WO2013143028A1 - 气体渗透性测试装置 - Google Patents

气体渗透性测试装置 Download PDF

Info

Publication number
WO2013143028A1
WO2013143028A1 PCT/CN2012/000444 CN2012000444W WO2013143028A1 WO 2013143028 A1 WO2013143028 A1 WO 2013143028A1 CN 2012000444 W CN2012000444 W CN 2012000444W WO 2013143028 A1 WO2013143028 A1 WO 2013143028A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
chamber
valve
test gas
pipeline
Prior art date
Application number
PCT/CN2012/000444
Other languages
English (en)
French (fr)
Inventor
姜允中
Original Assignee
济南兰光机电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2012100842227A external-priority patent/CN102628785A/zh
Priority claimed from CN 201220120157 external-priority patent/CN202486012U/zh
Application filed by 济南兰光机电技术有限公司 filed Critical 济南兰光机电技术有限公司
Publication of WO2013143028A1 publication Critical patent/WO2013143028A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • G01N15/0826Investigating permeability by forcing a fluid through a sample and measuring fluid flow rate, i.e. permeation rate or pressure change

Definitions

  • the invention relates to the technical field of barrier detection, and in particular to a gas permeability testing device for detecting materials. Background technique
  • the gas permeability of the test material has two methods: differential pressure method and equal pressure method.
  • the differential pressure method is the basic method in the field of material gas permeability testing.
  • the differential pressure method has no limitation on the type of test gas, and has extremely high The promotion of features, and therefore has a very wide range of practical applications.
  • the differential pressure test structure is to set a control valve between the test chamber of the permeation tank and the vacuum pump. During the test, the sample is placed between the test chamber of the permeation cell and the test chamber of the permeation cell, and the space in the permeation cell is divided into two parts. When the control valve is opened, the test chamber and the test gas chamber can be simultaneously vacuumed; when the control valve is closed, a closed space is formed between the test chamber and the valve.
  • the test gas chamber is filled with test gas, a certain degree of vacuum is reached in the test chamber, a certain test gas pressure difference can be maintained on both sides of the sample, and the corresponding components are used to detect the penetration at appropriate intervals.
  • the gas pressure in the chamber is measured by monitoring the pressure change in the enclosed space to calculate the amount of gas that permeates through the sample into the test chamber of the permeate cell, and the gas permeability of the material is calculated by analyzing the change in the amount of permeate gas.
  • test gas chamber and the test chamber can be vacuumed at the same time, and the test chamber cannot be vacuumed separately. It is impossible to realize that the test chamber is under vacuum and the test gas chamber is filled with gas and the pressure difference of the gas is used in the evacuation state. The test material sample fits well on the test cavity plane, thereby reducing the sealing effect of the test cavity. At the same time, it is impossible to completely clean the gas in the test chamber. After the valve is closed, the residual gas released in the test chamber is considered to be a gas permeate and the amount of permeate gas is calculated, thereby causing an error.
  • valve setup does not allow for individual control of the partial permeation cell.
  • the invention is to solve the detection requirement that the prior art can only meet the barrier property of general materials, the control process cannot be fully controlled, the multi-cavity test cannot be independently controlled, the sample cannot be effectively sealed and the test cavity cannot be thoroughly performed.
  • Vacuum pumping problem Provide a gas permeability test device; It has a simple structure, reliable use, convenient application, complete control of the test process, independent control of multi-cavity test, effective control of sample seal and thorough test cavity The advantage of vacuuming.
  • the present invention adopts the following technical solution - a gas permeability testing device, including a vacuum pump, a permeation cell, a permeation cell divided into a test chamber and a test gas chamber by a sample, and a vacuum pump through the pipeline separately from the test chamber, the test The gas chamber is connected, and the valve I and the valve II are respectively arranged on the pipeline connecting the vacuum pump with the test chamber and the test gas chamber.
  • test chamber is connected to the pressure sensor I; the test gas chamber is connected to the pressure sensor II.
  • the test gas chamber is connected to the test gas source through a line ,, and a valve III is disposed on the line ⁇ .
  • the permeation tank is provided with a plurality of, the vacuum pump is connected to the plurality of test chambers through the pipeline, and is connected to the plurality of test gas chambers through the pipeline; the pipeline connected to each test chamber is provided with a valve; and the plurality of test gases
  • the pipe connected to the cavity includes a common pipe
  • the common pipeline VI is provided with a valve II
  • the pipeline VII connected to each test gas chamber is provided with a valve IV, through the control valve I, the valve II and The state of valve IV enables separate evacuation of each side of the permeate cell and evacuation of the entire permeate cell.
  • the invention comprises a permeation cell, a connecting line, a vacuum pump, a pressure sensor, a valve, and a gas source.
  • the permeation cell is divided into two parts: the test chamber and the test gas chamber; the test chamber is connected to the pressure sensor I, and is connected to the vacuum pump through the pipeline I, and the valve I is provided with a valve I; the test gas chamber is connected to the pressure sensor II, And connected to the vacuum pump and the test gas source through the pipeline II and the pipeline III respectively, the valve II is provided with the valve II, and the pipeline III is provided with the wide gate III.
  • the vacuum pump is connected to the test chamber and the test gas chamber through line I and line II, and separate vacuuming of each side of the permeation tank and evacuation of the entire permeation tank by controlling the state of the wide door I and the valve port.
  • the connecting pipeline includes a pipeline I connected to the vacuum chamber of the test chamber, a pipeline II connected to the vacuum chamber of the test gas chamber, a pipeline III connected to the test gas source of the test gas chamber, and a pipeline connected to the pressure sensor I by the test chamber IV. And a pipe V connecting the test gas chamber to the pressure sensor II.
  • the pressure sensor includes a pressure sensor I coupled to the test chamber and a pressure sensor II coupled to the test gas chamber.
  • the valve includes a valve I provided on line I, a valve II provided on line II, and a valve III provided on line III.
  • the gas source is a test gas source.
  • the sample is installed in the permeation tank, the vacuum pump is turned on, and the valve I is opened to evacuate the test chamber, and the valve is opened.
  • Door II draws a vacuum on the test gas chamber.
  • opening the valve I and the valve II evacuates the entire permeate tank, and at the same time, closing the valve I and the valve II stops vacuuming the permeation tank.
  • the valve III is opened, and a test gas is supplied from the test gas source to the test gas chamber.
  • the pressure value in the chamber can be obtained by the pressure sensor II, so that a certain pressure difference is formed on both sides of the sample, and the pressure difference is exerted.
  • the test gas penetrates into the test chamber through the sample, and the pressure sensor I monitors the pressure change in the test chamber, and the permeability of the sample is calculated by the amount of pressure rise per unit time.
  • Still another configuration of the present invention is that the number of permeation cells can be increased in the present invention to increase the test station and achieve independent control of the multi-chamber test.
  • the invention includes a permeate cell, a connecting line, a vacuum pump, a pressure sensor, a valve, and a gas source.
  • Each permeation cell is divided into two parts: a test chamber and a test gas chamber; each test chamber is connected to a corresponding pressure sensor I, and is connected to a vacuum pump through a pipe I, and a pipe connected to each test chamber.
  • each test gas chamber is connected with a corresponding pressure sensor II, and is respectively connected to a vacuum pump and a test gas source through a pipe II and a pipe III, respectively, and the pipe II includes a common pipe VI
  • the pipeline VII connected to each test gas chamber is provided with a valve II
  • the pipeline VII connected to each test gas chamber is provided with a valve IV
  • the pipeline III includes a common pipeline VIII and the line VII connected to each test gas chamber, the common line VIII is provided with a valve III, and the line VII connected to each test gas chamber is provided with a valve IV.
  • the vacuum pump is connected to the test chamber and the test gas chamber through the pipeline I and the pipeline II respectively.
  • the connecting pipe includes a pipe I connected to the vacuum chamber of the test chamber, a pipe II connected to the vacuum chamber of the test gas chamber (including the common pipe VI and a pipe ⁇ connected to each test gas chamber), a test gas chamber and a test gas.
  • Line III connected to the gas source (including common line VIII and line VII connected to each test gas chamber), line IV connecting the test chamber to pressure sensor I, and tube connecting test gas chamber to pressure sensor II Road V.
  • the pressure sensor includes a pressure sensor I connected to each test chamber and a pressure sensor II connected to each test gas chamber.
  • the valve includes the valve I provided on the pipeline I, the wide door II provided on the common pipeline VI, the valve III provided on the common pipeline VIII, and the valve IV provided on the pipeline VII.
  • the gas source is the test gas source, and the test gas chamber in the test state can be charged with the test gas by controlling the state of the valve in and the wide door IV.
  • the test gas penetrates into the test chamber through the sample, the pressure sensor I monitors the pressure change in the test chamber, and the permeability of the sample is calculated by the amount of pressure rise per unit time.
  • the valve I connected to its test chamber and the valve IV connected to its test gas chamber are always closed during the entire process.
  • Figure 1 is a schematic structural view of the present invention
  • Test gas source 2. Valve III, 3. Pipe III, 4. Pipe V, 5. Pressure sensor II, 6. Pipe II, 7. Valve II, 8. Vacuum pump, 9. Test Gas chamber, 10. Sample, 11. Test chamber, 12. Pressure sensor I, 13. Line IV, 14. Line I, 15. Valve I, 16. Common line VIII, 17. Common line VI, 20 1# ⁇ VII, 21. 1# ⁇ IV, 22. im test gas chamber, 23. 1# sample, 24. 1# test chamber, 25. 1# pressure sensor I, 26. 1# pipeline IV , 27. 1# ⁇ I, 28. 1# ⁇ 1, 29. 2# ⁇ VII, 30. 2# ⁇ IV, 31. 2# test gas chamber, 32. 2#sample, 33. 2# test Cavity, 34.
  • a gas permeability testing device in conjunction with Figure 1, includes a permeate cell, a connecting line, a vacuum pump 8, a pressure sensor, a valve, and a gas source.
  • the permeation cell is divided into two parts: the test chamber 11 and the test gas chamber 9 by the sample 10; the test chamber 11 is connected to the pressure sensor ⁇ 2, and is connected to the vacuum pump 8 through the pipeline 114, and the valve 114 is provided with a valve 115; the test gas chamber 9 It is connected to the pressure sensor 115, and is connected to the vacuum pump 8 and the test gas source 1 through the pipeline 116 and the pipeline ⁇ 3.
  • the pipeline 116 is provided with a valve 117, and the pipeline raft 3 is provided with a wide door 1112.
  • the vacuum pump 8 is connected to the test chamber 11 and the test gas chamber 9 through a line 114 and a line 116, respectively, and can be realized by controlling the state of the valve 115 and the valve 117.
  • a separate vacuum is applied to each side of the permeate cell and a vacuum is applied to the entire permeate cell.
  • the connecting pipe includes a pipe 114 connecting the test chamber 11 to the vacuum pump 8, a pipe 116 connecting the test gas chamber 9 to the vacuum pump 8, a pipe 1113 connecting the test gas chamber 9 to the test gas source 1, a test chamber 11 and a pressure.
  • the pressure sensor includes a pressure sensor 112 coupled to the test chamber 11 and a pressure sensor 115 coupled to the test gas chamber 9.
  • the valve includes a valve 115 provided on the line 114, a valve 117 provided on the line ⁇ 6, and a valve 1112 provided on the line III3.
  • the gas source is the test gas source 1.
  • the sample 10 is installed in the permeation tank, the vacuum pump 8 is turned on, the valve 115 is opened to evacuate the test chamber 11, and the valve 117 is opened to evacuate the test gas chamber 9, while the valve 115 and the valve ⁇ 7 are opened to the entire permeation tank. Vacuuming while closing valve 115 and valve 117 stops vacuuming the permeate cell.
  • the valve ⁇ 2 is opened, and the test gas source 1 supplies a certain pressure of the test gas to the test gas chamber 9.
  • the pressure value in the chamber can be obtained by the pressure sensor ⁇ 5, so that a certain pressure difference is formed on both sides of the sample 10, under pressure. Under the action of the difference, the test gas penetrates into the test chamber 11 through the sample 10, the pressure sensor 112 monitors the pressure change in the test chamber 11, and the permeability of the sample 10 is calculated by the amount of rise in pressure per unit time.
  • a gas permeability test apparatus in conjunction with FIG. 2, is a three-chamber test structure of the present invention, that is, the number of permeation cells can be increased in the present invention to increase the test station and achieve independent control for multi-cavity testing. It includes a permeation tank, a connecting line, a vacuum pump 8, a pressure sensor, a valve, and a gas source. Each permeation cell is divided into two parts: the test chamber and the test gas chamber.
  • the 1# permeation tank is divided into 1# test chamber 24 and 1# test gas chamber 22 by 1# sample 23, and 2# permeation tank is 2# sample 32 is divided into 2# test chamber 33 and 2# test gas chamber 31, and 3# permeation tank is divided into 3# test chamber 42 and 3# test gas chamber 40 by 3# sample 41.
  • Each test chamber is connected to a corresponding pressure sensor I, and is respectively connected to the vacuum pump 8 through a pipe I.
  • the pipe I connected to each test chamber is provided with a valve I, 1# test chamber 24 and 1# pressure.
  • the sensor 125 is connected and connected to the vacuum pump 8 through the 1# line 127.
  • the 1# line 127 is provided with a 1# valve 128; the 2# test chamber 33 is connected to the 2# pressure sensor 134, and passes through the 21 line 136 and the vacuum pump. 8 is connected, 2# line 136 is provided with 2# valve 137; 3# test chamber 42 is connected with 3# pressure sensor 143, and is connected to vacuum pump 8 through 3# line 145, and 3# is provided on line 145 # ⁇ 146.
  • Each test gas chamber is connected to a corresponding pressure sensor 115, and is respectively connected to a vacuum pump 8 and a test gas source 1 through a line II and a line III, respectively, and the line II includes a common line VI 17 and each test
  • the gas chamber is connected to the line VII, the common line VI 17 is provided with a valve 117, and the line VII connected to each test gas chamber is provided with a valve IV;
  • the line III comprises a common line VIII 16 and each The test gas chamber is connected to the line VII, the common line VIII 16 is provided with a valve 1112, and the line VII connected to each test gas chamber is provided with a valve IV.
  • Test gas chamber 22 is connected to pressure sensor 115, through common lines VI 17 and 1# line VI I20 and vacuum
  • the pump 8 is connected, connected to the test gas source 1 through the common line VIII16 and 1# line VII20, and the ltt valve ⁇ 21 is provided on the 1# line VII20;
  • the 2tt test gas chamber 31 is connected to the pressure sensor 115 through the common line VI17 and 2# line VII29 is connected to vacuum pump 8, connected to test gas source 1 through common line VIII16 and 2# line VII29, 2# wide door IV30 on line VII29; 3fr test gas chamber 40 It is connected to the pressure sensor 115, connected to the vacuum pump 8 through the common line VI17 and 3# line VII38, connected to the test gas source 1 through the common line VIII16 and 3# line VII38, and 3 on the 3# line VII38.
  • the vacuum pump 8 can realize the separate pumping of each permeation tank by controlling the state of 1# wide door 128, 2# valve 137, 3# valve 146, valve 117 and the door IV21, 2 curry IV30, 3# valve IV39. Vacuum and evacuation of the entire permeate cell.
  • the connecting pipe includes a 1# pipe 127, a 2# pipe 136, a 3# pipe 145, a test gas chamber connected to the vacuum pump 8 connected to the vacuum pump 8 (including a common pipe VI17, 1# pipe).
  • test gas chamber connected to test gas source 1 (including common line VIII 16, 1# line VII20, 2# line VII29, 3#Pipe VII38), 1# pipe IV26, 2# pipe IV35, 3# pipe IV44 connected to the test chamber and pressure sensor I, and pipe V4 connected to the pressure sensor 115 in the test gas chamber.
  • the pressure sensor includes a 1# pressure sensor 125, a 2# pressure sensor 134, a 3# pressure sensor 143 connected to each test chamber, and a pressure sensor 115 connected to each test gas chamber.
  • the valve includes a 1# valve 128, a 2# valve 137, a 3# valve 146 disposed on the pipeline I, a valve 117 provided on the common pipeline VI17, a valve 1112 provided on the common pipeline VIII16, and a pipeline VII.
  • the gas source is the test gas source 1, and the test gas chamber in the test state can be charged with the test gas by controlling the state of the valve ⁇ 2 and the gate IV21, 2# valve IV30, 3# valve IV39.
  • the valve 1112, the Laimen IV2K 2 coffee, the IV30 and the 3# valve IV39' are provided by the test gas source 1 to the 1# test gas chamber 22, 2# test gas chamber 31, 3# test gas chamber 40.
  • a certain pressure of the test gas, the pressure value in the cavity can be obtained by the pressure sensor 115, so that 1# sample 23, 2# sample 32, 3# sample 41 form a certain pressure on both sides Poor, under the action of pressure difference, the test gas penetrates into the 1# test chamber 24, 2# test chamber 33, 3# test chamber 42 through 1# sample 23, 2# sample 32, 3# sample 41, 1# pressure Sensor 125,
  • the 2tt pressure sensor 134, 3# pressure sensor 143 monitors the pressure change in the test chamber 24, 2# test chamber 33, 3# test chamber 42 respectively, and calculates the 1# sample 23 by the amount of pressure rise per unit time. 2# Sample 32, 3# Sample 41 permeability. If not all of the perme

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

一种气体渗透性测试装置;它包括真空泵(8),渗透池,渗透池被样品(10)分为测试腔(11)与试验气体腔(9),真空泵(8)通过管路分别与测试腔(11)、试验气体腔(9)连接,真空泵(8)与测试腔(11)、试验气体腔(9)连接的管路上分别设有阀门I(15),阀门II(7),所述测试腔(11)与压力传感器I(12)连接;试验气体腔(9)与压力传感器II(5)连接,所述试验气体腔(9)通过管路III(3)与测试气体气源(1)相连,管路III(3)上设有阀门III(2),具有结构简单,使用可靠,应用方便,实现对测试腔(11)单独抽真空,并通过试验气体腔(9)与测试腔(11)间压差实现试样(10)与测试腔(11)间的有效密封;实现对测试腔(11)的彻底抽真空;实现对测试过程的全面控制和多腔测试独立控制的优点。

Description

气体渗透性测试装置 技术领域
本发明涉及阻隔性检测技术领域, 尤其涉及一种检测材料的气体渗透性测试装置。 背景技术
随着科技水平的不断提高, 包装材料的生产和研制逐渐向着更轻、 更薄、 更便利、 更经 济的方向发展, 功能性材料的广泛应用以及各种气体透过率对食品、 药品、 化妆品、 工业品 产品质量安全所产生的影响使得气体透过率测试的重要性日益突出。 同时随着对产品特性了 解的增多以及新型包装方式的普及应用, 仅检测材料的氧气透过率已经不足以满足实际需 要, 因此其他气体的透过率, 例如氮气透过率、 二氧化碳透过率、 氦气透过率等等指标的检 测需求也逐渐增多, 材料的阻隔性能是否达标已成为关系到一大批包装材料是合格还是报废 的关键。 检测材料的气体透过率有压差法和等压法两种方法, 其中压差法是材料气体透过率 测试领域的基础方法, 压差法对测试气体的种类没有限制, 具有极高的推广特性, 因此具有 极为广泛的实际应用基础。 压差法测试结构是在渗透池的测试腔与真空泵之间设置控制阀 门, 试验测试时将试样放在渗透池试验气体腔和渗透池测试腔之间, 把渗透池内的空间分成 两部分, 控制阀门打开时, 可以实现对测试腔、 试验气体腔同时进行抽真空操作; 控制阀门 关闭时, 在测试腔与阀门间形成一段封闭空间。 通过对渗透池抽真空, 使试验气体腔中充满 试验气体, 测试腔中达到一定的真空度, 在样品两侧就能保持一定的测试气体压力差, 以适 当的时间间隔用相应元器件检测渗透池测试腔中的气体压力, 通过监测该封闭空间内的压力 变化, 计算出渗透通过试样进入渗透池测试腔中的气体量, 通过分析透过气体量的变化计算 材料的气体透过率。 这种单阔门控制方式存在的弊端是:
首先, 只能实现对试验气体腔和测试腔同时抽真空而无法对测试腔单独进行抽真空操 作, 无法实现在抽空状态下, 测试腔处于真空而试验气体腔充满气体、 利用气体的压差把测 试材料试样很好地贴合在测试腔平面上, 从而降低了测试腔的密封效果。 同时也无法实现把 测试腔的气体尽量彻底地抽干净, 造成阀门关闭后, 测试腔内释放的残余气体被认为是透过 气体而计入透过气体量计算, 从而造成误差。
其次, 当多个渗透池并联在一起进行测试时, 该阀门设置方式无法实现对部分渗透池的 单独控制。
再次, 传统阀门控制方式, 虽然测试结果能满足对一般材料的透气性测试要求, 但由于 测试结果的准确性较差, 制约了高阻隔材料的压差法测试, 而本领域的技术人员没有意识到 由于这种方式带来的测试结果准确性差的问题。
发明内容
本发明就是为解决现有技术存在的只能满足一般材料阻隔性能的检测要求, 在测试过程 的不能全面控制、 多腔测试不能独立控制、 试样无法进行有效密封控制以及无法对测试腔进 行彻底抽真空的问题; 提供一种气体渗透性测试装置; 具有结构简单, 使用可靠, 应用方便, 实现对测试过程的全面控制、 多腔测试独立控制、 试样密封的有效控制和对测试腔的彻底抽 真空的优点。
为实现上述目的, 本发明采用下述技术方案- 一种气体渗透性测试装置, 包括真空泵, 渗透池, 渗透池被样品分为测试腔与试验气体 腔, 真空泵通过管路分别与测试腔、 试验气体腔连接, 真空泵与测试腔、 试验气体腔连接的 管路上分别设有阀门 I , 阀门 II。
所述测试腔与压力传感器 I连接; 试验气体腔与压力传感器 II连接。
所述试验气体腔通过管路 ΠΙ与测试气体气源相连, 管路 ΠΙ上设有阀门 III。
所述渗透池设有多个, 真空泵通过管路与多个测试腔相连, 通过管路与多个试验气体腔 相连; 与每个测试腔相连的管路上均设有阀门; 与多个试验气体腔相连的管路包括公共管路
VI以及与每个试验气体腔相连的管路 VII, 公共管路 VI上设有阀门 II, 与每个试验气体腔 相连的管路 VII上均设有阀门 IV, 通过控制阀门 I、 阀门 II和阀门 IV的状态能实现对渗透 池每侧的单独抽真空以及对渗透池整体的抽真空。
本发明工作原理: .本发明包括渗透池、 连接管路、 真空泵、 压力传感器、 阀门、 以及气 源。 渗透池被样品分为测试腔与试验气体腔两部分; 测试腔与压力传感器 I相连, 并通过管 路 I与真空泵相连, 管路 I上设有阀门 I; 试验气体腔与压力传感器 II相连, 并通过管路 II 和管路 III与真空泵和测试气体气源分别相连, 管路 II上设有阀门 II, 管路 III上设有阔 门 III。 真空泵通过管路 I和管路 II与测试腔及试验气体腔分别相连, 通过控制阔门 I和阀 门 Π的状态实现对渗透池每侧的单独抽真空以及对渗透池整体的抽真空。连接管路包括测试 腔与真空泵相连的管路 I、 试验气体腔与真空泵相连的管路 II、 试验气体腔与测试气体气源 相连的管路 III、测试腔与压力传感器 I相连的管路 IV、 以及试验气体腔与压力传感器 II相 连的管路 V。 压力传感器包括与测试腔相连的压力传感器 I和与试验气体腔相连的压力传感 器 II。 阀门包括管路 I上所设的阀门 I、 管路 II上所设的阀门 II、 以及管路 III上所设的 阀门 III。 气源为测试气体气源。
试验前先将样品安装在渗透池内, 开启真空泵, 开启阀门 I则对测试腔抽真空, 开启阀 门 II则对试验气体腔抽真空, 同时开启阀门 I和阀门 II则对渗透池整体抽真空, 同时关闭 阀门 I和阀门 II则停止对渗透池抽真空。 抽真空结束后开启阀门 III, 由测试气体气源向试 验气体腔提供一定压力的测试气体, 腔内压力值可通过压力传感器 II获得, 使样品两侧形成 一定的压力差, 在压力差的作用下, 试验气体通过样品渗透进入测试腔内, 压力传感器 I监 测测试腔内的压力变化, 通过单位时间内压力的上升量来计算得到样品的渗透性。
本发明还有另一种结构, 即本发明中可增加渗透池数量以增加测试工位并实现对于多腔 测试的独立控制。 本发明包括渗透池、 连接管路、 真空泵、 压力传感器、 阀门、 以及气源六 部分。 每个渗透池都被样品分为测试腔与试验气体腔两部分; 每个测试腔均与相应的压力传 感器 I相连, 并通过管路 I分别与真空泵相连, 与每个测试腔相连的管路 I上均设有阀门 I; 每个试验气体腔均与相应的压力传感器 II相连, 并通过管路 II和管路 III分别与真空泵和 测试气体气源分别相连, 管路 II包括公共管路 VI 以及与每个试验气体腔相-连的管路 VII, 公共管路 VI上设有阀门 II, 与每个试验气体腔相连的管路 VII上均设有阀门 IV; 管路 III 包括公共管路 VIII以及与每个试验气体腔相连的管路 VII, 公共管路 VIII上设有阀门 III, 与每个试验气体腔相连的管路 VII上均设有阀门 IV。 真空泵通过管路 I和管路 II与测试腔 及试验气体腔分别相连, 通过控制阀门 I、 阔门 II和阔门 IV的状态能实现对渗透池每侧的 单独抽真空以及对渗透池整体的抽真空。 连接管路包括测试腔与真空泵相连的管路 I、 试验 气体腔与真空泵相连的管路 II (包括公共管路 VI以及与每个试验气体腔相连的管路 νπ )、 试验气体腔与测试气体气源相连的管路 III (包括公共管路 VIII以及与每个试验气体腔相连 的管路 VII )、 测试腔与压力传感器 I相连的管路 IV、 以及试验气体腔与压力传感器 II相连 的管路 V。 压力传感器包括与每个测试腔相连的压力传感器 I和与每个试验气体腔相连的压 力传感器 II。阀门包括管路 I上所设的阀门 I、公共管路 VI上所设的阔门 II、公共管路 VIII 上所设的阀门 III、 管路 VII上所设的阀门 IV。 气源为测试气体气源, 通过控制阀门 in和 阔门 IV的状态能实现对在测试状态的试验气体腔充入测试气体。
试验前先确定进行测试的渗透池。 若所有个渗透池都要进行测试, 将样品安装在渗透池 内, 开启真空泵, 开启阀门 I则对测试腔抽真空, 开启阀门 II和阀门 IV则对试验气体腔抽 真空, 同时开启阀门 I、 阀门 II和阀门 IV则对渗透池整体抽真空, 同时关闭阀门 I、 阀门 II和阔门 IV则停止对渗透池抽真空。 抽真空结束后开启阀门 III和阀门 IV, 由测试气体气 源向试验气体腔提供一定压力的测试气体, 腔内压力值可通过压力传感器 II获得, 使样品两 侧形成一定的压力差, 在压力差的作用下, 试验气体通过样品渗透进入测试腔内, 压力传感 器 I监测测试腔内的压力变化, 通过单位时间内压力的上升量来计算得到样品的渗透性。 如 果并非全部渗透池都进行测试, 对于不进行测试的渗透池, 在整个过程中与其测试腔相连的 阀门 I和与其试验气体腔相连的阀门 IV始终处于关闭状态。
本发明的有益效果:
1.能实现对测试腔单独抽真空, 并通过试验气体腔与测试腔间压差实现试样与测试腔间的有 效密封; 解决了现有测试腔无法单独抽真空的问题, 同时有效改善了检测精度;
2.能实现对测试腔的彻底抽真空, 减少了测试时的误差, 避免了外部不良因素的干扰;
3.结构简单、 原理清晰, 能实现对测试过程的全面控制;
4.能实现多腔测试独立控制, 通过管路与相应阀门的设置, 可以灵活多样的根据需要进行控 制;
5.造价低廉, 釆用单独控制方式后, 故障率低。
附图说明:
图 1为本发明的结构示意图;
图 2为本发明的结构示意图;
其中, 1. 测试气体气源, 2. 阀门 III, 3. 管路 III, 4. 管路 V, 5. 压力传感器 II, 6. 管 路 II, 7. 阀门 II, 8.真空泵, 9. 试验气体腔, 10.样品, 11. 测试腔, 12. 压力传感器 I , 13. 管路 IV, 14. 管路 I , 15. 阀门 I , 16. 公共管路 VIII, 17. 公共管路 VI, 20. 1#管路 VII , 21. 1#阀门 IV, 22. im式验气体腔, 23. 1#样品, 24. 1#测试腔, 25. 1#压力传感器 I , 26. 1#管路 IV, 27. 1#管路 I, 28. 1#阀门 1, 29. 2#管路 VII, 30. 2#阀门 IV, 31. 2#试验气 体腔, 32. 2#样品, 33. 2#测试腔, 34. 2#压力传感器 I, 35. 2#管路 IV, 36. 2#管路 I, 37. 2# 阀门 I, 38. 3ft管路 VII, 39. 3#阀门 IV, 40. 3#试验气体腔, 41. 3#样品, 42. 3#测试腔, 43. 3U 压力传感器 I, 44. 3#管路 IV, 45. 3#管路 I, 46. 3#阔门 1。
具体实施方式
下面结合附图和实施例对本发明做进一步说明。
实施例 1 :
一种气体渗透性测试装置, 结合图 1, 包括渗透池、 连接管路、 真空泵 8、 压力传感器、 阀门、 以及气源六部分。 渗透池被样品 10分为测试腔 11与试验气体腔 9两部分; 测试腔 11 与压力传感器 Π2相连, 并通过管路 114与真空泵 8相连, 管路 114上设有阀门 115; 试验 气体腔 9与压力传感器 115相连, 并通过管路 116和管路 ΠΙ3与真空泵 8和测试气体气源 1 分别相连, 管路 116上设有阀门 117, 管路 ΙΠ3上设有阔门 1112。 真空泵 8通过管路 114和 管路 116与测试腔 11及试验气体腔 9分别相连,通过控制阀门 115和阀门 117的状态能实现 对渗透池每侧的单独抽真空以及对渗透池整体的抽真空。 连接管路包括测试腔 11与真空泵 8 相连的管路 114、 试验气体腔 9与真空泵 8相连的管路 116、 试验气体腔 9与测试气体气源 1 相连的管路 1113、 测试腔 11与压力传感器 112相连的管路 IV13、 以及试验气体腔 9与压力 传感器 115相连的管路 V4。 压力传感器包括与测试腔 11相连的压力传感器 112和与试验气 体腔 9相连的压力传感器 115。 阀门包括管路 114上所设的阀门 115、管路 Π6上所设的阀门 117、 以及管路 III3上所设的阀门 1112。 气源为测试气体气源 1。
试验前先将样品 10安装在渗透池内, 开启真空泵 8, 开启阀门 115则对测试腔 11抽真 空, 开启阀门 117则对试验气体腔 9抽真空, 同时开启阀门 115和阀门 Π7则对渗透池整体 抽真空,同时关闭阀门 115和阀门 117则停止对渗透池抽真空。抽真空结束后开启阀门 ΙΠ2, 由测试气体气源 1向试验气体腔 9提供一定压力的测试气体, 腔内压力值可通过压力传感器 Π5获得, 使样品 10两侧形成一定的压力差, 在压力差的作用下, 试验气体通过样品 10渗 透进入测试腔 11内, 压力传感器 112监测测试腔 11内的压力变化, 通过单位时间内压力的 上升量来计算得到样品 10的渗透性。
实施例 2:
一种气体渗透性测试装置, 结合图 2, 是本发明的一个三腔测试结构, 即本发明中可增 加渗透池数量以增加测试工位并实现对于多腔测试的独立控制。 包括渗透池、 连接管路、 真 空泵 8、 压力传感器、 阀门、 以及气源六部分。 每个渗透池都被样品分为测试腔与试验气体 腔两部分,」 1#渗透池被 1#样品 23分为 1#测试腔 24与 1#试验气体腔 22两部分, 2#渗透池被 2#样品 32分为 2#测试腔 33与 2#试验气体腔 31两部分, 3#渗透池被 3#样品 41分为 3#测试 腔 42与 3#试验气体腔 40两部分。 每个测试腔均与相应的压力传感器 I相连, 并通过管路 I 分别与真空泵 8相连, 与每个测试腔相连的管路 I上均设有阀门 I, 1#测试腔 24与 1#压力传 感器 125相连, 并通过 1#管路 127与真空泵 8相连, 1#管路 127上设有 1#阀门 128; 2#测试 腔 33与 2#压力传感器 134相连, 并通过 21管路 136与真空泵 8相连, 2#管路 136上设有 2# 阀门 137 ; 3#测试腔 42与 3#压力传感器 143相连, 并通过 3#管路 145与真空泵 8相连, 3# 管路 145上设有 3#阀门 146。 每个试验气体腔均与相应的压力传感器 115相连, 并通过管路 II和管路 III分别与真空泵 8和测试气体气源 1分别相连, 管路 II包括公共管路 VI 17以及 与每个试验气体腔相连的管路 VII, 公共管路 VI 17上设有阀门 117, 与每个试验气体腔相连 的管路 VII上均设有阀门 IV; 管路 III包括公共管路 VIII 16以及与每个试验气体腔相连的 管路 VII, 公共管路 VIII 16上设有阀门 1112, 与每个试验气体腔相连的管路 VII上均设有阀 门 IV。 1#试验气体腔 22与压力传感器 115相连, 通过公共管路 VI 17和 1#管路 VI I20与真空 泵 8相连, 通过公共管路 VIII16和 1#管路 VII20与测试气体气源 1相连, 1#管路 VII20上 设有 ltt阀门 Π21 ; 2tt试验气体腔 31与压力传感器 115相连, 通过公共管路 VI17和 2#管路 VII29与真空泵 8相连, 通过公共管路 VIII16和 2#管路 VII29与测试气体气源 1相连, 2# 管路 VII29上设有 2#阔门 IV30; 3fr试验气体腔 40与压力传感器 115相连,通过公共管路 VI17 和 3#管路 VII38与真空泵 8相连, 通过公共管路 VIII16和 3#管路 VII38与测试气体气源 1 相连, 3#管路 VII38上设有 3#阀门 IV39o 真空泵 8通过控制 1#阔门 128、 2#阀门 137、 3#阀 门 146、 阀门 117和議门 IV21、 2咖 Ί IV30、 3#阀门 IV39的状态能实现对渗透池每恻的 单独抽真空以及对渗透池整体的抽真空。连接管路包括测试腔与真空泵 8相连的 1#管路 127、 2#管路 136、 3#管路 145、 试验气体腔与真空泵 8相连的管路 II (包括公共管路 VI17、 1#管 路 VII20、 2#管路 VII29、 3#管路 VII38)、 试验气体腔与测试气体气源 1相连的管路 III (包 括公共管路 VIII 16、 1#管路 VII20、 2#管路 VII29、 3#管路 VII38)、 测试腔与压力传感器 I 相连的 1#管路 IV26、 2#管路 IV35、 3#管路 IV44、 以及试验气体腔与压力传感器 115相连的 管路 V4。 压力传感器包括与每个测试腔相连的 1#压力传感器 125、 2#压力传感器 134、 3#压 力传感器 143和与每个试验气体腔相连的压力传感器 115。 阀门包括管路 I上所设的 1#阀门 128、 2#阀门 137、 3#阀门 146、 公共管路 VI17上所设的阀门 117、 公共管路 VIII16上所设 的阀门 1112、 管路 VII上所设的 1#阀门 IV21、 2ίί阀门 IV30、 3#阀门 IV39。 气源为测试气体 气源 1 , 通过控制阀门 ΙΠ2和謂门 IV21、 2#阀门 IV30、 3#阀门 IV39的状态能实现对在测 试状态的试验气体腔充入测试气体。
试验前先确定进行测试的渗透池。 若三个渗透池都要进行测试, 将 1#样品 23、 2#样品 32、 3#样品 41安装在相应的渗透池内, 开启真空泵 8, 开启 1#阀门 128、 2#阀门 137、 3#阀 门 146则对 1#测试腔 24、 2#测试腔 33、 3#测试腔 42抽真空, 开启阀门 117、 1#阀门 IV2 2tt阀门 IV30和 3#阀门 IV39则对 1IH式验气体腔 22、 2#试验气体腔 31、 3ίΗ式验气体腔 40抽真 空, 同时开启幽门 128、 2#阀门 137、 3#阀门 146、 阀门 117、 1#阀门 IV2K 2咖、, IV30 和 3鋼门 IV39则对三个渗透池整体抽真空, 同时关闭賴门 128、 2鋼门 137、 3#阀门 146、 阀门 117、 1#阔门 ^21、 2#阀门 IV30和 3#阀门 IV39则停止对三个渗透池抽真空。 抽真空结 束后开启阀门 1112、 賴门 IV2K 2咖、, IV30和 3#阀门 IV39' 由测试气体气源 1向 1#试 验气体腔 22、 2#试验气体腔 31、 3#试验气体腔 40提供一定压力的测试气体,腔内压力值(按 照测试方法应该是一致统一的压力值) 可通过压力传感器 115获得, 使 1#样品 23、 2#样品 32、 3#样品 41两侧形成一定的压力差, 在压力差的作用下, 试验气体通过 1#样品 23、 2#样 品 32、 3#样品 41渗透进入 1#测试腔 24、 2#测试腔 33、 3#测试腔 42内, 1#压力传感器 125、 2tt压力传感器 134、 3#压力传感器 143分别监测 1#测试腔 24、 2#测试腔 33、 3#测试腔 42内 的压力变化, 通过单位时间内压力的上升量来计算得到 1#样品 23、 2#样品 32、 3#样品 41的 渗透性。 如果并非全部渗透池都进行测试, 对于不进行测试的渗透池, 在整个过程中与其测 试腔相连的阀门 I和与其试验气体腔相连的阀门 IV始终处于关闭状态。
上述虽然结合附图对发明的具体实施方式进行了描述, 但并非对本发明保护范围的限 制, 所属领域技术人员应该明白, 在本发明的技术方案的基础上, 本领域技术人员不需要付 出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims

权利要求书
1.一种气体渗透性测试装置, 包括真空泵, 渗透池, 渗透池被样品分为测试腔与试验气体腔, 其特征是, 所述真空泵通过管路与测试腔、 试验气体腔连接, 真空泵与测试腔、 试验气体腔 连接的管路上分别设有阀门 I, 阀门 II。
2.如权利要求 1所述的气体渗透性测试装置, 其特征是, 所述测试腔与压力传感器 I连接; 试验气体腔与压力传感器 II连接。 .
3.如权利要求 1所述的气体渗透性测试装置, 其特征是, 所述试验气体腔通过管路 III与测 试气体气源相连, 管路 III上设有阀门 III。
4.如权利要求 1所述的气体渗透性测试装置, 其特征是, 所述渗透池设有多个, 真空泵通过 管路与多个测试腔相连, 通过管路与多个试验气体腔相连; 与每个测试腔相连的管路上均设 有阀门; 与多个试验气体腔相连的管路包括公共管路 VI 以及与每个试验气体腔相连的管路 VII, 公共管路 VI上设有阀门 II , 与每个试验气体腔相连的管路 VII上均设有阀门 IV。
PCT/CN2012/000444 2012-03-27 2012-04-05 气体渗透性测试装置 WO2013143028A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201220120157.4 2012-03-27
CN2012100842227A CN102628785A (zh) 2012-03-27 2012-03-27 气体渗透性测试装置
CN 201220120157 CN202486012U (zh) 2012-03-27 2012-03-27 气体渗透性测试装置
CN201210084222.7 2012-03-27

Publications (1)

Publication Number Publication Date
WO2013143028A1 true WO2013143028A1 (zh) 2013-10-03

Family

ID=49258034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000444 WO2013143028A1 (zh) 2012-03-27 2012-04-05 气体渗透性测试装置

Country Status (1)

Country Link
WO (1) WO2013143028A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018166541A1 (es) * 2017-03-01 2018-09-20 Universidad De Costa Rica Aparato y método para evaluar microfiltración en materiales
CN108827859A (zh) * 2018-09-11 2018-11-16 东华理工大学 一种氡气扩散式岩石有效孔隙度测量装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5133207A (en) * 1991-02-14 1992-07-28 Houston Industries Incorporated Apparatus and method for simultaneously testing the permeability of multiple core specimens
CN2148326Y (zh) * 1993-02-03 1993-12-01 万昭志 新型气体透过率测定装置
EP1519186A1 (de) * 2003-09-27 2005-03-30 Bayerische Motoren Werke Aktiengesellschaft Prüfverfahren und -vorrichtung für luftdurchlässige Materialien
US20070227233A1 (en) * 2006-03-30 2007-10-04 Holger Norenberg Method and apparatus for measuring the rate of permeation
CN101275893A (zh) * 2008-05-09 2008-10-01 昆明理工大学 一种竹木材透气性测量的方法及装置
CN102087195A (zh) * 2010-12-03 2011-06-08 宁波大学 全自动微滤膜孔径分布测定仪及其自动测定方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5133207A (en) * 1991-02-14 1992-07-28 Houston Industries Incorporated Apparatus and method for simultaneously testing the permeability of multiple core specimens
CN2148326Y (zh) * 1993-02-03 1993-12-01 万昭志 新型气体透过率测定装置
EP1519186A1 (de) * 2003-09-27 2005-03-30 Bayerische Motoren Werke Aktiengesellschaft Prüfverfahren und -vorrichtung für luftdurchlässige Materialien
US20070227233A1 (en) * 2006-03-30 2007-10-04 Holger Norenberg Method and apparatus for measuring the rate of permeation
CN101275893A (zh) * 2008-05-09 2008-10-01 昆明理工大学 一种竹木材透气性测量的方法及装置
CN102087195A (zh) * 2010-12-03 2011-06-08 宁波大学 全自动微滤膜孔径分布测定仪及其自动测定方法和应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018166541A1 (es) * 2017-03-01 2018-09-20 Universidad De Costa Rica Aparato y método para evaluar microfiltración en materiales
CN108827859A (zh) * 2018-09-11 2018-11-16 东华理工大学 一种氡气扩散式岩石有效孔隙度测量装置及方法
CN108827859B (zh) * 2018-09-11 2024-04-02 东华理工大学 一种氡气扩散式岩石有效孔隙度测量装置及方法

Similar Documents

Publication Publication Date Title
CN201583477U (zh) 一种混凝土气体渗透率测试系统
CN103822761B (zh) 密封性检测装置及方法
CN102628785A (zh) 气体渗透性测试装置
CN108196505B (zh) 一种常温气态工质定量充装系统及其充装方法
CN106662498B (zh) 薄膜腔中的气体密度增加的测量
CN103674808B (zh) 全尺寸非金属管材气体渗透性能的测试装置及其测试方法
CN101587006A (zh) 用于锂离子电池的气密性检测系统及其检测方法
CN104236826A (zh) 气袋产品的密封性检测装置及方法
CN113670807A (zh) 一种用于胶料绝氧老化试验的试验装置和试验方法
CN202486012U (zh) 气体渗透性测试装置
WO2015028338A3 (de) Dichtheitsprüfung während der evakuierung einer folienkammer
CN112834136A (zh) 一种利用差压气路对精密输液器成品漏堵检测方法
JP2007047119A (ja) スパウト付き袋のリーク検査方法及びリーク検査装置
WO2013143028A1 (zh) 气体渗透性测试装置
CN110849552A (zh) 一种膜电极组件气密性检测方法及气密性检测装置
CN111266015B (zh) 一种气体透过率的恒体积变压法测试系统
CN102928183A (zh) 液化石油气瓶阀高低压密封一步检测法及检测装置
CN206496877U (zh) 自动真空测试装置
RU2543692C1 (ru) Устройство контроля герметичности крупногабаритных объектов
CN204159231U (zh) 内压管式膜膜管检漏装置
CN201269771Y (zh) 零漏失量音速喷嘴法气体流量标准装置
CN110553802A (zh) 一种用于大漏测量的检漏装置及检漏方法
CN114427939B (zh) 一种高压锅检测设备以及检测方法
CN105319018A (zh) 一种漏气检测装置
CN113567071A (zh) 一种快速真空检漏系统与方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12872515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12872515

Country of ref document: EP

Kind code of ref document: A1