WO2013142933A1 - Agente adsorvente, composição para a bioflotação e processo de bioflotação do sistema apatita-quartzo - Google Patents

Agente adsorvente, composição para a bioflotação e processo de bioflotação do sistema apatita-quartzo Download PDF

Info

Publication number
WO2013142933A1
WO2013142933A1 PCT/BR2013/000093 BR2013000093W WO2013142933A1 WO 2013142933 A1 WO2013142933 A1 WO 2013142933A1 BR 2013000093 W BR2013000093 W BR 2013000093W WO 2013142933 A1 WO2013142933 A1 WO 2013142933A1
Authority
WO
WIPO (PCT)
Prior art keywords
apatite
bioflotation
quartz
rhodococcus
bacterium
Prior art date
Application number
PCT/BR2013/000093
Other languages
English (en)
French (fr)
Inventor
Maurício Leonardo TOREM
Gutiérrez Antonio MERMA
Original Assignee
Faculdades Católicas, Associação Sem Fins Lucrativos, Mantenedora Da Pontifícia Universidade Católica Do Rj-Puc Rio
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48651748&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013142933(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Faculdades Católicas, Associação Sem Fins Lucrativos, Mantenedora Da Pontifícia Universidade Católica Do Rj-Puc Rio filed Critical Faculdades Católicas, Associação Sem Fins Lucrativos, Mantenedora Da Pontifícia Universidade Católica Do Rj-Puc Rio
Priority to US14/388,889 priority Critical patent/US20150086451A1/en
Priority to AU2013239360A priority patent/AU2013239360A1/en
Priority to EP13770215.5A priority patent/EP2832849A4/en
Publication of WO2013142933A1 publication Critical patent/WO2013142933A1/pt

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/01Treating phosphate ores or other raw phosphate materials to obtain phosphorus or phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/20Obtaining alkaline earth metals or magnesium

Definitions

  • the present invention deals with microorganisms for mineral adsorption and bioflotting and separation process, particularly quartz flotation.
  • Phosphorus together with nitrogen and potassium make up the group of primary macronutrients, essential elements for plant development. It is important to consider that phosphorus has no substitutes in agriculture, is not found in its pure state in nature and, in combination with various elements, forms a wide variety of compounds. Phosphate rock deposits are the most important sources of this element, having as igneous, sedimentary, metamorphic origin or resulting from the accumulation of organic matter from bird droppings.
  • Phosphoric acid is a very important chemical compound used in the production of fertilizers such as Single-SSP Superphosphate (Ca (H 2 P0 4 ) 2.H 2 0 + CaS0 4 ), Triple-TSP Superphosphate (Ca (H 2 P0) 4 ) 2 ), MAP Mono-Ammonium Phosphate ((NH 4 ) H 2 P0 4 ), DAP-Diamonic Phosphate ((NH 4 ) 2 HP0 4 ) in addition to NP and NPK fertilizers.
  • phosphate producers need to reduce their operating costs. To achieve this, the research and development of new operating conditions has been encouraged. In addition to this search for cost reduction, the phosphate producer has been facing a major problem, the depletion of deposits with adequate contents of the elements mentioned above. In view of this, the processing of more complex phosphate ores has been necessary. development of new equipment, techniques and reagents for mineral concentration.
  • Flotation is the most commonly used process for treating phosphate ores, thanks to the easy separation that can exist between phosphates and gangue minerals - the gum minerals associated with apatite are mainly fluorides, carbonates, clays, quartz silicates and metal oxides -
  • the result would certainly be different. These changes can be caused when the raw material is modified, which happens when complex ores are used, where the presence of gangue minerals is higher, and when different types of apatite are processed.
  • changes in mineralogical composition cause the mineral to react differently to flotation processes.
  • Many studies have been conducted to obtain low cost reagents without compromising selectivity that can achieve satisfactory or desired recovery values.
  • microorganisms in mineral processing, as well as in the remediation of waste in the mineral industry has been of great interest and has become a field of biotechnology increasingly studied and explored.
  • a new proposal for the use of microorganisms is its application. as flotation reagents.
  • US 1,914,694 describes the concentration of phosphate materials by the flotation method of the phosphate minerals associated with quartz of the gangue minerals. It does not mention the use of biological adsorbing agents in the flotation process.
  • US 3,534,854 describes the method of separating particles of calcite and apatite, or the like, by flotation into a high pH aqueous solution.
  • the document cites quartz mineral as a calcite-contaminating gangue mineral, but it informs that it will be separated from calcite along with apatite, that is, it does not suggest a system separation method consisting of quartz and apatite minerals. It does not mention the use of biological adsorbing agents in the flotation process.
  • the present invention solves the problem of separating the constituent minerals of the apatite-quartz system by a new biological adsorbing agent for the bioflotting process.
  • the process occurs through the use of bacteria of the genus Rhodococcus as an adsorbent agent on the surface of the apatite mineral, making it hydrophobic and allowing its separation by flotation.
  • the Rhodococcus genus bacterium comprises the Rhodococcus opacus species.
  • the Rhodococcus opacus bacterium comprises an adaptation upon being previously exposed to minerals in order to increase its affinity to it during the bioflotting process.
  • the apatite mineral comprises the fluorapatite subgroup.
  • the present invention further relates to the use of a composition for the apatite quartz system bioflotting process comprising:
  • The. at least one adsorbing agent comprising at least one bacterium selected from the group comprising species of the genus Rhodococcus;
  • the Rhodococcus genus bacterium comprises the Rhodococcus opacus species.
  • the Rhodococcus opacus bacterium is a bacteria adapted to be previously exposed to minerals in order to increase its affinity to it during the bioflotting process.
  • the apatite mineral comprises the fluorapatite subgroup.
  • the acceptable vehicle comprises a support.
  • the support comprises a saline solution.
  • the saline solution comprises a sodium chloride (NaCl) solution.
  • bioflotting process of the apatite-quartz system comprising the steps of:
  • ç. collect the floated mass comprising quartz and adsorbing agent.
  • the Rhodococcus genus bacterium comprises the Rhodococcus opacus species.
  • the Rhodococcus opacus bacterium is a bacteria adapted to be previously exposed to minerals in order to increase its affinity to it during the bioflotting process.
  • the apatite mineral comprises the fluorapatite subgroup.
  • FIG. 1 shows the zeta potential of apatites and denim mineral as a function of pH, thus deducting their PIE isoelectric point.
  • Figure 2 shows the zeta potential as a function of Wavellite pH, derived from an isomorphic apatite substitution.
  • FIG. 3 shows the zeta potential as a function of apatite pH in a different determination method, Dos Santos method.
  • Figure 4 shows the zero charge condition for apatites for the calculation of the isoelectric point by the Mular & Roberts method.
  • FIG. 6 shows the zeta potential as a function of pH for denatured apatites and minerals.
  • FIG. 7 shows the zeta potential as a function of hematite and quartz pH.
  • FIG. 8 shows a micrograph of Rhodococcus opacus bacteria performed by scanning microscopy.
  • Figure 9 shows an infrared spectrogram of Rhodococcus opacus bacteria and their main absorbance peaks.
  • Figure 10A shows the adhesion results on protein adsorption in mineral samples.
  • Figure 10B shows the results of the protein microflotation assay.
  • Figure 11A shows the behavior of pyrite and chalcopyrite flotation as a function of pH using the PIPX collector.
  • Figure 11B shows the effect of cells on flotation of pyrite and chalcopyrite as a function of pH.
  • FIG. 12 shows the result of pH recovery during pyrite and chalcopyrite flotation in the presence of L. ferroxidans cells, using xanthate as a collector.
  • Figure 13A shows flotability results as a function of hematite pH in the presence of Rhodococcus opacus bacteria.
  • Figure 13B shows flotability results as a function of quartz pH in the presence of Rhodococcus opacus bacteria.
  • Figure 14 shows the flotability results of magnesite as a function of the concentration of Rhodococcus opacus bacteria.
  • FIG. 15A shows the results of barite buoyancy as a function of the concentration of Rhodococcus opacus bacteria.
  • Figure 15B shows the results of calcite flotability as a function of the concentration of Rhodococcus opacus bacteria.
  • Figure 16 shows the apatite recovery rate as a function of S. carnosus concentration at pH 9.
  • Figure 17 shows micrographs of P. polymyxa developed in the presence of different minerals by transmission electron microscopy.
  • Figure 18A shows micrographs of Desulfovibrio desulfuricans cells adhered to the hematite surface by scanning electron microscopy.
  • Figure 18B shows micrographs of Desulfovibrio desulfuricans cells adhered to the quartz surface by scanning electron microscopy.
  • Figure 19A shows micrographs of yeast cells adhered to the calcite surface by scanning electron microscopy.
  • Figure 19B shows micrographs of yeast cells adhered to the quartz surface by scanning electron microscopy.
  • FIG. 20A shows the zeta potential as a function of quartz pH in the presence of E. coli yeasts.
  • Figure 20B shows a micrograph showing the interaction of E. coli yeasts with the quartz surface by scanning electron microscopy.
  • Figure 21A shows the zeta potential as a function of pyrite pH before and after interaction with L. ferroxidans cells.
  • FIG. 22 shows the zeta potential as a function of hematite pH before and after interaction with R. opacus cells.
  • FIG. 23 shows the zeta potential as a function of calcite pH and magnesite before and after interaction with R. opacus cells.
  • Figure 24 shows the calibration curve obtained by absorbance as a function of cell concentration of a Rhodococcus opacus suspension.
  • Figure 25 shows a scanning electron microscopy micrograph of Rhodococcus opacus bacteria cells.
  • FIG. 26 shows the zeta potential as a function of pH of unadapted, apatite-adapted and quartz-adapted Rhodococcus opacus bacteria using NaCI as an electrolyte.
  • FIG. 27 shows the zeta potential as a function of the pH of apatite "A”, apatite "B” and quartz mineral samples using NaCI as support electrolyte.
  • FIG. 28 shows the zeta potential as a function of quartz sample pH before and after contact with the bacteria, and pure bacteria, using NaCI as an electrolyte.
  • FIG. 29 shows the zeta potential as a function of apatite "A" pH before and after interaction with bacteria, and pure bacteria, using NaCI as electrolyte.
  • FIG. 30 shows the zeta potential as a function of apatite "B" pH before and after interaction with bacteria, and pure bacteria, using NaCI as electrolyte.
  • FIG. 31 shows the contact angle as a function of pH of apatite "A", apatite "B” and quartz mineral samples using a 0.15 g / l concentration cell suspension with 5 minutes contact time .
  • Figure 32 shows the surface tension as a function of the pH of the Rhodococcus opacus cell suspension at a cell concentration of 0.15 g / l.
  • FIG. 33 shows the surface tension as a function of the cellular concentration of Rhodococcus opacus bacteria at a pH of 5.
  • FIG. 34 shows the flotability as a function of pH of apatite "B" with particle size between 75-106 pm, NaCl as electrolyte and 2 minutes flotation time.
  • Figure 35 shows flotability as a function of apatite "A" pH, with particle size between 75-106 pm, NaCl as electrolyte and 2 minutes of flotation time.
  • Figure 36 shows flotability as a function of quartz pH, with particle size between 75-106 pm, NaCl as electrolyte and 2 minutes of flotation time.
  • Figure 37 shows cell flotability as a function of cell concentration at a pH of 5, particle size between 75-106 pm, NaCl as electrolyte and 2 minutes of flotation time.
  • Figure 38 shows cell flotability as a function of time, at pH 5, particle size between 75-106 pm and using NaCI as electrolyte.
  • Figure 39 shows a scanning electron micrograph of Rhodococcus opacus cells adhered to the surface of apatite "B" after flotation.
  • Figure 40 shows a scanning electron micrograph of Rhodococcus opacus cells adhered to the surface of apatite "A" after flotation.
  • Figure 41 shows a scanning electron microscopy of Rhodococcus opacus cells adhered to the quartz surface after flotation.
  • Figure 42 shows the flotability as a function of apatite "A" with different particle sizes, at pH 5, cell concentration 0.2 g / l.
  • Figure 43 shows a first order model of apatite flotability "A" at pH 5, cell concentration 0.2 g / l.
  • Figure 44 shows a second order model of apatite "A" flotability at pH 5, cell concentration 0.2 g / l.
  • Figure 45 shows the flotability as a function of apatite "A” time using Rhodococcus opacus bacteria, obtained from the use of the first order model.
  • Figure 46 shows flotability as a function of apatite "B" time at different particle sizes, at pH 5, cell concentration 0.15 g / l.
  • Figure 47 shows a first order model for flotability of apatite "B" at pH 5, cell concentration 0.15 g / l.
  • Figure 48 shows a second order model for flotability of apatite "B" at pH 5, cell concentration 0.15 g / l.
  • Figure 49 shows flotability as a function of apatite "B" time using Rhodococcus opacus bacteria, using the first order model.
  • Figure 50 shows flotability as a function of time for quartz at different particle sizes at pH 5, cell concentration 0.15 g / l.
  • Figure 51 shows the first order model for quartz flotability as a function of time at pH 5, cell concentration 0.15 g / l.
  • Figure 52 shows the second order model for quartz flotability as a function of time at pH 5, cell concentration 0.15 g / l.
  • Figure 53 reveals the flotability as a function of time for quartz using the first order model for different particle sizes.
  • Figure 54 shows the surface tension as a function of pH of Rhodococcus opacus cells without and with adaptation to the mineral substrate.
  • Figure 55 shows the flotability as a function of pH of the apatite "A" microflot assay using the bacterium Rhodococcus opacus adapted to the mineral substrate at a cell concentration of 0.20 g / l.
  • Figure 56 shows the flotability as a function of pH of the apatite "A” microflot assay using Rhodococcus opacus bacteria adapted to the mineral substrate at a cell concentration of 0.15 g / l.
  • the present invention is based on a novel biological adsorbing agent for the bioflotation of the constituent minerals of the apatite-quartz system.
  • the adsorbing agent is understood as the microorganism capable of adhering to the surface of the mineral, thereby altering its electrophoretic behavior. opacus
  • Rhodococcus opacus ( Figure 8) is a bacterium belonging to the genus Rhodococcus, unicellular, heterotrophic, Gram-positive and strictly aerobic.
  • the main characteristic of R. opacus is the presence of filaments which are responsible for the formation of foams when in aqueous medium.
  • R. opacus cells have in their cell wall several types of components such as polysaccharides, mycolic acids and lipids, which gives an amphipathic character to the surface of the bacteria, presenting a contact angle of 72 ⁇ 4 degrees.
  • composition of the cell wall material of R. opacus bacteria can be seen in Table 1, which shows a high proportion of lipids and carbohydrates associated with the cell wall.
  • Functional groups present in the cell wall of microorganisms can be determined using infrared spectroscopy.
  • the infrared spectrum of the bacterium shows the peaks of the compounds attributed to the functional groups of the compounds present in the cell wall.
  • Table 2 shows the absorbance ranges and corresponding functional groups for each peak ( Figure 9).
  • Table 2 - General assignment of bands in the bacterium
  • Ester C Stretch: Lipids, triglycerides.
  • DPA Dipicolinic acid
  • DPA dipicolinic acid
  • R. opacus bacteria was adapted to the presence of apatite and quartz.
  • the present invention understands as minerals for bioprocessing, the system consisting of apatite-quartz.
  • the generic chemical formula for apatite is: Ca 5 (P0 4 ) 3 (OH, CI, F) being termed as hydroxyapatite, chloroapatite or fluorapatite depending on the ion present in the structure according to Table 3.
  • apatite mineral As previously shown, different types of apatite mineral can be found and, consequently, the performance against the beneficiation processes will be different for each one. Therefore, it is very important to know the physicochemical properties of these minerals such as crystal structure, mineral composition, solubility, zeta potential and active adsorption mechanisms for the study of flotation performance.
  • the composition according to the present invention preferably comprises a cell suspension, wherein it has the inactivated Rhodococcus opacus strain after the cell growth phase, together with the support electrolyte.
  • This electrolyte will act on resuspending the bacteria after the centrifugation step, thus allowing a homogeneous cell concentrate solution.
  • the cellular electrolyte used comprises a saline solution, so that it does not change the desired pH value, thus for the present invention, and the use of sodium chloride as support electrolyte may be adopted.
  • the preferred bioflotting method used by the assay can be conducted in a modified Hallimond Tube.
  • apatite samples go through the comminution step followed by sieving, so the product obtained from these steps is classified into different particle size fractions. Then the samples are characterized in different experimental steps, electrophoretic measurements, contact angle, X-ray diffraction, X-ray fluorescence, scanning and transmission electron microscopy.
  • the apatite samples are washed with a 0.01 mM hydrochloric acid solution, then rinsed rapidly with Milli-Q water several times until the effluent pH value reaches the initial pH value. water and then dried and stored in a dissector until used for experimental testing. Quartz samples were washed with 0.01 M KOH. Soon after, the same procedure was performed for apatite minerals.
  • Rhodococcus Opacus In parallel, there is the preparation of bacterial concentrate and culture conditions of these bacterial species called Rhodococcus Opacus.
  • the bacteria were subcultured in the liquid culture medium - composition shown in Table 5 - in 250 ml Erlenmeyeres and incubated in a rotating shaker (CIENTEC CT-712) at 28 ° C for 24 hours.
  • the cell suspension was centrifuged at 3300 g for 8 minutes, the centrifuge concentrate, consisting of the bacterial cells, was washed three times with deionized water, and resuspended in a 1mM NaCl solution, finally the suspension.
  • the obtained concentrate was sterilized in the autociave to inactivate the bacteria present.
  • This final concentrate is the biomass used as bioreactant in the work development.
  • the biomass dry weight was calibrated against the optical density of the suspensions in this same wavelength.
  • the weight Biomass dryness was determined after filtration in a vacuum Millipore system using 0.45 m cellulose membrane (Millipore, USA) and finally oven dried at 160 ° C.
  • the R. opacus strain was adapted to the presence of mineral samples such as quartz and apatite "A". Bacterial adaptation was performed during bacterial cell development under the same culture conditions and using standard liquid culture medium in the presence of 5% (w / v) mineral in 3 consecutive subcultures.
  • the zeta potential measurements for bacteria as well as mineral samples were determined on a Zeta meter system +4.0 micro electrophoresis equipment.
  • potential zeta assays were performed to evaluate the influence of the interaction of bacterial cells on the surface of mineral species.
  • the mineral solutions were preconditioned with a cell suspension of known concentration for 10 minutes. After this period, the supernatant was used in the measurements.
  • Different preconditioning pH values were evaluated and a 1mM NaCl solution was used as electrolyte. To ensure the accuracy of the measurement, the average of 20 values and the standard deviation value were taken.
  • the contact angle values of the mineral samples will be measured before and after the interaction with the bacteria.
  • a Ramé Hart-inc goniometer model 100-00-115 will be employed (Fig.33).
  • the mineral surface was conditioned with a bacterial cell suspension with a known concentration (0.1 g.L-1).
  • Hallimond modified. This required a rotameter to measure air flow, a bubble gauge to calibrate the rotameter, a magnetic stirrer to keep mineral particles in suspension, a vacuum-compressor pump to supply the required air, and the Hallimond tube. Before performing the tests, the rotameter must be calibrated to ensure an air flow of 15 mL.min-.

Abstract

A presente invenção revela o uso de bactérias Rhodococcus opacus para a bioflotação de minerais do sistema apatita-quartzo, através da adsorção em sua superfície e posterior alteração do potencial zeta, tornando-os hidrofóbicos, além de reduzir a tensão superficial de água.

Description

"AGENTE ADSORVENTE, COMPOSIÇÃO PARA A BIOFLOTAÇÃO E PROCESSO DE BIOFLOTAÇÃO DO SISTEMA APATITA-QUARTZO"
Campo da Invenção
A presente invenção trata de microorganismos para a adsorção em minerais e processo de bioflotação e separação destes, particularmente a flotação do quartzo.
Antecedentes da Invenção
O fósforo juntamente com o nitrogénio e o potássio compõem o grupo dos macronutrientes primários, elementos imprescindíveis para o desenvolvimento das plantas. É importante considerar que o fósforo não tem substitutos na agricultura, não é encontrado em estado puro na natureza e, em combinação com diversos elementos, forma uma grande variedade de compostos. As jazidas de rochas fosfáticas são as mais importantes fontes desse elemento, tendo como origem ígnea, sedimentar, metamórfica ou resultante de acumulação de matéria orgânica proveniente de dejetos de aves.
O principal mineral de rochas fosfáticas é a apatita, a maior importância desta está relacionada à produção de fertilizantes e de ácido fosfórico que podem ser produzidos por via úmida com a utilização de ácido sulfúrico. O ácido fosfórico é um composto químico de grande importância utilizado na produção de fertilizantes tais como o Superfosfato Simples-SSP (Ca(H2P04)2.H20 + CaS04), Superfosfato Triplo-TSP (Ca(H2P04)2), Fosfato Mono-amônico-MAP ((NH4)H2P04), Fosfato Diamônico-DAP ((NH4)2HP04) além dos fertilizantes NP e NPK.
Para poder atender as especificações cada vez mais restritas do mercado o produtor de fosfato tem a necessidade de reduzir os custos operacionais, para lograr isso vem se incentivando a pesquisa e desenvolvimento de novas condições operacionais de beneficiamento. Além dessa busca de redução de custos, o produtor de fosfato vem deparando-se com um grande problema, o esgotamento das jazidas com teores adequados dos elementos acima citados. Diante disto, vem tornando-se necessário o processamento de minérios de fosfato mais complexos, conduzido ao desenvolvimento de novos equipamentos, técnicas e reagentes para a concentração mineral.
A flotação é o processo mais usado para tratar os minérios de fosfato, graças à fácil separação que pode existir entre fosfatos e minerais de ganga - os minerais de ganga associados à apatita principalmente são, fluoretos, carbonatos, argilas, quartzo silicatos e óxidos metálicos - no entanto, com mudanças na composição mineralógica o resultado certamente seria outro. Essas mudanças podem ser causadas quando a matéria prima é modificada, o que acontece quando são usados minérios complexos, onde a presença dos minerais de ganga é maior, e quando processados diferentes tipos de apatita. Assim, mudanças na composição mineralógica causam que o mineral reaja de forma diferente frente aos processos de flotação. Muitos estudos têm sido realizados no sentido de obter reagentes de baixo custo, sem o comprometimento da seletividade, e que consigam atingir os valores satisfatórios ou desejados de recuperação.
O emprego de microrganismos no processamento mineral, assim como, na remediação de resíduos na indústria mineral tem despertado grande interesse e vem se tornando um campo da biotecnologia cada vez mais estudado e explorado, sendo uma nova proposta para o uso de microrganismos é a sua aplicação como reagentes de flotação. A presença de determinados grupos funcionais ionizáveis na superfície microbiana, confere aos microrganismos determinadas características de adsorção que os tornam capazes de substituir certos reagentes químicos convencionais de flotação e floculação em operações de processamento mineral.
O documento US 1 ,914,694 descreve a concentração de materiais fosfáticos pelo método de flotação dos minerais fosfáticos associados com quartzo dos minerais de ganga. O mesmo não cita o uso de agentes adsorventes biológicos no processo de flotação.
O documento US 2,384,825 descreve o método de separação de areia, lodo e similares da rocha fosfática de baixo grau proveniente de resíduos de lavagem conhecido como debris. O mesmo não cita o uso de agentes adsorventes biológicos no processo de flotação de acordo com a presente invenção.
O documento US 3,534,854 descreve o método de separação de partículas de calcita e apatita, ou similares, por flotação em uma solução aquosa com alto pH. O documento cita o mineral de quartzo como mineral de ganga contaminante da calcita, porém, o mesmo informa que este será separado da calcita junto com a apatita, ou seja, não sugere um método de separação do sistema constituído pelos minerais de quartzo e apatita. O mesmo não cita o uso de agente adsorventes biológicos no processo de flotação.
Smith et al. [Recents Developments in the Bioprocessing Minerais. Mineral Processing and Extractive Metallurgy Review, 1993, v. 12, 37] revela o potencial uso de microrganismos para o bioprocessamento de minerais, aplicações como bio-oxidação de minerais, remoção de metais pesados, floculação e flotação de minerais.
Mesquita et al. [Biobeneficiamento mineral: potencialidades dos microrganismos como reagentes de flotação. Série Tecnologia Mineral CETEM,
2002, 81] revela o uso em potencial de microrganismos, assim como as bactérias do género Rhodococcus, como agentes de flotação de diversos sistemas minerais, pela adsorção na superfície de minerais e alteração do potencial zeta destes.
Mesquita et al. [Interaction of a hydrophobic bacterium strain in a hematite-quartz flotation system. International Journal of Mineral Processing,
2003, 71] revela o potencial da utilização da espécie de bactéria Rhodococcus opacus, como agente adsorvente de minerais, para a flotação do sistema hematita-quartzo.
Entretanto, fica evidente pelos documentos acima que ainda há a necessidade de estudar o processo de bioflotação para o sistema apatita- quartzo, lembrando que a apatita é o minério fosfático mais abundante e o quartzo o principal mineral de ganga associado a ela. Um sistema com alta eficiência para a obtenção desses minérios se ainda é necessária. Descrição Resumida da Invenção
A presente invenção vem resolver o problema da separação dos minerais constituintes do sistema apatita-quartzo, através de um novo agente adsorvente biológico para o processo de bioflotação. O processo ocorre pelo uso da bactéria do género Rhodococcus como agente adsorvente da superfície do mineral apatita, tornando-o hidrofóbico e permitindo a sua separação por flotação.
Em uma realização preferencial, a bactéria do género Rhodococcus compreende a espécie Rhodococcus opacus.
Em uma realização preferencial, a bactéria Rhodococcus opacus compreende uma adaptação ao ser previamente exposta aos minerais, a fim de aumentar a sua afinidade a este, durante o processo de bioflotação.
Em uma realização preferencial, o mineral apatita compreende o subgrupo fluorapatita.
A presente invenção adicionalmente trata do uso de uma composição para o processo de bioflotação do sistema apatita quartzo compreendendo:
a. pelo menos um agente adsorvente compreendendo pelo menos uma bactéria escolhida do grupo que compreende as espécies do género Rhodococcus; e
b. um veículo aceitável.
Em uma realização preferencial, a bactéria do género Rhodococcus compreende a espécie Rhodococcus opacus.
Em uma realização preferencial, a bactéria Rhodococcus opacus é uma bactéria adaptada ao ser previamente exposta ao minerais, a fim de aumentar a sua afinidade a este, durante o processo de bioflotação.
Em uma realização preferencial, o mineral apatita compreende o subgrupo fluorapatita.
Em uma realização preferencial, o veículo aceitável compreende um suporte.
Em uma realização preferencial, o suporte compreende uma solução salina.
Em uma realização preferencial, a solução salina compreende uma solução de cloreto de sódio (NaCI).
É, adicionalmente, um objeto da presente invenção, o processo de bioflotação do sistema apatita-quartzo, compreendendo as etapas de:
a. adicionar o sistema apatita-quartzo em uma composição adsorvente compreendendo pelo menos uma bactéria escolhida do grupo que compreende as espécies do género Rhodococcus; b. deixar o agente adsorvente em contato com a solução compreendendo o sistema apatita-quartzo em um tubo de
Hallimond, para a flotação durante dois minutos; e
c. recolher a massa flotada compreendendo o quartzo e o agente adsorvente.
Em uma realização preferencial, a bactéria do género Rhodococcus compreende a espécie Rhodococcus opacus.
Em uma realização preferencial, a bactéria Rhodococcus opacus é uma bactéria adaptada ao ser previamente exposta ao minerais, a fim de aumentar a sua afinidade a este, durante o processo de bioflotação.
Em uma realização preferencial, o mineral apatita compreende o subgrupo fluorapatita.
Esses e outros objetos da invenção serão imediatamente valorizados pelos versados na arte e pelas empresas com interesses no segmento, e serão descritos em detalhes suficientes para sua reprodução na descrição a seguir.
Breve Descrição das Figuras
- A figura 1 revela o potencial zeta de apatitas e mineral de ganga em função do pH, deduzindo assim, o seu ponto isoelétrico PIE.
- A figura 2 revela o potencial zeta em função do pH da Wavellita, derivada de uma substituição isomórfica da apatita.
- A figura 3 revela o potencial zeta em função do pH das apatitas, em um método de determinação diferente, método de Dos Santos. - A figura 4 revela a condição de carga zero para apatitas, para o cálculo do ponto isoelétrico pelo método de Mular & Roberts.
- A figura 5 revela o potencial zeta em função do pH das apatitas na presença dos coletores aniônicos.
- A figura 6 revela o potencial zeta em função do pH para apatitas e minerais de ganga.
- A figura 7 revela o potencial zeta em função do pH de hematitas e quartzo.
- A figura 8 revela uma micrografia da bactéria Rhodococcus opacus realizada por microscopia de varredura.
- A figura 9 revela um espectrograma de infravermelho da bactéria Rhodococcus opacus e seus principais picos de absorbância.
- A figura 10A revela os resultados de adesão na adsorção de proteínas nas amostras minerais.
- A figura 10B revela os resultados do ensaio de microflotação dos minerais com as proteínas.
- A figura 1 1A revela o comportamento da flotação da pirita e calcopirita em função do pH usando o coletor PIPX.
- A figura 1 1 B revela o efeito das células na flotação de pirita e calcopirita em função do pH.
- A figura 12 revela o resultado de recuperação em função do pH durante a flotação da pirita e da calcopirita em presença de células de L. ferroxidans, usando xantato como coletor.
- A figura 13A revela os resultados de flotabilidade em função do pH da hematita na presença da bactéria Rhodococcus opacus.
- A figura 13B revela os resultados de flotabilidade em função do pH do quartzo na presença da bactéria Rhodococcus opacus.
- A figura 14 revela os resultados de flotabilidade da magnesita em função da concentração da bactéria Rhodococcus opacus.
- A figura 15A releva os resultados de flotabilidade de barita em função da concentração da bactéria Rhodococcus opacus.
- A figura 15B revela os resultados de flotabilidade da calcita em função da concentração da bactéria Rhodococcus opacus.
- A figura 16 revela a taxa de recuperação de apatita em função da concentração de S. carnosus em pH igual a 9.
- A figura 17 revela micrografias de P. polymyxa, desenvolvidas na presença de diferentes minerais, feitas por microscopia eletrônica de transmissão.
- A figura 18A revela micrografias de células Desulfovibrio desulfuricans, aderidas à superfície da hematita, feitas por microscopia eletrônica de varredura.
- A figura 18B revela micrografias de células Desulfovibrio desulfuricans, aderidas a superfície da quartzo, feitas por microscopia eletrônica dè varredura.
- A figura 19A revela micrografias de células de leveduras aderidas a superfície da calcita, feitas por microscopia eletrônica de varredura.
- A figura 19B revela micrografias de células de leveduras aderidas a superfície da quartzo, feitas por microscopia eletrônica de varredura.
- A figura 20A revela o potencial zeta em função do pH do quartzo na presença de leveduras da espécie E. coli.
- A figura 20B revela uma micrografia mostrando a interação de leveduras E. coli com a superfície do quartzo, feitas por microscopia eletrônica de varredura.
- A figura 21A revela o potencial zeta em função do pH de pirita antes e após a interação com células de L. ferroxidans.
- A figura 21 B revela o potencial zeta em função do pH de calcopirita antes e após a interação com células de L. ferroxidans.
- A figura 22 revela o potencial zeta em função do pH da hematita antes e após a interação com células de R. opacus.
- A figura 23 revela o potencial zeta em função do pH da calcita e magnesita, antes e após a interação com células de R. opacus.
- A figura 24 revela a curva de calibração obtida pela absorbância em função da concentração celular de uma suspensão de Rhodococcus opacus.
- A figura 25 revela uma micrografia, realizada por microscopia eletrônica de varredura, de células da bactéria Rhodococcus opacus.
- A figura 26 revela o potencial zeta em função do pH da bactéria Rhodococcus opacus não adaptada, adaptada a apatita e adaptada a quartzo utilizando NaCI como eletrólito.
- A figura 27 revela o potencial zeta em função do pH das amostras minerais de apatita "A", apatita "B" e quartzo utilizando NaCI como eletrólito suporte.
- A figura 28 revela o potencial zeta em função do pH da amostra de quartzo antes e após o contato com a bactéria, e da bactéria pura, utilizando NaCI como eletrólito.
- A figura 29 revela o potencial zeta em função do pH da apatita "A" antes e após a interação com a bactéria, e da bactéria pura, utilizando NaCI como eletrólito.
- A figura 30 revela o potencial zeta em função do pH da apatita "B" antes e após a interação com a bactéria, e da bactéria pura, utilizando NaCI como eletrólito.
- A figura 31 revela o ângulo de contato em função do pH das amostras minerais de apatita "A", apatita "B" e quartzo, utilizando uma suspensão celular de concentração de 0,15 g/l, com 5 minutos de tempo de contato.
- A figura 32 revela a tensão superficial em função do pH da suspensão celular de Rhodococcus opacus, em uma concentração celular de 0,15 g/l.
- A figura 33 revela a tensão superficial em função da concentração celular da bactéria Rhodococcus opacus, em um pH igual a 5.
- A figura 34 revela a flotabilidade em função do pH da apatita "B", com tamanho de partículas entre 75-106 pm, NaCI como eletrólito e 2 minutos de tempo de flotação.
- A figura 35 revela a flotabilidade em função do pH da apatita "A", com tamanho de partículas entre 75-106 pm, NaCI como eletrólito e 2 minutos de tempo de flotação.
- A figura 36 revela a flotabilidade em função do pH do quartzo, com tamanho de partículas entre 75-106 pm, NaCI como eletrólito e 2 minutos de tempo de flotação.
- A figura 37 revela a flotabilidade celular em função da concentração celular, em um pH igual a 5, tamanho de partícula entre 75-106 pm, NaCI como eletrólito e 2 minutos de tempo de flotação.
- A figura 38 revela a flotabilidade celular em função do tempo, em pH igual a 5, tamanho de partícula entre 75-106 pm e utilizando NaCI como eletrólito.
- A figura 39 revela uma micrografia, feita por microscopia eletrônica de varredura, de células de Rhodococcus opacus aderidas na superfície da apatita "B" após a flotação.
- A figura 40 revela uma micrografia, feita por microscopia eletrônica de varredura, de células de Rhodococcus opacus aderidas na superfície da apatita "A" após a flotação.
- A figura 41 revela uma micrografia, feita por microscopia eletrônica de varredura, de células de Rhodococcus opacus aderidas na superfície do quartzo após a flotação.
- A figura 42 revela a flotabilidade em função do tempo da apatita "A" com diferentes tamanhos de partícula, em pH igual a 5, concentração celular de 0,2 g/l.
- A figura 43 revela um modelo de primeira ordem da flotabilidade da apatita "A", em pH igual a 5, concentração celular de 0,2 g/l.
- A figura 44 revela um modelo de segunda ordem da flotabilidade da apatita "A", em pH igual a 5, concentração celular de 0,2 g/l. - A figura 45 revela a flotabilidáde em função do tempo da apatita "A" usando a bactéria Rhodococcus opacus, obtidos a partir do emprego do modelo de primeira ordem.
- A figura 46 revela a flotabilidáde em função do tempo da apatita "B" em diferentes tamanhos de partícula, em pH igual a 5, concentração celular de 0,15 g/l.
- A figura 47 revela um modelo de primeira ordem para a flotabilidáde da apatita "B", em pH igual a 5, concentração celular de 0,15 g/l.
- A figura 48 revela um modelo de segunda ordem para a flotabilidáde da apatita "B" , em pH igual a 5, concentração celular de 0,15 g/l.
- A figura 49 revela a flotabilidáde em função do tempo da apatita "B" usando a bactéria Rhodococcus opacus, com o emprego do modelo de primeira ordem.
- A figura 50 revela a flotabilidáde em função do tempo para o quartzo em diferentes tamanhos de partícula, em pH igual a 5, concentração celular de 0,15 g/l.
- A figura 51 revela o modelo de primeira ordem para a flotabilidáde do quartzo em função do tempo, em pH igual a 5, concentração celular de 0,15 g/l.
- A figura 52 revela o modelo de segunda ordem para a flotabilidáde do quartzo em função do tempo, em pH igual a 5, concentração celular de 0,15 g/l.
- A figura 53 revela a flotabilidáde em função do tempo para o quartzo utilizando o modelo de primeira ordem, para diferentes tamanhos de partícula.
- A figura 54 revela a tensão superficial em função do pH de células de Rhodococcus opacus sem e com a adaptação ao substrato mineral.
- A figura 55 revela a flotabilidáde em função do pH do ensaio de microflotação da apatita "A", usando a bactéria Rhodococcus opacus adaptada ao substrato mineral, em concentração celular de 0,20 g/l. - A figura 56 revela a flotabilidade em função do pH do ensaio de microflotação da apatita "A", usando a bactéria Rhodococcus opacus adaptada ao substrato mineral, em concentração celular de 0, 15 g/l.
Descrição Detalhada da Invenção
Os exemplos aqui descritos têm o intuito somente de exemplificar uma das inúmeras maneiras de se realizar a invenção, contudo, sem limitar o escopo da mesma. Sendo assim, a presente invenção baseia-se em um novo agente adsorvente biológico para a bioflotação dos minerais constituintes do sistema apatita-quartzo.
Agente adsorvente
Na presente invenção, entende-se como agente adsorvente, o microrganismo capaz de se aderir à superfície do mineral, desta forma, alterando o seu comportamento eletroforético, sendo este microrganismo escolhido dentre as bactérias que compõem o género Rhodococcus, mais especificamente, a espécie Rhodococcus opacus.
O microrganismo Rhodococcus opacus (Figura 8), é uma bactéria pertencente ao género Rhodococcus, unicelular, heterótrofa, Gram-positiva e estritamente aeróbia. A principal característica da R. opacus é a presença de filamentos os quais são os responsáveis pela formação de espumas quando em meio aquoso. As células de R. opacus possuem na sua parede celular diversos tipos de componentes tais como polissacarídeos, ácidos micólicos e lipídeos o que confere um caráter anfipático à superfície da bactéria, apresentando um ângulo de contato igual a 72 ± 4 graus.
A composição do material pertencente à parede celular da bactéria R. opacus pode ser vista na Tabela 1 , a qual mostra uma elevada proporção de lipídeos e carboidratos associados à parede celular. Tabela 1 - Composição da parede celular da bactéria R. opacus.
Figure imgf000014_0001
Os grupos funcionais presentes na parede celular dos microrganismos podem ser determinados a partir do uso da espectroscopia de infravermelho. O espectro de infravermelho da bactéria exibe os picos dos compostos atribuídos aos grupos funcionais dos compostos presentes na parede celular. A Tabela 2 apresenta as faixas de absorbância e os grupos funcionais correspondentes para cada pico (Figura 9). Tabela 2 - Atribuição geral de bandas na bactéria
Número de onda (cm 1) Grupo funcional correspondente
N-H e O-H vibração de estiramento:
3307
Polissacarídeos e proteínas.
2959 CH3 estiramento assimétrico: Lipídeos.
CH2 estiramento assimétrico: Lipídeos,
2917 contribuição de proteínas, carboidratos, ácidos nucléicos.
CH3 estiramento simétrico: Proteínas,
2876 contribuição de lipídeos, carboidratos e ácidos nucléicos.
CH2 estiramento simétrico: Lipídeos,
2857 contribuição de proteínas, carboidratos, ácidos nucléicos.
1739 - 1744 Ester C=O estiramento: Lipídeos, triglicerídeos.
1657 Amida I (Proteína C=O estiramento).
1541 Amida II (Proteína N-H banda, C-N
estiramento).
1452 CH2 ligações: Lipídeos. 1391 COO" estiramento simétrico: cadeias
aminoácidos, ácidos graxos.
1236 PO2- estiramento assimétrico: Ácidos nucléicos com contribuição de fosfolipídios.
1 152 CO-O-C estiramento assimétrico: Glicogênio e ácidos nucléicos.
1080 PO2- estiramento simétrico: ácidos nucléicos e fosfolipídios, C-0 estiramento: glicogênio.
969 C-N+-C estiramento: Ácidos nucléicos.
958 Xylo-oligossacarídeos.
859 Açúcar tipo N.
801 P-0 estiramento: ácidos nucléicos.
728 Ácido dipicolínico (DPA).
703 Ácido dipicolínico (DPA).
550 Glicogênio.
Caso as bactérias sejam adaptadas a diferentes substratos, no caso algum mineral, poderia haver a variação da taxa de produção de produtos metabólicos, alterando assim os grupos funcionais presentes e em consequência se obter uma resposta distinta e até melhorada no processamento de minerais. Sendo assim, a bactéria R. opacus foi adaptada à presença de apatita e quartzo.
Minerais
A presente invenção entende como minerais para o bioprocessamento, o sistema constituído de apatita-quartzo. A fórmula química genérica da apatita é: Ca5(P04)3(OH,CI,F) sendo denominada como, hidroxiapatita, cloroapatita ou fluorapatita dependendo do íon presente na estrutura conforme Tabela 3.
Tabela 3 - Alguns exemplos do grupo apatita (D/I_)3(D7L')2(T04)3X
Subgrupo da apatita - (P04)
Cloroapatita Ca5(P04)3CI
Fluorapatita Ca5(P04)3F Piromorfita Pb5(P04)3CI
Apatita-Estrôncio Sr5(P04)3(OH)
Conforme demonstrado anteriormente, podem ser encontrados diferentes tipos do mineral apatita e, consequentemente, o desempenho frente aos processos de beneficiamento será diferente para cada um. Portanto, é de suma importância o conhecimento das propriedades físico-químicas desses minerais tais como estrutura cristalina, composição mineral, solubilidade, potencial zeta e mecanismos de adsorção atuantes para o estudo do desempenho da flotação.
Na literatura pode ser observada uma grande variação no valor do ponto isoelétrico da apatita. Encontrando valores do PIE desde 2 até 8, a razão para essa diferença dependendo principalmente da origem e do mesmo.
O conhecimento das características eletrocinéticas de um mineral em solução aquosa sendo fundamental, pois, ajuda a elucidar os mecanismos envolvidos na adsorção dos reagentes de flotação na superfície do mineral, além de realizar um papel muito importante na resposta ao processo de concentração mineral (flotação).
Composição
A composição de acordo com a presente invenção compreende preferencialmente uma suspensão celular, onde esta apresenta a cepa de Rhodococcus opacus inativada após a fase de crescimento celular, junto com o elétrolito suporte. Este elétrolito irá atuar na re-suspensão das bactérias após a etapa de centrifugação, permitindo assim, uma solução de concentrado celular homogénea. O elétrolito celular utilizado compreende uma solução salina, de forma que não altere o valor de pH pretendido, assim, para o presente invento, podendo-se adotar a utilização de cloreto de sódio como elétrolito suporte.
O método de bioflotação de preferência utilizado pelo ensaio pode ser conduzido em um Tubo de Hallimond modificado. Este apresenta outros equipamentos anexados a fim de executar o ensaio, tais equipamentos são: rotâmetro, para a medição da vazão de ar; bolhômetro, para calibrar o rotâmétro; agitador magnético, para manter as partículas minerais em suspensão; bomba de vácuo-compressor, para manter o ar necessário ao tubo de Hallimond.
Exemplo 1. Realização Preferencial
Inicialmente, as amostras de apatitas passam pela etapa de cominuição seguida pelo peneiramento, desta forma, o produto obtido dessas etapas é classificado em diferentes frações granulométricas. Em seguida, as amostras são caracterizadas em diferentes etapas experimentais, medidas eletroforéticas, ângulo de contato, difração de raios X, fluorescência de raios X, microscopia eletrônica de varredura e transmissão.
Após a caracterização, as amostras de apatita são submetidas à lavagem com uma solução de ácido clorídrico 0,01 mM, posteriormente, lavadas rapidamente com água Milli-Q várias vezes até que o valor de pH do efluente alcance o valor do inicial de pH da água, para logo serem secadas e guardadas em dissecador, até o momento de serem usados nos ensaios experimentais. Já as amostras de quartzo foram lavadas com KOH 0,01 M. Logo após foi realizado o mesmo procedimento feito nos minerais de apatita.
Em paralelo, ocorre a preparação do concentrado bacteriano e condições de cultivo destes da espécie bacteriana denominada Rhodococcus Opacus.
Primeiramente todo material de vidro utilizado, assim como os diferentes meios de cultivo foram esterilizados em autoclave a 1 atm. de pressão e 121°C durante 20 minutos. A cepa bacteriana foi cultivada no meio sólido - composição vista na Tabela 4 - em placas de Petri e levada a incubação até as colónias da bactéria fossem identificadas.
Tabela 4 - Meio de cultivo utilizado na cultura bacteriana
Componente Sólido (g/L) Líquido (g/L)
Glicose 4 10
Peptona 5 5 Extraio de malte 10 3
Extrato de levedura 4 3
CaC03 2 -
Agar 12 -
PH 7,2 7,2
Posteriormente, a bactéria foi sub-cultivada no meio de cultura líquido -composição vista na Tabela 5 - em Erlenmeyeres de 250 ml_ e levado a incubação num Shaker rotatório (CIENTEC CT-712) a uma temperatura de 28°C durante 24 horas.
Tabela 5 - frações granulométricas dos minerais para cada um dos ensaios realizados
Figure imgf000018_0001
Após o último crescimento, a suspensão celular foi centrifugada com 3300 g durante 8 minutos, o concentrado da centrifugação, constituído pelas células da bactéria, foi lavado três vezes com água deionizada, e re- suspenso numa solução de 1mM de NaCI, finalmente a suspensão concentrada obtida foi esterilizada na autociave para inativar as bactérias presentes. Esse concentrado final é a biomassa utilizada como biorreagente no desenvolvimento do trabalho.
A concentração celular da suspensão bacteriana foi determinada por meio da densidade ótica num espectrofotômetro (UV-Spectrophotometer, UV-1800, Shimadsu) a comprimentos de onda específica para a bactéria (A=620nm). Realizou-se uma calibração do peso seco da biomassa contra a densidade ótica das suspensões nesse mesmo comprimento de onda. O peso seco da biomassa foi determinado após filtração em sistema Millipore a vácuo utilizando-se membrana de celulosa de 0,45 m (Millipore, EUA) e finalmente seco na estufa a 160°C.
Com o intuito de confirmar o comportamento seletivo apresentado por uma cepa bacteriana após adaptação a um substrato mineral a cepa R. opacus sofreu adaptação à presença de amostras minerais como quartzo e apatita "A". A adaptação da bactéria foi realizada durante o desenvolvimento das células bacterianas sob as mesmas condições de cultivo e usando o meio de cultura liquido padrão em presença do mineral com uma concentração de 5% (p/v) em 3 sub-culturas consecutivas.
As medidas de potencial zeta para as bactérias assim como para os amostras minerais foram determinadas num equipamento de micro eletroforese do tipo Zeta meter system +4.0. Assim, foram realizados ensaios de potencial zeta visando avaliar a influência da interação das células bacterianas na superfície das espécies minerais. Nesse caso, foi efetuado um pré-condicionamento das soluções minerais com uma suspensão celular de concentração conhecida, durante 10 minutos. Após este período, o sobrenadante foi utilizado nas medidas. Foram avaliados diferentes valores de pH no pré-condicionamento, sendo empregado como eletrólito uma solução de NaCI 1mM. Para garantir a exatídão da medição, tomaram-se a média de 20 valores e o valor de desvio padrão.
Com o objetivo de avaliar a possível alteração na hidrofobicidade da superfície dos minerais após da adesão do biorreagente serão medidos os valores de ângulo de contato das amostras minerais antes e após da interação com a bactéria. Será empregado um goniómetro Ramé Hart-inc modelo 100- 00-1 15 (Fig.33).
Para medir os valores de ângulo de contato das amostras minerais, seções polidas dos minerais, medindo 0,5 χ 0,5 * 1 ,0 cm (Fig.34) foram moldadas com resina epóxi. O topo da superfície de cada amostra foi, então, cuidadosamente polido até chegar à suspensão de diamante ( ηι). As superfícies das seções de cada mineral foram levadas a banho ultrassom durante 2 minutos e logo lavadas com jatos de água deionizada para remover pequenas partículas aderidas.
O acondicionamento da superfície mineral foi realizado com suspensão celular da bactéria com uma concentração conhecida (0,1 g.L-1),
5 NaCI 0,001 M e com diferentes valores de pH, valores ajustados com alíquotas de HCI e NaOH. Gotas da suspensão celular foram depositadas sobre a superfície dos minerais e deixadas em repouso por 10min. Posteriormente as amostras foram lavadas com solução NaCI 0,001 M para remover as células não aderidas. Depois submersas na mesma solução com o mesmo valor de pH í o do condicionamento. Finalmente foram liberadas bolhas de ar com tamanho de 5pm de diâmetro sobre a superfície, sendo realizadas as medidas de ângulo de contato no goniómetro, utilizando o método de bolha cativa.
Antes de cada medida de ângulo de contato nas seções polidas, realizou-se um polimento com suspensão de diamante e banho ultrassom.
15 Após isso as seções foram lavadas repetidas vezes, e mantidas mergulhadas em água Milli-Q, por curtos períodos de tempo, antes de se proceder a um novo ensaio. A limpeza das superfícies foi verificada medindo-se previamente o ângulo de contato em água Milli-Q, apresentando valor igual à zero, para as superfícies dos minerais.
0 Os ensaios de microflotação foram conduzidos em tubo de
Hallimond modificado. Para tal precisou-se de um rotâmetro para medir a vazão de ar, um bolhômetro para calibrar o rotâmetro, um agitador magnético para manter as partículas minerais em suspensão, uma bomba de vácuo- compressor para fornecer o ar necessário e o tubo de Hallimond. Antes de5 realizar os ensaios o rotâmetro deve ser calibrado para garantir uma vazão de ar de 15 mL.min- .

Claims

Reivindicações
1. AGENTE ADSORVENTE, caracterizado por ser utilizado para a adsorção na superfície do sistema apatita-quartzo e compreender pelo menos uma bactéria escolhida do grupo que compreende as espécies do género Rhodococcus.
2. AGENTE ADSORVENTE, de acordo com a reivindicação 1 , caracterizado pela bactéria ser Rhodococcus opacus.
3. AGENTE ADSORVENTE, de acordo com a reivindicação 2, caracterizado pela bactéria Rhodococcus opacus ser adaptada ao meio.
4. AGENTE ADSORVENTE, de acordo com a reivindicação 1 , caracterizado pela apatita ser do subgrupo das fluorapatita.
5. COMPOSIÇÃO PARA A BIOFLOTAÇÃO, caracterizado por ser utilizado em sistema apatita-quartzo e por compreender:
a. pelo menos um agente adsorvente compreendendo pelo menos uma bactéria escolhida do grupo que compreende as espécies do género
Rhodococcus; e
b. um veículo aceitável.
6. COMPOSIÇÃO, de acordo com a reivindicação 5, caracterizada pelo fato de o veículo ser um suporte.
7. COMPOSIÇÃO, de acordo com a reivindicação 6, caracterizada pelo fato de o suporte consistir em uma solução salina.
8. COMPOSIÇÃO, de acordo com a reivindicação 7, caracterizada pela solução salina compreender uma solução de cloreto de sódio.
9. PROCESSO DE BIOFLOTAÇÃO DO SISTEMA APATITA-QUARTZO, caracterizado por compreender a adição a um sistema apatita-quartzo uma composição adsorvente compreendendo pelo menos uma bactéria escolhida do grupo que compreende as espécies do género Rhodococcus.
10. PROCESSO DE BIOFLOTAÇÃO DO SISTEMA APATITA-QUARTZO, de acordo com a reivindicação 9, caracterizado por compreender as etapas de: a. adicionar o sistema apatita-quartzo em uma composição adsorvente compreendendo pelo menos uma bactéria escolhida do grupo que compreende as espécies do género Rhodococcus;
b. deixar o agente adsorvente em contato com a solução compreendendo o sistema apatita-quartzo em um tubo de Hallimond, para a flotação durante dois minutos; e
c. recolher a massa flotada compreendendo o quartzo e o agente adsorvente.
1 1. PROCESSO DE BIOFLOTAÇÃO DO SISTEMA APATITA-QUARTZO, de acordo com as reivindicações 9 ou 10, caracterizado pela bactéria do género
Rhodococcus compreender a espécie Rhodococcus opacus.
12. PROCESSO DE BIOFLOTAÇÃO DO SISTEMA APATITA-QUARTZO, de acordo com as reivindicações 11 , caracterizado pela bactéria Rhodococcus opacus ser uma bactéria adaptada ao ser previamente exposta aos minerais.
13. PROCESSO DE BIOFLOTAÇÃO DO SISTEMA APATITA-QUARTZO, de acordo com as reivindicações precedentes, caracterizado pelo mineral apatita compreender o subgrupo fluorapatita.
14. PROCESSO DE BIOFLOTAÇÃO DO SISTEMA APATITA-QUARTZO, de acordo com as reivindicações precedentes, caracterizado pelo fato de o tempo de flotação ser de cerca de dois minutos e o pH de flotação ser ácido.
PCT/BR2013/000093 2012-03-28 2013-03-26 Agente adsorvente, composição para a bioflotação e processo de bioflotação do sistema apatita-quartzo WO2013142933A1 (pt)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/388,889 US20150086451A1 (en) 2012-03-28 2013-03-26 Adsorbent agent, composition for bioflotation and bioflotation process from apatite-quartz system
AU2013239360A AU2013239360A1 (en) 2012-03-28 2013-03-26 Adsorbent agent, composition for bioflotation and apatite-quartz system bioflotation process
EP13770215.5A EP2832849A4 (en) 2012-03-28 2013-03-26 ADSORBENT AGENT, COMPOSITION FOR BIOFLOTATION AND METHOD FOR BIOFLOTATION OF THE APATITE-QUARTZ SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR102012009197-6A BR102012009197A2 (pt) 2012-03-28 2012-03-28 agente adsorvente, composiÇço para bioflotaÇço e processo de bioflotaÇço do sistema apatita-quartzo
BR102012009197-6 2012-03-28

Publications (1)

Publication Number Publication Date
WO2013142933A1 true WO2013142933A1 (pt) 2013-10-03

Family

ID=48651748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2013/000093 WO2013142933A1 (pt) 2012-03-28 2013-03-26 Agente adsorvente, composição para a bioflotação e processo de bioflotação do sistema apatita-quartzo

Country Status (8)

Country Link
US (1) US20150086451A1 (pt)
EP (1) EP2832849A4 (pt)
AU (1) AU2013239360A1 (pt)
BR (1) BR102012009197A2 (pt)
CL (1) CL2014002568A1 (pt)
CO (1) CO7190232A2 (pt)
PE (1) PE20150133A1 (pt)
WO (1) WO2013142933A1 (pt)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018209416A1 (pt) * 2017-05-16 2018-11-22 Vale S.A. Método de flotação de minerais utilizando biorreagente extraído de bactérias gram positivas
US10718702B2 (en) * 2018-02-05 2020-07-21 Saudi Arabian Oil Company Dynamic contact angle measurement

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1914694A (en) 1931-02-04 1933-06-20 Gen Engineering Co Concentration of phosphate-bearing material
US2384825A (en) 1938-05-13 1945-09-18 Southern Phosphate Corp Method of separating quartz sand from phosphate rock
US3534854A (en) 1967-11-20 1970-10-20 Int Minerals & Chem Corp Beneficiation of calcite-apatite-quartz ores

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL76981A (en) * 1985-11-07 1989-02-28 Univ Ramot Bacterially produced hetero polysaccharide dispersants for inorganic minerals in aqueous medium and their preparation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1914694A (en) 1931-02-04 1933-06-20 Gen Engineering Co Concentration of phosphate-bearing material
US2384825A (en) 1938-05-13 1945-09-18 Southern Phosphate Corp Method of separating quartz sand from phosphate rock
US3534854A (en) 1967-11-20 1970-10-20 Int Minerals & Chem Corp Beneficiation of calcite-apatite-quartz ores

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
HUIFEN YANG ET AL.: "Flocculation and flotation response of Rhodococcus erythropolis to pure minerals in hematite ores", MINER. ENG., vol. 45, 27 February 2013 (2013-02-27), pages 67 - 72, XP028590300, Retrieved from the Internet <URL:http://dx.doi.org/10.1016/j.mineng.2013.01.005> *
L.M.S DE MESQUITA ET AL.: "Interaction of a hydrophobic bacterium strain in a hematite-quartz flotation system", INT. J. MINER. PROCESS., vol. 71, 22 September 2003 (2003-09-22), pages 31 - 44, XP055171279, Retrieved from the Internet <URL:http://dx.doi.or/10.1016/50301-7516(03)00028-0> *
MERMA, A.G. ET AL.: "On the fundamental aspects of apatite and quartz flotation using a Gram positive strain as a bioreagent.", MINER: ENG, 2012, XP028560138, Retrieved from the Internet <URL:http:/ldx.doi.org/10.1016/.minen.2012.10.018> *
MESQUITA ET AL.: "Biobeneficiamento mineral: potencialidades dos microrganismos como reagentes de flotag5", S6RIE TECNOLOGIA MINERAL CETEM, 2002, pages 81
MESQUITA ET AL.: "Interaction of a hydrophobic bacterium strain in a hematite-quartz flotation system", INTERNATIONAL JOURNAL OF MINERAL PROCESSING, 2003, pages 71
See also references of EP2832849A4
SMITH ET AL., RECENTS DEVELOPMENTS IN THE BIOPROCESSING MINERALS. MINERAL PROCESSING AND EXTRACTIVE METALLURGY REVIEW, vol. 12, 1993, pages 37

Also Published As

Publication number Publication date
EP2832849A1 (en) 2015-02-04
CO7190232A2 (es) 2015-02-19
PE20150133A1 (es) 2015-02-07
CL2014002568A1 (es) 2015-06-12
AU2013239360A1 (en) 2014-11-13
BR102012009197A2 (pt) 2013-06-25
EP2832849A4 (en) 2015-12-02
US20150086451A1 (en) 2015-03-26

Similar Documents

Publication Publication Date Title
Merma et al. On the fundamental aspects of apatite and quartz flotation using a Gram positive strain as a bioreagent
Calgaroto et al. Separation of amine-insoluble species by flotation with nano and microbubbles
De Mesquita et al. Interaction of a hydrophobic bacterium strain in a hematite–quartz flotation system
Vijayalakshmi et al. The utility of Bacillus subtilis as a bioflocculant for fine coal
Levy et al. Physico-chemical aspects in flocculation of bentonite suspensions by a cyanobacterial bioflocculant
Natarajan et al. Role of bacterial interaction and bioreagents in iron ore flotation
Botero et al. Surface chemistry fundamentals of biosorption of Rhodococcus opacus and its effect in calcite and magnesite flotation
Shashikala et al. Role of interfacial phenomena in determining adsorption of Bacillus polymyxa onto hematite and quartz
Sarvamangala et al. Microbially induced flotation of alumina, silica/calcite from haematite
Yehia et al. Cellulase as a new phosphate depressant in dolomite-phosphate flotation
Ohmura et al. Mechanism of microbial flotation using Thiobacillus ferrooxidans for pyrite suppression
Zhao et al. Characteristics of bio-desilication and bio-flotation of Paenibacillus mucilaginosus BM-4 on aluminosilicate minerals
Lopez et al. Fundamental aspects of hematite flotation using the bacterial strain Rhodococcus ruber as bioreagent
Li et al. Contribution of bacterial extracellular polymeric substances (EPS) in surface water purification
Padukone et al. Microbially induced separation of quartz from calcite using Saccharomyces cerevisiae
WO2013142933A1 (pt) Agente adsorvente, composição para a bioflotação e processo de bioflotação do sistema apatita-quartzo
Guohua et al. Bio-leaching effects of Leptospirillum ferriphilum on the surface chemical properties of pyrite
CN105821082B (zh) 假交替单胞菌在制备纳米材料中的应用
Smith et al. Adsorption of a hydrophobic bacterium onto hematite: implications in the froth flotation of the mineral
WO2018209416A1 (pt) Método de flotação de minerais utilizando biorreagente extraído de bactérias gram positivas
Natarajan et al. Biodegradation of sodium isopropyl xanthate by Paenibacillus polymyxa and Pseudomonas putida
Hirajima et al. Effect of microorganisms on flocculation of quartz
Chug et al. Extracellular polymeric substances from cyanobacteria: Characteristics, isolation and biotechnological applications-A
Sharma et al. Role of a heterotrophic Paenibacillus polymyxa bacteria in the bioflotation of some sulfide minerals
Abdel-Khalek et al. Bioflotation of low Grade Egyptian Iron Ore using Brevundimonasdiminuta Bacteria: Phosphorus removal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13770215

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 14213250

Country of ref document: CO

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14388889

Country of ref document: US

Ref document number: 001497-2014

Country of ref document: PE

WWE Wipo information: entry into national phase

Ref document number: 2013770215

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013239360

Country of ref document: AU

Date of ref document: 20130326

Kind code of ref document: A