WO2013143447A1 - 链路建立方法及设备 - Google Patents
链路建立方法及设备 Download PDFInfo
- Publication number
- WO2013143447A1 WO2013143447A1 PCT/CN2013/073212 CN2013073212W WO2013143447A1 WO 2013143447 A1 WO2013143447 A1 WO 2013143447A1 CN 2013073212 W CN2013073212 W CN 2013073212W WO 2013143447 A1 WO2013143447 A1 WO 2013143447A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- network
- supplementary
- supplementary network
- air interface
- network node
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/15—Setup of multiple wireless link connections
Definitions
- the present invention relates to the field of wireless communications, and in particular, to a link establishment method and apparatus. Background technique
- the embodiment of the invention provides a link establishing method and device, which can expand the operating network capacity.
- a method for establishing a link including: determining parameter information of a radio access bearer RAB and cell resource information of a supplementary network access point AP; and parameter information according to the RAB and cell resource information of the supplementary network AP Generating a supplementary network air interface parameter required by the supplementary network to carry the RAB; notifying the user equipment UE of the supplementary network air interface parameter, so that the UE establishes a supplementary network link carrying the RAB according to the supplementary network air interface parameter and the supplementary network node, where The wireless access system of the supplementary network is different from the wireless access standard of the basic network.
- a communication device including: a determining unit, configured to determine parameter information of a radio access bearer RAB and cell resource information of a supplementary network access point AP; and a generating unit, And the notification unit is configured to notify the user equipment UE of the supplementary network air interface parameter, so that the supplementary network air interface parameter is required to be used by the user equipment UE according to the parameter information of the RAB and the cell resource information of the supplementary network AP.
- the UE establishes a supplementary network link carrying the RAB with the supplementary network AP according to the supplementary network air interface parameter, where the wireless access system of the supplementary network is different from the wireless access system of the basic network.
- a gateway including: a determining unit, configured to determine parameter information of a radio access bearer RAB and cell resource information of a supplementary network access point AP; and a generating unit, configured to perform parameter information according to the RAB
- the supplemental network air interface parameter is used to notify the user equipment UE of the supplementary network air interface parameter, so that the UE according to the supplementary network air interface parameter and the
- the gateway GW establishes a supplementary network link carrying the RAB, wherein the wireless access system of the supplementary network is different from the wireless access system of the basic network.
- the wireless access system of the charging network is different from the basic network, so that the operating network capacity can be expanded.
- FIG. 1 is a schematic flowchart of a link establishing method according to an embodiment of the present invention.
- FIG. 2 is a schematic diagram of a network architecture in accordance with one embodiment of the present invention.
- Figures 3a and 3b are schematic diagrams of a protocol stack applicable to the network architecture of Figure 2.
- FIG. 4 is a schematic flow diagram of a process of a link establishment method applicable to the network architecture of FIG. 2.
- FIG. 5 is a schematic diagram of a network architecture according to another embodiment of the present invention.
- 6a and 6b are schematic diagrams of a protocol stack applicable to the network architecture of FIG.
- FIG. 7 is a schematic flow diagram of a process of a link establishment method applicable to the network architecture of FIG.
- FIG. 8 is a schematic diagram of a network architecture according to still another embodiment of the present invention.
- Figures 9a through 9c are schematic diagrams of protocol stacks that may be applicable to the network architecture of Figure 8.
- Figure 10 is a schematic flow diagram of a process that can be applied to the link establishment method of the network architecture of Figure 8.
- FIG. 11 is a schematic diagram of a network architecture in accordance with still another embodiment of the present invention.
- Figures 12a through 12c are schematic diagrams of protocol stacks that may be applicable to the network architecture of Figure 11.
- Figure 13 is a schematic flow diagram of a process that can be applied to the link establishment method of the network architecture of Figure 11.
- FIG. 14 is a schematic diagram of a network architecture in accordance with another embodiment of the present invention.
- FIGS 15a through 15c are schematic diagrams of protocol stacks applicable to the network architecture of Figure 14.
- Figure 16 is a schematic flow diagram of a process of a link establishment method applicable to the network architecture of Figure 14.
- FIG. 17 is a schematic diagram of a network architecture in accordance with another embodiment of the present invention.
- FIG. 18a through 18b are schematic diagrams of a protocol stack applicable to the network architecture of FIG.
- Figure 19 is a schematic flow diagram of a process of a link establishment method applicable to the network architecture of Figure 17.
- FIG. 20 is a schematic diagram of a network architecture according to still another embodiment of the present invention.
- 21a through 21c are schematic diagrams of a protocol stack applicable to the network architecture of Fig. 20.
- Figure 22 is a schematic flow diagram of a process applicable to the link establishment method of the network architecture of Figure 20.
- FIG. 23 is a schematic block diagram of a communication device in accordance with an embodiment of the present invention.
- Figure 25 is a schematic block diagram of a communication device in accordance with another embodiment of the present invention.
- Figure 26 is a schematic block diagram of a gateway in accordance with an embodiment of the present invention. detailed description
- GSM Global System of Mobile communication
- CDMA Code Division Multiple Access
- WCDMA Wideband Code Division Multiple Access
- GPRS General Packet Radio Service
- LTE Long Term Evolution
- FDD Frequency Division Duplex
- TDD Time Division Duplex
- UMTS Universal Mobile Telecommunication System
- the basic network may refer to a macro network deployed as a base, and may also be referred to as a Serving Network.
- the radio access system of the basic network may be UTRAN (UMTS Terrestrial Radio Access Network, UMTS Terrestrial Radio Access Network), GERAN (GSM/EDGE (Enhanced Data Rate for GSM Evolution) Radio Access Network, GSM
- UTRAN UMTS Terrestrial Radio Access Network
- GERAN GSM/EDGE (Enhanced Data Rate for GSM Evolution) Radio Access Network
- GSM Global System for GSM Evolution
- the EDGE radio access network, the LTE, and the like are not limited in this embodiment of the present invention.
- the Supplementary Network is relative to the basic network.
- the service of the basic network may be offloaded and offloaded, and may also be referred to as a service offload supplementary network ( Service Offload Supplementary Networks ).
- the wireless access system of the supplementary network is different from the wireless access standard of the basic network.
- the supplementary network may be LTE, or may be an HiFi network based on an LTE air interface enhancement. This embodiment of the present invention does not limit this.
- FIG. 1 is a schematic flowchart of a link establishing method according to an embodiment of the present invention. The method of Figure 1 is performed by a communication device.
- RAB Radio Access Bearer
- ⁇ Cell resource information of a network access point
- the supplementary network Generate, according to the parameter information of the RAB and the cell resource information of the supplementary network, the supplementary network air interface parameters required by the supplementary network 7 to carry the RAB.
- the supplementary network air interface parameter may be a channel configuration parameter on the air interface required by the supplementary network to carry the RAB.
- the supplementary network air interface parameters may include a radio bearer (RB) and physical channel parameters.
- the communication device notifying the UE of the supplementary network air interface parameter may refer to that the communication device directly sends the supplementary network air interface parameter to the UE, and may also refer to that the communication device passes multiple control signaling or passes one or more The other communication devices indirectly notify the UE of the supplementary network air interface parameters. This embodiment of the present invention does not limit this.
- the supplemental network node may be referred to as a supplemental network AP or a supplementary network gateway (Gateway, GW), which is not limited in this embodiment of the present invention.
- a supplementary network link is established between the UE and the supplementary network node, and the wireless access system of the supplementary network is different from the basic network, so that the operating network capacity can be expanded.
- the supplementary network AP may receive the core network section.
- the core network node may be a GPRS service support node (SGSN) in a 2G network or a 3G network, which is not limited in this embodiment of the present invention.
- the core network node may determine which supplementary network AP to send the RAB parameter information to according to the identifier of the supplementary network AP.
- the parameter information of the RAB is determined by supplementing the network AP, so that the supplementary network AP has the control plane function, thereby reducing the impact on the basic network and reducing the cost.
- the supplementary network GW may receive the core network node according to the identifier of the supplementary network GW.
- the supplementary network GW may determine the cell resource information of the supplementary network AP according to the identity of the supplementary network AP.
- the basic network node may be a BSC (Base Station Controller) in the base network or an RNC (Radio Network Controller). This embodiment of the present invention does not limit this.
- the parameter information of the RAB is determined by the supplementary network GW, so that the supplementary network GW has the control plane function, thereby reducing the impact on the basic network and reducing the cost.
- the supplementary network node may send a supplementary network air interface parameter to the core network node, so that the core network node sends the basic network node to the basic network node.
- the basic network node sends an RRC reconfiguration message carrying the supplementary network air interface parameter to the UE. That is, the supplementary network can notify the UE of the supplementary network air interface parameters through the core network node and the basic network node.
- the method in FIG. 1 is performed by a supplemental network node and is supplemented
- the network node is a supplementary network AP
- the supplementary network AP may receive parameter information of the RAB sent by the basic network node.
- the supplementary network air interface parameter is generated by the supplementary network AP, so that the supplementary network AP has the control plane function, thereby reducing the impact on the basic network and reducing the cost.
- the supplementary network GW may receive parameter information of the RAB sent by the basic network node and The identifier of the supplementary network AP is supplemented, and the cell resource information of the supplementary network AP is determined according to the identifier of the supplementary network AP.
- the supplementary network air interface parameter is generated by the supplementary network AP, so that the supplementary network AP has the control plane function, thereby reducing the impact on the basic network and reducing the cost.
- the supplementary network node may send a supplementary network air interface parameter to the basic network node, so that the basic network node sends the bearer to the UE.
- RRC reconfiguration message for network air interface parameters may be sent to the basic network node.
- the supplementary network node may receive a supplementary network chain that is sent by the UE according to the supplementary network air interface parameter. Road setup request message.
- the supplemental network node may send a supplemental network link setup response message to the UE.
- the basic network node may receive the RRC reconfiguration response sent by the UE.
- the message, the RRC reconfiguration response message is used to indicate that the supplementary network link establishment is completed, so that the basic network node releases the air interface resource used by the RAB in the basic network.
- the basic network node may send the offload switching indication message to the core network node.
- the offload switching indication message is used to indicate that the supplementary network link establishment is completed and the air interface resource release completion used by the R AB in the basic network is completed.
- the core network node may perform service distribution according to the offload switching indication message.
- the base network node may obtain the identifier of the supplementary network AP from the UE.
- the base network node can determine the cell resource information of the supplementary network AP according to the identity of the supplementary network AP.
- the basic network node may send the supplementary network air interface parameter to the supplementary network AP.
- the base network node may receive a confirmation message sent by the supplemental network AP to indicate confirmation of the supplementary network air interface parameter.
- the basic network node may send an RRC reconfiguration message carrying the supplementary network port air interface parameter to the UE.
- the basic network node may receive the The RRC reconfiguration response message is used to indicate that the supplemental network link establishment of the UE and the supplementary network node is completed, and release the air interface resource used by the RAB in the basic network.
- the basic network node may send the offload switching indication message to the core network node.
- the offload switching indication message is used to indicate that the supplementary network link establishment is completed and the air interface resource release used by the R AB in the basic network is completed. In this way, the core network node can perform service distribution according to the offload switching indication message.
- the core network node may send, to the basic network node, a traffic offing indication indicating that the RAB can be offloaded.
- the base network node may send a supplemental network node discovery control command for instructing the UE to search for the supplementary network to the UE according to the offloading indication.
- the base network node may receive the bearer supplementary network sent by the UE according to the supplementary network node discovery control command A supplemental network node discovery report for the identity of the AP.
- the supplementary network node when the method of FIG. 1 is supplemented by the network node and the supplementary network node is the supplementary network GW, the supplementary network node discovers that the advertisement also carries the identifier of the supplementary network GW.
- a supplementary network link is established between the UE and the supplementary network node, and the wireless access system of the supplementary network is different from the basic network, so that the operating network capacity can be expanded.
- the HiFi network with the supplemental network as the LTE or the air interface enhancement based on the LTE standard, and the basic network as the UTRAN and the GERAN will be described as an example.
- the supplementary network may also be other wireless air interface systems
- the basic network may also be other wireless air interface systems, such as TD-CDM A, CDMA2000, etc., which are not limited in this embodiment of the present invention.
- FIG. 2 is a schematic diagram of a network architecture in accordance with one embodiment of the present invention.
- the BTS (Base Transceiver Station) / NodeB (Base Station) 201, BSC/RNC 202a shown in Figure 2 may be nodes in an existing 2G or 3G infrastructure network.
- the enhanced SGSN 203a is a core network node.
- the 3 ⁇ 4 port can be a core network node that adapts to the SAE (System Architecture Evolution) network element function, for example, an adaptation ⁇ (Mobility)
- SAE System Architecture Evolution
- the HSS Home Subscriber Server
- GGSN Gateway GPRS Support Node
- PGW Proxy Gateway
- MSC Mobile Switching Center
- the supplemental network AP 204a and the supplemental network GW (Gateway) 205a may be nodes in the supplemental network.
- the supplementary network GW 205a may perform interference control management on the supplementary network AP 204a.
- the supplementary network AP 204a and the supplementary network GW 205a may be located in different physical entities or in the same physical entity. This embodiment of the present invention is not limited thereto. It should be understood that In the embodiment of the present invention, although only one supplementary network AP is described in FIG. 2, it is merely for convenience of description.
- the number of the supplementary network APs may be one or more, which is not limited by the embodiment of the present invention.
- the supplemental network AP 204a may have full user plane and control plane functionality for data transmission via the supplemental network GW 205a.
- the protocol stack of the underlying network can be modified without any modification.
- the enhanced SGSN 203a needs to add the function of adapting the MME in order to support the supplementary network.
- the existing LTE air interface protocol stack architecture can be used between the UE and the supplementary network AP 204a, as shown in Fig. 3a and Fig. 3b.
- FIG. 3a and 3b are schematic diagrams of a protocol stack applicable to the network architecture of Figure 2.
- FIG. 3a is a schematic diagram of a control plane protocol stack. As shown in Fig. 3a, the path of the control plane message of the supplementary network is: supplementary network AP 204 & ⁇ supplementary network GW 205a ⁇ enhanced SGSN 203a.
- Figure 3b is a schematic diagram of the user plane protocol stack. As shown in FIG. 3b, the path of the user plane data of the supplementary network is: supplementary network AP 204 & ⁇ supplementary network GW 205a ⁇ enhanced SGSN 203a ⁇ SGW.
- the supplementary network AP in the supplementary network has the functions of the user plane and the control plane, which can reduce the impact on the basic network and reduce the cost.
- FIG. 4 is a schematic flow diagram of a process of a link establishment method applicable to the network architecture of FIG. 2.
- the enhanced SGSN 203a transmits data streams to the UEs on the RAB1 and RAB2 through the BSC/RNC 202a, and the RAB1 and RAB2 are carried on the UTRAN/GERAN.
- RAB1 and RAB2 are described in FIG. 4, in the embodiment of the present invention, the number of RABs may be one or more, for example, may also be three RABs or more. This embodiment of the present invention does not limit this.
- the UE reports, to the enhanced SGSN 203a, capability information indicating that the supplementary network is supported for offloading.
- the UE may report the capability information in a NAS message such as an Attach or a LAU.
- a NAS message such as an Attach or a LAU.
- the enhanced SGSN 203a determines whether to offload the RAB. For example, the enhanced SGSN 203a may determine whether to offload the RAB to the supplemental network frequency layer based on the capabilities of the enhanced SGSN 203a, current service attributes, operator policies, or UE subscription information. For example, RAB2 satisfies the condition of being offloaded, and the enhanced SGSN 203a can determine to offload RAB2 to the supplementary network.
- the RAB2 can be shunted as an example for explanation.
- the number of RABs that can be offloaded is not limited to one, and may be plural. This embodiment of the present invention does not limit this.
- the enhanced SGSN 203a sends a BAS permission indication to the BSC/RNC 202a indicating that the RAB2 can be offloaded.
- the enhanced SGSN 203a may carry the offloading indication via an RAB setup message.
- the BSC/RNC 202a sends a supplementary network node discovery control command to the UE for instructing the UE to search for the supplementary network.
- the BSC/RNC 202a After receiving the offloading permission indication in step 403, the BSC/RNC 202a requests the UE to perform a top-up on the supplementary network node by the supplemental network node discovery control command.
- the BSC/RNC 202a may configure parameters such as a measured threshold or a trigger time (TimeToTrigger) in the supplementary network node discovery control command, or carry supplementary network deployment information saved by the BSC/RNC 202a or other may accelerate the UE to the supplementary network cell. Identifyed information.
- the BSC/RNC 202a needs to send control information to notify the UE to stop searching and measuring the supplementary network.
- the UE sends a supplementary network node discovery message to the BSC/RNC 202a, where the supplementary network node finds that the advertisement can carry the identifier of the supplementary network AP 204a.
- the UE After receiving the supplementary network node discovery control command sent by the BSC/RNC 202a in step 404, the UE searches and synchronizes the supplementary network frequency layer.
- the identifier of the supplementary network AP may be indicated in the public channel or the scrambling code information of the supplementary network, and may also indicate the identifier of the supplementary network GW. So, the UE can search and identify the supplementary network frequency layer under the control of the UTRAN/GERAN network, and when the supplementary network meets a certain channel quality threshold, the UE can supplement the identifier of the network AP, or supplement the identifier of the network AP and The identity of the supplementary network GW is provided to the UTRAN/GERAN network.
- the BSC/RNC 202a sends supplementary network offload routing information to the enhanced SGSN 203a, where the supplementary network offload routing information carries the identifier of the supplementary network AP 204a.
- the BSC/RNC 202a receives the identifier of the supplementary network AP that satisfies a certain signal quality and/or the identifier of the supplementary network GW reported by the UE, and provides the supplemental network offload routing information to the enhanced SGSN 203a.
- the BSC/RNC 202a may convert a GCI (Global Cell Identifier) or a PCI (Physical Cell Identifier) into an eNB id (Identifier) and include it in a relocation required as a target id ( Macro eNB id or HeNB (Home eNB, home base station) id).
- the enhanced SGSN 203a sends the parameter information of the RAB2 to the supplementary network AP 204a indicated by the identifier of the supplementary network AP 204a in step 406.
- the enhanced SGSN 203a may convert the QoS parameters of the RAB2 into the QoS parameters of the EPS bearer, and the parameter information of the RAB2 may include the QoS parameters of the EPS bearer.
- the supplementary network AP 204a generates a supplementary network air interface parameter required for the supplementary network bearer RAB2 according to the parameter information of the RAB2 in step 407 and the cell resource information of the supplementary network AP 204a.
- the supplementary network air interface parameter is a channel configuration parameter on an air interface required to supplement the network bearer RAB2.
- the supplemental network air interface parameters may include RB parameters and physical channel parameters.
- the supplementary network AP 204a transmits the supplementary network air interface parameter in step 408 to the enhanced SGSN 203a.
- the enhanced SGSN 203a sends a service offload request message to the BSC/RNC 202a, where The service offload request message carries supplementary network air interface parameters.
- the enhanced SGSN 203a notifies the BSC/RNC 202a of the supplementary network air interface parameters through the service offload request message, and further, the bearer of the RAB2 in the UTRAN/GERAN can be deleted, that is, between the enhanced SGSN 203a and the BSC/RNC 202a for carrying the service.
- the parameter information is deleted, and a request is made to establish a bearer on the supplemental network side of RAB2.
- the BSC/RNC 202a sends a Radio Resource Control (RRC) reconfiguration message carrying the supplementary network air interface parameter to the UE.
- RRC Radio Resource Control
- the BSC/RNC 202a notifies the UE of the supplementary network air interface parameter by using the RRC reconfiguration message, instructs the UE to establish a supplementary network link with the supplementary network AP 204a, and simultaneously releases the air interface resource used by the RAB2 in the basic network, that is, deletes the RAB2 in the basic network.
- Radio bearer (RB) Further, before the RRC reconfiguration message is sent, the BSC/RNC 202a may request the UE to report the current signal quality of the supplementary network frequency layer, or initiate a timer inside the BSC/RNC 202a to determine in step 405. The supplemental network node obtained in it finds out whether the information in the 4 report is still valid. Therefore, this method can reduce the failure of the supplementary network link establishment caused by the deterioration of the cell signal quality of the supplementary network.
- the UE sends a supplementary network link setup request message to the supplementary network AP 204a according to the supplementary network air interface parameter sent by the BSC/RNC 202a in step 411.
- the UE attempts to establish synchronization with the supplementary network AP 204a using the obtained supplementary network air interface parameter, and transmits a supplementary network link establishment request message.
- the supplementary network AP 204a sends a supplementary network link setup response message to the UE.
- the BSC/RNC 202a receives an RRC reconfiguration response message sent by the UE for the RRC reconfiguration message of step 411.
- the UE notifies the BSC/RNC 202a of the supplemental network link setup completion of the RAB2 through the RRC reconfiguration response message.
- the BSC/RNC 202a releases the air interface resources used by the RAB2 in the underlying network. 415.
- the BSC/RNC 202a sends a split handover indication message to the enhanced SGSN 203a, where the offload handover indication message is used to indicate that the supplementary network link establishment is successful and the air interface resource release used by the RAB2 in the basic network is completed.
- the enhanced SGSN 203a distributes the service according to the offload switching indication message in step 415.
- the enhanced SGSN 203a transmits the data stream to the UE on the RAB1 through the BSC/RNC 202a.
- the enhanced SGSN 203a transmits the data stream to the UE on the RAB2 through the supplementary network AP 204a.
- a supplementary network link is established between the UE and the supplementary network node, and the wireless access system of the supplementary network is different from the basic network, so that the operating network capacity can be expanded.
- the supplementary network AP since the supplementary network AP has the functions of the user plane and the control plane, the impact on the basic network can be reduced and the cost can be reduced.
- FIG. 5 is a schematic diagram of a network architecture according to another embodiment of the present invention.
- the same or similar nodes as in Fig. 2 use the same reference numerals.
- the supplemental network is coupled to the 2G/3G base network.
- the SGSN 203b is a core network node, for example, a core network node that is adapted to the function of the SAE network element, for example, a function of adapting the MME and the SGW.
- the BSC/RNC 202b may be a node in an existing 2G or 3G infrastructure network.
- the supplementary network AP 204b has only the user plane function, and the control plane function of the supplementary network is concentrated on the supplementary network GW 205b. Management and mobility management.
- supplementary network AP may be one or more, which is not limited by the embodiment of the present invention.
- Figures 6a and 6b are schematic diagrams of a protocol stack applicable to the network architecture of Figure 5.
- 6a is a schematic diagram of a control plane protocol stack.
- Figure 6b is a schematic diagram of the user plane protocol stack.
- the supplementary network AP 204b supports full user plane functions, such as RLC (Radio Link Control) and PDCP (Packet Data Convergence Protocol) layers.
- the PDCP can be responsible for the air interface and the shunt function of the LIPA (Local Internet Protocol Access) node.
- LIPA Local Internet Protocol Access
- the impact on the basic network can be reduced and the cost can be reduced.
- the complexity and cost of the supplementary network AP can be reduced.
- the cost can be further reduced compared to the network architecture shown in FIG.
- FIG. 7 is a schematic flow diagram of a process of a link establishment method applicable to the network architecture of FIG.
- the enhanced SGSN 203b transmits data streams to the UEs on the RAB1 and RAB2 through the BSC/RNC 202b, and the RAB1 and RAB2 are carried on the UTRAN/GERAN.
- RAB1 and RAB2 are described in FIG. 7, in the embodiment of the present invention, the number of RABs may be one or more, for example, may also be three RABs or more. This embodiment of the present invention does not limit this.
- the RAB2 can be shunted to the supplementary network as an example. Therefore, the steps 701 to 704 in FIG. 7 are substantially the same as the steps 401 to 404 in FIG. 4, and in order to avoid repetition, details are not described herein again.
- the UE sends a supplementary network node discovery message to the BSC/RNC 202b, where the supplementary network
- the node discovery report may carry the identity of the supplemental network AP 204b and the identity of the supplemental network GW 204b. After that, the supplementary network frequency layer is searched and synchronized.
- the identifier of the supplementary network AP may be indicated in the common channel or the scrambling code information of the supplementary network, and may also indicate the identifier of the supplementary network GW, so that the UE can search and identify the supplementary frequency layer under the control of the UTRAN/GERAN network, and When the supplementary network meets a certain channel quality threshold, the UE may provide the identifier of the supplementary network AP and the identifier of the supplementary network GW to the UTRAN/GERAN network.
- the BSC/RNC 202b sends supplementary network offload routing information to the enhanced SGSN 203b, where the supplementary network offload routing information may carry the identifier of the supplementary network AP 204b and the identifier of the supplementary network GW 205b.
- the BSC/RNC 202b receives the identifier of the supplementary network AP that satisfies a certain signal quality and the identifier of the supplementary network GW, and provides the supplemental network offload routing information to the enhanced SGSN 203b.
- the RNC can convert the GCI or PCI to the eNB id and include it in the relocation required as the target id (macro eNB id or HeNB id).
- the enhanced SGSN 203b sends the parameter information of the RAB2 and the identifier of the supplementary network AP 204b to the supplementary network GW 205b indicated by the identifier of the supplementary network GW 205b in step 705.
- the enhanced SGSN 203b may convert the QoS parameters of the RAB2 into the QoS parameters of the EPS bearer, and the parameter information of the RAB2 may include the QoS parameters of the EPS bearer.
- the supplemental network AP 204b is identified by the supplemental network offload routing information in step 706.
- the supplementary network GW 205b generates, according to the parameter information of the RAB2 in step 707 and the cell resource information of the supplementary network AP 204b, a supplementary network air interface parameter required to supplement the network bearer RAB2.
- the supplemental network GW 205b may be based on the supplemental network AP received from step 707.
- the identity of 204b obtains the cell resource information of the supplementary network AP 204b.
- the supplementary network air interface parameter is a channel configuration parameter on the air interface required to supplement the network carrying RAB2.
- the supplemental network air interface parameters may include RB parameters and physical channel parameters.
- the supplementary network GW 205b when it generates supplementary network air interface parameters, it can perform signaling interaction with the supplementary network AP 204b, similar to the functions of the existing NBAP (Node B Application Part).
- the NB AP is a signaling protocol for the lub interface. Content can be delivered through the IF (Simple Interface Function) interface.
- the IF is a newly defined interface (such as a collapsed X2 interface) that completes the configuration of the underlying user plane protocol stack or the newly defined user plane entity of the supplemental network AP.
- the configuration information transmitted by the interface includes: radio resource configuration (such as logical channel configuration, transport channel configuration, physical channel configuration), measurement configuration, and the like.
- the supplemental network GW 205b sends the supplemental network air interface parameters generated in step 708 to the enhanced SGSN 203b.
- Steps 710 and 711 are substantially the same as steps 410 to 411 in FIG. 4, and are not described herein again in order to avoid redundancy.
- the UE sends a supplementary network link setup request message to the supplementary network GW 204b according to the supplementary network air interface parameter sent by the BSC/RNC 202b in step 711.
- the UE attempts to establish synchronization with the supplementary network GW 204b using the obtained supplemental network air interface parameters, and sends a supplementary network link setup request message.
- the supplementary network GW 204b sends a supplementary network link setup response message to the UE.
- Steps 714 and 715 are substantially the same as steps 414 and 415 in FIG. 4, and in order to avoid repetition, no further details are provided herein.
- the enhanced SGSN 203b distributes the service according to the offload switching indication message in step 715.
- the enhanced SGSN 203b sends a data stream to the UE over RAB1 through the BSC/RNC 202b.
- the bearer is carried on the supplementary network, and the enhanced SGSN 203b transmits the data stream to the UE on the RAB2 through the supplementary network GW 205b.
- a supplementary network link is established between the UE and the supplementary network node, and the wireless access system of the supplementary network is different from the basic network, so that the operating network capacity can be expanded.
- the impact on the basic network can be reduced and the cost can be reduced.
- the BSC/RNC plays a role in controlling the search of the supplementary network AP, and reporting the search result of the supplementary network AP to the enhanced SGSN, so that The core network obtains information supplementing the network frequency layer. Supplement the network.
- FIG. 8 is a schematic diagram of a network architecture according to still another embodiment of the present invention.
- the BSC/RNC 202c may be a node in an existing 2G or 3G base network.
- the enhanced SGSN 203c is a core network node, for example, a core network node that is adapted to the function of the SAE network element, for example, a function of adapting the MME and the SGW.
- the supplementary network AP 204c has a partial control plane function, that is, the supplementary network AP 204c has a radio resource management function in the control plane function.
- the BSC/RNC 202c has a mobility management function for the supplementary network AP 204c.
- the supplementary network GW 205c performs interference management on the supplementary network AP 204c and performs signaling transparent transmission. For example, the mobility management and service offload control information is sent to the supplementary network AP 204c through the supplementary network GW 205c, and the supplementary network AP 204c is triggered to establish a radio bearer.
- FIG. 9a-9c are schematic diagrams of protocol stacks that may be applicable to the network architecture of FIG.
- FIG. 9a is a schematic diagram of a control plane protocol stack corresponding to the SGSN in the 2G network.
- Figure 9b is a schematic diagram of a control plane protocol stack corresponding to an SGSN in a 3G network.
- Figure 9c is a schematic diagram of a user plane protocol stack.
- the supplementary network AP in the supplementary network has a part of the control plane function, which can reduce the impact on the basic network and reduce the cost.
- Figure 10 is a schematic flow diagram of a process that can be applied to the link establishment method of the network architecture of Figure 8.
- the enhanced SGSN 203c transmits data streams to the UEs on the RAB1 and RAB2 through the BSC/RNC 202c, and the RAB1 and RAB2 are carried on the UTRAN/GERAN.
- RAB1 and RAB2 are described in FIG. 10, in the embodiment of the present invention, the number of RABs may be one or more, for example, may also be three RABs or more. This embodiment of the present invention does not limit this.
- the RAB2 can be shunted to the supplementary network as an example.
- the steps 1001 to 1005 in Fig. 10 are substantially the same as the steps 401 to 405 in Fig. 4, and the repetition is not repeated herein.
- the BSC/RNC 202c determines whether a split is initiated.
- the BSC/RNC 202c may determine whether to initiate supplementary traffic offload based on the supplemental air interface channel quality and the RAB attribute.
- the BSC/RNC 202c sends the parameter information of the RAB2 to the supplementary network AP 204c in the case of determining to initiate the offload.
- the supplementary network AP 204c generates the supplementary network air interface parameter of the supplemental network carrying RAB2 according to the parameter information of the RAB2 of the step 1007 and the cell resource information of the supplementary network AP 204c.
- the supplementary network air interface parameter is a channel configuration parameter on an air interface required to supplement the network bearer RAB2.
- the supplemental network air interface parameters may include RB parameters and physical channel parameters.
- Supplemental Network The AP 204c sends the supplemental network air interface parameters generated in step 1008 to the BSC/RNC 202c.
- Steps 1010 to 1015 are substantially the same as steps 411 to 416 in FIG. 4, in order to avoid heavy Complex, no longer repeat here.
- the BSC/RNC 202c may first receive the data stream carried in the UTRAN/GERAN from the enhanced SGSN 203c, and in step 1016, the BSC/RNC 202c distributes the received data stream. For example, a part of the data stream is sent to the UE on the RAB1. An additional portion of the data stream is sent to the UE over RAB2 by supplementing the network AP 204c. Thereby, the shunting of the basic network service is realized.
- a supplementary network link is established between the UE and the supplementary network node, and the wireless access system of the supplementary network is different from the basic network, so that the operating network capacity can be expanded.
- the complementary network AP has user plane and control plane functions, which can reduce the impact on the underlying network and reduce costs.
- FIG. 11 is a schematic diagram of a network architecture in accordance with still another embodiment of the present invention.
- the radio resource management in the control plane function in the network architecture of Fig. 11 is located in the supplementary network GW 205d. That is to say, the supplementary network GW 205d has a part of the control plane function. Mobility management is controlled by the BSC/RNC 202d.
- the supplementary network AP 204d only has the user plane function.
- the enhanced SGSN 203d is a core network node, for example, a core network node that is adapted to the function of the SAE network element, for example, a function of adapting the MME and the SGW.
- the BSC/RNC 202d may be a node in an existing 2G or 3G infrastructure network.
- Figures 12a through 12c are schematic diagrams of protocol stacks that may be applicable to the network architecture of Figure 11.
- Figure 12a is a schematic diagram of a control plane protocol stack corresponding to the SGSN in the 2G network.
- Figure 12b is a schematic diagram of a control plane protocol stack corresponding to an SGSN in a 3G network.
- Figure 12c is a schematic diagram of the user plane protocol stack.
- the wireless network management is provided by the supplementary network GW in the supplementary network.
- the radio resource management function is transferred from the supplementary network AP to the supplementary network GW, the complexity and cost of the supplementary network AP can be reduced.
- the cost can be further reduced compared to the network architecture shown in FIG.
- Figure 13 is a schematic flow diagram of a process that can be applied to the link establishment method of the network architecture of Figure 11.
- the enhanced SGSN 203d transmits data streams to the UEs on the RAB 1 and RAB2 through the BSC/RNC 202c, and the RAB1 and RAB2 are carried on the UTRAN/GERAN.
- RAB1 and RAB2 are described in FIG. 13, in the embodiment of the present invention, the number of RABs may be one or more, for example, may also be three RABs or more. This embodiment of the present invention does not limit this.
- the RAB2 can be shunted to the supplementary network as an example.
- Steps 1301 to 1305 in Fig. 13 are substantially the same as steps 701 to 705 in Fig. 7, and in order to avoid repetition, no further details will be described herein.
- the BSC/RNC 202d determines whether to initiate a supplementary service offload.
- the BSC/RNC 202d may determine whether to initiate the offload according to the supplemental air interface channel quality, the RAB attribute, and whether there is an Iur' interface.
- the Iur' interface may be a class Iur interface between the BSC/RNC 202d and the supplemental network GW 205d.
- step 1306 when the BSC/RNC 202d determines to initiate the offload, the BSC/RNC
- the RAB modification request carries the identifier of the supplementary network GW obtained in step 1305 and
- the enhanced SGSN 203d determines that a channel is available with the supplemental network GW 205d. 1309. The enhanced SGSN 203d sends an RAB modification request response to the BSC/RNC 202d.
- the RAB modification request response may carry the identifier of the RAB2, indicating that the RAB2 is enhanced.
- the bearer between the SGSN 203d and the supplementary network GW 205d is successfully established.
- the BSC/RNC 202d sends the parameter information of the RAB2 and the identifier of the supplementary network AP 204d to the supplementary network GW 205d.
- the identity of the supplemental network AP 204d is obtained from the supplemental network node discovery report sent by the UE in step 1305.
- the supplementary network GW 205d generates, according to the parameter information of the RAB2 in step 1310 and the cell resource information of the supplementary network AP 204d, a supplementary network air interface parameter required for supplementing the network bearer RAB2.
- the supplementary network GW 205d may obtain the cell resource information of the supplementary network AP 204d according to the identity of the supplementary network AP 204d received from step 707.
- the supplementary network air interface parameter is a channel configuration parameter on an air interface required to supplement the network bearer RAB2.
- the supplemental network air interface parameters may include RB parameters and physical channel parameters.
- signaling interaction with the supplementary network AP 204d may be performed, similar to the function of the existing NBAP, to deliver content through the centralized IF interface.
- Steps 1313 to 1317 are basically the same as steps 711 to 715 in FIG. 7, and in order to avoid repetition, details are not described herein again.
- the enhanced SGSN 203d distributes the service.
- the enhanced SGSN 203d transmits the data stream to the UE on the RAB1 through the BSC/RNC 202d.
- the enhanced SGSN 203d transmits the data stream to the UE on the RAB2 through the supplementary network GW 205d.
- the BSC/RNC 202d may first receive the bearer from the enhanced SGSN 203d. For the data stream of UTRAN/GERAN, then in step 1318, the BSC/RNC 202d may distribute the received data stream. For example, a part of the data stream is sent to the UE on RAB1. An additional portion of the data stream is sent to the UE over RAB2 by the supplemental network GW 205d. Thereby, the shunting of the basic network service is realized.
- a supplementary network link is established between the UE and the supplementary network node, and the wireless access system of the supplementary network is different from the basic network, so that the operating network capacity can be expanded.
- the impact on the basic network can be reduced and the cost can be reduced.
- FIG. 14 is a schematic diagram of a network architecture in accordance with another embodiment of the present invention.
- the enhanced SGSN 203b is a core network node, for example, a core network node that is adapted to the function of the SAE network element, for example, a function of adapting the MME and the SGW.
- the BSC/RNC 202b may be a node in an existing 2G or 3G infrastructure network.
- the supplementary network AP 204e only has the user plane function, and the supplementary network GW 205e has the control plane function of the supplementary network.
- the BSC/RNC 202e manages traffic diversion. After the service offload information is sent to the supplementary network GW 205e, the supplementary network GW 205e notifies the supplementary network AP 204e to establish a bearer.
- Figures 15a through 15c are schematic diagrams of protocol stacks applicable to the network architecture of Figure 14.
- 15a is a schematic diagram of a control plane protocol stack corresponding to the SGSN in the 2G network.
- Figure 15b is a schematic diagram of a control plane protocol stack corresponding to an SGSN in a 3G network.
- Figure 15c is a schematic diagram of the user plane protocol stack.
- the UE when there is only a supplementary network link, the UE triggers a basic network link establishment process when a CS (circuit switch) or a high value PS (Packet Switch) service is triggered.
- a CS circuit switch
- PS Packet Switch
- the paging policy at this time may be that both the CS and the PS are executed on the basic network; Or only the CS is executed on the basic network, and the PS service is sent through a dedicated connection of the supplementary network.
- the PS service is not a high-value service, it should still be paged on the basic network to follow the premise that the basic network is responsible for the offload.
- the supplementary network GW in the supplementary network has the control plane function, which can reduce the impact on the basic network and reduce the cost.
- the mobility management since the mobility management is located in the supplementary network GW 205e, the signaling overhead can be reduced in the scenario without the basic network service compared with the network architecture of FIG.
- Figure 16 is a schematic flow diagram of a process of a link establishment method applicable to the network architecture of Figure 14.
- the enhanced SGSN 203e transmits data streams to the UEs on the RAB1 and RAB2 through the BSC/RNC 202e, and the RAB1 and RAB2 are carried on the UTRAN/GERAN.
- RAB1 and RAB2 are described in FIG. 16, in the embodiment of the present invention, the number of RABs may be one or more, for example, may also be three RABs or more. This embodiment of the present invention does not limit this.
- the RAB2 can be shunted to the supplementary network as an example.
- Steps 1601 to 1605 in Fig. 16 are substantially the same as steps 1301 to 1305 in Fig. 13 and steps 701 to 705 in Fig. 7. To avoid repetition, details are not described herein.
- Steps 1606 to 1612 are basically the same as steps 1310 to 1316 in FIG. 13, and in order to avoid repetition, details are not described herein again.
- the BSC/RNC 202e sends a offloading handover indication message to the enhanced SGSN 203e, where the offloading handover indication message is used to indicate that the supplementary network link establishment is successful and the air interface resource release of the RAB2 used in the basic network is completed, that is, the RAB2 is in the UTRAN/GERAN.
- the bearer deletion was successful.
- the enhanced SGSN 203e performs the following according to the offload switching indication message in step 1613. Distribute.
- the enhanced SGSN 203e transmits the data stream to the UE on the RAB1 through the BSC/RNC 202e.
- the enhanced SGSN 203e transmits the data stream to the UE on the RAB2 through the supplementary network GW 205e.
- the distribution of the data stream can be in other ways.
- the steps shown by the broken lines in Fig. 16 are shown.
- the BSC/RNC 202e may first receive the data stream carried in the UTRAN/GERAN from the enhanced SGSN 203e, and in step 1615, the BSC/RNC 202e may distribute the received data stream.
- a part of the data stream is sent to the UE on the RAB1.
- An additional portion of the data stream is sent to the UE over RAB2 by supplementing the network GW 205e. Thereby diverting the basic network service.
- a supplementary network link is established between the UE and the supplementary network node, and the wireless access system of the supplementary network is different from the basic network, so that the operating network capacity can be expanded.
- the impact on the basic network can be reduced and the cost can be reduced.
- FIG. 17 is a schematic diagram of a network architecture in accordance with another embodiment of the present invention.
- the enhanced SGSN 203f is a core network node, for example, a core network node to which the function of adapting the SAE network element is added, for example, a function of adapting the MME and the SGW is added.
- the BSC/RNC 202f may be a node in an existing 2G or 3G base network.
- the supplementary network AP 204f has full user plane functionality and control plane functionality.
- the supplementary network GW 205b may perform interference control management on the supplementary network AP 204b.
- FIGS. 18a through 18b are schematic diagrams of protocol stacks that may be applicable to the network architecture of FIG. 18a is a schematic diagram of a control plane protocol stack.
- Figure 18b is a schematic diagram of a user plane protocol stack.
- the supplementary network AP in the supplementary network has the functions of the user plane and the control plane, which can reduce the impact on the basic network and reduce the cost.
- Figure 19 is a schematic flow diagram of a process of a link establishment method applicable to the network architecture of Figure 17.
- the enhanced SGSN 203f transmits data streams to the UEs on the RAB1 and RAB2 through the BSC/RNC 202f, and the RAB1 and RAB2 are carried on the UTRAN/GERAN.
- RAB1 and RAB2 are described in FIG. 19, in the embodiment of the present invention, the number of RABs may be one or more, for example, may also be three RABs or more. This embodiment of the present invention does not limit this.
- the RAB2 can be shunted to the supplementary network as an example.
- the steps 1901 to 1905 in FIG. 19 are substantially the same as the steps 401 to 405 in FIG. 4 and the steps 1001 to 1005 in FIG. 10, and in order to avoid redundancy, details are not described herein again.
- Steps 1906 to 1914 in Fig. 19 are substantially the same as steps 1007 to 1015 in Fig. 10, and are not described herein again in order to avoid redundancy.
- the BSC/RNC 202f has an interface with the supplementary network AP, and therefore, it is not necessary to transmit the parameter information of the RAB2 to the supplementary network AP through the enhanced SGSN 203f.
- the difference from FIG. 10 is that the BSC/RNC 202f in FIG. 19 does not have the function of initiating traffic offloading.
- a supplementary network link is established between the UE and the supplementary network node, and the wireless access system of the supplementary network is different from the basic network, so that the operating network capacity can be expanded.
- the supplementary network AP since the supplementary network AP has the functions of the user plane and the control plane, the impact on the basic network can be reduced and the cost can be reduced.
- FIG. 20 is a schematic diagram of a network architecture in accordance with still another embodiment of the present invention.
- the same or similar nodes in the middle use the same reference numerals.
- the BSC/RNC 202g has a control plane function that complements the network.
- the supplementary network AP 204g has a user plane function.
- the supplementary network GW 205g may perform interference control management on the supplementary network AP 204g.
- the HLR (Home Location Register) 209 is a node of the core network in the 2G or 3G network.
- 21a through 21c are schematic diagrams of a protocol stack applicable to the network architecture of Fig. 20.
- 21a is a schematic diagram of a control plane protocol stack corresponding to the SGSN in the 2G network.
- Figure 21b is a schematic diagram of a control plane protocol stack corresponding to an SGSN in a 3G network.
- Figure 21c is a schematic diagram of the user plane protocol stack.
- the protocol stack of the BSC/RNC 202g in the network architecture of Figure 20 is different from the prior art.
- the IF interface is responsible for the interaction between the upper layer protocol stack and the RRC of the original Abis/Iub interface, and transmits information such as radio resource configuration and measurement configuration.
- the BSC/RNC has the control plane function of the supplementary network, and can implement better service offload from the perspective of unlimited resource management, thereby improving the user experience.
- Figure 22 is a schematic flow diagram of a process applicable to the link establishment method of the network architecture of Figure 20.
- the SGSN 203g passes through the BSC/RNC 202g on RAB1 and RAB2.
- the UE transmits the data stream, and RAB1 and RAB2 are carried on the UTRAN/GERAN. It should be noted that although only RAB1 and RAB2 are described in FIG. 22, in the embodiment of the present invention, the number of RABs may be one or more, for example, may also be three RABs or more. This embodiment of the present invention does not limit this.
- the RAB2 can be shunted to the supplementary network as an example.
- Steps 2201 to 2205 in Fig. 22 are substantially the same as steps 401 to 405 in Fig. 4 and steps 1001 to 1005 in Fig. 10, and are not described herein again in order to avoid redundancy.
- the BSC/RNC 202g generates supplementary network air interface parameters of the supplementary network bearer RAB2 according to the parameter information of the RAB2 and the small cell resource information of the supplementary network AP 204g.
- the BSC/RNC 202g may also determine whether to initiate supplementary service offload according to the supplemental air interface channel quality and the RAB attribute. In the case where it is determined that the split is initiated, step 2206 is performed.
- the BSC/RNC 202g may obtain the identifier of the supplementary network AP 204g from the supplementary network node discovery report sent by the UE in step 2205, and obtain the cell resource information of the supplementary network AP 204g according to the identifier of the supplementary network AP 204g.
- the BSC/RNC 202g sends the supplementary network air interface parameter generated in step 2206 to the supplementary network AP 204g.
- the BSC/RNC 202g Since the BSC/RNC 202g has the control plane function of the supplementary network, it is necessary to notify the supplementary network AP 204g of the supplementary network air interface parameters, so that the supplementary network AP 204g can establish a data flow channel of the supplementary network with the UE.
- the BSC/RNC 202g sends an RRC reconfiguration message carrying the supplementary network air interface parameter generated in step 2206 to the UE.
- the UE sends an RRC reconfiguration response message for the RRC reconfiguration message of step 2208 to the BSC/RNC 202g.
- the UE can establish a data stream channel of the supplementary network with the supplementary network AP 204g. It should be noted that since the supplementary network AP 204g does not have the control plane function, there is no need to establish a supplementary network link with the UE through control signaling.
- the BSC/RNC 202g sends a offload handover indication message to the SGSN 203g, where the offload handover indication message is used to indicate that the supplementary network link establishment is successful and the RAB2 is successfully deleted in the UTRAN/GERAN.
- the SGSN 203g distributes the service according to the offload switching indication message in step 2211.
- SGSN 203g transmits a data stream to UE through RAB1 through BSC/RNC 202g. Meanwhile, since the RAB 2 is carried on the supplementary network, the SGSN 203g transmits a data stream to the UE on the RAB 2 through the supplementary network AP 204g.
- the BSC/RNC 202c may first receive the bearer from the SGSN 203c in the UTRAN/GERAN.
- the data stream is, in step 1016, the BSC/RNC 202c distributes the received data stream.
- a part of the data stream is sent to the UE on the RAB 1.
- An additional portion of the data stream is sent to the UE over RAB2 by supplementing the network AP 204c. Thereby, the shunting of the basic network service is realized.
- a supplementary network link is established between the UE and the supplementary network node, and the wireless access system of the supplementary network is different from the basic network, so that the operating network capacity can be expanded.
- the supplementary network air interface parameter is generated by the BSC/RNC, so that the BSC/RNC has the control plane function of the supplementary network, and can implement better service offload from the perspective of the radio resource management, thereby improving the user experience.
- FIG. 23 is a schematic block diagram of a communication device in accordance with an embodiment of the present invention.
- An example of device 2300 of Figure 23 is a supplemental network AP or BSC/RNC.
- the device 2300 of Fig. 23 includes a determining unit 2310, a generating unit 2320, and a notifying unit 2330.
- the determining unit 2310 determines the parameter information of the RAB and the cell resource information of the supplementary network AP.
- the generating unit 2320 generates supplementary network air interface parameters required for the supplementary network bearer RAB according to the parameter information of the RAB and the cell resource information of the supplementary network AP.
- the notifying unit 2330 notifies the UE of the supplementary network air interface parameter, so that the UE establishes a supplementary network link carrying the RAB according to the supplementary network air interface parameter, and the supplementary network wireless access system is different from the basic network wireless access system.
- a supplementary network link is established between the UE and the supplementary network AP, and the wireless access system of the supplementary network is different from the basic network, so that the operating network capacity can be expanded.
- determining the unit The parameter information of the RAB sent by the core network node according to the identifier of the supplementary network AP is received by the core network node, where the identifier of the supplementary network AP is obtained by the core network node from the supplementary network offload routing information that is sent by the basic network node and carries the identifier of the supplementary network AP.
- the parameter information of the RAB is determined by supplementing the network AP, so that the supplementary network AP has the control plane function, thereby reducing the impact on the basic network and reducing the cost.
- the notification unit 2330 may send a supplementary network air interface parameter to the core network node, so that the core network node sends the supplementary network air interface parameter to the basic network node, and the basic network node
- the RRC reconfiguration message carrying the supplementary network air interface parameter is sent to the UE.
- the determining unit 2310 may receive parameter information of the RAB sent by the basic network node.
- the parameter information of the RAB is determined by supplementing the network AP, so that the supplementary network AP has the control plane function, thereby reducing the impact on the basic network and reducing the cost.
- the notification unit 2330 may send the supplementary network air interface parameter to the basic network node, so that the basic network node sends the RRC reconfiguration message carrying the supplementary network air interface parameter to the UE. .
- the determining unit 2310 may obtain the identifier of the supplementary network AP from the UE, and determine the cell resource information of the supplementary network AP according to the identifier of the supplementary network AP.
- the base network node determines the cell resource information of the supplementary network AP, generates a supplementary network air interface parameter, so that the basic network node has the control plane function of the supplementary network, and can implement a better service from the perspective of the wireless resource management. Diverting, which can enhance the user experience.
- the notification unit 2330 may send an RRC reconfiguration message carrying the supplementary network port air interface parameter to the UE.
- Figure 24 is a schematic block diagram of a communication device in accordance with another embodiment of the present invention.
- Figure 24 device In 2400 the same or similar parts as in Fig. 23 use the same reference numerals.
- the device 2400 is a supplementary network AP
- the first receiving unit 2340 and the first transmitting unit 2350 are included in addition to the determining unit 2310, the generating unit 2320, and the notifying unit 2330.
- the first receiving unit 2340 may receive a supplementary network link setup request message sent by the UE according to the supplementary network air interface parameter after notifying the UE of the supplementary network air interface parameter.
- the first transmitting unit 2350 can send a supplementary network link setup response message to the UE.
- a supplementary network link is established between the UE and the supplementary network AP, and the wireless access system of the supplementary network is different from the basic network, so that the operating network capacity can be expanded.
- Figure 25 is a schematic block diagram of a communication device in accordance with another embodiment of the present invention.
- the same or similar portions as those of Fig. 23 are given the same reference numerals.
- the device 2500 is a base network node, in addition to the determining unit 2310, the generating unit 2320, and the notifying unit 2330, a second transmitting unit 2360 and a second receiving unit 2370 are further included.
- the second sending unit 2360 may send the supplementary network air interface parameter to the supplementary network AP after generating the supplementary network air interface parameters required by the supplementary network bearer RAB.
- the second receiving unit 2370 may receive a confirmation message sent by the supplementary network AP for indicating the confirmation of the supplementary network air interface parameter.
- the parameter information of the RAB is determined by supplementing the network AP, so that the supplementary network AP has the control plane function, thereby reducing the impact on the basic network and reducing the cost.
- a supplementary network link is established between the UE and the supplementary network AP, and the wireless access system of the supplementary network is different from the basic network, so that the operating network capacity can be expanded.
- the supplementary network air interface parameter is generated by the basic network node, so that the basic network node has the control plane function of the supplementary network, and can implement better service offload from the perspective of the radio resource management, thereby improving the user experience.
- the device 2500 further includes a release unit 2380.
- the second receiving unit 2370 may further receive an RRC reconfiguration response message sent by the UE after the RRC reconfiguration message carrying the supplementary network port air interface parameter is sent to the UE, where the RRC reconfiguration response message is used to indicate the supplementary network of the UE and the supplementary network node.
- the link is established.
- the release unit 2380 releases the air interface resources used by the RAB in the underlying network.
- the second sending unit 2360 may further send a offload switching indication message to the core network node after receiving the RRC reconfiguration response message sent by the UE, where the offload switching indication message is used to indicate the supplementary network chain.
- the offload switching indication message is used to indicate the supplementary network chain.
- a supplementary network link is established between the UE and the supplementary network AP, and the wireless access system of the supplementary network is different from the basic network, so that the operating network capacity can be expanded.
- the cell resource information of the supplementary network AP is determined by the basic network node, and the supplementary network air interface parameter is generated, so that the basic network node has the control plane function of the supplementary network, and can achieve better from the perspective of wireless resource management.
- the business is offloaded, which can enhance the user experience.
- FIG. 26 is a schematic block diagram of a gateway in accordance with an embodiment of the present invention.
- An example of a gateway 2600 is a supplemental network GW.
- the gateway 2600 includes a determining unit 2610, a generating unit 2620, and a notifying unit 2630.
- the determining unit 2610 determines parameter information of the RAB and cell resource information of the supplementary network AP.
- the generating unit 2620 generates, according to the parameter information of the RAB and the cell resource information of the supplementary network AP, a supplementary network air interface parameter required by the supplementary network to carry the RAB.
- the notification unit 2630 notifies the user equipment UE of the supplementary network air interface parameter, so that the UE establishes a supplementary network link carrying the RAB with the gateway GW according to the supplementary network air interface parameter, where the wireless access system of the supplementary network is different from the basic network.
- Wireless access system In the embodiment of the present invention, a supplementary network link is established between the UE and the gateway, and the wireless access system of the supplementary network is different from the basic network, so that the operating network capacity can be expanded.
- the establishment of the supplementary network link between the GW and the UE can implement service offloading to the basic network and improve the service transmission rate.
- the supplementary network air interface parameter is generated by the GW, so that the GW has the control plane function, thereby reducing the impact on the basic network and reducing the cost.
- gateway 2600 For other functions and operations of the gateway 2600, reference may be made to the method embodiments of the foregoing FIG. 1 to FIG. 22, and in order to avoid repetition, details are not described herein again.
- the determining unit 2610 may receive the parameter information of the RAB sent by the core network node according to the identifier of the GW, and the identifier of the supplementary network AP, where the identifier of the supplementary network AP and the identifier of the GW are the core network.
- the node obtains the supplementary network offload routing information sent by the basic network node, and the supplementary network offload routing information carries the identifier of the supplementary network AP and the identifier of the GW; and determines the cell resource information of the supplementary network AP according to the identifier of the supplementary network AP.
- the notification unit 2630 may send the supplementary network air interface parameter to the core network node, so that the core network node sends the supplementary network air interface parameter to the basic network node, and the basic network node sends the supplementary network air interface parameter to the UE.
- the radio resource controls the RRC reconfiguration message.
- the determining unit 2610 may receive the parameter information of the RAB sent by the basic network node and the identifier of the supplementary network AP, and determine the cell resource information of the supplementary network AP according to the identifier of the supplementary network AP.
- the notification unit 2630 may send a supplementary network air interface parameter to the basic network node, so that the basic network node sends an RRC reconfiguration message carrying the supplementary network air interface parameter to the UE.
- the gateway 2600 may further include a receiving unit 2640 and a sending unit 2650.
- the receiving unit 2640 may receive the supplementary network link establishment request sent by the UE according to the supplementary network air interface parameter after notifying the UE of the supplementary network air interface parameter. Interest.
- the transmitting unit 2650 transmits a supplementary network link setup response message to the UE.
- a supplementary network link is established between the UE and the gateway, and the wireless access system of the supplementary network is different from the basic network, so that the operating network capacity can be expanded.
- the establishment of the supplementary network link between the GW and the UE can implement service offloading to the basic network and improve the service transmission rate.
- the supplementary network air interface parameter is generated by the GW, so that the GW has the control plane function, thereby reducing the impact on the basic network and reducing the cost.
- the disclosed systems, devices, and methods may be implemented in other ways.
- the device embodiments described above are merely illustrative.
- the division of the unit is only a logical function division.
- there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
- the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
- the components displayed by the unit may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units.
- each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
- the functions, if implemented in the form of software functional units and sold or used as separate products, may be stored in a computer readable storage medium.
- the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
- the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
- the foregoing storage medium includes: a U disk, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明实施例提供链路建立方法及设备。该方法包括:确定无线接入承载RAB的参数信息和补充网络接入点AP的小区资源信息;根据该RAB的参数信息和该补充网络AP的小区资源信息,生成补充网络承载该RAB所需要的补充网络空口参数;向用户设备UE通知该补充网络空口参数,以便该UE根据该补充网络空口参数与补充网络节点建立承载该RAB的补充网络链路,其中该补充网络的无线接入制式不同于基础网络的无线接入制式。本发明实施例中通过UE与补充网络节点之间建立补充网络链路,且补充网络的无线接入制式不同于基础网络,从而能够扩充运营网络容量。
Description
链路建立方法及 i殳备 本申请要求于 2012 年 03 月 26 日提交中国专利局、 申请号为 201210082228.0、发明名称为"链路建立方法及设备 "的中国专利申请的优先 权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及无线通信领域, 并且具体地, 涉及链路建立方法及设备。 背景技术
随着移动通信技术的发展, 无线通信网络中的数据量激增。 网络运营 商为了緩解运营网络的拥塞, 需要部署更多的基站来提高网络容量, 但这 势必会增加投资成本与维护成本。 为了解决这一矛盾, 越来越多的网络运 营商选择了业务分流的方式, 作为对运营网络的补充。 但是现有技术只能 实现同种无线网络制式下的业务分流, 限制了网络容量的扩大。 发明内容
本发明实施例提供链路建立方法及设备, 能够扩充运营网络容量。 一方面, 提供了一种链路建立方法, 包括: 确定无线接入承载 RAB的 参数信息和补充网络接入点 AP的小区资源信息; 根据该 RAB的参数信息 和该补充网络 AP的小区资源信息, 生成补充网络承载该 RAB所需要的补 充网络空口参数; 向用户设备 UE通知该补充网络空口参数, 以便该 UE根 据该补充网络空口参数与补充网络节点建立承载该 RAB的补充网络链路, 其中该补充网络的无线接入制式不同于基础网络的无线接入制式。
另一方面, 提供了一种通信设备, 包括: 确定单元, 用于确定无线接 入承载 RAB的参数信息和补充网络接入点 AP的小区资源信息;生成单元,
用于根据该 RAB的参数信息和该补充网络 AP的小区资源信息, 生成补充 网络承载该 RAB所需要的补充网络空口参数; 通知单元, 用于向用户设备 UE通知该补充网络空口参数, 以便该 UE根据该补充网络空口参数与该补 充网络 AP建立承载该 RAB的补充网络链路, 其中该补充网络的无线接入 制式不同于基础网络的无线接入制式。
另一方面, 提供了一种网关, 包括: 确定单元, 用于确定无线接入承 载 RAB的参数信息和补充网络接入点 AP的小区资源信息; 生成单元, 用 于根据该 RAB的参数信息和该补充网络 AP的小区资源信息, 生成补充网 络承载该 RAB 所需要的补充网络空口参数; 通知单元, 用于向用户设备 UE通知该补充网络空口参数, 以便该 UE根据该补充网络空口参数与该网 关 GW建立承载该 RAB的补充网络链路,其中该补充网络的无线接入制式 不同于基础网络的无线接入制式。 充网络的无线接入制式不同于基础网络, 从而能够扩充运营网络容量。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对本发明实施例 中所需要使用的附图作筒单地介绍, 显而易见地, 下面所描述的附图仅仅 是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性 劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是根据本发明实施例的链路建立方法的示意性流程图。
图 2是根据本发明一个实施例的网络架构的示意图。
图 3a和图 3b是可适用于图 2的网络架构的协议栈的示意图。
图 4是可适用于图 2的网络架构的链路建立方法的过程的示意性流程 图。
图 5是根据本发明另一实施例的网络架构的示意图。
图 6a和图 6b是可适用于图 5的网络架构的协议栈的示意图。
图 7是可适用于图 5的网络架构的链路建立方法的过程的示意性流程 图。
图 8是根据本发明又一实施例的网络架构的示意图。
图 9a至图 9c是可适用于图 8的网络架构的协议栈的示意图。
图 10是可适用于图 8的网络架构的链路建立方法的过程的示意性流程 图。
图 11是根据本发明再一实施例的网络架构的示意图。
图 12a至图 12c是可适用于图 11的网络架构的协议栈的示意图。 图 13是可适用于图 11 的网络架构的链路建立方法的过程的示意性流 程图。
图 14是根据本发明另一实施例的网络架构的示意图。
图 15a至图 15c是可适用于图 14的网络架构的协议栈示意图。
图 16是可适用于图 14的网络架构的链路建立方法的过程的示意性流 程图。
图 17是根据本发明另一实施例的网络架构的示意图。
图 18a至图 18b是可适用于图 17的网络架构的协议栈的示意图。 图 19是可适用于图 17的网络架构的链路建立方法的过程的示意性流 程图。
图 20是才艮据本发明再一实施例的网络架构的示意图。
图 21a至 21c是可适用于图 20的网络架构的协议栈的示意图。
图 22是可适用于图 20的网络架构的链路建立方法的过程的示意性流 程图。
图 23是根据本发明实施例的通信设备的示意框图。
图 24是根据本发明另一实施例的通信设备的示意框图。
图 25是根据本发明另一实施例的通信设备的示意框图。
图 26是根据本发明实施例的网关的示意框图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例是本发明的一部分实施例, 而不 是全部实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出 创造性劳动的前提下所获得的所有其他实施例, 都应属于本发明保护的范 围。
应理解, 本发明的技术方案可以应用于各种通信系统, 例如: 全球移 动通讯( Global System of Mobile communication , GSM )系统、码分多址( Code Division Multiple Access , CDMA ) 系统、 宽带码分多址 ( Wideband Code Division Multiple Access, WCDMA )系统、通用分组无线业务( General Packet Radio Service, GPRS )、 长期演进( Long Term Evolution, LTE ) 系统、 LTE 频分双工 (Frequency Division Duplex, FDD ) 系统、 LTE时分双工 (Time Division Duplex , TDD )、 通用移动通信系统 ( Universal Mobile Telecommunication System, UMTS )等。
应理解, 本发明实施例中, 基础网络可以指作为基础部署的宏网络, 也可 以称为服务网络( Serving Network )。 本发明实施例中, 为了描述方便, 统 一采用基础网络的描述方式。 基础网络的无线接入制式可以是 UTRAN ( UMTS Terrestrial Radio Access Network , UMTS陆地无线接入网)、 GERAN ( GSM/EDGE ( Enhanced Data Rate for GSM Evolution, 增强型数据速率 GSM演进) Radio Access Network, GSM/EDGE无线接入网)、 LTE等, 本 发明实施例对此不作限定。
还应理解, 本发明实施例中, 补充网络( Supplementary Network )是相对于 基础网络而言的, 作为基础网络的补充, 可以对基础网络的业务进行卸载 分流, 也可以称为服务卸载补充网络 ( Service Offload Supplementary
Networks )。 补充网络的无线接入制式不同于基础网络的无线接入制式, 例 如补充网络可以是 LTE, 也可以是基于 LTE制式空口增强的 HiFi网络等。 本发明实施例对此不作限定。
图 1是根据本发明实施例的链路建立方法的示意性流程图。 图 1的方 法由通信设备执行。
110, 确定无线接入承载(Radio Access Bearer, RAB )的参数信息和补 充网络接入点 (Access Point , ΑΡ)的小区资源信息。
120,根据该 RAB的参数信息和该补充网络 ΑΡ的小区资源信息,生成 补充网络 7|载该 RAB所需要的补充网络空口参数。
该补充网络空口参数可以为补充网络承载该 RAB所需要的空口上的信 道配置参数。例如, 补充网络空口参数可包括无线承载(Radio Bearer, RB ) 和物理信道参数。
130, 向用户设备 ( User Equipment, UE )通知该补充网络空口参数, 以便 UE根据该补充网络空口参数与补充网络节点建立承载该 RAB的补充 网络链路, 其中该补充网络的无线网络制式不同于基础网络的无线网络制 式。
应理解,本发明实施例中,通信设备向 UE通知该补充网络空口参数可 以指通信设备直接地向 UE发送该补充网络空口参数,也可以指通信设备通 过多个控制信令或者通过一个或多个其它通信设备间接地向 UE通知该补 充网络空口参数。 本发明实施例对此不作限定。
补充网络节点可以指补充网络 AP或补充网络网关 (Gateway, GW ), 本发明实施例对此不作限定。
本发明实施例中通过 UE与补充网络节点之间建立补充网络链路,且补 充网络的无线接入制式不同于基础网络, 从而能够扩充运营网络容量。
可选地, 作为一个实施例, 在图 1 的方法由补充网络节点执行且补充 网络节点为补充网络 AP时, 在步骤 110中, 补充网络 AP可接收核心网节
点根据补充网络 AP的标识发送的 RAB的参数信息, 其中补充网络 AP的 标识是核心网节点从基础网络节点发送的携带补充网络 AP 的标识的补充 网络分流路由信息中获取的。 其中, 核心网节点可以是 2G网络或 3G网络 中的 GPRS服务支持节点( Serving GPRS Support Node, SGSN ), 本发明实 施例对此不作限定。核心网节点可才艮据补充网络 AP的标识确定该向哪个补 充网络 AP发送 RAB的参数信息。
本发明实施例中, 通过补充网络 AP确定 RAB的参数信息, 使得补充 网络 AP具备控制面功能, 因此能够减小对基础网络的影响并降低成本。
可选地, 作为另一实施例, 在图 1 的方法由补充网络节点执行且补充 网络节点为补充网络 GW时, 在步骤 110中, 补充网络 GW可接收核心网 节点根据补充网络 GW的标识发送的 RAB的参数信息和补充网络 AP的标 识, 其中补充网络 AP的标识和补充网络 GW的标识是核心网节点从基础 网络节点发送的补充网络分流路由信息中获取的, 该补充网络分流路由信 息携带补充网络 AP的标识和补充网络 GW的标识。 补充网络 GW可根据 补充网络 AP的标识确定补充网络 AP的小区资源信息。 其中, 基础网络节 点可以是基础网络中的 BSC ( Base Station Controller, 基站控制器 )或者是 RNC ( Radio Network Controller, 无线网络控制器)。 本发明实施例对此不 作限定。
本发明实施例中, 通过补充网络 GW确定 RAB的参数信息, 使得补充 网络 GW具备控制面功能, 因此能够减小对基础网络的影响并降低成本。
可选地, 作为另一实施例, 在图 1 的方法由补充网络节点执行时, 在 步骤 130 中, 补充网络节点可向核心网节点发送补充网络空口参数, 以便 核心网节点向基础网络节点发送补充网络空口参数, 基础网络节点向 UE 发送携带补充网络空口参数的 RRC重配置消息。 也就是, 补充网络可通过 核心网节点与基础网络节点向 UE通知补充网络空口参数。
可选地, 作为另一实施例, 在图 1 的方法由补充网络节点执行且补充
网络节点为补充网络 AP时, 在步骤 110中, 补充网络 AP可接收基础网络 节点发送的 RAB的参数信息。
本发明实施例中, 通过补充网络 AP生成补充网络空口参数,使得补充 网络 AP具备控制面功能, 因此能够减小对基础网络的影响并降低成本。
可选地, 作为另一实施例, 在图 1 的方法由补充网络节点执行且补充 网络节点为补充网络 GW时, 在步骤 110中, 补充网络 GW可接收基础网 络节点发送的 RAB的参数信息和补充网络 AP的标识, 根据补充网络 AP 的标识确定补充网络 AP的小区资源信息。
本发明实施例中, 通过补充网络 AP生成补充网络空口参数,使得补充 网络 AP具备控制面功能, 因此能够减小对基础网络的影响并降低成本。
可选地, 作为另一实施例, 在图 1 的方法由补充网络节点执行时, 在 步骤 130 中, 补充网络节点可向基础网络节点发送补充网络空口参数, 以 便基础网络节点向 UE发送携带补充网络空口参数的 RRC重配置消息。
可选地, 作为另一实施例, 在图 1 的方法由补充网络节点执行时, 在 向 UE通知所述补充网络空口参数之后,补充网络节点可接收 UE根据补充 网络空口参数发送的补充网络链路建立请求消息。 补充网络节点可向 UE 发送补充网络链路建立响应消息。
可选地, 作为另一实施例, 在图 1 的方法由补充网络节点执行时, 在 补充网络节点向 UE发送补充网络链路建立响应消息之后,基础网络节点可 接收 UE发送的 RRC重配置响应消息,该 RRC重配置响应消息用于指示补 充网络链路建立完成, 以便基础网络节点释放 RAB在基础网络中使用的空 口资源。
可选地, 作为另一实施例, 在图 1 的方法由补充网络节点执行时, 在 基础网络节点接收 UE发送的 RRC重配置响应消息之后, 基础网络节点可 向核心网节点发送分流切换指示消息, 该分流切换指示消息用于指示补充 网络链路建立完成以及 R AB在基础网络中使用的空口资源释放完成。这样,
核心网节点可以根据该分流切换指示消息进行业务分发。
可选地, 作为另一实施例, 在图 1 的方法由基础网络节点执行时, 在 步骤 110中, 基础网络节点可从 UE获取补充网络 AP的标识。 基础网络节 点可才艮据补充网络 AP的标识确定补充网络 AP的小区资源信息。
可选地, 作为另一实施例, 在图 1 的方法由基础网络节点执行时, 在 生成补充网络承载 RAB所需要的补充网络空口参数之后,基础网络节点可 向补充网络 AP发送补充网络空口参数。 基础网络节点可接收补充网络 AP 发送的用于指示确认补充网络空口参数的确认消息。
可选地, 作为另一实施例, 在图 1 的方法由基础网络节点执行时, 在 步骤 130中, 基础网络节点可向 UE发送携带补充网口空口参数的 RRC重 配置消息。
可选地, 作为另一实施例, 在图 1 的方法由基础网络节点执行时, 在 基础网络节点向 UE发送携带补充网口空口参数的 RRC重配置消息之后, 基础网络节点可接收 UE发送的 RRC重配置响应消息,该 RRC重配置响应 消息用于指示 UE与补充网络节点的补充网络链路建立完成,并释放该 RAB 在基础网络中使用的空口资源。
可选地, 作为另一实施例, 在图 1 的方法由基础网络节点执行时, 在 基础网络节点接收 UE发送的 RRC重配置响应消息之后, 基础网络节点可 向核心网节点发送分流切换指示消息, 该分流切换指示消息用于指示补充 网络链路建立完成以及该 R AB在基础网络中使用的空口资源释放完成。 这 样, 核心网节点可以根据该分流切换指示消息进行业务分发。
可选地, 作为另一实施例, 在通信设备确定 RAB的参数信息和补充网 络 AP的小区资源信息之前,核心网节点可向基础网络节点发送用于指示所 述 RAB能够被分流的分流允许指示。基础网络节点可根据该分流允许指示 向 UE发送用于指示 UE搜索补充网络的补充网络节点发现控制命令。基础 网络节点可接收 UE根据补充网络节点发现控制命令发送的携带补充网络
AP的标识的补充网络节点发现报告。
可选地, 作为另一实施例, 在图 1 的方法由补充网络节点且补充网络 节点为补充网络 GW时, 补充网络节点发现 4艮告还携带补充网络 GW的标 识。
本发明实施例中通过 UE与补充网络节点之间建立补充网络链路,且补 充网络的无线接入制式不同于基础网络, 从而能够扩充运营网络容量。
下面将结合具体的例子详细描述本发明实施例。在下面图 2至图 22中, 为了帮助本领域技术人员理解本发明实施例, 将以补充网络为 LTE, 或者 基于 LTE制式空口增强的 HiFi网络, 基础网络为 UTRAN和 GERAN为例 进行说明。 应注意, 补充网络还可以是其它无线空口制式, 基础网络也可 以是其它无线空口制式, 例如 TD-CDM A、 CDMA2000等, 本发明实施例 对此并不限定。
图 2是根据本发明一个实施例的网络架构的示意图。
图 2中所示的 BTS( Base Transceiver Station,基站)/NodeB(基站) 201、 BSC/RNC 202a可以是现有 2G或 3G基础网络中的节点。增强的 SGSN 203a 为核心网节点,例 :¾口可以是增力口了适配 SAE ( System Architecture Evolution , 系统架构演进) 网元功能的核心网节点, 比如增加了适配 ΜΜΕ ( Mobility
Management Entity, 移动管理实体)和 SGW ( Service Gateway, 服务网关 ) 等的功能。 HSS ( Home Subscriber Server,归属用户服务器) 208可以是 SAE 的核心网节点。 GGSN(Gateway GPRS Support Node, 网关 GPRS 支持节 点) /PGW(Proxy Gateway, 代理网关) 206 , MSC ( Mobile Switching Center, 移动交换中心) 207可以是现有核心网中的节点。
补充网络 AP 204a和补充网络 GW ( Gateway, 网关 ) 205a可以是补充 网络中的节点。 补充网络 GW 205a可以对补充网络 AP 204a进行干扰控制 管理。 补充网络 AP 204a和补充网络 GW 205a可以位于不同的物理实体, 也可以位于相同的物理实体中。 本发明实施例对此并不限定。 应理解, 在
本发明实施例中, 虽然图 2中只描述了一个补充网络 AP, 但仅仅是为了描 述方便。补充网络 AP的数目可以是一个或多个, 本发明实施例对此并不限 定。
在图 2所示的架构中, 补充网络 AP 204a可以具有完整的用户面和控 制面功能, 可通过补充网络 GW 205a进行数据传输。 基础网络的协议栈可 以无任何修改。但增强的 SGSN 203a为了支持补充网络需要增加适配 MME 的功能。 UE和补充网络 AP 204a之间可采用现有的 LTE的空口协议栈架构, 如图 3a和图 3b所示。
图 3a和图 3b是可适用于图 2的网络架构的协议栈的示意图。 其中, 图 3a为控制面协议栈的示意图。如图 3a所示,补充网络的控制面消息的路 径为: 补充网络 AP 204&→补充网络 GW 205a→增强的 SGSN 203a。 图 3b 是用户面协议栈的示意图。如图 3b所示,补充网络的用户面数据的路径为: 补充网络 AP 204&→补充网络 GW 205a→增强的 SGSN 203a→SGW。
因此,在本发明实施例中,通过补充网络中的补充网络 AP具备用户面 和控制面功能, 能够减小对基础网络的影响并降低成本。
图 4是可适用于图 2的网络架构的链路建立方法的过程的示意性流程 图。
如图 4所示,增强的 SGSN 203a通过 BSC/RNC 202a在 RAB1和 RAB2 上向 UE发送数据流, RAB1和 RAB2承载在 UTRAN/GERAN上。应注意, 虽然图 4中只描述了 RAB1和 RAB2 , 但本发明实施例中, RAB的数目可 以是一个或多个, 例如还可以是 3个 RAB或更多。 本发明实施例对此不作 限定。
401 , UE向增强的 SGSN 203a上报能够指示支持补充网络分流的能力 信息。
例如, UE可在 Attach或 LAU等 NAS消息中上报该能力信息。
402, 增强的 SGSN 203a确定是否对 RAB进行分流。
例如, 增强的 SGSN 203a可以才艮据增强的 SGSN 203a的能力、 当前业 务属性、 运营商策略或 UE签约信息确定是否将 RAB分流到补充网络频率 层。 比如, RAB2满足被分流的条件, 增强的 SGSN 203a可确定将 RAB2 分流到补充网络。
应注意, 在图 4中, 为了描述方便, 以 RAB2能够被分流为例进行说 明。 但在本发明实施例中, 能够被分流的 RAB的数目并不限于一个, 还可 以是多个。 本发明实施例对此不作限定。
403 ,增强的 SGSN 203a向 BSC/RNC 202a发送用于指示 RAB2能够被 分流的分流允许指示。
例如, 增强的 SGSN 203a可通过 RAB 建立 (setup ) 消息携带该分流 允许指示。
404, BSC/RNC 202a向 UE发送用于指示 UE搜索补充网络的补充网络 节点发现控制命令。
BSC/RNC 202a收到步骤 403中的分流允许指示后,通过补充网络节点 发现控制命令要求 UE对补充网络节点进行上 ^艮。 例如, BSC/RNC 202a可 以在补充网络节点发现控制命令中配置测量的门限或触发时间 ( TimeToTrigger )等参数, 或者携带 BSC/RNC 202a所保存的补充网络部 署信息或其它可以加速 UE对补充网络小区识别的信息。
另外, 如果在 RAB2业务结束前, UE仍没有搜索到合适工作的补充网 络小区, 则 BSC/RNC 202a需要下发控制信息, 通知 UE停止对补充网络的 搜索和测量。
405 , UE向 BSC/RNC 202a发送补充网络节点发现 4艮告, 该补充网络 节点发现 4艮告可携带补充网络 AP 204a的标识。
UE收到步骤 404中 BSC/RNC 202a发送的补充网络节点发现控制命令 后, 对补充网络频率层进行搜索和同步。 由于补充网络的公共信道或者扰 码信息中, 可以指示补充网络 AP的标识, 还可以指示补充网络 GW的标
识, 这样 UE可以在 UTRAN/GERAN网络的控制下搜索和识别到补充网络 频率层, 并当补充网络满足一定的信道质量门限时, UE可以将补充网络 AP 的标识, 或者补充网络 AP 的标识和补充网络 GW 的标识提供给 UTRAN/GERAN网络。
406 , BSC/RNC 202a向增强的 SGSN 203a发送补充网络分流路由信息, 该补充网络分流路由信息携带补充网络 AP 204a的标识。
在步骤 405中, BSC/RNC 202a收到 UE上报的满足一定信号质量的补 充网络 AP的标识和 /或补充网络 GW的标识, 则向增强的 SGSN 203a提供 可用的补充网络分流路由信息。 BSC/RNC 202a可以将 GCI ( Global Cell Identifier, 全球小区标识)或者 PCI ( Physical Cell Identifier )转换为 eNB id ( Identifier, 标识 )并包含在重定位请求 ( relocation required ) 中作为目标 ( Target ) id (宏 ( macro ) eNB id或者 HeNB ( Home eNB , 家庭基站 ) id )。
407 , 增强的 SGSN 203a向步骤 406中补充网络 AP 204a的标识所指示 的补充网络 AP 204a发送 RAB2的参数信息。
例如, 增强的 SGSN 203a可将 RAB2的 QoS参数转换为 EPS承载的 QoS参数, 则 RAB2的参数信息可包括 EPS承载的 QoS参数等。
408, 补充网络 AP 204a根据步骤 407中的 RAB2的参数信息和补充网 络 AP 204a的小区资源信息, 生成补充网络承载 RAB2所需要的补充网络 空口参数。
具体地, 该补充网络空口参数为补充网络承载 RAB2所需要的空口上 的信道配置参数。例如,补充网络空口参数可以包括 RB参数和物理信道参 数。
409,补充网络 AP 204a向增强的 SGSN 203a发送步骤 408中的补充网 络空口参数。
410, 增强的 SGSN 203a向 BSC/RNC 202a发送业务分流请求消息, 该
业务分流请求消息携带补充网络空口参数。
增强的 SGSN 203a通过业务分流请求消息向 BSC/RNC 202a通知补充 网络空口参数, 进一步, 可以将 RAB2在 UTRAN/GERAN的承载删除, 也 即增强的 SGSN 203a和 BSC/RNC 202a之间对于承载这个业务的参数信息 进行删除, 并请求建立 RAB2在补充网络侧的承载。
411 , BSC/RNC 202a向 UE发送携带补充网络空口参数的无线资源控 制 (Radio Resource Control, RRC )重配置消息。
BSC/RNC 202a通过 RRC重配置消息向 UE通知补充网络空口参数, 指示 UE与补充网络 AP 204a建立补充网络链路,并同时释放 RAB2在基础 网络中使用的空口资源, 即删除 RAB2 在基础网络的无线承载 (Radio Bearer, RB )。 进一步地, BSC/RNC 202a在下发该 RRC重配置消息前, 可 以再请求 UE 上报一次当前的补充网络频率层的信号质量情况, 或者在 BSC/RNC 202a内部启动一个定时器,来判断在步骤 405中得到的补充网络 节点发现 4艮告中的信息是否仍然有效。 因此, 这种方式可以减少补充网络 的小区信号质量恶化而导致的补充网络链路建立失败。
412, UE根据步骤 411中 BSC/RNC 202a发送的补充网络空口参数, 向补充网络 AP 204a发送补充网络链路建立请求消息。
UE使用得到的补充网络空口参数,尝试与补充网络 AP 204a建立同步, 发送补充网络链路建立请求消息。
413 , 补充网络 AP 204a向 UE发送补充网络链路建立响应消息。
这样, 承载 RAB2的补充网络链路建立完成。
414, BSC/RNC 202a接收 UE发送的针对步骤 411的 RRC重配置消 息的 RRC重配置响应消息。
UE通过 RRC重配置响应消息向 BSC/RNC 202a通知 载 RAB2的补 充网络链路建立完成。 BSC/RNC 202a释放 RAB2在基础网络中使用的空口 资源。
415 , BSC/RNC 202a向增强的 SGSN 203a发送分流切换指示消息, 该 分流切换指示消息用于指示补充网络链路建立成功以及 RAB2在基础网络 中使用的空口资源释放完成。
416, 增强的 SGSN 203a根据步骤 415中的分流切换指示消息, 对业务 进行分发。
如图 4所示, 由于 RAB1仍承载在 UTRAN/GERAN上, 增强的 SGSN 203a通过 BSC/RNC 202a在 RAB1上向 UE发送数据流。 同时, 由于 RAB2 承载在补充网络上, 增强的 SGSN 203a通过补充网络 AP 204a在 RAB2上 向 UE发送数据流。
本发明实施例中通过 UE与补充网络节点之间建立补充网络链路,且补 充网络的无线接入制式不同于基础网络, 从而能够扩充运营网络容量。
此外, 本发明实施例中, 通过补充网络 AP与 UE之间的补充网络链路 的建立, 能够实现对基础网络的业务分流, 提高业务传输速率。
另外, 本发明实施例中, 由于补充网络 AP具备用户面和控制面功能, 因此能够减小对基础网络的影响并降低成本。
图 5是根据本发明另一实施例的网络架构的示意图。
在图 5所示的网络架构中, 与图 2相同或相似的节点使用相同的附图 标记。 在图 5的网络架构中, 补充网络与 2G/3G基础网络矛耦合。 增强的
SGSN 203b为核心网节点, 例如可以是增加了适配 SAE网元功能的核心网 节点, 比如增加了适配 MME和 SGW等的功能。 BSC/RNC 202b可以是现 有 2G或 3G基础网络中的节点。
与图 2所示的架构不同的是, 图 5所示的架构中, 补充网络 AP 204b 仅具备用户面功能,而补充网络的控制面功能集中在补充网络 GW 205b上。 理和移动性管理。
应理解, 在本发明实施例中, 虽然图 5中只描述了一个补充网络 AP,
但仅仅是为了描述方便。 补充网络 AP的数目可以是一个或多个, 本发明实 施例对此并不限定。
图 6a和图 6b是可适用于图 5的网络架构的协议栈的示意图。 其中, 图 6a是控制面协议栈的示意图。
图 6b是用户面协议栈的示意图。 如图 6b所示, 补充网络 AP 204b支 持完整的用户面功能, 比如支持 RLC ( Radio Link Control, 无线链路控制 ) 和 PDCP ( Packet Data Convergence Protocol, 分组数据汇聚协议)层。 其中 PDCP可负责空口力口密和指示 LIPA ( Local Internet Protocol Access , 本地网 络协议访问, 本地 IP访问 )节点的分流功能。
本发明实施例中, 通过补充网络 GW具备控制面功能, 能够减小对基 础网络的影响并降低成本。
此外, 本发明实施例中, 与图 2所示的网络架构相比, 由于将控制面 功能由补充网络 AP转移到补充网络 GW, 因此能够降低补充网络 AP的复 杂度和成本。 另外由于补充网络 GW的数量小于补充网络 AP的数量, 因 此相比图 2所示的网络架构, 能够进一步降低成本。
图 7是可适用于图 5的网络架构的链路建立方法的过程的示意性流程 图。
如图 7所示,增强的 SGSN 203b通过 BSC/RNC 202b在 RAB1和 RAB2 上向 UE发送数据流, RAB1和 RAB2承载在 UTRAN/GERAN上。应注意, 虽然图 7中只描述了 RAB1和 RAB2 , 但本发明实施例中, RAB的数目可 以是一个或多个, 例如还可以是 3个 RAB或更多。 本发明实施例对此不作 限定。
在图 7中, 还是以 RAB2能够被分流到补充网络为例进行说明。 因此, 图 7中的步骤 701至 704与图 4中的步骤 401至 404基本相同, 为了避免 重复, 此处不再赘述。
705 , UE向 BSC/RNC 202b发送补充网络节点发现 4艮告, 该补充网络
节点发现报告可携带补充网络 AP 204b的标识和补充网络 GW 204b的标识。 后, 对补充网络频率层进行搜索和同步。 由于补充网络的公共信道或者扰 码信息中, 可以指示补充网络 AP的标识, 还可以指示补充网络 GW的标 识, 这样 UE可以在 UTRAN/GERAN网络的控制下搜索和识别到补充频率 层, 并当补充网络满足一定的信道质量门限时, UE可以将补充网络 AP的 标识和补充网络 GW的标识提供给 UTRAN/GERAN网络。
706, BSC/RNC 202b向增强的 SGSN 203b发送补充网络分流路由信息, 该补充网络分流路由信息可携带补充网络 AP 204b的标识和补充网络 GW 205b的标识。
在步骤 705中, BSC/RNC 202b收到 UE上报的满足一定信号质量的补 充网络 AP的标识和补充网络 GW的标识, 则向增强的 SGSN 203b提供可 用的补充网络分流路由信息。 RNC可以将 GCI或者 PCI转换为 eNB id并 包含在重定位请求( relocation required )中作为目标 id (宏 eNB id或者 HeNB id)。
707, 增强的 SGSN 203b向步骤 705中的补充网络 GW 205b的标识所 指示的补充网络 GW 205b发送 RAB2的参数信息和补充网络 AP 204b的标 识。
例如, 增强的 SGSN 203b可将 RAB2的 QoS参数转换为 EPS承载的 QoS参数, 则 RAB2的参数信息可包括 EPS承载的 QoS参数等。 补充网络 AP 204b的标识来自于步骤 706中的补充网络分流路由信息。
708, 补充网络 GW 205b根据步骤 707中的 RAB2的参数信息和补充 网络 AP 204b的小区资源信息, 生成补充网络承载 RAB2所需要的补充网 络空口参数。
可选地, 补充网络 GW 205b可根据从步骤 707中接收的补充网络 AP
204b的标识获取补充网络 AP 204b的小区资源信息。
该补充网络空口参数为补充网络 载 RAB2所需要的空口上的信道配 置参数。 例如补充网络空口参数可以包括 RB参数和物理信道参数。
应注意, 在补充网络 GW 205b生成补充网络空口参数时, 可与补充网 络 AP 204b进行信令交互, 类似于现有 NBAP ( Node B Application Part, 节 点 B应用部分)的功能。 NB AP是 lub接口的信令协议。 可以通过筒化 IF ( Simple Interface Function, 筒化界面功能)接口传递内容。 其中筒化 IF 是一个新定义的接口 (比如筒化了的 X2接口 )完成对补充网络 AP的底层 用户面协议栈或者新定义的用户面实体的配置。 该接口传递的配置信息包 括: 无线资源配置(例如逻辑信道配置, 传输信道配置, 物理信道配置)、 测量配置等。
709, 补充网络 GW 205b向增强的 SGSN 203b发送步骤 708中生成的 补充网络空口参数。
步骤 710与 711与图 4中的步骤 410至 411基本相同, 为了避免重复, 此处不再赘述。
712, UE根据步骤 711中 BSC/RNC 202b发送的补充网络空口参数, 向补充网络 GW 204b发送补充网络链路建立请求消息。
UE使用得到的补充网络空口参数, 尝试与补充网络 GW 204b建立同 步, 发送补充网络链路建立请求消息。
713 , 补充网络 GW 204b向 UE发送补充网络链路建立响应消息。
这样, 承载 RAB2的补充网络链路建立完成。
步骤 714和 715与图 4中的步骤 414和 415基本相同, 为了避免重复, 此处不再赘述。
716,增强的 SGSN 203b根据步骤 715中的分流切换指示消息,对业务 进行分发。
如图 7所示, 由于 RAB1仍承载在 UTRAN/GERAN上, 增强的 SGSN
203b通过 BSC/RNC 202b在 RAB1上向 UE发送数据流。 同时, 由于 RAB2
承载在补充网络上,增强的 SGSN 203b通过补充网络 GW 205b在 RAB2上 向 UE发送数据流。
本发明实施例中通过 UE与补充网络节点之间建立补充网络链路,且补 充网络的无线接入制式不同于基础网络, 从而能够扩充运营网络容量。
另外, 本发明实施例中, 通过补充网络 GW与 UE之间的补充网络链 路的建立, 能够实现对基础网络的业务分流, 提高业务传输速率。
此外, 本发明实施例中, 通过补充网络 GW具备控制面功能, 能够减 小对基础网络的影响并降低成本。
从图 4和图 7所示的示意性流程图中可以看出, BSC/RNC起到的作用 是对补充网络 AP的搜索进行控制, 并将补充网络 AP的搜索结果上报给增 强的 SGSN, 以便核心网获得补充网络频率层的信息。 补充网络。
图 8是根据本发明又一实施例的网络架构的示意图。
在图 8所示的网络架构中, 与图 2和图 5中相同或相似的节点使用相 同的附图标记。在图 8的网络架构中, BSC/RNC 202c可以是现有 2G或 3G 基础网络中的节点。 增强的 SGSN 203c为核心网节点, 例如可以是增加了 适配 SAE网元功能的核心网节点, 比如增加了适配 MME和 SGW等的功 能。 补充网络 AP 204c具备部分控制面功能, 也就是说, 补充网络 AP 204c 具备控制面功能中的无线资源管理功能。 BSC/RNC 202c 具备对补充网络 AP 204c的移动性管理功能。 补充网络 GW 205c对补充网络 AP 204c进行 干扰管理, 并执行信令透传。 比如, 移动性管理和业务分流控制信息通过 补充网络 GW 205c下发到补充网络 AP 204c , 触发补充网络 AP 204c建立 无线承载。
图 9a至图 9c是可适用于图 8的网络架构的协议栈的示意图。 其中图 9a是与 2G网络中的 SGSN相应的控制面协议栈的示意图。 图 9b是与 3G 网络中的 SGSN相应的控制面协议栈的示意图。 图 9c是用户面协议栈的示 意图。
本发明实施例中, 通过补充网络中的补充网络 AP具备部分控制面功 能, 能够减小对基础网络的影响并降低成本。
图 10是可适用于图 8的网络架构的链路建立方法的过程的示意性流程 图。
如图 10所示,增强的 SGSN 203c通过 BSC/RNC 202c在 RAB1和 RAB2 上向 UE发送数据流, RAB1和 RAB2承载在 UTRAN/GERAN上。应注意, 虽然图 10中只描述了 RAB1和 RAB2 , 但本发明实施例中, RAB的数目可 以是一个或多个, 例如还可以是 3个 RAB或更多。 本发明实施例对此不作 限定。
在图 10中, 还是以 RAB2能够被分流到补充网络为例进行说明。
图 10中的步骤 1001至 1005与图 4中的步骤 401至 405基本相同, 为 了避免重复, 此处不再赘述。
1006, BSC/RNC 202c确定是否发起分流。
例如, BSC/RNC 202c可根据补充空口信道质量以及 RAB属性, 确定 是否发起补充业务分流。
1007 , BSC/RNC 202c在确定发起分流的情况下, 向补充网络 AP 204c 发送 RAB2的参数信息。
1008, 补充网络 AP 204c才艮据步骤 1007的 RAB2的参数信息和补充网 络 AP 204c的小区资源信息, 生成补充网络 载 RAB2的补充网络空口参 数。
具体地, 该补充网络空口参数为补充网络承载 RAB2所需要的空口上 的信道配置参数。例如,补充网络空口参数可以包括 RB参数和物理信道参 数。
1009, 补充网络 AP 204c向 BSC/RNC 202c发送步骤 1008生成的补充 网络空口参数。
步骤 1010至 1015与图 4中的步骤 411至 416基本相同, 为了避免重
复, 此处不再赘述。
此外, 数据流的分发还可以采用其它方式, 如图 10中虚线所表示的步 骤。 例如, BSC/RNC 202c 可以先从增强的 SGSN 203c 接收承载在 UTRAN/GERAN的数据流, 在步骤 1016中, BSC/RNC 202c对接收到的数 据流进行分发。 比如, 在 RAB1上向 UE发送其中一部分数据流。 通过补充 网络 AP 204c, 在 RAB2上向 UE发送另外一部分数据流。 从而实现对基础 网络业务的分流。
本发明实施例中通过 UE与补充网络节点之间建立补充网络链路,且补 充网络的无线接入制式不同于基础网络, 从而能够扩充运营网络容量。
另外, 本发明实施例中, 通过补充网络 AP与 UE之间的补充网络链路 的建立, 能够实现对基础网络的业务分流, 提高业务传输速率。
此外,通过补充网络 AP具备用户面和控制面功能, 能够减小对基础网 络的影响并降低成本。
图 11是根据本发明再一实施例的网络架构的示意图。
在图 11所示的网络架构中, 与图 2、 与 5和图 8中相同或相似的节点 使用相同的附图标记。 与图 8所示的网络架构相比, 图 11的网络架构中控 制面功能中的无线资源管理位于补充网络 GW 205d。 也就是说, 补充网络 GW 205d具备部分控制面功能。 而移动性管理由 BSC/RNC 202d控制。 补 充网络 AP 204d只具备用户面功能。 增强的 SGSN 203d为核心网节点, 例 如可以是增加了适配 SAE网元功能的核心网节点, 比如增加了适配 MME 和 SGW等的功能。 BSC/RNC 202d可以是现有 2G或 3G基础网络中的节点。
图 12a至图 12c是可适用于图 11的网络架构的协议栈的示意图。 其中 图 12a是与 2G网络中的 SGSN相应的控制面协议栈的示意图。图 12b是与 3G网络中的 SGSN相应的控制面协议栈的示意图。 图 12c是用户面协议栈 的示意图。
本发明实施例中, 通过补充网络中的补充网络 GW具备无线资源管理
功能, 能够减小对基础网络的影响并降低成本。
此外, 与图 8所示的网络架构相比, 由于将无线资源管理功能由补充 网络 AP转移到补充网络 GW,因此能够降低补充网络 AP的复杂度和成本。 另外由于补充网络 GW的数量小于补充网络 AP的数量, 因此相比图 8所 示的网络架构, 能够进一步降低成本。
图 13是可适用于图 11 的网络架构的链路建立方法的过程的示意性流 程图。
如图 13所示,增强的 SGSN 203d通过 BSC/RNC 202c在 RAB 1和 RAB2 上向 UE发送数据流, RAB1和 RAB2承载在 UTRAN/GERAN上。应注意, 虽然图 13中只描述了 RAB1和 RAB2 , 但本发明实施例中, RAB的数目可 以是一个或多个, 例如还可以是 3个 RAB或更多。 本发明实施例对此不作 限定。
在图 13中, 还是以 RAB2能够被分流到补充网络为例进行说明。
图 13中的步骤 1301至 1305与图 7中的步骤 701至 705基本相同, 为 了避免重复, 此处不再赘述。
1306, BSC/RNC 202d确定是否发起补充业务分流。
例如, BSC/RNC 202d可以根据补充空口信道质量、 RAB属性以及是 否存在 Iur'接口, 确定是否发起分流。 Iur'接口可以是 BSC/RNC 202d与补 充网络 GW 205d之间的类 Iur接口。
1307 ,在步骤 1306中 BSC/RNC 202d确定发起分流的情况下, BSC/RNC
202d向增强的 SGSN 203d发送 RAB修改请求。
其中 RAB修改请求中携带步骤 1305中获取的补充网络 GW的标识和
RAB2的标识。
1308, 增强的 SGSN 203d确定与补充网络 GW 205d之间的通道可用。 1309 , 增强的 SGSN 203d向 BSC/RNC 202d发送 RAB修改请求响应。
RAB修改请求响应中可以携带 RAB2 的标识, 表示 RAB2在增强的
SGSN 203d与补充网络 GW 205d之间的承载成功建立。
1310, BSC/RNC 202d向补充网络 GW 205d发送 RAB2的参数信息以 及补充网络 AP 204d的标识。
补充网络 AP 204d的标识是从步骤 1305中 UE发送的补充网络节点发 现报告中获取的。
1311 , 补充网络 GW 205d根据步骤 1310中的 RAB2的参数信息以及 补充网络 AP 204d的小区资源信息, 生成补充网络承载 RAB2所需要的补 充网络空口参数。
可选地, 补充网络 GW 205d可根据从步骤 707中接收的补充网络 AP 204d的标识获取补充网络 AP 204d的小区资源信息。 具体地, 该补充网络 空口参数为补充网络承载 RAB2所需要的空口上的信道配置参数。 补充网 络空口参数可以包括 RB参数和物理信道参数。
应注意, 在补充网络 GW 205d生成补充网络空口参数时, 可与补充网 络 AP 204d进行信令交互, 类似于现有 NBAP的功能, 通过筒化 IF接口传 递内容。
1312,补充网络 GW 205d向 BSC/RNC 202d发送步骤 1311中生成的补 充网络空口参数。
步骤 1313至步骤 1317与图 7中的步骤 711至 715基本相同, 为了避 免重复, 此处不再赘述。
1317, 增强的 SGSN 203d对业务进行分发。
如图 13所示,由于 RAB1仍承载在 UTRAN/GERAN上,增强的 SGSN 203d通过 BSC/RNC 202d在 RAB1上向 UE发送数据流。 同时, 由于 RAB2 承载在补充网络上,增强的 SGSN 203d通过补充网络 GW 205d在 RAB2上 向 UE发送数据流。
此外, 数据流的分发还可以采用其它方式, 如图 13中虚线所表示的步 骤。 例如, BSC/RNC 202d 可以先从增强的 SGSN 203d 接收承载在
UTRAN/GERAN的数据流, 则在步骤 1318中, BSC/RNC 202d可对接收到 的数据流进行分发。 比如, 在 RAB1上向 UE发送其中一部分数据流。 通过 补充网络 GW 205d, 在 RAB2上向 UE发送另外一部分数据流。 从而实现 对基础网络业务的分流。
本发明实施例中通过 UE与补充网络节点之间建立补充网络链路,且补 充网络的无线接入制式不同于基础网络, 从而能够扩充运营网络容量。
另外, 本发明实施例中, 通过补充网络 GW与 UE之间的补充网络链 路的建立, 能够实现对基础网络的业务分流, 提高业务传输速率。
此外, 本发明实施例中, 通过补充网络 GW具备无线资源管理功能, 能够减小对基础网络的影响并降低成本。
图 14是根据本发明另一实施例的网络架构的示意图。
在图 14的网络架构中, 与图 2、 图 5、 图 8和图 11中相同或相似的节 点使用相同的附图标记。在图 14的网络架构中,增强的 SGSN 203b为核心 网节点, 例如可以是增加了适配 SAE网元功能的核心网节点, 比如增加了 适配 MME和 SGW等的功能。 BSC/RNC 202b可以是现有 2G或 3G基础网 络中的节点。 补充网络 AP 204e只具备用户面功能, 补充网络 GW 205e具 备补充网络的控制面功能。 BSC/RNC 202e管理业务分流。 业务分流信息下 发给补充网络 GW 205e后, 由补充网络 GW 205e通知补充网络 AP 204e建 立承载。
图 15a至图 15c是可适用于图 14的网络架构的协议栈示意图。 其中, 图 15a是与 2G网络中的 SGSN相应的控制面协议栈的示意图。图 15b是与 3G网络中的 SGSN相应的控制面协议栈的示意图。 图 15c是用户面协议栈 的示意图。
应理解, 本发明实施例中, 在仅存在补充网络链路时, UE触发 CS ( Circuit Switch, 电路交互 )或者高价值 PS ( Packet Switch, 分组交换 )业务时候的 基础网络链路建立过程。
与图 5所示的网络架构相比, 区别在于如果基础网络业务先于补充网 络业务结束, 而补充网络链路保持连接, 此时的寻呼策略, 可以是 CS 和 PS都在基础网络执行; 或者仅 CS在基础网络执行, PS业务通过补充网络 的专用连接发送。 但如果 PS业务并不是高价值业务, 此时仍应该在基础网 络寻呼, 以遵循基础网络负责分流的前提。
本发明实施例中, 通过补充网络中的补充网络 GW具备控制面功能, 能够减小对基础网络的影响并降低成本。
此外, 本发明实施例中, 由于移动性管理位于补充网络 GW 205e, 因 此与图 13的网络架构相比, 在没有基础网络业务的场景下, 能够减少信令 开销。
图 16是可适用于图 14的网络架构的链路建立方法的过程的示意性流 程图。
如图 16所示,增强的 SGSN 203e通过 BSC/RNC 202e在 RAB1和 RAB2 上向 UE发送数据流, RAB1和 RAB2承载在 UTRAN/GERAN上。应注意, 虽然图 16中只描述了 RAB1和 RAB2 , 但本发明实施例中, RAB的数目可 以是一个或多个, 例如还可以是 3个 RAB或更多。 本发明实施例对此不作 限定。
在图 16中, 还是以 RAB2能够被分流到补充网络为例进行说明。
图 16中的步骤 1601至 1605与图 13中的步骤 1301至 1305 , 以及图 7 中的步骤 701至 705基本相同, 为了避免重复, 此处不再赘述。
步骤 1606至步骤 1612与图 13中的步骤 1310至 1316基本相同, 为了 避免重复, 此处不再赘述。
1613 , BSC/RNC 202e向增强的 SGSN 203e发送分流切换指示消息, 该分流切换指示消息用于指示补充网络链路建立成功以及 RAB2在基础网 络使用的空口资源释放完成,即 RAB2在 UTRAN/GERAN的承载删除成功。
1614, 增强的 SGSN 203e根据步骤 1613中的分流切换指示消息,对业
务进行分发。
如图 16所示,由于 RAB1仍承载在 UTRAN/GERAN上,增强的 SGSN 203e通过 BSC/RNC 202e在 RAB1上向 UE发送数据流。 同时, 由于 RAB2 承载在补充网络上,增强的 SGSN 203e通过补充网络 GW 205e在 RAB2上 向 UE发送数据流。
此外, 数据流的分发还可以采用其它方式。 如图 16中虚线所表示的步 骤。 例如, BSC/RNC 202e 可以先从增强的 SGSN 203e 接收承载在 UTRAN/GERAN的数据流, 在步骤 1615中, BSC/RNC 202e可对接收到的 数据流进行分发。 比如, 在 RAB1上向 UE发送其中一部分数据流。 通过补 充网络 GW 205e, 在 RAB2上向 UE发送另外一部分数据流。 从而实现对 基础网络业务的分流。
本发明实施例中通过 UE与补充网络节点之间建立补充网络链路,且补 充网络的无线接入制式不同于基础网络, 从而能够扩充运营网络容量。
另外, 本发明实施例中, 通过补充网络 GW与 UE之间的补充网络链 路的建立, 能够实现对基础网络的业务分流, 提高业务传输速率。
此外, 本发明实施例中, 通过补充网络 GW具备无线资源管理功能, 能够减小对基础网络的影响并降低成本。
图 17是根据本发明另一实施例的网络架构的示意图。
在图 17的网络架构中, 与图 2、 图 5、 图 8、 图 11和图 14中相同或相 似的节点使用相同的附图标记。 在图 17的网络架构中, 增强的 SGSN 203f 为核心网节点, 例如可以是增加了适配 SAE网元功能的核心网节点, 比如 增加了适配 MME和 SGW等的功能。 BSC/RNC 202f可以是现有 2G或 3G 基础网络中的节点。 补充网络 AP 204f 具有完整的用户面功能和控制面功 能。 补充网络 GW 205b可对补充网络 AP 204b进行干扰控制管理。 图 18a 至图 18b是可适用于图 17的网络架构的协议栈的示意图。 其中, 图 18a是 控制面协议栈的示意图。 图 18b是用户面协议栈的示意图。
本发明实施例中,通过补充网络中的补充网络 AP具备用户面和控制面 功能, 能够减小对基础网络的影响并降低成本。
图 19是可适用于图 17的网络架构的链路建立方法的过程的示意性流 程图。
如图 19所示,增强的 SGSN 203f通过 BSC/RNC 202f在 RAB1和 RAB2 上向 UE发送数据流, RAB1和 RAB2承载在 UTRAN/GERAN上。应注意, 虽然图 19中只描述了 RAB1和 RAB2 , 但本发明实施例中, RAB的数目可 以是一个或多个, 例如还可以是 3个 RAB或更多。 本发明实施例对此不作 限定。
在图 19中, 还是以 RAB2能够被分流到补充网络为例进行说明。
图 19中的步骤 1901至 1905与图 4中的步骤 401至 405、图 10中的步 骤 1001至 1005基本相同, 为了避免重复, 此处不再赘述。
图 19中的步骤 1906至 1914与图 10中的步骤 1007至 1015基本相同 , 为了避免重复, 此处不再赘述。
图 19中, BSC/RNC 202f与补充网络 AP之间具有接口, 因此, 不需要 通过增强的 SGSN 203f向补充网络 AP发送 RAB2的参数信息。
与图 10的区别在于,图 19中的 BSC/RNC 202f不具备发起业务分流的 功能。
本发明实施例中通过 UE与补充网络节点之间建立补充网络链路,且补 充网络的无线接入制式不同于基础网络, 从而能够扩充运营网络容量。
此外, 本发明实施例中, 通过补充网络 AP与 UE之间的补充网络链路 的建立, 能够实现对基础网络的业务分流, 提高业务传输速率。
另外, 本发明实施例中, 由于补充网络 AP具备用户面和控制面功能, 因此能够减小对基础网络的影响并降低成本。
图 20是根据本发明再一实施例的网络架构的示意图。
在图 20所示的网络架构中, 与图 2、 图 5、 图 8、 图 11、 图 14和图 17
中相同或相似的节点使用相同的附图标记。 BSC/RNC 202g具备补充网络的 控制面功能。 补充网络 AP 204g具备用户面功能。 补充网络 GW 205g可对 补充网络 AP 204g进行干扰控制管理。 HLR ( home Location Register , 归属 位置寄存器) 209是 2G或 3G网络中的核心网的节点。
图 21a至 21c是可适用于图 20的网络架构的协议栈的示意图。 其中, 图 21a是与 2G网络中的 SGSN相应的控制面协议栈的示意图。图 21b是与 3G网络中的 SGSN相应的控制面协议栈的示意图。 图 21c是用户面协议栈 的示意图。 图 20的网络架构中 BSC/RNC 202g的协议栈与现有技术中的不 同。 筒化 IF接口负责原有 Abis/Iub接口上层协议栈和 RRC之间的交互,传 递无线资源配置和测量配置等信息。
本发明实施例中, 通过 BSC/RNC具备补充网络的控制面功能, 能够从 无限资源管理的角度出发实现更优的业务分流, 从而能够提升用户体验。
图 22是可适用于图 20的网络架构的链路建立方法的过程的示意性流 程图。
如图 22所示, SGSN 203g通过 BSC/RNC 202g在 RAB1和 RAB2上向
UE发送数据流, RAB1和 RAB2承载在 UTRAN/GERAN上。 应注意, 虽 然图 22中只描述了 RAB1和 RAB2, 但本发明实施例中, RAB的数目可以 是一个或多个, 例如还可以是 3个 RAB或更多。 本发明实施例对此不作限 定。
在图 22中, 还是以 RAB2能够被分流到补充网络为例进行说明。 图 22中的步骤 2201至 2205与图 4中的步骤 401至 405以及图 10中 的步骤 1001至 1005基本相同, 为了避免重复, 此处不再赘述。
2206, BSC/RNC 202g根据 RAB2的参数信息和补充网络 AP 204g的小 区资源信息, 生成补充网络承载 RAB2的补充网络空口参数。
BSC/RNC 202g还可根据补充空口信道质量以及 RAB属性, 确定是否 发起补充业务分流。 在确定发起分流的情况下, 执行步骤 2206。
BSC/RNC 202g可从步骤 2205中 UE发送的补充网络节点发现报告中 获取补充网络 AP 204g的标识, 根据补充网络 AP 204g的标识可获取补充 网络 AP 204g的小区资源信息。
2207, BSC/RNC 202g向补充网络 AP 204g发送步骤 2206中生成的补 充网络空口参数。
由于 BSC/RNC 202g具备补充网络的控制面功能, 因此需要将补充网 络空口参数通知给补充网络 AP 204g , 以便补充网络 AP 204g可以与 UE建 立补充网络的数据流通道。
2208, BSC/RNC 202g向 UE发送携带步骤 2206中生成的补充网络空 口参数的 RRC重配置消息。
2209, UE向 BSC/RNC 202g发送针对步骤 2208的 RRC重配置消息的 RRC重配置响应消息。
这样, UE可以与补充网络 AP 204g建立补充网络的数据流通道。 应注 意, 由于补充网络 AP 204g不具备控制面功能,所以也无需与 UE通过控制 信令建立补充网络链路。
2211 , BSC/RNC 202g向 SGSN 203g发送分流切换指示消息, 该分流 切换指示消息用于指示补充网络链路建立成功以及 RAB2 在 UTRAN/GERAN的 载删除成功。
2212, SGSN 203g根据步骤 2211中的分流切换指示消息, 对业务进行 分发。
如图 22所示, 由于 RAB1仍承载在 UTRAN/GERAN上, SGSN 203g 通过 BSC/RNC 202g在 RAB1上向 UE发送数据流。 同时, 由于 RAB2承 载在补充网络上, SGSN 203g通过补充网络 AP 204g在 RAB2上向 UE发 送数据流。
此外, 数据流的分发还可以采用其它方式, 如图 22中虚线所表示的步 骤。例如, BSC/RNC 202c可以先从 SGSN 203c接收承载在 UTRAN/GERAN
的数据流, 在步骤 1016中, BSC/RNC 202c对接收到的数据流进行分发。 比如, 在 RAB 1上向 UE发送其中一部分数据流。 通过补充网络 AP 204c , 在 RAB2上向 UE发送另外一部分数据流。从而实现对基础网络业务的分流。
本发明实施例中通过 UE与补充网络节点之间建立补充网络链路,且补 充网络的无线接入制式不同于基础网络, 从而能够扩充运营网络容量。
另外, 本发明实施例中, 通过补充网络 AP与 UE之间的补充网络链路 的建立, 能够实现对基础网络的业务分流, 提高业务传输速率。
此外, 本发明实施例中, 通过 BSC/RNC生成补充网络空口参数, 使得 BSC/RNC具备补充网络的控制面功能, 能够从无线资源管理的角度出发实 现更优的业务分流, 从而能够提升用户体验。
图 23是根据本发明实施例的通信设备的示意框图。 图 23的设备 2300 的一个例子为补充网络 AP或 BSC/RNC。 图 23的设备 2300包括确定单元 2310、 生成单元 2320和通知单元 2330。
确定单元 2310确定 RAB的参数信息和补充网络 AP的小区资源信息。 生成单元 2320根据 RAB的参数信息和补充网络 AP的小区资源信息,生成 补充网络承载 RAB所需要的补充网络空口参数。通知单元 2330向 UE通知 补充网络空口参数, 以便 UE根据补充网络空口参数与补充网络 AP建立承 载 RAB的补充网络链路, 其中补充网络的无线接入制式不同于基础网络的 无线接入制式。
本发明实施例中通过 UE与补充网络 AP之间建立补充网络链路,且补 充网络的无线接入制式不同于基础网络, 从而能够扩充运营网络容量。
另外, 本发明实施例中, 通过补充网络 AP与 UE之间的补充网络链路 的建立, 能够实现对基础网络的业务分流, 提高业务传输速率。
设备 2300的其它功能和操作可参照上述图 1至图 22的方法实施例, 为了避免重复, 此处不再赘述。
可选地, 作为一个实施例, 在设备 2300为补充网络 AP时, 确定单元
2310可接收核心网节点根据补充网络 AP的标识发送的 RAB的参数信息, 其中补充网络 AP 的标识是核心网节点从基础网络节点发送的携带补充网 络 AP的标识的补充网络分流路由信息中获取的。
本发明实施例中, 通过补充网络 AP确定 RAB的参数信息, 使得补充 网络 AP具备控制面功能, 因此能够减小对基础网络的影响并降低成本。
可选地, 作为另一实施例, 在设备 2300为补充网络 AP时, 通知单元 2330可向核心网节点发送补充网络空口参数, 以便核心网节点向基础网络 节点发送补充网络空口参数,基础网络节点向 UE发送携带补充网络空口参 数的 RRC重配置消息。
可选地, 作为另一实施例, 在设备 2300为补充网络 AP时, 确定单元 2310可接收基础网络节点发送的 RAB的参数信息。
本发明实施例中, 通过补充网络 AP确定 RAB的参数信息, 使得补充 网络 AP具备控制面功能, 因此能够减小对基础网络的影响并降低成本。可 选地, 作为另一实施例, 在设备 2300为补充网络 AP时, 通知单元 2330 可向基础网络节点发送补充网络空口参数,以便基础网络节点向 UE发送携 带补充网络空口参数的 RRC重配置消息。
可选地, 作为另一实施例, 在设备 2300为基础网络节点时, 确定单元 2310可从 UE获取补充网络 AP的标识,根据补充网络 AP的标识确定补充 网络 AP的小区资源信息。
本发明实施例中, 通过基础网络节点确定补充网络 AP 的小区资源信 息, 生成补充网络空口参数, 使得基础网络节点具备补充网络的控制面功 能, 能够从无线资源管理的角度出发实现更优的业务分流, 从而能够提升 用户体验。
可选地, 作为另一实施例, 在通信设备 2300为基础网络节点时, 通知 单元 2330可向 UE发送携带补充网口空口参数的 RRC重配置消息。
图 24是根据本发明另一实施例的通信设备的示意框图。 图 24的设备
2400中, 与图 23相同或相似的部分使用相同的附图标记。 设备 2400为补 充网络 AP时, 除了包括确定单元 2310、 生成单元 2320和通知单元 2330 之外, 还包括第一接收单元 2340和第一发送单元 2350。
第一接收单元 2340可在向 UE通知补充网络空口参数之后, 接收 UE 根据补充网络空口参数发送的补充网络链路建立请求消息。 第一发送单元 2350可向 UE发送补充网络链路建立响应消息。
本发明实施例中通过 UE与补充网络 AP之间建立补充网络链路,且补 充网络的无线接入制式不同于基础网络, 从而能够扩充运营网络容量。
另外, 本发明实施例中, 通过补充网络 AP与 UE之间的补充网络链路 的建立, 能够实现对基础网络的业务分流, 提高业务传输速率。
图 25是根据本发明另一实施例的通信设备的示意框图。 图 25的设备 2500中, 与图 23相同或相似的部分使用相同的附图标记。 设备 2500为基 础网络节点时, 除了包括确定单元 2310、 生成单元 2320和通知单元 2330 之外, 还包括第二发送单元 2360和第二接收单元 2370。
第二发送单元 2360可在生成补充网络承载 RAB所需要的补充网络空 口参数之后, 向补充网络 AP发送补充网络空口参数。 第二接收单元 2370 可接收补充网络 AP发送的用于指示确认补充网络空口参数的确认消息。
本发明实施例中, 通过补充网络 AP确定 RAB的参数信息, 使得补充 网络 AP具备控制面功能, 因此能够减小对基础网络的影响并降低成本。
本发明实施例中通过 UE与补充网络 AP之间建立补充网络链路,且补 充网络的无线接入制式不同于基础网络, 从而能够扩充运营网络容量。
另外, 本发明实施例中, 通过补充网络 AP与 UE之间的补充网络链路 的建立, 能够实现对基础网络的业务分流, 提高业务传输速率。
此外, 本发明实施例中, 通过基础网络节点生成补充网络空口参数, 使得基础网络节点具备补充网络的控制面功能, 能够从无线资源管理的角 度出发实现更优的业务分流, 从而能够提升用户体验。
可选地, 作为一个实施例, 设备 2500还包括释放单元 2380。 第二接收 单元 2370还可在向 UE发送携带补充网口空口参数的 RRC重配置消息之 后, 接收 UE发送的 RRC重配置响应消息, RRC重配置响应消息用于指示 UE与补充网络节点的补充网络链路建立完成。释放单元 2380释放 RAB在 基础网络中使用的空口资源。
可选地, 作为另一实施例, 第二发送单元 2360还可在接收 UE发送的 RRC重配置响应消息之后, 向核心网节点发送分流切换指示消息, 该分流 切换指示消息用于指示补充网络链路建立完成以及 RAB在基础网络中使用 的空口资源释放完成。
本发明实施例中通过 UE与补充网络 AP之间建立补充网络链路,且补 充网络的无线接入制式不同于基础网络, 从而能够扩充运营网络容量。
另外, 本发明实施例中, 通过补充网络 AP与 UE之间的补充网络链路 的建立, 能够实现对基础网络的业务分流, 提高业务传输速率。
此外, 本发明实施例中, 通过基础网络节点确定补充网络 AP的小区资 源信息, 生成补充网络空口参数, 使得基础网络节点具备补充网络的控制 面功能, 能够从无线资源管理的角度出发实现更优的业务分流, 从而能够 提升用户体验。
图 26是根据本发明实施例的网关的示意框图。 网关 2600的一个例子 是补充网络 GW。 网关 2600包括确定单元 2610、 生成单元 2620和通知单 元 2630。
确定单元 2610确定 RAB的参数信息和补充网络 AP的小区资源信息。 生成单元 2620根据该 RAB的参数信息和该补充网络 AP的小区资源信息, 生成补充网络承载该 RAB所需要的补充网络空口参数。 通知单元 2630向 用户设备 UE通知该补充网络空口参数,以便该 UE根据该补充网络空口参 数与该网关 GW建立承载该 RAB的补充网络链路,其中该补充网络的无线 接入制式不同于基础网络的无线接入制式。
本发明实施例中通过 UE与网关之间建立补充网络链路,且补充网络的 无线接入制式不同于基础网络, 从而能够扩充运营网络容量。
另外, 本发明实施例中, 通过 GW与 UE之间的补充网络链路的建立, 能够实现对基础网络的业务分流, 提高业务传输速率。
此外, 本发明实施例中, 通过 GW生成补充网络空口参数, 使得 GW 具备控制面功能, 因此能够减小对基础网络的影响并降低成本。
网关 2600的其它功能和操作可参照上述图 1至图 22的方法实施例, 为了避免重复, 此处不再赘述。
可选地, 作为一个实施例, 确定单元 2610 可接收核心网节点 ^据该 GW的标识发送的 RAB的参数信息和补充网络 AP的标识, 其中补充网络 AP的标识和该 GW的标识是核心网节点从基础网络节点发送的补充网络分 流路由信息中获取的,该补充网络分流路由信息携带补充网络 AP的标识和 GW的标识; 根据补充网络 AP的标识确定补充网络 AP的小区资源信息。
可选地, 作为另一实施例, 通知单元 2630可向核心网节点发送补充网 络空口参数, 以便核心网节点向基础网络节点发送补充网络空口参数, 基 础网络节点向 UE发送携带补充网络空口参数的无线资源控制 RRC重配置 消息。
可选地, 作为另一实施例, 确定单元 2610可接收基础网络节点发送的 RAB的参数信息和补充网络 AP的标识,根据补充网络 AP的标识确定补充 网络 AP的小区资源信息。
可选地, 作为另一实施例, 通知单元 2630可向基础网络节点发送补充 网络空口参数,以便基础网络节点向 UE发送携带补充网络空口参数的 RRC 重配置消息。
可选地, 作为另一实施例, 如图 26所示, 网关 2600还可包括接收单 元 2640和发送单元 2650。 接收单元 2640可在向 UE通知补充网络空口参 数之后, 接收 UE根据补充网络空口参数发送的补充网络链路建立请求消
息。 发送单元 2650向 UE发送补充网络链路建立响应消息。
本发明实施例中通过 UE与网关之间建立补充网络链路,且补充网络的 无线接入制式不同于基础网络, 从而能够扩充运营网络容量。
另外, 本发明实施例中, 通过 GW与 UE之间的补充网络链路的建立, 能够实现对基础网络的业务分流, 提高业务传输速率。
此外, 本发明实施例中, 通过 GW生成补充网络空口参数, 使得 GW 具备控制面功能, 因此能够减小对基础网络的影响并降低成本。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各示 例的单元及算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结 合来实现。 这些功能究竟以硬件还是软件方式来执行, 取决于技术方案的 特定应用和设计约束条件。 专业技术人员可以对每个特定的应用来使用不 同方法来实现所描述的功能, 但是这种实现不应认为超出本发明的范围。 所属领域的技术人员可以清楚地了解到, 为描述的方便和筒洁, 上述描述 的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应 过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和方 法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时 可以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另 一个系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相 互之间的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单元的 间接耦合或通信连接, 可以是电性, 机械或其它的形式。 单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。 可以根据实际的需要选择其中的部分 或者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一个 单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用 时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明 的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部 分可以以软件产品的形式体现出来, 该计算机软件产品存储在一个存储介 质中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务 器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。 而前述的存储介质包括: U盘、 移动硬盘、 只读存储器(ROM, Read-Only Memory ), 随机存取存储器(RAM, Random Access Memory )、 磁碟或者光 盘等各种可以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局 限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可 轻易想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明 的保护范围应所述以权利要求的保护范围为准。
Claims
1. 一种链路建立方法, 其特征在于, 包括:
确定无线接入承载 RAB的参数信息和补充网络接入点 AP的小区资源 信息;
根据所述 RAB的参数信息和所述补充网络 AP的小区资源信息, 生成 补充网络承载所述 RAB所需要的补充网络空口参数;
向用户设备 UE通知所述补充网络空口参数,以便所述 UE根据所述补 充网络空口参数与补充网络节点建立承载所述 RAB的补充网络链路,
其中所述补充网络的无线接入制式不同于基础网络的无线接入制式。
2. 根据权利要求 1所述的方法, 其特征在于, 所述方法由所述补充网 络节点执行且所述补充网络节点为所述补充网络 AP时,
所述确定 RAB的参数信息和补充网络 AP的小区资源信息, 包括: 所述补充网络 AP接收核心网节点根据所述补充网络 AP的标识发送的 所述 RAB的参数信息, 其中所述补充网络 AP的标识是所述核心网节点从 基础网络节点发送的携带所述补充网络 AP 的标识的补充网络分流路由信 息中菝取的。
3. 根据权利要求 1所述的方法, 其特征在于, 所述方法由所述补充网 络节点执行且所述补充网络节点为补充网络网关 GW时,
所述确定 RAB的参数信息和补充网络 AP的小区资源信息, 包括: 所述补充网络 GW接收核心网节点根据所述补充网络 GW的标识发送 的所述 RAB的参数信息和所述补充网络 AP的标识,其中所述补充网络 AP 的标识和所述补充网络 GW的标识是所述核心网节点从基础网络节点发送 的补充网络分流路由信息中获取的, 所述补充网络分流路由信息携带所述 补充网络 AP的标识和所述补充网络 GW的标识; 的小区资源信息。
4. 根据权利要求 2或 3所述的方法, 其特征在于, 所述向 UE通知所 述补充网络空口参数, 包括:
向所述核心网节点发送所述补充网络空口参数, 以便所述核心网节点 向基础网络节点发送所述补充网络空口参数, 所述基础网络节点向所述 UE 发送携带所述补充网络空口参数的无线资源控制 RRC重配置消息。
5. 根据权利要求 1所述的方法, 其特征在于, 所述方法由所述补充网 络节点执行且所述补充网络节点为所述补充网络 AP时,
所述确定 RAB的参数信息和补充网络 AP的小区资源信息, 包括: 所述补充网络 AP接收基础网络节点发送的所述 RAB的参数信息。
6. 根据权利要求 1所述的方法, 其特征在于, 所述方法由所述补充网 络节点执行且所述补充网络节点为补充网络 GW时,
所述确定 RAB的参数信息和补充网络 AP的小区资源信息, 包括: 所述补充网络 GW接收基础网络节点发送的所述 RAB的参数信息和所 述补充网络 AP的标识; 的小区资源信息。
7. 根据权利要求 5或 6所述的方法, 其特征在于, 所述向 UE通知所 述补充网络空口参数, 包括:
向所述基础网络节点发送所述补充网络空口参数, 以便所述基础网络 节点向所述 UE发送携带所述补充网络空口参数的 RRC重配置消息。
8. 根据权利要求 1所述的方法, 其特征在于, 所述方法由所述补充网 络节点执行时,
在所述向 UE通知所述补充网络空口参数之后, 所述方法还包括: 所述补充网络节点接收所述 UE根据所述补充网络空口参数发送的补 充网络链路建立请求消息;
所述补充网络节点向所述 UE发送补充网络链路建立响应消息。
9. 根据权利要求 8所述的方法, 其特征在于, 在所述补充网络节点向 所述 UE发送补充网络链路建立响应消息之后, 所述方法还包括:
所述基础网络节点接收所述 UE发送的 RRC 重配置响应消息, 所述 RRC重配置响应消息用于指示所述补充网络链路建立完成, 以便所述基础 网络节点释放所述 RAB在所述基础网络中使用的空口资源。
10. 根据权利要求 9所述的方法, 其特征在于, 在所述基础网络节点 接收所述 UE发送的 RRC重配置响应消息之后, 所述方法还包括:
所述基础网络节点向核心网节点发送分流切换指示消息, 所述分流切 换指示消息用于指示所述补充网络链路建立完成以及所述 RAB在所述基础 网络中使用的空口资源释放完成。
11. 根据权利要求 1 所述的方法, 其特征在于, 所述方法由基础网络 节点执行时,
所述确定 RAB的参数信息和补充网络 AP的小区资源信息, 包括: 所述基础网络节点根据所述补充网络 AP的标识确定所述补充网络 AP 的小区资源信息。
12. 根据权利要求 11所述的方法, 其特征在于, 在所述生成补充网络 承载所述 RAB所需要的补充网络空口参数之后, 所述方法还包括:
所述基础网络节点向补充网络 AP发送所述补充网络空口参数; 所述基础网络节点接收所述补充网络 AP发送的用于指示确认所述补 充网络空口参数的确认消息。
13. 根据权利要求 12所述的方法, 其特征在于, 所述向用户设备 UE 通知所述补充网络空口参数, 包括:
所述基础网络节点向所述 UE发送携带所述补充网口空口参数的 RRC 重配置消息。
14. 根据权利要求 13所述的方法, 其特征在于, 在所述基础网络节点 向所述 UE发送携带所述补充网口空口参数的 RRC重配置消息之后, 所述 方法还包括:
所述基础网络节点接收所述 UE发送的 RRC重配置响应消息, 其中所 述 RRC重配置响应消息用于指示所述 UE与所述补充网络节点的补充网络 链路建立完成;
所述基础网络节点释放所述 RAB在所述基础网络中使用的空口资源。
15. 根据权利要求 14所述的方法, 其特征在于, 在所述基础网络节点 接收所述 UE发送的 RRC重配置响应消息之后, 所述方法还包括:
所述基础网络节点向核心网节点发送分流切换指示消息, 所述分流切 换指示消息用于指示所述补充网络链路建立完成以及所述 RAB在所述基础 网络中使用的空口资源释放完成。
16. 根据权利要求 1所述的方法, 其特征在于, 在所述确定 RAB的参 数信息和补充网络 AP的小区资源信息之前, 所述方法还包括:
核心网节点向基础网络节点发送用于指示所述 RAB能够被分流的分流 允许指示;
所述基础网络节点根据所述分流允许指示向所述 UE发送用于指示所 述 UE搜索补充网络的补充网络节点发现控制命令;
所述基础网络节点接收所述 UE根据所述补充网络节点发现控制命令 发送的携带补充网络 AP的标识的补充网络节点发现 4艮告。
17. 根据权利要求 16所述的方法, 其特征在于, 在所述方法由所述补 充网络节点且所述补充网络节点为补充网络 GW时, 所述补充网络节点发 现报告还携带所述补充网络 GW的标识。
18. 一种通信设备, 其特征在于, 包括:
确定单元, 用于确定无线接入承载 RAB的参数信息和补充网络接入点 AP的小区资源信息;
生成单元, 用于根据所述 RAB的参数信息和所述补充网络 AP的小区 资源信息, 生成补充网络承载所述 RAB所需要的补充网络空口参数; 通知单元,用于向用户设备 UE通知所述补充网络空口参数,以便所述 UE根据所述补充网络空口参数与所述补充网络 AP建立承载所述 RAB的 补充网络链路, 其中所述补充网络的无线接入制式不同于基础网络的无线 接入制式。
19. 根据权利要求 18所述的通信设备, 其特征在于, 所述通信设备为 所述补充网络 AP时,
所述确定单元具体用于接收核心网节点根据所述补充网络 AP 的标识 发送的所述 RAB的参数信息, 其中所述补充网络 AP的标识是所述核心网 节点从基础网络节点发送的携带所述补充网络 AP 的标识的补充网络分流 路由信息中获取的。
20. 根据权利要求 19所述的通信设备, 其特征在于, 所述通知单元具 体用于向所述核心网节点发送所述补充网络空口参数, 以便所述核心网节 点向基础网络节点发送所述补充网络空口参数, 所述基础网络节点向所述 UE发送携带所述补充网络空口参数的无线资源控制 RRC重配置消息。
21. 根据权利要求 18所述的通信设备, 其特征在于, 所述通信设备为 所述补充网络 AP时,
所述确定单元具体用于接收基础网络节点发送的所述 RAB 的参数信 息。
22. 根据权利要求 21所述的通信设备, 其特征在于, 所述通知单元具 体用于向所述基础网络节点发送所述补充网络空口参数, 以便所述基础网 络节点向所述 UE发送携带所述补充网络空口参数的 RRC重配置消息。
23. 根据权利要求 19至 22中任一项所述的通信设备, 其特征在于, 还包括:
第一接收单元,用于在所述向 UE通知所述补充网络空口参数之后,接 收所述 UE根据所述补充网络空口参数发送的补充网络链路建立请求消息; 第一发送单元, 用于向所述 UE发送补充网络链路建立响应消息。
24. 根据权利要求 18所述的通信设备, 其特征在于, 所述通信设备为 基础网络节点时, 所述补充网络 AP的标识确定所述补充网络 AP的小区资源信息。
25. 根据权利要求 24所述的通信设备, 其特征在于, 还包括: 第二发送单元, 用于在所述生成补充网络承载所述 RAB所需要的补充 网络空口参数之后, 向补充网络 AP发送所述补充网络空口参数;
第二接收单元,用于接收所述补充网络 AP发送的用于指示确认所述补 充网络空口参数的确认消息。
26. 根据权利要求 25所述的通信设备, 其特征在于, 所述通知单元具 体用于向所述 UE发送携带所述补充网口空口参数的 RRC重配置消息。
27. 根据权利要求 26所述的通信设备, 其特征在于, 所述通信设备还 包括释放单元,
所述第二接收单元还用于在所述向所述 UE发送携带所述补充网口空 口参数的 RRC重配置消息之后,接收所述 UE发送的 RRC重配置响应消息, 所述 RRC重配置响应消息用于指示所述 UE与所述补充网络节点的补充网 络链路建立完成;
所述释放单元用于释放所述 RAB在所述基础网络中使用的空口资源。
28. 根据权利要求 27所述的通信设备, 其特征在于, 所述第二发送单 元还用于在所述接收所述 UE发送的 RRC重配置响应消息之后, 向核心网 节点发送分流切换指示消息, 所述分流切换指示消息用于指示所述补充网 络链路建立完成以及所述 RAB 在所述基础网络中使用的空口资源释放完 成。
29. 一种网关, 其特征在于, 包括:
确定单元, 用于确定无线接入承载 RAB的参数信息和补充网络接入点 AP的小区资源信息;
生成单元, 用于根据所述 RAB的参数信息和所述补充网络 AP的小区 资源信息, 生成补充网络承载所述 RAB所需要的补充网络空口参数;
通知单元,用于向用户设备 UE通知所述补充网络空口参数,以便所述 UE根据所述补充网络空口参数与所述网关 GW建立承载所述 RAB的补充 网络链路, 其中所述补充网络的无线接入制式不同于基础网络的无线接入 制式。
30. 根据权利要求 29所述的网关, 其特征在于, 所述确定单元具体用 于接收核心网节点根据所述 GW的标识发送的所述 RAB的参数信息和所述 补充网络 AP的标识,其中所述补充网络 AP的标识和所述 GW的标识是所 述核心网节点从基础网络节点发送的补充网络分流路由信息中获取的, 所 述补充网络分流路由信息携带所述补充网络 AP的标识和所述 GW的标识; 才艮据所述补充网络 AP的标识确定所述补充网络 AP的小区资源信息。
31. 根据权利要求 30所述的网关, 其特征在于, 所述通知单元具体用 于向所述核心网节点发送所述补充网络空口参数, 以便所述核心网节点向 基础网络节点发送所述补充网络空口参数, 所述基础网络节点向所述 UE 发送携带所述补充网络空口参数的无线资源控制 RRC重配置消息。
32. 根据权利要求 29所述的网关, 其特征在于, 所述确定单元具体用 于接收基础网络节点发送的所述 RAB的参数信息和所述补充网络 AP的标 识; 才艮据所述补充网络 AP的标识确定所述补充网络 AP的小区资源信息。
33. 根据权利要求 32所述的网关, 其特征在于, 所述通知单元具体用 于向所述基础网络节点发送所述补充网络空口参数, 以便所述基础网络节 点向所述 UE发送携带所述补充网络空口参数的 RRC重配置消息。
34. 根据权利要求 29至 33中任一项所述的网关, 其特征在于, 还包 括:
接收单元,用于在所述向 UE通知所述补充网络空口参数之后,接收所 述 UE根据所述补充网络空口参数发送的补充网络链路建立请求消息; 发送单元, 用于向所述 UE发送补充网络链路建立响应消息。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210082228.0A CN103369705B (zh) | 2012-03-26 | 2012-03-26 | 链路建立方法及设备 |
CN201210082228.0 | 2012-03-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013143447A1 true WO2013143447A1 (zh) | 2013-10-03 |
Family
ID=49258219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/073212 WO2013143447A1 (zh) | 2012-03-26 | 2013-03-26 | 链路建立方法及设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103369705B (zh) |
WO (1) | WO2013143447A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113891425A (zh) * | 2021-10-29 | 2022-01-04 | 中国电信股份有限公司 | 数据传输方法、系统、设备及存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007063358A1 (en) * | 2005-12-02 | 2007-06-07 | Telefonaktiebolaget Lm Ericsson (Publ) | Selective rab assignment |
CN101170796A (zh) * | 2006-10-24 | 2008-04-30 | 中兴通讯股份有限公司 | 一种为选择业务建立或重配置专用无线承载的方法 |
US20080163309A1 (en) * | 2006-12-28 | 2008-07-03 | Nokia Corporation | MBMS enhancement |
CN101730061A (zh) * | 2008-10-31 | 2010-06-09 | 大唐移动通信设备有限公司 | 业务建立与小区更新的同步处理方法、装置及系统 |
CN101986750A (zh) * | 2009-07-29 | 2011-03-16 | 上海华为技术有限公司 | 切换控制方法、装置和系统 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101626596B (zh) * | 2008-07-09 | 2011-08-31 | 中国移动通信集团公司 | 一种生成业务分流策略的方法、装置及系统 |
CN101854663A (zh) * | 2010-04-30 | 2010-10-06 | 华为技术有限公司 | 数据传输设备、方法以及通信系统 |
-
2012
- 2012-03-26 CN CN201210082228.0A patent/CN103369705B/zh active Active
-
2013
- 2013-03-26 WO PCT/CN2013/073212 patent/WO2013143447A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007063358A1 (en) * | 2005-12-02 | 2007-06-07 | Telefonaktiebolaget Lm Ericsson (Publ) | Selective rab assignment |
CN101170796A (zh) * | 2006-10-24 | 2008-04-30 | 中兴通讯股份有限公司 | 一种为选择业务建立或重配置专用无线承载的方法 |
US20080163309A1 (en) * | 2006-12-28 | 2008-07-03 | Nokia Corporation | MBMS enhancement |
CN101730061A (zh) * | 2008-10-31 | 2010-06-09 | 大唐移动通信设备有限公司 | 业务建立与小区更新的同步处理方法、装置及系统 |
CN101986750A (zh) * | 2009-07-29 | 2011-03-16 | 上海华为技术有限公司 | 切换控制方法、装置和系统 |
Also Published As
Publication number | Publication date |
---|---|
CN103369705B (zh) | 2016-12-14 |
CN103369705A (zh) | 2013-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109565732B (zh) | 无线接入网节点、无线终端、核心网节点及其方法 | |
EP2787763B1 (en) | Methods and devices for providing simultaneous connectivity between multiple E-NodeBs and user equipment | |
RU2523175C2 (ru) | Способ и устройство для поддерживания непрерывности трафика | |
JP5010690B2 (ja) | セキュリティ機能ネゴシエーション方法、システム、および装置 | |
CN105873133B (zh) | 双连接架构下支持业务本地分流的方法及设备 | |
EP3595359B1 (en) | Handover apparatus and method | |
CN111328460B (zh) | 无效协议数据单元会话的处理方法及其用户设备 | |
US9832808B2 (en) | Method to provide dual connectivity using LTE master eNodeB and Wi-Fi based secondary eNodeB | |
JP6630003B2 (ja) | ハンドオーバー失敗防止方法 | |
JP2019525690A (ja) | 無線通信システムにおけるネットワーク間の相互連動方法及びそのための装置 | |
CN104349394B (zh) | 一种小小区架构中支持业务本地分流的方法、系统和设备 | |
WO2014134975A2 (zh) | 一种数据流传输方法及装置 | |
CN101370261B (zh) | 从cs域向ps域切换的资源准备方法及通信设备 | |
JP6635973B2 (ja) | データ分流のための方法およびデバイス | |
WO2014108056A1 (zh) | 一种异构网络切换方法、装置及系统 | |
EP3490292B1 (en) | Access method, base station and access point | |
WO2017219355A1 (zh) | 多连接通信方法和设备 | |
WO2021031861A1 (zh) | 数据回传方法以及设备 | |
WO2012152130A1 (zh) | 承载处理方法及装置 | |
CN104247504B (zh) | 小区切换方法及设备 | |
CN102256326A (zh) | 一种实现路由选择的方法和装置 | |
WO2013143447A1 (zh) | 链路建立方法及设备 | |
WO2016058384A1 (zh) | 承载处理方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13767563 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13767563 Country of ref document: EP Kind code of ref document: A1 |