダ34から下方に向けて真っ直ぐに延び、供給ホース36内のビーズBは一列に積み重ねられた状態にある。供給ホース36の外側にはアッパレベルセンサ38及びロアレベルセンサ40が配置されている。これらレベルセンサ38,40は供給ホース36内のビーズBを検出し、検出信号を出力する。ここでの検出信号は、フィーダ34から供給ホース36へのビーズBの供給を制御するために使用される。それ故、供給ホース36内のビーズBの充填高さはアッパレベルセンサ38とロアレベルセンサ40との間のレベル位置に常時維持される。 The supply hose 36 extends straight downward from the feeder 34, and the beads B in the supply hose 36 are stacked in a line. An upper level sensor 38 and a lower level sensor 40 are disposed outside the supply hose 36. These level sensors 38 and 40 detect the bead B in the supply hose 36 and output a detection signal. The detection signal here is used to control the supply of beads B from the feeder 34 to the supply hose 36. Therefore, the filling height of the beads B in the supply hose 36 is always maintained at the level position between the upper level sensor 38 and the lower level sensor 40.
 下流コンベア16の直上に分配ユニット42が配置されており、この分配ユニット42は、固定プレート44及び円形の回転プレート46を含む。固定プレート44及び回転プレート46は互いに対向する内面を有する。固定プレート44はその内面に螺旋溝48が有する。この螺旋溝48は回転プレート46の回転軸50を中心として形成され、下流コンベア16の直上にて下向きに開口した外端を有する。 A distribution unit 42 is disposed immediately above the downstream conveyor 16, and the distribution unit 42 includes a fixed plate 44 and a circular rotating plate 46. The fixed plate 44 and the rotating plate 46 have inner surfaces that face each other. The fixed plate 44 has a spiral groove 48 on its inner surface. The spiral groove 48 is formed around the rotation shaft 50 of the rotary plate 46 and has an outer end that opens downward just above the downstream conveyor 16.
 一方、回転プレート46はその内面に多数の放射溝52を有し、これら放射溝52は回転軸50から回転プレート46の外周まで延びている。回転プレート46が回転し、1つの放射溝52の内端が螺旋溝48の内端を通過する直前に、その放射溝52の内端は固定プレート44を貫通するガイド通路(図示しない)に連通し、このガイド通路を通じてビーズBの供給を受ける。即ち、ガイド通路は前述した供給ホース36の下端に接続されている。 On the other hand, the rotating plate 46 has a large number of radiating grooves 52 on its inner surface, and these radiating grooves 52 extend from the rotating shaft 50 to the outer periphery of the rotating plate 46. Immediately before the rotating plate 46 rotates and the inner end of one radiating groove 52 passes through the inner end of the spiral groove 48, the inner end of the radiating groove 52 communicates with a guide passage (not shown) that penetrates the fixed plate 44. The beads B are supplied through this guide passage. That is, the guide passage is connected to the lower end of the supply hose 36 described above.
 このようにして放射溝52の内端にビーズBが供給された後、回転プレート46の回転が進むと、ビーズBは放射溝52と螺旋溝48との間に挟み込まれる。この後、回転プレート46の回転が更に進むに従い、ビーズBの供給を受けた放射溝52は螺旋溝48と協働し、この溝48の螺旋形状に従い、ビーズBを回転プレート46の外周に向けて移送し、螺旋溝48の前記外端から自重により、下流コンベア16上の要素列の1つのスペースに供給する。ここで、回転プレート46の周速が要素列の移送速度に一致していることは言うまでもない。 After the beads B are supplied to the inner end of the radiation groove 52 in this way, when the rotation of the rotating plate 46 proceeds, the beads B are sandwiched between the radiation groove 52 and the spiral groove 48. Thereafter, as the rotation of the rotating plate 46 further proceeds, the radiation groove 52 that has been supplied with the beads B cooperates with the spiral groove 48, and the beads B are directed toward the outer periphery of the rotating plate 46 according to the spiral shape of the groove 48. And is supplied to one space of the element row on the downstream conveyor 16 by its own weight from the outer end of the spiral groove 48. Here, it goes without saying that the peripheral speed of the rotating plate 46 matches the transfer speed of the element row.
 更に、分配ユニット42はビーズ検出センサ54を含む。このビーズ検出センサ54は固定プレート44の下部に配置され、ビーズ検出センサ54を通過する放射溝52内のビーズBを検出し、その検出信号を出力する。ビーズ検出センサ54を通過する放射溝52の全てにビーズBが存在している場合、ビーズ検出センサ54は連続した信号を出力し、一定ピッチのパルス波形を生成する。 Furthermore, the distribution unit 42 includes a bead detection sensor 54. The bead detection sensor 54 is disposed below the fixed plate 44, detects the bead B in the radiation groove 52 passing through the bead detection sensor 54, and outputs the detection signal. When the beads B are present in all of the radiation grooves 52 that pass through the bead detection sensor 54, the bead detection sensor 54 outputs a continuous signal and generates a pulse waveform with a constant pitch.
 しかながら、空の放射溝52が存在するとき、パルス波形にパルス抜けが現れる。このようなパルス抜けは、ビーズBが欠落した不良のフィルタロッドFDを特定し、この後、製造ラインから不良のフィルタロッドFDを排除するうえで役立つ。 However, when there is an empty radiation groove 52, a missing pulse appears in the pulse waveform. Such missing pulses are useful for identifying defective filter rods FD with missing beads B and then removing the defective filter rods FD from the production line.
 次に、図3~図7を参照しながら、一実施例のフィーダ34について説明する。
 フィーダ34は回転円盤56を含み、この回転円盤56は水平面に対し、所定の角度α(例えば5~20°)を存して形成されている。即ち、回転円盤56は水平面に対して傾斜した上面58を有する。
Next, the feeder 34 according to an embodiment will be described with reference to FIGS.
The feeder 34 includes a rotating disk 56. The rotating disk 56 is formed with a predetermined angle α (for example, 5 to 20 °) with respect to a horizontal plane. That is, the rotating disk 56 has an upper surface 58 that is inclined with respect to a horizontal plane.
 上面58にはその中央に供給コーン(cone)60が配置されており、この供給コーン60は回転円盤56とは独立して回転可能である。即ち、回転円盤56は中空の回転軸62を有し、一方、供給コーン60の回転軸64は回転円盤56を貫通し、回転軸62内を延びている。これら回転軸62,64は別個の駆動源66,68に接続されている。
 回転円盤56の外周は囲い部材70によって取り囲まれており、この囲い部材70はベース(図示しない)に固定されている。
A supply cone 60 is arranged at the center of the upper surface 58, and the supply cone 60 can rotate independently of the rotating disk 56. That is, the rotating disk 56 has a hollow rotating shaft 62, while the rotating shaft 64 of the supply cone 60 passes through the rotating disk 56 and extends through the rotating shaft 62. These rotary shafts 62 and 64 are connected to separate drive sources 66 and 68.
The outer periphery of the rotating disk 56 is surrounded by a surrounding member 70, and this surrounding member 70 is fixed to a base (not shown).
 供給コーン60の上方にはホッパ72が配置されている。このホッパ72はその内部に多数のビーズBを蓄え、供給コーン60に向けて開口した出口74を有する。図3から明らかなように、出口74は、供給コーン60の周方向でみて、下方に位置した供給コーン60の外周縁と供給コーン60の頂点との間に配置され、前記上面58と平行な開口縁76を有する。従って、開口縁76と供給コーン60との間の隙間は、供給コーン60の頂点から離れるに従い増加する。 A hopper 72 is disposed above the supply cone 60. The hopper 72 stores a large number of beads B therein and has an outlet 74 that opens toward the supply cone 60. As apparent from FIG. 3, the outlet 74 is disposed between the outer peripheral edge of the supply cone 60 positioned below and the apex of the supply cone 60 as viewed in the circumferential direction of the supply cone 60, and is parallel to the upper surface 58. It has an opening edge 76. Accordingly, the clearance between the opening edge 76 and the supply cone 60 increases as the distance from the apex of the supply cone 60 increases.
 供給コーン60の回転が停止されているとき、ホッパ72の出口74と供給コーン60との間にてビーズBのブリッジが形成され、このようなブリッジは出口74からのビーズBの放出を阻止する。しかしながら、供給コーン60が一方向、例えば図4でみて矢印で示す反時計方向CCに回転されたとき、供給コーン60の回転は上述のブリッジを解消し、出口74からのビーズBの放出を許容する。 When the feed cone 60 is stopped rotating, a bead B bridge is formed between the outlet 74 of the hopper 72 and the feed cone 60, and such a bridge prevents the release of the bead B from the outlet 74. . However, when the supply cone 60 is rotated in one direction, for example, counterclockwise CC as indicated by the arrow in FIG. 4, the rotation of the supply cone 60 eliminates the bridge described above and allows the release of beads B from the outlet 74. To do.
 出口74から放出されたビーズBは供給コーン60上を転がりながら回転円盤56の上面58上に導かれる。前述したように上面58は水平面に対して傾斜され、また、回転円盤56の外側には囲い部材70が配置されているので、ビーズBは回転円盤56の低い領域、即ち、集合域Gにて上面58の外周縁に沿って集まる。 The beads B discharged from the outlet 74 are guided onto the upper surface 58 of the rotating disk 56 while rolling on the supply cone 60. As described above, since the upper surface 58 is inclined with respect to the horizontal plane and the surrounding member 70 is disposed outside the rotating disk 56, the beads B are located in the lower region of the rotating disk 56, that is, in the collecting region G. Collect along the outer periphery of the upper surface 58.
 一方、フィーダ34は整列装置を更に備え、この整列装置は回転円盤56の上面58上にて1つのビーズ列を形成する。即ち、整列装置は多数の溝78を含み、これら溝78は上面58の外周縁に形成され、回転円盤56の周方向に間隔を存して配置されている。溝78はビーズBを1個ずつ受け取り可能な大きさを有する。 On the other hand, the feeder 34 further includes an alignment device, and this alignment device forms one bead array on the upper surface 58 of the rotating disk 56. In other words, the alignment device includes a plurality of grooves 78, which are formed on the outer peripheral edge of the upper surface 58 and are arranged at intervals in the circumferential direction of the rotating disk 56. The groove 78 has a size capable of receiving the beads B one by one.
 それ故、回転円盤56が図4でみて反時計方向CCに回転され、各溝78が前述したビーズBの集合域Gを通過するとき、各溝78は集合域GのビーズBを1個受け取ることができる。それ故、集合域Gを通過した溝78はその全てにビーズBを受け取り、1つのビーズ列Rを形成する。このようなビーズ列Rは回転円盤56の反時計方向CCに回転円盤56の周方向に沿って移動される。 Therefore, when the rotating disk 56 is rotated in the counterclockwise direction CC as seen in FIG. 4 and each groove 78 passes through the collecting area G of the beads B described above, each groove 78 receives one bead B in the collecting area G. be able to. Therefore, the grooves 78 that have passed through the collecting region G receive the beads B in all of them, and form one bead row R. Such a bead array R is moved in the counterclockwise direction CC of the rotating disk 56 along the circumferential direction of the rotating disk 56.
 ビーズ列Rの安定した形成を確保するため、集合域Gの上方には残量検出センサ80が配置されており、この残量検出センサ80は、集合域Gに残留するビーズBの量を検出し、残量信号を出力する。このような残量信号は供給コーン60の回転制御に使用され、集合域GにおけるビーズBの残量を適正に維持する。 In order to ensure stable formation of the bead row R, a remaining amount detection sensor 80 is disposed above the collecting area G, and this remaining amount detection sensor 80 detects the amount of beads B remaining in the collecting area G. And output a remaining amount signal. Such a remaining amount signal is used to control the rotation of the supply cone 60 and appropriately maintains the remaining amount of the beads B in the collecting area G.
 このように集合域GでのビーズBの残量が適正に維持されていれば、集合域GにてビーズBが過度に堆積することもないし、この堆積に起因して集合域GのビーズBが掻き上げられることもない。この結果、集合域GのビーズBは、たとえ回転円盤56の回転速度が高速化されても、集合域Gを通過する溝78に速やかに受け取られ、安定したビーズ列Rの形成が可能となる。 In this way, if the remaining amount of beads B in the gathering area G is properly maintained, the beads B in the gathering area G will not be excessively deposited. Will not be lifted up. As a result, the beads B in the collecting area G are quickly received by the grooves 78 passing through the collecting area G even if the rotational speed of the rotating disk 56 is increased, and a stable bead array R can be formed. .
 更に、各溝78は、受け取ったビーズBを回転円盤の径方向外側に向けて抜け出しを許容する。例えば、本実施例の場合、図5から明らかなように各溝78は回転円盤56の径方向に沿う軸線を有し、回転円盤56の外周にて開口された開口端を有する。つまり、各溝78の開口縁は上方からみたとき、回転円盤56の外周にて開いたU字形状を有し、一方、その横断面でみても、各溝78はU字形状をなしている。 Further, each groove 78 allows the received beads B to be pulled out radially outward of the rotating disk. For example, in the case of the present embodiment, as is clear from FIG. 5, each groove 78 has an axis line along the radial direction of the rotating disk 56, and has an open end opened at the outer periphery of the rotating disk 56. That is, the opening edge of each groove 78 has a U-shape that is open at the outer periphery of the rotating disk 56 when viewed from above, while each groove 78 also has a U-shape when viewed in cross section. .
 また、各溝78の深さはビーズBの直径よりも短く、それ故、溝78内のビーズBはその一部が回転円盤56の上面から突出されている。更に、図示の実施例の場合、各溝78の底は回転円盤56の上面58と平行である。しかしながら、各溝78の底はその溝78の開口端に向けて、例えば上りの勾配、即ち、抜け出し角Θ1(図5参照)を有していてもよく、この抜け出し角Θ1は例えば0~30℃の範囲から選択される。 Further, the depth of each groove 78 is shorter than the diameter of the bead B, and therefore, a part of the bead B in the groove 78 protrudes from the upper surface of the rotating disk 56. Further, in the illustrated embodiment, the bottom of each groove 78 is parallel to the upper surface 58 of the rotating disk 56. However, the bottom of each groove 78 may have, for example, an upward gradient toward the opening end of the groove 78, that is, a slip-out angle Θ1 (see FIG. 5). Selected from the range of ° C.
 一方、フィーダ34は排出装置を更に備え、この排出装置は前述のビーズ列Rを回転円盤56の排出位置Eにて回転円盤56から排出する。図4でみて排出位置Eは、前述した残量検出センサ80に対して回転円盤56の直径方向に離間し且つ回転円盤56の回転中心を含む水平面よりも上方に位置付けられている。 On the other hand, the feeder 34 further includes a discharge device, which discharges the bead row R from the rotary disk 56 at the discharge position E of the rotary disk 56. As shown in FIG. 4, the discharge position E is positioned above the horizontal plane that is separated from the above-described remaining amount detection sensor 80 in the diameter direction of the rotary disk 56 and includes the rotation center of the rotary disk 56.
 排出装置は排出ガイド82を含み、この排出ガイド82は排出位置Eから回転円盤56の外周、即ち、囲い部材70を横切り、回転円盤56の径方向外側に延びている。ここで、排出ガイド82の延出方向は例えば、排出位置Eでの回転円盤56に対する接線方向と平行であるのが好ましい。 The discharge device includes a discharge guide 82, and the discharge guide 82 extends from the discharge position E to the outer periphery of the rotating disk 56, that is, across the enclosure member 70 and radially outward of the rotating disk 56. Here, the extending direction of the discharge guide 82 is preferably parallel to the tangential direction with respect to the rotating disk 56 at the discharge position E, for example.
 例えば、排出ガイド82は互いに平行に延びる2つの板部材を有し、これら板部材は回転円盤56の直上をその上面58に沿って延びている。2つの板部材は協働してガイド通路84を規定し、このガイド通路84の幅は前述したビーズ列Rの列状態を維持すべく設定されている。 For example, the discharge guide 82 has two plate members extending in parallel with each other, and these plate members extend along the upper surface 58 immediately above the rotary disk 56. The two plate members cooperate to define a guide passage 84, and the width of the guide passage 84 is set so as to maintain the row state of the bead row R described above.
 図6に示されるように、例えばガイド通路84は、排出位置Eに位置付けられた内端86と、回転円盤56の外側に位置付けられた外端88とを有し、この外端88は前述した供給ホース36(図2参照)に接続されている。 As shown in FIG. 6, for example, the guide passage 84 has an inner end 86 positioned at the discharge position E and an outer end 88 positioned outside the rotating disk 56, and the outer end 88 is described above. It is connected to a supply hose 36 (see FIG. 2).
 内端86は回転円盤56の回転方向CCと向き合う方向に開口し、ビーズ列Rを形成するビーズBが排出位置Eに到達したとき、そのビーズBを受け入れ、この後、ビーズBはガイド通路84内を案内される。即ち、ビーズ列Rの移動方向は排出位置Eにて、回転円盤56の周方向からガイド通路84の延出方向に偏向される。この後、ビーズ列Rはガイド通路84から供給ホース36内に導かれ、この供給ホース36を通じて前述の分配ユニット42に供給される。なお、回転円盤56の外側に位置するガイド通路84の部位が底を有することは言うまでもない。 The inner end 86 opens in a direction facing the rotational direction CC of the rotary disk 56, and when the beads B forming the bead row R reach the discharge position E, the beads B are received. Guided inside. That is, the moving direction of the bead row R is deflected from the circumferential direction of the rotating disk 56 to the extending direction of the guide passage 84 at the discharge position E. Thereafter, the bead row R is guided into the supply hose 36 from the guide passage 84 and supplied to the distribution unit 42 through the supply hose 36. Needless to say, the portion of the guide passage 84 located outside the rotating disk 56 has a bottom.
 排出位置Eでのビーズ列Rの偏向に関して、以下に詳述する。
 ガイド通路84はガイド面90を有し、このガイド面90は回転円盤56の径方向でみて内側に位置した板部材の内面によって形成され、回転円盤56の径方向外側を向いている。ガイド面90に直交する法線を考えたとき、排出位置Eにある溝78の軸線は法線に対し、所定の逃げ角Θ2を存して傾斜されている。
The deflection of the bead array R at the discharge position E will be described in detail below.
The guide passage 84 has a guide surface 90, and the guide surface 90 is formed by an inner surface of a plate member positioned on the inner side in the radial direction of the rotating disk 56, and faces the outer side in the radial direction of the rotating disk 56. When a normal line orthogonal to the guide surface 90 is considered, the axis of the groove 78 at the discharge position E is inclined with a predetermined clearance angle Θ2 with respect to the normal line.
 この点に関し、図7中、溝78の軸線及び法線は参照符号A,Nでそれぞれ示されている。ここで、前述したようにガイド通路84、即ち、ガイド面90が排出位置Eでの前記接線方向と平行に延びていれば、法線Nの向きが排出位置Eと回転円盤56の回転中心とを結ぶ回転円盤56の線分に一致する。 In this regard, in FIG. 7, the axis and normal of the groove 78 are indicated by reference signs A and N, respectively. Here, as described above, if the guide passage 84, that is, the guide surface 90 extends in parallel to the tangential direction at the discharge position E, the direction of the normal N is the discharge position E and the rotation center of the rotary disk 56. Coincides with the line segment of the rotating disk 56 connecting the two.
 図7から明らかなように溝78の軸線Aは法線Nに対して傾斜しており、溝78の開口端は溝78の閉じた内端よりも回転円盤56の回転方向CCとは逆向きにシフトされている。それ故、軸線Aと法線Nとのなす角度、即ち、逃げ角Θ2は例えば0~30°の範囲から選択されている。 As apparent from FIG. 7, the axis A of the groove 78 is inclined with respect to the normal N, and the opening end of the groove 78 is opposite to the rotational direction CC of the rotating disk 56 than the closed inner end of the groove 78. Has been shifted to. Therefore, the angle formed by the axis A and the normal N, that is, the clearance angle Θ2, is selected from the range of 0 to 30 °, for example.
 排出位置Eにて、ビーズ列Rを形成するビーズBがガイド通路84の内端86に位置付けられた時点又はこの後、回転円盤56の回転が更に進んだ時点にて、ビーズBは回転円盤56の上面58から突出した部位にてガイド面90に接触する。
 前述したように排出位置Eは回転円盤56の回転中心を含む水平面より上方に配置されているので、排出位置Eでの溝78はその開口端が上向きとなっている。
At the discharge position E, when the beads B forming the bead row R are positioned at the inner end 86 of the guide passage 84 or thereafter, when the rotation of the rotating disk 56 further proceeds, the beads B are rotated at the rotating disk 56. The guide surface 90 is brought into contact with a portion projecting from the upper surface 58.
As described above, since the discharge position E is disposed above the horizontal plane including the rotation center of the rotary disk 56, the opening end of the groove 78 at the discharge position E faces upward.
 それ故、排出位置Eに溝78が位置付けられたとき、溝78内のビーズBは溝78内にて、その閉じた内端側に位置付けられている。それ故、図6及び図7から明らかなように、ガイド面90はビーズBに対して下方から接触する。
 この状態から回転円盤56の回転が更に進んだとき、ガイド面90はビーズBを回転円盤56の径方向外側、つまり、溝78の開口端に向けて押し出す。このようなビーズBの押し出しはガイド面90が回転円盤56の外周を横切るまで継続される(図6参照)。
Therefore, when the groove 78 is positioned at the discharge position E, the bead B in the groove 78 is positioned in the groove 78 on the closed inner end side. Therefore, as is apparent from FIGS. 6 and 7, the guide surface 90 contacts the bead B from below.
When the rotation of the rotating disk 56 further proceeds from this state, the guide surface 90 pushes the beads B toward the radially outer side of the rotating disk 56, that is, toward the opening end of the groove 78. Such extrusion of the beads B is continued until the guide surface 90 crosses the outer periphery of the rotating disk 56 (see FIG. 6).
 上述したように溝78の軸線Aと法線Nとの間には上述の逃げ角Θ2が確保されているので、ガイド面90から付与されるビーズBの押し出し方向は回転円盤56の回転が進むに連れ、溝78の軸線Aに向けて変化する。それ故、溝78の内側面からビーズBに過度な力が加わることはなく、ビーズBは壊れることなく溝78から円滑に抜け出ることができる。この結果、上述の排出ガイド82は回転円盤56からビーズ列Rを安定して連続的に排出させることができる。 As described above, the clearance angle Θ2 described above is secured between the axis A and the normal line N of the groove 78, so that the rotating disk 56 advances in the pushing direction of the beads B applied from the guide surface 90. Accordingly, it changes toward the axis A of the groove 78. Therefore, an excessive force is not applied to the bead B from the inner surface of the groove 78, and the bead B can be smoothly removed from the groove 78 without breaking. As a result, the above-described discharge guide 82 can stably and continuously discharge the bead array R from the rotating disk 56.
 これに対し、図8に示されるように溝78の軸線Aが法線Nに対して逆向きに傾斜していれば、ガイド面90から付与されるビーズBの押し出し方向は溝78の開口端ではなく、溝78の内側面、即ち、回転円盤56の回転方向CCでみて後側に位置する溝78の内側面に向けられる。それ故、この場合の押し出し方向は、溝78の内側面とガイド面90との間にてビーズBを挟み込むように働いてしまい、ビーズBを押し潰すことにもなる。 On the other hand, if the axis A of the groove 78 is inclined in the direction opposite to the normal N as shown in FIG. 8, the pushing direction of the bead B applied from the guide surface 90 is the opening end of the groove 78. Instead, it is directed to the inner surface of the groove 78, that is, the inner surface of the groove 78 located on the rear side in the rotational direction CC of the rotary disk 56. Therefore, the pushing direction in this case works so as to sandwich the bead B between the inner surface of the groove 78 and the guide surface 90, and the bead B is also crushed.
 本発明は上述の一実施例に制約されるものではなく、種々の変形が可能である。
 例えば、図9に示される溝78は上方からみたとき、回転円盤56の外周に向けて先細の液滴形状をなしている。即ち、図9の溝78は閉じた開口縁を有する。この場合、図10に示されるように溝78の底は回転円盤56の外周側の一部(実線)又はその全体(2点鎖線)が溝78の軸線に対して抜け出し角Θ1で傾斜している。このような溝78もまた回転円盤56の外周に向けて、受け取ったビーズBの抜け出しを許容する。
The present invention is not limited to the above-described embodiment, and various modifications can be made.
For example, the groove 78 shown in FIG. 9 has a tapered droplet shape toward the outer periphery of the rotating disk 56 when viewed from above. That is, the groove 78 of FIG. 9 has a closed opening edge. In this case, as shown in FIG. 10, the bottom of the groove 78 has a part (solid line) on the outer peripheral side of the rotary disk 56 or the whole (two-dot chain line) inclined with respect to the axis of the groove 78 at an exit angle Θ1. Yes. Such a groove 78 also allows the received beads B to come out toward the outer periphery of the rotating disk 56.
 図9及び図10の溝78であっても、ビーズ列Rは回転円盤56上にて同様に安定して形成され、また、回転円盤56から円滑に排出可能である。
 なお、前述した溝78の底は何れも、上方に向けて傾斜しているが、下方に向けて傾斜されていてもよく、この場合の抜け出し角Θ1もまた上述の範囲から選択される。
 更に、上述した排出装置はエアアシストを含むことができ、このエアアシストは図11に示されるようにノズル孔92を有する。このノズル孔92は排出ガイド82に形成され、ガイド面90とは対向したガイド通路84の内面にて、ガイド通路84の下流側に向けて開口している。
9 and 10, the bead array R is similarly stably formed on the rotating disk 56 and can be smoothly discharged from the rotating disk 56.
The bottom of the groove 78 described above is inclined upward, but may be inclined downward, and the exit angle Θ1 in this case is also selected from the above range.
Further, the discharging device described above can include air assist, which has a nozzle hole 92 as shown in FIG. The nozzle hole 92 is formed in the discharge guide 82 and opens toward the downstream side of the guide passage 84 on the inner surface of the guide passage 84 facing the guide surface 90.
 一方、ノズル孔92はエア供給経路94を経て圧縮空気源96に接続され、エア供給経路94には電磁弁98が配置されている。
 上述のエアアシストによれば、電磁弁98が開かれたとき、圧縮空気源96からエア供給経路94を通じて圧縮空気がノズル孔92に供給され、このノズル孔92からガイド通路84に圧縮空気が供給される。このような圧縮空気はガイド通路84から供給ホース36へのビーズ列Rの供給を円滑にする。
On the other hand, the nozzle hole 92 is connected to a compressed air source 96 through an air supply path 94, and an electromagnetic valve 98 is disposed in the air supply path 94.
According to the air assist described above, when the electromagnetic valve 98 is opened, compressed air is supplied from the compressed air source 96 to the nozzle hole 92 through the air supply path 94, and compressed air is supplied from the nozzle hole 92 to the guide passage 84. Is done. Such compressed air facilitates the supply of the bead row R from the guide passage 84 to the supply hose 36.
 前述の実施例の場合、ビーズBはその一部が溝78から上方に突出されているが、排出位置Eから回転円盤56の外周に至るガイド面90の部位が回転円盤56内に配置されていれば、ビーズBは溝78から上方に突出する必要はない。この場合、回転円盤56の外周には周溝が形成され、この周溝はガイド面90の前記部位の進入を許容する。
 更に、本発明のフィーダは、複合フィルタロッドのための料を含んだビーズに限らず、壊れ易い種々の粒状物の供給に適用可能である。
In the case of the above-described embodiment, a part of the bead B protrudes upward from the groove 78, but the portion of the guide surface 90 extending from the discharge position E to the outer periphery of the rotating disk 56 is disposed in the rotating disk 56. In this case, the bead B does not need to protrude upward from the groove 78. In this case, a circumferential groove is formed on the outer periphery of the rotating disk 56, and this circumferential groove allows the portion of the guide surface 90 to enter.
Furthermore, the feeder of the present invention is not limited to beads including a material for a composite filter rod, but can be applied to supply of various granular materials that are fragile.
34:フィーダ、56:回転円盤、58:上面、70:囲い部材、78:溝(整列装置)、82:排出ガイド(排出装置)、84:ガイド通路、90:ガイド面、A:軸線、B:ビーズ(粒状物)、E:排出位置、N:法線、Θ1:抜け出し角、Θ2:逃げ角 34: feeder, 56: rotating disk, 58: upper surface, 70: enclosure member, 78: groove (alignment device), 82: discharge guide (discharge device), 84: guide passage, 90: guide surface, A: axis, B : Beads (granular material), E: Discharge position, N: Normal, Θ1: Exit angle, Θ2: Clearance angle

Claims (12)

  1.  水平面に対して傾斜した上面を含み、この上面上に粒状物が供給される回転可能な回転円盤と、
     前記回転円盤の外周縁に沿って延び、前記上面から粒状物の脱落を阻止する囲い部材と、
     前記上面上の粒状物から前記回転円盤の周方向に前記粒状物が並ぶ列を形成する整列装置であって、
     前記上面の外周縁に形成され、前記回転円盤の周方向に互いに間隔を存して並び且つ前記粒状物を1個ずつ受取り可能な多数の溝を含み、
     前記溝に受取られた粒状物が前記回転円盤の周方向に沿って並び且つ前記回転円盤の回転に連れて前記回転円盤の周方向に移動する列を形成し、前記各溝が前記回転円盤の径方向外側に向けて受取った粒状物の抜け出しを許容した形状を有する、整列装置と、
     前記回転円盤上から前記粒状物の前記列を排出する排出装置であって、
     前記回転円盤の前記外周縁に規定された排出位置と、
     前記排出位置にて前記粒状物の前記列の移動方向を前記回転円盤の径方向外側に偏向させる排出ガイドとを含み、
     前記排出ガイドは、前記排出位置から前記回転円盤の外周を横断して前記回転円盤の径方向外側に向けて延び、前記粒状物の前記列を案内するガイド通路を規定し、
     前記ガイド通路は前記回転円盤の径方向外側を向いたガイド面を有し、このガイド面は前記排出位置から前記回転円盤の前記外周に至る領域にて、溝内の粒状物を前記回転円盤の径方向外側に向けて押し出し、その溝から抜け出させる、排出装置と
    を備えることを特徴とする粒状物のフィーダ。
    A rotatable rotating disk that includes an upper surface that is inclined with respect to a horizontal plane, and on which the granular material is supplied;
    An enclosure member extending along the outer peripheral edge of the rotating disk and preventing the falling of particulate matter from the upper surface;
    An alignment apparatus for forming a row in which the granular materials are arranged in the circumferential direction of the rotating disk from the granular materials on the upper surface,
    A plurality of grooves formed on the outer peripheral edge of the upper surface, arranged at intervals in the circumferential direction of the rotating disk, and capable of receiving the granular materials one by one;
    The granular materials received in the grooves form a row that is arranged along the circumferential direction of the rotating disk and that moves in the circumferential direction of the rotating disk as the rotating disk rotates, and each of the grooves is formed on the rotating disk. An aligning device having a shape that allows the granular material received radially outward to be pulled out;
    A discharge device for discharging the row of the granular materials from the rotating disk;
    A discharge position defined on the outer peripheral edge of the rotating disk;
    A discharge guide for deflecting the moving direction of the row of the granular materials at the discharge position to the outside in the radial direction of the rotating disk,
    The discharge guide extends from the discharge position across the outer periphery of the rotating disk toward the radially outer side of the rotating disk, and defines a guide path for guiding the row of the granular materials;
    The guide passage has a guide surface facing the radially outer side of the rotating disk, and this guide surface is a region extending from the discharge position to the outer periphery of the rotating disk, and removes particulate matter in the groove of the rotating disk. A granular material feeder comprising: a discharge device that extrudes radially outward and pulls out from the groove.
  2.  前記各溝は、前記回転円盤の径方向に沿って延びる軸線を有することを特徴とする請求項1に記載の粒状物のフィーダ。 The granular material feeder according to claim 1, wherein each of the grooves has an axis extending along a radial direction of the rotating disk.
  3.  前記溝の軸線は、前記回転円盤の外周側に位置する前記溝の端が前記回転円盤の回転方向とは逆方向にシフトすべく傾斜していることを特徴とする請求項2に記載の粒状物のフィーダ。 3. The granular material according to claim 2, wherein an axis of the groove is inclined so that an end of the groove located on an outer peripheral side of the rotating disk is shifted in a direction opposite to a rotating direction of the rotating disk. Feeder of things.
  4.  前記排出位置に位置付けられた前記溝の前記軸線は、前記ガイド面に直交する法線に対して所定の逃げ角で傾斜されていることを特徴とする請求項3に記載の粒状物のフィーダ。 The granular material feeder according to claim 3, wherein the axis of the groove positioned at the discharge position is inclined at a predetermined clearance angle with respect to a normal perpendicular to the guide surface.
  5.  前記逃げ角は0~30°の範囲から選択されていることを特徴とする請求項4に記載の粒状物のフィーダ。 The granular material feeder according to claim 4, wherein the clearance angle is selected from a range of 0 to 30 °.
  6.  前記各溝は、その前記端からの粒状物の抜け出し方向を前記軸線に対して所定の抜け出し角で傾斜させる底を有することを特徴とする請求項3に記載の粒状物のフィーダ。 4. The granular material feeder according to claim 3, wherein each of the grooves has a bottom that inclines the direction of the granular material from the end thereof at a predetermined angle with respect to the axis.
  7.  前記底は上方又は下方に向けて傾斜し、前記抜け出し角は0~30°の範囲から選択されていることを特徴とする請求項6に記載の粒状物のフィーダ。 The granular material feeder according to claim 6, wherein the bottom is inclined upward or downward, and the exit angle is selected from a range of 0 to 30 °.
  8.  前記各溝は、前記回転円盤の外周にて開口する開いた開口縁を有することを特徴とする請求項7に記載の粒状物のフィーダ。 The granular material feeder according to claim 7, wherein each of the grooves has an open opening edge that opens at an outer periphery of the rotating disk.
  9.  前記各溝は、閉じた開口縁を有することを特徴とする請求項7に記載の粒状物のフィーダ。 The granular material feeder according to claim 7, wherein each groove has a closed opening edge.
  10.  前記開口縁は、前記回転円盤の外周に向けて先細の液滴形状をなしていることを特徴とする請求項9に記載の粒状物のフィーダ。 The granular material feeder according to claim 9, wherein the opening edge has a tapered droplet shape toward the outer periphery of the rotating disk.
  11.  前記排出装置は、前記ガイド通路内に圧縮空気を供給し、前記粒状物の前記列の移送を助けるエアアシストを更に含むことを特徴とする請求項1に記載の粒状物のフィーダ。 The granular material feeder according to claim 1, wherein the discharge device further includes an air assist for supplying compressed air into the guide passage and assisting the transfer of the granular material.
  12.  回転円盤の上面を水平面に対して傾斜させた状態で、前記回転円盤の回転中、前記上面に粒状物を供給し、
     前記回転円盤の外周縁に前記回転円盤の周方向に間隔を存して配置され且つ前記回転円盤の径方向外側への前記粒状物の抜け出しを許容する溝に前記上面上の前記粒状物を個々に受け取って前記回転円盤の周方向に前記粒状物が並ぶ列を形成し、この列を前記回転円盤の回転により前記回転円盤の周方向に移動させ、
     前記回転円盤の外周縁に規定された排出位置に前記粒状物の列が到達したとき、排出位置に配置された排出ガイドのガイド面により前記溝内の前記粒状物を前記回転円盤の径方向外側に押し出して前記溝から抜け出させ、前記列の移動方向を前記回転円盤の周方向から前記回転円盤の外側に向けて偏向させ、偏向された前記粒状物の列を前記排出ガイドのガイド通路を通じて前記回転円盤外に排出することを特徴とする粒状物の供給方法。
    In a state where the upper surface of the rotating disk is inclined with respect to the horizontal plane, during rotation of the rotating disk, the granular material is supplied to the upper surface,
    The granular material on the upper surface is individually placed in a groove that is disposed at an outer peripheral edge of the rotating disk with a space in the circumferential direction of the rotating disk and allows the granular material to escape outward in the radial direction of the rotating disk. Forming a row in which the granular materials are arranged in the circumferential direction of the rotating disk, and moving the row in the circumferential direction of the rotating disk by the rotation of the rotating disk,
    When the row of the granular materials reaches the discharge position defined at the outer peripheral edge of the rotating disk, the granular material in the groove is moved radially outward of the rotating disk by the guide surface of the discharging guide disposed at the discharging position. To push out from the groove, deflect the moving direction of the row from the circumferential direction of the rotating disk toward the outside of the rotating disc, and pass the deflected row of the granular material through the guide passage of the discharge guide. A granular material supply method, characterized in that it is discharged out of the rotating disk.
PCT/JP2012/057723 2012-03-26 2012-03-26 Particulate material feeder and method of supplying same WO2013145073A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/057723 WO2013145073A1 (en) 2012-03-26 2012-03-26 Particulate material feeder and method of supplying same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/057723 WO2013145073A1 (en) 2012-03-26 2012-03-26 Particulate material feeder and method of supplying same

Publications (1)

Publication Number Publication Date
WO2013145073A1 true WO2013145073A1 (en) 2013-10-03

Family

ID=49258443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057723 WO2013145073A1 (en) 2012-03-26 2012-03-26 Particulate material feeder and method of supplying same

Country Status (1)

Country Link
WO (1) WO2013145073A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104355067A (en) * 2014-10-30 2015-02-18 中国科学院苏州生物医学工程技术研究所 Fully-automatic conveying device for vacuum blood collection tube
WO2015101592A1 (en) * 2013-12-30 2015-07-09 Philip Morris Products S.A. Apparatus and method for introducing objects into a flow of filter material
CN107380968A (en) * 2017-09-06 2017-11-24 四川三联新材料有限公司 Quick-fried pearl ordered arrangement equipment and cigarette production line
WO2020099721A1 (en) * 2018-11-12 2020-05-22 Kompopat Oy Method and apparatus for forming a material batch for an end product

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59127015U (en) * 1983-02-16 1984-08-27 花王株式会社 Cap alignment device
JPS6421779U (en) * 1987-07-31 1989-02-03
JPH0196898U (en) * 1987-12-18 1989-06-27
JPH01103622U (en) * 1987-12-28 1989-07-13

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59127015U (en) * 1983-02-16 1984-08-27 花王株式会社 Cap alignment device
JPS6421779U (en) * 1987-07-31 1989-02-03
JPH0196898U (en) * 1987-12-18 1989-06-27
JPH01103622U (en) * 1987-12-28 1989-07-13

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015101592A1 (en) * 2013-12-30 2015-07-09 Philip Morris Products S.A. Apparatus and method for introducing objects into a flow of filter material
CN104355067A (en) * 2014-10-30 2015-02-18 中国科学院苏州生物医学工程技术研究所 Fully-automatic conveying device for vacuum blood collection tube
CN107380968A (en) * 2017-09-06 2017-11-24 四川三联新材料有限公司 Quick-fried pearl ordered arrangement equipment and cigarette production line
WO2020099721A1 (en) * 2018-11-12 2020-05-22 Kompopat Oy Method and apparatus for forming a material batch for an end product

Similar Documents

Publication Publication Date Title
KR101521671B1 (en) Bead feeder
US6805174B2 (en) Dual station applicator wheels for filling cavities with metered amounts of particulate material
WO2012057255A1 (en) Granular material supply device and granular material supply method
US7849889B2 (en) Applicator wheel for filling cavities with metered amounts of particulate material
WO2013145073A1 (en) Particulate material feeder and method of supplying same
JP6162408B2 (en) Bead feeding method and bead feeder
EP1427634B1 (en) Dual station applicator wheels for filling cavities with metered amounts of particulate material
EP3122665B1 (en) Feed unit
EP3122667B1 (en) Feed unit
WO2006004111A1 (en) Filter rod manufacturing machine
PL222242B1 (en) Method and system for the transmission of capsules
PL218090B1 (en) Method and device for irregular transmission of capsules
WO2015134041A1 (en) Apparatus, method and system for buffering and processing multi-segment rod-like articles
EP3122664B1 (en) Feed unit
US10071866B2 (en) Feed unit
EP2443945B1 (en) Unit and method for feeding additive elements to fibrous material on a machine for producing smoking articles
JP2003024035A (en) Machine for producing filter rod for cigarette
EP3661376B1 (en) Method and apparatus for producing micro bead bearing filter rod
EP3089600B1 (en) Apparatus and method for introducing objects into a flow of filter material
PL239186B1 (en) Feeding device for feeding spherical objects intended for the tobacco industry and method for feeding spherical objects in a tobacco industry machine
JP5594794B2 (en) Granular material supply apparatus and method
JP2022027518A (en) Feeding unit for feeding beads and apparatus for manufacturing rods
EP3842365A1 (en) A method for transferring objects in channels and a channel system for transferring objects for tobacco industry
JP2006129806A (en) Filter rod-producing machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12873043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12873043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP