WO2013143399A1 - 一种电极板及包含该电极板的电极组件、蓄电池和电容器 - Google Patents

一种电极板及包含该电极板的电极组件、蓄电池和电容器 Download PDF

Info

Publication number
WO2013143399A1
WO2013143399A1 PCT/CN2013/072698 CN2013072698W WO2013143399A1 WO 2013143399 A1 WO2013143399 A1 WO 2013143399A1 CN 2013072698 W CN2013072698 W CN 2013072698W WO 2013143399 A1 WO2013143399 A1 WO 2013143399A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrode plate
plate
plates
positive
Prior art date
Application number
PCT/CN2013/072698
Other languages
English (en)
French (fr)
Inventor
余荷军
Original Assignee
Yu Hejun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yu Hejun filed Critical Yu Hejun
Priority to EP13768533.5A priority Critical patent/EP2833441A4/en
Priority to US14/387,422 priority patent/US20150125750A1/en
Priority to JP2015502071A priority patent/JP2015516650A/ja
Publication of WO2013143399A1 publication Critical patent/WO2013143399A1/zh
Priority to IN8782DEN2014 priority patent/IN2014DN08782A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0445Multimode batteries, e.g. containing auxiliary cells or electrodes switchable in parallel or series connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4264Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing with capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Electrode plate and electrode assembly, battery and capacitor comprising the same
  • the present invention relates to an electrode plate and an electrode assembly, a battery and a capacitor comprising the same. Background technique
  • Lithium-ion batteries have led the development of the battery industry with environmental protection and high efficiency. However, the high cost of use and the shortage of raw materials have constrained the speed and scale of development.
  • the high-pollution and low-efficiency batteries represented by lead-acid batteries have been restricted, but they are occupied at low cost of use. Most of the market share; therefore, they are very practical for their technological innovation.
  • the present invention provides an electrode plate, an electrode assembly including the same, a battery, and a capacitor, starting from the electrode array structure.
  • the electrode plate of the present invention can increase the electric field strength.
  • the electrode according to the present invention is as follows.
  • the present invention provides an electrode plate comprising at least two positive plates or at least Two negative plates and:
  • the composition of the membrane is replaced; preferably, the metal plate is a copper plate, an aluminum plate or a plate.
  • the positive electrode plate has a thickness of from 1 mm to 2 mm, preferably 2 mm.
  • the negative electrode plate has a thickness of 0.6 mm to 1 mm, preferably 1 mm.
  • the invention provides an electrode assembly, the electrode assembly comprising:
  • At least one first electrode plate the first electrode plate being composed of at least two positive plates and an insulating film sandwiched between the at least two positive plates;
  • At least one second electrode plate the second electrode plate being composed of at least two negative electrode plates and an insulating film sandwiched between the at least two negative electrode plates;
  • Electrode separator disposed between the first electrode plate and the second electrode plate for separating the first electrode plate from the second electrode plate.
  • Commonly used electrode separators are acid-absorbing paper or alkali-absorbing paper, which can be used to absorb electrolyte.
  • one or more of the at least two positive plates or at least two negative plates are replaced by metal plates; preferably, the metal plates are copper plates, aluminum plates or plates.
  • the first electrode plate and the second electrode plate are alternately arranged.
  • the first electrode plate is composed of two positive electrode plates and an insulating film sandwiched between the two positive electrode plates.
  • the second electrode plate is composed of two negative electrode plates and an insulating film sandwiched between the two negative electrode plates.
  • the insulating film used between the two negative plates is the same as the insulating film used between the two positive plates.
  • the first electrode plates are n
  • the second electrode plates are n or n+1, wherein n is an integer not zero.
  • the second electrode plate is one more than the first electrode plate, and the second electrode plate is distributed on both sides of the first electrode plate, that is, placed on the outer side, for safety considerations.
  • the thickness of the positive electrode plate in the first electrode plate is from 1 mm to 2 mm-mm, preferably 2 mm.
  • the thickness of the negative electrode plate in the second electrode plate is 0.6 mm-lmm-mm, preferably lmmtext
  • the electrode separator has a thickness of 0.25 mm to 1 mm, preferably 0.75 mm.
  • the distance between the first electrode plate and the second electrode plate is
  • This distance is the distance without the thickness of the plate.
  • a battery comprising the above electrode assembly.
  • the battery includes the above electrode assembly, an electrolytic solution, and a battery case in which the electrode assembly and the electrolyte are stored.
  • the present invention provides a capacitor comprising:
  • At least one first electrode plate the first electrode plate being composed of at least two positive plates and an insulating film sandwiched between the at least two positive plates;
  • At least one second electrode plate the second electrode plate being composed of at least two negative electrode plates and an insulating film sandwiched between the at least two negative electrode plates;
  • two parallel metal plates, one for the positive pole, one for the negative pole, the middle sandwich dielectric is the basic structure of the capacitor; two parallel metal plates, the middle insulation, forming a pole, two such poles are arranged in parallel, One is a positive electrode, the other is a negative electrode, and the intermediate dielectric is the basic structure of the capacitor of the present invention.
  • the electrode assembly of the present invention is a bipolar homopolar electrode assembly, which is based on "AABB” as a basic structure, and is arranged in a "AABBAABB” cycle as a spatial structure.
  • the electrode assembly utilizes the principle of mutual repelling and heteroelectric attraction.
  • the positive electrode plate and the positive electrode plate, the negative electrode plate and the negative electrode plate are relatively closely insulated, and under the same voltage and current conditions, the field strength between the positive and negative plates is doubled.
  • Figure 1 is a schematic diagram of the electric field of a single-stage plate. The field strengths on both sides of the plate are equal.
  • 2 is a schematic diagram of the electric field of the bipolar plate, the field strength of the opposite side of the plate is zero, and the field strength of the other side is multiplied;
  • FIG 3 is a schematic diagram of the combined electric field of a common positive and negative single-stage plate.
  • the field strength distribution has no change.
  • Figure 4 is a schematic diagram of the combined electric field of the positive and negative bipolar plates of the "AABB” structure.
  • the field strength is equal to doubled; the electric field strength between the positive and negative electrodes can be accelerated.
  • the generation of charge, while increasing the charge density, is also the basic principle of "supercapacitor".
  • the "AABB” structure consists of a pair of positive and negative electrodes, which consists of a basic reaction unit, and the outer side is equipped with the same pole plate.
  • the electrode assembly of the present invention can be fabricated by connecting the plates in parallel, series, and parallel in series to manufacture various types of batteries or capacitors.
  • the present invention provides a high efficiency fast charge storage battery comprising the above electrode assembly, which is composed of the following parts: 1. a positive electrode plate; 2. a negative electrode plate; 3. a separator paper; (or solid electrolyte); 5. Insulating film; 6. Battery case; 7. Bus bar; 8. Pole; 9. Battery cover; 10. Sealant.
  • the positive electrode plate and the positive electrode plate are superposed, the middle is completely separated by an insulating film, the negative electrode plate is superposed with the negative electrode plate, and the middle is completely separated by an insulating film, and the electrolyte or solid electrolyte is separated between the positive and negative plates by a separator paper, whether in parallel or In series, the order of the positive and negative poles is as follows: Positive and negative negative positive and negative negative cyclic arrangement.
  • the positive and negative plates of the lead-acid battery are completely identical to the positive and negative plates used in the lead-acid battery of the present invention; the positive and negative plates of the alkaline storage battery are completely identical to the positive and negative plates used in the alkaline storage battery of the present invention; The positive and negative plates are completely identical to the positive and negative plates used in the lithium ion battery of the present invention; the positive and negative plates of the organic solvent battery are completely identical to the positive and negative plates used in the organic solvent battery of the present invention; the positive and negative plates of the inorganic solid battery.
  • the positive and negative plates used in the inorganic solid storage battery of the present invention are completely identical; the positive and negative plates of the nickel-hydrogen storage battery are completely identical to the positive and negative plates used in the nickel-hydrogen storage battery of the present invention; all the materials except the insulating film and the original properties
  • the battery is made of the same material.
  • An insulating film is used between the positive electrode plate and the positive electrode plate of the battery of the present invention, and an acid-resistant insulating film is used between the negative electrode plate and the negative electrode plate; an alkali-resistant insulating film is used in the alkaline storage battery; An organic solvent-resistant insulating film is used in the organic solvent battery; an inorganic solid insulating film is used in the inorganic solid battery.
  • the positive and negative plate sorting is changed from the original "positive and negative positive and negative cycle arrangement" to "positive positive and negative positive positive and negative negative cycle arrangement", between the positive plate and the positive plate, and between the negative plate and the negative plate.
  • the membrane is completely separated; the same reaction unit can be coexisted from the original positive and negative plates:
  • Each set of positive and negative plates is a separate reaction unit, connected by a bus bar, or connected in parallel or in series.
  • the supercapacitor inserts two identical poles in the same reaction unit, and the current intensity of the two poles is clearly differentiated.
  • the field strength is enhanced by the two-layer electrode form with strong field strength and weak field strength.
  • the purpose of the invention is to generate a field strength superposition effect between the positive and negative electrodes by using a maximum bias field generated by the same pole repulsive outside the reaction unit, so that the field strength in the reaction unit reaches a maximum value.
  • Figure 1 is a schematic diagram of an electric field of a single-stage board
  • Figure 2 is a schematic diagram of the electric field of the bipolar plate (the insulating film between the two poles);
  • Figure 3 is a schematic diagram of a combined electric field of a common positive and negative single-stage plate
  • Figure 4 is a schematic diagram of the combination of positive and negative bipolar plates of "AABB” structure (insulation between the two poles.
  • Figure 5 shows the battery of the "AB” structure monopole pair combination;
  • Figure 6 shows the battery of the "AABB” structure monopole pair combination
  • Figure 7 shows the "AB" structure of the bipolar pair of batteries in series
  • Figure 8 shows the "AABB” structure of the bipolar pair of batteries
  • Figure 9 shows the "AB” structure bipolar pair parallel battery
  • Figure 10 shows the "AABB” structure bipolar pair parallel battery
  • Figure 11 shows the "AB" structure with six poles connected in parallel
  • Figure 12 shows the "AABB” structure with six poles connected in parallel
  • Figure 13 shows the battery in series with six pole pairs of "AB" structure
  • Figure 14 shows the battery of the "AABB” structure with six pole pairs connected in series
  • Positive plate 2mm thick, obtained from Yongji Power Plant, Baoshan District, Shanghai;
  • Negative plate 1mm thick, obtained from 7 base power plant in Baoshan District, Shanghai;
  • Electrode separator Acid-absorbing paper, thickness 0.75mm, obtained from Yongji Power Plant, Baoshan District, Shanghai; Battery: "Golden Power” brand electric bicycle special battery, model JDL12V14AM 5HR ),
  • 6-DZMJ-12 obtained from Yongji Power Plant, Baoshan District, Shanghai;
  • Electrolyte Sulfuric acid solution, obtained from Yongji Power Plant, Baoshan District, Shanghai;
  • Multimeter UT30 series handheld digital multimeter produced by UniTech Electronics (Shanghai) Co., Ltd.;
  • Insulating film Ordinary food wrap film processing itself;
  • Copper plate, aluminum plate purchased, processed by yourself;
  • the distance between the positive and negative plates is 3.75mm (including the thickness of the plate).
  • the pitch is clamped with a vise.
  • the time measurement is rounded off to the minute, mainly considering the directional experiment.
  • the outer plates are made of copper plates or aluminum plates.
  • a copper plate is added on the outer side of the positive electrode plate of FIG. 5, the area is the same as that of the positive electrode plate, and the arrangement is neat.
  • An insulating film is sandwiched between the positive electrode plate and the copper plate, and a piece of the outer side of the negative electrode plate is added according to the same requirement.
  • Aluminum plate, according to Figure 6, a set of positive and negative electrode plates, 2V0.3A constant current charging, full charge 3 ⁇ 4 recording voltage, and then discharged, repeated 20 times;
  • the "AABB” electrode monopole pair structure is 14.06 times faster than the "AB” monopole pair structure.
  • a copper plate is placed on the outside of the positive plate.
  • the area is the same as that of the positive plate.
  • the arrangement is neat, and an insulating film is sandwiched between the positive plate and the copper plate.
  • An aluminum plate is attached to the outside of the negative plate according to the same requirement, 4V0.
  • 3A constant current charging, recording current and voltage, then discharging, repeated 20 times;
  • Figure 7 structure charging up to 8 hours and 38 minutes, minimum 8 hours and 25 minutes, average 8 hours and 30 minutes;
  • a copper plate is added on the outer side of the positive electrode plate, the area is the same as that of the positive electrode plate, and the arrangement is neat.
  • An insulating film is sandwiched between the positive electrode plate and the copper plate, and an aluminum plate is attached to the outside of the negative electrode plate according to the same requirement. 12V0.3A constant current charging, recording current and voltage, then discharging, repeated 20 times;
  • the "AABB” cycle structure battery has a negligible increase in cost while charging, and has obvious high current characteristics. From the experimental record, the short circuit current is much higher than that of the conventional structure battery; Battery storage provides a new way.
  • the above is an electrode plate and an electrode assembly including the same, and an electric storage method. The description of the above embodiments is only for helping to understand the method of the present invention. Its core idea. It should be noted that those skilled in the art can make various modifications and changes to the present invention without departing from the spirit and scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Cell Separators (AREA)

Abstract

涉及一种电极板及包含该电极板的电极组件、蓄电池和电容器。该电极板由至少两个正极板或至少两个负极板和夹在该至少两个正极板或该至少两个负极板之间的绝缘膜组成。该电极板能够提高电场强度,包含该电极板的蓄电池相对于现有结构的电池充电时间大大缩短。

Description

一种电极板及包含该电极板的电极组件、 蓄电池和电容器 技术领域
本发明涉及一种电极板及包含该电极板的电极组件、 蓄电池和电容 器。 背景技术
随着环保节能意识的深入, 新能源电动汽车的发展迅速, 市场潜力巨 大; 太阳能产业的发展, 对蓄电池的需求巨大; 传统摩托车改电瓶车的趋 势明显; 使整个蓄电池产业欣欣向荣。
锂离子蓄电池以环保高效引领了蓄电池产业发展的方向, 但使用成本 高, 原材料短缺制约了发展的速度和规模; 铅酸电池代表的高污染低效能 蓄电池被限制发展, 但它以低使用成本占有大部分市场份额; 因此, 对它 们的技术革新都很有实际意义。
常见的锂离子蓄电池、 铅酸蓄电池、 镍氢蓄电池等等, 它们制造材料 不同, 成电机理不同, 蓄能能量不同, 但它们都有一个共同特点: 充电时 间长, 一般要在 8小时以上; 这成为整个蓄电池行业发展的技术瓶颈; 快 速充电对整个蓄电池行业非常有意义。
目前, 对蓄电池快速充电的研究都从充电器上找出口, 成绩是有, 以 广州天法电池科技有限公司生产的 TH04-48/25A型智能高频脉沖充电机 为代表, 但它们都属于高耗能充电, 说明它们都没解决造成充电困难的根 本性问题; 从结构上研究的也有, 比如, "超级电容器", 是从增加电容方 面去研究问题, 快充的条件是大电流, 工程院院士周国泰研究的 "高能镍 碳超级电容器" 比较有代表性。 发明内容
本发明从电极排列结构出发, 提供一种电极板及包含该电极板的电极 组件、 蓄电池和电容器。 本发明的电极板能够提高电场强度。 包含该电极 本发明的技术方案如下。
一方面, 本发明提供一种电极板, 该电极板由至少两个正极板或至少 两个负极板和:
缘膜组成。 属板取代; 优选地, 所述金属板为铜板、 铝板或辞板。
优选地, 所述正极板的厚度为 lmm-2mm, 优选为 2mm。
优选地, 所述负极板的厚度为 0.6mm-lmm, 优选为 lmm。
另一方面, 本发明提供一种电极组件, 该电极组件包括:
至少一个第一电极板, 该第一电极板由至少两个正极板和夹在所述至 少两个正极板之间的绝缘膜组成;
至少一个第二电极板, 该第二电极板由至少两个负极板和夹在所述至 少两个负极板之间的绝缘膜组成; 以及
电极隔板, 该电极隔板设置于所述第一电极板和所述第二电极板之 间, 用于将所述第一电极板与所述第二电极板隔开。 常用的电极隔板为吸 酸纸或吸碱纸, 可以用来吸收电解液。
优选地, 上述电极组件中, 所述至少两个正极板或至少两个负极板中 的一个或多个以金属板取代; 优选地, 所述金属板为铜板、 铝板或辞板。 优选地, 所述第一电极板与所述第二电极板交替排列。
优选地, 所述第一电极板由两个正极板和夹在所述两个正极板之间的 绝缘膜组成。所述绝缘膜越薄越好, 可以使用纳米级的, 也可以使用微米、 毫米级的, 例如常用的保鲜膜可用作耐酸性绝缘膜。
优选地, 所述第二电极板由两个负极板和夹在所述两个负极板之间的 绝缘膜组成。 两个负极板之间使用的绝缘膜与两个正极板之间使用的绝缘 膜相同。
优选地, 所述第一电极板为 n个, 所述第二电极板为 n或 n+1个, 其 中 n为不为零的整数。 第二电极板比第一电极板多一组, 并且将第二电极 板分布在第一电极板两侧, 即放置于外侧, 是出于安全性的考虑的。
优选地, 所述第一电极板中正极板的厚度为 lmm-2mm-mm, 优选为 2mm。
优选地, 所述第二电极板中负极板的厚度为 0.6mm-lmm-mm,优选为 lmm„
优选地, 所述电极隔板的厚度为 0.25mm-lmm, 优选为 0.75mm。 优选地, 所述第一电极板与所述第二电极板之间的距离为
0.25mm- lmm, 优选为 0.75mm。 该距离为不含极板厚度的距离。
包含上述电极组件的蓄电池。 其中, 蓄电池包括上述电极组件、 电解 液和存放所述电极组件和电解液的电池壳体。
又一方面, 本发明提供一种电容器, 该电容器包括:
至少一个第一电极板, 该第一电极板由至少两个正极板和夹在所述至 少两个正极板之间的绝缘膜组成;
至少一个第二电极板, 该第二电极板由至少两个负极板和夹在所述至 少两个负极板之间的绝缘膜组成; 以及
电介质, 该电介质设置于所述第一电极板和所述第二电极板之间。 实际上, 两个平行的金属板, 一个做正极, 一个做负极, 中间夹电介 质, 就是电容器的基本结构; 两个平行的金属板, 中间绝缘, 组成一个极, 两个这样的极平行排列, 一个做正极, 一个做负极, 中间夹电介质, 就是 本发明的电容器基本结构。
以下将对本发明进行详细描述。
本发明的电极组件为双极同极电极组件, 是以 "AABB" 为基本结构, 以 "AABBAABB" 循环排列为空间结构, 该电极组件是利用同电相斥, 异电相吸的原理,将正极板与正极板、 负极板与负极板绝缘相对紧密排列, 在同等电压电流条件下, 使得正负极板之间的场强达到倍增效果。
如图 1—4所示, 图 1是单级板电场示意图, 极板两面的场强相等; 图
2是双极板电场示意图, 极板相对面的场强为零, 另一面的场强倍增; 图
3是普通正负单级板组合电场示意图,场强分布没有变化;图 4是" AABB" 结构正负双极板组合电场示意图, 场强等于倍加; 正负极间电场强度的增 强, 可以加快电荷的生成, 同时增加电荷密度, 这也是 "超级电容器" 依 据的基本原理, "AABB" 结构是以一对正负极组成一个基本反应单元, 外 侧加装同极极板组成的。
将本发明的电极组件用并联、 串联、 并联串联混合连接极板可以制造 出各种各类蓄电池或电容器。
在一个具体实施方式中, 本发明提供一种包含上述电极组件的高效快 充蓄电池, 该蓄电池由以下几部分组成: 1. 正极板; 2. 负极板; 3. 隔板 纸; 4. 电解液(或固体电解质); 5. 绝缘膜; 6. 电池箱体; 7. 汇流排; 8. 极柱; 9. 电池盖板; 10. 密封胶。 正极板与正极板叠加, 中间用绝缘膜 完全分开, 负极板与负极板叠加, 中间用绝缘膜完全分开, 正负极板间加 电解液或固体电解质用隔板纸隔开, 无论是并联还是串联, 正负极的排序 是按: 正正负负正正负负的循环排列。
本发明的蓄电池与普通蓄电池的共同特性:
铅酸蓄电池的正负极板与本发明铅酸蓄电池使用的正负极板完全一 致; 碱性蓄电池的正负极板与本发明碱性蓄电池使用的正负极板完全一 致; 锂离子蓄电池的正负极板与本发明锂离子蓄电池使用的极正负板完全 一致; 有机溶剂蓄电池的正负极板与本发明有机溶剂蓄电池使用的正负极 板完全一致; 无机固体蓄电池的正负极板与本发明无机固体蓄电池使用的 正负极板完全一致; 镍氢蓄电池的正负极板与本发明镍氢蓄电池使用的正 负极板完全一致; 除绝缘膜外的所有部件材料与原来各个性质的蓄电池使 用材料完全一致。
本发明的蓄电池与普通蓄电池的不同特性:
本发明的蓄电池正极板与正极板之间、 负极板与负极板之间使用了绝 缘膜, 在铅酸蓄电池中使用的是耐酸绝缘膜; 在碱性蓄电池中使用的是耐 碱绝缘膜; 在有机溶剂蓄电池中使用的是耐有机溶剂绝缘膜; 在无机固体 蓄电池中使用的是防无机固体绝缘膜。
结构: 正负极板排序由原来的 "正负正负循环排列" 改变为 "正正负 负正正负负循环排列 ", 正极板与正极板之间, 负极板与负极板之间用绝 缘膜完全分开; 由原来的正负极板可共存同一反应单元变为: 每一组正负 极板为单独的反应单元, 由汇流排连接, 或并联或串联。
原理: 同电相斥, 异电相吸; 同电极板之间距离越近, 排斥力越强, 极性越强; 极性加强的正负极间的场强最大; 最大的场强电离功效最高; 这种结构用在各类蓄电池上, 就可以达到高效快充的目的; 这种结构用在 电容器上, 就可以达到快充高频的效果。
与超级电容器的相同点: 都是通过改变极板结构来提高工作电场强 度, 达到快充的效果。
与超级电容器的结构区别:
超级电容器是在同一反应单元里插入两个相同的极, 两个极的电流强 度有明显的强弱区分, 以强场强包容弱场强的双层电极形式达到提高场强 的目的; 本发明是在反应单元外, 利用同极相斥产生的极大偏场, 在正负 极之间产生场强叠加效应, 使反应单元内的场强达到最大值。
与超级电容器的关系: 与超级电容器结构原理比较, 本发明的场强可 控性更好, 并且可以和超级电容器兼容, 使场强效果达到更大值。
中国工程院院士周国泰先生 2011年 6月成功研制了镍碳超级电容器 蓄电池, 蓄电能力提高一倍, 充电速度可达 7秒完成, 处于国际领先, 国 内最好的地位; 但他的工作条件是大电流, 最高可达 2000A; 本发明是从 结构上实现场强增加的, 在 2A的低电流下完成快充的目的, 与超级电容 器原理从结构上有本质区别, 同时, 本发明的结构原理与超级电容器原理 互不排斥, 可兼容, 就是可同时使用两种技术, 从理论效果推论, 可将已 有超级电容器的成果推向更高峰。 附图说明
图 1为单级板电场示意图;
图 2为双极板电场示意图 (两极间为绝缘膜);
图 3为普通正负单级板组合电场示意图;
图 4为 "AABB" 结构正负双极板组合示意图 (两极间为绝缘 图 5为 "AB" 结构单极对组合的蓄电池;
图 6为 "AABB" 结构单极对组合的蓄电池;
图 7为 " AB" 结构双极对串联的蓄电池;
图 8为 "AABB " 结构双极对串联的蓄电池;
图 9为 " AB" 结构双极对并联的蓄电池;
图 10为 "AABB" 结构双极对并联的蓄电池;
图 11为 "AB" 结构六极对并联的蓄电池;
图 12为 "AABB" 结构六极对并联的蓄电池;
图 13为 " AB" 结构六极对串联的蓄电池; 以及
图 14为 "AABB" 结构六极对串联的蓄电池;
其中, 图中箭头表示连接充电电极。 具体实施方式
实施例 1 1、 实验仪器及材料
正极板: 厚 2mm, 得自上海市宝山区永基电源厂;
负极板: 厚 1mm, 得自上海市宝山区 7 基电源厂;
电极隔板: 吸酸纸, 厚 0.75mm, 得自上海市宝山区永基电源厂; 蓄电池: "金动力"牌电动助力车专用电池,型号 JDL12V14AM 5HR ),
6-DZMJ-12, 得自上海市宝山区永基电源厂;
电解液: 硫酸液, 得自上海市宝山区永基电源厂;
万用表: 优利得电子(上海)有限公司生产的 UT30系列掌上型数字万 用表;
充电器: 上海锦俏电子科技有限公司 HW-1型全智能再生电池专用充电 机组;
放电器: 北京奥丹科技发展有限公司 DSC150型放电仪;
绝缘膜: 普通食品保鲜膜自己加工;
铜板、 铝板: 外购, 自己加工;
电夹若干, 导线若干, 外购后自己连接;
大小台钳若干, 外购, 自己加工安装;
2、 实验说明:
正负极板之间的距离为 3.75mm (含极板厚), 为了保证距离一致, 用 台钳夹住调距; 时间计量采用四舍五入, 精确到分钟, 主要考虑到 是方向性实验。
3、 实验过程及结果
由于铅膏组成的正负极板在无液状态下受压易开裂, 为了确保实验的 有效性, 在本实验过程中, 外侧的极板用铜板或铝板。
( 1 )用充电器将 "JDL12V14Ah ( 5HR ), 6-DZMJ-12" 铅酸蓄电池一 个充满电, 使用万用表记录电流电压, 然后用放电器放电到安全值以上, 12V2A恒流充电,充满电记录电流电压和充电时间,再放电到原来记录值, 该实验证明上述蓄电池工作状况良好。
解剖蓄电池, 保持极板完整, 备用。
( 2 )单极对对比:
按图 5所示组合一组正负极电极板; 2 V0.3 A恒流充电, 充满电记录 电流电压和时间, 然后放电, 反复 20次;
在图 5的正极板外侧加装一块铜板, 面积大小与正极板一致, 排列整 齐, 正极板与铜板之间夹有绝缘膜, 按同样的要求在负极板外侧加装一块 铝板, 按图 6所示组合一组正负极电极板, 对其进行 2V0.3A恒流充电, 充满电 ¾录电 电压, 然后放电, 反复 20次;
结果: 图 5结构充电最多 8小时 17分, 最少 8小时 5分, 平均 8小 时 10分; 图 6结构充电最多 37分钟, 最少 31分钟, 平均 35分钟。
结论: "AABB"电极单极对结构比" AB"单极对结构充平均电快 14.06 倍。
( 3 ) 双极对串联对比:
按 7所示组装一组正负电极板, 4V0.3A恒流充电, 电充满记录电流 电压和时间, 然后放电, 反复 20次;
按图 8所示在正极板外侧加装一块铜板, 面积大小与正极板一致, 排 列整齐, 正极板与铜板之间夹有绝缘膜, 按同样的要求在负极板外侧加装 一块铝板, 4V0.3A恒流充电, 记录电流电压, 然后放电, 反复 20次; 结果: 图 7结构充电最多 8小时 38分, 最少 8小时 25分, 平均 8小 时 30分; 图 8结构充电最多 37分, 最少 32分, 平均 35分;
结论: "AABB" 双极对串联结构比 "AB" 双极对串联结构充电平均 快 14.65倍。
( 4 ) 双极对并联对比:
按 9所示组装一组正负电极板; 2V0.6A恒流充电, 电充满记录电流 电压和时间, 然后放电, 反复 20次;
按图 10 (其中正负极板分别放在两个反应池中)所示正极板外侧各加 装一块铜板, 面积大小与正极板一致, 排列整齐, 正极板与铜板之间夹有 绝缘膜, 按同样的要求在负极板外侧各加装一块铝板, 2V0.6A恒流充电, 记录电流电压, 然后放电, 反复 20次;
结果: 图 9结构充电最多 8小时 17分, 最少 8小时 11分, 平均 8小 时 13分; 图 10结构充电最多 36分, 最少 34分, 平均 35分;
结论: "AABB" 双极对串联结构比 "AB" 双极对并联结构充电平均 快 14.15倍。
( 5 ) 六极对并联对比: (相当于蓄电池的一组正负极板, 7正 8负变 为 6正 8负)
按 11所示组装一组正负电极板; 2V1.8A恒流充电, 电充满记录电流 电压和时间, 然后放电, 反复 20次; 按图 12所示在正极板外侧各加装一块铜板, 面积大小与正极板一致, 排列整齐, 正极板与铜板之间夹有绝缘膜, 按同样的要求在负极板外侧各 加装一块铝板, 2V1.8A伏恒流充电, 充满电记录电流电压, 然后放电, 反复 20次;
结果: 图 11结构充电最多 8小时 40分, 最少 8小时 30分, 平均 8 小时 37分; 图 12结构充电最多 37分, 最少 34分, 平均 35分。
结论: "AABB" 六极对并联结构比 "AB" 六极对并联结构充电平均 快 14.8倍。
( 6 ) 六极对串联对比:
按 13所示组装一组正负电极板; 12V0.3A恒流充电, 电充满记录电 流电压和时间, 然后放电, 反复 20次;
按图 14所示在正极板外侧各加装一块铜板, 面积大小与正极板一致, 排列整齐, 正极板与铜板之间夹有绝缘膜, 按同样的要求在负极板外侧各 加装一块铝板, 12V0.3A恒流充电, 记录电流电压, 然后放电, 反复 20 次;
结果: 图 13结构充电最多 9小时 02分, 最少 8小时 45分, 平均 8 小时 52分; 图 14结构充电最多 36分, 最少 34分, 平均 35分;
结论: "AABB" 六极对并联结构比 "AB" 六极对并联结构充电平均 快 15.27倍。
4、 实验小结
从上述实马全可以看出: "AABBAABB" 循环极对结构比 "ABAB" 传 统循环极对结构在蓄电池充电时间方面具有显著的优势; 正负两极电场强 度的倍增对蓄电池电荷生成影响是显著的, 运用 "AABB" 循环结构可以 达到了高效快速充电的目的。
需要说明的是, "AABB"循环结构蓄电池在快速充电的同时, 成本增 加可忽略不计, 并且有明显的高电流特征, 从实验的记录看, 短路电流远 比普通结构蓄电池高; 这为我们提高蓄电池储能提供了一个新的途径。 以上对本发明所提供的一种电极板及包含该电极板的电极组件、 蓄电 施方式进行了阐述, 以上实施例的说明只是用于帮助理解本发明的方法及 其核心思想。 应当指出, 对于本领域的普通技术人员来说, 在不脱离本发 明原理的前提下, 还可以对本发明进行若干改进和修饰, 这些改进和修饰 也落入本发明权利要求的保护范围内。

Claims

权 利 要 求
1、 一种电极板, 该电极板由至少两个正极板或至少两个负极板和夹在
2、 根据权利要求 1 所述的电极板, 其特征在于, 所述至少两个正极板 或至少两个负极板中的一个或多个以金属板取代; 优选地, 所述金属板为铜 板、 4吕板或锌板。
3、 根据权利要求 1或 2所述的电极板, 其特征在于, 所述正极板的厚 度为 lmm-2mm, 优选为 2mm。
4、 根据权利要求 1至 3中任一项所述的电极板, 其特征在于, 所述负 极板的厚度为 0.6mm-lmm, 优选为 lmm。
5、 一种电极组件, 该电极组件包括:
至少一个第一电极板, 该第一电极板由至少两个正极板和夹在所述至少 两个正极板之间的绝缘膜组成;
至少一个第二电极板, 该第二电极板由至少两个负极板和夹在所述至少 两个负极板之间的绝缘膜组成; 以及
电极隔板, 该电极隔板设置于所述第一电极板和所述第二电极板之间, 用于将所述第一电极板与所述第二电极板隔开。
6、 根据权利要求 5所述的电极板, 其特征在于, 所述至少两个正极板 或至少两个负极板中的一个或多个以金属板取代; 优选地, 所述金属板为铜 板、 4吕板或锌板。
7、 根据权利要求 5或 6所述的电极组件, 其特征在于, 所述第一电极 板与所述第二电极板交替排列。
8、 根据权利要求 5至 7中任一项所述的电极组件, 其特征在于, 所述 第一电极板由两个正极板和夹在所述两个正极板之间的绝缘膜组成。
9、 根据权利要求 5至 8中任一项所述的电极组件, 其特征在于, 所述 第二电极板由两个负极板和夹在所述两个负极板之间的绝缘膜组成。
10、 根据权利要求 5至 9中任一项所述的电极组件, 其特征在于, 所述 第一电极板为 n个,所述第二电极板为 n或 n+1个,其中 n为不为零的整数。
11、 根据权利要求 5至 10中任一项所述的电极组件, 其特征在于, 所 述第一电极板中正极板的厚度为 lmm-2mm, 优选为 2mm。
12、 根据权利要求 5至 11 中任一项所述的电极组件, 其特征在于, 所 述第二电极板中负极板的厚度为 0.6mm-lmm, 优选为 lmm。
13、 根据权利要求 5至 12中任一项所述的电极组件, 其特征在于, 所 述电极隔板的厚度为 0.25mm-lmm, 优选为 0.75mm。
14、 根据权利要求 5至 13中任一项所述的电极组件, 其特征在于, 所 述第一电极板与所述第二电极板之间的距离为 0.25mm-lmm , 优选为 0.75mm。
15、 一种蓄电池, 该蓄电池包括权利要求 5至 14中任一项所述的电极 组件、 电解液和存放所述电极组件和电解液的电池壳体。
16、 一种电容器, 该电容器包括:
至少一个第一电极板, 该第一电极板由至少两个正极板和夹在所述至少 两个正极板之间的绝缘膜组成;
至少一个第二电极板, 该第二电极板由至少两个负极板和夹在所述至少 两个负极板之间的绝缘膜组成; 以及
电介质, 该电介质设置于所述第一电极板和所述第二电极板之间。
PCT/CN2013/072698 2012-03-26 2013-03-15 一种电极板及包含该电极板的电极组件、蓄电池和电容器 WO2013143399A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13768533.5A EP2833441A4 (en) 2012-03-26 2013-03-15 ELECTRODE PLATE AND ASSEMBLY OF ELECTRODE, STORAGE BATTERY, AND CAPACITOR COMPRISING AN ELECTRODE PLATE
US14/387,422 US20150125750A1 (en) 2012-03-26 2013-03-15 Electrode plate and electrode assembly, storage battery, and capacitor comprising electrode plate
JP2015502071A JP2015516650A (ja) 2012-03-26 2013-03-15 電極板及び電極アセンブリ、蓄電池、並びに電極板を備えるキャパシタ
IN8782DEN2014 IN2014DN08782A (zh) 2012-03-26 2014-10-20

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012100827335A CN103367671A (zh) 2012-03-26 2012-03-26 一种电极板及包含该电极板的电极组件、蓄电池和电容器
CN201210082733.5 2012-03-26

Publications (1)

Publication Number Publication Date
WO2013143399A1 true WO2013143399A1 (zh) 2013-10-03

Family

ID=49258196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/072698 WO2013143399A1 (zh) 2012-03-26 2013-03-15 一种电极板及包含该电极板的电极组件、蓄电池和电容器

Country Status (6)

Country Link
US (1) US20150125750A1 (zh)
EP (1) EP2833441A4 (zh)
JP (1) JP2015516650A (zh)
CN (1) CN103367671A (zh)
IN (1) IN2014DN08782A (zh)
WO (1) WO2013143399A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015062084A1 (zh) * 2013-11-01 2015-05-07 上海足力新能源科技有限公司 蓄电池及包含该蓄电池的蓄电池组
CN105161662A (zh) * 2014-05-30 2015-12-16 陈锦棠 快速充电电池
DE102017218282A1 (de) * 2017-10-12 2019-04-18 Volkswagen Aktiengesellschaft Lithium-Ionen-Zelle für einen elektrischen Energiespeicher, Energiespeicher
DE102018115339A1 (de) * 2018-06-26 2020-01-02 Volkswagen Aktiengesellschaft Wiederaufladbare Batterie

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001090444A1 (en) * 2000-05-22 2001-11-29 Abb Power T & D Company Inc. Integrated electrode for electrolytic capacitor applications
CN2521764Y (zh) * 2001-06-29 2002-11-20 马大成 双复合极板阀控密封式铅酸蓄电池
CN1434532A (zh) * 2002-01-25 2003-08-06 杨崇权 能够快速充电的长寿命蓄电池
CN2626060Y (zh) * 2003-07-02 2004-07-14 马大成 复合极板阀控密封式铅酸蓄电池
CN102103927A (zh) * 2009-12-22 2011-06-22 三星电机株式会社 多层陶瓷电容器
CN202549957U (zh) * 2012-03-26 2012-11-21 余荷军 一种电极板及包含该电极板的电极组件、蓄电池和电容器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2608310B1 (fr) * 1986-12-16 1991-02-15 Europ Composants Electron Condensateur feuillete a coefficient de temperature defini et a bonne stabilite dans le temps
US5978204A (en) * 1995-11-27 1999-11-02 Maxwell Energy Products, Inc. Capacitor with dual element electrode plates
JPH10163070A (ja) * 1996-12-04 1998-06-19 Japan Storage Battery Co Ltd 電気化学装置及び電極並びに電気化学装置の製造方法
JPH11102711A (ja) * 1997-09-25 1999-04-13 Denso Corp リチウムイオン二次電池
JP4757369B2 (ja) * 2000-05-08 2011-08-24 パナソニック株式会社 角形アルカリ蓄電池、並びにこれを用いた単位電池及び組電池
US6628504B2 (en) * 2001-05-03 2003-09-30 C And T Company, Inc. Electric double layer capacitor
TW540179B (en) * 2002-03-13 2003-07-01 Csb Battery Co Ltd Separator in lead acid battery and manufacturing method thereof
TWI270227B (en) * 2002-06-07 2007-01-01 Sunyen Co Ltd Secondary cell
KR100571241B1 (ko) * 2004-09-22 2006-04-13 삼성에스디아이 주식회사 배터리 팩 및 그 제조 방법
AR067238A1 (es) * 2007-03-20 2009-10-07 Commw Scient Ind Res Org Dispositivos optimizados para el almacenamiento de energia
JP2010153206A (ja) * 2008-12-25 2010-07-08 Hosoda Denki:Kk 電池用電解液及び電池
JP5124506B2 (ja) * 2009-02-13 2013-01-23 シャープ株式会社 二次電池および二次電池の製造方法
JP5414432B2 (ja) * 2009-09-09 2014-02-12 株式会社半導体エネルギー研究所 蓄電システム
US8551660B2 (en) * 2009-11-30 2013-10-08 Tai-Her Yang Reserve power supply with electrode plates joined to auxiliary conductors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001090444A1 (en) * 2000-05-22 2001-11-29 Abb Power T & D Company Inc. Integrated electrode for electrolytic capacitor applications
CN2521764Y (zh) * 2001-06-29 2002-11-20 马大成 双复合极板阀控密封式铅酸蓄电池
CN1434532A (zh) * 2002-01-25 2003-08-06 杨崇权 能够快速充电的长寿命蓄电池
CN2626060Y (zh) * 2003-07-02 2004-07-14 马大成 复合极板阀控密封式铅酸蓄电池
CN102103927A (zh) * 2009-12-22 2011-06-22 三星电机株式会社 多层陶瓷电容器
CN202549957U (zh) * 2012-03-26 2012-11-21 余荷军 一种电极板及包含该电极板的电极组件、蓄电池和电容器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUOTAI ZHOU: "high-energy nickel carbon super capacitor", CHINESE ACADEMY OF ENGINEERING
See also references of EP2833441A4

Also Published As

Publication number Publication date
US20150125750A1 (en) 2015-05-07
EP2833441A1 (en) 2015-02-04
EP2833441A4 (en) 2015-12-09
IN2014DN08782A (zh) 2015-05-22
CN103367671A (zh) 2013-10-23
JP2015516650A (ja) 2015-06-11

Similar Documents

Publication Publication Date Title
CN102244300A (zh) 石墨烯作为添加剂的铅酸电池
CN101719562A (zh) 一种高电压电池的电芯
CN102201604A (zh) 一种电容电池电芯及其制作方法
CN109244339A (zh) 一种高安全高能量密度的三元锂离子电池
WO2013143399A1 (zh) 一种电极板及包含该电极板的电极组件、蓄电池和电容器
CN112582668A (zh) 一种多极柱锂离子动力电池及其制造方法
CN106848378A (zh) 一种高能量密度软包叠片电池
CN102013512A (zh) 一种具有高电位的电能存储装置及制作方法
CN202549957U (zh) 一种电极板及包含该电极板的电极组件、蓄电池和电容器
CN103682495B (zh) 蓄电池及包含该蓄电池的蓄电池组
WO2020238226A1 (zh) 一种电池及电池组
CN103390765B (zh) 一种磷酸铁锂电池及其制作方法
JP6618183B2 (ja) 二次電池並びに充電装置及び放電装置
TWM354187U (en) Battery module
CN106876714A (zh) 一种用于汽车启停系统的锂离子电池
CN1588688A (zh) 锂离子动力电池
CN104953169A (zh) 一种锂离子低温电池
JP2014521231A (ja) エネルギー蓄積デバイス、無機ゲル状電解質、及びその方法
WO2015062084A1 (zh) 蓄电池及包含该蓄电池的蓄电池组
CN201008003Y (zh) 一种高倍率锂离子电池
CN201355575Y (zh) 一种卷绕式超级电容器
CN219321378U (zh) 一种极片和电芯
CN110137577A (zh) 一种可大电流充放电的磷酸铁锂聚合物锂电池
JP7249991B2 (ja) 二次電池
CN214957013U (zh) 一种适合大电流充放电的锂离子电池结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768533

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2015502071

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013768533

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013768533

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014024069

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 14387422

Country of ref document: US

ENP Entry into the national phase

Ref document number: 112014024069

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140926