WO2013141618A1 - Gallium nitride-based semiconductor device - Google Patents

Gallium nitride-based semiconductor device Download PDF

Info

Publication number
WO2013141618A1
WO2013141618A1 PCT/KR2013/002327 KR2013002327W WO2013141618A1 WO 2013141618 A1 WO2013141618 A1 WO 2013141618A1 KR 2013002327 W KR2013002327 W KR 2013002327W WO 2013141618 A1 WO2013141618 A1 WO 2013141618A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
gallium nitride
type
semiconductor layer
nitride layer
Prior art date
Application number
PCT/KR2013/002327
Other languages
French (fr)
Korean (ko)
Inventor
정정환
김재헌
최승규
Original Assignee
서울옵토디바이스주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울옵토디바이스주식회사 filed Critical 서울옵토디바이스주식회사
Publication of WO2013141618A1 publication Critical patent/WO2013141618A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds

Definitions

  • Gallium nitride based semiconductor device Gallium nitride based semiconductor device
  • the present invention relates to a gallium nitride based semiconductor device, and more particularly to a gallium nitride based semiconductor device using a gallium nitride substrate as a growth substrate.
  • Gallium nitride compounds have been recognized as important materials for high power and high performance optical and electronic devices.
  • nitrides of group m elements such as gallium nitride (GaN) have excellent thermal stability and have a direct transition type energy band structure, and thus have recently received a lot of attention as materials for light emitting devices in the visible and ultraviolet regions.
  • GaN gallium nitride
  • blue and green light emitting devices using indium gallium nitride (InGaN) have been used in a variety of applications including large-scale color flat panel display devices, traffic lights, indoor lighting, high density light sources, high resolution output systems, and optical communications.
  • nitride semiconductor layer of Group III elements is difficult to fabricate homogeneous substrates capable of growing it, metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE) is performed on heterogeneous substrates having similar crystal structures. It has been grown through such a process.
  • MOCVD metal organic chemical vapor deposition
  • MBE molecular beam epitaxy
  • a hetero substrate a sapphire substrate having a hexagonal structure is mainly used.
  • epitaxial layers grown on heterogeneous substrates have relatively high dislocation densities due to lattice mismatch with the growth substrate and differences in thermal expansion coefficients.
  • Epilayers grown on sapphire substrates are generally known to have dislocation densities of lE8 / cuf or more.
  • the epitaxial layer having such a high dislocation density has a limit in improving the luminous efficiency of the light emitting diode.
  • gallium nitride-based semiconductor insects grown on gallium nitride substrates generally have better crystal quality than gallium nitride substrates grown on sapphire substrates.
  • gallium nitride substrates are relatively expensive compared to sapphire substrates, it is necessary to further improve the crystal quality of gallium nitride semiconductor layers grown on gallium nitride substrates in order to overcome such cost differences.
  • An object of the present invention is to improve the crystal quality of a gallium nitride based semiconductor layer grown on a gallium nitride substrate.
  • Another object of the present invention is to provide a gallium nitride-based semiconductor device excellent in electrical and / or optical properties.
  • Another object of the present invention is to provide a light emitting diode that can lower the forward voltage.
  • a light emitting diode a gallium nitride substrate; A lower gallium nitride layer on the gallium nitride substrate; An n-type upper gallium nitride layer positioned on the lower gallium nitride layer; And an intermediate layer interposed between the lower gallium nitride layer and the upper gallium nitride layer.
  • the intermediate layer is a gallium nitride-based semiconductor layer containing aluminum and has a band 3 ⁇ 4 wider than the gallium nitride layer.
  • the intermediate layer may include an AlInN layer, and may have an AlInN / GaN superlattice structure.
  • the lower gallium nitride layer is doped with n-type impurities
  • the intermediate layer may be a semiconductor layer having a lower n- type doping concentration than the lower gallium nitride layer and the upper gallium nitride layer.
  • the semiconductor device may further include a p-type semiconductor layer on the upper semiconductor layer; And an active layer positioned between the p-type semiconductor layer and the n-type upper gallium nitride layer.
  • the crystal quality of semiconductor layers grown thereon can be improved by adopting a gallium nitride substrate, and further, the crystal quality of semiconductor layers can be further improved by arranging intermediate charges between the gallium nitride layers. .
  • the forward voltage of the light emitting diode may be lowered by adjusting the doping concentrations of the gallium nitride layers and the intermediate layer.
  • FIG. 1 is a cross-sectional view illustrating a light emitting diode according to an embodiment of the present invention.
  • FIG. 2 is for explaining an intermediate layer of a light emitting diode according to an embodiment of the present invention
  • (a) is a schematic band diagram
  • (b) is a doping concentration profile.
  • FIG 3 is a cross-sectional view illustrating a superlattice layer according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view illustrating a superlattice layer according to another exemplary embodiment of the present invention.
  • FIG. 5 is a cross-sectional view illustrating an active layer according to an embodiment of the present invention.
  • FIG. 6 is an energy band illustrating the active layer of FIG. 5.
  • FIG. 1 is a cross-sectional view illustrating a light emitting diode according to an embodiment of the present invention.
  • the light emitting diode includes a gallium nitride substrate 11, a lower semiconductor layer 15, an intermediate layer 17, an n-type upper semiconductor layer 19, a superlattice layer 20, and an active layer 30. And a p-type semiconductor layer 43. Furthermore, the light emitting diode may include a p-type cladding layer 41, a transparent electrode layer 45, a first electrode 47, and a second electrode 49.
  • the gallium nitride substrate 11 may have a c-plane growth surface, but is not limited thereto.
  • the growth surface of the gallium nitride substrate 11 may have an inclination angle to help the growth of the epi layer.
  • Such gallium nitride substrate 11 can be produced, for example, using HVPE technology.
  • the lower semiconductor layer 15 is positioned on the gallium nitride substrate 11.
  • the lower semiconductor layer 15 may be grown as a gallium nitride layer on the gallium nitride substrate 11.
  • the lower semiconductor layer 15 is 5xl0 18 ⁇ 2xl0 19 / ciii ! It can be grown to have a concentration of n-type impurities (eg, Si).
  • n-type impurities eg, Si
  • the lower semiconductor layer 15 is described as being doped with n-type impurities.
  • the lower semiconductor layer 15 may be an undoped GaN layer intentionally doped with no impurities. have.
  • the intermediate layer 17 is positioned on the lower semiconductor layer 15.
  • the intermediate layer 17 is formed of a gallium nitride-based epi layer having a composition different from that of the lower semiconductor layer 15, and has a wider band gap than the gallium nitride layer.
  • the intermediate layer 17 may be formed of AlInN, AlGaN or AlInGaN.
  • the intermediate layer 17 may be formed of AlInN and may have the same lattice constant as that of the GaN layer.
  • the intermediate layer 17 may have a superlattice structure in which the AlInN layer and the GaN layer are alternately stacked.
  • the lower semiconductor layer 15 and the n-type upper semiconductor layer 19 are grown at a high temperature of about 100 CTC, but the intermediate layer 17 is grown at a temperature range of about 800 to 900 ° C.
  • an intermediate layer 17 having a different composition from GaN between the GaN layers 15 and 19 strain may be induced in the upper semiconductor layer 19 formed on the intermediate layer 17, and the multi-quantum well structure is determined using the intermediate layer 17. It can improve quality. Furthermore, • GaN layers (15, 19) between in Fig. 2 (a) one by a position intermediate layer 17 having a relatively wide band gap, using the two-dimensional electron gas the GaN layers, as shown in (15, 19) The current can be evenly distributed in the circuit.
  • the intermediate layer 17 is formed to have a lower doping concentration than the upper semiconductor layer 19.
  • the intermediate layer 17 may have an n-type impurity (eg, Si) concentration of lxi0 17 to lxl0 18 / cirf
  • the upper semiconductor layer 19 may have a ⁇ -type impurity concentration of ⁇ ⁇ ⁇ 19 / ⁇ .
  • the intermediate layer 17 has a doping concentration in the above concentration range, it is possible to grow a good crystalline semiconductor layer while lowering the forward reflection voltage of the light emitting diode.
  • the ⁇ -type upper semiconductor layer 19 is grown on the intermediate layer 17 as a gallium nitride layer.
  • the ⁇ electrode 47 may be positioned on the upper semiconductor layer 19.
  • the upper semiconductor layer 19 is shown as a single GaN layer, and the n electrode 47 is positioned thereon, but is not limited thereto. no.
  • another gallium nitride based semiconductor layer (s) may be disposed between the n electrode 47 and the upper semiconductor layer 19.
  • a superlattice layer 20 having a multilayer structure may be positioned on the n-type upper semiconductor layer 19.
  • the superlattice layer 20 is located between the n-type upper semiconductor layer 19 and the active layer 30, and thus is located on the current path.
  • the superlattice layer 20 may be formed by repeatedly stacking a pair of InGaN / GaN (for example, 15 to 20 cycles), but is not limited thereto.
  • the superlattice layer 20 has a three-layer structure having an InGaN layer 21 / AlGaN layer 22 / GaN layer 23 having a plurality of cycles (for example, about 10 to 20 cycles). ) May have a repeatedly stacked structure.
  • the order of the AlGaN layer 22 and the InGaN layer 21 may be reversed.
  • the InGaN layer 21 has a wider band gap than the well layer in the active layer 30.
  • the AlGaN layer 22 preferably has a wider bandgap than the barrier layer in the active layer 30.
  • the InGaN layer 21 and the AlGaN layer 22 may be formed of an undoped layer that is not intentionally doped with impurities
  • the GaN layer 23 may be formed of a Si doped layer.
  • the uppermost layer of the superlattice layer 20 is preferably a GaN layer 23 doped with impurities.
  • the AlGaN layer 22 may be formed to a thickness of less than lnm.
  • the superlattice layer 20 forms the AlGaN layer 22 on the InGaN layer 21, the lattice mismatch between them is large, and crystal defects are likely to form at the interface. Therefore, the GaN layer 24 can be inserted between the InGaN layer 21 and the AlGaN layer 22 as shown in FIG.
  • the GaN layer 24 may be formed of an undoped layer or a Si doped layer.
  • the active layer 30 of the multi-quantum well structure is positioned on the superlattice layer 20. As shown in FIG. 5, the active layer 30 has a structure in which barrier layers 3 la and 31b and well layers 33 ⁇ , 33, 33 ⁇ are alternately stacked.
  • 33 ⁇ represents the well layer (first well layer) closest to the superlattice layer 20 or the ⁇ -type upper semiconductor layer 19, and 33 ⁇ is the ⁇ -type cladding layer 41 or the ⁇ -type semiconductor layer 23.
  • the well layer (the (eta) well layer) closest to) is shown. 6 shows an energy band of the active layer 30.
  • barrier layers 31a and 31b and (n-2) a plurality of well layers between the well worm 33 ⁇ and the well layer 33 ⁇ .
  • the fields 33 are stacked alternately with each other.
  • the barrier layers 31a have a thickness thicker than the average thickness of these (n-1) plurality of barrier layers 31a 31b, and the barrier layers 31b have a thickness thinner than the average thickness. Further, as shown, barrier layers 31a are disposed close to the first well layer 33 ⁇ , and barrier layers 31b are disposed close to the nth well layer 33p.
  • the barrier layer 31a may be located in contact with the uppermost layer of the superlattice layer 20. That is, the barrier layer 31a may be located between the superlattice layer 20 and the first well layer 33 ⁇ .
  • the barrier layer 35 may be positioned on the nth well layer 33p. The barrier layer 35 may have a relatively thicker thickness than the barrier layer 31a.
  • the thickness of the near barrier layers (31b) on In the well layer (33p) to the "relative decrease a resistance component of the active layer 30, and also the active layer 30, the holes injected from the p-type semiconductor layer 43 It can be dispersed in the well layers 33 in the interior, thereby lowering the forward voltage of the light emitting diode.
  • the well layers 33 ⁇ , 33, and 33 ⁇ may have almost the same thickness, and thus may emit light having a very small half width.
  • the thicknesses of the well layers 33 ⁇ , 33 and 33 ⁇ may be adjusted differently to emit light having a relatively wide half width.
  • the crystal defect is generated by making the thickness of the well layer 33 positioned between the barrier layers 3 lb relatively thin, compared to the well layer 33 positioned between the barrier layers 31a. It can prevent.
  • the thickness of the well layers 33 ⁇ , 33, 33 ⁇ is, for example, in the range of 10 to 30 A
  • the thickness of the barrier layers 3 la is in the range of 50 to 70 A
  • the well layers 33 ⁇ , 33, 33 ⁇ may be formed of a gallium nitride-based layer that emits light in the near ultraviolet or blue region.
  • the well layers 33 ⁇ , 33, 33 ⁇ may be formed of InGaN, and the In composition ratio is adjusted according to the required wavelength.
  • the barrier layers 31a and 31b are gallium nitride based having a wider bandgap than the well layers 33 ⁇ , 33 and 33 ⁇ to trap electrons and holes in the well layers 33 ⁇ , 33 and 33 ⁇ . It is formed into layers.
  • the barrier layers 31a and 31b may be formed of GaN, AlGaN or AlInGaN.
  • the barrier layers 31a and 31b may be formed of a gallium nitride based layer containing A1 to further increase the band gap.
  • the composition ratio of A1 in the barrier layers 3 la and 31b is preferably greater than 0 and less than 0.1, and in particular, may be from 02 to 0.05.
  • the light output can be increased by limiting the A1 composition ratio within the above range.
  • each of the well layers 33 ⁇ , 33 and 33 ⁇ and the barrier layers 31a disposed thereon may be formed.
  • the cap layer is formed to prevent the well layer from being damaged while lowering the chamber temperature to grow the barrier layers 31a and 31b.
  • the well layers 33 ⁇ , 33, 33 ⁇ may be grown at a temperature of about 780 ° C
  • the barrier layers 31a, 31b may be grown at a temperature of about 800 ° C.
  • the p-type cladding layer 41 is positioned on the active layer 30 and may be formed of AlGaN.
  • the p-type cladding layer 41 may be formed in a superlattice structure in which InGaN / AlGaN is repeatedly stacked.
  • the p-type cladding layer 41 is an electron blocking layer, and blocks electrons from moving to the P-type semiconductor layer 43 to improve luminous efficiency.
  • the p-type semiconductor layer 43 may be formed of GaN doped with Mg.
  • the p-type semiconductor layer 43 is located on the p-type cladding layer 41.
  • a transparent conductive layer 45 such as ITO or Zn® is formed on the P-type semiconductor layer 43 so that the p-type semiconductor layer 43 can be in ohmic contact.
  • the p-type semiconductor layer 43 functions as a p-type contact layer.
  • the second electrode 49 is electrically connected to the p-type semiconductor layer 43.
  • the second electrode 49 may be connected to the p-type semiconductor layer 43 through the transparent conductive layer 45.
  • the n-type upper semiconductor layer 19 functions as an n-type contact layer.
  • the epitaxial layers 15 to 43 grown on the gallium nitride substrate 11 may be formed using a MOCVD technique, in which TMAl, TMGa, and TMIn may be used as the sources of Al, Ga, and In, respectively.
  • NH3 may be used as a source of N.
  • SiH4 may be used as a source of Si, which is an n-type impurity
  • Cp 2 Mg may be used as a source of Mg, which is a p-type impurity.
  • FIG. 7 is an optical picture for explaining the surface morphology of the epi layer according to the use of the intermediate layer.
  • (a) is an n-type GaN layer 19, a superlattice layer 20, an active layer 30, a p-type AlGaN cladding layer 41 and a p-type GaN layer 43 on a gallium nitride substrate 11 without an intermediate layer.
  • (b) is less than 10 nm of Al 0 between the lower GaN layer 15 and the n-type GaN layer 19.
  • An 8 In 0.2 N intermediate layer 17 is formed, and the superlattice layer 20, the active layer 30, the p-type AlGaN cladding layer 41 and the p-type GaN layer 43 are formed on the n-type GaN layer 19.
  • the surface photograph of the p-type GaN layer 43 taken with the optical microscope is shown.
  • the gallium nitride substrate 11 used a c-plane growth substrate, and the substrate 11 had dislocation defect lines Ld formed parallel to the surface thereof.
  • the lower GaN layer 15 and the n-type upper GaN layer 19 were formed under the same growth conditions at a temperature of about 1050 ° C. to 1100 ° C., and the intermediate layer 17 was grown at a temperature of about 83 CTC. .
  • the surface of the p-type GaN layer 43 as a final epitaxial layer is very rough.
  • Crystal defect lines Ld of the substrate 11 are transferred to the p-type GaN layer 43 and observed on the surface. In these crystal defect lines Ld the surface appears to be worse. Moreover, it can be seen that the surface of the region between the crystal defect lines Ld is also formed very roughly.
  • FIG. 7B when the intermediate layer 17 is formed, the surface of the region between the crystal defect lines Ld is very smooth, as well as the crystal defect lines Ld, in contrast to FIG. 7A. You can also see that the epi layer grows clean.
  • light emitting diodes separated from each other on the gallium nitride substrate 11 were fabricated to compare the forward voltage according to the use of the intermediate layer 17 at the wafer level.
  • the light emitting diodes using the intermediate layer 17 The forward voltage was generally about 0.13V lower than that of light emitting diodes without the intermediate layer 17.
  • the impurity was not doped in the intermediate layer 17, the forward voltage was similar to that of the light emitting diodes without the intermediate layer 17.
  • the use of the intermediate layer 17 and the doping of impurities at a relatively low concentration in the intermediate layer 17 can improve the crystal quality and lower the forward voltage.
  • the present invention is not limited to the light emitting diode and can be applied to all kinds of semiconductor devices employing a gallium nitride based semiconductor layer.
  • the intermediate layer need not necessarily be an n-type semiconductor layer doped with n-type impurities, or may be an undoped layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

Disclosed is a gallium nitride-based semiconductor device. The semiconductor device comprises: a gallium nitride substrate; a lower gallium nitride layer formed on the gallium nitride substrate; an n-type upper gallium nitride layer formed on the lower gallium nitride layer; and an intermediate layer interposed between the lower gallium nitride layer and the upper gallium nitride layer. Here, the intermediate layer is a gallium nitride-based semiconductor layer that contains aluminum and has a band gap wider than that of a gallium nitride layer. The present invention provides a gallium nitride-based semiconductor layer having superior crystal quality on a gallium nitride substrate by adopting an intermediate layer.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
질화갈륨계 반도체 소자  Gallium nitride based semiconductor device
【기술분야】  Technical Field
본 발명은 질화갈륨계 반도체 소자에 관한 것으로, 특히 질화갈륨 기판을 성장기판으로 사용한 질화갈륨계 반도체 소자에 관한 것이다.  The present invention relates to a gallium nitride based semiconductor device, and more particularly to a gallium nitride based semiconductor device using a gallium nitride substrate as a growth substrate.
【배경기술】  Background Art
질화갈륨계 화합물은 고출력 및 고성능의 광소자나 전자 소자에 중요한 재료로 인식되고 있다. 특히, 질화갈륨 (GaN)과 같은 m족 원소의 질화물은 열적 안정성이 우수하고 직접 천이형의 에너지 밴드 (band) 구조를 가지므로, 최근 가시광선 및 자외선 영역의 발광소자용 물질로 많은 각광을 받고 있다. 특히, 질화인듬갈륨 (InGaN)을 이용한 청색 및 녹색 발광 소자는 대규모 천연색 평판 표시 장치, 신호등, 실내 조명, 고밀도광원, 고해상도 출력 시스템과 광통신 등 다양한 웅용 분야에 활용되고 있다.  Gallium nitride compounds have been recognized as important materials for high power and high performance optical and electronic devices. In particular, nitrides of group m elements such as gallium nitride (GaN) have excellent thermal stability and have a direct transition type energy band structure, and thus have recently received a lot of attention as materials for light emitting devices in the visible and ultraviolet regions. have. In particular, blue and green light emitting devices using indium gallium nitride (InGaN) have been used in a variety of applications including large-scale color flat panel display devices, traffic lights, indoor lighting, high density light sources, high resolution output systems, and optical communications.
이러한 III족 원소의 질화물 반도체층은 그것올 성장시킬 수 있는 동종의 기판을 제작하는 것이 어려워, 유사한 결정 구조를 갖는 이종 기판에서 금속유기화학기상증착법 (MOCVD) 또는 분자선 증착법 (molecular beam epitaxy; MBE) 등의 공정을 통해 성장되어 왔다. 이종기판으로는 육방 정계의 구조를 갖는 사파이어 (Sapphire) 기판이 주로 사용된다.  Since the nitride semiconductor layer of Group III elements is difficult to fabricate homogeneous substrates capable of growing it, metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE) is performed on heterogeneous substrates having similar crystal structures. It has been grown through such a process. As a hetero substrate, a sapphire substrate having a hexagonal structure is mainly used.
그러나, 이종 기판 상에 성장된 에피층은 성장 기판과의 격자 부정합 및 열팽창 계수 차이에 기인하여 전위 밀도가 상대적으로 높다. 사파이어 기판 상에 성장된 에피층은 일반적으로 lE8/cuf 이상의 전위밀도를 갖는 것으로 알려져 있다. 이러한 높은 전위밀도를 갖는 에피층으로는 발광 다이오드의 발광 효율을 개선하는데 한계가 있다.  However, epitaxial layers grown on heterogeneous substrates have relatively high dislocation densities due to lattice mismatch with the growth substrate and differences in thermal expansion coefficients. Epilayers grown on sapphire substrates are generally known to have dislocation densities of lE8 / cuf or more. The epitaxial layer having such a high dislocation density has a limit in improving the luminous efficiency of the light emitting diode.
이에 따라, 질화갈륨계 반도체층의 전위밀도를 감소시키려는 연구가 진행되고 있다. 이러한 연구의 하나로, 사파이어 대신 질화갈륨 기판을 성장 기판으로 사용하여 반도체층을 성장시키려는 시도가 있다. 질화갈륨 기판 상에 성장된 질화갈륨계 반도체충은 일반적으로 사파이어 기판 상에 성장된 질화갈륨 기판에 비해 양호한 결정 품질을 갖는다. 그러나, 질화갈륨 기판이 사파이어 기판에 비해 상대적으로 고가이기 때문에, 이러한 비용 차이를 극복하기 위해서는 질화갈륨 기판 상에 성장된 질화갈륨 반도체층의 결정 품질을 더욱 개선할 필요가 있다. Accordingly, a research to reduce the dislocation density of gallium nitride based semiconductor layer It's going on. As one of such studies, there is an attempt to grow a semiconductor layer by using a gallium nitride substrate as a growth substrate instead of sapphire. Gallium nitride-based semiconductor insects grown on gallium nitride substrates generally have better crystal quality than gallium nitride substrates grown on sapphire substrates. However, since gallium nitride substrates are relatively expensive compared to sapphire substrates, it is necessary to further improve the crystal quality of gallium nitride semiconductor layers grown on gallium nitride substrates in order to overcome such cost differences.
【발명의 상세한 설명】  [Detailed Description of the Invention]
[기술적 과제]  [Technical Challenges]
본 발명이 해결하고자 하는 과제는, 질화갈륨 기판 상에 성장되는 질화갈륨계 반도체층의 결정품질을 개선하는 것이다.  An object of the present invention is to improve the crystal quality of a gallium nitride based semiconductor layer grown on a gallium nitride substrate.
본 발명이 해결하고자 하는 또 다른 과제는, 전기적 및 /또는 광학적 특성이 우수한 질화갈륨계 반도체 소자를 제공하는 것이다.  Another object of the present invention is to provide a gallium nitride-based semiconductor device excellent in electrical and / or optical properties.
본 발명이 해결하고자 하는 또 다른 과제는, 순방향 전압을 낮출 수 있는 발광 다이오드를 제공하는 것이다.  Another object of the present invention is to provide a light emitting diode that can lower the forward voltage.
【기술적 해결방법】  Technical Solution
본 발명의 실시예들에 따른 발광 다이오드는, 질화갈륨 기판; 상기 질화갈륨 기판 상에 위치하는 하부 질화갈륨층; 상기 하부 질화갈륨층 상부에 위치하는 n형 상부 질화갈륨층; 및 상기 하부 질화갈륨층과 상기 상부 질화갈륨층 사이에 개재된 중간층을 포함한다. 여기서, 상기 중간층은 알루미늄을 함유하며 질화갈륨층보다 넓은 밴드 ¾을 갖는 질화갈륨계 반도체층이다.  A light emitting diode according to embodiments of the present invention, a gallium nitride substrate; A lower gallium nitride layer on the gallium nitride substrate; An n-type upper gallium nitride layer positioned on the lower gallium nitride layer; And an intermediate layer interposed between the lower gallium nitride layer and the upper gallium nitride layer. Here, the intermediate layer is a gallium nitride-based semiconductor layer containing aluminum and has a band ¾ wider than the gallium nitride layer.
상기 중간층은 AlInN층을 포함할 수 있으며, AlInN/GaN초격자 구조일 수 있다.  The intermediate layer may include an AlInN layer, and may have an AlInN / GaN superlattice structure.
몇몇 실시예들에 있어서, 상기 하부 질화갈륨층은 n형 불순물이 도핑된 반도체층이고, 상기 중간층은 상기 하부 질화갈륨층 및 상기 상부 질화갈륨층보다 낮은 n형 도핑 농도를 갖는 반도체층일 수 있다. In some embodiments, the lower gallium nitride layer is doped with n-type impurities The intermediate layer may be a semiconductor layer having a lower n- type doping concentration than the lower gallium nitride layer and the upper gallium nitride layer.
또한, 상기 반도체 소자는, 상기 상부 반도체층 상에 위치하는 p형 반도체층; 및 상기 p형 반도체층과 상기 n형 상부 질화갈륨층 사이에 위치하는 활성층을 더 포함할 수 있다.  The semiconductor device may further include a p-type semiconductor layer on the upper semiconductor layer; And an active layer positioned between the p-type semiconductor layer and the n-type upper gallium nitride layer.
【유리한 효과】  Advantageous Effects
본 발명에 따르면, 질화갈륨 기판을 채택함으로써 그 위에 성장된 반도체층들의 결정품질을 개선할 수 있으며, 나아가, 중간충을 질화갈튬층들 사이에 배치함으로써 반도체층들의 결정품질을 더욱 개선할 수 있다. 또한, 질화갈륨층들과 증간층의 도핑 농도를 조절함으로써 발광 다이오드의 순방향 전압을 낮출 수 있다.  According to the present invention, the crystal quality of semiconductor layers grown thereon can be improved by adopting a gallium nitride substrate, and further, the crystal quality of semiconductor layers can be further improved by arranging intermediate charges between the gallium nitride layers. . In addition, the forward voltage of the light emitting diode may be lowered by adjusting the doping concentrations of the gallium nitride layers and the intermediate layer.
【도면의 간단한 설명】  [Brief Description of Drawings]
도 1은 본 발명의 일 실시예에 따른 발광 다이오드를 설명하기 위한 단면도이다.  1 is a cross-sectional view illustrating a light emitting diode according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 발광 다이오드의 중간층을 설명하기 위한 것으로 (a)는 개략적인 밴드 다이어그램이고, (b)는 도핑농도 프로파일이다.  2 is for explaining an intermediate layer of a light emitting diode according to an embodiment of the present invention (a) is a schematic band diagram, (b) is a doping concentration profile.
도 3은 본 발명의 일 실시예에 따른 초격자층을 설명하기 위한 단면도이다.  3 is a cross-sectional view illustrating a superlattice layer according to an embodiment of the present invention.
도 4는 본 발명의 다른 실시예에 따른 초격자층을 설명하기 위한 단면도이다.  4 is a cross-sectional view illustrating a superlattice layer according to another exemplary embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 활성층을 설명하기 위한 단면도이다. 도 6은 도 5의 활성층을 설명하기 위한 에너지 밴드를 나타낸다.  5 is a cross-sectional view illustrating an active layer according to an embodiment of the present invention. FIG. 6 is an energy band illustrating the active layer of FIG. 5.
도 7은 중간층 사용에 따른 에피층의 표면 모폴로지를 설명하기 위한 광학 사진이다. 【발명의 실시를 위한 형태】 7 is an optical photograph for explaining the surface morphology of the epi layer according to the use of the intermediate layer. [Form for implementation of invention]
이하, 첨부한 도면들을 참조하여 본 발명의 실시예들을 상세히 설명하기로 한다. 다음에 소개되는 실시예들은 당업자에게 본 발명의 사상이 층분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고, 도면들에 있어서, 동일한 참조번호는 동일한 구성요소를 나타내며, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수 있다.  Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The following embodiments are provided as examples to enable those skilled in the art to fully convey the spirit of the present invention. Accordingly, the present invention is not limited to the embodiments described below and may be embodied in other forms. In the drawings, the same reference numerals denote the same components, and the width, length, thickness, etc. of the components may be exaggerated for convenience.
도 1은 본 발명의 일 실시예에 따른 발광 다이오드를 설명하기 위한 단면도이다.  1 is a cross-sectional view illustrating a light emitting diode according to an embodiment of the present invention.
도 1을 참조하면, 상기 발광 다이오드는, 질화갈륨 기판 (11), 하부 반도체층 (15), 중간층 (17), n형 상부 반도체층 (19), 초격자층 (20), 활성층 (30) 및 p형 반도체층 (43)을 포함한다. 나아가, 상기 발광 다이오드는, p형 클래드층 (41), 투명 전극층 (45), 제 1 전극 (47) 및 제 2 전극 (49)을 포함할 수 있다.  Referring to FIG. 1, the light emitting diode includes a gallium nitride substrate 11, a lower semiconductor layer 15, an intermediate layer 17, an n-type upper semiconductor layer 19, a superlattice layer 20, and an active layer 30. And a p-type semiconductor layer 43. Furthermore, the light emitting diode may include a p-type cladding layer 41, a transparent electrode layer 45, a first electrode 47, and a second electrode 49.
상기 질화갈륨 기판 (11)은 c면 성장면을 가질 수 있으나, 이에 한정되는 것은 아니다. 또한, 상기 질화갈륨 기판 (11)의 성장면은 에피층의 성장을 돕기 위한 경사각을 가질 수 있다. 이러한 질화갈륨 기판 (11)은 예컨대 HVPE 기술을 사용하여 제조될 수 있다.  The gallium nitride substrate 11 may have a c-plane growth surface, but is not limited thereto. In addition, the growth surface of the gallium nitride substrate 11 may have an inclination angle to help the growth of the epi layer. Such gallium nitride substrate 11 can be produced, for example, using HVPE technology.
상기 질화갈륨 기판 (11) 상에 하부 반도체층 (15)이 위치한다. 상기 하부 반도체층 (15)은 질화갈륨 기판 (11) 상에서 질화갈륨층으로 성장될 수 있다. 상기 하부 반도체층 (15)은 약 KXXrC의 온도에서 5xl018~2xl019/ciii! 범위의 n형 불순물 (예컨대, Si) 농도를 갖도록 성장될 수 있다. 본 실시예에 있어서, 상기 하부 반도체층 (15)이 n형 불순물로 도핑되는 것으로 설명하지만, 다른 실시예에 있어서, 상기 하부 반도체층 (15)은 의도적으로 불순물을 도핑하지 않은 언도프트 GaN층일 수 있다. 상기 하부 반도체층 (15) 상에 중간층 (17)이 위 치 한다. 상기 중간층 (17)은 하부 반도체층 (15)의 조성과는 다른 조성을 갖는 질화갈륨 계열의 에피층으로 형성 되며, 질화갈륨층에 비해 넓 은 밴드갭을 갖는다. 예컨대, 상기 중간층 (17)은 AlInN, AlGaN 또는 AlInGaN으로 형성될 수 있다. 특히 상기 중간층 (17)은 AlInN로 형성되어 GaN층과 동일한 격자상수를 가질 수 있으며, 나아가 AlInN층과 GaN층을 교대로 적층한 초격자 구조로 형성 될 수도 있다. 하부 반도체층 (15)과 n형 상부 반도체층 (19)은 약 100CTC의 고온에서 성장되나, 상기 중간층 (17)은 약 800 내지 900°C의 온도범위에서 성장된다. GaN과 다른 조성의 중간층 (17)을 GaN층들 (15, 19) 사이에 형성함으로써 중간층 (17) 위에 형성 되는 상부 반도체층 (19)에 스트레인을 유발할 수 있고, 이를 이용하여 다중양자우물 구조의 결정 질을 향상시 킬 수 있다. 나아가, GaN층들 (15, 19) 사이에 도 2(a)에 도시 한 바와 같이 상대적으로 넓은 밴드갭을 갖는 중간층 (17)이 위치함으로써, 2차원 전자 가스를 이용하여 상기 GaN층들 (15, 19) 내에서 전류를 고르게 분산시 킬 수 있다. The lower semiconductor layer 15 is positioned on the gallium nitride substrate 11. The lower semiconductor layer 15 may be grown as a gallium nitride layer on the gallium nitride substrate 11. The lower semiconductor layer 15 is 5xl0 18 ~ 2xl0 19 / ciii ! It can be grown to have a concentration of n-type impurities (eg, Si). In this embodiment, the lower semiconductor layer 15 is described as being doped with n-type impurities. In another embodiment, the lower semiconductor layer 15 may be an undoped GaN layer intentionally doped with no impurities. have. The intermediate layer 17 is positioned on the lower semiconductor layer 15. The intermediate layer 17 is formed of a gallium nitride-based epi layer having a composition different from that of the lower semiconductor layer 15, and has a wider band gap than the gallium nitride layer. For example, the intermediate layer 17 may be formed of AlInN, AlGaN or AlInGaN. In particular, the intermediate layer 17 may be formed of AlInN and may have the same lattice constant as that of the GaN layer. Furthermore, the intermediate layer 17 may have a superlattice structure in which the AlInN layer and the GaN layer are alternately stacked. The lower semiconductor layer 15 and the n-type upper semiconductor layer 19 are grown at a high temperature of about 100 CTC, but the intermediate layer 17 is grown at a temperature range of about 800 to 900 ° C. By forming an intermediate layer 17 having a different composition from GaN between the GaN layers 15 and 19, strain may be induced in the upper semiconductor layer 19 formed on the intermediate layer 17, and the multi-quantum well structure is determined using the intermediate layer 17. It can improve quality. Furthermore, GaN layers (15, 19) between in Fig. 2 (a) one by a position intermediate layer 17 having a relatively wide band gap, using the two-dimensional electron gas the GaN layers, as shown in (15, 19) The current can be evenly distributed in the circuit.
또한, 도 2(b)에 도시 한 바와 같이, 중간층 (17)은 상부 반도체층 (19)에 비해 상대적으로 낮은 농도의 도핑 농도를 갖도록 형성 된다. 예컨대, 상기 중간층 (17)은 lxi017~ lxl018/cirf의 n형 불순물 (예컨대, Si) 농도를 가질 수 있으며, 상부 반도체층 (19)은 δΧΐΟ^ΖΧΐΟ19/^의 η형 불순물 농도를 가질 수 있다. 상기 중간층 (17)이 위 농도 범위 의 도핑 농도를 가짐으로써 양호한 결정 질의 반도체층을 성장시 키 면서도 발광 다이오드의 순반향 전압을 낮출 수 있다. In addition, as shown in FIG. 2B, the intermediate layer 17 is formed to have a lower doping concentration than the upper semiconductor layer 19. For example, the intermediate layer 17 may have an n-type impurity (eg, Si) concentration of lxi0 17 to lxl0 18 / cirf, and the upper semiconductor layer 19 may have a η-type impurity concentration of δΧΐΟ ^ ΖΧΐΟ 19 / ^. Can be. Since the intermediate layer 17 has a doping concentration in the above concentration range, it is possible to grow a good crystalline semiconductor layer while lowering the forward reflection voltage of the light emitting diode.
덧붙여, 상기 η형 상부 반도체층 (19)은 상기 중간층 (17) 상에서 질화갈륨층으로 성장된다. 한편, 상기 상부 반도체층 (19) 상에 η 전극 (47)이 위 치할 수 있다. 본 실시 예에 있어서, 상부 반도체층 (19)이 단일의 GaN층이고, 그 위에 n 전극 (47)이 위치하는 것으로 도시하지 만, 이에 한정되는 것은 아니다. 즉, 상기 n 전극 (47)과 상기 상부 반도체충 (19) 사이 에 다른 질화갈륨계 반도체층 (들)이 위 치할 수도 있다. In addition, the η-type upper semiconductor layer 19 is grown on the intermediate layer 17 as a gallium nitride layer. Meanwhile, the η electrode 47 may be positioned on the upper semiconductor layer 19. In the present embodiment, the upper semiconductor layer 19 is shown as a single GaN layer, and the n electrode 47 is positioned thereon, but is not limited thereto. no. In other words, another gallium nitride based semiconductor layer (s) may be disposed between the n electrode 47 and the upper semiconductor layer 19.
한편, 상기 n형 상부 반도체층 (19) 상에 다층 구조의 초격자층 (20)이 위 치할 수 있다. 상기 초격자층 (20)은 n형 상부 반도체층 (19)과 활성층 (30) 사이에 위 치하며, 따라서 전류 경로 상에 위 치한다. 상기 초격자층 (20)은 InGaN/GaN의 쌍을 복수 주기 (예컨대, 15 내지 20 주기 ) 반복 적층하여 형성할 수 있으나, 이에 한정되지 않는다. 예컨대, 도 3에 도시 한 바와 같이, 상기 초격자층 (20)은 InGaN층 (21)/AlGaN층 (22)/GaN층 (23)의 3층 구조가 복수 주기 (예컨대, 약 10 내지 20 주기 ) 반복 적층된 구조를 가질 수 있다. AlGaN층 (22)과 InGaN층 (21)의 순서는 서로 바뀔 수도 있다. 여 기서, 상기 InGaN층 (21)은 활성층 (30) 내의 우물층에 비해 넓은 밴드갭을 갖는다. 또한, 상기 AlGaN층 (22)은 활성층 (30) 내의 장벽층에 비해 넓은 밴드갭을 갖는 것 이 바람직하다. 나아가, 상기 InGaN충 (21) 및 AlGaN층 (22)은 불순물을 의도적으로 도핑하지 않은 언도프트층으로 형성 되 고 상기 GaN층 (23)은 Si 도핑층으로 형성될 수 있다. 상기 초격자층 (20)의 최상층은 불순물이 도핑된 GaN층 (23)인 것이 바람직하다.  Meanwhile, a superlattice layer 20 having a multilayer structure may be positioned on the n-type upper semiconductor layer 19. The superlattice layer 20 is located between the n-type upper semiconductor layer 19 and the active layer 30, and thus is located on the current path. The superlattice layer 20 may be formed by repeatedly stacking a pair of InGaN / GaN (for example, 15 to 20 cycles), but is not limited thereto. For example, as shown in FIG. 3, the superlattice layer 20 has a three-layer structure having an InGaN layer 21 / AlGaN layer 22 / GaN layer 23 having a plurality of cycles (for example, about 10 to 20 cycles). ) May have a repeatedly stacked structure. The order of the AlGaN layer 22 and the InGaN layer 21 may be reversed. Here, the InGaN layer 21 has a wider band gap than the well layer in the active layer 30. In addition, the AlGaN layer 22 preferably has a wider bandgap than the barrier layer in the active layer 30. In addition, the InGaN layer 21 and the AlGaN layer 22 may be formed of an undoped layer that is not intentionally doped with impurities, and the GaN layer 23 may be formed of a Si doped layer. The uppermost layer of the superlattice layer 20 is preferably a GaN layer 23 doped with impurities.
초격자층 (20) 내에 AlGaN충 (22)을 포함함으로써 활성층 (30) 내의 정공이 n형 상부 반도체층 (19) 쪽으로 이동하는 것을 차단할 수 있어, 활성층 (30)의 내의 발광 재결합율을 향상시 킬 수 있다. 상기 AlGaN층 (22)은 lnm 미 만의 두께로 형성 될 수 있다. By including the AlGaN charge 22 in the superlattice layer 20, it is possible to block holes in the active layer 30 from moving toward the n- type upper semiconductor layer 19, thereby improving the recombination rate of light emission in the active layer 30. Can kill. The AlGaN layer 22 may be formed to a thickness of less than lnm.
한편, 상기 초격자층 (20)은 InGaN층 (21) 상에 AlGaN층 (22)을 형성 하기 때문에, 이들 사이의 격자부정합이 커서 계면에 결정 결함이 형성되기 쉽다. 따라서, 상기 InGaN층 (21)과 AlGaN층 (22) 사이에 도 4에 도시 한 바와 같이 GaN층 (24)을 삽입할 수 있다. 상기 GaN층 (24)은 언도프트층 또는 Si 도핑 된 층으로 형성될 수 있다. 상기 초격자층 (20) 상에 다중양자우물 구조의 활성층 (30)이 위치한다. 상기 활성층 (30)은, 도 5에 잘 도시된 바와 같이, 장벽층 (3 la, 31b) 및 우물층 (33η, 33, 33ρ)이 교대로 적층된 구조를 갖는다. 여기서, 33η은, 초격자층 (20) 또는 η형 상부 반도체층 (19)에 가장 가까운 우물층 (제 1 우물층)을 나타내고, 33ρ는 ρ형 클래드층 (41) 또는 ρ형 반도체층 (23)에 가장 가까운 우물층 (제 η 우물층)은 나타낸다. 한편, 도 6은 상기 활성층 (30)의 에너지 밴드를 나타낸다. On the other hand, since the superlattice layer 20 forms the AlGaN layer 22 on the InGaN layer 21, the lattice mismatch between them is large, and crystal defects are likely to form at the interface. Therefore, the GaN layer 24 can be inserted between the InGaN layer 21 and the AlGaN layer 22 as shown in FIG. The GaN layer 24 may be formed of an undoped layer or a Si doped layer. The active layer 30 of the multi-quantum well structure is positioned on the superlattice layer 20. As shown in FIG. 5, the active layer 30 has a structure in which barrier layers 3 la and 31b and well layers 33η, 33, 33ρ are alternately stacked. Here, 33η represents the well layer (first well layer) closest to the superlattice layer 20 or the η-type upper semiconductor layer 19, and 33ρ is the ρ-type cladding layer 41 or the ρ-type semiconductor layer 23. The well layer (the (eta) well layer) closest to) is shown. 6 shows an energy band of the active layer 30.
도 5 및 도 6을 참조하면, 상기 우물충 (33η)과 우물층 (33ρ) 사이에 (η-1)개의 복수의 장벽층들 (31a, 31b) 및 (n-2)개의 복수의 우물층들 (33)이 서로 교대로 적층되어 있다. 장벽층들 (31a)은 이들 (n-1)개의 복수의 장벽층들 (31a 31b)의 평균 두께보다 더 두꺼운 두께를 가지며, 장벽층들 (31b)은 상기 평균 두께보다 더 얇은 두께를 갖는다. 또한, 도시한 바와 같이, 장벽층들 (31a)이 제 1 우물층 (33η)에 가깝게 배치되고, 장벽층들 (31b)이 제 n 우물층 (33p)에 가깝게 배치된다.  5 and 6, a plurality of (η-1) barrier layers 31a and 31b and (n-2) a plurality of well layers between the well worm 33η and the well layer 33ρ. The fields 33 are stacked alternately with each other. The barrier layers 31a have a thickness thicker than the average thickness of these (n-1) plurality of barrier layers 31a 31b, and the barrier layers 31b have a thickness thinner than the average thickness. Further, as shown, barrier layers 31a are disposed close to the first well layer 33η, and barrier layers 31b are disposed close to the nth well layer 33p.
나아가, 장벽층 (31a)이 초격자층 (20)의 최상부층에 접하여 위치할 수 있다. 즉, 초격자층 (20)과 제 1 우물층 (33η) 사이에 장벽층 (31a)이 위치할 수 있다. 또한, 제 n 우물층 (33p) 상에 장벽층 (35)이 위치할 수 있다. 장벽층 (35)은 장벽층 (31a)에 비해 상대적으로 더 두꺼운 두께를 가질 수 있다.  Furthermore, the barrier layer 31a may be located in contact with the uppermost layer of the superlattice layer 20. That is, the barrier layer 31a may be located between the superlattice layer 20 and the first well layer 33η. In addition, the barrier layer 35 may be positioned on the nth well layer 33p. The barrier layer 35 may have a relatively thicker thickness than the barrier layer 31a.
거 In 우물층 (33p)에 가까운 장벽층들 (31b)의 두께를' 상대적으로 얇게 함으로써 활성층 (30)의 저항 성분을 감소시키고 또한 p형 반도체층 (43)에서 주입된 정공을 활성층 (30) 내의 우물층들 (33)에 분산시킬 수 있으며, 이에 따라 발광 다이오드의 순방향 전압을 낮출 수 있다. 또한 장벽층 (35)의 두께를 상대적으로 두껍게 함으로써, 활성층 (30), 특히 우물층들 (33η, 33, 33ρ)을 성장시키는 동안 생성된 결정 결함을 치유하여 그 위에 형성되는 에피층들의 결정질을 개선할 수 있다. 다만, 상기 장벽층들 (31a)의 개수보다 장벽층들 (31b)의 개수를 더 많이 형성할 경우, 활성층 (30) 내에 결함 밀도가 증가하여 발광 효율이 감소될 수 있다. 따라서, 상기 장벽층들 (31a)의 개수를 장벽층들 (31b)의 개수보다 더 많이 형성하는 것 이 바람직하다. I, by reducing the thickness of the near barrier layers (31b) on In the well layer (33p) to the "relative decrease a resistance component of the active layer 30, and also the active layer 30, the holes injected from the p-type semiconductor layer 43 It can be dispersed in the well layers 33 in the interior, thereby lowering the forward voltage of the light emitting diode. In addition, by relatively thickening the barrier layer 35, the crystal defects generated during the growth of the active layer 30, especially the well layers 33? It can be improved. However, than the number of the barrier layers 31a When the number of the barrier layers 31b is increased, the defect density increases in the active layer 30 and thus the luminous efficiency may be reduced. Therefore, it is preferable to form the number of the barrier layers 31a more than the number of the barrier layers 31b.
한편, 상기 우물층들 (33η, 33, 33ρ)은 서로 거 의 동일한 두께를 가질 수 있으며, 이 에 따라 반치폭이 매우 작은 광을 방출할 수 있다. 이와 달리, 우물층들 (33η, 33, 33ρ)의 두께를 서로 다르게 조절하여 상대적으로 넓은 반치폭을 갖는 광을 방출할 수도 있다. 나아가, 상기 장벽층들 (31a) 사이 에 위치하는 우물층 (33)에 비해 장벽층들 (3 lb) 사이 에 위 치하는 우물층 (33)의 두께를 상대적으로 얇게 함으로써 결정 결함이 생성 되는 것을 방지할 수 있다. 예컨대, 상기 우물층들 (33η, 33, 33ρ)의 두께는 예컨대, 10 내지 30Α 범위 내이고, 상기 장벽층들 (3 la)의 두께는 50 내지 70 A 범위 내이고, 상기 장벽층들 (31b)의 두께는 30 내지 50A 범위 내일 수 있다.  Meanwhile, the well layers 33η, 33, and 33ρ may have almost the same thickness, and thus may emit light having a very small half width. Alternatively, the thicknesses of the well layers 33η, 33 and 33ρ may be adjusted differently to emit light having a relatively wide half width. Furthermore, the crystal defect is generated by making the thickness of the well layer 33 positioned between the barrier layers 3 lb relatively thin, compared to the well layer 33 positioned between the barrier layers 31a. It can prevent. For example, the thickness of the well layers 33η, 33, 33ρ is, for example, in the range of 10 to 30 A, the thickness of the barrier layers 3 la is in the range of 50 to 70 A, and the barrier layers 31b. ) May have a thickness in the range of 30-50A.
또한, 상기 우물층들 (33η, 33, 33ρ)은 근자외선 또는 청 색 영 역의 광을 방출하는 질화갈륨계 층으로 형성 될 수 있다. 예컨대, 상기 우물층들 (33η, 33, 33ρ)은 InGaN으로 형성될 수 있드며, In 조성 비는 요구되는 파장에 따라 조절된다. In addition, the well layers 33η, 33, 33ρ may be formed of a gallium nitride-based layer that emits light in the near ultraviolet or blue region. For example, the well layers 33 η , 33, 33ρ may be formed of InGaN, and the In composition ratio is adjusted according to the required wavelength.
한편, 상기 장벽층들 (31a, 31b)은 전자와 정공을 우물층들 (33η, 33, 33ρ) 내에 가두기 위 해 상기 우물층들 (33η, 33, 33ρ)보다 넓은 밴드갭을 갖는 질화갈륨계 층으로 형성 된다. 예컨대, 상기 장벽층들 (31a, 31b)은 GaN, AlGaN 또는 AlInGaN으로 형성 될 수 있다. 특히, 상기 장벽층들 (31a, 31b)은 A1을 함유하는 질화갈륨계 층으로 형성 되 어 밴드갭을 더욱 증대시 킬 수 있다. 상기 장벽층들 (3 la, 31b) 내의 A1의 조성 비는 0보다 크고 0.1보다 작은 것 이 바람직하며, 특히, 으02 내지 0.05일 수 있다. A1 조성 비를 상기 범위 내로 제한함으로써 광 출력을 증가시 킬 수 있다.  On the other hand, the barrier layers 31a and 31b are gallium nitride based having a wider bandgap than the well layers 33η, 33 and 33ρ to trap electrons and holes in the well layers 33η, 33 and 33ρ. It is formed into layers. For example, the barrier layers 31a and 31b may be formed of GaN, AlGaN or AlInGaN. In particular, the barrier layers 31a and 31b may be formed of a gallium nitride based layer containing A1 to further increase the band gap. The composition ratio of A1 in the barrier layers 3 la and 31b is preferably greater than 0 and less than 0.1, and in particular, may be from 02 to 0.05. The light output can be increased by limiting the A1 composition ratio within the above range.
덧붙여, 상기 각 우물층 (33η, 33, 33ρ)과 그 위 에 위 치하는 장벽층들 (31a, 31b) 사이 에는 도시하지는 않았지 만, 캡층이 형성 될 수 있다. 캡층은, 장벽층 (31a, 31b)을 성장시 키 기 위 해 챔버 온도를 을리는 동안 우물층이 손상되는 것을 방지하기 위 해 형성된다. 예컨대, 상기 우물층들 (33η, 33, 33ρ)은 약 780°C의 온도에서 성장될 수 있으며, 상기 장벽층들 (31a, 31b)은 약 800°C의 온도에서 성장될 수 있다. 상기 p형 클래드층 (41)은 활성층 (30) 상에 위 치하며, AlGaN으로 형성될 수 있다. 또는, 상기 p형 클래드층 (41)은 InGaN/AlGaN을 반복 적층한 초격자 구조로 형성될 수도 있다. 상기 p형 클래드층 (41)은 전자 블록층으로서, 전자가 P형 반도체층 (43)으로 이동하는 것을 차단하여 발광 효율을 개선한다. In addition, each of the well layers 33η, 33 and 33ρ and the barrier layers 31a disposed thereon Although not shown between 31b), a cap layer may be formed. The cap layer is formed to prevent the well layer from being damaged while lowering the chamber temperature to grow the barrier layers 31a and 31b. For example, the well layers 33η, 33, 33ρ may be grown at a temperature of about 780 ° C, and the barrier layers 31a, 31b may be grown at a temperature of about 800 ° C. The p-type cladding layer 41 is positioned on the active layer 30 and may be formed of AlGaN. Alternatively, the p-type cladding layer 41 may be formed in a superlattice structure in which InGaN / AlGaN is repeatedly stacked. The p-type cladding layer 41 is an electron blocking layer, and blocks electrons from moving to the P-type semiconductor layer 43 to improve luminous efficiency.
다시 도 1을 참조하면, 상기 p형 반도체층 (43)은 Mg을 도핑 한 GaN로 형성될 수 있다. p형 반도체층 (43)은 p형 클래드층 (41) 상에 위 치 한다. 한편, P형 반도체층 (43) 상에 ITO나 Znᄋ와 같은 투명 도전층 (45)이 형성 되 어 p형 반도체층 (43)에 오믹 콘택할 수 있다. 따라서, 상기 p형 반도체층 (43)이 p형 콘택층으로 기능한다. 한편, 제 2 전극 (49)이 p형 반도체층 (43)에 전기 적으로 접속된다. 제 2 전극 (49)은 투명 도전층 (45)을 통해 p형 반도체층 (43)에 접속될 수 있다. ᅳ  Referring back to FIG. 1, the p-type semiconductor layer 43 may be formed of GaN doped with Mg. The p-type semiconductor layer 43 is located on the p-type cladding layer 41. On the other hand, a transparent conductive layer 45 such as ITO or Zn® is formed on the P-type semiconductor layer 43 so that the p-type semiconductor layer 43 can be in ohmic contact. Thus, the p-type semiconductor layer 43 functions as a p-type contact layer. On the other hand, the second electrode 49 is electrically connected to the p-type semiconductor layer 43. The second electrode 49 may be connected to the p-type semiconductor layer 43 through the transparent conductive layer 45. ᅳ
한편, p형 반도체층 (43), p형 클래드층 (41 활성층 (30) 및 초격자층 (20)의 일부를 식각 공정으로 제거하여 n형 상부 반도체층 (19)이 노출될 수 있다. 계 1 전극 (47)은 상기 노출된 n형 상부 반도체층 (19) 상에 형성 될 수 있다. 따라서, 상기 n형 상부 반도체층 (19)이 n형 콘택층으로 기능한다. 본 실시 예에 있어서, 상기 질화갈륨 기판 (11) 상에 성장되는 에피층들 (15 ~ 43)은 MOCVD 기술을 이 용하여 형성 될 수 있다. 이 때 , Al, Ga 및 In의 소스로는 TMAl, TMGa 및 TMIn이 각각 사용될 수 있으며, N의 소스로는 NH3가 사용될 수 있다. 또한, n형 불순물인 Si의 소스로는 SiH4가 사용될 수 있고, p형 불순물인 Mg의 소스로는 Cp2Mg가 사용될 수 있다. (실험 예) Meanwhile, a portion of the p-type semiconductor layer 43, the p-type cladding layer 41, the active layer 30, and the superlattice layer 20 may be removed by an etching process to expose the n-type upper semiconductor layer 19. The first electrode 47 may be formed on the exposed n-type upper semiconductor layer 19. Therefore, the n-type upper semiconductor layer 19 functions as an n-type contact layer. The epitaxial layers 15 to 43 grown on the gallium nitride substrate 11 may be formed using a MOCVD technique, in which TMAl, TMGa, and TMIn may be used as the sources of Al, Ga, and In, respectively. In addition, NH3 may be used as a source of N. In addition, SiH4 may be used as a source of Si, which is an n-type impurity, and Cp 2 Mg may be used as a source of Mg, which is a p-type impurity. (Experimental example)
도 7은 중간층 사용에 따른 에피층의 표면 모폴로지를 설명하기 위 한 광학 사진이다. 여기서 (a)는 중간층 없이 질화갈륨 기판 (11) 상에 n형 GaN층 (19), 초격자층 (20), 활성층 (30), p형 AlGaN 클래드층 (41) 및 p형 GaN층 (43)을 차례로 성장시 킨 후 광학 현미 경으로 촬영 한 p형 GaN층 (43)의 표면 사진이고, (b)는 하부 GaN층 (15)과 n형 GaN층 (19) 사이에 10nm 미 만의 Al0 8In0.2N 중간층 (17)을 형성하고, n형 GaN층 (19) 상에 초격자층 (20), 활성층 (30), p형 AlGaN 클래드층 (41) 및 p형 GaN층 (43)을 차례로 성장시 킨 후 광학 현미경으로 촬영 한 p형 GaN층 (43)의 표면 사진을 나타낸다. 상기 질화갈륨 기판 (11)은 c면 성장 기판을 이용하였으며, 상기 기판 (11)은 표면에 평 행하게 형성된 전위 결함 라인들 (Ld)을 갖고 있었다. 상기 하부 GaN층 (15)과 n형 상부 GaN층 (19)은 약 1050°C ~1100°C의 온도에서 동일한 성 장 조건하에서 형성되 었으며, 상기 중간층 (17)은 약 83CTC의 온도에서 성장되 었다. 7 is an optical picture for explaining the surface morphology of the epi layer according to the use of the intermediate layer. Where (a) is an n-type GaN layer 19, a superlattice layer 20, an active layer 30, a p-type AlGaN cladding layer 41 and a p-type GaN layer 43 on a gallium nitride substrate 11 without an intermediate layer. ) Is a surface photograph of the p-type GaN layer 43 photographed by optical microscopy after growth), and (b) is less than 10 nm of Al 0 between the lower GaN layer 15 and the n-type GaN layer 19. An 8 In 0.2 N intermediate layer 17 is formed, and the superlattice layer 20, the active layer 30, the p-type AlGaN cladding layer 41 and the p-type GaN layer 43 are formed on the n-type GaN layer 19. After growing in turn, the surface photograph of the p-type GaN layer 43 taken with the optical microscope is shown. The gallium nitride substrate 11 used a c-plane growth substrate, and the substrate 11 had dislocation defect lines Ld formed parallel to the surface thereof. The lower GaN layer 15 and the n-type upper GaN layer 19 were formed under the same growth conditions at a temperature of about 1050 ° C. to 1100 ° C., and the intermediate layer 17 was grown at a temperature of about 83 CTC. .
도 7(a)를 참조하면, 중간층 (17)을 형성하지 않은 경우, 최종 에피층인 p형 GaN층 (43)의 표면이 매우 거 칠게 형성되 었다. 기판 (11)의 결정 결함 라인들 (Ld)은 p형 GaN층 (43)까지 전사되어 표면에서도 관찰된다. 이 결정 결함 라인들 (Ld)에서 표면은 더 불량해지는 것으로 보인다. 더욱이, 결정 결함 라인들 (Ld) 사이 영 역의 표면 또한 매우 거 칠게 형성 된 것을 확인할 수 있다. 도 7(b)를 참조하면, 중간층 (17)을 형성 한 경우, 도 7(a)와 대비하여 결정 결함 라인들 (Ld) 사이 영 역의 표면이 매우 매끄러우며 뿐만 아니라 결정 결함 라인들 (Ld)에서도 에피층이 깨끗하게 성장된 것을 확인할 수 있다.  Referring to FIG. 7A, when the intermediate layer 17 is not formed, the surface of the p-type GaN layer 43 as a final epitaxial layer is very rough. Crystal defect lines Ld of the substrate 11 are transferred to the p-type GaN layer 43 and observed on the surface. In these crystal defect lines Ld the surface appears to be worse. Moreover, it can be seen that the surface of the region between the crystal defect lines Ld is also formed very roughly. Referring to FIG. 7B, when the intermediate layer 17 is formed, the surface of the region between the crystal defect lines Ld is very smooth, as well as the crystal defect lines Ld, in contrast to FIG. 7A. You can also see that the epi layer grows clean.
또한, 질화갈륨 기판 (11) 상에 서로 분리된 발광 다이오드들을 제작하여 웨이퍼 레벨에서 중간층 (17) 사용 여부에 따른 순방향 전압을 대비하였다. 하부 GaN층 (15) 및 상부 GaN층 (19)을 상대적으로 고농도로 도핑하고 중간층 (17)을 저농도로 도핑 한 경우, 중간층 (17)을 사용한 발광 다이오드들의 순방향 전압이 중간층 (17)을 사용하지 않은 발광 다이오드들에 비해 대체로 약 0.13V 작게 나타났다. 이와 달리, 중간층 (17)에 불순물을 도핑하지 않은 경우, 순방향 전압은 중간층 (17)을 사용하지 않은 발광 다이오드들과 유사한 것을 확인할 수 있었다. In addition, light emitting diodes separated from each other on the gallium nitride substrate 11 were fabricated to compare the forward voltage according to the use of the intermediate layer 17 at the wafer level. When the lower GaN layer 15 and the upper GaN layer 19 are relatively doped and the intermediate layer 17 is lightly doped, the light emitting diodes using the intermediate layer 17 The forward voltage was generally about 0.13V lower than that of light emitting diodes without the intermediate layer 17. On the contrary, when the impurity was not doped in the intermediate layer 17, the forward voltage was similar to that of the light emitting diodes without the intermediate layer 17.
. 따라서, 중간층 (17)을 사용함과 아울러 중간층 (17)에 상대적으로 저농도의 불순물을 도핑함으로써 결정품질을 개선함과 아울러 순방향 전압을 낮출 수 있음을 알 수 있다.  . Accordingly, it can be seen that the use of the intermediate layer 17 and the doping of impurities at a relatively low concentration in the intermediate layer 17 can improve the crystal quality and lower the forward voltage.
본 실시예에 있어서ᅳ 발광 다이오드를 예로 설명하였지만, 본 발명은 발광 다이오드에 한정되는 것은 아니며, 질화갈륨계 반도체층을 채택하는 모든 종류의 반도체 소자에 적용될 수 있다. 나아가, 특정 웅용예에 있어서, 상기 중간층은 반드시 n형 불순물이 도핑된 n형 반도체층일 필요는 없으며, 언도프층일 수도 있다.  Although the light emitting diode has been described as an example in the present embodiment, the present invention is not limited to the light emitting diode and can be applied to all kinds of semiconductor devices employing a gallium nitride based semiconductor layer. Furthermore, in a specific example, the intermediate layer need not necessarily be an n-type semiconductor layer doped with n-type impurities, or may be an undoped layer.
이상에서, 본 발명의 다양한 실시예들 및 특징들에 대해 설명하였지만, 본 발명은 위에서 설명한 실시예들 및 특징들에 한정되는 것은 아니며, 본 발명의 사상을 벗어나지 않는 범위 내에서 다양하게 변형될 수 있다.  In the above, various embodiments and features of the present invention have been described, but the present invention is not limited to the embodiments and features described above, and various modifications may be made without departing from the spirit of the present invention. have.

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
질화갈륨 기판;  Gallium nitride substrates;
상기 질화갈륨 기판 상에 위치하는 하부 질화갈륨층;  A lower gallium nitride layer on the gallium nitride substrate;
상기 하부 질화갈륨층 상부에 위치하는 n형 상부 질화갈륨층; 및 상기 하부 질화갈륨층과 상기 상부 질화갈륨층 사이에 개재된 중간층을 포함하되,  An n-type upper gallium nitride layer positioned on the lower gallium nitride layer; And an intermediate layer interposed between the lower gallium nitride layer and the upper gallium nitride layer.
상기 중간층은 알루미늄을 함유하며 질화갈륨층보다 넓은 밴드 ¾을 갖는 질화갈륨계 반도체층인 반도체 소자.  The intermediate layer is a gallium nitride-based semiconductor layer containing aluminum and has a band ¾ wider than the gallium nitride layer.
【청구항 2】  [Claim 2]
청구항 1에 있어서,  The method according to claim 1,
상기 중간층은 AlInN층을 포함하는 반도체 소자.  The intermediate layer comprises an AlInN layer.
【청구항 3】  [Claim 3]
청구항 2에 있어서,  The method according to claim 2,
상기 중간층은 AlInN층과 GaN층이 교대로 적층된 초격자 구조인 반도체 소자.  The intermediate layer has a superlattice structure in which an AlInN layer and a GaN layer are alternately stacked.
[청구항 4[Claim 4 ]
청구항 2에 있어서 ,  The method according to claim 2,
상기 AlInN층은 질화갈륨층과 동일한 격자상수를 갖는 반도체 소자.  And the AlInN layer has the same lattice constant as the gallium nitride layer.
【청구항 5】  [Claim 5]
청구항 1에 있어서,  The method according to claim 1,
상기 하부 질화갈륨층은 n형 불순물이 도핑 된 반도체층이고,  The lower gallium nitride layer is a semiconductor layer doped with n-type impurities,
상기 중간층은 상기 하부 질화갈륨층 및 상기 상부 질화갈륨층보다 낮은 n형 도핑 농도를 갖는 반도체층인 반도체 소자.  And the intermediate layer is a semiconductor layer having a lower n-type doping concentration than the lower gallium nitride layer and the upper gallium nitride layer.
【청구항 6】 청구항 5에 있어서, ' [Claim 6] The method according to claim 5,
상기 상부 반도체층 상에 위치하는 p형 반도체층; 및  A p-type semiconductor layer on the upper semiconductor layer; And
상기 p형 반도체층과 상기 n형 상부 질화갈륨층 사이 에 위 치하는 활성 층을 더 포함하는 반도체 소자.  And an active layer between the p-type semiconductor layer and the n-type upper gallium nitride layer.
【청구항 7】  [Claim 7]
청구항 6에 있어서,  The method according to claim 6,
상기 상부 질화갈륨층에 전기 적으로 접속된 n형 전극; 및  An n-type electrode electrically connected to the upper gallium nitride layer; And
상기 P형 반도체층에 전기 적으로 접속된 p형 전극을 더 포함하는 반도체 소자.  And a p-type electrode electrically connected to the p-type semiconductor layer.
【청구항 8】  [Claim 8]
청구항 7에 있어서,  The method according to claim 7,
상기 n형 전극은 상기 중간층 상부에 위치 하여 상기 상부 질화갈륨층에 전기 적으로 접속된 반도체 소자.  And the n-type electrode is positioned above the intermediate layer and electrically connected to the upper gallium nitride layer.
【청구항 9】  [Claim 9]
청구항 6에 있어서,  The method according to claim 6,
상기 상부 질화갈륨층과 상기 활성층 사이에 위 치하는 다층 구조의 초격자층을 더 포함하는 반도체 소자.  And a superlattice layer having a multilayer structure positioned between the upper gallium nitride layer and the active layer.
PCT/KR2013/002327 2012-03-21 2013-03-21 Gallium nitride-based semiconductor device WO2013141618A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0028590 2012-03-21
KR1020120028590A KR20130106926A (en) 2012-03-21 2012-03-21 Gallium nitride-based semiconductor device

Publications (1)

Publication Number Publication Date
WO2013141618A1 true WO2013141618A1 (en) 2013-09-26

Family

ID=49222991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/002327 WO2013141618A1 (en) 2012-03-21 2013-03-21 Gallium nitride-based semiconductor device

Country Status (2)

Country Link
KR (1) KR20130106926A (en)
WO (1) WO2013141618A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003069159A (en) * 2001-06-13 2003-03-07 Matsushita Electric Ind Co Ltd Nitride semiconductor and manufacturing method thereof, and nitride semiconductor device
KR20070030723A (en) * 2003-09-05 2007-03-16 도트 메트릭스 테크놀로지, 인코포레이티드 Quantum dot optoelectronic devices with nanoscale epitaxial overgrowth and methods of manufacture
KR20090083566A (en) * 2008-01-30 2009-08-04 엘지전자 주식회사 Nitride semiconductor device and method for manufacturing the same
JP2010040828A (en) * 2008-08-06 2010-02-18 Nippon Telegr & Teleph Corp <Ntt> Nitride semiconductor device
JP2011061086A (en) * 2009-09-11 2011-03-24 Sumitomo Electric Ind Ltd Nitride-based semiconductor element, and method of fabricating nitride-based semiconductor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003069159A (en) * 2001-06-13 2003-03-07 Matsushita Electric Ind Co Ltd Nitride semiconductor and manufacturing method thereof, and nitride semiconductor device
KR20070030723A (en) * 2003-09-05 2007-03-16 도트 메트릭스 테크놀로지, 인코포레이티드 Quantum dot optoelectronic devices with nanoscale epitaxial overgrowth and methods of manufacture
KR20090083566A (en) * 2008-01-30 2009-08-04 엘지전자 주식회사 Nitride semiconductor device and method for manufacturing the same
JP2010040828A (en) * 2008-08-06 2010-02-18 Nippon Telegr & Teleph Corp <Ntt> Nitride semiconductor device
JP2011061086A (en) * 2009-09-11 2011-03-24 Sumitomo Electric Ind Ltd Nitride-based semiconductor element, and method of fabricating nitride-based semiconductor

Also Published As

Publication number Publication date
KR20130106926A (en) 2013-10-01

Similar Documents

Publication Publication Date Title
US7884350B2 (en) Semiconductor light emitting device and method for manufacturing the same
US9853182B2 (en) Gallium nitride-based light emitting diode
KR20140123410A (en) Uv light emitting device
US20200035860A1 (en) Light emitting element
JP2008118049A (en) GaN-BASED SEMICONDUCTOR LIGHT EMITTING DEVICE
KR100998234B1 (en) Nitride semiconductor light emitting device and method for fabricating the same
KR100728132B1 (en) Light-emitting diode using current spreading layer
US20090078961A1 (en) Nitride-based light emitting device
US10665755B2 (en) Method for manufacturing light emitting device
KR101876576B1 (en) Nitride semiconductor light emitting device and method for fabricating the same
WO2013147453A1 (en) Gallium nitride-based light-emitting diode
KR100881053B1 (en) Nitride based light emitting device
KR100906972B1 (en) Nitride based light emitting device
KR101239856B1 (en) Light-emitting diode and Method of manufacturing the same
KR102224109B1 (en) Light emitting device, Method for fabricating the same and Lighting system
WO2013141618A1 (en) Gallium nitride-based semiconductor device
KR101373804B1 (en) White light emitting diode and fabrication method thereof
KR20100109629A (en) Light emitting diode
US10672948B2 (en) Methods for producing light extraction structures for semiconductor devices
KR20130106925A (en) Non-polar semiconductor device and method of fabricating the same
KR100911775B1 (en) A nitride based light emitting device
KR101414652B1 (en) Nitride semiconductor light emitting device
KR20130104611A (en) Gallium nitride-based light emitting diode and light emitting device having the same
KR20130107815A (en) Method of fabricating non-polar gallium nitride-based semiconductor layer
KR20120029252A (en) Semiconductor light emitting device and a method for fabricating the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13764965

Country of ref document: EP

Kind code of ref document: A1