WO2013145047A1 - 基地局装置、移動通信システム、送信ビーム制御方法、及びコンピュータ可読媒体 - Google Patents

基地局装置、移動通信システム、送信ビーム制御方法、及びコンピュータ可読媒体 Download PDF

Info

Publication number
WO2013145047A1
WO2013145047A1 PCT/JP2012/007341 JP2012007341W WO2013145047A1 WO 2013145047 A1 WO2013145047 A1 WO 2013145047A1 JP 2012007341 W JP2012007341 W JP 2012007341W WO 2013145047 A1 WO2013145047 A1 WO 2013145047A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
radiation angle
cell
communication quality
directional beam
Prior art date
Application number
PCT/JP2012/007341
Other languages
English (en)
French (fr)
Inventor
憲治 小柳
信清 貴宏
石井 直人
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2014507030A priority Critical patent/JP5983734B2/ja
Publication of WO2013145047A1 publication Critical patent/WO2013145047A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems

Definitions

  • the present invention relates to a mobile communication system that performs codebook-based precoding.
  • Multiple antenna technologies including MISO (Multiple Input Single Output), SIMO (Single Input Single Output), and MIMO (Multiple Input Multiple Output) are used for antenna diversity, spatial multiplexing, or beamforming, or a combination thereof.
  • MISO Multiple Input Single Output
  • SIMO Single Input Single Output
  • MIMO Multiple Input Multiple Output
  • the Some MISO systems and some MIMO systems use codebook based precoding to implement spatial multiplexing or transmit beamforming.
  • the codebook includes a plurality of quantized precoding matrices. In the case of a single transmission layer (rank 1 transmission), the precoding matrix is a precoding vector (i.e. antenna weight vector).
  • Codebook-based precoding is classified into closed-loop precoding and open-loop precoding depending on the presence or absence of feedback from the receiving station.
  • closed-loop precoding the transmitting station selects a precoding matrix from the codebook in consideration of PMI (Precoding Matrix Indicator) fed back from the receiving station.
  • PMI Precoding Matrix Indicator
  • open loop precoding does not use PMI fed back from a receiving station.
  • open-loop precoding for example, the transmitting station cyclically uses a precoding matrix included in a codebook.
  • a plurality of quantized precoding matrices included in a codebook generally achieve a plurality of quantized directional beams (beam patterns) having different main beam radiation angles.
  • each precoding matrix corresponds to one of a plurality of quantized directional beams.
  • LTE Long Term Term Evolution
  • PDSCH Physical Downlink Shared Channel
  • LTE downlink transmission mode 4 “Closed-loop spatial multiplexing” performs MIMO spatial multiplexing using closed-loop precoding.
  • LTE downlink transmission mode 6 “Closed-loop rank-1 precoding” performs transmission beamforming using closed-loop precoding.
  • Patent Document 1 discloses a technique for suppressing inter-cell interference in a mobile communication system that performs spatial multiplexing or transmission beamforming using codebook-based precoding.
  • the base station described in Patent Literature 1 receives PMI information from neighboring cells.
  • the PMI information from the neighboring cell includes a PMI corresponding to a precoding matrix that the neighboring cell requests to use or restrict usage.
  • the base station generates a basic codebook subset including at least one precoding matrix selected from the basic codebook in consideration of PMI information from neighboring cells. Specifically, for example, a precoding matrix for which use restriction is requested by a neighboring cell is excluded from the basic codebook subset.
  • the base station transmits index information indicating the precoding matrix included in the basic codebook subset to the mobile station.
  • Patent Document 1 performs precoding using a subset selected from a basic codebook, and excludes a precoding matrix that gives large interference to neighboring cells from the subset. Thereby, the interference which the transmission beam of a base station exerts on an adjacent cell is reduced.
  • the technique disclosed in Patent Document 1 takes into account PMI information notified from neighboring cells in order to reduce inter-cell interference, and some of the precoding matrices included in the basic codebook. It is characterized by stopping use.
  • the technique disclosed in Patent Document 1 is considered to be particularly effective when the number of transmission antennas is large and therefore the total number of precoding matrices included in the basic codebook is large.
  • the base station When the total number of precoding matrices is large, the angular resolution of the base station transmit beam is high, so even if the base station stops using some precoding matrices (ie, some transmit beam directions), the base station The degradation of the communication quality (eg SINR (Signal Interference noise Noise Ratio), throughput, system capacity, or coverage) of the own cell operated by the mobile phone is relatively small. However, if the total number of precoding matrices included in the basic codebook is small, stopping the use of some of the precoding matrices may cause a reduction in communication quality of the own cell operated by the base station.
  • SINR Signal Interference Noise Ratio
  • the total number of precoding matrices is 4 when the number of layers is 1, and is 3 when the number of layers is 2.
  • the angular resolution of the transmission beam of the base station is low. Therefore, when the use of some precoding matrices (ie, some transmission beam directions) is stopped, It may affect communication quality such as cell system capacity or coverage.
  • one of the objects of the present invention is to provide a base station and a mobile communication that can reduce interference with neighboring cells and suppress deterioration in communication quality of the own cell when performing codebook-based precoding.
  • a system, a transmission beam control method, and a program are provided.
  • the first aspect of the present invention includes a base station apparatus that operates its own cell.
  • the base station apparatus includes a precoding unit, a signal processing unit, an adjustment unit, and a control unit.
  • the precoding unit performs precoding based on a codebook including a plurality of quantized precoding matrices.
  • the signal processing unit generates a plurality of time domain signals associated with a plurality of transmission antennas by processing a plurality of transmission symbols including a plurality of information symbols generated by the precoding.
  • the adjustment unit adjusts a radiation angle of a directional beam formed from the plurality of time domain signals based on the correlation of the plurality of transmission antennas.
  • the control unit controls calibration for determining a radiation angle of the directional beam as a first radiation angle.
  • the calibration includes the following (a) and (b). (A) transmitting the directional beam while scanning the radiation angle of the directional beam; and (b) downlink communication of adjacent cells measured while scanning the radiation angle of the directional beam. Determining the first radiation angle based on quality;
  • the second aspect of the present invention includes a mobile communication system.
  • the mobile communication system includes first and second base stations that operate the first and second cells, respectively.
  • the first base station is configured to perform precoding based on a codebook including a plurality of quantized precoding matrices. Further, the first base station generates a plurality of time domain signals associated with a plurality of transmission antennas by processing a plurality of transmission symbols including a plurality of information symbols generated by the precoding. It is configured as follows. Further, the first base station is configured to adjust a radiation angle of a directional beam formed from the plurality of time domain signals based on the correlation of the plurality of transmission antennas. Furthermore, the first base station is configured to control calibration for determining the radiation angle of the directional beam as the first radiation angle.
  • the calibration includes the following (a) and (b). (A) transmitting the directional beam while scanning the radiation angle of the directional beam; and (b) downlink communication of adjacent cells measured while scanning the radiation angle of the directional beam. Determining the first radiation angle based on quality;
  • the third aspect of the present invention includes a method for controlling a directional beam radiation angle by a base station apparatus that operates its own cell.
  • the base station apparatus includes a precoding unit, a signal processing unit, and an adjustment unit.
  • the precoding unit performs precoding based on a codebook including a plurality of quantized precoding matrices.
  • the signal processing unit generates a plurality of time domain signals associated with a plurality of transmission antennas by processing a plurality of transmission symbols including a plurality of information symbols generated by the precoding.
  • the adjustment unit adjusts a radiation angle of a directional beam formed from the plurality of time domain signals based on the correlation of the plurality of transmission antennas.
  • the control method is (A) transmitting the directional beam while scanning the radiation angle of the directional beam; and (b) downlink communication of adjacent cells measured while scanning the radiation angle of the directional beam. Determining a radiation angle of the directional beam as a first radiation angle based on quality; including.
  • the fourth aspect of the present invention includes a program for causing a computer to perform the method according to the third aspect described above.
  • a base station and mobile communication capable of reducing interference with adjacent cells and suppressing deterioration in communication quality of the own cell A system, a transmission beam control method, and a program can be provided.
  • the mobile communication system of this embodiment includes a macro base station 1 and a pico base station 2.
  • the macro base station 1 operates the macro cell 100
  • the pico base station 2 operates the pico cell 200.
  • the macro cell 100 and the pico cell 200 are adjacent to each other.
  • the pico cell 200 has a smaller coverage than the macro cell 100 and is arranged in the macro cell 100.
  • the macro cell 100 and / or the pico cell 200 may be sector cells.
  • the macro cell 100 may be a sector cell that covers an angle range of 120 degrees.
  • the macro base station 1 has an antenna array 16 including a plurality of antennas.
  • the antenna array 16 may be used to cover the macro cell 100 as a sector cell.
  • the macro base station 1 performs MISO or MIMO transmission in downlink communication with at least one mobile station (hereinafter referred to as a macro mobile station) belonging to the macro cell 100.
  • the macro base station 1 uses codebook-based precoding. That is, the macro base station 1 emits a directional beam from the antenna array 16 by performing codebook-based precoding on at least some downlink subcarriers. Directional beams are used for spatial multiplexing or simple beamforming, or combinations thereof.
  • the codebook-based precoding performed by the macro base station 1 may be open loop, closed loop, or both.
  • the code book used by the macro base station 1 includes a plurality of quantized precoding matrices.
  • the precoding matrix is a matrix of size N T ⁇ N L.
  • N L means the number of transmission layers.
  • NT means the number of transmission antenna ports.
  • the precoding matrix is a precoding vector (antenna weight vector) of size N T ⁇ 1.
  • the term “precoding matrix” includes precoding vectors.
  • the plurality of quantized precoding matrices included in the codebook correspond to a plurality of quantized (discrete) directional beams having different main beam radiation angles.
  • a directional beam is a beam pattern in which energy is concentrated at a specific radiation angle (radiation direction).
  • a directional beam formed by the use of a precoding matrix can increase interference to neighboring cells.
  • the directional beam B1 is formed by using the first precoding matrix # 1.
  • directional beams B2 to B4 are formed by using the second to fourth precoding matrices # 2 to # 4, respectively.
  • 1A and 1B show only the main beam of the directional beams B1 to B4, the directional beam (beam pattern) formed by precoding is generally other than the main beam (main lobe). Includes sub-beams (side lobes).
  • the pico cell 200 exists in the radiation direction of the directional beam B2. Therefore, every time the directional beam B2 is used, in other words, every time the second precoding matrix # 2 is used, the directional beam B2 exerts downlink interference on the pico cell 200. Thereby, the downlink communication quality of the pico cell 200 may be deteriorated.
  • the downlink interference which the directional beam B2 exerts on the pico cell 200 can be reduced by using the code book subset and excluding the second precoding matrix # 2 from the code book subset.
  • FIG. 1A the pico cell 200 exists in the radiation direction of the directional beam B2. Therefore, every time the directional beam B2 is used, in other words, every time the second precoding matrix # 2 is used, the directional beam B2 exerts downlink interference on the pico cell 200. Thereby, the downlink communication quality of the pico cell 200 may be deteriorated.
  • the downlink interference which the directional beam B2 exerts on the pico cell 200 can be reduced by using the code book sub
  • the angular resolution of the plurality of directional beams corresponding to the plurality of precoding matrices is rough. Therefore, stopping the use of some precoding matrices in the case shown in FIG. 1A may affect the communication quality such as the system capacity or coverage of the macro cell 100.
  • the present embodiment provides a transmission beam control method by the macro base station 1 that can reduce interference with a neighboring cell (ie ⁇ pico cell 200) and suppress deterioration in communication quality of the own cell (ie macro cell 100).
  • a neighboring cell ie ⁇ pico cell 200
  • the transmission beam control method according to the present embodiment described below can be used instead of or in combination with a method using a codebook subset.
  • the macro base station 1 includes a beam direction adjustment unit 14 and a calibration control unit 17.
  • the beam direction adjusting unit 14 is configured to adjust the radiation angles ⁇ of a plurality of directional beams based on the code book radiated from the antenna array 16.
  • the beam direction adjusting unit 14 emits the radiation direction with an angular resolution finer than the angular resolution of a plurality of quantized directional beams (eg, beams B1 to B4) corresponding to a codebook (ie, a plurality of quantized precoding matrices). It is comprised so that (theta) can be adjusted.
  • the beam direction adjusting unit 14 may be configured to be able to collectively adjust the radiation angles ⁇ of a plurality of quantized directional beams corresponding to the codebook.
  • the beam direction adjusting unit 14 only needs to be able to adjust the phase shift of a plurality of time domain signals supplied to a plurality of antennas constituting the antenna array 16, for example. Therefore, the beam direction adjusting unit 14 may include, for example, a plurality of digital phase shifters corresponding to a plurality of antennas. Instead, the beam direction adjusting unit 14 may include a plurality of analog phase shifters corresponding to a plurality of antennas. Further, the beam direction adjusting unit 14 may include a time delay unit that gives a real time delay to a plurality of time domain signals supplied to a plurality of antennas. Also, the adjustment of the radiation angle ⁇ of the directional beam can be achieved by mechanically operating the antenna array 16. That is, the beam direction adjusting unit 14 may include a drive mechanism for the antenna array 16 as a mechanical antenna. The beam direction adjusting unit 14 may be mounted by a combination of two or more of the plurality of mounting methods described above.
  • the calibration control unit 17 controls calibration for determining the radiation angle ⁇ of the directional beam from the antenna array 16 as the first radiation angle.
  • the macro base station 1 is configured to be able to operate by switching between “normal communication mode (S1)” and “calibration mode (S2)”.
  • S1 normal communication mode
  • S2 calibration mode
  • the macro base station 1 transmits a plurality of directional beams (eg, beams B1 to B4) according to precoding while being fixed at the first radiation angle determined by the calibration. .
  • the macro base station 1 performs calibration for determining and adjusting the radiation angle of the directional beam.
  • the macro base station 1 is a macro mobile station even in the calibration mode (S2) and during the switching between the normal communication mode (S1) and the calibration mode (S2). Normal communication can be continued with the.
  • the calibration according to the present embodiment does not require the update of the code book. Therefore, the macro base station 1 can perform calibration and adjustment of the radiation angle without interfering with normal communication between the base station and the mobile station. Therefore, the calibration mode (S2) can be considered as a part of the normal communication mode (S1) as shown in FIG. 2B.
  • the macro base station 1 can perform the calibration mode (S2) at any time even after the operation of the macro base station 1 is started.
  • the calibration mode S1 may be performed according to periodic determination by the macro base station 1.
  • the calibration mode S1 may be performed aperiodically in accordance with an instruction from an operator or in response to an instruction or request from an adjacent base station (e.g. Pico base station 2).
  • the calibration mode S1 may be performed in response to the macro base station 1 detecting the presence of a new adjacent cell or adjacent base station.
  • the calibration mode S1 may be performed when the macro base station 1 is activated.
  • the calibration control unit 17 performs the first control so as to suppress downlink interference caused by the plurality of quantized directional beams (eg directional beams B1 to B4) based on the codebook to the neighboring cell (ie picocell 200). What is necessary is just to determine a radiation angle.
  • the first radiation angle determined by the calibration is used by the beam direction adjustment unit 14 for the antenna array 16 for normal communication operation (ie, normal communication mode S1) with the macro mobile station including codebook-based precoding. Applies to transmissions by For example, as shown in FIG. 1B), the calibration control unit 17 determines that the center direction of the main beam of each of the plurality of directional beams (beam patterns) B1 to B4 based on the codebook is located in the picocell 200.
  • the first radiation angle may be determined so as to deviate from the azimuth.
  • FIG. 3 is a flowchart showing a specific example of calibration.
  • the macro base station 1 transmits a directional beam from the antenna array 16 while scanning the radiation angle.
  • the macro base station 1 may transmit the test signal (test symbol) without precoding, or may transmit it while using a plurality of precoding matrices included in the codebook cyclically.
  • the scanning of the radiation angle is performed by the beam direction adjusting unit 14. Further, the scanning is performed with an angular resolution finer than the angular resolution of a plurality of quantized directional beams (e.g. beams B1 to B4) corresponding to a codebook (i.e.
  • the angular resolution of a plurality of quantized directional beams means an angle formed by the central directions of two adjacent directional beams (e.g. beams B1 and B2).
  • the calibration control unit 17 suppresses interference with adjacent cells based on the downlink communication quality of the adjacent cell (ie, pico cell 200) measured while scanning the radiation angle of the directional beam. Determine a possible first radiation angle. Specifically, the calibration control unit 17 may determine the first radiation angle so that the downlink communication quality of the pico cell 200 is improved.
  • the reason why the downlink communication quality of the pico cell 200 is relatively good is that it is considered to indirectly indicate that the downlink interference exerted on the pico cell 200 by the directional beam of the macro cell 100 is relatively small.
  • the calibration control unit 17 may determine the angle that gives the maximum downlink communication quality of the pico cell 200 as the first radiation angle in the scanning range of the radiation angle.
  • the first radiation angle is not limited to the resolution of the directional beam scanning at the time of calibration, and may be determined based on a finer resolution.
  • the calibration control unit 17 determines the radiation angle corresponding to the maximum value obtained by interpolating (interpolating) a plurality of downlink communication quality values of the pico cell 200 as the first radiation angle. May be.
  • the downlink communication quality of the pico cell 200 may be acquired by the pico base station 2 or a mobile station belonging to the pico cell 200 (hereinafter referred to as a pico mobile station).
  • the macro base station 1 may perform signaling with the pico base station 2 and receive information indicating the downlink communication quality of the pico cell 200 from the pico base station 2.
  • the macro base station 1 may receive the radiation angle information determined by the pico base station 2.
  • the pico base station 2 receives the radiation angle information of the macro base station 1 at the time of calibration in advance, determines the radiation angle at which the downlink communication quality of the pico cell 200 was good, and Information indicating the emission angle may be returned to the macro base station 1.
  • the pico base station 2 may transmit information indicating a radiation angle at which the downlink communication quality of the pico cell 200 was poor.
  • the radiation angle information of the macro base station 1 does not need to indicate the angle, and may be a sequence number indicating the execution order of calibration, for example.
  • the downlink communication quality of the pico cell 200 includes at least one of the following (a) to (f).
  • A Number of downlink transmission bits from the pico base station 2 to the pico mobile station;
  • B Downlink transmission bit rate from the pico base station 2 to the pico mobile station;
  • C Number of transmission bits per downlink radio resource unit (eg resource block, subcarrier, or time slot) used by the pico base station 2;
  • C Modulation scheme (number of bits per symbol) used by Pico base station 2 for downlink transmission;
  • D Usage rate of downlink radio resource (eg resource block, subcarrier or time slot),
  • E Average value of SINR in pico mobile station;
  • F Average value of interference power in the pico mobile station.
  • the downlink communication quality of the pico cell 200 can be acquired by the macro base station 1 itself without going through the pico base station 2. In this case, when the macro base station 1 executes calibration, the macro base station 1 forcibly hands over the pico mobile station from the pico cell 200 to the macro cell 100, and the mobile station and the macro base station 1 that have handed over from the pico cell 200 to the macro cell 100.
  • the downlink communication quality may be regarded as “the downlink communication quality of the pico cell 200”. A specific example of this method will be described in detail in a third embodiment to be described later.
  • FIG. 4 is a block diagram illustrating a configuration example of the macro base station 1 as an LTE base station.
  • RE resource element
  • OFDM Orthogonal Frequency Division
  • RF Radio Frequency
  • DLSCH Downlink Shared Channel
  • the precoding unit 11 generates a symbol vector X1 by calculating a precoding matrix of size N T ⁇ N L selected from the code book to a symbol vector S.
  • the number of elements of the symbol vector X1 after precoding matches the number of transmission antenna ports NT .
  • the transmission antenna port may not correspond to a physical antenna.
  • a transmission antenna port is associated with transmission of a common reference signal (CRS (cell-specific reference signal or common reference signals)).
  • CRS cell-specific reference signal or common reference signals
  • a plurality of RE mappers 12 provided for each antenna port map the pre-coded symbol vector X1 to resource elements (that is, subcarriers).
  • the symbol vector X2 mapped to the resource element is supplied to the OFDM unit 13 together with the reference symbol vector R.
  • the vector R includes the same number of symbols of the common reference signals CRS # 1 to CRS # NT as the number of antenna ports NT .
  • Reference symbols not subjected to precoding, that is, common reference signals CRS # 1 to CRS # NT are used not only for channel estimation by the mobile station, but also as phase and power (amplitude) references for PDSCH demodulation.
  • a plurality of OFDM units 13 provided for each antenna port perform a plurality of (that is, N T ) signals by performing IFFT (inverse Fast Fourier transform) operations on frequency domain signals, that is, the symbol vector X2 and the reference symbol vector R. Of time domain signal Y (t).
  • IFFT inverse Fast Fourier transform
  • the RF unit 15 performs frequency up-conversion and amplification on the time domain signal Y (t), and supplies the amplified signal to the antenna array 16.
  • the antenna array 16 includes a plurality of antennas 161. Each antenna 161 may be a subarray including a plurality of antenna elements.
  • FIG. 4 shows a specific example of the beam direction adjustment unit 14 and the calibration control unit 17.
  • the beam direction adjusting unit 14 includes a plurality of digital phase shifters 141 arranged between the plurality of OFDM units 13 and the plurality of RF units 15.
  • the plurality of digital phase shifters 141 give a phase shift to the time domain signal Y (t) in order to adjust the radiation angle ⁇ of the directional beam.
  • the beam direction adjusting unit 14 may be configured by a plurality of analog phase shifters or a plurality of time delay devices.
  • a plurality of analog phase shifters or a plurality of time delay devices may be disposed between the plurality of RF units 15 and the antenna array 16.
  • a plurality of analog phase shifters or a plurality of time delay devices may be arranged in the subarray.
  • the beam direction adjusting unit 14 may phase shift the symbol vector X2 and the reference symbol vector R, which are frequency domain data, before the IFFT calculation by the OFDM unit 13.
  • the beam direction adjusting unit 14 may include a drive mechanism for the antenna array 16 as a mechanical antenna.
  • the calibration control unit 17 in FIG. 4 controls the beam direction adjusting unit 14 for performing the above-described calibration and for applying the first radiation angle determined by the calibration. Further, the calibration control unit 17 communicates with an adjacent base station (i.e. pico base station 2) for signaling necessary for calibration.
  • an adjacent base station i.e. pico base station 2
  • the macro base station 1 includes the beam direction adjustment unit 14 and the calibration control unit 17.
  • the beam direction adjusting unit 14 is configured to perform, for example, phase shift for a plurality of transmission symbols after precoding, phase shift or real time delay of a plurality of time domain signals, or mechanical driving of the antenna array 16. Accordingly, the beam direction adjusting unit 14 can adjust the radiation angle ⁇ of the directional beam formed from the plurality of time domain signals based on the correlation between the plurality of antennas included in the antenna array 16.
  • the calibration control unit 17 is configured to control calibration for determining the radiation angle (i.e. first radiation angle) of the directional beam used in the normal communication mode S1. For example, the calibration control unit 17 can determine the first radiation angle so that downlink interference on the pico cell 200 is reduced. In other words, for example, the calibration control unit 17 sets the center direction of each main beam of the plurality of directional beams (eg, beams B1 to B4) based on the codebook so as to deviate from the orientation in which the picocell 200 is located. One radiation angle can be determined.
  • the radiation angle i.e. first radiation angle
  • the macro base station 1 needs to stop using a plurality of quantized precoding matrices included in the codebook in order to suppress downlink interference caused by a plurality of directional beams on adjacent cells. do not do. Therefore, the macro base station 1 can reduce interference with a neighboring cell (ie pico cell 200) and suppress deterioration in communication quality of the own cell (ie (macro cell 100) when performing codebook-based precoding. it can.
  • the macro base station 1 can perform calibration and adjustment of the radiation angle without interfering with normal communication between the base station and the mobile station. That is, there is an advantage that the calibration and the adjustment of the radiation angle according to this embodiment can be performed periodically or aperiodically even after the operation of the macro base station 1 is started.
  • the adjustment and scanning of the radiation angle by the beam direction adjustment unit 14 is performed using the angular resolution of a plurality of quantized directional beams corresponding to a codebook (ie, a plurality of quantized precoding matrices).
  • a codebook ie, a plurality of quantized precoding matrices.
  • the present embodiment shows a specific example of the calibration described in the first embodiment.
  • the configuration of the mobile communication system according to the present embodiment may be the same as that of the first embodiment shown in FIGS. 1A and 1B.
  • the downlink communication quality of the pico cell 200 being calibrated is acquired by the pico base station 2.
  • FIG. 5 is a sequence diagram showing a specific example of the calibration procedure according to the present embodiment.
  • the macro base station 1 transmits a directional beam while scanning the radiation angle ⁇ under the control of the calibration control unit 17.
  • the pico base station 2 acquires the downlink communication quality CQ_PICO of the pico cell 200 while the directional beam for calibration is transmitted from the macro base station 1.
  • the communication quality CQ_PICO ( ⁇ ) is acquired for each radiation angle ⁇ .
  • the acquisition number of communication quality CQ_PICO ( ⁇ ), the acquisition time interval, the acquisition angle range, the angular resolution, and the like may be appropriately determined by signaling between the macro base station 1 and the pico base station 2.
  • step S23 the pico base station 2 transmits information indicating CQ_PICO ( ⁇ ) to the macro base station 1.
  • the transmission in step S23 may be performed every time CQ_PICO ( ⁇ ) for each angle is acquired. Further, the pico base station 2 may collectively transmit all the acquired CQ_PICO ( ⁇ ) in response to the end of the directional beam scanning.
  • the calibration control unit 17 calculates a radiation angle ⁇ MAX corresponding to the maximum value of CQ_PICO ( ⁇ ) as a function of the directional beam radiation angle ⁇ of the macro base station 1.
  • the radiation angle ⁇ MAX may be an angle corresponding to an interpolation value (interpolated value) between a plurality of values (samples) of CQ_PICO ( ⁇ ).
  • step S25 the calibration control unit 17 changes the radiation angle in the normal communication mode S1 to ⁇ MAX. It is assumed that “maximum value of CQ_PICO ( ⁇ )” and “angle ⁇ MAX” in steps S24 and S25 are such that the larger the value of CQ_PICO ( ⁇ ), the better the downlink communication quality of the pico cell 200. However, depending on the quality index measured in the calibration, the downlink communication quality of the pico cell 200 may be better as the value of CQ_PICO is smaller.
  • One such quality indicator is the “resource block usage rate” described above. The resource block usage rate is relatively small when a modulation scheme with a large number of bits per symbol (small inter-symbol distance) can be used due to good downlink communication quality.
  • FIG. 6 is a sequence diagram showing a more specific example of the calibration procedure shown in FIG.
  • the macro base station 1 transmits directional beams at a total of N radiation angles ⁇ 1 to ⁇ N, and obtains N communication qualities CQ_PICO ( ⁇ 1) to CQ_PICO ( ⁇ N) from the pico base station 2. To do.
  • the macro base station 1 sets the radiation angle to ⁇ 1 by the beam direction adjusting unit 14.
  • the beam direction adjusting unit 14 includes a plurality of digital phase shifters
  • the beam direction adjusting unit 14 sets the phase coefficient corresponding to ⁇ 1 to the time-domain baseband OFDM signal (eg Y (t) in FIG. 4). Multiply it.
  • the phase coefficient corresponding to ⁇ 1 is different for each transmission antenna included in the antenna array 16.
  • the phase coefficient S (k, N) can be calculated using the following equations (1) and (2).
  • is a transmission wavelength
  • D is a distance between antennas.
  • S (k, i) cos ⁇ (k, i) + j sin ⁇ (k, i) ... (1)
  • ⁇ (k, i) 2 ⁇ kD sin ⁇ i / ⁇ (2)
  • step S212-1 the calibration control unit 17 of the macro base station 1 transmits an angle change notification to the pico base station 2.
  • the angle change notification indicates the radiation angle ⁇ 1 of the directional beam.
  • step S213-1 the macro base station 1 transmits a directional beam.
  • the pico base station 2 acquires CQ_PICO ( ⁇ 1).
  • the pico base station 2 may measure the downlink communication quality of the pico cell 200 during a predetermined period after receiving the angle change notification.
  • the pico base station 2 may acquire the number of downlink transmission bits or the average transmission bit rate during a predetermined period.
  • the number of downlink transmission bits (or average transmission bit rate) may be measured for all pico mobile stations belonging to the pico cell 200. Further, the number of downlink transmission bits or the average transmission bit rate may be calculated as an average value per pico mobile station.
  • step S23-1 the pico base station 2 notifies the macro base station 1 of CQ_PICO ( ⁇ 1).
  • the macro base station 1 and the pico base station 2 sequentially perform the processing (S211-1, S212-1, S213-1, S22-1 and S23-1) performed on the radiation angle ⁇ 1 with respect to the remaining angles ⁇ 2 to ⁇ N. .
  • the processes in steps S24 and S25 in FIG. 6 are the same as the processes in steps S24 and S25 in FIG.
  • an angle change notification is transmitted from the macro base station 1 to the pico base station 2 (steps S212-1 to N).
  • the notification may be omitted.
  • the macro base station 1 may sequentially change the radiation angles ⁇ 1 to ⁇ N according to a cycle determined in advance by signaling with the pico base station 2.
  • the present embodiment shows another specific example of the calibration described in the first embodiment.
  • the configuration of the mobile communication system according to the present embodiment may be the same as that of the first embodiment shown in FIGS. 1A and 1B.
  • the downlink communication quality of the pico cell 200 being calibrated is acquired by the macro base station 1. That is, the macro base station 1 forcibly hands over the pico mobile station from the pico cell 200 to the macro cell 100 when performing calibration. Then, the macro base station 1 regards the downlink communication quality of the macro cell 100 regarding the mobile station (hereinafter referred to as HO mobile station) that has been handed over from the pico cell 200 to the macro cell 100 as “downlink communication quality of the pico cell 200”.
  • HO mobile station mobile station
  • FIG. 7 is a sequence diagram showing a specific example of the calibration procedure according to the present embodiment.
  • the calibration control unit 17 of the macro base station 1 notifies the pico base station 2 of a change indicating CIO (Cell Individual Offset) in order to forcibly hand over the pico mobile station from the pico cell 200 to the macro cell 100.
  • CIO is a cell-specific power offset value.
  • the CIO is notified from the base station to the mobile station together with or as part of the neighbor cell list (neighbor list).
  • CIO is one of parameters (handover parameters) for controlling handover of a mobile station.
  • CIO is one of parameters for cell edge control called CRE (Cell Range Expansion).
  • the CIO is used as an offset with respect to the received power of the neighboring cell when the mobile station triggers a handover based on the measured value of the received power (RSRP (Reference Signal Received Power)) of the neighboring cell.
  • RSRP Reference Signal Received Power
  • CIO is defined as the threshold for the RSRP M of the neighboring cell (ie macro cell 100) minus the RSRP P of the serving cell (ie pico cell 200). That is, the pico mobile station triggers a handover from the pico cell 200 to the macro cell 100 when the following equation (3) is satisfied.
  • RSRP M -RSRP P > CIO (3)
  • step S32 in response to the CIO change notification from the macro base station 1, the pico base station 2 notifies the pico mobile station of the CIO change for the adjacent macro cell 100.
  • the handover of the pico mobile station from the pico cell 200 to the macro cell 100 is induced by reducing the CIO for the macro cell 100 (for example, the minimum value).
  • the macro base station 1 identifies the HO mobile station that has been handed over from the pico cell 200 to the macro cell 100 in accordance with the CIO change in steps S31 and S32. For example, the macro base station 1 may determine that a mobile station that satisfies both the following expressions (4) and (5) is a HO mobile station.
  • the CIO BEFORE is a CIO set for the macro cell 100 by the pico base station 2 before the calibration is performed, that is, before steps S31 and S32 are performed.
  • CIO AFTER is a CIO after being updated in steps S31 and S32 for calibration.
  • the macro mobile station that satisfies both the equations (4) and (5) corresponds to a mobile station that satisfies the handover condition from the pico cell 200 to the macro cell 100 because the CIO is changed along with the calibration.
  • RSRP M -RSRP P > CIO AFTER (5)
  • step S34 the macro base station 1 transmits a directional beam while scanning the radiation angle ⁇ under the control of the calibration control unit 17.
  • the macro base station 1 acquires the downlink communication quality CQ_HOUE of the macro cell 100 related to the HO mobile station specified in step S33.
  • the communication quality CQ_HOUE ( ⁇ ) is acquired for each radiation angle ⁇ .
  • CQ_HOUE for example, the number of transmission bits for a link to the HO mobile station, the transmission bit rate, and the SINR at the HO mobile station may be used. Of course, other quality indicators may be used as CQ_HOUE.
  • CQ_HOUE may be a total value for all HO mobile stations or an average value per HO mobile station.
  • step S35 the calibration control unit 17 calculates a radiation angle ⁇ MIN corresponding to the minimum value of CQ_HOUE ( ⁇ ) as a function of the directional beam radiation angle ⁇ of the macro base station 1.
  • the radiation angle ⁇ MIN may be an angle corresponding to an interpolation value between a plurality of values of CQ_HOUE ( ⁇ ).
  • step S ⁇ b> 37 the calibration control unit 17 transmits a CIO change notification to the pico base station 2 in order to return the CIO related to the macro cell 100 set in the pico base station 2 to the value before calibration (CIO BEFORE ).
  • step S38 the pico base station 2 notifies the pico mobile station of the CIO change for the adjacent macro cell 100 in response to the CIO change notification in step S36.
  • step S39 the calibration control unit 17 changes the radiation angle in the normal communication mode S1 to ⁇ MIN.
  • the “minimum value of CQ_HOUE ( ⁇ )” and “angle ⁇ MIN” in steps S36 and S39 assume that the larger the value of CQ_HOUE ( ⁇ ), the better the downlink communication quality of the macro cell 100 related to the HO mobile station. Yes.
  • the downlink communication quality of the pico cell 200 may be better as the value of CQ_HOUE is smaller.
  • “minimum value of CQ_HOUE ( ⁇ )” and “angle ⁇ MIN” in steps S36 and S39 may be read as “maximum value of CQ_HOUE ( ⁇ )” and “angle ⁇ MAX”.
  • the macro base station 1 may change the CIO related to the pico cell 200 to be notified to the macro mobile station.
  • the CIO related to the pico cell 200 may be increased so that handover of the macro mobile station from the macro cell 100 to the pico cell 200 is difficult to occur. Thereby, the repetition of handover between the macro cell 100 and the pico cell 200 during calibration is reduced. Therefore, calibration using the communication quality of the macro cell 100 related to the HO mobile station as an index can be performed with high accuracy.
  • step S37 the CIO value related to the pico cell 200 notified to the macro mobile station may be restored.
  • FIG. 8 is a sequence diagram showing a more specific example of the calibration procedure shown in FIG.
  • the macro base station 1 transmits directional beams at a total of N radiation angles ⁇ 1 to ⁇ N, and acquires N communication qualities CQ_HOUE ( ⁇ 1) to CQ_HOUE ( ⁇ N).
  • step S34-1 the macro base station 1 sets the radiation angle to ⁇ 1 by the beam direction adjusting unit 14, and transmits a directional beam.
  • step S35-1 the macro base station 1 acquires CQ_HOUE ( ⁇ 1).
  • the macro base station 1 sequentially performs the processing (S34-1 and S35-1) performed on the radiation angle ⁇ 1 for the remaining angles ⁇ 2 to ⁇ N.
  • the processing in steps S36 to S39 in FIG. 8 is the same as the processing in steps S36 to S39 in FIG.
  • the downlink communication quality of the macro cell 100 regarding the HO mobile station that has been handed over from the pico cell 200 to the macro cell 100 is regarded as the “downlink communication quality of the pico cell 200”.
  • the processing to be performed by the pico base station 2 for calibration by the macro base station 1 can be reduced. This is because the downlink communication quality of the macro cell 100 related to the HO mobile station can be acquired by the macro base station 1 itself without going through the pico base station 2.
  • the calibration procedure described in the present embodiment it is possible to evaluate the downlink communication quality related to the mobile station located in the edge region between the macro cell 100 and the pico cell 200.
  • the mobile station located in the edge region is considered to be greatly influenced by the directional beam transmitted from the macro base station 1. Therefore, by using the downlink communication quality related to the mobile station located in the edge region as an index, it is possible to suppress serious inter-cell interference caused by the directional beam from the macro base station 1.
  • the macro base station 1 uses the first communication based on the downlink communication quality of the pico cell 200 (including the communication quality of the macro cell 100 related to the HO mobile station handed over to the macro cell 100). An example of determining the radiation angle was given. In contrast, in the present embodiment, macro base station 1 determines the first radiation angle based on the downlink communication quality of macro cell 100 in addition to the downlink communication quality of pico cell 200.
  • the macro base station 1 according to the present embodiment is configured so that the degradation of the downlink communication quality of the macro cell 100 before and after the change of the radiation angle of the directional beam is suppressed within the reference range.
  • the radiation angle of 1 is determined.
  • the macro base station 1 according to the present embodiment significantly reduces the downlink communication quality of the macro cell 100 by adjusting the radiation angle of the directional beam for the purpose of suppressing interference with the pico cell 200. prevent.
  • FIG. 9 is a sequence diagram showing a specific example of the calibration procedure according to the present embodiment.
  • FIG. 9 shows a modification of the calibration procedure shown in FIG.
  • the processing in steps S41 to S43 is the same as the processing in steps S21 to S23 shown in FIG.
  • step S44 the calibration control unit 17 of the macro base station 1 acquires the downlink communication quality CQ_MACRO of the macro cell 100 while the directional beam for calibration is transmitted from the macro base station 1.
  • the communication quality CQ_MACRO ( ⁇ ) is acquired for each radiation angle ⁇ .
  • step S ⁇ b> 45 the calibration control unit 17 determines the first radiation angle using CQ_PICO ( ⁇ ) and CQ_MACRO ( ⁇ ) as a function of the directional beam radiation angle ⁇ of the macro base station 1.
  • the calibration control unit 17 performs the radiation with the maximum value of CQ_PICO ( ⁇ ) on condition that the deterioration amount of CQ_MACRO ( ⁇ ) compared to before the change of the radiation angle of the directional beam is suppressed within the reference range.
  • An angle ⁇ MAX is obtained.
  • the calibration control unit 17 may acquire CQ_MACRO ( ⁇ B ) for the radiation angle ⁇ B before calibration in step S44.
  • the calibration control part 17 should just be on condition that the degradation amount (DELTA) ((theta)) of downlink communication quality is less than S% of CQ_MACRO ((theta) B ).
  • This condition is expressed by the following formulas (6) and (7).
  • ⁇ ( ⁇ ) ⁇ CQ_MACRO ( ⁇ B ) ⁇ S / 100
  • ⁇ ( ⁇ ) CQ_MACRO ( ⁇ B ) ⁇ CQ_MACRO ( ⁇ ) ... (7)
  • step S46 the calibration control unit 17 changes the radiation angle in the normal communication mode S1 to ⁇ MAX.
  • the maximum value of CQ_PICO ( ⁇ )” and “angle ⁇ MAX” in steps S45 and S46 are “CQ_PICO ( ⁇ )” according to the quality index used as CQ_PICO ( ⁇ ). May be read as “minimum value of” and “angle ⁇ MIN”. Further, the signs of the equations (6) and (7) may be replaced according to the quality index used as CQ_MACRO ( ⁇ ).
  • FIG. 9 shows a modification of FIG. 5, the process described in the present embodiment, that is, determining the first radiation angle further based on the downlink communication quality of the macro cell 100 is shown in FIG.
  • the present invention can be similarly applied to the other calibration procedures shown in FIG. 7 or FIG.
  • the case where the two adjacent cells are the macro cell 100 and the pico cell 200 has been specifically described.
  • the technical ideas described in the first to fourth embodiments can be applied between any adjacent cells such as macro cells, pico cells, femto cells, macro cells and femto cells, or pico cells and femto cells.
  • the technical ideas described in the first to fourth embodiments are particularly effective in a HetNet (Heterogeneous Network) environment including cells having different coverage sizes. For example, considering the environment where the pico cell 200 is arranged in the macro cell 100 shown in the first to fourth embodiments, the coverage of the pico cell 200 is narrower than that of the macro cell 100.
  • HetNet Heterogeneous Network
  • the transmission energy by a directional beam concentrates on the macro mobile station located in the direction of the pico base station 2 (pico cell 200) when viewed from the macro base station 1, the problem becomes significant. That is, since many pico mobile stations continuously receive strong interference from the macro base station 1, the downlink communication quality of the pico mobile station continuously deteriorates, and the pico mobile station throughput deteriorates.
  • the technical ideas described in the first to fourth embodiments can cope with the interference problem that becomes prominent in such a HetNet environment.
  • the processing performed by the calibration control unit 17 described in the first to fourth embodiments may be realized using a semiconductor processing apparatus including Application Specific Integrated Circuit (ASIC).
  • ASIC Application Specific Integrated Circuit
  • These processes may be realized by causing a computer system including at least one processor (e.g. microprocessor, MPU, Digital Signal Processor (DSP)) to execute a program.
  • processor e.g. microprocessor, MPU, Digital Signal Processor (DSP)
  • DSP Digital Signal Processor
  • Non-transitory computer readable media include various types of tangible storage media (tangible storage medium). Examples of non-transitory computer-readable media include magnetic recording media (eg flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg magneto-optical discs), CD-ROMs (Read Only Memory), CD-Rs, CD-R / W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable ROM), flash ROM, RAM (random access memory)) are included.
  • the program may also be supplied to the computer by various types of temporary computer-readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.

Abstract

 一実施形態では、基地局(1)は、コードブックに基づくプリコーディングにより生成される複数の情報シンボルを処理することにより、アンテナアレイ(16)の複数のアンテナに対応付けられた複数の時間領域信号を生成するよう構成されている。さらに、基地局(1)は、調整部(14)及び制御部(17)を含む。調整部(14)は、アンテナアレイ(16)の相関に基づいて複数の時間領域信号から形成される指向性ビーム(B1~B4)の放射角度(θ)を調整する。制御部(17)は、指向性ビーム(B1~B4)の放射角度(θ)を第1の放射角度に決定するためのキャリブレーションを制御する。キャリブレーションは、放射角度を走査しながら指向性ビームを送信している間に計測された隣接セル(200)のダウンリンク通信品質に基づいて、第1の放射角度を決定することを含む。

Description

基地局装置、移動通信システム、送信ビーム制御方法、及びコンピュータ可読媒体
 本発明は、コードブックベースのプリコーディングを行う移動通信システムに関する。
 MISO(Multiple Input Single Output)、SIMO(Single Input Single Output)、及びMIMO(Multiple Input Multiple Output)を含むマルチアンテナ技術は、アンテナダイバーシチ、空間多重、若しくはビームフォーミング、又はこれらの組み合わせのために利用される。一部のMISOシステム及び一部のMIMOシステムは、コードブックベースのプリコーディングを利用して、空間多重又は送信ビームフォーミングを実現する。コードブックは、量子化された複数のプリコーディング行列を含む。なお、シングル送信レイヤ(ランク1送信)の場合、プリコーディング行列は、プリコーディング・ベクトル(i.e. アンテナウエイトベクトル)である。
 コードブックベースのプリコーディングは、受信局からのフィードバックの有無によって、クローズドループ・プリコーディングとオープンループ・プリコーディングに分類される。クローズドループ・プリコーディングでは、送信局は、受信局からフィードバックされるPMI(Precoding Matrix Indicator)を考慮してプリコーディング行列をコードブックの中から選択する。これに対して、オープンループ・プリコーディングは、受信局からフィードバックされるPMIを利用しない。オープンループ・プリコーディングでは、例えば、送信局は、コードブックに含まれているプリコーディング行列をサイクリックに使用する。
 コードブックに含まれる複数の量子化されたプリコーディング行列は、一般的に、メインビームの放射角度がそれぞれ異なる複数の量子化された指向性ビーム(ビームパタン)を達成する。言い換えると、各プリコーディング行列は、複数の量子化された指向性ビームのいずれかに対応する。
 上述したコードブックベースのプリコーディングを利用した空間多重または送信ビームフォーミングは、基地局及び移動局を含む移動通信システムにおいても利用されている。例えば、3GPP(3rd Generation Partnership Project)のRelease 8及びRelease 9で標準化されているLTE(Long Term Evolution)は、ダウンリンクのPDSCH(Physical Downlink Shared Channel)送信においてコードブックベースのプリコーディングを利用した空間多重または送信ビームフォーミングを使用する。具体的には、LTEのダウンリンク送信モード4"Closed-loop spatial multiplexing"は、クローズドループ・プリコーディングを使用するMIMO空間多重を行う。また、LTEのダウンリンク送信モード6"Closed-loop rank-1 precoding"は、クローズドループ・プリコーディングを使用する送信ビームフォーミングを行う。
 特許文献1は、コードブックベースのプリコーディングを利用した空間多重または送信ビームフォーミングを行う移動通信システムにおけるセル間干渉の抑制技術について開示している。特許文献1に記載された基地局は、隣接セルからPMI情報を受信する。隣接セルからのPMI情報は、隣接セルが使用を要請する又は使用制限を要請するプリコーディング行列に対応したPMIを含む。基地局は、隣接セルからのPMI情報を考慮して、基本コードブックから選択された少なくとも1つのプリコーディング行列を含む基本コードブック・サブセットを生成する。具体的には、例えば、隣接セルによって使用制限が要請されたプリコーディング行列は、基本コードブック・サブセットから除外される。基地局は、基本コードブック・サブセットに含まれるプリコーディング行列を示すインデックス情報を移動局に送信する。そして、基地局は、基本コードブック・サブセットを用いたプリコーディングを行い、空間多重または送信ビームフォーミングを伴うダウンリンク送信を行う。つまり、特許文献1は、基本コードブックから選択されたサブセットを利用してプリコーディンを行うものであり、隣接セルに大きな干渉を与えるプリコーディング行列をサブセットから除外する。これにより、基地局の送信ビームが隣接セルに及ぼす干渉が低減される。
国際公開第2010/050689号
 上述したように、特許文献1に開示された技術は、セル間干渉の低減のために、隣接セルから通知されたPMI情報を考慮して、基本コードブックに含まれる一部のプリコーディング行列の使用を停止することを特徴としている。特許文献1に開示された技術は、送信アンテナ数が多く、従って基本コードブックに含まれるプリコーディング行列の総数が多い場合に特に有効と考えられる。プリコーディング行列の総数が多い場合は、基地局の送信ビームの角度分解能が高いため、基地局が一部のプリコーディング行列(i.e. 一部の送信ビーム方向)の使用を停止しても、基地局が運用する自セルの通信品質(e.g. SINR(Signal to Interference plus Noise Ratio)、スループット、システム容量、又はカバレッジ)の低下は相対的に小さい。しかしながら、基本コードブックに含まれるプリコーディング行列の総数が少ない場合、一部のプリコーディング行列の使用を停止することは、基地局が運用する自セルの通信品質の低下を招くおそれがある。例えば、上述したLTEの2×2MIMOのケースでは、プリコーディング行列の総数はレイヤ数1のときに4個であり、レイヤ数2のときに3個である。このようにプリコーディング行列の総数が限られている場合は、基地局の送信ビームの角度分解能が低いため、一部のプリコーディング行列(i.e. 一部の送信ビーム方向)の使用を停止すると、自セルのシステム容量またはカバレッジ等の通信品質に影響を及ぼす可能性がある。
 本件の発明者等は、上述した知見に基づいて、特許文献1に開示されたコードブックのサブセットを利用する手法に代えて、又は特許文献1の手法と組み合わせて用いることができる他の手法を考案した。したがって、本発明の目的の1つは、コードブックベースのプリコーディングを行う場合に、隣接セルへの干渉を低減でき且つ自セルの通信品質の低下を抑制することが可能な基地局、移動通信システム、送信ビーム制御方法、及びプログラムを提供することである。
 本発明の第1の態様は、自セルを運用する基地局装置を含む。当該基地局装置は、プリコーディング部、信号処理部、調整部、及び制御部を含む。前記プリコーディング部は、複数の量子化されたプリコーディング行列を含むコードブックに基づくプリコーディングを行う。前記信号処理部は、前記プリコーディングにより生成される複数の情報シンボルを含む複数の送信シンボルを処理することにより、複数の送信アンテナに対応付けられた複数の時間領域信号を生成する。前記調整部は、前記複数の時間領域信号から前記複数の送信アンテナの相関に基づいて形成される指向性ビームの放射角度を調整する。前記制御部は、前記指向性ビームの放射角度を第1の放射角度に決定するためのキャリブレーションを制御する。ここで、前記キャリブレーションは、以下の(a)及び(b)を含む。
(a)前記指向性ビームの放射角度を走査しながら前記指向性ビームを送信すること、及び
(b)前記指向性ビームの放射角度を走査している間に計測された隣接セルのダウンリンク通信品質に基づいて前記第1の放射角度を決定すること。
 本発明の第2の態様は、移動通信システムを含む。当該移動通信システムは、第1及び第2のセルをそれぞれ運用する第1及び第2の基地局を含む。前記第1の基地局は、複数の量子化されたプリコーディング行列を含むコードブックに基づくプリコーディングを行うよう構成されている。また、前記第1の基地局は、前記プリコーディングにより生成される複数の情報シンボルを含む複数の送信シンボルを処理することにより、複数の送信アンテナに対応付けられた複数の時間領域信号を生成するよう構成されている。さらに、前記第1の基地局は、前記複数の時間領域信号から前記複数の送信アンテナの相関に基づいて形成される指向性ビームの放射角度を調整するよう構成されている。さらにまた、前記第1の基地局は、前記指向性ビームの放射角度を第1の放射角度に決定するためのキャリブレーションを制御するよう構成されている。ここで、前記キャリブレーションは、以下の(a)及び(b)を含む。
(a)前記指向性ビームの放射角度を走査しながら前記指向性ビームを送信すること、及び
(b)前記指向性ビームの放射角度を走査している間に計測された隣接セルのダウンリンク通信品質に基づいて前記第1の放射角度を決定すること。
 本発明の第3の態様は、自セルを運用する基地局装置による指向性ビーム放射角度の制御方法を含む。基地局装置は、プリコーディング部、信号処理部、及び調整部を含む。前記プリコーディング部は、複数の量子化されたプリコーディング行列を含むコードブックに基づくプリコーディングを行う。前記信号処理部は、前記プリコーディングにより生成される複数の情報シンボルを含む複数の送信シンボルを処理することにより、複数の送信アンテナに対応付けられた複数の時間領域信号を生成する。前記調整部は、前記複数の時間領域信号から前記複数の送信アンテナの相関に基づいて形成される指向性ビームの放射角度を調整する。
 当該制御方法は、
(a)前記指向性ビームの放射角度を走査しながら前記指向性ビームを送信すること、及び
(b)前記指向性ビームの放射角度を走査している間に計測された隣接セルのダウンリンク通信品質に基づいて、前記指向性ビームの放射角度を第1の放射角度に決定すること、
を含む。
 本発明の第4の態様は、上述した第3の態様に係る方法をコンピュータに行わせるためのプログラムを含む。
 上述した本発明の各態様によれば、コードブックベースのプリコーディングを行う場合に、隣接セルへの干渉を低減でき且つ自セルの通信品質の低下を抑制することが可能な基地局、移動通信システム、送信ビーム制御方法、及びプログラムを提供できる。
第1の実施形態に係る移動通信システムの構成例を示す概念図である。 第1の実施形態に係る移動通信システムの構成例を示す概念図である。 第1の実施形態に係るマクロ基地局の動作モードの一例を示す図である。 第1の実施形態に係るマクロ基地局の動作モードの一例を示す図である。 第1の実施形態に係るマクロ基地局による指向性ビーム放射角度のキャリブレーションの具体例を示すフローチャートである。 第1の実施形態に係るマクロ基地局の構成例を示すブロック図である。 第2の実施形態に係るマクロ基地局による指向性ビーム放射角度のキャリブレーションの具体例を示すシーケンス図である。 第2の実施形態に係るマクロ基地局による指向性ビーム放射角度のキャリブレーションの具体例を示すシーケンス図である。 第3の実施形態に係るマクロ基地局による指向性ビーム放射角度のキャリブレーションの具体例を示すシーケンス図である。 第3の実施形態に係るマクロ基地局による指向性ビーム放射角度のキャリブレーションの具体例を示すシーケンス図である。 第4の実施形態に係るマクロ基地局による指向性ビーム放射角度のキャリブレーションの具体例を示すシーケンス図である。
 以下では、具体的な実施形態について、図面を参照しながら詳細に説明する。各図面において、同一又は対応する要素には同一の符号が付されており、説明の明確化のため、必要に応じて重複説明は省略される。
<第1の実施形態>
 図1A及び1Bは、本実施形態に係る移動通信システムの構成例を示す概念図である。本実施形態の移動通信システムは、マクロ基地局1及びピコ基地局2を含む。マクロ基地局1はマクロセル100を運用し、ピコ基地局2はピコセル200を運用する。マクロセル100とピコセル200は互いに隣接している。図1A及び1Bに示す例では、ピコセル200は、マクロセル100に比べて小さいカバレッジを持ち、マクロセル100内に配置されている。なお、マクロセル100若しくはピコセル200又はこれら両方は、セクタ・セルであってもよい。例えば3セクタ構成の場合、マクロセル100は、120度の角度範囲をカバーするセクタ・セルであってもよい。
 マクロ基地局1は、複数のアンテナを含むアンテナアレイ16を有する。アンテナアレイ16は、セクタ・セルとしてのマクロセル100をカバーするために用いられてもよい。マクロ基地局1は、マクロセル100に属する少なくとも1つの移動局(以下、マクロ移動局)とのダウンリンク通信においてMISO又はMIMO伝送を行う。また、マクロ基地局1は、コードブックベースのプリコーディングを使用する。つまり、マクロ基地局1は、少なくとも一部のダウンリンク・サブキャリアに関してコードブックベースのプリコーディングを行うことにより、アンテナアレイ16から指向性ビームを放射する。指向性ビームは、空間多重若しくは単純なビームフォーミング、又はこれらの組み合わせのために利用される。マクロ基地局1が行うコードブックベースのプリコーディングは、オープンループ若しくはクローズドループ、又はこれら両方でもよい。
 マクロ基地局1が使用するコードブックは、複数の量子化されたプリコーディング行列を含む。プリコーディン行列は、サイズN×Nの行列である。ここで、Nは送信レイヤ数を意味する。また、Nは送信アンテナポート数を意味する。送信レイヤが1であるとき(N=1)、プリコーディング行列は、サイズN×1のプリコーディング・ベクトル(アンテナウエイトベクトル)となる。本明細書で用いる"プリコーディング行列"の用語は、プリコーディング・ベクトルを含む。
 コードブックに含まれる複数の量子化されたプリコーディング行列は、メインビームの放射角度がそれぞれ異なる複数の量子化された(離散的な)指向性ビームに対応する。指向性ビームは、特定の放射角度(放射方向)にエネルギーが集中したビームパタンである。既に述べた通り、プリコーディング行列の使用によって形成される指向性ビームは、隣接セルへの干渉を増大させるおそれがある。
 図1A及び1Bに表された例は、コードブックに含まれるプリコーディング行列の数が4である場合に、これら4つのプリコーディング行列を使用することによって形成される4つの指向性ビームB1~B4を示している。例えば、1番目のプリコーディング行列#1の使用によって指向性ビームB1が形成される。同様に、2番目~4番目のプリコーディング行列#2~4の使用によって、指向性ビームB2~B4がそれぞれ形成される。なお、図1A及び1Bは指向性ビームB1~B4のメインビームのみを示しているが、プリコーディングによって形成される指向性ビーム(ビームパタン)は、一般的に、メインビーム(メインローブ)の他にサブビーム(サイドローブ)を含む。
 図1Aの例では、指向性ビームB2の放射方向にピコセル200が存在する。したがって、指向性ビームB2が使用される度に、言い換えと2番目のプリコーディング行列#2が使用される度に、指向性ビームB2がピコセル200にダウンリンク干渉を及ぼす。これにより、ピコセル200のダウンリンク通信品質が低下するおそれがある。なお、コードブック・サブセットを使用し、2番目のプリコーディング行列#2をコードブック・サブセットから除外することによって、指向性ビームB2がピコセル200に及ぼすダウンリンク干渉を低減できる。しかしながら、図1Aの例に示すように、コードブックに含まれる複数のプリコーディング行列の総数が相対的に少ない場合、複数のプリコーディング行列に対応する複数の指向性ビームの角度分解能が粗い。したがって、図1Aに示すようなケースにおいて一部のプリコーディング行列の使用を停止することは、マクロセル100のシステム容量またはカバレッジ等の通信品質に影響を及ぼす可能性がある。
 したがって、本実施形態は、隣接セル(i.e. ピコセル200)への干渉を低減でき且つ自セル(i.e. マクロセル100)の通信品質の低下を抑制することが可能なマクロ基地局1による送信ビーム制御方法を提供する。なお、以下に説明される本実施形態に係る送信ビーム制御方法は、コードブック・サブセットを利用する手法に代えて、又はこれと組み合わせて利用することができる。
 本実施形態に係る送信ビーム制御方法のために、マクロ基地局1は、ビーム方向調整部14及びキャリブレーション制御部17を含む。ビーム方向調整部14は、アンテナアレイ16から放射されるコードブックに基づく複数の指向性ビームの放射角度θを調整するよう構成されている。ビーム方向調整部14は、コードブック(i.e. 複数の量子化されたプリコーディング行列)に対応する複数の量子化された指向性ビーム(e.g. ビームB1~B4)の角度分解能より細かい角度分解能で放射方向θを調整できるよう構成されている。さらに、ビーム方向調整部14は、コードブックに対応する複数の量子化された指向性ビームの放射角度θを一括して調整できるように構成されてもよい。
 ビーム方向調整部14は、例えば、アンテナアレイ16を構成する複数のアンテナに供給される複数の時間領域信号の移相を調整可能であればよい。したがって、ビーム方向調整部14は、例えば、複数のアンテナに対応した複数のデジタル移相器を含んでもよい。これに代えて、ビーム方向調整部14は、複数のアンテナに対応した複数のアナログ移相器を含んでもよい。また、ビーム方向調整部14は、複数のアンテナに供給される複数の時間領域信号に実時間遅延を与える時間遅延器を含んでもよい。また、指向性ビームの放射角度θの調整は、アンテナアレイ16を機械的に動作することによっても達成できる。つまり、ビーム方向調整部14は、機械式アンテナとしてのアンテナアレイ16の駆動機構を含んでもよい。ビーム方向調整部14は、以上に述べた複数の実装方式のうち2つ以上の組み合わせによって実装されてもよい。
 キャリブレーション制御部17は、アンテナアレイ16からの指向性ビームの放射角度θを第1の放射角度に決定するためのキャリブレーションを制御する。マクロ基地局1は、図2Aに示すように、 "通常通信モード(S1)"と "キャリブレーションモード(S2)"との間で切り替えて動作できるよう構成されている。通常通信モード(S1)では、マクロ基地局1は、キャリブレーションにより決定された第1の放射角度に固定された状態で、プリコーディングに従って複数の指向性ビーム(e.g. ビームB1~B4)を送信する。
 一方、キャリブレーションモード(S2)では、マクロ基地局1は、指向性ビームの放射角度を決定及び調整するためのキャリブレーションを行う。なお、ここで注意すべきは、キャリブレーションモード(S2)においても、さらに通常通信モード(S1)とキャリブレーションモード(S2)の切り替えが行われる間においても、マクロ基地局1は、マクロ移動局との間で通常の通信を継続できる点である。詳細は後述するが、本実施の形態に係るキャリブレーションは、コードブックの更新を必要としない。したがって、マクロ基地局1は、基地局と移動局の間の通常の通信を妨げることなく、キャリブレーション及び放射角度の調整を行うことができる。したがって、キャリブレーションモード(S2)は、図2Bに示されるように、通常通信モード(S1)の一部と考えることもできる。
 以上に述べたことから理解されるように、マクロ基地局1は、マクロ基地局1の運用開始後であっても、いつでもキャリブレーションモード(S2)を行うことができる。例えば、キャリブレーションモードS1は、マクロ基地局1による周期的な決定に応じて実施されてもよい。キャリブレーションモードS1は、オペレータによる指示に応じて、又は隣接基地局(e.g. ピコ基地局2)からの指示又は要求に応じて非周期的に実施されてもよい。キャリブレーションモードS1は、マクロ基地局1が新たな隣接セル又は隣接基地局の存在を検出したことに応じて実施されてもよい。また、キャリブレーションモードS1は、マクロ基地局1の起動時に実施されてもよい。
 キャリブレーション制御部17は、コードブックに基づく複数の量子化された指向性ビーム(e.g. 指向性ビームB1~B4)が隣接セル(i.e. ピコセル200)に与えるダウンリンク干渉を抑制するように第1の放射角度を決定すればよい。キャリブレーションによって決定された第1の放射角度は、コードブックベースのプリコーディングを含むマクロ移動局との通常の通信動作(i.e. 通常通信モードS1)のために、ビーム方向調整部14によってアンテナアレイ16による送信に適用される。例えば、図1B)に示されているように、キャリブレーション制御部17は、コードブックに基づく複数の指向性ビーム(ビームパタン)B1~B4の各々のメインビームの中心方向がピコセル200の位置している方位から逸れるように第1の放射角度を決定すればよい。
 続いて以下では、第1の放射角度を決定するためのキャリブレーションの具体例について説明する。図3は、キャリブレーションの具体例を示すフローチャートである。ステップS11では、マクロ基地局1は、指向性ビームをその放射角度を走査しながらアンテナアレイ16から送信する。マクロ基地局1は、テスト信号(テストシンボル)をプリコーディングせずに送信してもよいし、コードブックに含まれる複数のプリコーディグ行列を巡回的に使用しながら送信してもよい。放射角度の走査は、ビーム方向調整部14により行われる。さらに当該走査は、コードブック(i.e. 複数の量子化されたプリコーディング行列)に対応する複数の量子化された指向性ビーム(e.g. ビームB1~B4)の角度分解能より細かい角度分解能で行われる。ここで、複数の量子化された指向性ビーム(e.g. ビームB1~B4)の角度分解能とは、隣接する2つの指向性ビーム(e.g. ビームB1及びB2)の中心方向がなす角度を意味する。
 ステップS12では、キャリブレーション制御部17は、指向性ビームの放射角度を走査している間に計測された隣接セル(i.e. ピコセル200)のダウンリンク通信品質に基づいて、隣接セルへの干渉を抑制可能な第1の放射角度を決定 する。具体的には、キャリブレーション制御部17は、ピコセル200のダウンリンク通信品質が向上するように第1の放射角度を決定すればよい。ピコセル200のダウンリンク通信品質が相対的に良いことは、マクロセル100の指向性ビームがピコセル200に及ぼすダウンリンク干渉が相対的に小さいことを間接的に示していると考えられるためである。
 キャリブレーション制御部17は、放射角度の走査範囲において、ピコセル200のダウンリンク通信品質の最大値を与える角度を第1の放射角度として決定してもよい。なお、第1の放射角度は、キャリブレーション時の指向性ビーム走査の分解能に限定されず、さらに細かい分解能に基づいて決定されてもよい。具体的には、キャリブレーション制御部17は、ピコセル200のダウンリンク通信品質の複数の値を補間(内挿)することで得られる最大値に対応する放射角度を第1の放射角度として決定してもよい。
 ピコセル200のダウンリンク通信品質は、ピコ基地局2又はピコセル200に属する移動局(以下、ピコ移動局)によって取得されてもよい。例えば、マクロ基地局1は、ピコ基地局2とシグナリングを行い、ピコセル200のダウンリンク通信品質を示す情報をピコ基地局2から受信すればよい。ダウンリンク通信品質を示す情報の受信に代えて、マクロ基地局1は、ピコ基地局2により決定された放射角度情報を受信してもよい。具体的に述べると、ピコ基地局2は、キャリブレーション時のマクロ基地局1の放射角度情報を予め受信しておき、ピコセル200のダウンリンク通信品質が良好であった放射角度を判定し、判定した放射角度を示す情報をマクロ基地局1に返信してもよい。また、ピコ基地局2は、ピコセル200のダウンリンク通信品質が劣悪であった放射角度を示す情報を送信してもよい。なお、マクロ基地局1の放射角度情報は、角度を明示する必要はなく、例えばキャリブレーションの実行順序を示すシーケンス番号でもよい。
 ステップS12で参照されるピコセル200のダウンリンク通信品質は、様々なバリエーションが考えられる。例えば、ピコセル200のダウンリンク通信品質は、以下に示す(a)~(f)のうち少なくとも1つを含む。なお、リソースブロックとは、LTEにおける無線リソース(サブキャリア及びタイムスロット)の割り当て単位であり、1リソースブロックは、12サブキャリア(15kHz×12=180KHz)及び7OFDMシンボル(0.5ms)を含む。
(a)ピコ基地局2からピコ移動局へのダウンリンク送信ビット数;
(b)ピコ基地局2からピコ移動局へのダウンリンク送信ビットレート;
(c)ピコ基地局2が使用するダウンリンク無線リソース単位(e.g. リソースブロック、サブキャリア、又はタイムスロット)当たりの送信ビット数;
(c)ピコ基地局2がダウンリンク送信に使用する変調方式(1シンボルあたりのビット数);
(d)ダウンリンク無線リソース(e.g. リソースブロック、サブキャリア、又はタイムスロット)の使用率、
(e)ピコ移動局におけるSINRの平均値;
(f)ピコ移動局における干渉電力の平均値。
 なお、ピコセル200のダウンリンク通信品質は、ピコ基地局2を介さずにマクロ基地局1自身が取得することもできる。この場合、マクロ基地局1は、キャリブレーションを実行する際に、ピコ移動局をピコセル200からマクロセル100に強制的にハンドオーバさせ、ピコセル200からマクロセル100にハンドオーバしてきた移動局とマクロ基地局1の間のダウンリンク通信品質を"ピコセル200のダウンリンク通信品質"とみなして用いればよい。この手法の具体例については、後述する第3の実施形態において詳細に説明する。
 続いて以下では、マクロ基地局1の構成例についてより詳細に説明する。ここでは、本実施形態の適用先がLTEシステムである場合を例にとって説明する。図4は、LTEの基地局としてのマクロ基地局1の構成例を示すブロック図である。図4に示されたプリコーディング部11、リソースエレメント(RE)マッパ12、OFDM(Orthogonal Frequency Division Multiplexing)部13、RF(Radio Frequency)部15、及びアンテナアレイ16は、LTE基地局が有する一般的な要素と同様とすればよい。
 LTEでは、ユーザーデータを送信するDLSCH(Downlink Shared Channel)に対してプリコーディングが行われる。すなわち、プリコーディング部11は、図示されていないレイヤマッパからNレイヤの変調シンボルベクトルSを受信する。シンボルベクトルSのN個のベクトル要素の各々は、ユーザーデータに対応する変調シンボルを含む。なお、送信レイヤが1であるとき(N=1)、シンボルベクトルSは1要素のみを含む。
 プリコーディング部11は、コードブックから選択されたサイズN×Nのプリコーディング行列をシンボルベクトルSに演算することにより、シンボルベクトルX1を生成する。プリコード後のシンボルベクトルX1の要素数は、送信アンテナポート数Nと一致する。なお、送信アンテナポートは物理アンテナに対応していなくてもよい。LTEにおいて、送信アンテナポートは、共通リファレンス信号(CRS(cell-specific reference signal 又は common reference signals))の送信と対応付けられる。同じ共通リファレンス信号CRSを送信する複数の物理アンテナは、1つのアンテナポートに対応する。
 アンテナポートごとに設けられた複数のREマッパ12は、プリコード後のシンボルベクトルX1をリソースエレメント(つまり、サブキャリア)にマッピングする。
 リソースエレメントにマッピングされたシンボルベクトルX2は、リファレンスシンボル・ベクトルRと共にOFDM部13に供給される。ベクトルRは、アンテナポート数Nと同じ数の共通リファレンス信号CRS#1~CRS#Nのシンボルを含む。プリコーディングを受けないリファレンスシンボル、つまり共通リファレンス信号CRS#1~CRS#Nは、移動局によるチャネル推定に用いられるほか、PDSCHの復調のための位相および電力(振幅)のリファレンスとして用いられる。
 アンテナポートごとに設けられた複数のOFDM部13は、周波数領域の信号、つまりシンボルベクトルX2及びリファレンスシンボル・ベクトルRに対するIFFT(inverse Fast Fourier transform)演算を行うことによって、複数の(つまりN本の)時間領域信号Y(t)を生成する。
 RF部15は、時間領域信号Y(t)に対する周波数アップコンバージョン及び増幅を行い、増幅後の信号をアンテナアレイ16に供給する。アンテナアレイ16は、複数のアンテナ161を含む。なお、各アンテナ161は、複数のアンテナ素子を含むサブアレイであってもよい。
 さらに、図4は、ビーム方向調整部14及びキャリブレーション制御部17の具体例を示している。図4の例では、ビーム方向調整部14は、複数のOFDM部13と複数のRF部15の間に配置された複数のデジタル移相器141を含む。複数のデジタル移相器141は、指向性ビームの放射角度θを調整するために、時間領域信号Y(t)に対して位相シフトを与える。なお、既に述べた通り、ビーム方向調整部14の実装には、様々なバリエーションが存在する。例えば、ビーム方向調整部14は、複数のアナログ移相器により構成されてもよいし、複数の時間遅延器により構成されてもよい。複数のアナログ移相器又は複数の時間遅延器は、複数のRF部15とアンテナアレイ16の間に配置されてもよい。また、各アンテナ161がサブアレイである場合、複数のアナログ移相器又は複数の時間遅延器は、サブアレイ内に配置されてもよい。また、ビーム方向調整部14は、OFDM部13によるIFFT演算の前に、周波数領域データであるシンボルベクトルX2及びリファレンスシンボル・ベクトルRを位相シフトしてもよい。さらにまた、ビーム方向調整部14は、機械式アンテナとしてのアンテナアレイ16の駆動機構を含んでもよい。
 図4のキャリブレーション制御部17は、上述したキャリブレーションの実施のために、そしてキャリブレーションにより決定された第1の放射角度を適用するために、ビーム方向調整部14を制御する。また、キャリブレーション制御部17は、キャリブレーションに必要なシグナリングのために、隣接基地局(i.e. ピコ基地局2)と通信する。
 上述したように、本実施形態に係るマクロ基地局1は、ビーム方向調整部14及びキャリブレーション制御部17を有する。ビーム方向調整部14は、例えば、プリコーディング後の複数の送信シンボルに対する位相シフト、複数の時間領域信号の位相シフト若しくは実時間遅延、又はアンテナアレイ16の機械的駆動を行うよう構成されている。これにより、ビーム方向調整部14は、アンテナアレイ16に含まれる複数のアンテナの相関に基づいて複数の時間領域信号から形成される指向性ビームの放射角度θを調整できる。
 また、キャリブレーション制御部17は、通常通信モードS1にて使用される指向性ビームの放射角度(i.e. 第1の放射角度)を決定するためのキャリブレーションを制御するよう構成されている。キャリブレーション制御部17は、例えば、ピコセル200に及ぼすダウンリンク干渉が低減されるように第1の放射角度を決定できる。言い換えると、キャリブレーション制御部17は、例えば、コードブックに基づく複数の指向性ビーム(e.g. ビームB1~B4)の各々のメインビームの中心方向がピコセル200の位置している方位から逸れるように第1の放射角度を決定できる。
 つまり、マクロ基地局1は、複数の指向性ビームが隣接セルに及ぼすダウンリンク干渉を抑制するために、コードブックに含まれる複数の量子化されたプリコーディング行列の使用を停止することを必要としない。したがって、マクロ基地局1は、コードブックベースのプリコーディングを行う場合に、隣接セル(i.e. ピコセル200)への干渉を低減でき且つ自セル(i.e. マクロセル100)の通信品質の低下を抑制することができる。
 さらに、クローズドループ・プリコーディングの場合、コードブックの更新は、移動局にシグナルされる必要がある。したがって、基本コードブックからコードブック・サブセットを選択する手法は、基地局と移動局のシグナリングを増加させる。また、基地局と移動局が通常の通信を行なっている間にコードブックを変更することは難しい。これに対して、本実施の形態で述べたキャリブレーション及び放射角度の調整は、コードブックの更新を必要としない。したがって、マクロ基地局1は、基地局と移動局の間の通常の通信を妨げることなく、キャリブレーション及び放射角度の調整を行うことができる。つまり、本実施形態に係るキャリブレーション及び放射角度の調整は、マクロ基地局1の運用開始後であっても、周期的又は非周期的にいつでも行うことができるという利点がある。
 また、本実施形態では、ビーム方向調整部14による放射角度の調整および走査を、コードブック(i.e. 複数の量子化されたプリコーディング行列)に対応する複数の量子化された指向性ビームの角度分解能より細かい角度分解能で行うことについて説明した。これにより、複数の量子化された指向性ビームの放射方向を細かく調整でき、複数の指向性ビームの放射方向をピコセル200の位置している方位から逸らすことが容易となる。
<第2の実施形態>
 本実施の実施形態は、第1の実施形態で説明したキャリブレーションの具体例を示す。本実施の形態に係る移動通信システムの構成は、図1A及び1Bに示した第1の実施形態と同様とすればよい。本実施の形態では、キャリブレーション中のピコセル200のダウンリンク通信品質はピコ基地局2により取得される。
 図5は、本実施の形態に係るキャリブレーション手順の具体例を示すシーケンス図である。ステップS21では、マクロ基地局1は、キャリブレーション制御部17による制御のもとで、放射角度θを走査しながら指向性ビームを送信する。
 ステップS22では、ピコ基地局2は、マクロ基地局1からキャリブレーションのための指向性ビームが送信されている間におけるピコセル200のダウンリンク通信品質CQ_PICOを取得する。通信品質CQ_PICO(θ)は、放射角度θ毎に取得される。通信品質CQ_PICO(θ)の取得数、取得する時間間隔、取得する角度範囲、角度分解能などは、マクロ基地局1とピコ基地局2の間のシグナリングによって適宜決定すればよい。
 ステップS23では、ピコ基地局2は、CQ_PICO(θ)を示す情報をマクロ基地局1に送信する。ステップS23における送信は、角度毎のCQ_PICO(θ)を取得する度に行われてもよい。また、ピコ基地局2は、指向性ビームの走査が終了したことに応じて、取得した全てのCQ_PICO(θ)をまとめて送信してもよい。
 ステップS24では、キャリブレーション制御部17は、マクロ基地局1の指向性ビーム放射角度θの関数としてのCQ_PICO(θ)の最大値に対応する放射角度θMAXを計算する。既に述べたように、放射角度θMAXは、CQ_PICO(θ)の複数の値(サンプル)の間の補間値(内挿値)に対応する角度であってもよい。
 ステップS25では、キャリブレーション制御部17は、通常通信モードS1における放射角度をθMAXに変更する。なお、ステップS24及びS25における「CQ_PICO(θ)の最大値」及び「角度θMAX」は、CQ_PICO(θ)の値が大きいほどピコセル200のダウンリンク通信品質が良いことを想定している。しかしながら、キャリブレーションにおいて計測する品質指標によっては、CQ_PICOの値が小さいほどピコセル200のダウンリンク通信品質が良い場合もある。このような品質指標の1つは、上述した"リソースブロックの使用率"である。リソースブロックの使用率は、ダウンリンク通信品質が良いために1シンボル当たりのビット数が多い(符号間距離の小さい)変調方式を使用できる場合に、相対的に小さくなる。したがって、リソースブロックの使用率等を使用する場合には、ステップS24及びS25における「CQ_PICO(θ)の最大値」及び「角度θMAX」は、「CQ_PICO(θ)の最小値」及び「角度θMIN」と読み替えればよい。
 図6は、図5に示したキャリブレーション手順のより具体的な例を示すシーケンス図である。図6の例では、マクロ基地局1は、合計N個の放射角度θ1~θNで指向性ビームを送信し、N個の通信品質CQ_PICO(θ1)~CQ_PICO(θN)をピコ基地局2から取得する。
 ステップS211-1では、マクロ基地局1は、ビーム方向調整部14によって放射角度をθ1にセットする。例えば、ビーム方向調整部14が複数のデジタル移相器を含む場合、ビーム方向調整部14は、θ1に対応する位相係数を時間領域のベースバンドOFDM信号(e.g. 図4のY(t))に乗算すればよい。
 θ1に対応する位相係数は、アンテナアレイ16に含まれる送信アンテナ毎に異なる。例えば、アンテナアレイ16が2アンテナアレイである場合、位相係数S(k,N)は以下の式(1)及び(2)を用いて算出できる。式(1)及び(2)において、kはアンテナ番号(k=0,1)である。iは、放射角度θのインデックスである(i=1,2,・・・、N)。また、λは送信波長であり、Dはアンテナ間距離である。
 S(k,i)=cosφ(k,i)+j sinφ(k,i)
                                                        ・・・(1)
 φ(k,i)=2πkD sinθi/λ ・・・(2)
 ステップS212-1では、マクロ基地局1のキャリブレーション制御部17は、角度変更通知をピコ基地局2に送信する。角度変更通知は、指向性ビームの放射角度θ1を示す。ステップS213-1では、マクロ基地局1は、指向性ビームを送信する。
 ステップS22-1では、ピコ基地局2は、CQ_PICO(θ1)を取得する。例えば、ピコ基地局2は、角度変更通知を受信してから所定期間の間におけるピコセル200のダウンリンク通信品質を計測すればよい。既に述べたように、ピコセル200のダウンリンク通信品質には様々なバリエーションが存在する。例えば、ピコ基地局2は、所定期間の間におけるダウンリンク送信ビット数、又は平均送信ビットレートを取得すればよい。ダウンリンク送信ビット数(又は平均送信ビットレート)は、ピコセル200に属する全てのピコ移動局に関して計測されてもよい。また、ダウンリンク送信ビット数、又は平均送信ビットレートは、ピコ移動局1台あたりの平均値として計算されてもよい。
 ステップS23-1では、ピコ基地局2は、CQ_PICO(θ1)をマクロ基地局1に通知する。
 マクロ基地局1及びピコ基地局2は、放射角度θ1に関して行った処理(S211-1、S212-1、S213-1、S22-1、及びS23-1)を残りの角度θ2~θNに関して順次行う。図6のステップS24及びS25における処理は、図5のステップS24及びS25における処理と同様である。
 なお、図6の例では、角度変更通知がマクロ基地局1からピコ基地局2に送信されている(ステップS212-1~N)。しかしながら、当該通知は省略されてもよい。この場合、マクロ基地局1は、ピコ基地局2とのシグナリングによって予め取り決めておいたサイクルに従って放射角度θ1~θNを順次変更すればよい。
<第3の実施形態>
 本実施の実施形態は、第1の実施形態で説明したキャリブレーションの他の具体例を示す。本実施の形態に係る移動通信システムの構成は、図1A及び1Bに示した第1の実施形態と同様とすればよい。本実施の形態では、キャリブレーション中のピコセル200のダウンリンク通信品質はマクロ基地局1により取得される。すなわち、マクロ基地局1は、キャリブレーションを実行する際に、ピコ移動局をピコセル200からマクロセル100に強制的にハンドオーバさせる。そして、マクロ基地局1は、ピコセル200からマクロセル100にハンドオーバしてきた移動局(以下、HO移動局)に関するマクロセル100のダウンリンク通信品質を"ピコセル200のダウンリンク通信品質"とみなす。
 図7は、本実施の形態に係るキャリブレーション手順の具体例を示すシーケンス図である。ステップS31では、マクロ基地局1のキャリブレーション制御部17は、ピコ移動局をピコセル200からマクロセル100に強制的にハンドオーバさせるために、CIO(Cell Individual Offset)の変更を示す通知をピコ基地局2に送信する。CIOは、セル個別の電力オフセット値である。LTEでは、CIOは、隣接セルリスト(ネイバーリスト)と共に又はその一部として基地局から移動局に通知される。CIOは、移動局のハンドオーバを制御するパラメタ(ハンドオーバ・パラメタ)の1つである。また、CIOは、CRE(Cell Range Expansion)と呼ばれるセルエッジの制御のためのパラメータの1つである。具体的には、CIOは、移動局が隣接セルの受信電力(RSRP(Reference Signal Received Power))の測定値に基づいてハンドオーバをトリガする際に、隣接セルの受信電力に対するオフセットとして使用される。1つの定義では、CIOは、隣接セル(i.e. マクロセル100)のRSRPからサービングセル(i.e. ピコセル200)のRSRPを引いた値に対する閾値として定義される。すなわち、以下の式(3)を満たす場合に、ピコ移動局はピコセル200からマクロセル100へのハンドオーバをトリガする。
 RSRP-RSRPP >= CIO ・・・(3)
 ステップS32では、ピコ基地局2は、マクロ基地局1からのCIO変更通知に応じて、隣接のマクロセル100に対するCIOの変更をピコ移動局に通知する。式(3)に従うと、マクロセル100に対するCIOを小さくする(例えば最小値とする)ことで、ピコセル200からマクロセル100へのピコ移動局のハンドオーバが誘導される。
 ステップS33では、マクロ基地局1は、ステップS31及びS32によるCIO変更に応じて、ピコセル200からマクロセル100にハンドオーバしたHO移動局を特定する。マクロ基地局1は、例えば、以下の式(4)及び式(5)を共に満足する移動局をHO移動局であると判定すればよい。ここで、CIOBEFOREは、キャリブレーション実施前、つまりステップS31及びS32が行われる前にピコ基地局2によってマクロセル100に対して設定されていたCIOである。一方、CIOAFTERは、キャリブレーションのために、ステップS31及びS32において更新された後のCIOである。つまり、式(4)及び式(5)を共に満足するマクロ移動局は、キャリブレーションに伴うCIOの変更が行われたために、ピコセル200からマクロセル100へのハンドオーバ条件を満足した移動局に相当する。
 RSRP-RSRPP < CIOBEFORE ・・・(4)
 RSRP-RSRPP >= CIOAFTER ・・・(5)
 ステップS34では、マクロ基地局1は、キャリブレーション制御部17による制御のもとで、放射角度θを走査しながら指向性ビームを送信する。
 ステップS35では、マクロ基地局1は、ステップS33で特定されたHO移動局に関するマクロセル100のダウンリンク通信品質CQ_HOUEを取得する。通信品質CQ_HOUE(θ)は、放射角度θ毎に取得される。CQ_HOUEとしては、例えば、HO移動局に対するダンリンク送信ビット数、送信ビットレート、HO移動局におけるSINRを用いればよい。もちろん、他の品質指標がCQ_HOUEとして使用されてもよい。CQ_HOUEは、全てのHO移動局に関する合計値でもよいし、HO移動局1台当たりの平均値であってもよい。
 ステップS35では、キャリブレーション制御部17は、マクロ基地局1の指向性ビーム放射角度θの関数としてのCQ_HOUE(θ)の最小値に対応する放射角度θMINを計算する。放射角度θMINは、CQ_HOUE(θ)の複数の値の間の補間値に対応する角度であってもよい。
 ステップS37では、キャリブレーション制御部17は、ピコ基地局2において設定されているマクロセル100に関するCIOをキャリブレーション前の値(CIOBEFORE)に戻すために、CIO変更通知をピコ基地局2に送信する。ステップS38では、ピコ基地局2は、ステップS36のCIO変更通知に応じて、隣接のマクロセル100に対するCIOの変更をピコ移動局に通知する。
 ステップS39では、キャリブレーション制御部17は、通常通信モードS1における放射角度をθMINに変更する。なお、ステップS36及びS39における「CQ_HOUE(θ)の最小値」及び「角度θMIN」は、CQ_HOUE(θ)の値が大きいほどHO移動局に関するマクロセル100のダウンリンク通信品質が良いことを想定している。しかしながら、キャリブレーションにおいて計測する品質指標によっては、CQ_HOUEの値が小さいほどピコセル200のダウンリンク通信品質が良い場合もある。この場合には、ステップS36及びS39における「CQ_HOUE(θ)の最小値」及び「角度θMIN」は、「CQ_HOUE(θ)の最大値」及び「角度θMAX」と読み替えればよい。
 なお、ステップS31において、マクロ基地局1は、マクロ移動局に通知するピコセル200に関するCIOを変更してもよい。具体的には、マクロセル100からピコセル200へのマクロ移動局のハンドオーバが発生し難くなるように、ピコセル200に関するCIOを大きくすればよい。これにより、キャリブレーション実施中におけるマクロセル100とピコセル200の間でのハンドオーバ繰り返しが低減される。したがって、HO移動局に関するマクロセル100の通信品質を指標として用いるキャリブレーションを精度よく行うことができる。なお、この場合、ステップS37では、マクロ移動局に通知するピコセル200に関するCIOの値をもとに戻すとよい。
 図8は、図7に示したキャリブレーション手順のより具体的な例を示すシーケンス図である。図8の例では、マクロ基地局1は、合計N個の放射角度θ1~θNで指向性ビームを送信し、N個の通信品質CQ_HOUE(θ1)~CQ_HOUE(θN)を取得する。
 ステップS34-1では、マクロ基地局1は、ビーム方向調整部14によって放射角度をθ1にセットし、指向性ビームを送信する。ステップS35-1では、マクロ基地局1は、CQ_HOUE(θ1)を取得する。マクロ基地局1は、放射角度θ1に関して行った処理(S34-1及びS35-1)を残りの角度θ2~θNに関して順次行う。図8のステップS36~S39における処理は、図7のステップS36~S39における処理と同様である。
 上述したように、本実施形態で説明したキャリブレーション手順では、ピコセル200からマクロセル100にハンドオーバしてきたHO移動局に関するマクロセル100のダウンリンク通信品質を"ピコセル200のダウンリンク通信品質"とみなす。これにより、図5(又は図6)と図7(又は図8)の対比から明らかであるように、マクロ基地局1によるキャリブレーションのためにピコ基地局2が行うべき処理を軽減できる。HO移動局に関するマクロセル100のダウンリンク通信品質は、ピコ基地局2を介すること無くマクロ基地局1自身によって取得できるためである。
 さらに、本実施形態で説明したキャリブレーション手順によれば、マクロセル100とピコセル200の間のエッジ領域に位置する移動局に関するダウンリンク通信品質を評価することができる。エッジ領域に位置する移動局は、マクロ基地局1から送信される指向性ビームの影響が大きいと考えられる。したがって、エッジ領域に位置する移動局に関するダウンリンク通信品質を指標として用いることで、マクロ基地局1からの指向性ビームに起因する深刻なセル間干渉を抑制できる。
<第4の実施形態>
 本実施形態では、第1~第3の実施形態で説明したキャリブレーションの変形例を示す。本実施の形態に係る移動通信システムの構成は、図1A及び1Bに示した第1の実施形態と同様とすればよい。第1~第3の実施形態では、マクロ基地局1が、ピコセル200のダウンリンク通信品質(ただし、マクロセル100にハンドオーバしてきたHO移動局に関するマクロセル100の通信品質を含む)に基づいて第1の放射角度を決定する例を示した。これに対して、本実施の形態では、マクロ基地局1は、ピコセル200のダウンリンク通信品質に加えて、マクロセル100のダウンリンク通信品質にさらに基づいて、第1の放射角度を決定する。
 すなわち、本実施形態に係るマクロ基地局1は、指向性ビームの放射角度の変更前後でのマクロセル100のダウンリンク通信品質の劣化が基準範囲内に抑えられることを条件として、指向性ビームの第1の放射角度を決定する。これにより、本実施形態に係るマクロ基地局1は、ピコセル200に対する干渉の抑制を目的とする指向性ビームの放射角度の調整が行われることによって、マクロセル100のダウンリンク通信品質が著しく低下することを防ぐ。
 図9は、本実施の形態に係るキャリブレーション手順の具体例を示すシーケンス図である。なお、図9は、図5に示されたキャリブレーション手順の変形例を示している。ステップS41~S43における処理は、図5に示されたステップS21~S23における処理と同様である。
 ステップS44では、マクロ基地局1のキャリブレーション制御部17は、マクロ基地局1からキャリブレーションのための指向性ビームが送信されている間におけるマクロセル100のダウンリンク通信品質CQ_MACROを取得する。通信品質CQ_MACRO(θ)は、放射角度θ毎に取得される。
 ステップS45では、キャリブレーション制御部17は、マクロ基地局1の指向性ビーム放射角度θの関数としてのCQ_PICO(θ)及びCQ_MACRO(θ)を用いて第1の放射角度を決定する。つまり、キャリブレーション制御部17は、指向性ビームの放射角度の変更前と比べたCQ_MACRO(θ)の劣化量が基準範囲内に抑えられることを条件として、CQ_PICO(θ)が最大値となる放射角度θMAXを求める。例えば、キャリブレーション制御部17は、ステップS44にて、キャリブレーション前の放射角度θについてもCQ_MACRO(θ)を取得すればよい。そして、キャリブレーション制御部17は、ダウンリンク通信品質の劣化量Δ(θ)がCQ_MACRO(θ)のS%以内であることを条件とすればよい。この条件は、以下の式(6)及び式(7)で表される。
 Δ(θ) =< CQ_MACRO(θ)×S/100 ・・・(6)
 Δ(θ) =CQ_MACRO(θ)-CQ_MACRO(θ)
                         ・・・(7)
 ステップS46では、キャリブレーション制御部17は、通常通信モードS1における放射角度をθMAXに変更する。なお、図5において説明したのと同様に、CQ_PICO(θ)として用いる品質指標に応じて、ステップS45及びS46における「CQ_PICO(θ)の最大値」及び「角度θMAX」は、「CQ_PICO(θ)の最小値」及び「角度θMIN」と読み替えられてもよい。また、CQ_MACRO(θ)として用いる品質指標に応じて、式(6)及び(7)の符号が読み替えられてもよい。
 なお、図9には図5の変形例を示したが、本実施形態で説明した処理、つまりマクロセル100のダウンリンク通信品質にさらに基づいて第1の放射角度を決定することは、図6、図7、又は図8に示した他のキャリブレーション手順に対しても同様に適用できる。
<その他の実施形態>
 第1~第4の実施形態では、隣接する2つのセルがマクロセル100とピコセル200である場合について具体的に説明した。しかしながら、第1~第4の実施形態で説明した技術思想は、マクロセル同士、ピコセル同士、フェムトセル同士、マクロセルとフェムトセル、又はピコセルとフェムトセル等の任意の隣接セル間に適用することができる。しかしながら、第1~第4の実施形態で説明した技術思想は、カバレッジサイズが互いに異なるセルを含むHetNet(Heterogeneous Network)環境において特に有効である。例えば、第1~第4の実施形態で示したマクロセル100内にピコセル200が配置された環境を考えると、ピコセル200のカバレッジはマクロセル100のそれに比べて狭い。したがって、マクロ基地局1から見てピコ基地局2(ピコセル200)の方向に位置するマクロ移動局に指向性ビームによる送信エネルギーが集中した場合に問題が顕著となる。すなわち、多くのピコ移動局はマクロ基地局1から強い干渉を継続的に受けるためにピコ移動局のダウンリンク通信品質が継続的に劣化し、ピコ移動局のスループットが劣化する問題が発生する。第1~第4の実施形態で説明した技術思想は、このようなHetNet環境において顕著となる干渉問題に対処することができる。
 第1~第4の実施形態で説明したキャリブレーション制御部17により行われる処理は、Application Specific Integrated Circuit(ASIC)を含む半導体処理装置を用いて実現されてもよい。また、これらの処理は、少なくとも1つのプロセッサ(e.g. マイクロプロセッサ、MPU、Digital Signal Processor(DSP))を含むコンピュータシステムにプログラムを実行させることによって実現してもよい。具体的には、図3、図5~9の少なくとも1つに示されたキャリブレーション制御部17に関するアルゴリズムをコンピュータシステムに行わせるための命令群を含む1又は複数のプログラムを作成し、当該プログラムをコンピュータに供給すればよい。
 このプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(random access memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
 さらに、本発明は上述した実施形態のみに限定されるものではなく、既に述べた本発明の要旨を逸脱しない範囲において種々の変更が可能であることは勿論である。
 この出願は、2012年3月29日に出願された日本出願特願2012-076567を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1 マクロ基地局
2 ピコ基地局
11 プリコーディング部
12 リソースエレメント・マッパ
13 OFDM部
14 ビーム方向調整部
15 RF(Radio Frequency)部
16 アンテナアレイ
17 キャリブレーション制御部
100 マクロセル
141 移相器
161 アンテナ
200 ピコセル
 レイヤ数
 送信アンテナ数(送信アンテナポート数)
CRS#1~CRS#N 共通リファレンス信号

Claims (43)

  1.  自セルを運用する基地局装置であって、
     複数の量子化されたプリコーディング行列を含むコードブックに基づくプリコーディングを行うプリコーディング部と、
     前記プリコーディングにより生成される複数の情報シンボルを含む複数の送信シンボルを処理することにより、複数の送信アンテナに対応付けられた複数の時間領域信号を生成する信号処理部と、
     前記複数の時間領域信号から前記複数の送信アンテナの相関に基づいて形成される指向性ビームの放射角度を調整する調整部と、
     前記指向性ビームの放射角度を第1の放射角度に決定するためのキャリブレーションを制御する制御部と、
    を備え、
     前記キャリブレーションは、
     前記指向性ビームの放射角度を走査しながら前記指向性ビームを送信すること、及び
     前記指向性ビームの放射角度を走査している間に計測された隣接セルのダウンリンク通信品質に基づいて前記第1の放射角度を決定すること、
    を含む、
    基地局装置。
  2.  前記走査は、前記複数の量子化されたプリコーディング行列に対応する複数の量子化された指向性ビームの角度分解能より細かい角度分解能で行われる、請求項1に記載の基地局装置。
  3.  前記第1の放射角度は、前記基地局装置が前記自セルに属する移動局との間で前記指向性ビームを用いて通信を行う通常通信モードにおいて使用される、請求項1又は2に記載の基地局装置。
  4.  前記複数の送信シンボルは、前記プリコーディングを受けていない複数の参照シンボルをさらに含む、請求項1~3のいずれか1項に記載の基地局装置。
  5.  前記調整部は、前記複数の量子化されたプリコーディング行列に対応する複数の量子化された指向性ビームの放射角度を一括して調整する、請求項1~4のいずれか1項に記載の基地局装置。
  6.  前記制御部は、前記複数の量子化された指向性ビームが前記隣接セルに与える干渉を抑制するように前記第1の放射角度を決定する、請求項1~5のいずれか1項に記載の基地局装置。
  7.  前記調整部は、前記放射角度を調整するために、周波数領域信号としての前記複数の送信シンボルに位相シフトを与える、又は前記複数の時間領域信号に位相シフト又は時間遅延を与える、請求項1~6のいずれか1項に記載の基地局装置。
  8.  前記基地局装置は、前記キャリブレーションを実施するキャリブレーションモードと、前記調整部によって前記第1の放射角度が適用された状態で前記自セルに属する移動局との間で前記指向性ビームを用いて通信を行う通常通信モードとで動作できるよう構成されている、請求項1~7のいずれか1項に記載の基地局装置。
  9.  前記隣接セルのダウンリンク通信品質は、前記隣接セルに属する移動局に関する第1のダウンリンク通信品質を含み、
     前記制御部は、前記第1のダウンリンク通信品質を示す情報を隣接基地局から受信する、請求項1~8のいずれか1項に記載の基地局装置。
  10.  前記制御部は、前記第1のダウンリンク通信品質が向上するように前記第1の放射角度を決定する、請求項9に記載の基地局装置。
  11.  前記隣接セルのダウンリンク通信品質は、前記キャリブレーションに際して前記隣接セルから前記自セルにハンドオーバした移動局に関する前記自セルの第2のダウンリンク通信品質を含む、請求項1~8のいずれか1項に記載の基地局装置。
  12.  前記制御部は、前記キャリブレーションに際して、移動局のハンドオーバ挙動に影響を与えるハンドオーバ・パラメタを変更する、請求項11に記載の基地局装置。
  13.  前記制御部は、前記第2のダウンリンク通信品質が低下するように前記第1の放射角度を決定する、請求項11又は12に記載の基地局装置。
  14.  前記制御部は、前記指向性ビームの放射角度を走査している間に計測された前記自セルのダウンリンク通信品質にさらに基づいて、前記第1の放射角度を決定する、請求項1~13のいずれか1項に記載の基地局装置。
  15.  前記制御部は、前記自セルのダウンリンク通信品質が所定の基準以上となるように前記第1の放射角度を決定する、請求項14に記載の基地局装置。
  16.  前記複数の送信アンテナは、複数のアンテナポートである、請求項1~15のいずれか1項に記載の基地局装置。
  17.  前記ダウンリンク通信品質は、スループット、SINR(Signal to Interference plus Noise Ratio)、及びダウンリンク無線リソース使用量のうち少なくとも1つによって示される、請求項1~16のいずれか1項に記載の基地局装置。
  18.  前記隣接セルは、前記基地局装置の自セル内に配置された小規模セルである、請求項1~17のいずれか1項に記載の基地局装置。
  19.  前記自セル及び前記隣接セルの少なくとも一方は、セクタ・セルを含む、請求項1~18のいずれか1項に記載の基地局装置。
  20.  第1及び第2のセルをそれぞれ運用する第1及び第2の基地局を備え、
     前記第1の基地局は、
     複数の量子化されたプリコーディング行列を含むコードブックに基づくプリコーディングを行うよう構成され、
     前記プリコーディングにより生成される複数の情報シンボルを含む複数の送信シンボルを処理することにより、複数の送信アンテナに対応付けられた複数の時間領域信号を生成するよう構成され、
     前記複数の時間領域信号から前記複数の送信アンテナの相関に基づいて形成される指向性ビームの放射角度を調整するよう構成され、かつ
     前記指向性ビームの放射角度を第1の放射角度に決定するためのキャリブレーションを制御するよう構成されており、
     前記キャリブレーションは、
     前記指向性ビームの放射角度を走査しながら前記指向性ビームを送信すること、及び
     前記指向性ビームの放射角度を走査している間に計測された前記第2のセルのダウンリンク通信品質に基づいて、前記第1の放射角度を決定すること、
    を含む、
    移動通信システム。
  21.  前記走査は、前記複数の量子化されたプリコーディング行列に対応する複数の量子化された指向性ビームの角度分解能より細かい角度分解能で行われる、請求項20に記載の移動通信システム。
  22.  前記第1の放射角度は、前記第1の基地局が前記第1のセルに属する移動局との間で前記指向性ビームを用いて通信を行う通常通信モードにおいて使用される、請求項20又は21に記載の移動通信システム。
  23.  前記複数の送信シンボルは、前記プリコーディングを受けていない複数の参照シンボルをさらに含む、請求項20~22のいずれか1項に記載の移動通信システム。
  24.  前記第1の基地局は、前記複数の量子化されたプリコーディング行列に対応する複数の量子化された指向性ビームの放射角度を一括して調整する、請求項20~23のいずれか1項に記載の移動通信システム。
  25.  前記第1の基地局は、前記複数の量子化された指向性ビームが前記第2のセルに与える干渉を抑制するように前記第1の放射角度を決定する、請求項20~24のいずれか1項に記載の移動通信システム。
  26.  前記第1の基地局は、前記放射角度を調整するために、周波数領域信号としての前記複数の送信シンボルに位相シフトを与える、又は前記複数の時間領域信号に位相シフト又は時間遅延を与える、請求項20~25のいずれか1項に記載の移動通信システム。
  27.  前記第2のセルのダウンリンク通信品質は、前記第2のセルに属する移動局に関する第1のダウンリンク通信品質を含み、
     前記第2の基地局は、前記第1の基地局からの前記キャリブレーションの実施を示す通知に応じて、前記第1のダウンリンク通信品質を取得するとともに、前記第1のダウンリンク通信品質を示す情報を前記第1の基地局に送信するよう構成されている、請求項20~26のいずれか1項に記載の移動通信システム。
  28.  前記第2のセルのダウンリンク通信品質は、前記キャリブレーションに際して前記第2のセルから前記第1のセルにハンドオーバした移動局に関する前記第1のセルの第2のダウンリンク通信品質を含む、請求項20~26のいずれか1項に記載の移動通信システム。
  29.  前記第2の基地局は、前記キャリブレーションに際して、前記第1の基地局からの要求に応じて、前記第2のセルに属する移動局のハンドオーバ挙動に影響を与えるハンドオーバ・パラメタの変更を行うよう構成されている、請求項28に記載の移動通信システム。
  30.  自セルを運用する基地局装置による指向性ビーム放射角度の制御方法であって、
     前記基地局装置は、
     複数の量子化されたプリコーディング行列を含むコードブックに基づくプリコーディングを行うプリコーディング部と、
     前記プリコーディングにより生成される複数の情報シンボルを含む複数の送信シンボルを処理することにより、複数の送信アンテナに対応付けられた複数の時間領域信号を生成する信号処理部と、
     前記複数の時間領域信号から前記複数の送信アンテナの相関に基づいて形成される指向性ビームの放射角度を調整する調整部と、
    を備え、
     前記制御方法は、
     前記指向性ビームの放射角度を走査しながら前記指向性ビームを送信すること、及び
     前記指向性ビームの放射角度を走査している間に計測された隣接セルのダウンリンク通信品質に基づいて、前記指向性ビームの放射角度を第1の放射角度に決定すること、
    を含む、
    指向性ビーム放射角度の制御方法。
  31.  前記走査は、前記複数の量子化されたプリコーディング行列に対応する複数の量子化された指向性ビームの角度分解能より細かい角度分解能で行われる、請求項30に記載の方法。
  32.  前記第1の放射角度は、前記基地局装置が前記自セルに属する移動局との間で前記指向性ビームを用いて通信を行う通常通信モードにおいて使用される、請求項30又は31に記載の方法。
  33.  前記複数の送信シンボルは、前記プリコーディングを受けていない複数の参照シンボルをさらに含む、請求項30~32のいずれか1項に記載の方法。
  34.  前記調整部は、前記複数の量子化されたプリコーディング行列に対応する複数の量子化された指向性ビームの放射角度を一括して調整する、請求項30~33のいずれか1項に記載の方法。
  35.  前記決定することは、前記複数の量子化された指向性ビームが前記隣接セルに与える干渉を抑制するように前記第1の放射角度を決定することを含む、請求項30~34のいずれか1項に記載の方法。
  36.  前記隣接セルのダウンリンク通信品質は、前記隣接セルに属する移動局に関する第1のダウンリンク通信品質を含み、
     前記決定することは、前記第1のダウンリンク通信品質を示す情報を隣接基地局から受信することを含む、
    請求項30~35のいずれか1項に記載の方法。
  37.  前記決定することは、前記第1のダウンリンク通信品質が向上するように前記第1の放射角度を決定することを含む、請求項36に記載の方法。
  38.  前記隣接セルのダウンリンク通信品質は、前記制御方法の実行に際して前記隣接セルから前記自セルにハンドオーバした移動局に関する前記自セルの第2のダウンリンク通信品質を含む、請求項30~35のいずれか1項に記載の方法。
  39.  前記制御方法の実行に際して、移動局のハンドオーバ挙動に影響を与えるハンドオーバ・パラメタを変更することをさらに備える、請求項38に記載の方法。
  40.  前記決定することは、前記第2のダウンリンク通信品質が低下するように前記第1の放射角度を決定する、請求項38又は39に記載の方法。
  41.  前記決定することは、前記指向性ビームの放射角度を走査している間に計測された前記自セルのダウンリンク通信品質にさらに基づいて、前記第1の放射角度を決定することを含む、請求項30~40のいずれか1項に記載の方法。
  42.  前記決定することは、前記自セルのダウンリンク通信品質が所定の基準以上となるように前記第1の放射角度を決定することを含む、請求項41に記載の方法。
  43.  自セルを運用する基地局装置による指向性ビーム放射角度の制御方法をコンピュータに行わせるためのプログラムを格納した非一時的なコンピュータ可読媒体であって、
     前記基地局装置は、
     複数の量子化されたプリコーディング行列を含むコードブックに基づくプリコーディングを行うプリコーディング部と、
     前記プリコーディングにより生成される複数の情報シンボルを含む複数の送信シンボルを処理することにより、複数の送信アンテナに対応付けられた複数の時間領域信号を生成する信号処理部と、
     前記複数の時間領域信号から前記複数の送信アンテナの相関に基づいて形成される指向性ビームの放射角度を調整する調整部と、
    を備え、
     前記制御方法は、
     前記指向性ビームの放射角度を走査しながら前記指向性ビームを送信すること、及び
     前記指向性ビームの放射角度を走査している間に計測された隣接セルのダウンリンク通信品質に基づいて、前記指向性ビームの放射角度を第1の放射角度に決定すること、
    を含む、
    コンピュータ可読媒体。
PCT/JP2012/007341 2012-03-29 2012-11-15 基地局装置、移動通信システム、送信ビーム制御方法、及びコンピュータ可読媒体 WO2013145047A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014507030A JP5983734B2 (ja) 2012-03-29 2012-11-15 基地局装置、移動通信システム、送信ビーム制御方法、及びプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-076567 2012-03-29
JP2012076567 2012-03-29

Publications (1)

Publication Number Publication Date
WO2013145047A1 true WO2013145047A1 (ja) 2013-10-03

Family

ID=49258417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007341 WO2013145047A1 (ja) 2012-03-29 2012-11-15 基地局装置、移動通信システム、送信ビーム制御方法、及びコンピュータ可読媒体

Country Status (2)

Country Link
JP (1) JP5983734B2 (ja)
WO (1) WO2013145047A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015173416A (ja) * 2014-03-12 2015-10-01 ソフトバンク株式会社 通信システム及び基地局
CN105636064A (zh) * 2014-10-29 2016-06-01 普天信息技术有限公司 一种邻区规划方法及系统
US20170201020A1 (en) * 2016-01-08 2017-07-13 National Chung Shan Institute Of Science And Technology Method and device for correcting antenna phase
GB2546324A (en) * 2016-01-18 2017-07-19 Nat Chung Shan Inst Of Science And Tech Method and device for correcting antenna phase
JP2018174532A (ja) * 2015-11-06 2018-11-08 電信科学技術研究院 チャネル状態情報フィードバック・データ伝送方法及び装置
US10530557B2 (en) 2015-12-25 2020-01-07 Mitsubishi Electric Corporation Radio base station and communication system
CN114765852A (zh) * 2021-01-15 2022-07-19 大唐移动通信设备有限公司 定位角度校准方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102138813B1 (ko) * 2019-12-03 2020-07-28 김영재 기지국장치 및 기지국장치의 동작 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053933A (ja) * 2006-08-23 2008-03-06 Fujitsu Ltd 無線通信装置および無線通信方法
JP2008547283A (ja) * 2005-06-16 2008-12-25 クゥアルコム・インコーポレイテッド セルラシステムにおける適応性のあるセクタ化
WO2009072193A1 (ja) * 2007-12-05 2009-06-11 Fujitsu Limited 送信装置、送信制御方法および通信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008547283A (ja) * 2005-06-16 2008-12-25 クゥアルコム・インコーポレイテッド セルラシステムにおける適応性のあるセクタ化
JP2008053933A (ja) * 2006-08-23 2008-03-06 Fujitsu Ltd 無線通信装置および無線通信方法
WO2009072193A1 (ja) * 2007-12-05 2009-06-11 Fujitsu Limited 送信装置、送信制御方法および通信装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015173416A (ja) * 2014-03-12 2015-10-01 ソフトバンク株式会社 通信システム及び基地局
CN105636064A (zh) * 2014-10-29 2016-06-01 普天信息技术有限公司 一种邻区规划方法及系统
CN105636064B (zh) * 2014-10-29 2019-03-22 普天信息技术有限公司 一种邻区规划方法及系统
JP2018174532A (ja) * 2015-11-06 2018-11-08 電信科学技術研究院 チャネル状態情報フィードバック・データ伝送方法及び装置
US10659129B2 (en) 2015-11-06 2020-05-19 China Academy Of Telecommunications Technology Method and apparatus for feeding back channel state information, and a method and apparatus for transmitting data
US10778311B2 (en) 2015-11-06 2020-09-15 China Academy Of Telecommunications Technology Channel state information feedback and data transmission method and apparatus
US10530557B2 (en) 2015-12-25 2020-01-07 Mitsubishi Electric Corporation Radio base station and communication system
US20170201020A1 (en) * 2016-01-08 2017-07-13 National Chung Shan Institute Of Science And Technology Method and device for correcting antenna phase
US10720702B2 (en) * 2016-01-08 2020-07-21 National Chung Shan Institute Of Science And Technology Method and device for correcting antenna phase
GB2546324A (en) * 2016-01-18 2017-07-19 Nat Chung Shan Inst Of Science And Tech Method and device for correcting antenna phase
GB2546324B (en) * 2016-01-18 2021-08-11 Nat Chung Shan Inst Science & Tech Method and device for correcting antenna phase
CN114765852A (zh) * 2021-01-15 2022-07-19 大唐移动通信设备有限公司 定位角度校准方法及装置

Also Published As

Publication number Publication date
JP5983734B2 (ja) 2016-09-06
JPWO2013145047A1 (ja) 2015-08-03

Similar Documents

Publication Publication Date Title
JP5983734B2 (ja) 基地局装置、移動通信システム、送信ビーム制御方法、及びプログラム
JP6600053B2 (ja) 無線通信システムにおけるビームフォーミングを用いた通信方法及び装置
CN111492593B (zh) 无线通信系统、无线电网络节点、机器学习单元及方法
US11044641B2 (en) Handover procedures in multi-carrier networks
US10218478B2 (en) Method for determining weight for beamforming in wireless communication system and apparatus therefor
JP5542144B2 (ja) Mimoベースの複数基地局協調通信のための方法および装置
US11057246B2 (en) Method for a UE for requesting a channel state information reference signal (CSI-RS) or a sounding reference signal (SRS)
CN112005503B (zh) 用于提供mimo天线阵列内的个体天线配置选择的方法、系统和装置
JP5249863B2 (ja) 基地局装置及び干渉低減方法
US20220264318A1 (en) Reporting for mu-mimo using beam management
JP2023081913A (ja) マルチユーザ複数入力複数出力のための、干渉測定およびチャネル状態情報フィードバック
WO2013145046A1 (ja) 基地局装置、移動通信システム、基地局装置の制御方法、及びコンピュータ可読媒体
JP2010258845A (ja) 無線通信システムおよび無線通信方法ならびに基地局装置
US11190313B2 (en) Reference signaling for beamforming networks
EP3729674A1 (en) Beam training for a radio transceiver device
EP3732796B1 (en) Beam management of a radio transceiver device
US20220376767A1 (en) Apparatuses and methods for multi-user transmissions
US9198190B2 (en) Closed loop precoding weight estimation
TWI825180B (zh) 用於在無線設備中促進波束成形通訊的設備和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12872955

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507030

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12872955

Country of ref document: EP

Kind code of ref document: A1