WO2013141275A1 - Transparent conductive laminate and touch panel - Google Patents

Transparent conductive laminate and touch panel Download PDF

Info

Publication number
WO2013141275A1
WO2013141275A1 PCT/JP2013/057990 JP2013057990W WO2013141275A1 WO 2013141275 A1 WO2013141275 A1 WO 2013141275A1 JP 2013057990 W JP2013057990 W JP 2013057990W WO 2013141275 A1 WO2013141275 A1 WO 2013141275A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
transparent conductive
layer
barrier
metal
Prior art date
Application number
PCT/JP2013/057990
Other languages
French (fr)
Japanese (ja)
Inventor
昌哉 中山
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013141275A1 publication Critical patent/WO2013141275A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/02Layer formed of wires, e.g. mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • the present invention relates to a transparent conductive laminate and a touch panel.
  • ITO glass and ITO film are widely used as transparent conductive materials for touch panels, but indium metal is a rare metal and has low color transmittance and low resistance due to low light transmittance in the long wavelength region. Since there are problems such as the necessity of high-temperature heat treatment and low bending resistance, various alternative materials for ITO glass and ITO film have been studied.
  • conductive materials using conductive metal nanowires are known.
  • Metal nanowires are excellent in terms of transparency, low resistance, and reduction in the amount of metal used, so ITO glass and Expectation as an alternative material for ITO film is increasing.
  • ITO glass and Expectation as an alternative material for ITO film is increasing.
  • Capacitive touch panels are required to be thinner, lighter, and less expensive.
  • the substrate of the transparent substrate is changed to a film, and the cover lens (transparent protective substrate) of the touch panel is changed from a conventional glass to a film. It has been proposed to reduce the thickness, weight, and cost (for example, Patent Document 2).
  • the capacitive touch panel the transparent substrate and the cover lens (transparent protective substrate) are changed from glass to a polymer film, and the transparent conductive film having metal nanowires (
  • the touch panel becomes inoperable or malfunctions when driven under high temperature and high humidity.
  • the resistance value of the transparent conductive film which has metal nanowire rose while driving under high temperature, high humidity.
  • this resistance increase is found to be a phenomenon that occurs when a voltage is applied between line electrodes patterned in a line shape under high temperature and high humidity. Further, this resistance increase is caused by low haze, high transmittance, It has been found that this phenomenon appears prominently in a transparent conductive film using metal nanowires having an average minor axis length of 50 nm or less enabling low resistance.
  • An object of the present invention is to solve the above-described problems, and specifically, a thin and light transparent conductive laminate having low resistance and no haze even when a voltage is applied under high temperature and high humidity, and its transparent conductive It is an object of the present invention to provide a touch panel that is thin, lightweight, and has excellent visibility, which does not cause malfunction even when driven under high temperature and high humidity, by using lamination.
  • Means for solving the above-mentioned problems are the transparent conductive laminates and touch panels [1] and [9] below, and preferably the transparent conductive laminates and touch panels [2] to [10] below.
  • a transparent conductive laminate characterized by the following.
  • the pattern of the first barrier film has a transparent film made of resin on the surface opposite to the surface on which the transparent conductive film is formed, and on the side opposite to the surface adjacent to the adhesive layer of the second barrier film
  • a thin and lightweight transparent conductive laminate that does not increase resistance even when a voltage is applied under high temperature and high humidity, and has a low haze, and the transparent conductive laminate is used to drive under high temperature and high humidity.
  • FIG. 5 is a cross-sectional view taken along line X-X ′ in FIG. 4. It is a cross-sectional schematic diagram of the touch panel of a comparative example.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • FIG. 1 shows a schematic diagram of an example of the transparent conductive laminate of the present invention.
  • the transparent conductive laminate of the present invention includes a first barrier film, a patterned transparent conductive film containing metal nanowires having an average minor axis length of 5 to 50 nm formed directly on the surface of the first barrier film, An adhesive layer covering the transparent conductive film; and a second barrier film adjacent to the adhesive layer.
  • the transparent conductive film is provided on the surface of the first barrier film, but the transparent conductive film may be provided via another layer.
  • the other layer includes an embodiment in which one or more layers or films are provided on the surface of the first barrier film and a transparent conductive film is provided on the surface.
  • a transparent conductive film on the surface of the first barrier film.
  • the patterned transparent conductive film is patterned in a line shape in a conductive area and a non-conductive area, and metal nanowires having an average minor axis length of 5 to 50 nm are contained in the conductive area.
  • the water vapor transmission rates of the first and second barrier films are each 0.1 g / (m 2 ⁇ day) or less.
  • the first barrier film is formed directly (adjacent) to the pattern transparent conductive film, and the second barrier film is adjacent to the adhesive layer by adhering to the adhesive layer.
  • the first and second barrier films have a function of preventing moisture entering from the outside from entering the pattern transparent conductive film, and the water vapor permeability of the first and second barrier films is 0.1 g. / (m 2 ⁇ day) or less, is preferably 0.05 g / (m 2 ⁇ day) or less. Although there is no specific lower limit of the water vapor transmission rate, it is generally 0.000001 g / (m 2 ⁇ day) or more.
  • the first barrier film may have a transparent film made of a resin that supports the first barrier film on the surface opposite to the surface on which the patterned transparent conductive film is formed.
  • the whole including the barrier film is defined as a substrate.
  • a thing with a high light transmittance is good, 70% or more is preferable and 80% or more is more preferable.
  • Other functional layers such as an undercoat layer may be provided between the transparent film and the first barrier film.
  • Other functional layers include, for example, matting agent layers, protective layers, solvent resistant layers, antistatic layers, smoothing layers, adhesion improving layers, light shielding layers, antireflection layers, hard coat layers, stress relaxation layers, antifogging layers. , Antifouling layer, printed layer, easy adhesion layer and the like.
  • the patterned transparent conductive film is formed directly on the surface of the first barrier film or via another layer, that is, the patterned transparent conductive film is formed on the transparent film or functional layer that supports the first barrier film. Also good.
  • the second barrier film has a transparent protective film made of a resin supporting the second barrier film on the surface opposite to the surface adjacent to the adhesive layer, and includes the second barrier film and the transparent protective film.
  • a cover film a thing with a high light transmittance is good, 70% or more is preferable and 80% or more is more preferable.
  • the surface of the transparent protective film opposite to the side on which the second barrier film is formed has a hard coat layer.
  • a hard coat layer having a hardness of 3H or more is preferable.
  • Other functional layers such as an undercoat layer may be provided between the transparent protective film and the second barrier film and between the transparent protective film and the hard coat layer.
  • Other functional layers include, for example, matting agent layers, protective layers, solvent resistant layers, antistatic layers, smoothing layers, adhesion improving layers, light shielding layers, antireflection layers, stress relaxation layers, antifogging layers, and antifouling layers. , Printing layer, easy adhesion layer and the like. These may be a single layer or a plurality of layers. These may be a single layer or a plurality of layers. Details of the first and second barrier films will be described later.
  • the adhesive layer is composed of an adhesive.
  • the present inventor found that moisture in the outside air also entered from the adhesive layer, and found that this had an effect on the increase in resistance of the patterned transparent conductive film. For this reason, it is preferable that the water absorption rate of an adhesion layer is 2.0% or less, It is more preferable that it is 1.0% or less, It is especially preferable that it is 0.9% or less.
  • the adhesive strength of the adhesive layer is preferably 15 N / 25 mm or more, more preferably 30 to 50 N / 25 mm, and more preferably 30 to 42 N / 25 mm. It is particularly preferred. By setting the adhesive strength to 15 N / 25 mm or more, peeling between the second barrier film and the adhesive layer does not occur, and an effect of preventing moisture from entering from the interface between the second barrier film and the adhesive layer is obtained. Further, when the thickness is 30 N / 25 mm or more, a strong effect can be obtained in preventing moisture from entering from the interface between the second barrier film and the adhesive layer, and an increase in resistance of the patterned transparent conductive film can be prevented. However, when it exceeds 50 N / 25 mm, the flexibility of the transparent conductive laminate may be inferior.
  • First and second barrier films In this invention, it has the 1st barrier film adjacent to a pattern transparent conductive film, and the 2nd barrier film adjacent to an adhesion layer.
  • first and second barrier films are also referred to as “barrier films”.
  • the barrier film preferably has an inorganic barrier layer from the viewpoint of water vapor barrier performance.
  • an inorganic barrier layer is not necessarily required as long as the water vapor permeability of the barrier film satisfies 0.1 g / (m 2 ⁇ day) or less.
  • the barrier film may have a structure in which at least one inorganic barrier layer or an organic layer described later is laminated.
  • the inorganic barrier layer and the organic layer may be stacked in this order, or the organic layer and the inorganic barrier layer may be stacked in this order.
  • the uppermost layer may be an inorganic barrier layer or an organic layer.
  • first and second barrier films may be the same barrier film or different barrier films.
  • the inorganic barrier layer is usually a thin film layer made of a metal compound.
  • a method for forming the inorganic barrier layer any method can be used as long as it can form a target thin film (layer).
  • PVD physical vapor deposition method
  • CVD chemical vapor deposition methods
  • liquid phase growth method such as plating and a sol-gel method.
  • the component contained in the inorganic barrier layer is not particularly limited as long as it satisfies the above performance, but for example, a metal oxide, a metal nitride, a metal carbide, a metal oxynitride, or a metal oxycarbide, Si, Al, An oxide, nitride, carbide, oxynitride, oxycarbide, or the like containing one or more metals selected from In, Sn, Zn, Ti, Cu, Ce, and Ta can be preferably used.
  • a metal oxide, nitride or oxynitride selected from Si, Al, In, Sn, Zn and Ti is preferable, and a metal oxide, nitride or oxynitride of Si or Al is particularly preferable, Specifically, SiON (silicon nitride oxide) is preferable.
  • SiON silicon nitride oxide
  • the smoothness of the inorganic barrier layer formed according to the present invention is preferably less than 20 nm, more preferably 1 nm or less, as an average roughness (Ra value) of 1 ⁇ m square.
  • the inorganic barrier layer is preferably formed in a clean room.
  • the degree of cleanness is preferably class 10000 or less, more preferably class 1000 or less.
  • the thickness of the inorganic barrier layer is not particularly limited, it is usually in the range of 5 to 500 nm, preferably 10 to 300 nm per layer.
  • the inorganic barrier layer may have a laminated structure including a plurality of sublayers. In this case, each sublayer may have the same composition or a different composition. Even in the case of a laminated structure composed of a plurality of sublayers, the preferable thickness as the total thickness of the inorganic barrier film is usually 10 to 2000 nm, more preferably 20 to 300 nm. If the total thickness of the inorganic barrier layer exceeds 300 nm, the flexibility such as the cracking of the inorganic barrier layer is likely to occur when it is bent. As disclosed in US Patent Publication No. 2004-46497, a layer in which the interface between the inorganic barrier layer and the organic layer is not clear and the composition continuously changes in the layer thickness direction may be used.
  • the organic layer in the present invention is preferably an organic layer containing an organic polymer as a main component.
  • the main component means that the first component of the component constituting the organic layer is an organic polymer, and usually 80% by mass or more of the component constituting the organic layer is an organic polymer.
  • the organic polymer include polyester, acrylic resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene, transparent fluororesin, polyimide, fluorinated polyimide, polyamide, polyamideimide, polyetherimide, cellulose acylate, and polyurethane.
  • the organic layer may be composed of a single material or a mixture, or may be a laminated structure composed of a plurality of sublayers. In this case, each sublayer may have the same composition or different compositions. Further, as disclosed in US Patent Publication No. 2004-46497, a layer in which the interface between the inorganic barrier layer and the organic layer is not clear and the composition changes continuously in the film thickness direction may be used.
  • the organic layer in the present invention is preferably formed by curing a polymerizable composition containing a polymerizable compound.
  • the polymerizable compound is preferably a radical polymerizable compound and / or a cationic polymerizable compound having an ether group as a functional group, more preferably a compound having an ethylenically unsaturated bond at the terminal or side chain, and / or A compound having an epoxy or oxetane at the terminal or side chain. Of these, compounds having an ethylenically unsaturated bond at the terminal or side chain are preferred.
  • Examples of compounds having an ethylenically unsaturated bond at the terminal or side chain include (meth) acrylate compounds, acrylamide compounds, styrene compounds, maleic anhydride, etc., (meth) acrylate compounds and / or Styrenic compounds are preferred, and (meth) acrylate compounds are more preferred.
  • (meth) acrylate compound As the (meth) acrylate compound, (meth) acrylate, urethane (meth) acrylate, polyester (meth) acrylate, epoxy (meth) acrylate and the like are preferable.
  • styrene compound styrene, ⁇ -methylstyrene, 4-methylstyrene, divinylbenzene, 4-hydroxystyrene, 4-carboxystyrene and the like are preferable.
  • the polymerizable composition when a polymerizable composition containing a polymerizable compound is applied and cured to form an organic layer, the polymerizable composition may contain a polymerization initiator.
  • a polymerization initiator for example, a polymerizable initiator described in JP 2012-025099 A can be used.
  • a method for forming the organic layer is not particularly defined, but can be formed by, for example, a solution coating method or a vacuum film forming method. Specifically, the organic layer is formed by a method described in JP2012-025099A. can do. Examples of the solution coating method include a dip coating method, an air knife coating method, a curtain coating method, a roller coating method, a wire bar coating method, a gravure coating method, a slide coating method, or a method described in US Pat. No. 2,681,294. It can be applied by an extrusion coating method using a hopper.
  • a polymer may be applied by solution, or a hybrid coating method containing an inorganic substance as disclosed in Japanese Patent Application Laid-Open Nos. 2000-323273 and 2004-25732 may be used.
  • the thickness of the organic layer is not particularly limited, but is usually in the range of 10 to 3000 nm, preferably 100 to 2000 nm per layer.
  • the organic layer and the inorganic barrier layer can be laminated by repeatedly laminating the organic layer and the inorganic barrier layer sequentially in accordance with a desired layer configuration.
  • the inorganic barrier layer is formed by a vacuum film formation method such as a sputtering method, a vacuum vapor deposition method, an ion plating method, or a plasma CVD method
  • the organic layer can also be formed by a vacuum film formation method such as the flash vapor deposition method.
  • the pressure is more preferably 100 Pa or less, more preferably 50 Pa or less, and further preferably 20 Pa or less.
  • the present invention can exhibit high barrier properties when at least two organic layers and at least two inorganic barrier layers are alternately laminated.
  • the mode of alternately laminating is that the first barrier film is laminated in the order of the organic layer / inorganic barrier layer / organic layer / inorganic barrier layer from the transparent film side supporting the first barrier film, but the inorganic barrier layer / organic layer
  • the layers may be laminated in the order of / inorganic barrier layer / organic layer.
  • the barrier film may have a functional layer.
  • the functional layer is described in detail in paragraph numbers 0036 to 0038 of JP-A-2006-289627.
  • Examples of functional layers other than these include matting agent layers, protective layers, solvent resistant layers, antistatic layers, smoothing layers, adhesion improving layers, light shielding layers, antireflection layers, hard coat layers, stress relaxation layers, antifogging layers. , Antifouling layer, printed layer, easy adhesion layer and the like.
  • each of the entire first barrier film and the entire second barrier film is not particularly limited and can be appropriately selected depending on the purpose.
  • the barrier layer is an organic layer or a laminate of an organic layer and an inorganic barrier layer.
  • the thickness is preferably 50 to 10,000 nm, more preferably 100 to 5000 nm.
  • a preferable range of the total thickness of the inorganic barrier layer is 10 to 2000 nm, and more preferably 20 to 300 nm.
  • the preferred thickness of the barrier layer is in the range of 10 to 2000 nm, more preferably 20 to 300 nm. If the thickness exceeds 300 nm, as described above, the flexibility such as cracking of the inorganic barrier layer when bent is deteriorated.
  • Transparent film (support) The transparent film supports the first barrier film.
  • the light transmittance of the transparent film is preferably 65% or more, and more preferably 70% or more.
  • the material for the transparent film is not particularly limited as long as it is a flexible polymer (resin).
  • it can be selected from a polymer film (used to include both a resin and a polymer), a polymer sheet, and a polymer molded body.
  • a polymer film used to include both a resin and a polymer
  • a polymer sheet used to include both a resin and a polymer
  • a polymer molded body examples include polyethylene terephthalate (PET), polycarbonate, polyethersulfone, polyester, acrylic resin, vinyl chloride resin, aromatic polyamide resin, polyamideimide, polyimide, FRP (fiber reinforced plastic), A film containing polymethyl methacrylate resin (PMMA) or the like as a main component is included.
  • PET polyethylene terephthalate
  • PES polycarbonate
  • polyethersulfone polyester
  • acrylic resin vinyl chloride resin
  • aromatic polyamide resin polyamideimide
  • polyimide polyimide
  • FRP fiber reinforced plastic
  • the surface of the transparent film may be subjected to a surface treatment for improving adhesion with the first barrier film.
  • the surface treatment is performed by a physical or chemical method.
  • the physical method include a method of imparting an anchor effect by roughening the surface of the support by a sandblast method or the like.
  • the chemical method include a method of activating the support surface by plasma treatment or corona treatment, a method of chemically increasing adhesion to the conductive film by silane coupling agent treatment, and a method of providing an undercoat layer such as a primer layer. Etc.
  • the undercoat layer is not particularly limited and may be appropriately selected depending on the intended purpose. However, the undercoat layer may be provided with ultraviolet absorbing ability, antioxidant ability, and the like. Among these, plasma processing is particularly preferable in terms of simplicity and processing uniformity.
  • the thickness of the transparent film is not particularly limited.
  • the average thickness is preferably 0.01 mm to 10 mm, and more preferably 0.02 mm to 1 mm. However, it is not limited to this range.
  • the transparent protective film supports the second barrier film.
  • the light transmittance of the transparent protective film is preferably 65% or more, and more preferably 70% or more.
  • the material for the transparent protective film is not particularly limited as long as it is a polymer.
  • a flexible polymer may be used.
  • it can be selected from a polymer film (used to include both a resin and a polymer), a polymer sheet, and a polymer molded body.
  • Examples of usable polymer films include polyethylene terephthalate (PET), polycarbonate, polyethersulfone, polyester, acrylic resin, vinyl chloride resin, aromatic polyamide resin, polyamideimide, polyimide, FRP (fiber reinforced plastic), A film containing polymethyl methacrylate resin (PMMA) or the like as a main component is included.
  • the transparent protective film is preferably provided with a hard coat layer for preventing scratches on the surface in view of its function.
  • the material of the hard coat layer is not limited, but a material having a pencil hardness of 3H or higher and a light transmittance of 70% or higher is preferable.
  • the surface of the transparent protective film may be subjected to a surface treatment for improving adhesion with the second barrier film.
  • the surface treatment is performed by a physical or chemical method.
  • the physical method include a method of imparting an anchor effect by roughening the surface of the substrate by a sandblast method or the like.
  • the chemical method include a method of activating the substrate surface by plasma treatment or corona treatment, a method of chemically increasing adhesion to the conductive film by silane coupling agent treatment, and a method of providing an undercoat layer such as a primer layer. Etc.
  • the undercoat layer is not particularly limited and may be appropriately selected depending on the intended purpose. However, the undercoat layer may be provided with ultraviolet absorbing ability, antioxidant ability, and the like. Among these, plasma processing is particularly preferable in terms of simplicity and processing uniformity.
  • the thickness of the transparent protective film is not particularly limited.
  • the average thickness is preferably 0.01 mm to 10 mm, and more preferably 0.1 mm to 3 mm. However, it is not limited to this range.
  • the patterned transparent conductive film of the present invention refers to a transparent conductive film patterned in a conductive area and a non-conductive area.
  • the conductive area and the non-conductive area may be patterned in a line shape or may not necessarily be patterned in a line shape.
  • the non-conductive area indicates an area having a sheet resistance of 10 7 ⁇ / ⁇ or more.
  • the patterned transparent conductive film used in the present invention is formed from a composition for forming a transparent conductive film containing metal nanowires. In addition, although metal nanowire may not remain by etching etc. in the said nonelectroconductive area, it may remain.
  • the metal nanowire refers to a metal nanowire having conductivity and having a shape in which the length in the major axis direction is sufficiently longer than the diameter (length in the minor axis direction). It may be a solid fiber or a hollow fiber.
  • At least one metal selected from the group consisting of at least one metal selected from the group consisting of the fourth period, the fifth period, and the sixth period, and at least one type selected from the group 2 to group 14 Metal is more preferred, at least one metal selected from the group consisting of the fourth period, the fifth period, and the sixth period, and the second group, the eighth group, the ninth group, the tenth group, the eleventh group, At least one metal selected from Group 12, Group 13, and Group 14 is more preferable, and it is particularly preferable that it is included as a main component.
  • Examples of the metal include copper, silver, gold, platinum, palladium, nickel, tin, cobalt, rhodium, iridium, iron, ruthenium, osmium, manganese, molybdenum, tungsten, niobium, tantel, titanium, bismuth, antimony, and lead. And alloys thereof. Among these, silver and an alloy with silver are particularly preferable in terms of excellent conductivity. Examples of the metal used in the alloy with silver include platinum, osmium, palladium, iridium, tin, bismuth, and nickel. These may be used alone or in combination of two or more.
  • the said metal nanowire there is no restriction
  • the cross-sectional shape of the metal nanowires can be examined by applying a metal nanowire aqueous dispersion on a substrate and observing a cross-section sliced by a microtome with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the average minor axis length (sometimes referred to as “average minor axis length” or “average diameter”) of the metal nanowire is 5 to 50 nm, preferably 5 to 25 nm, and more preferably 5 to 20 nm. If the average minor axis length is less than 5 nm, the oxidation resistance may deteriorate and the durability may deteriorate. On the other hand, when the average minor axis length is 50 nm or more, scattering of the metal nanowires increases, and the haze value of the conductive film may increase. In particular, by setting the average minor axis length to 25 nm or less, the scattering of the metal nanowires can be reduced, and the haze value of the conductive film is greatly improved (reduced).
  • a touch panel using a conductive film having a small haze can eliminate the pattern appearance (bone appearance) of the conductive film and improve the visibility of the touch panel.
  • the haze value of the conductive film is preferably less than 2.5%, and particularly preferably less than 1.5% from the viewpoint of visibility.
  • the average minor axis length of the metal nanowires was determined by observing 300 metal nanowires using a transmission electron microscope (TEM; manufactured by JEOL Ltd., JEM-2000FX). The average minor axis length was determined. In addition, the shortest axis length when the short axis of the metal nanowire is not circular is the shortest axis.
  • the average major axis length of the metal nanowire (sometimes referred to as “average major axis length” or “average length”) is preferably 5 ⁇ m or more, more preferably 5 ⁇ m to 40 ⁇ m, and more preferably 5 ⁇ m to 30 ⁇ m. Is more preferable. If the average major axis length is less than 5 ⁇ m, it may be difficult to form a dense network and sufficient conductivity may not be obtained. If it exceeds 40 ⁇ m, the metal nanowires are too long and manufactured. Sometimes entangled and agglomerates may occur during the manufacturing process.
  • the average major axis length of the metal nanowires is observed, for example, using a transmission electron microscope (TEM; manufactured by JEOL Ltd., JEM-2000FX), and 300 metal nanowires are observed. The average major axis length was determined. In addition, when the said metal nanowire was bent, the circle
  • TEM transmission electron microscope
  • the coefficient of variation of the short axis length of the metal nanowire is preferably 50% or less, more preferably 40% or less, and particularly preferably 30% or less.
  • the coefficient of variation is obtained by measuring the short axis length (diameter) of 300 nanowires randomly selected from the electron microscope (TEM) image, and calculating the standard deviation and the average value for the 300 nanowires. It was.
  • the metal nanowire is not particularly limited and may be produced by any method, but is preferably produced by reducing metal ions in a solvent in which a halogen compound and a dispersant are dissolved as follows. Moreover, after forming metal nanowire, it is preferable to perform a desalting process by a conventional method from a viewpoint of dispersibility and the temporal stability of an electroconductive area.
  • a method for producing metal nanowires JP2009-215594A, JP2009-242880A, JP2009-299162A, JP2010-84173A, and JP2010-86714A are disclosed. Etc. can be used.
  • the solvent used for the production of the metal nanowire is preferably a hydrophilic solvent, and examples thereof include water, alcohols, polyhydric alcohols, ethers and ketones, and these may be used alone. In addition, two or more kinds may be used in combination.
  • alcohols include methanol, ethanol, normal propanol, isopropanol, and butanol.
  • the polyhydric alcohols include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol and the like.
  • ethers include dioxane and tetrahydrofuran.
  • ketones include acetone and methyl ethyl ketone. When heating, the heating temperature is preferably 250 ° C.
  • the boiling point means a temperature at which the vapor pressure of the reaction solvent becomes equal to the pressure in the reaction vessel. It is preferable to set the temperature to 20 ° C. or higher because formation of metal nanowires is promoted and manufacturing process time can be shortened.
  • the monodispersity of the short-axis length and long-axis length of metal nanowire improves, and it is suitable from a transparency and electroconductive viewpoint.
  • the temperature may be changed during the manufacturing process of the metal nanowires, and changing the temperature in the middle is effective in controlling nucleation, suppressing renucleation, and improving monodispersity by promoting selective growth. There may be.
  • the heating is preferably performed by adding a reducing agent.
  • the reducing agent is not particularly limited and can be appropriately selected from those usually used.
  • borohydride metal salt, aluminum hydride salt, alkanolamine, aliphatic amine, heterocyclic amine, Aromatic amines, aralkylamines, alcohols, polyhydric alcohols, organic acids, reducing sugars, sugar alcohols, sodium sulfite, hydrazine compounds, dextrin, hydroquinone, hydroxylamine, glutathione and the like can be mentioned.
  • reducing sugars, sugar alcohols as derivatives thereof, and polyhydric alcohols are particularly preferable.
  • there is a compound that functions as a dispersant or a solvent as a function there is a compound that functions as a dispersant or a solvent as a function, and can be preferably used in the same manner.
  • a dispersant and a halogen compound or metal halide fine particles are preferable to add.
  • the timing of addition of the dispersant may be before the addition of the reducing agent, at the same time as the addition of the reducing agent, or after the addition of the reducing agent, before the addition of the metal ion or metal halide fine particles, or before the addition of the metal ion or halogen. It may be performed simultaneously with the addition of metal halide fine particles or after addition of metal ions or metal halide fine particles.
  • the step of adding the dispersant may be added before the particles are prepared and may be added in the presence of the dispersed polymer, or may be added after the particles are prepared in order to control the dispersion state.
  • the amount needs to be changed depending on the short axis length and the long axis length of the metal nanowires required. This is because the amount of dispersant added affects the amount and size of the metal particles that are the core of the metal nanowire, and the amount and size of the metal particles that are the core of the metal nanowire are the short axis of the metal nanowire. This is considered to be due to the influence on the length and the long axis length.
  • dispersant examples include amino group-containing compounds, thiol group-containing compounds, sulfide group-containing compounds, amino acids or derivatives thereof, peptide compounds, polysaccharides, polysaccharide-derived natural polymers, synthetic polymers, or these. And polymers such as gels.
  • various polymer compounds used as a dispersant are compounds included in the polymer described later.
  • polymer suitably used as a dispersant examples include gelatin, polyvinyl alcohol, methyl cellulose, hydroxypropyl cellulose, polyalkylene amine, polyalkylene amine, partial alkyl esters of polyacrylic acid, polyvinyl pyrrolidone, and polyvinyl pyrrolidone structures, which are protective colloidal polymers.
  • a polymer having a hydrophilic group such as a copolymer containing, polyacrylic acid having an amino group or a thiol group, is preferably mentioned.
  • the polymer used as the dispersant has a weight average molecular weight (Mw) measured by GPC method of preferably 3000 or more and 300000 or less, more preferably 5000 or more and 100000 or less.
  • the description of “Encyclopedia of Pigments” (edited by Seijiro Ito, published by Asakura Shoin Co., Ltd., 2000) can be referred to.
  • the shape of the metal nanowire obtained by the kind of dispersing agent to be used can be changed.
  • the halogen compound is not particularly limited as long as it is a compound containing bromine, chlorine, or iodine, and can be appropriately selected according to the purpose.
  • sodium bromide, sodium chloride, sodium iodide, potassium iodide Compounds that can be used in combination with alkali halides such as potassium bromide, potassium chloride, potassium iodide and the following dispersants are preferred.
  • Some halogen compounds may function as a dispersant, but can be preferably used in the same manner.
  • silver halide fine particles may be used, or both a halogen compound and silver halide fine particles may be used.
  • a single substance having both functions may be used as the dispersant and the halogen compound. That is, by using a halogen compound having a function as a dispersant, the functions of both the dispersant and the halogen compound are expressed with one compound.
  • the halogen compound having a function as a dispersant include, for example, hexadecyltrimethylammonium bromide, hexadecyltrimethylammonium chloride, hexadecyltrimethylammonium iodide, dodecyltrimethyl containing amino group and bromide ion or chloride ion and iodide ion.
  • the metal nanowire preferably contains as little inorganic ions as possible, such as alkali metal ions, alkaline earth metal ions, and halide ions.
  • the electrical conductivity when the metal nanowire is an aqueous dispersion is preferably 1 mS / cm or less, more preferably 0.1 mS / cm or less, and even more preferably 0.05 mS / cm or less.
  • the viscosity at 20 ° C. when the metal nanowires are dispersed in water is preferably 0.5 mPa ⁇ s to 100 mPa ⁇ s, more preferably 1 mPa ⁇ s to 50 mPa ⁇ s.
  • the aspect ratio of the metal nanowire is not particularly limited as long as it is 10 or more, and can be appropriately selected according to the purpose. More preferred is 10,000 to 100,000.
  • the aspect ratio generally means the ratio between the long side and the short side of a fibrous material (ratio of average major axis length / average minor axis length).
  • ratio of average major axis length / average minor axis length There is no restriction
  • the aspect ratio of the whole metal nanowire can be estimated by measuring the average major axis length and the average minor axis length of the metal nanowire separately.
  • the outer diameter of this tube-shaped metal nanowire is used as a diameter for calculating the said aspect ratio.
  • the metal nanowire having an aspect ratio of 10 or more is preferably contained in the coating liquid for all patterns transparent conductive film in a volume ratio of 5% or more, more preferably 50% or more, and more preferably 80% or more. It is particularly preferred that it be included.
  • the ratio of these metal nanowires may be referred to as “the ratio of metal nanowires”. If the ratio of the metal nanowires is less than 5%, the conductive material that contributes to the conductivity may decrease and the conductivity may decrease. At the same time, a voltage concentration may occur because a dense network cannot be formed. , Durability may be reduced.
  • particles having a shape other than metal nanowires are not preferable because they do not greatly contribute to conductivity and have absorption. In particular, when the particles other than the metal conductive fibers are metal and the plasmon absorption such as a spherical shape is strong, the transparency may be deteriorated.
  • the aspect ratio By setting the aspect ratio to 10 or more, a network in which metal nanowires are in contact with each other is easily formed, and a conductive layer having high conductivity can be easily obtained. Further, by setting the aspect ratio to 100,000 or less, for example, in a coating liquid when a conductive layer is provided on a substrate by coating, stable coating without risk of entanglement and aggregation of metal nanowires. Since a liquid is obtained, manufacture becomes easy. In addition, when the ratio of the metal nanowire is less than 5%, the conductive material that contributes to conductivity may decrease and conductivity may decrease, and at the same time, a dense network cannot be formed. May occur and durability may be reduced.
  • particles having a shape other than metal nanowires are not preferable because they do not greatly contribute to conductivity and have absorption.
  • the plasmon absorption such as a spherical shape is strong, the transparency may be deteriorated.
  • the ratio of the metal nanowire is, for example, when the metal nanowire is a silver nanowire, the silver nanowire aqueous dispersion is filtered to separate the silver nanowire from the other particles.
  • the ratio of metal nanowires can be determined by measuring the amount of silver remaining on the filter paper and the amount of silver transmitted through the filter paper using an ICP emission analyzer. By observing the metal nanowires remaining on the filter paper with a TEM, observing the average minor axis length of 300 metal nanowires, and examining the distribution thereof, the average minor axis length is 200 nm or less, and the average It confirms that it is a metal nanowire whose major axis length is 1 micrometer or more.
  • the filter paper measures the longest axis of particles other than metal nanowires having an average minor axis length of 200 nm or less and an average major axis length of 1 ⁇ m or more in a TEM image, and more than twice the longest axis. It is preferable to use a metal nanowire having a length equal to or shorter than the shortest length of the major axis of the metal nanowire.
  • the average minor axis length and the average major axis length of the metal nanowire can be obtained by observing a TEM image or an optical microscope image using, for example, a transmission electron microscope (TEM) or an optical microscope.
  • TEM transmission electron microscope
  • the average minor axis length and the average major axis length of the metal nanowire are obtained by observing 300 metal nanowires with a transmission electron microscope (TEM) and calculating the average value. is there.
  • the coating amount of the metal nanowires is preferably patterned transparent conductive film in 0.001 ⁇ 0.1g / cm 2, more preferably 0.002 ⁇ 0.05g / cm 2, 0.003 ⁇ 0.04g / cm 2 Is particularly preferred.
  • composition for forming transparent conductive film The composition for transparent conductive film formation which forms the said pattern transparent conductive film may be a photosensitive composition.
  • the photosensitive composition may be negative or positive.
  • examples of a composition containing at least a photosensitive composition, a sol-gel cured product, and a polymer that can be used for forming a patterned transparent conductive film will be described, but the present invention is not limited to the following examples.
  • the mass ratio of the matrix component (all components excluding the metal nanowire and the solvent contained in the pattern transparent conductive film coating solution) to the metal nanowire is 0.5 to 15 (more preferably 1.0 to 12). Particularly preferred is 2.0 to 10).
  • the mass ratio is less than 0.5, the matrix component is small, the adhesion of the metal nanowires to the substrate surface is weak, and the film strength may be weak.
  • the mass ratio exceeds 15, the pattern is transparent. The surface resistance value of the conductive film may increase.
  • the binder is a linear organic high molecular polymer, and at least one group that promotes alkali solubility in a molecule (preferably a molecule having an acrylic copolymer or a styrene copolymer as a main chain) (for example, it can be appropriately selected from alkali-soluble resins having a carboxyl group, a phosphoric acid group, a sulfonic acid group, and the like. Among these, those that are soluble in an organic solvent and soluble in an aqueous alkali solution are preferable, and those that have an acid-dissociable group and become alkali-soluble when the acid-dissociable group is dissociated by the action of an acid are particularly preferable. preferable.
  • the acid dissociable group represents a functional group that can dissociate in the presence of an acid.
  • a known radical polymerization method For the production of the binder, for example, a known radical polymerization method can be applied. Polymerization conditions such as temperature, pressure, type and amount of radical initiator, type of solvent, etc. when producing an alkali-soluble resin by the radical polymerization method can be easily set by those skilled in the art, and the conditions are determined experimentally. Can be determined.
  • a polymer having a carboxylic acid in the side chain is preferable.
  • the polymer having a carboxylic acid in the side chain include, for example, JP-A-59-44615, JP-B-54-34327, JP-B-58-12777, JP-B-54-25957, JP-A-59-53836, As described in JP-A-59-71048, methacrylic acid copolymer, acrylic acid copolymer, itaconic acid copolymer, crotonic acid copolymer, maleic acid copolymer, partial ester Maleic acid copolymers, acidic cellulose derivatives having a carboxylic acid in the side chain, polymers obtained by adding an acid anhydride to a polymer having a hydroxyl group, and further having a (meth) acryloyl group in the side chain A high molecular polymer is also mentioned as a preferable polymer.
  • benzyl (meth) acrylate / (meth) acrylic acid copolymers and multi-component copolymers composed of benzyl (meth) acrylate / (meth) acrylic acid / other monomers are particularly preferable.
  • a high molecular polymer having a (meth) acryloyl group in the side chain and a multi-component copolymer composed of (meth) acrylic acid / glycidyl (meth) acrylate / other monomers are also useful.
  • the polymer can be used by mixing in an arbitrary amount.
  • 2-hydroxypropyl (meth) acrylate / polystyrene macromonomer / benzyl methacrylate / methacrylic acid copolymer 2-hydroxy-3-phenoxypropyl acrylate / polymethyl described in JP-A-7-140654 Methacrylate macromonomer / benzyl methacrylate / methacrylic acid copolymer, 2-hydroxyethyl methacrylate / polystyrene macromonomer / methyl methacrylate / methacrylic acid copolymer, 2-hydroxyethyl methacrylate / polystyrene macromonomer / benzyl methacrylate / methacrylic acid copolymer Coalescence, etc.
  • (meth) acrylic acid and other monomers copolymerizable with the (meth) acrylic acid are suitable.
  • Examples of other monomers copolymerizable with the (meth) acrylic acid include alkyl (meth) acrylates, aryl (meth) acrylates, and vinyl compounds. In these, the hydrogen atom of the alkyl group and aryl group may be substituted with a substituent.
  • Examples of the alkyl (meth) acrylate or aryl (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, and pentyl (meth).
  • the weight average molecular weight of the binder is preferably from 1,000 to 500,000, more preferably from 3,000 to 300,000, and even more preferably from 5,000 to 200,000, from the viewpoints of alkali dissolution rate, film physical properties and the like.
  • the weight average molecular weight is measured by a gel permeation chromatography method (GPC method) and can be determined using a standard polystyrene calibration curve.
  • the content of the binder is preferably 5% by mass to 90% by mass, more preferably 10% by mass to 85% by mass, based on the total mass of the solid content of the photopolymerizable composition containing the metal nanowires. Preferably, 20% by mass to 80% by mass is more preferable. When the content is within the preferable range, both developability and conductivity of the metal nanowire can be achieved.
  • the photopolymerizable composition means a compound that imparts a function of forming an image by exposure to the patterned transparent conductive film or gives a trigger for the function.
  • the basic component includes (a) an addition-polymerizable unsaturated compound and (b) a photopolymerization initiator that generates radicals when irradiated with light.
  • the component (a) addition-polymerizable unsaturated compound is a compound that undergoes an addition-polymerization reaction in the presence of a radical to form a polymer, and usually has a molecular end.
  • a compound having at least one, more preferably two or more, more preferably four or more, still more preferably six or more ethylenically unsaturated double bonds is used. These have chemical forms such as monomers, prepolymers, i.e. dimers, trimers and oligomers, or mixtures thereof.
  • Various kinds of such polymerizable compounds are known, and they can be used as the component (a).
  • particularly preferred polymerizable compounds are, from the viewpoint of film strength, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth).
  • Acrylates are particularly preferred.
  • the content of component (a) is preferably 2.6% by mass or more and 37.5% by mass or less based on the total mass of the solid content of the photopolymerizable composition containing the metal nanowires described above. More preferably, it is 0.0 mass% or more and 20.0 mass% or less.
  • the photopolymerization initiator of component (b) is a compound that generates radicals when irradiated with light.
  • photopolymerization initiators include compounds that generate acid radicals that ultimately become acids upon irradiation with light, and compounds that generate other radicals.
  • the former is referred to as “photoacid generator”, and the latter is referred to as “photoradical generator”.
  • -Photoacid generator- Photoacid generator includes photoinitiator for photocationic polymerization, photoinitiator for photoradical polymerization, photodecoloring agent for dyes, photochromic agent, irradiation of actinic ray or radiation used for micro resist, etc.
  • known compounds that generate acid radicals and mixtures thereof can be appropriately selected and used.
  • Such a photoacid generator is not particularly limited and may be appropriately selected depending on the intended purpose.
  • quinonediazide compound triazine having at least one di- or tri-halomethyl group, or 1,3,4 -Oxadiazole, naphthoquinone-1,2-diazide-4-sulfonyl halide, diazonium salt, phosphonium salt, sulfonium salt, iodonium salt, imide sulfonate, oxime sulfonate, diazodisulfone, disulfone, o-nitrobenzyl sulfonate, etc. .
  • imide sulfonate, oxime sulfonate, and o-nitrobenzyl sulfonate which are compounds that generate sulfonic acid
  • imide sulfonate, oxime sulfonate, and o-nitrobenzyl sulfonate which are compounds that generate sulfonic acid
  • imide sulfonate, oxime sulfonate, and o-nitrobenzyl sulfonate which are compounds that generate sulfonic acid
  • oxime sulfonate which are compounds that generate sulfonic acid
  • o-nitrobenzyl sulfonate which are compounds that generate sulfonic acid
  • a group in which an acid radical is generated by irradiation with actinic rays or radiation, or a compound in which a compound is introduced into the main chain or side chain of the resin for example, US Pat. No. 3,849,137, German Patent 3914407.
  • JP-A-63-26653, JP-A-55-164824, JP-A-62-69263, JP-A-63-146038, JP-A-63-163452, JP-A-62-153853 And compounds described in JP-A-63-146029, etc. can be used. Furthermore, compounds described in each specification such as US Pat. No. 3,779,778 and European Patent 126,712 can also be used as an acid radical generator.
  • triazine compound for example, compounds described in JP2011-018636A and JP2011-254046A can be used.
  • the photoacid generators compounds that generate sulfonic acid are preferable, and the following oxime sulfonate compounds are particularly preferable from the viewpoint of high sensitivity.
  • quinonediazide compound When a compound having a 1,2-naphthoquinonediazide group is used as the quinonediazide compound, high sensitivity and good developability are obtained.
  • quinonediazide compounds compounds in which D of the compounds shown below are each independently a hydrogen atom or a 1,2-naphthoquinonediazide group are preferred from the viewpoint of high sensitivity.
  • the photoradical generator is a compound that has a function of generating radicals by directly absorbing light or being photosensitized to cause a decomposition reaction or a hydrogen abstraction reaction.
  • the photo radical generator is preferably a compound having absorption in the wavelength region of 300 nm to 500 nm. As such a photo radical generator, many compounds are known.
  • examples thereof include organic peroxide compounds, azo compounds, coumarin compounds, azide compounds, metallocene compounds, hexaarylbiimidazole compounds, organic boric acid compounds, disulfonic acid compounds, oxime ester compounds, and acylphosphine (oxide) compounds.
  • organic peroxide compounds examples thereof include organic peroxide compounds, azo compounds, coumarin compounds, azide compounds, metallocene compounds, hexaarylbiimidazole compounds, organic boric acid compounds, disulfonic acid compounds, oxime ester compounds, and acylphosphine (oxide) compounds.
  • benzophenone compounds, acetophenone compounds, hexaarylbiimidazole compounds, oxime ester compounds, and acylphosphine (oxide) compounds are particularly preferable
  • the photo radical generator for example, the photo radical generators described in JP 2011-018636 A and JP 2011-254046 A can be used.
  • a photoinitiator may be used individually by 1 type and may use 2 or more types together,
  • the content is based on the total mass of solid content of the photopolymerizable composition containing metal nanowire,
  • the content is preferably 0.1% by mass to 50% by mass, more preferably 0.5% by mass to 30% by mass, and still more preferably 1% by mass to 20% by mass. In such a numerical range, when a pattern including a conductive region and a non-conductive region described later is formed on the conductive layer, good sensitivity and pattern formability can be obtained.
  • additives other than the above components include, for example, chain transfer agents, crosslinking agents, dispersants, solvents, surfactants, antioxidants, sulfurization inhibitors, metal corrosion inhibitors, viscosity modifiers, preservatives, and the like. Various additives are mentioned.
  • Chain transfer agent is used for improving the exposure sensitivity of the photopolymerizable composition.
  • chain transfer agents include N, N-dialkylaminobenzoic acid alkyl esters such as N, N-dimethylaminobenzoic acid ethyl ester, 2-mercaptobenzothiazole, 2-mercaptobenzoxazole, and 2-mercaptobenzoic acid.
  • the content of the chain transfer agent is preferably 0.01% by mass to 15% by mass, preferably 0.1% by mass to 10% by mass, based on the total mass of the solid content of the photopolymerizable composition containing the metal nanowires. % Is more preferable, and 0.5% by mass to 5% by mass is still more preferable.
  • the crosslinking agent is a compound that forms a chemical bond by free radical or acid and heat and cures the patterned transparent conductive film, and is substituted with at least one group selected from, for example, a methylol group, an alkoxymethyl group, and an acyloxymethyl group.
  • an epoxy compound, an oxetane compound, and a compound having an ethylenically unsaturated group are particularly preferable in terms of film properties, heat resistance, and solvent resistance.
  • the said oxetane resin can be used individually by 1 type or in mixture with an epoxy resin.
  • the reactivity is high, which is preferable from the viewpoint of improving film properties.
  • the compound which has an ethylenically unsaturated double bond group is also included by the said polymeric compound, The content is content of the polymeric compound in this invention. Should be included.
  • the content of the crosslinking agent is preferably 1 part by weight to 250 parts by weight, preferably 3 parts by weight to 200 parts by weight, when the total weight of the solid content of the photopolymerizable composition containing the metal nanowire is 100 parts by weight. Is more preferable.
  • a dispersing agent is used in order to disperse
  • the dispersant is not particularly limited as long as the metal nanowires can be dispersed, and can be appropriately selected according to the purpose.
  • a commercially available dispersant can be used as a pigment dispersant, and a polymer dispersant having a property of adsorbing to metal nanowires is particularly preferable.
  • polymer dispersant examples include polyvinyl pyrrolidone, BYK series (manufactured by Big Chemie), Solsperse series (manufactured by Nippon Lubrizol Co., Ltd.), and Ajisper series (manufactured by Ajinomoto Co., Inc.).
  • the polymer dispersant is also included in the binder, and the content thereof is as described above. It should be considered that it is included in the content of the binder.
  • the content of the dispersant is preferably 0.1 to 50 parts by weight, more preferably 0.5 to 40 parts by weight, and particularly preferably 1 to 30 parts by weight with respect to 100 parts by weight of the binder. .
  • the content of the dispersant is preferably 0.1 to 50 parts by weight, more preferably 0.5 to 40 parts by weight, and particularly preferably 1 to 30 parts by weight with respect to 100 parts by weight of the binder.
  • the solvent is a component used to form a coating solution for forming a composition containing the metal nanowire and the specific alkoxide compound and the photopolymerizable composition on the surface of the substrate in the form of a film. It can be appropriately selected according to, for example, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ethyl 3-ethoxypropionate, methyl 3-methoxypropionate, ethyl lactate, 3-methoxybutanol, water, 1-methoxy- Examples include 2-propanol, isopropyl acetate, methyl lactate, N-methylpyrrolidone (NMP), ⁇ -butyrolactone (GBL), propylene carbonate, and the like.
  • NMP N-methylpyrrolidone
  • GBL ⁇ -butyrolactone
  • This solvent may also serve as at least a part of the solvent of the metal nanowire dispersion described above. These may be used individually by 1 type and may use 2 or more types together.
  • the solid content concentration of the coating solution containing such a solvent is preferably contained in the range of 0.1% by mass to 20% by mass.
  • Metal corrosion inhibitor It is preferable to contain the metal nanowire metal corrosion inhibitor.
  • a metal corrosion inhibitor there is no restriction
  • the metal corrosion inhibitor is added to the composition for forming a transparent conductive film in a state dissolved in a suitable solvent, or added as a powder, or after forming a conductive film with a coating liquid for a patterned transparent conductive film, which will be described later, this is subjected to metal corrosion. It can be applied by dipping in an inhibitor bath.
  • a metal corrosion inhibitor it is preferable to contain 0.5% by mass to 10% by mass with respect to the metal nanowires.
  • the other matrix it is possible to use a polymer compound as a dispersant used in the production of the above-described metal nanowires as at least a part of components constituting the matrix.
  • a composition containing at least a sol-gel cured product as a matrix component can be used together with the metal nanowires.
  • the sol-gel cured product is obtained by hydrolyzing and polycondensing an alkoxide compound of an element selected from the group consisting of Si, Ti, Zr and Al (hereinafter also referred to as “specific alkoxide compound”), and further heating and drying as desired. Is obtained.
  • the specific alkoxide compound is preferably a compound represented by the following general formula (I) because it is easily available.
  • M 1 (OR 1 ) a R 2 4-a (I)
  • M 1 represents an element selected from Si, Ti and Zr
  • R 1 and R 2 each independently represents a hydrogen atom or a hydrocarbon group
  • a represents an integer of 2 to 4 Show.
  • an alkyl group or an aryl group is preferable.
  • the carbon number in the case of showing an alkyl group is preferably 1 to 18, more preferably 1 to 8, and still more preferably 1 to 4.
  • a phenyl group is preferable.
  • the alkyl group or aryl group may have a substituent, and examples of the substituent that can be introduced include a halogen atom, an amino group, an alkylamino group, and a mercapto group.
  • the compound represented by the general formula (I) is a low molecular compound and preferably has a molecular weight of 1000 or less.
  • the ratio of the specific alkoxide compound to the metal nanowire that is, the mass ratio of the specific alkoxide compound / metal nanowire is 0.25 / 1 to 30 / Used in the range of 1.
  • the mass ratio is less than 0.25 / 1, the transparency is inferior, and at the same time, the conductive layer is inferior in at least one of wear resistance, heat resistance, moist heat resistance and flex resistance.
  • the mass ratio is larger than 30/1, the conductive layer is inferior in conductivity and flex resistance.
  • the mass ratio is more preferably in the range of 0.5 / 1 to 20/1, more preferably in the range of 1/1 to 15/1, and most preferably in the range of 2/1 to 8/1.
  • High conductivity and high transparency It is preferable because it can stably obtain a conductive material having high properties (total light transmittance and haze), excellent wear resistance, heat resistance and moist heat resistance, and excellent flex resistance.
  • a composition containing at least a polymer as a matrix component can be used together with the metal nanowires.
  • Synthetic polymers and natural polymers are included as the polymers.
  • the synthetic polymers include polyester, polyimide, polyacryl, polyvinylon, polyethylene, polypropylene, polystyrene, polyvinyl chloride, methacrylic resin, fluorine-based resin, and phenol.
  • examples thereof include resins, melamine resins, silicone resins, synthetic rubbers, and latexes thereof.
  • the natural polymer include cellulosic resins and natural rubber.
  • a protective layer made of a protective coating material may be provided on the conductive film.
  • Protective coating materials include crosslinkers, polymerization initiators, stabilizers (eg, antioxidants and UV stabilizers for prolonging product life, and polymerization inhibitors for improving shelf life), surfactants, and the like You may include what has a special effect.
  • the protective coating material may further include a corrosion inhibitor that prevents corrosion of the metal nanowires.
  • the method for forming the protective layer is not particularly limited as long as it is a known wet coating method. Specifically, spray coating, bar coating, roll coating, die coating, ink jet coating, screen coating, dip coating and the like can be mentioned.
  • the abrasion resistance and abrasion resistance When forming the protective layer while impregnating the pattern transparent conductive film with the protective coating material, if the film thickness of the protective layer after application and drying is too thin relative to the pattern transparent conductive film before application, the abrasion resistance and abrasion resistance The function as a protective layer such as property and weather resistance is lowered, and if it is too thick, the contact resistance as a conductor increases.
  • the coating for the protective layer is preferably 30 to 150 nm after coating and drying.
  • the surface resistivity, haze, and the like can be adjusted to achieve predetermined values. 40 to 175 nm is more preferable, and 50 to 150 nm is particularly preferable.
  • the film thickness after drying of the coating material for the protective layer depends on the film thickness of the pattern transparent conductive film, the protective function by the protective layer tends to work better when the film thickness is 30 nm or more. When it is thick, it tends to be able to ensure better conductive performance.
  • a transparent conductive film coating method for forming the pattern transparent conductive film is as follows, but is not limited to the following example.
  • a coating liquid for a patterned transparent conductive film is prepared.
  • the coating solution comprises at least a metal nanowire having an average minor axis length of 5 to 50 nm and a matrix component (preferably a binder and a photosensitive compound, a sol-gel cured product, or a polymer (for forming a transparent conductive film).
  • the composition and, if necessary, other components
  • the pattern transparent conductive film coating solution is applied to a substrate surface such as a glass plate or a film.
  • the method for applying is not particularly limited and can be appropriately selected depending on the purpose.
  • spray coating method, air brush method, curtain spray method, dip coating method, roller coating method, spin coating method, ink jet method, Examples include an extrusion method.
  • the coating amount is preferably such that the metal nanowires are 0.005 to 0.5 g / m 2 .
  • the pattern transparent conductive film coating solution is applied onto a substrate to form a coating layer, and then exposed and cured.
  • an exposure method Although it can select suitably according to a use etc., the exposure method using an ultraviolet irradiation device, a ultraviolet irradiation lamp, etc. is preferable.
  • the alkali contained in the alkaline solution is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include tetramethylammonium hydroxide, tetraethylammonium hydroxide, 2-hydroxyethyltrimethylammonium hydroxide, sodium carbonate, Examples thereof include sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, sodium hydroxide, potassium hydroxide and the like.
  • methanol, ethanol, or a surfactant may be added as necessary.
  • a surfactant for example, an anionic surfactant, a cationic surfactant, and a nonionic surfactant can be selected and used.
  • the addition of nonionic polyoxyethylene alkyl ether is particularly preferable because the resolution becomes high.
  • the alkali treatment is not particularly limited and may be appropriately selected depending on the intended purpose. For example, any of dip development, paddle development, and shower development can be used. By performing the alkali treatment, the conductivity of the patterned transparent conductive film can be increased.
  • the immersion time of the alkaline solution is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10 seconds to 5 minutes.
  • a patterned transparent conductive film is formed by the following method.
  • Formation of the pattern transparent conductive film exposes and develops the conductive film, and includes a pattern exposure process and a development process, and further includes other processes as necessary.
  • the conductive film is patterned so as to have a desired pattern including a conductive area and a non-conductive area, and the conductive pattern member according to the present invention is manufactured.
  • a patterning method include the following methods.
  • the conductive film before patterning is also referred to as “non-patterned conductive layer”.
  • the matrix of the conductive film is non-photosensitive, it is patterned by the following methods (1) to (2).
  • a photoresist layer is provided on a non-patterned conductive layer, and a desired pattern exposure and development are performed on the photoresist layer to form the patterned resist (etching mask material).
  • This method is described, for example, in JP-T-2010-507199 (particularly, paragraphs 0212 to 0217).
  • a photocurable resin is provided on the pattern by an inkjet method or a screen printing method, and the photocurable resin layer is subjected to a desired exposure to form the pattern.
  • the resist etching mask material
  • the metal nanowires are immersed in an etchable etchant or the etchant is showered to form a conductive layer in a region not protected by the resist.
  • a patterning method for breaking or disappearing metal nanowires In the case of the method (1) or (2), it is preferable to remove the resist on the conductive film by a conventional method after the patterning is completed, because a conductive laminate having excellent transparency can be obtained.
  • the coating method is not particularly limited.
  • a roll coating method, a bar coating method, a dip coating method, a spin coating method, a casting method, a die coating method, a blade coating method, a bar coating method, a gravure coating method, a curtain coating method examples thereof include a spray coating method and a doctor coating method.
  • the printing method include letterpress (letterpress) printing, stencil (screen) printing, lithographic (offset) printing, and intaglio (gravure) printing.
  • the resist layer formed in this step may be a positive resist layer or a negative resist layer.
  • the pattern-shaped exposed region is solubilized, and a patterned resist layer is formed in the unexposed region (unsolubilized region).
  • the exposed region is A cured resist layer is formed, and by application of the solution, the unexposed portion, that is, the uncured portion of the resist layer is removed, and a patterned resist layer is formed.
  • both the metal nanowires and the binder contained in the conductive film are removed, and the substrate or the intermediate layer formed on the substrate is exposed.
  • any, such as a negative type, a positive type, a dry film type, can be used.
  • commercially available alkali-soluble photoresists can be appropriately selected and used.
  • Each positive type, negative type photoresist series, Fuji Chemical Fuji Resist series can be used, and among them, FR series, FPPR series, FMR series, FDER series, etc. can be preferably used.
  • AZ Electronic Materials photoresist series can be used, among them, RFP series, TFP series, SZP series, HKT series, SFP, series, SR series, SOP series, SZC series, CTP series, ANR series, P4000. Series, TPM606, 40XT, nXT series and the like can be preferably used. Furthermore, each photoresist made by JSR can be widely used from a high resolution type to a low resolution type.
  • the exposure step in the method for forming the patterned transparent conductive film is preferably a step of performing exposure at an oxygen concentration of 5% or less using an etching mask material containing a photopolymerization initiator.
  • the exposure is preferably performed in an atmosphere having an oxygen concentration of 5% or less, more preferably 2% or less, still more preferably 1% or less, and 0.1% or less. It is particularly preferred.
  • the exposure is performed in an atmosphere where the oxygen concentration exceeds 5%, by-products generated from the photopolymerization initiator contained in the etching mask material, or metal nanowires are disconnected by reaction with oxides such as ozone, Since the resistance value of the conductive part wiring after patterning is increased, it is not preferable.
  • the disconnection of metal nanowires in an atmosphere having a high oxygen concentration tends to be particularly noticeable when metal nanowires having a small diameter are used. Furthermore, it is not preferable to perform the exposure in an atmosphere in which the oxygen concentration exceeds 5% because the reaction efficiency in curing the etching mask material decreases and the tact time becomes longer.
  • the exposure is preferably performed in an inert gas atmosphere having an oxygen concentration of 5% or less.
  • the inert gas that can be used is not particularly limited as long as it does not interfere with the UV curing reaction when exposed using an ultraviolet irradiation device or an ultraviolet irradiation lamp.
  • nitrogen gas or argon gas is preferable, and nitrogen gas is more preferable because it is easily available and inexpensive.
  • the exposure method surface exposure (solid exposure) not using a photomask, surface exposure using a photomask, or scanning exposure using a laser beam may be performed.
  • refractive exposure using a lens or reflection exposure using a reflecting mirror may be used, and exposure methods such as contact exposure, proximity exposure, reduced projection exposure, and reflection projection exposure can be used. These exposure methods can be appropriately selected as necessary.
  • solid exposure can be performed without using a photomask.
  • the light source used for the pattern exposure or exposure is selected in relation to the photosensitive wavelength range of the photoresist composition, but in general, ultraviolet rays such as g-line, h-line, i-line, and j-line are preferably used. Moreover, you may use ultraviolet LED.
  • the pattern exposure method is not particularly limited, and may be performed by surface exposure using a photomask, or may be performed by scanning exposure using a laser beam or the like. At this time, refractive exposure using a lens or reflection exposure using a reflecting mirror may be used, and exposure methods such as contact exposure, proximity exposure, reduced projection exposure, and reflection projection exposure can be used.
  • the sample film surface temperature at the time of exposure is preferably low, preferably in the range of 0 ° C.
  • the temperature at the time of exposure is lower than 0 ° C., it is difficult to control the temperature, and if it is 80 ° C. or higher, the number of disconnections of the metal nanowires increases and the resistance increase magnification increases.
  • the solution for dissolving the metal nanowire can be appropriately selected according to the metal nanowire.
  • the metal nanowire is a silver nanowire
  • bleaching fixer, strong acid, oxidizing agent, peroxidation mainly used for bleaching and fixing process of photographic paper of silver halide color photosensitive material Examples include hydrogen.
  • bleach-fixing solution, dilute nitric acid, and hydrogen peroxide are particularly preferable.
  • the dissolution of the silver nanowire by the solution for dissolving the silver nanowire may not completely dissolve the portion of the silver nanowire provided with the solution, and if the conductivity is lost, a part of the dissolution It may remain.
  • the concentration of the diluted nitric acid is preferably 1% by mass to 20% by mass.
  • the concentration of the hydrogen peroxide is preferably 3% by mass to 30% by mass.
  • the bleach-fixing solution for example, JP-A-2-207250, page 26, lower right column, line 1 to page 34, upper-right column, line 9 and JP-A-4-97355, page 5, upper left column, line 17
  • the processing materials and processing methods described in the 20th page, lower right column, line 20 can be preferably applied.
  • the bleach-fixing time is preferably 180 seconds or shorter, more preferably 120 seconds or shorter and 1 second or longer, and further preferably 90 seconds or shorter and 5 seconds or longer.
  • the water washing or stabilization time is preferably 180 seconds or shorter, more preferably 120 seconds or shorter and 1 second or longer.
  • the bleach-fixing solution is not particularly limited as long as it is a photographic bleach-fixing solution, and can be appropriately selected according to the purpose.
  • CP-48S, CP-49E color paper bleaching manufactured by FUJIFILM Corporation. Fixing agent), Kodak Ektacolor RA bleach-fixing solution, Dai Nippon Printing Co., Ltd. bleach-fixing solution D-J2P-02-P2, D-30P2R-01, D-22P2R-01, and the like.
  • CP-48S and CP-49E are particularly preferable.
  • a development step for removing the patterned resist (etching mask material) used in the exposure step may be included.
  • the developing step is preferably a step of removing the etching mask material by applying a solvent.
  • a positive resist it is preferably performed in a step after mask exposure and a step after etching
  • a negative resist it is preferably performed in a step after etching.
  • an alkaline solution is preferable.
  • the alkali contained in the alkaline solution is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include tetramethylammonium hydroxide, tetraethylammonium hydroxide, 2-hydroxyethyltrimethylammonium hydroxide, sodium carbonate, Examples thereof include sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, sodium hydroxide, potassium hydroxide and the like.
  • a commercially available developer for photoresist can be used as the solvent.
  • the immersion time of the alkaline solution is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10 seconds to 5 minutes.
  • the temperature of the alkaline solution can be appropriately selected according to the purpose, but is preferably 5 ° C to 50 ° C.
  • the patterning step for forming the patterned transparent conductive film in the transparent conductive laminate of the present invention may further include other steps as necessary in addition to the exposure step and the development step. Examples of other processes include washing with water after removing the etching mask, and a drying process.
  • the conductive film may be formed on a target substrate by transfer using a transfer material.
  • a polarizing conductive film tends to be formed.
  • coating methods that maintain the randomness of the orientation of the nanowires include spray coating methods and inkjet coating methods.
  • a coating method that promotes the orientation of nanowires for example, a coating method such as a throttle die method
  • a direction different from the direction for example, a direction orthogonal to the direction
  • a treatment for reducing the orientation of the metal nanowires in the film may be performed.
  • Metal nanowires in the conductive film formed by being applied along one direction tend to be oriented along the direction. Therefore, it is preferable to perform a stretching process (for example, a stretching process with a stretching ratio of 1% or more and less than 5%) along a direction (for example, a direction orthogonal to the direction) different from the direction of application because orientation is reduced.
  • a stretching process for example, after forming a electrically conductive film on flexible substrates, such as a polymer film, it is preferable to extend
  • the surface resistance of the conductive film is preferably 1 ⁇ / ⁇ to 5,000 ⁇ / ⁇ , and more preferably 10 ⁇ / ⁇ to 500 ⁇ / ⁇ .
  • the surface resistance can be measured by, for example, a surface resistance meter (Loresta-GP MCP-T600, manufactured by Mitsubishi Chemical Corporation).
  • the dry film thickness of the pattern transparent conductive film is preferably 0.005 to 2 ⁇ m, more preferably 0.01 to 1 ⁇ m.
  • Adhesive layer In this invention, it has the adhesion layer formed so that a pattern transparent conductive film may be covered.
  • the adhesive layer is composed of an adhesive, and the adhesive strength of the adhesive layer is preferably 15 N / 25 mm or more (more preferably 30 to 50 N / 25 mm, particularly preferably 30 to 42 N / 25 mm).
  • it is preferable to use an adhesive whose water absorption rate of the adhesive layer is 2.0% or less (more preferably 1.0% or less, particularly preferably 0.9% or less). Although there is no specific lower limit of the water absorption rate, it is generally 0.5% or more.
  • the pressure-sensitive adhesive used for the pressure-sensitive adhesive layer includes an adhesive in a broad sense.
  • the adhesive force of the adhesive layer may be different even in the same adhesive layer.
  • the adhesive force of the adhesive layer is 15 N / 25 mm or more. There are no particular restrictions.
  • pressure-sensitive adhesives examples include acrylic pressure-sensitive adhesives, rubber-based pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, urethane-based pressure-sensitive adhesives, and polyester-based pressure-sensitive adhesives. Acrylic adhesive is preferred.
  • the method for forming the adhesive layer is not particularly limited, and for example, the method described in JP2012-11637A can be used. Specifically, a coating method, a printing method, a bonding method, and the like can be mentioned. Among them, a method of installing by coating and a method of forming by sticking an adhesive sheet can be preferably used. The method of forming is more preferable.
  • the dew point temperature is preferably ⁇ 40 ° C. or lower, particularly preferably ⁇ 60 ° C. or lower.
  • the autoclave treatment has the effect of improving optical properties such as enhancing the adhesion between the adhesive layer and the barrier film and improving the transmittance and haze reduction of the transparent conductive laminate.
  • the adhesion is improved by performing ultraviolet irradiation treatment, plasma treatment, and corona treatment on the barrier film surface.
  • the thickness of the adhesive layer is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it is preferably 5 to 150 ⁇ m, more preferably 20 to 100 ⁇ m. By making the thickness of the adhesive layer 5 ⁇ m or more, it is possible to cover the steps and irregularities of the pattern transparent conductive film to be applied, and by making the thickness 150 ⁇ m or less, the transmittance of the adhesive layer can be sufficiently secured.
  • the transparent conductive laminate of the present invention may have other layers (functional layers) in addition to the substrate, conductive film, adhesive layer, barrier film, and the like.
  • the functional layer include a protective film, an undercoat layer, an adhesion layer, a cushion layer, an overcoat protective layer, a protective film layer, an antifouling layer, a water repellent layer, an oil repellent layer, and a hard coat layer.
  • an optical function can be imparted by laminating an antiglare layer, an antireflection layer, a low reflection layer, a ⁇ / 4 layer, a polarizing layer, a retardation layer, and the like. These may be a single layer or a plurality of layers.
  • the transparent conductive laminate of the present invention is applied to a touch panel.
  • the touch panel has a drive voltage of 1 V or more and is not particularly limited as long as it has the transparent conductive laminate of the present invention, and can be appropriately selected according to the purpose.
  • a surface capacitive touch panel, a projection type Examples include a capacitive touch panel and a resistive touch panel.
  • the touch panel includes a so-called touch sensor and a touch pad.
  • the layer structure of the touch panel sensor electrode part in the touch panel is a bonding method in which two transparent electrodes are bonded, a method in which transparent electrodes are provided on both surfaces of a single substrate, a single-sided jumper or a through-hole method, or a single-area layer method. Either is preferable.
  • the projected capacitive touch panel is preferably AC driven rather than DC driven, and more preferably is a drive system that requires less time to apply voltage to the electrodes.
  • FIG. 2 is a schematic view of an example of a touch panel having the transparent conductive laminate of the present invention.
  • the touch panel has a transparent conductive film on a surface opposite to the surface adjacent to the first barrier film of the transparent conductive laminate of the present invention and the first barrier film of the transparent conductive laminate. It has the laminated body laminated
  • FIG. 3 is a schematic view of another example of a touch panel having the transparent conductive laminate of the present invention.
  • a touch panel is an aspect which has a transparent film, a 3rd barrier film
  • the third barrier film may be the same barrier film as the first and second barrier films, or may be a different barrier film. In the embodiment shown in FIG. 3, even if a film substrate made of a polymer is used as the substrate and the cover film, moisture from the outside does not enter the pattern transparent conductive film. Can be prevented from malfunctioning.
  • Water vapor permeability of the third barrier film shown in FIGS. 2 and 3 (more preferably, 0.05 g / (m 2 ⁇ day) or less) preferably 0.1 g / (m 2 ⁇ day) or less be
  • the same film as the first barrier film and the second barrier film may be used, or different barrier films may be used.
  • the image display device used for the touch panel is not particularly limited, and a liquid crystal display device or an organic EL device usually used for a small electronic terminal can be used.
  • a substrate 1 was prepared by introducing an O 2 gas onto a 125 ⁇ m thick PET film using a Si 3 N 4 target and forming a 150 nm thick SiON (silicon nitride oxide) barrier film by sputtering.
  • SiON silicon nitride oxide
  • a film 2-1 having a thickness of 1 ⁇ m was formed by applying an acrylic resin on a PET film having a thickness of 125 ⁇ m.
  • an Si 2 N 4 target was used to introduce O 2 gas, and a 150 nm thick SiON film 2-2 was formed by sputtering.
  • a film 2-3 having a thickness of 1 ⁇ m is formed on the film 2-2 by applying an acrylic resin, and an O 2 gas is introduced onto the film 2-3 using a Si 3 N 4 target.
  • a barrier film composed of the films 2-1 to 2-4 was formed by forming a SiON film 4 having a thickness of 150 nm by sputtering, and the substrate 2 was manufactured.
  • a film 4-1 having a thickness of 1 ⁇ m was formed by applying an acrylic resin on a PET film having a thickness of 125 ⁇ m.
  • an O 2 gas was introduced using an Al target, and an alumina film 4-2 having a thickness of 100 nm was formed by sputtering.
  • a film 4-3 having a film thickness of 1 ⁇ m is formed on the film 4-2 by applying an acrylic resin, and O 2 gas is introduced onto the film 4-3 using an Al target, and a sputtering method is used.
  • a barrier film composed of the films 4-1 to 4-4 was formed, and the substrate 4 was manufactured.
  • a substrate 5 was produced by introducing an O 2 gas onto a PET film having a thickness of 125 ⁇ m using a Si 3 N 4 target and forming a 100 nm thick SiON barrier film by sputtering.
  • An O 2 gas was introduced onto a PET film having a thickness of 125 ⁇ m using an Al target, and an alumina barrier film having a thickness of 150 nm was formed by sputtering to produce a substrate 6.
  • a 1 ⁇ m thick film 2′-1 was formed by applying an acrylic resin on a 125 ⁇ m thick polymethyl methacrylate resin (PMMA) film.
  • PMMA polymethyl methacrylate resin
  • an O 2 gas was introduced using a Si 3 N 4 target, and a 150 nm-thick SiON film 2′-2 was formed by sputtering.
  • An acrylic resin is applied on the film 2′-2 to form a film 2′-3 having a thickness of 1 ⁇ m, and an O 2 gas is introduced onto the film 3 using a Si 3 N 4 target.
  • a cover film 2 was prepared by forming a SiON film 2′-4 having a film thickness of 150 nm by sputtering to form a barrier film composed of the films 2′-1 to 2′-4.
  • a cover film 3 was prepared by introducing an O 2 gas onto a 125 ⁇ m thick polymethyl methacrylate resin (PMMA) film using an Al target and forming a 100 nm thick alumina barrier film by sputtering.
  • PMMA polymethyl methacrylate resin
  • a cover film 4 is produced by introducing an O 2 gas onto a 125 ⁇ m thick polymethyl methacrylate resin (PMMA) film using a Si 3 N 4 target and forming a 400 nm thick SiON barrier film by sputtering. did.
  • PMMA polymethyl methacrylate resin
  • a film 6′-1 having a thickness of 1 ⁇ m was formed by applying an acrylic resin on a polymethyl methacrylate resin (PMMA) film having a thickness of 125 ⁇ m.
  • PMMA polymethyl methacrylate resin
  • an O 2 gas was introduced using an Al target, and an alumina film 6′-2 having a thickness of 100 nm was formed by sputtering.
  • a film 6′-3 having a thickness of 1 ⁇ m is formed on the film 6′-2 by applying an acrylic resin, and an O 2 gas is introduced onto the film 6′-3 using an Al target.
  • a barrier film composed of films 6′-1 to 6′-4 was formed by forming an alumina film 6′-4 with a film thickness of 100 nm by sputtering, and a cover film 6 was produced.
  • a cover film 7 is produced by introducing an O 2 gas onto a 125 ⁇ m-thick polymethyl methacrylate resin (PMMA) film using a Si 3 N 4 target and forming a 100-nm thick SiON barrier film by sputtering. did.
  • a cover film 3 was prepared by introducing an O 2 gas onto a 125 ⁇ m-thick polymethyl methacrylate resin (PMMA) film using an Al target and forming an alumina barrier film having a thickness of 150 nm by sputtering.
  • PMMA polymethyl methacrylate resin
  • each 10.5g / (m 2 ⁇ day) was 12.4g / (m 2 ⁇ day) .
  • Both water vapor transmission rates exceeded 10 g / (m 2 ⁇ day), and the water vapor transmission rate of the substrate itself and the cover film with the barrier film were measured because the water vapor transmission rate of the substrate itself was very large.
  • the result obtained can be calculated as the water vapor permeability of the barrier film.
  • the value below 0.01 g / (m ⁇ 2 > * day) which is the measurement limit of the said water-vapor-permeability measuring apparatus can be supplemented by measuring using the following method.
  • metal Ca is vapor-deposited directly on the sample, and the film and the glass substrate are sealed with a commercially available sealing material for organic EL so that the vapor-deposited Ca is on the inside, thereby producing a sealed sample.
  • the water vapor transmission rate can be obtained by holding the sealed sample at the above temperature and humidity conditions and obtaining the optical density change of the metallic Ca (the metallic luster is reduced by hydroxylation or oxidation).
  • Polyester having a thickness of 50 ⁇ m obtained by adding 0.7 part of an isocyanate-based cross-linking agent (Coronate L-45 manufactured by Nippon Polyurethane Co., Ltd., solid content: 45%) to 100 parts of the pressure-sensitive adhesive A, stirring for 15 minutes, and then removing one side with a silicone compound.
  • the film (# 50 release film) was coated so that the thickness after drying was 25 ⁇ m, and dried at 75 ° C. for 5 minutes.
  • the obtained pressure-sensitive adhesive sheet and a 38 ⁇ m-thick polyester film (# 38 release film) having one surface peel-treated with a silicone compound were bonded together. Thereafter, it was aged at 23 ° C. for 5 days to obtain a support-less pressure-sensitive adhesive sheet A having a thickness of 25 ⁇ m.
  • Polyester having a thickness of 50 ⁇ m obtained by adding 0.7 part of an isocyanate-based crosslinking agent (Coronate L-45 manufactured by Nippon Polyurethane Co., Ltd., solid content: 45%) to 100 parts of the above-mentioned adhesive B, stirring for 15 minutes, and then removing one side with a silicone compound.
  • the film (# 50 release film) was coated so that the thickness after drying was 25 ⁇ m, and dried at 75 ° C. for 5 minutes.
  • the obtained pressure-sensitive adhesive sheet and a 38 ⁇ m-thick polyester film (# 38 release film) having one surface peel-treated with a silicone compound were bonded together. Thereafter, it was aged at 23 ° C. for 5 days to obtain a support-less pressure-sensitive adhesive sheet B having a thickness of 25 ⁇ m.
  • Preparation of adhesive sheet C 10 parts of the acrylic copolymer (3) was added to 100 parts of the acrylic copolymer (2), and diluted with ethyl acetate to obtain an adhesive C having a resin solid content of 30%.
  • Polyester having a thickness of 50 ⁇ m obtained by adding 0.7 part of an isocyanate-based crosslinking agent (Coronate L-45 manufactured by Nippon Polyurethane Co., Ltd., solid content: 45%) to 100 parts of the above-mentioned pressure-sensitive adhesive, stirring for 15 minutes, and then removing one side with a silicone compound.
  • the film (# 50 release film) was coated so that the thickness after drying was 25 ⁇ m, and dried at 75 ° C. for 5 minutes.
  • the obtained pressure-sensitive adhesive sheet and a 38 ⁇ m-thick polyester film (# 38 release film) having one surface peel-treated with a silicone compound were bonded together. Thereafter, it was aged at 23 ° C. for 5 days to obtain a support-less pressure-sensitive adhesive sheet C having a thickness of 25 ⁇ m.
  • the pressure-sensitive adhesive sheet prepared above is cut out to a size of 100 mm ⁇ 100 mm, left under conditions of 60 ° C. and 90% RH for 100 hours, immediately peeled off the release film on one side of the pressure-sensitive adhesive sheet, and bonded to a 150 mm ⁇ 150 mm aluminum foil. And weigh (this mass is referred to as W1).
  • the other release film of the pressure-sensitive adhesive sheet is peeled off, dried for 2 hours at 105 ° C., and then weighed (this mass is designated as W2).
  • the adhesion strength between the barrier film and the adhesive layer was evaluated by the following method.
  • the release film on one side of the pressure-sensitive adhesive sheet prepared above is peeled off, bonded to a polyethylene terephthalate film (thickness: 25 ⁇ m), cut to a width of 25 mm and a length of 100 mm, and then the release film on the other side is peeled off.
  • a cover film having a barrier film was attached. At this time, the bonding is performed so that the barrier film faces the adhesive sheet.
  • the autoclave treatment was performed for 20 minutes under the condition of 45 ° C./0.5 MPa.
  • 180 ° peel adhesion was measured.
  • the measurement conditions for 180 ° peel adhesive strength are peeling angle: 180 °, tensile speed: 300 mm / min, temperature: 23 ° C., humidity: 50% RH, and a film made of polyethylene terephthalate from a cover film having a barrier film.
  • 180 ° peel adhesive strength was measured, and the adhesion strength between the barrier film and the pressure-sensitive adhesive layer was evaluated.
  • a silver nitrate solution 101 was prepared by dissolving 60 g of silver nitrate powder in 370 g of propylene glycol. 72.0 g of polyvinylpyrrolidone (molecular weight 55,000) was added to 4.45 kg of propylene glycol, and the temperature was raised to 90 ° C. while venting nitrogen gas through the gas phase portion of the container. This solution was designated as reaction solution 101. While maintaining the aeration of nitrogen gas, 3.00 g of the silver nitrate solution 101 was added to the reaction solution 101 that was vigorously stirred, and the mixture was heated and stirred for 1 minute. Further, a solution in which 11.8 g of tetrabutylammonium chloride was dissolved in 100 g of propylene glycol was added to this solution to obtain a reaction solution 102.
  • ultrafiltration was performed as follows. Addition and concentration of a mixed solution of distilled water and 1-propanol (volume ratio of 1: 1) to the charged solution 101 and concentration were repeated until the filtrate finally had a conductivity of 50 ⁇ S / cm or less. The obtained filtrate was concentrated to obtain a silver nanowire dispersion liquid (1) having a metal content of 0.45%.
  • the average minor axis length and the average major axis length were measured as described above. As a result, the average minor axis length was 32.5 nm and the average major axis length was 15.6 ⁇ m.
  • silver nanowire dispersion liquid (1) the silver nanowire dispersion liquid obtained by the said method is shown.
  • additive solution A After the addition of the aqueous silver nitrate solution A-1, the mixture was vigorously stirred for 180 minutes to obtain additive solution A.
  • additive solution B 42.0 g of silver nitrate powder was dissolved in 958 g of distilled water.
  • Additional liquid C 75 g of 25% aqueous ammonia was mixed with 925 g of distilled water.
  • additive liquid D 400 g of polyvinylpyrrolidone (K30) was dissolved in 1.6 kg of distilled water.
  • a silver nanowire dispersion liquid (5) was prepared as follows.
  • ultrafiltration was performed as follows. After the feed solution 102 is concentrated four times, addition and concentration of a mixed solution of distilled water and 1-propanol (volume ratio of 1: 1) to the feed solution 102 is finally performed, and finally the conductivity of the filtrate is 50 ⁇ S / cm. Repeat until: The obtained filtrate was concentrated to obtain a silver nanowire dispersion liquid (5) having a metal content of 0.45%.
  • the average minor axis length and the average major axis length were measured as described above. As a result, the average minor axis length was 17.2 nm and the average major axis length was 8.8 ⁇ m.
  • the sol-gel reaction was caused to dry at 1 degreeC for 1 minute, and the transparent conductive film 1 which consists of silver nanowire was formed.
  • the transparent conductive film 1 can be patterned using a conventional photolithography etching technique.
  • a photoresist (TMSMR-8900LB: manufactured by Tokyo Ohka Kogyo Co., Ltd.) is applied to the transparent conductive film 1, and after pattern exposure using a mask, development is performed with a developer (NMD-W: Tokyo Ohka Kogyo Co., Ltd.).
  • NMD-W Tokyo Ohka Kogyo Co., Ltd.
  • SEA-2 manufactured by Kanto Chemical Co., Inc.
  • the photoresist was stripped using a neutral stripping solution (PK-SFR8120: manufactured by Parker Corporation), and the pattern transparent conductive film 1 was prepared.
  • PK-SFR8120 manufactured by Parker Corporation
  • the space width of the conductive area of the element of the environmental resistance test and the flexibility evaluation was 50 ⁇ m.
  • a conductive area was patterned to a size of 5 cm ⁇ 5 cm.
  • an extraction electrode in which an extraction electrode of Mo (40 nm) / Al (100 nm) / Mo (40 nm) was produced by sputtering was formed on the patterned transparent conductive film 1.
  • the extraction electrode was patterned by using a shadow metal mask during sputtering film formation.
  • the surface on the barrier film side of the cover film 1 and the pattern transparent conductive film 1 were bonded together using an adhesive sheet A.
  • the bonding was performed in a glove box having a dew point temperature of ⁇ 60 ° C.
  • the transparent conductive laminate 1 was produced by subjecting the autoclave treatment to a condition of 45 ° C./0.5 MPa for 20 minutes.
  • the transparent conductive laminate 2 was prepared in the same manner as the production of the transparent conductive laminate 1, except that the aqueous dispersion of the substrate, the cover film, and the silver nanowire was changed as shown in the following table. To 21 were produced. Moreover, in the transparent conductive laminates 14, 17, 18, 19 and 20, before bonding, the surface of the barrier film of the cover film is irradiated with ultraviolet rays to be washed to enhance the adhesion between the barrier film and the adhesive layer. It was.
  • Resistance change (240 hours later + electrode resistance) / (before test + electrode resistance) AA: resistance change is less than 1.1, excellent level A: resistance change is 1.1 or more and less than 1.5, good level B: resistance change is 1.5 or more and less than 2.0, no problem level C: Resistance change is 2.0 or more, problematic level
  • ⁇ Haze> The haze value of the conductive area was measured using a haze guard plus manufactured by Gardner. The measurement was performed at the center of a 5 cm ⁇ 5 cm sample.
  • membrane is 0.1 g / (m ⁇ 2 > * day) or less respectively
  • the pattern transparent conductive film containing metal nanowire whose average short axis length is 50 nm or less It can be seen that the transparent conductive laminate in which is sealed with the first and second barrier films has good haze and excellent environmental resistance test. On the other hand, it can be seen that the comparative example which is not sealed with a barrier film having a water vapor transmission rate of 0.1 g / (m 2 ⁇ day) or less is inferior in the environmental resistance test as compared with the examples.
  • the transparent conductive laminate using metal nanowires having an average minor axis length of more than 50 nm is resistant even if a barrier film having a water vapor permeability of more than 0.1 g / (m 2 ⁇ day) is used. Although it is excellent in environmental tests, it can be seen that the haze is large and the visibility is poor. In a transparent conductive laminate using silver nanowires with an average minor axis length of 50 nm or less that has a small haze and is excellent in appearance, both sides of the patterned transparent conductive film have a water vapor transmission rate of 0.1 g / (m 2 ⁇ day) or less.
  • the environment resistance test characteristics can be improved, and both visibility and environment resistance test characteristics can be achieved. From Examples 1 to 11, by setting the adhesive force between the barrier film and the adhesive layer to 30 N / 25 mm or more and the water absorption rate of the adhesive layer to 1% or less, the environmental resistance test characteristics were further improved, and the adhesive force was 50 N / It can be seen that by setting the thickness of 25 mm or less and the thickness of the barrier film to 300 nm or less, it is possible to provide a transparent conductive laminate having further excellent flexibility.
  • the touch panel of the aspect of FIG. 3 was produced by bonding the transparent conductive film and the board
  • FIG. 12 The touch panel of the aspect of FIG. 3 was produced by bonding the transparent conductive film and the board
  • the touch panel of the aspect of FIG. 2 was produced by bonding the transparent conductive film, the pressure-sensitive adhesive sheet A, and the substrate 1 to the substrate of the transparent conductive laminate of Example 1.
  • Example 12 and 13 and Comparative Example 11 were driven at 5 V for 240 hours under an environmental condition of 85 ° C. and 90% RH.

Abstract

This transparent conductive laminate comprises: a first barrier film (1); a patterned transparent conductive film (2) which contains metal nanowires having an average minor axis length of 5-50 nm and is formed on the surface of the first barrier film (1) directly or with another layer being interposed therebetween; an adhesive layer (3) that covers the patterned transparent conductive film (2); and a second barrier film (4) that is arranged adjacent to the adhesive layer (3). The water vapor transmission rates of the first and second barrier films (1, 4) are 0.1 g/(m2·day) or less.

Description

透明導電積層体及びタッチパネルTransparent conductive laminate and touch panel
 本発明は、透明導電積層体及びタッチパネルに関する。 The present invention relates to a transparent conductive laminate and a touch panel.
 近年、タッチパネルを搭載した携帯機器が増えている。特に、2点以上の同時検出が可能なこと、多様な入力方法が可能となることから静電容量式タッチパネルが主流となってきている。タッチパネルの透明導電材料としてITOガラスやITOフィルムが広く利用されているが、インジウム金属は希少な金属であること、長波長領域の光透過率が低いことに起因する色味、低抵抗化には高温の熱処理が必要であること、屈曲耐性が低いなどの問題があるため、ITOガラスやITOフィルムの代替材料が種々検討されている。 In recent years, mobile devices equipped with touch panels are increasing. In particular, capacitive touch panels have become mainstream because two or more simultaneous detections are possible and various input methods are possible. ITO glass and ITO film are widely used as transparent conductive materials for touch panels, but indium metal is a rare metal and has low color transmittance and low resistance due to low light transmittance in the long wavelength region. Since there are problems such as the necessity of high-temperature heat treatment and low bending resistance, various alternative materials for ITO glass and ITO film have been studied.
 代替材料の一つとして導電性の金属ナノワイヤーを用いた導電材料が知られており、金属ナノワイヤーは、透明性、低抵抗、使用金属量の低減の面で優れていることからITOガラスやITOフィルムの代替材料としての期待が高まっている。特に平均短軸長さが50nm以下の金属ナノワイヤーを用いることにより、光散乱が小さく、視認性に優れた高透過率・低抵抗な透明導電膜を提供できることが知られている(例えば、特許文献1)。 As one of alternative materials, conductive materials using conductive metal nanowires are known. Metal nanowires are excellent in terms of transparency, low resistance, and reduction in the amount of metal used, so ITO glass and Expectation as an alternative material for ITO film is increasing. In particular, it is known that by using a metal nanowire having an average minor axis length of 50 nm or less, a transparent conductive film with low light scattering and excellent visibility can be provided (for example, a patent) Reference 1).
 また静電容量式タッチパネルにおいては、薄型化、軽量化及び低コスト化が求められており、透明基板の基材をフィルムにし、タッチパネルのカバーレンズ(透明保護基板)も従来のガラスからフィルムに変更することで薄型化、軽量化及び低コスト化を行うことが提案されている(例えば、特許文献2)。 Capacitive touch panels are required to be thinner, lighter, and less expensive. The substrate of the transparent substrate is changed to a film, and the cover lens (transparent protective substrate) of the touch panel is changed from a conventional glass to a film. It has been proposed to reduce the thickness, weight, and cost (for example, Patent Document 2).
特開2012-3900号公報JP 2012-3900 A 特開2011-59834号公報JP 2011-59834 A
 上記従来技術を本発明者が検討した結果、静電容量式タッチパネルにおいて、透明基板及びカバーレンズ(透明保護基板)をガラスから高分子からなるフィルムに変更し、金属ナノワイヤーを有する透明導電膜(以下、単に「導電膜」ともいう。)を使用する場合、高温高湿下で駆動していると、タッチパネルが動作しなくなったり、誤作動を起こすという問題が生じることを見出した。またこの問題は、高温高湿下で駆動しているうちに、金属ナノワイヤーを有する透明導電膜の抵抗値が上昇してしまうことが原因であることを見出した。そして、この抵抗上昇は、ライン状にパターニングされたライン電極間に高温高湿下で電圧を印加することにより、生じる現象であることを見出し、さらにこの抵抗上昇は、低ヘイズ・高透過率・低抵抗を可能にする平均短軸長さが50nm以下の金属ナノワイヤーを用いた透明導電膜において、顕著に現れる現象であることを見出した。 As a result of the inventor's examination of the above prior art, in the capacitive touch panel, the transparent substrate and the cover lens (transparent protective substrate) are changed from glass to a polymer film, and the transparent conductive film having metal nanowires ( In the following, when using simply “conductive film”), it has been found that the touch panel becomes inoperable or malfunctions when driven under high temperature and high humidity. Moreover, this problem discovered that the resistance value of the transparent conductive film which has metal nanowire rose while driving under high temperature, high humidity. And this resistance increase is found to be a phenomenon that occurs when a voltage is applied between line electrodes patterned in a line shape under high temperature and high humidity. Further, this resistance increase is caused by low haze, high transmittance, It has been found that this phenomenon appears prominently in a transparent conductive film using metal nanowires having an average minor axis length of 50 nm or less enabling low resistance.
 本発明は、上記問題を解決することを課題とし、具体的には、高温高湿下で電圧印加しても抵抗上昇を生じない薄型・軽量でかつヘイズが低い透明導電積層体及びその透明導電積層を用いることにより、高温高湿下で駆動しても動作不良を生じない薄型・軽量でかつ視認性に優れたタッチパネルを提供することを課題とする。 An object of the present invention is to solve the above-described problems, and specifically, a thin and light transparent conductive laminate having low resistance and no haze even when a voltage is applied under high temperature and high humidity, and its transparent conductive It is an object of the present invention to provide a touch panel that is thin, lightweight, and has excellent visibility, which does not cause malfunction even when driven under high temperature and high humidity, by using lamination.
 前記課題を解決するために、本発明者が種々検討した結果、所定の水蒸気透過率を有するバリア膜を設けることで、上記課題を解決し得るとの知見を得、本発明を完成するに至った。 As a result of various studies conducted by the present inventors in order to solve the above problems, the inventors have obtained knowledge that the above problems can be solved by providing a barrier film having a predetermined water vapor transmission rate, thereby completing the present invention. It was.
 前記課題を解決するための手段は、下記[1]および[9]の透明導電積層体およびタッチパネルであり、好ましくは、下記[2]~[10]の透明導電積層体およびタッチパネルである。
[1] 第1バリア膜と、第1バリア膜の表面に直接又は他の層を介して形成された、平均短軸長が5~50nmの金属ナノワイヤーを含有するパターン透明導電膜と、パターン透明導電膜を覆う粘着層と、粘着層に隣接している第2バリア膜とを有し、第1及び第2バリア膜の水蒸気透過率が、それぞれ、0.1g/(m2・day)以下であることを特徴とする透明導電積層体。
[2]第1バリア膜のパターン透明導電膜が形成された側の面と反対側の面に樹脂からなる透明フィルムを有し、かつ第2バリア膜の粘着層と隣接する面と反対側の面に樹脂からなる透明保護フィルムを有する[1]の透明導電積層体。
[3] 金属ナノワイヤーの平均短軸長が、5~25nmである[1]又は[2]の透明導電積層体。
[4] 粘着層の粘着力が15N/25mm以上である[1]~[3]のいずれか1つの透明導電積層体。
[5] 粘着層の粘着力が30~50N/25mmである[1]~[4]のいずれか1つの透明導電積層体。
[6] 粘着層の吸水率が、1.0%以下である[1]~[5]のいずれか1つの透明導電積層体。
[7] 金属ナノワイヤーが、銀を含む[1]~[6]のいずれか1つの透明導電積層体。
[8] 第1及び第2のバリア膜がSiONであり、第1及び第2のバリア膜の膜厚が、それぞれ、300nm以下である[1]~[7]のいずれか1つの透明導電積層体。
[9] [1]~[8]のいずれかの透明導電積層体を用いたことを特徴とするタッチパネル。
[10] 駆動電圧が1V以上の[9]のタッチパネル。
Means for solving the above-mentioned problems are the transparent conductive laminates and touch panels [1] and [9] below, and preferably the transparent conductive laminates and touch panels [2] to [10] below.
[1] A first barrier film, a patterned transparent conductive film containing metal nanowires having an average minor axis length of 5 to 50 nm, formed directly on the surface of the first barrier film or via another layer, and a pattern It has an adhesive layer covering the transparent conductive film and a second barrier film adjacent to the adhesive layer, and the water vapor permeability of the first and second barrier films is 0.1 g / (m 2 · day), respectively. A transparent conductive laminate characterized by the following.
[2] The pattern of the first barrier film has a transparent film made of resin on the surface opposite to the surface on which the transparent conductive film is formed, and on the side opposite to the surface adjacent to the adhesive layer of the second barrier film The transparent conductive laminate according to [1], having a transparent protective film made of resin on the surface.
[3] The transparent conductive laminate according to [1] or [2], wherein the metal nanowire has an average minor axis length of 5 to 25 nm.
[4] The transparent conductive laminate according to any one of [1] to [3], wherein the adhesive strength of the adhesive layer is 15 N / 25 mm or more.
[5] The transparent conductive laminate according to any one of [1] to [4], wherein the adhesive strength of the adhesive layer is 30 to 50 N / 25 mm.
[6] The transparent conductive laminate according to any one of [1] to [5], wherein the water absorption of the adhesive layer is 1.0% or less.
[7] The transparent conductive laminate according to any one of [1] to [6], wherein the metal nanowire contains silver.
[8] The transparent conductive laminate according to any one of [1] to [7], wherein the first and second barrier films are SiON, and the film thicknesses of the first and second barrier films are 300 nm or less, respectively. body.
[9] A touch panel using the transparent conductive laminate according to any one of [1] to [8].
[10] The touch panel according to [9], wherein the drive voltage is 1 V or more.
 本発明によれば、高温高湿下で電圧印加しても抵抗上昇を生じない薄型・軽量でかつヘイズが低い透明導電積層体及びその透明導電積層を用いることにより、高温高湿下で駆動しても動作不良を生じない薄型・軽量でかつ視認性に優れたタッチパネルを提供することができる。 According to the present invention, a thin and lightweight transparent conductive laminate that does not increase resistance even when a voltage is applied under high temperature and high humidity, and has a low haze, and the transparent conductive laminate is used to drive under high temperature and high humidity. However, it is possible to provide a touch panel that is thin, lightweight, and has excellent visibility without causing malfunction.
本発明の透明導電積層体の一例の断面模式図である。It is a cross-sectional schematic diagram of an example of the transparent conductive laminated body of this invention. 本発明のタッチパネルの一例の断面模式図である。It is a cross-sectional schematic diagram of an example of the touch panel of this invention. 本発明のタッチパネルの他の例の断面模式図である。It is a cross-sectional schematic diagram of the other example of the touchscreen of this invention. 実施例で作製した素子の上面図である。It is a top view of the element produced in the Example. 図4のX-X’断面図である。FIG. 5 is a cross-sectional view taken along line X-X ′ in FIG. 4. 比較例のタッチパネルの断面模式図である。It is a cross-sectional schematic diagram of the touch panel of a comparative example.
 以下、本発明について詳細に説明する。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。 Hereinafter, the present invention will be described in detail. In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
 図1に本発明の透明導電積層体の一例の模式図を示す。本発明の透明導電積層体は、第1バリア膜と、第1バリア膜の表面に直接に形成された、平均短軸長が5~50nmの金属ナノワイヤーを含有するパターン透明導電膜と、パターン透明導電膜を覆う粘着層と、前記粘着層に隣接している第2バリア膜とを有する。図1では、第1バリア膜の表面に透明導電膜が設けられているが、透明導電膜は他の層を介して設けられていてもよい。他の層を介してとは、第1バリア膜の表面に1又は2以上の層やフィルムなどを設けその表面に透明導電膜を設ける態様などが挙げられる。本発明では、第1バリア膜の表面に透明導電膜を設ける方が好ましい。パターン透明導電膜は、導電性エリア及び非導電性エリアにライン状にパターニングされており、導電性エリア内に平均短軸長が5~50nmの金属ナノワイヤーが含有されている。また、第1及び第2バリア膜の水蒸気透過率は、それぞれ0.1g/(m2・day)以下である。 FIG. 1 shows a schematic diagram of an example of the transparent conductive laminate of the present invention. The transparent conductive laminate of the present invention includes a first barrier film, a patterned transparent conductive film containing metal nanowires having an average minor axis length of 5 to 50 nm formed directly on the surface of the first barrier film, An adhesive layer covering the transparent conductive film; and a second barrier film adjacent to the adhesive layer. In FIG. 1, the transparent conductive film is provided on the surface of the first barrier film, but the transparent conductive film may be provided via another layer. The other layer includes an embodiment in which one or more layers or films are provided on the surface of the first barrier film and a transparent conductive film is provided on the surface. In the present invention, it is preferable to provide a transparent conductive film on the surface of the first barrier film. The patterned transparent conductive film is patterned in a line shape in a conductive area and a non-conductive area, and metal nanowires having an average minor axis length of 5 to 50 nm are contained in the conductive area. The water vapor transmission rates of the first and second barrier films are each 0.1 g / (m 2 · day) or less.
 第1バリア膜はパターン透明導電膜に直接(隣接して)形成されており、第2バリア膜は、粘着層と粘着することで隣接している。
 第1及び第2バリア膜は、外部から浸入した水分がパターン透明導電膜内に浸入することを防止する機能を有しており、第1及び第2バリア膜の水蒸気透過率は、0.1g/(m2・day)以下であり、0.05g/(m2・day)以下であることが好ましい。水蒸気透過率の具体的な下限はないが、一般的に、0.000001g/(m2・day)以上である。
The first barrier film is formed directly (adjacent) to the pattern transparent conductive film, and the second barrier film is adjacent to the adhesive layer by adhering to the adhesive layer.
The first and second barrier films have a function of preventing moisture entering from the outside from entering the pattern transparent conductive film, and the water vapor permeability of the first and second barrier films is 0.1 g. / (m 2 · day) or less, is preferably 0.05 g / (m 2 · day) or less. Although there is no specific lower limit of the water vapor transmission rate, it is generally 0.000001 g / (m 2 · day) or more.
 第1バリア膜は、パターン透明導電膜が形成された側の面と反対側の面に、第1バリア膜を支持する樹脂からなる透明フィルムを有していてもよく、透明フィルムと、第1バリア膜とを含めた全体を基板と定義する。基板としては、光透過率が高いものが良く、70%以上が好ましく、80%以上がより好ましい。透明フィルムと第1バリア膜との間には、下塗り層などのその他の機能層を有していてもよい。その他の機能層としては、例えば、マット剤層、保護層、耐溶剤層、帯電防止層、平滑化層、密着改良層、遮光層、反射防止層、ハードコート層、応力緩和層、防曇層、防汚層、被印刷層、易接着層等が挙げられる。これらは単層でもよく、複数を積層してもよい。
また、パターン透明導電膜は、第1バリア膜の表面に直接又は他の層を介して形成、即ちパターン透明導電膜は、第1バリア膜を支持する透明フィルム又は機能層上に形成されていてもよい。
The first barrier film may have a transparent film made of a resin that supports the first barrier film on the surface opposite to the surface on which the patterned transparent conductive film is formed. The whole including the barrier film is defined as a substrate. As a board | substrate, a thing with a high light transmittance is good, 70% or more is preferable and 80% or more is more preferable. Other functional layers such as an undercoat layer may be provided between the transparent film and the first barrier film. Other functional layers include, for example, matting agent layers, protective layers, solvent resistant layers, antistatic layers, smoothing layers, adhesion improving layers, light shielding layers, antireflection layers, hard coat layers, stress relaxation layers, antifogging layers. , Antifouling layer, printed layer, easy adhesion layer and the like. These may be a single layer or a plurality of layers.
Further, the patterned transparent conductive film is formed directly on the surface of the first barrier film or via another layer, that is, the patterned transparent conductive film is formed on the transparent film or functional layer that supports the first barrier film. Also good.
 第2バリア膜は、粘着層と隣接する面と反対側の面に、第2バリア膜を支持する樹脂からなる透明保護フィルムを有しており、第2バリア膜と、透明保護フィルムとを含めた全体をカバーフィルムと定義する。カバーフィルムとしては、光透過率が高いものが良く、70%以上が好ましく、80%以上がより好ましい。さらに透明保護フィルムの第2バリア膜が形成されている側と反対側の面には、ハードコート層を有していることが好ましい。ハードコート層としては、硬度3H以上のものが良い。透明保護フィルムと第2バリア膜との間および透明保護フィルムとハードコート層との間には、下塗り層などのその他の機能層を有していてもよい。その他の機能層としては、例えば、マット剤層、保護層、耐溶剤層、帯電防止層、平滑化層、密着改良層、遮光層、反射防止層、応力緩和層、防曇層、防汚層、被印刷層、易接着層等が挙げられる。これらは単層でもよく、複数を積層してもよい。これらは単層でもよく、複数を積層してもよい。
第1及び第2バリア膜の詳細については後述する。
The second barrier film has a transparent protective film made of a resin supporting the second barrier film on the surface opposite to the surface adjacent to the adhesive layer, and includes the second barrier film and the transparent protective film. Is defined as a cover film. As a cover film, a thing with a high light transmittance is good, 70% or more is preferable and 80% or more is more preferable. Furthermore, it is preferable that the surface of the transparent protective film opposite to the side on which the second barrier film is formed has a hard coat layer. A hard coat layer having a hardness of 3H or more is preferable. Other functional layers such as an undercoat layer may be provided between the transparent protective film and the second barrier film and between the transparent protective film and the hard coat layer. Other functional layers include, for example, matting agent layers, protective layers, solvent resistant layers, antistatic layers, smoothing layers, adhesion improving layers, light shielding layers, antireflection layers, stress relaxation layers, antifogging layers, and antifouling layers. , Printing layer, easy adhesion layer and the like. These may be a single layer or a plurality of layers. These may be a single layer or a plurality of layers.
Details of the first and second barrier films will be described later.
 粘着層は、粘着剤から構成されている。発明者の鋭意研究の結果、本発明者は、粘着層からも外気の水分が浸入することを見出し、それがパターン透明導電膜の抵抗上昇に影響を与えていることを見出した。このため、粘着層の吸水率が2.0%以下であることが好ましく、1.0%以下であることがより好ましく、0.9%以下であることが特に好ましい。 The adhesive layer is composed of an adhesive. As a result of the inventor's earnest research, the present inventor found that moisture in the outside air also entered from the adhesive layer, and found that this had an effect on the increase in resistance of the patterned transparent conductive film. For this reason, it is preferable that the water absorption rate of an adhesion layer is 2.0% or less, It is more preferable that it is 1.0% or less, It is especially preferable that it is 0.9% or less.
 粘着層の粘着力(ここでは、第2バリア膜との粘着力をいう)は、15N/25mm以上であることが好ましく、30~50N/25mmであることがより好ましく、30~42N/25mmであることが特に好ましい。粘着力を15N/25mm以上とすることで第2バリア膜と粘着層との剥がれが生じなく、第2バリア膜と粘着層との界面からの水分の浸入防止効果が得られる。さらに30N/25mm以上とすることで、第2バリア膜と粘着層との界面からの水分の浸入防止において強い効果が得られ、パターン透明導電膜の抵抗上昇を防ぐことができる。しかしながら、50N/25mmを超えると、透明導電積層体の柔軟性が劣ることがある。 The adhesive strength of the adhesive layer (here, the adhesive strength with the second barrier film) is preferably 15 N / 25 mm or more, more preferably 30 to 50 N / 25 mm, and more preferably 30 to 42 N / 25 mm. It is particularly preferred. By setting the adhesive strength to 15 N / 25 mm or more, peeling between the second barrier film and the adhesive layer does not occur, and an effect of preventing moisture from entering from the interface between the second barrier film and the adhesive layer is obtained. Further, when the thickness is 30 N / 25 mm or more, a strong effect can be obtained in preventing moisture from entering from the interface between the second barrier film and the adhesive layer, and an increase in resistance of the patterned transparent conductive film can be prevented. However, when it exceeds 50 N / 25 mm, the flexibility of the transparent conductive laminate may be inferior.
 以下、本発明に用いられる種々の部材等について詳細に説明する。 Hereinafter, various members used in the present invention will be described in detail.
第1及び第2バリア膜:
 本発明では、パターン透明導電膜と隣接する第1バリア膜と、粘着層と隣接する第2バリア膜とを有する。以下、第1及び第2バリア膜を「バリア膜」ともいう。
First and second barrier films:
In this invention, it has the 1st barrier film adjacent to a pattern transparent conductive film, and the 2nd barrier film adjacent to an adhesion layer. Hereinafter, the first and second barrier films are also referred to as “barrier films”.
 バリア膜は、水蒸気バリア性能の観点から、無機バリア層を有することが好ましい。しかし、バリア膜の水蒸気透過率が0.1g/(m2・day)以下を満たすものなら必ずしも無機バリア層を必要としない。さらに、バリア膜は、無機バリア層又は後述する有機層が少なくとも1層ずつ積層した構成であってもよい。無機バリア層、有機層の順に積層していてもよいし、有機層、無機バリア層の順に積層していてもよい。最上層は無機バリア層でも有機層でもよい。 The barrier film preferably has an inorganic barrier layer from the viewpoint of water vapor barrier performance. However, an inorganic barrier layer is not necessarily required as long as the water vapor permeability of the barrier film satisfies 0.1 g / (m 2 · day) or less. Further, the barrier film may have a structure in which at least one inorganic barrier layer or an organic layer described later is laminated. The inorganic barrier layer and the organic layer may be stacked in this order, or the organic layer and the inorganic barrier layer may be stacked in this order. The uppermost layer may be an inorganic barrier layer or an organic layer.
 バリア膜は、水蒸気透過率が、0.1g/(m2・day)以下(好ましくは、0.05g/(m2・day)以下)であれば、材質などは特に限定されない。また、第1及び第2バリア膜は、同一のバリア膜であってもよく、異なるバリア膜であってもよい。 Barrier film, water vapor transmission rate, 0.1g / (m 2 · day ) or less (preferably, 0.05g / (m 2 · day ) or less) if the material etc. are not particularly limited. Further, the first and second barrier films may be the same barrier film or different barrier films.
(無機バリア層)
 無機バリア層は、通常、金属化合物からなる薄膜の層である。無機バリア層の形成方法は、目的の薄膜(層)を形成できる方法であればいかなる方法でも用いることができる。例えば、蒸着法、スパッタリング法、イオンプレーティング法等の物理的気相成長法(PVD)、種々の化学的気相成長法(CVD)、めっきやゾルゲル法等の液相成長法がある。無機バリア層に含まれる成分は、上記性能を満たすものであれば特に限定されないが、例えば、金属酸化物、金属窒化物、金属炭化物、金属酸化窒化物または金属酸化炭化物であり、Si、Al、In、Sn、Zn、Ti、Cu、CeおよびTaから選ばれる1種以上の金属を含む酸化物、窒化物、炭化物、酸化窒化物または酸化炭化物などを好ましく用いることができる。これらの中でも、Si、Al、In、Sn、ZnおよびTiから選ばれる金属の酸化物、窒化物または酸化窒化物が好ましく、特にSiまたはAlの金属酸化物、窒化物または酸化窒化物が好ましく、具体的にはSiON(窒化酸化シリコン)が好ましい。これらは、副次的な成分として他の元素を含有してもよい。
 本発明により形成される無機バリア層の平滑性は、1μm角の平均粗さ(Ra値)として20nm未満であることが好ましく、1nm以下がより好ましい。無機バリア層の成膜はクリーンルーム内で行われることが好ましい。クリーン度はクラス10000以下が好ましく、クラス1000以下がより好ましい。
(Inorganic barrier layer)
The inorganic barrier layer is usually a thin film layer made of a metal compound. As a method for forming the inorganic barrier layer, any method can be used as long as it can form a target thin film (layer). For example, there are a physical vapor deposition method (PVD) such as a vapor deposition method, a sputtering method, and an ion plating method, various chemical vapor deposition methods (CVD), and a liquid phase growth method such as plating and a sol-gel method. The component contained in the inorganic barrier layer is not particularly limited as long as it satisfies the above performance, but for example, a metal oxide, a metal nitride, a metal carbide, a metal oxynitride, or a metal oxycarbide, Si, Al, An oxide, nitride, carbide, oxynitride, oxycarbide, or the like containing one or more metals selected from In, Sn, Zn, Ti, Cu, Ce, and Ta can be preferably used. Among these, a metal oxide, nitride or oxynitride selected from Si, Al, In, Sn, Zn and Ti is preferable, and a metal oxide, nitride or oxynitride of Si or Al is particularly preferable, Specifically, SiON (silicon nitride oxide) is preferable. These may contain other elements as secondary components.
The smoothness of the inorganic barrier layer formed according to the present invention is preferably less than 20 nm, more preferably 1 nm or less, as an average roughness (Ra value) of 1 μm square. The inorganic barrier layer is preferably formed in a clean room. The degree of cleanness is preferably class 10000 or less, more preferably class 1000 or less.
 無機バリア層の厚みに関しては特に限定されないが、1層に付き、通常、5~500nmの範囲内であり、好ましくは10~300nmである。無機バリア層は複数のサブレイヤーから成る積層構造であってもよい。この場合、各サブレイヤーが同じ組成であっても異なる組成であってもよい。複数のサブレイヤーから構成される積層構造の場合でも、無機バリア膜の合計厚みとして好ましい厚みは、通常、10~2000nmであり、より好ましくは20~300nmである。無機バリア層の合計厚みが300nmを超えると、屈曲させた時に無機バリア層にクラックが発生しやくなる等の柔軟性が劣化してしまう。米国公開特許2004-46497号明細書に開示されるように、無機バリア層と有機層との界面が明確でなく、組成が層厚方向で連続的に変化する層であってもよい。 Although the thickness of the inorganic barrier layer is not particularly limited, it is usually in the range of 5 to 500 nm, preferably 10 to 300 nm per layer. The inorganic barrier layer may have a laminated structure including a plurality of sublayers. In this case, each sublayer may have the same composition or a different composition. Even in the case of a laminated structure composed of a plurality of sublayers, the preferable thickness as the total thickness of the inorganic barrier film is usually 10 to 2000 nm, more preferably 20 to 300 nm. If the total thickness of the inorganic barrier layer exceeds 300 nm, the flexibility such as the cracking of the inorganic barrier layer is likely to occur when it is bent. As disclosed in US Patent Publication No. 2004-46497, a layer in which the interface between the inorganic barrier layer and the organic layer is not clear and the composition continuously changes in the layer thickness direction may be used.
(有機層)
 本発明における有機層とは有機ポリマーを主成分とする、有機層であることが好ましい。ここで主成分とは、有機層を構成する成分の第一の成分が有機ポリマーであることをいい、通常は、有機層を構成する成分の80質量%以上が有機ポリマーであることをいう。
 有機ポリマーとしては、例えば、ポリエステル、アクリル樹脂、メタクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド、ポリアミド、ポリアミドイミド、ポリエーテルイミド、セルロースアシレート、ポリウレタン、ポリエーテルエーテルケトン、ポリカーボネート、脂環式ポリオレフィン、ポリアリレート、ポリエーテルスルホン、ポリスルホン、フルオレン環変性ポリカーボネート、脂環変性ポリカーボネート、フルオレン環変性ポリエステルおよびアクリロイル化合物などの熱可塑性樹脂、あるいはポリシロキサン等の有機珪素ポリマーなどが挙げられる。有機層は単独の材料からなっていても混合物からなっていてもよいし、複数のサブレイヤーから構成される積層構造であってもよい。この場合、各サブレイヤーが同じ組成を有していても異なる組成を有していてもよい。また、米国公開特許2004-46497号明細書に開示されるように、無機バリア層と有機層との界面が明確でなく、組成が膜厚方向で連続的に変化する層であってもよい。
(Organic layer)
The organic layer in the present invention is preferably an organic layer containing an organic polymer as a main component. Here, the main component means that the first component of the component constituting the organic layer is an organic polymer, and usually 80% by mass or more of the component constituting the organic layer is an organic polymer.
Examples of the organic polymer include polyester, acrylic resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene, transparent fluororesin, polyimide, fluorinated polyimide, polyamide, polyamideimide, polyetherimide, cellulose acylate, and polyurethane. , Polyether ether ketone, polycarbonate, alicyclic polyolefin, polyarylate, polyether sulfone, polysulfone, fluorene ring modified polycarbonate, alicyclic modified polycarbonate, fluorene ring modified polyester, acryloyl compound and other thermoplastic resins, or polysiloxane, etc. Examples thereof include organosilicon polymers. The organic layer may be composed of a single material or a mixture, or may be a laminated structure composed of a plurality of sublayers. In this case, each sublayer may have the same composition or different compositions. Further, as disclosed in US Patent Publication No. 2004-46497, a layer in which the interface between the inorganic barrier layer and the organic layer is not clear and the composition changes continuously in the film thickness direction may be used.
 本発明における有機層は、好ましくは、重合性化合物を含む重合性組成物を硬化してなるものである。 The organic layer in the present invention is preferably formed by curing a polymerizable composition containing a polymerizable compound.
(重合性化合物)
 重合性化合物は、好ましくは、ラジカル重合性化合物および/またはエーテル基を官能基に有するカチオン重合性化合物であり、より好ましくは、エチレン性不飽和結合を末端または側鎖に有する化合物、および/または、エポキシまたはオキセタンを末端または側鎖に有する化合物である。これらのうち、エチレン性不飽和結合を末端または側鎖に有する化合物が好ましい。エチレン性不飽和結合を末端または側鎖に有する化合物の例としては、(メタ)アクリレート系化合物、アクリルアミド系化合物、スチレン系化合物、無水マレイン酸等が挙げられ、(メタ)アクリレート系化合物および/またはスチレン系化合物が好ましく、(メタ)アクリレート系化合物がさらに好ましい。
(Polymerizable compound)
The polymerizable compound is preferably a radical polymerizable compound and / or a cationic polymerizable compound having an ether group as a functional group, more preferably a compound having an ethylenically unsaturated bond at the terminal or side chain, and / or A compound having an epoxy or oxetane at the terminal or side chain. Of these, compounds having an ethylenically unsaturated bond at the terminal or side chain are preferred. Examples of compounds having an ethylenically unsaturated bond at the terminal or side chain include (meth) acrylate compounds, acrylamide compounds, styrene compounds, maleic anhydride, etc., (meth) acrylate compounds and / or Styrenic compounds are preferred, and (meth) acrylate compounds are more preferred.
 (メタ)アクリレート系化合物としては、(メタ)アクリレート、ウレタン(メタ)アクリレートやポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレート等が好ましい。
 スチレン系化合物としては、スチレン、α-メチルスチレン、4-メチルスチレン、ジビニルベンゼン、4-ヒドロキシスチレン、4-カルボキシスチレン等が好ましい。
As the (meth) acrylate compound, (meth) acrylate, urethane (meth) acrylate, polyester (meth) acrylate, epoxy (meth) acrylate and the like are preferable.
As the styrene compound, styrene, α-methylstyrene, 4-methylstyrene, divinylbenzene, 4-hydroxystyrene, 4-carboxystyrene and the like are preferable.
(重合開始剤)
 本発明の透明導電積層体において、重合性化合物を含む重合性組成物を塗布し、硬化させて有機層を形成する場合、該重合性組成物は、重合開始剤を含んでいてもよい。重合開始剤としては、例えば、特開2012-025099号公報に記載の重合性開始剤を使用することができる。
(Polymerization initiator)
In the transparent conductive laminate of the present invention, when a polymerizable composition containing a polymerizable compound is applied and cured to form an organic layer, the polymerizable composition may contain a polymerization initiator. As the polymerization initiator, for example, a polymerizable initiator described in JP 2012-025099 A can be used.
(有機層の形成方法)
 有機層の形成方法としては、特に定めるものではないが、例えば、溶液塗布法や真空成膜法により形成することができ、具体的には、特開2012-025099号公報に記載の方法で形成することができる。溶液塗布法としては、例えば、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、スライドコート法、或いは、米国特許第2681294号明細書に記載のホッパ-を使用するエクストル-ジョンコート法により塗布することができる。真空成膜法としては、特に制限はないが、蒸着、プラズマCVD等の成膜方法が好ましい。本発明においてはポリマーを溶液塗布しても良いし、特開2000-323273号公報、特開2004-25732号公報に開示されているような無機物を含有するハイブリッドコーティング法を用いてもよい。
(Formation method of organic layer)
A method for forming the organic layer is not particularly defined, but can be formed by, for example, a solution coating method or a vacuum film forming method. Specifically, the organic layer is formed by a method described in JP2012-025099A. can do. Examples of the solution coating method include a dip coating method, an air knife coating method, a curtain coating method, a roller coating method, a wire bar coating method, a gravure coating method, a slide coating method, or a method described in US Pat. No. 2,681,294. It can be applied by an extrusion coating method using a hopper. Although there is no restriction | limiting in particular as a vacuum film-forming method, Film-forming methods, such as vapor deposition and plasma CVD, are preferable. In the present invention, a polymer may be applied by solution, or a hybrid coating method containing an inorganic substance as disclosed in Japanese Patent Application Laid-Open Nos. 2000-323273 and 2004-25732 may be used.
 有機層の厚みに関しては特に限定されないが、1層に付き、通常、10~3000nmの範囲内であり、好ましくは100~2000nmである。 The thickness of the organic layer is not particularly limited, but is usually in the range of 10 to 3000 nm, preferably 100 to 2000 nm per layer.
(有機層と無機バリア層の積層)
 有機層と無機バリア層の積層は、所望の層構成に応じて有機層と無機バリア層を順次繰り返し積層することにより行うことができる。無機バリア層を、スパッタリング法、真空蒸着法、イオンプレーティング法、プラズマCVD法などの真空製膜法で形成する場合、有機層も前記フラッシュ蒸着法のような真空製膜法で形成することが好ましい。透明導電積層体を作製する間、途中で大気圧に戻すことなく、常に1000Pa以下の真空中で有機層と無機バリア層を積層することが特に好ましい。圧力は100Pa以下であることがより好ましく、50Pa以下であることがより好ましく、20Pa以下であることがさらに好ましい。
 特に、本発明は、少なくとも2層の有機層と少なくとも2層の無機バリア層を交互に積層した場合に、高いバリア性を発揮することができる。交互に積層する態様は、第1バリア膜において第1バリア膜を支持する透明フィルム側から有機層/無機バリア層/有機層/無機バリア層の順に積層していても、無機バリア層/有機層/無機バリア層/有機層の順に積層していても良い。また、第2バリア膜においても同様に、粘着層側から有機層/無機バリア層/有機層/無機バリア層の順に積層していても、無機バリア層/有機層/無機バリア層/有機層の順に積層していても良い。
(Lamination of organic layer and inorganic barrier layer)
The organic layer and the inorganic barrier layer can be laminated by repeatedly laminating the organic layer and the inorganic barrier layer sequentially in accordance with a desired layer configuration. When the inorganic barrier layer is formed by a vacuum film formation method such as a sputtering method, a vacuum vapor deposition method, an ion plating method, or a plasma CVD method, the organic layer can also be formed by a vacuum film formation method such as the flash vapor deposition method. preferable. During the production of the transparent conductive laminate, it is particularly preferable to always laminate the organic layer and the inorganic barrier layer in a vacuum of 1000 Pa or less without returning to atmospheric pressure in the middle. The pressure is more preferably 100 Pa or less, more preferably 50 Pa or less, and further preferably 20 Pa or less.
In particular, the present invention can exhibit high barrier properties when at least two organic layers and at least two inorganic barrier layers are alternately laminated. The mode of alternately laminating is that the first barrier film is laminated in the order of the organic layer / inorganic barrier layer / organic layer / inorganic barrier layer from the transparent film side supporting the first barrier film, but the inorganic barrier layer / organic layer The layers may be laminated in the order of / inorganic barrier layer / organic layer. Similarly, in the second barrier film, even if the organic layer / inorganic barrier layer / organic layer / inorganic barrier layer are laminated in this order from the adhesive layer side, the inorganic barrier layer / organic layer / inorganic barrier layer / organic layer You may laminate | stack in order.
(機能層)
 バリア膜は、機能層を有していても良い。機能層については、特開2006-289627号公報の段落番号0036~0038に詳しく記載されている。これら以外の機能層の例としてはマット剤層、保護層、耐溶剤層、帯電防止層、平滑化層、密着改良層、遮光層、反射防止層、ハードコート層、応力緩和層、防曇層、防汚層、被印刷層、易接着層等が挙げられる。
(Functional layer)
The barrier film may have a functional layer. The functional layer is described in detail in paragraph numbers 0036 to 0038 of JP-A-2006-289627. Examples of functional layers other than these include matting agent layers, protective layers, solvent resistant layers, antistatic layers, smoothing layers, adhesion improving layers, light shielding layers, antireflection layers, hard coat layers, stress relaxation layers, antifogging layers. , Antifouling layer, printed layer, easy adhesion layer and the like.
 第1バリア膜全体および第2バリア膜全体の各々の厚みは、特に制限はなく、目的に応じて適宜選択することができ、例えば、バリア層が有機層、または有機層と無機バリア層の積層の場合は、50~10000nmであることが好ましく、100~5000nmであることがより好ましい。有機層と無機バリア層の積層の場合、無機バリア層の合計厚みの好ましい範囲は、10~2000nmであり、より好ましくは20~300nmである。無機バリア層の合計厚みが300nmを越えると、前述のように、屈曲させた時に無機バリア膜にクラックが発生しやくなる等の柔軟性が劣化してしまう。バリア膜が無機バリア層のみの場合、バリア層の好ましい厚みは10~2000nmの範囲内であり、より好ましくは20~300nmである。300nmを越えると、前述のように、屈曲させた時に無機バリア層にクラックが発生しやくなる等の柔軟性が劣化してしまう。 The thickness of each of the entire first barrier film and the entire second barrier film is not particularly limited and can be appropriately selected depending on the purpose. For example, the barrier layer is an organic layer or a laminate of an organic layer and an inorganic barrier layer. In this case, the thickness is preferably 50 to 10,000 nm, more preferably 100 to 5000 nm. In the case of stacking an organic layer and an inorganic barrier layer, a preferable range of the total thickness of the inorganic barrier layer is 10 to 2000 nm, and more preferably 20 to 300 nm. When the total thickness of the inorganic barrier layer exceeds 300 nm, as described above, the flexibility such that cracks are likely to occur in the inorganic barrier film when bent is deteriorated. When the barrier film is only an inorganic barrier layer, the preferred thickness of the barrier layer is in the range of 10 to 2000 nm, more preferably 20 to 300 nm. If the thickness exceeds 300 nm, as described above, the flexibility such as cracking of the inorganic barrier layer when bent is deteriorated.
透明フィルム(支持体):
 透明フィルムは、前記第1バリア膜を支持する。透明フィルムの光透過率は、65%以上であることが好ましく、70%以上であることがより好ましい。
Transparent film (support):
The transparent film supports the first barrier film. The light transmittance of the transparent film is preferably 65% or more, and more preferably 70% or more.
 透明フィルムの材料については、可撓性のある高分子(樹脂)であれば特に制限はない。例えば、高分子(樹脂及び重合体のいずれも含む意味で用いる)フィルム、高分子シート及び高分子成形体から選択することができる。
 使用可能な高分子フィルム等の例には、ポリエチレンテレフタレート(PET)、ポリカーボネート、ポリエーテルスルホン、ポリエステル、アクリル樹脂、塩化ビニル樹脂、芳香族ポリアミド樹脂、ポリアミドイミド、ポリイミド、FRP(繊維強化プラスチック)、ポリメタクリル酸メチル樹脂(PMMA)等を主成分として含むフィルム等が含まれる。
The material for the transparent film is not particularly limited as long as it is a flexible polymer (resin). For example, it can be selected from a polymer film (used to include both a resin and a polymer), a polymer sheet, and a polymer molded body.
Examples of usable polymer films include polyethylene terephthalate (PET), polycarbonate, polyethersulfone, polyester, acrylic resin, vinyl chloride resin, aromatic polyamide resin, polyamideimide, polyimide, FRP (fiber reinforced plastic), A film containing polymethyl methacrylate resin (PMMA) or the like as a main component is included.
 前記透明フィルムの表面は、前記第1バリア膜との密着性を向上させるための表面処理が実施されていてもよい。表面処理は、物理的又は化学的方法によって実施される。前記物理的方法としては、サンドブラスト法などにより支持体表面を荒らしてアンカー効果を付与する方法が挙げられる。前記化学的方法としては、プラズマ処理やコロナ処理などにより支持体表面を活性化する方法、シランカップリング剤処理により導電膜と化学的に密着性を上げる方法、プライマー層等の下塗り層を設ける方法などが挙げられる。前記下塗り層は、特に制限はなく、目的に応じて適宜選択することができるが、紫外線吸収能や酸化防止能などを付与してもよい。これらの中でも、簡便性と処理均一性の点でプラズマ処理が特に好ましい。 The surface of the transparent film may be subjected to a surface treatment for improving adhesion with the first barrier film. The surface treatment is performed by a physical or chemical method. Examples of the physical method include a method of imparting an anchor effect by roughening the surface of the support by a sandblast method or the like. Examples of the chemical method include a method of activating the support surface by plasma treatment or corona treatment, a method of chemically increasing adhesion to the conductive film by silane coupling agent treatment, and a method of providing an undercoat layer such as a primer layer. Etc. The undercoat layer is not particularly limited and may be appropriately selected depending on the intended purpose. However, the undercoat layer may be provided with ultraviolet absorbing ability, antioxidant ability, and the like. Among these, plasma processing is particularly preferable in terms of simplicity and processing uniformity.
 前記透明フィルムの厚みについても特に制限はない。平均厚みは、0.01mm~10mmであることが好ましく、0.02mm~1mmであることがより好ましい。但し、この範囲に限定されるものでない。 The thickness of the transparent film is not particularly limited. The average thickness is preferably 0.01 mm to 10 mm, and more preferably 0.02 mm to 1 mm. However, it is not limited to this range.
透明保護フィルム:
 透明保護フィルムは、前記第2バリア膜を支持する。透明保護フィルムの光透過率は、65%以上であることが好ましく、70%以上であることがより好ましい。
Transparent protective film:
The transparent protective film supports the second barrier film. The light transmittance of the transparent protective film is preferably 65% or more, and more preferably 70% or more.
 透明保護フィルムの材料については高分子であれば特に制限はない。可撓性のある高分子でも良い。例えば、高分子(樹脂及び重合体のいずれも含む意味で用いる)フィルム、高分子シート及び高分子成形体から選択することができる。
 使用可能な高分子フィルム等の例には、ポリエチレンテレフタレート(PET)、ポリカーボネート、ポリエーテルスルホン、ポリエステル、アクリル樹脂、塩化ビニル樹脂、芳香族ポリアミド樹脂、ポリアミドイミド、ポリイミド、FRP(繊維強化プラスチック)、ポリメタクリル酸メチル樹脂(PMMA)等を主成分として含むフィルム等が含まれる。
 透明保護フィルムは、その機能上、表面に傷つき防止のハードコート層を設けることが好ましい。ハードコート層の材質は問わないが、鉛筆硬度が3H以上かつ光透過率が70%以上の高いものが好ましい。
The material for the transparent protective film is not particularly limited as long as it is a polymer. A flexible polymer may be used. For example, it can be selected from a polymer film (used to include both a resin and a polymer), a polymer sheet, and a polymer molded body.
Examples of usable polymer films include polyethylene terephthalate (PET), polycarbonate, polyethersulfone, polyester, acrylic resin, vinyl chloride resin, aromatic polyamide resin, polyamideimide, polyimide, FRP (fiber reinforced plastic), A film containing polymethyl methacrylate resin (PMMA) or the like as a main component is included.
The transparent protective film is preferably provided with a hard coat layer for preventing scratches on the surface in view of its function. The material of the hard coat layer is not limited, but a material having a pencil hardness of 3H or higher and a light transmittance of 70% or higher is preferable.
 前記透明保護フィルムの表面は、前記第2バリア膜との密着性を向上させるための表面処理が実施されていてもよい。表面処理は、物理的又は化学的方法によって実施される。前記物理的方法としては、サンドブラスト法などにより基材表面を荒らしてアンカー効果を付与する方法が挙げられる。前記化学的方法としては、プラズマ処理やコロナ処理などにより基材表面を活性化する方法、シランカップリング剤処理により導電膜と化学的に密着性を上げる方法、プライマー層等の下塗り層を設ける方法などが挙げられる。前記下塗り層は、特に制限はなく、目的に応じて適宜選択することができるが、紫外線吸収能や酸化防止能などを付与してもよい。これらの中でも、簡便性と処理均一性の点でプラズマ処理が特に好ましい。 The surface of the transparent protective film may be subjected to a surface treatment for improving adhesion with the second barrier film. The surface treatment is performed by a physical or chemical method. Examples of the physical method include a method of imparting an anchor effect by roughening the surface of the substrate by a sandblast method or the like. Examples of the chemical method include a method of activating the substrate surface by plasma treatment or corona treatment, a method of chemically increasing adhesion to the conductive film by silane coupling agent treatment, and a method of providing an undercoat layer such as a primer layer. Etc. The undercoat layer is not particularly limited and may be appropriately selected depending on the intended purpose. However, the undercoat layer may be provided with ultraviolet absorbing ability, antioxidant ability, and the like. Among these, plasma processing is particularly preferable in terms of simplicity and processing uniformity.
 前記透明保護フィルムの厚みについても特に制限はない。平均厚みは、0.01mm~10mmであることが好ましく、0.1mm~3mmであることがより好ましい。但し、この範囲に限定されるものでない。 The thickness of the transparent protective film is not particularly limited. The average thickness is preferably 0.01 mm to 10 mm, and more preferably 0.1 mm to 3 mm. However, it is not limited to this range.
パターン透明導電膜:
 本発明のパターン透明導電膜とは、導電性エリア及び非導電性エリアにパターニングされている透明導電膜のことを示す。導電性エリア及び非導電性エリアとはライン状にパターニングされていても良いし、必ずともライン状にパターニングされていなくとも良い。
 非導電性エリアとは、シート抵抗が107Ω/□以上のエリアのことを示す。
 本発明に用いられるパターン透明導電膜は金属ナノワイヤーを含む透明導電膜形成用組成物から形成される。
 尚、上記の非導電性エリアには、エッチング等により金属ナノワイヤーが残っていない場合もあるが、残っていても良い。
Pattern transparent conductive film:
The patterned transparent conductive film of the present invention refers to a transparent conductive film patterned in a conductive area and a non-conductive area. The conductive area and the non-conductive area may be patterned in a line shape or may not necessarily be patterned in a line shape.
The non-conductive area indicates an area having a sheet resistance of 10 7 Ω / □ or more.
The patterned transparent conductive film used in the present invention is formed from a composition for forming a transparent conductive film containing metal nanowires.
In addition, although metal nanowire may not remain by etching etc. in the said nonelectroconductive area, it may remain.
金属ナノワイヤー:
 本明細書では、金属ナノワイヤーとは、導電性を有し、且つ長軸方向長さが直径(短軸方向長さ)に比べて十分に長い形状を持つものをいう。中実繊維であっても、中空繊維であってもよい。
Metal nanowire:
In this specification, the metal nanowire refers to a metal nanowire having conductivity and having a shape in which the length in the major axis direction is sufficiently longer than the diameter (length in the minor axis direction). It may be a solid fiber or a hollow fiber.
 前記金属ナノワイヤーの材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、長周期律表(IUPAC1991)の第4周期、第5周期、及び第6周期よりなる群から選ばれる少なくとも1種の金属が好ましく、第4周期、第5周期、及び第6周期よりなる群から選ばれる少なくとも1種の金属、かつ第2族~第14族から選ばれる少なくとも1種の金属がより好ましく、第4周期、第5周期、及び第6周期よりなる群から選ばれる少なくとも1種の金属、かつ第2族、第8族、第9族、第10族、第11族、第12族、第13族、及び第14族から選ばれる少なくとも1種の金属が更に好ましく、主成分として含むことが特に好ましい。 There is no restriction | limiting in particular as a material of the said metal nanowire, According to the objective, it can select suitably, For example, the group which consists of a 4th period of a long period table (IUPAC1991), a 5th period, and a 6th period At least one metal selected from the group consisting of at least one metal selected from the group consisting of the fourth period, the fifth period, and the sixth period, and at least one type selected from the group 2 to group 14 Metal is more preferred, at least one metal selected from the group consisting of the fourth period, the fifth period, and the sixth period, and the second group, the eighth group, the ninth group, the tenth group, the eleventh group, At least one metal selected from Group 12, Group 13, and Group 14 is more preferable, and it is particularly preferable that it is included as a main component.
 前記金属としては、例えば、銅、銀、金、白金、パラジウム、ニッケル、錫、コバルト、ロジウム、イリジウム、鉄、ルテニウム、オスミウム、マンガン、モリブデン、タングステン、ニオブ、タンテル、チタン、ビスマス、アンチモン、鉛、これらの合金などが挙げられる。これらの中でも、導電性に優れる点で、銀、及び銀との合金が特に好ましい。
 前記銀との合金で使用する金属としては、白金、オスミウム、パラジウム、イリジウム、錫、ビスマス、ニッケルなどが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
Examples of the metal include copper, silver, gold, platinum, palladium, nickel, tin, cobalt, rhodium, iridium, iron, ruthenium, osmium, manganese, molybdenum, tungsten, niobium, tantel, titanium, bismuth, antimony, and lead. And alloys thereof. Among these, silver and an alloy with silver are particularly preferable in terms of excellent conductivity.
Examples of the metal used in the alloy with silver include platinum, osmium, palladium, iridium, tin, bismuth, and nickel. These may be used alone or in combination of two or more.
 前記金属ナノワイヤーの形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、円柱状、直方体状、断面が多角形となる柱状など任意の形状をとることができるが、高い透明性が必要とされる用途では、円柱状や断面が多角形となる柱状の多角形の角が丸まっている形状であることが好ましい。
 ここで、前記金属ナノワイヤーの断面形状は、基板上に金属ナノワイヤー水分散液を塗布し、ミクロトームにより作製した断面切片を透過型電子顕微鏡(TEM)で観察することにより調べることができる。
There is no restriction | limiting in particular as a shape of the said metal nanowire, According to the objective, it can select suitably, For example, it can take arbitrary shapes, such as a column shape, a rectangular parallelepiped shape, and the column shape from which a cross section becomes a polygon. In applications where high transparency is required, it is preferable that the column shape or the shape of a columnar polygon having a polygonal cross section is rounded.
Here, the cross-sectional shape of the metal nanowires can be examined by applying a metal nanowire aqueous dispersion on a substrate and observing a cross-section sliced by a microtome with a transmission electron microscope (TEM).
 前記金属ナノワイヤーの平均短軸長さ(「平均短軸長」、「平均直径」と称することがある)としては、5~50nmであり、5~25nmが好ましく、5~20nmがより好ましい。
 前記平均短軸長さが、5nm未満であると、耐酸化性が悪化し、耐久性が悪くなることがある。一方平均短軸長が50nm以上であると、金属ナノワイヤーの散乱が大きくなり、導電膜のヘイズ値が大きくなることがある。特に、前記平均短軸長さを25nm以下にすることより、金属ナノワイヤーの散乱は低減でき、導電膜のヘイズ値は大幅に改良(低減)される。ヘイズが小さい導電膜を用いたタッチパネルは、導電膜のパターン見え(骨見え)が解消でき、タッチパネルの視認性が向上する。導電膜のヘイズ値として、2.5%未満が好ましく、1.5%未満が特に視認性という観点で好ましい。
The average minor axis length (sometimes referred to as “average minor axis length” or “average diameter”) of the metal nanowire is 5 to 50 nm, preferably 5 to 25 nm, and more preferably 5 to 20 nm.
If the average minor axis length is less than 5 nm, the oxidation resistance may deteriorate and the durability may deteriorate. On the other hand, when the average minor axis length is 50 nm or more, scattering of the metal nanowires increases, and the haze value of the conductive film may increase. In particular, by setting the average minor axis length to 25 nm or less, the scattering of the metal nanowires can be reduced, and the haze value of the conductive film is greatly improved (reduced). A touch panel using a conductive film having a small haze can eliminate the pattern appearance (bone appearance) of the conductive film and improve the visibility of the touch panel. The haze value of the conductive film is preferably less than 2.5%, and particularly preferably less than 1.5% from the viewpoint of visibility.
 前記金属ナノワイヤーの平均短軸長さは、透過型電子顕微鏡(TEM;日本電子株式会社製、JEM-2000FX)を用い、300個の金属ナノワイヤーを観察し、その平均値から金属ナノワイヤーの平均短軸長さを求めた。なお、前記金属ナノワイヤーの短軸が円形でない場合の短軸長さは、最も長いものを短軸長さとした。 The average minor axis length of the metal nanowires was determined by observing 300 metal nanowires using a transmission electron microscope (TEM; manufactured by JEOL Ltd., JEM-2000FX). The average minor axis length was determined. In addition, the shortest axis length when the short axis of the metal nanowire is not circular is the shortest axis.
 前記金属ナノワイヤーの平均長軸長さ(「平均長軸長」、「平均長さ」と称することがある)としては、5μm以上であることが好ましく、5μm~40μmがより好ましく、5μm~30μmが更に好ましい。
 前記平均長軸長さが、5μm未満であると、密なネットワークを形成することが難しく、十分な導電性を得ることができないことがあり、40μmを超えると、金属ナノワイヤーが長すぎて製造時に絡まり、製造過程で凝集物が生じてしまうことがある。
 前記金属ナノワイヤーの平均長軸長さは、例えば透過型電子顕微鏡(TEM;日本電子株式会社製、JEM-2000FX)を用い、300個の金属ナノワイヤーを観察し、その平均値から金属ナノワイヤーの平均長軸長さを求めた。なお、前記金属ナノワイヤーが曲がっている場合、それを弧とする円を考慮し、その半径、及び曲率から算出される値を長軸長さとした。
The average major axis length of the metal nanowire (sometimes referred to as “average major axis length” or “average length”) is preferably 5 μm or more, more preferably 5 μm to 40 μm, and more preferably 5 μm to 30 μm. Is more preferable.
If the average major axis length is less than 5 μm, it may be difficult to form a dense network and sufficient conductivity may not be obtained. If it exceeds 40 μm, the metal nanowires are too long and manufactured. Sometimes entangled and agglomerates may occur during the manufacturing process.
The average major axis length of the metal nanowires is observed, for example, using a transmission electron microscope (TEM; manufactured by JEOL Ltd., JEM-2000FX), and 300 metal nanowires are observed. The average major axis length was determined. In addition, when the said metal nanowire was bent, the circle | round | yen which makes it an arc was considered and the value calculated from the radius and curvature was made into the major axis length.
 金属ナノワイヤーの短軸長の変動係数としては、50%以下が好ましく、40%以下がより好ましく、30%以下が特に好ましい。
 前記変動係数は、上記電子顕微鏡(TEM)像からランダムに選択した300個のナノワイヤーの短軸長(直径)を測定し、その300個についての標準偏差と平均値を計算することにより、求めた。
The coefficient of variation of the short axis length of the metal nanowire is preferably 50% or less, more preferably 40% or less, and particularly preferably 30% or less.
The coefficient of variation is obtained by measuring the short axis length (diameter) of 300 nanowires randomly selected from the electron microscope (TEM) image, and calculating the standard deviation and the average value for the 300 nanowires. It was.
 前記金属ナノワイヤーは、特に制限はなく、いかなる方法で作製してもよいが、以下のようにハロゲン化合物と分散剤を溶解した溶媒中で金属イオンを還元することによって製造することが好ましい。また、金属ナノワイヤーを形成した後は、常法により脱塩処理を行うことが、分散性、導電性エリアの経時安定性の観点から好ましい。
 また、金属ナノワイヤーの製造方法としては、特開2009-215594号公報、特開2009-242880号公報、特開2009-299162号公報、特開2010-84173号公報、特開2010-86714号公報などに記載の方法を用いることができる。
The metal nanowire is not particularly limited and may be produced by any method, but is preferably produced by reducing metal ions in a solvent in which a halogen compound and a dispersant are dissolved as follows. Moreover, after forming metal nanowire, it is preferable to perform a desalting process by a conventional method from a viewpoint of dispersibility and the temporal stability of an electroconductive area.
In addition, as a method for producing metal nanowires, JP2009-215594A, JP2009-242880A, JP2009-299162A, JP2010-84173A, and JP2010-86714A are disclosed. Etc. can be used.
 金属ナノワイヤーの製造に用いられる溶媒としては、親水性溶媒が好ましく、例えば、水、アルコール類、多価アルコール類、エーテル類、ケトン類などが挙げられ、これらは1種単独で使用してもよく、2種以上を併用してもよい。 アルコール類としては、例えば、メタノール、エタノール、ノルマルプロパノール、イソプロパノール、ブタノールなどが挙げられる。多価アルコール類としては、例えば、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコールなどが挙げられる。エーテル類としては、例えば、ジオキサン、テトラヒドロフランなどが挙げられる。ケトン類としては、例えば、アセトン、メチルエチルケトンなどが挙げられる。加熱する場合、その加熱温度は、用いる溶媒の沸点を超えない限りにおいて、250℃以下が好ましく、20℃以上200℃以下がより好ましく、30℃以上180℃以下がさらに好ましく、40℃以上170℃以下が特に好ましく、50℃以上100℃以下が最も好ましい。なお、上記沸点とは、反応溶媒の蒸気圧が反応容器中の圧力と等しくなる温度のことを指す。上記温度を20℃以上とすることで、金属ナノワイヤーの形成が促進され、製造にかかる工程時間を短縮できるため好ましい。また、250℃以下とすることで、金属ナノワイヤーの短軸長さ及び長軸長さの単分散性が向上し、透明性、及び、導電性の観点から好適である。なお、必要に応じて、金属ナノワイヤーの製造過程で温度を変更してもよく、途中での温度変更は核形成の制御や再核発生の抑制、選択成長の促進による単分散性向上の効果があることがある。 The solvent used for the production of the metal nanowire is preferably a hydrophilic solvent, and examples thereof include water, alcohols, polyhydric alcohols, ethers and ketones, and these may be used alone. In addition, two or more kinds may be used in combination. Examples of alcohols include methanol, ethanol, normal propanol, isopropanol, and butanol. Examples of the polyhydric alcohols include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol and the like. Examples of ethers include dioxane and tetrahydrofuran. Examples of ketones include acetone and methyl ethyl ketone. When heating, the heating temperature is preferably 250 ° C. or lower, more preferably 20 ° C. or higher and 200 ° C. or lower, further preferably 30 ° C. or higher and 180 ° C. or lower, and 40 ° C. or higher and 170 ° C. as long as the boiling point of the solvent used is not exceeded. The following is particularly preferable, and 50 ° C or higher and 100 ° C or lower is most preferable. The boiling point means a temperature at which the vapor pressure of the reaction solvent becomes equal to the pressure in the reaction vessel. It is preferable to set the temperature to 20 ° C. or higher because formation of metal nanowires is promoted and manufacturing process time can be shortened. Moreover, by setting it as 250 degrees C or less, the monodispersity of the short-axis length and long-axis length of metal nanowire improves, and it is suitable from a transparency and electroconductive viewpoint. If necessary, the temperature may be changed during the manufacturing process of the metal nanowires, and changing the temperature in the middle is effective in controlling nucleation, suppressing renucleation, and improving monodispersity by promoting selective growth. There may be.
 前記加熱の際には、還元剤を添加して行うことが好ましい。
 前記還元剤としては、特に制限はなく、通常使用されるものの中から適宜選択することができ、例えば、水素化ホウ素金属塩、水素化アルミニウム塩、アルカノールアミン、脂肪族アミン、ヘテロ環式アミン、芳香族アミン、アラルキルアミン、アルコール類、多価アルコール類、有機酸類、還元糖類、糖アルコール類、亜硫酸ナトリウム、ヒドラジン化合物、デキストリン、ハイドロキノン、ヒドロキシルアミン、グルタチオンなどが挙げられる。これらの中でも、還元糖類、その誘導体としての糖アルコール類、多価アルコール類が特に好ましい。前記還元剤によっては、機能として分散剤や溶媒としても機能する化合物があり、同様に好ましく用いることができる。
The heating is preferably performed by adding a reducing agent.
The reducing agent is not particularly limited and can be appropriately selected from those usually used. For example, borohydride metal salt, aluminum hydride salt, alkanolamine, aliphatic amine, heterocyclic amine, Aromatic amines, aralkylamines, alcohols, polyhydric alcohols, organic acids, reducing sugars, sugar alcohols, sodium sulfite, hydrazine compounds, dextrin, hydroquinone, hydroxylamine, glutathione and the like can be mentioned. Among these, reducing sugars, sugar alcohols as derivatives thereof, and polyhydric alcohols are particularly preferable. Depending on the reducing agent, there is a compound that functions as a dispersant or a solvent as a function, and can be preferably used in the same manner.
 前記金属ナノワイヤーの製造の際には分散剤と、ハロゲン化合物又はハロゲン化金属微粒子を添加して行うことが好ましい。
 分散剤の添加のタイミングは、還元剤の添加前でも、還元剤の添加と同時でも、さらには、還元剤の添加後でもよく、金属イオンあるいはハロゲン化金属微粒子の添加前でも、金属イオンあるいはハロゲン化金属微粒子の添加と同時でも、さらには、金属イオンあるいはハロゲン化金属微粒子の添加後でもよい。
In producing the metal nanowire, it is preferable to add a dispersant and a halogen compound or metal halide fine particles.
The timing of addition of the dispersant may be before the addition of the reducing agent, at the same time as the addition of the reducing agent, or after the addition of the reducing agent, before the addition of the metal ion or metal halide fine particles, or before the addition of the metal ion or halogen. It may be performed simultaneously with the addition of metal halide fine particles or after addition of metal ions or metal halide fine particles.
 前記分散剤を添加する段階は、粒子を調製する前に添加し、分散ポリマー存在下で添加してもよいし、粒子を調製した後に分散状態を制御するために添加しても構わない。分散剤の添加を2段階以上に分けるときには、その量は必要とする金属ナノワイヤーの短軸長さ及び長軸長さにより変更する必要がある。これは、分散剤の添加量が、金属ナノワイヤーの核となる金属粒子の量やサイズに影響し、かつ、金属ナノワイヤーの核となる金属粒子の量やサイズが、金属ナノワイヤーの短軸長さ及び長軸長さに影響することに起因しているためと考えられる。
 前記分散剤としては、例えばアミノ基含有化合物、チオール基含有化合物、スルフィド基含有化合物、アミノ酸又はその誘導体、ペプチド化合物、多糖類、多糖類由来の天然高分子、合成高分子、又はこれらに由来するゲル等の高分子類、などが挙げられる。これらのうち分散剤として用いられる各種高分子化合物類は、後述するポリマーに包含される化合物である。
The step of adding the dispersant may be added before the particles are prepared and may be added in the presence of the dispersed polymer, or may be added after the particles are prepared in order to control the dispersion state. When dividing the addition of the dispersant into two or more steps, the amount needs to be changed depending on the short axis length and the long axis length of the metal nanowires required. This is because the amount of dispersant added affects the amount and size of the metal particles that are the core of the metal nanowire, and the amount and size of the metal particles that are the core of the metal nanowire are the short axis of the metal nanowire. This is considered to be due to the influence on the length and the long axis length.
Examples of the dispersant include amino group-containing compounds, thiol group-containing compounds, sulfide group-containing compounds, amino acids or derivatives thereof, peptide compounds, polysaccharides, polysaccharide-derived natural polymers, synthetic polymers, or these. And polymers such as gels. Among these, various polymer compounds used as a dispersant are compounds included in the polymer described later.
 分散剤として好適に用いられるポリマーとしては、例えば保護コロイド性のあるポリマーであるゼラチン、ポリビニルアルコール、メチルセルロース、ヒドロキシプロピルセルロース、ポリアルキレンアミン、ポリアクリル酸の部分アルキルエステル、ポリビニルピロリドン、ポリビニルピロリドン構造を含む共重合体、アミノ基やチオール基を有するポリアクリル酸、等の親水性基を有するポリマーが好ましく挙げられる。
 分散剤として用いるポリマーはGPC法により測定した重量平均分子量(Mw)が、3000以上300000以下であることが好ましく、5000以上100000以下であることがより好ましい。
 前記分散剤として使用可能な化合物の構造については、例えば「顔料の事典」(伊藤征司郎編、株式会社朝倉書院発行、2000年)の記載を参照できる。
 使用する分散剤の種類によって得られる金属ナノワイヤーの形状を変化させることができる。
Examples of the polymer suitably used as a dispersant include gelatin, polyvinyl alcohol, methyl cellulose, hydroxypropyl cellulose, polyalkylene amine, polyalkylene amine, partial alkyl esters of polyacrylic acid, polyvinyl pyrrolidone, and polyvinyl pyrrolidone structures, which are protective colloidal polymers. A polymer having a hydrophilic group such as a copolymer containing, polyacrylic acid having an amino group or a thiol group, is preferably mentioned.
The polymer used as the dispersant has a weight average molecular weight (Mw) measured by GPC method of preferably 3000 or more and 300000 or less, more preferably 5000 or more and 100000 or less.
For the structure of the compound that can be used as the dispersant, for example, the description of “Encyclopedia of Pigments” (edited by Seijiro Ito, published by Asakura Shoin Co., Ltd., 2000) can be referred to.
The shape of the metal nanowire obtained by the kind of dispersing agent to be used can be changed.
 前記ハロゲン化合物としては、臭素、塩素、ヨウ素を含有する化合物であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、臭化ナトリウム、塩化ナトリウム、ヨウ化ナトリウム、ヨウ化カリウム、臭化カリウム、塩化カリウム、ヨウ化カリウム等のアルカリハライドや下記の分散剤と併用できる化合物が好ましい。
 前記ハロゲン化合物によっては、分散剤として機能するものがありうるが、同様に好ましく用いることができる。
 前記ハロゲン化合物の代替としてハロゲン化銀微粒子を使用してもよいし、ハロゲン化合物とハロゲン化銀微粒子を共に使用してもよい。
The halogen compound is not particularly limited as long as it is a compound containing bromine, chlorine, or iodine, and can be appropriately selected according to the purpose. For example, sodium bromide, sodium chloride, sodium iodide, potassium iodide Compounds that can be used in combination with alkali halides such as potassium bromide, potassium chloride, potassium iodide and the following dispersants are preferred.
Some halogen compounds may function as a dispersant, but can be preferably used in the same manner.
As an alternative to the halogen compound, silver halide fine particles may be used, or both a halogen compound and silver halide fine particles may be used.
 また、分散剤とハロゲン化合物とは双方の機能を有する単一の物質を用いてもよい。即ち、分散剤としての機能を有するハロゲン化合物を用いることで、1つの化合物で、分散剤とハロゲン化合物の双方の機能を発現する。
 分散剤としての機能を有するハロゲン化合物としては、例えば、アミノ基と臭化物イオン又は塩化物イオン、ヨウ化物イオンを含むヘキサデシルトリメチルアンモニウムブロミド、ヘキサデシルトリメチルアンモニウムクロリド、ヘキサデシルトリメチルアンモニウムアイオダイド、ドデシルトリメチルアンモニウムブロミド、ドデシルトリメチルアンモニウムクロリド、ドデシルトリメチルアンモニウムアイオダイド、ステアリルトリメチルアンモニウムブロミド、ステアリルトリメチルアンモニウムクロリド、ステアリルトリメチルアンモニウムアイオダイド、デシルトリメチルアンモニウムブロミド、デシルトリメチルアンモニウムクロリド、デシルトリメチルアンモニウムアイオダイド、ジメチルジステアリルアンモニウムブロミド、ジメチルジステアリルアンモニウムクロリド、ジメチルジステアリルアンモニウムアイオダイド、ジラウリルジメチルアンモニウムブロミド、ジラウリルジメチルアンモニウムクロリド、ジラウリルジメチルアンモニウムアイオダイド、ジメチルジパルミチルアンモニウムブロミド、ジメチルジパルミチルアンモニウムクロリド、ジメチルジパルミチルアンモニウムアイオダイド、テトラメチルアンモニウムブロミド、テトラメチルアンモニウムクロリド、テトラメチルアンモニウムアイオダイド、テトラエチルアンモニウムブロミド、テトラエチルアンモニウムクロリド、テトラエチルアンモニウムアイオダイド、テトラプロピルアンモニウムブロミド、テトラプロピルアンモニウムクロリド、テトラプロピルアンモニウムアイオダイド、テトラブチルアンモニウムブロミド、テトラブチルアンモニウムクロリド、テトラブチルアンモニウムアイオダイド、メチルトリエチルアンモニウムクロリド、メチルトリエチルアンモニウムブロミド、メチルトリエチルアンモニウムアイオダイド、ジメチルジエチルアンモニウムブロミド、ジメチルジエチルアンモニウムクロリド、ジメチルジエチルアンモニウムアイオダイド、エチルトリメチルアンモニウムブロミド、エチルトリメチルアンモニウムクロリド、エチルトリメチルアンモニウムアイオダイド、ヘキサデシルジメチルアンモニウムブロミド、ヘキサデシルジメチルアンモニウムクロリド、ヘキサデシルジメチルアンモニウムアイオダイド、ドデシルジメチルアンモニウムブロミド、ドデシルジメチルアンモニウムクロリド、ドデシルジメチルアンモニウムアイオダイド、ステアリルジメチルアンモニウムブロミド、ステアリルジメチルアンモニウムクロリド、ステアリルジメチルアンモニウムアイオダイド、デシルジメチルアンモニウムブロミド、デシルジメチルアンモニウムクロリド、デシルジメチルアンモニウムアイオダイドなどが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
Further, a single substance having both functions may be used as the dispersant and the halogen compound. That is, by using a halogen compound having a function as a dispersant, the functions of both the dispersant and the halogen compound are expressed with one compound.
Examples of the halogen compound having a function as a dispersant include, for example, hexadecyltrimethylammonium bromide, hexadecyltrimethylammonium chloride, hexadecyltrimethylammonium iodide, dodecyltrimethyl containing amino group and bromide ion or chloride ion and iodide ion. Ammonium bromide, dodecyltrimethylammonium chloride, dodecyltrimethylammonium iodide, stearyltrimethylammonium bromide, stearyltrimethylammonium chloride, stearyltrimethylammonium iodide, decyltrimethylammonium bromide, decyltrimethylammonium chloride, decyltrimethylammonium iodide, dimethyldistearylammonium Bromide Dimethyl distearyl ammonium chloride, dimethyl distearyl ammonium iodide, dilauryl dimethyl ammonium bromide, dilauryl dimethyl ammonium chloride, dilauryl dimethyl ammonium iodide, dimethyl dipalmityl ammonium bromide, dimethyl dipalmityl ammonium chloride, dimethyl dipalmityl Ammonium iodide, tetramethylammonium bromide, tetramethylammonium chloride, tetramethylammonium iodide, tetraethylammonium bromide, tetraethylammonium chloride, tetraethylammonium iodide, tetrapropylammonium bromide, tetrapropylammonium chloride, tetrapropylammonium iodide Tetrabutylammonium bromide, tetrabutylammonium chloride, tetrabutylammonium iodide, methyltriethylammonium chloride, methyltriethylammonium bromide, methyltriethylammonium iodide, dimethyldiethylammonium bromide, dimethyldiethylammonium chloride, dimethyldiethylammonium iodide, ethyltrimethyl Ammonium bromide, ethyltrimethylammonium chloride, ethyltrimethylammonium iodide, hexadecyldimethylammonium bromide, hexadecyldimethylammonium chloride, hexadecyldimethylammonium iodide, dodecyldimethylammonium bromide, dodecyldimethylammonium chloride, Examples include dodecyldimethylammonium iodide, stearyldimethylammonium bromide, stearyldimethylammonium chloride, stearyldimethylammonium iodide, decyldimethylammonium bromide, decyldimethylammonium chloride, decyldimethylammonium iodide. These may be used alone or in combination of two or more.
 金属ナノワイヤー以外の有機物及び無機イオン等の不要分を取り除く脱塩処理の方法としては、特に制限はなく、遠心分離等による金属ナノワイヤーの沈降とそれに引き続く上澄みの除去、限外ろ過によるろ液の除去、その他、透析、ゲルろ過などを用いることができる。また、不要分を取り除くために、適宜、不要分の溶出を促進する薬剤を添加して脱塩処理を行うことも可能である。このような不要分の溶出を促進する薬剤としては、例えば、塩化銀等のハロゲン化銀に対するアンモニア、各種金属イオンに対するキレート剤、エチレンジアミン四酢酸二ナトリウムなどが挙げられる。 There are no particular restrictions on the desalting process for removing unnecessary components such as organic substances and inorganic ions other than metal nanowires. Sedimentation of metal nanowires by centrifugation, etc., and subsequent removal of the supernatant, filtrate by ultrafiltration In addition, dialysis, gel filtration, etc. can be used. Moreover, in order to remove unnecessary components, it is possible to add a chemical that promotes elution of unnecessary components and perform desalting treatment. Examples of such an agent that promotes elution of unnecessary components include ammonia for silver halides such as silver chloride, chelating agents for various metal ions, and disodium ethylenediaminetetraacetate.
 前記金属ナノワイヤーは、アルカリ金属イオン、アルカリ土類金属イオン、ハロゲン化物イオン等の無機イオンをなるべく含まないことが好ましい。前記金属ナノワイヤーを水性分散物とさせたときの電気伝導度は1mS/cm以下が好ましく、0.1mS/cm以下がより好ましく、0.05mS/cm以下が更に好ましい。
 前記金属ナノワイヤーを水性分散させたときの20℃における粘度は、0.5mPa・s~100mPa・sが好ましく、1mPa・s~50mPa・sがより好ましい。
The metal nanowire preferably contains as little inorganic ions as possible, such as alkali metal ions, alkaline earth metal ions, and halide ions. The electrical conductivity when the metal nanowire is an aqueous dispersion is preferably 1 mS / cm or less, more preferably 0.1 mS / cm or less, and even more preferably 0.05 mS / cm or less.
The viscosity at 20 ° C. when the metal nanowires are dispersed in water is preferably 0.5 mPa · s to 100 mPa · s, more preferably 1 mPa · s to 50 mPa · s.
 前記金属ナノワイヤーのアスペクト比としては、10以上であれば特に制限はなく、目的に応じて適宜選択することができるが、50以上がより好ましく、100以上がさらに好ましく、5000以上がさらに好ましく、10,000から100,000がより好ましい。前記アスペクト比とは、一般的には繊維状の物質の長辺と短辺との比(平均長軸長さ/平均短軸長さの比)を意味する。
 前記アスペクト比の測定方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、電子顕微鏡等により測定する方法などが挙げられる。
 前記金属ナノワイヤーのアスペクト比を電子顕微鏡で測定する場合、前記金属ナノワイヤーのアスペクト比が10以上であるか否かは、電子顕微鏡の1視野で確認できればよい。また、前記金属ナノワイヤーの平均長軸長さと平均短軸長さとを各々別に測定することによって、前記金属ナノワイヤー全体のアスペクト比を見積もることができる。
 なお、前記金属ナノワイヤーがチューブ状(中空繊維)の場合には、前記アスペクト比を算出するための直径としては、該チューブ状の金属ナノワイヤーの外径を用いる。
The aspect ratio of the metal nanowire is not particularly limited as long as it is 10 or more, and can be appropriately selected according to the purpose. More preferred is 10,000 to 100,000. The aspect ratio generally means the ratio between the long side and the short side of a fibrous material (ratio of average major axis length / average minor axis length).
There is no restriction | limiting in particular as a measuring method of the said aspect ratio, According to the objective, it can select suitably, For example, the method etc. which measure with an electron microscope etc. are mentioned.
When measuring the aspect ratio of the metal nanowire with an electron microscope, it is only necessary to confirm whether the aspect ratio of the metal nanowire is 10 or more with one field of view of the electron microscope. Moreover, the aspect ratio of the whole metal nanowire can be estimated by measuring the average major axis length and the average minor axis length of the metal nanowire separately.
In addition, when the said metal nanowire is tube shape (hollow fiber), the outer diameter of this tube-shaped metal nanowire is used as a diameter for calculating the said aspect ratio.
 また、前記アスペクト比が10以上の金属ナノワイヤーは、全パターン透明導電膜用塗布液中に体積比で、5%以上含まれることが好ましく、50%以上含まれることがより好ましく、80%以上含まれることが特に好ましい。これらの金属ナノワイヤーの割合を、以下、「金属ナノワイヤーの比率」と呼ぶことがある。
 前記金属ナノワイヤーの比率が、5%未満であると、導電性に寄与する導電性物質が減少し導電性が低下してしまうことがあり、同時に密なネットワークを形成できないために電圧集中が生じ、耐久性が低下してしまうことがある。また、金属ナノワイヤー以外の形状の粒子は、導電性に大きく寄与しない上に吸収を持つため好ましくない。特に形状が金属導電性繊維以外の粒子が金属の場合で、球形などのプラズモン吸収が強い場合には透明度が悪化してしまうことがある。
Further, the metal nanowire having an aspect ratio of 10 or more is preferably contained in the coating liquid for all patterns transparent conductive film in a volume ratio of 5% or more, more preferably 50% or more, and more preferably 80% or more. It is particularly preferred that it be included. Hereinafter, the ratio of these metal nanowires may be referred to as “the ratio of metal nanowires”.
If the ratio of the metal nanowires is less than 5%, the conductive material that contributes to the conductivity may decrease and the conductivity may decrease. At the same time, a voltage concentration may occur because a dense network cannot be formed. , Durability may be reduced. In addition, particles having a shape other than metal nanowires are not preferable because they do not greatly contribute to conductivity and have absorption. In particular, when the particles other than the metal conductive fibers are metal and the plasmon absorption such as a spherical shape is strong, the transparency may be deteriorated.
 前記アスペクト比を10以上とすることにより、金属ナノワイヤー同士が接触したネットワークが容易に形成され、高い導電性を有する導電性層が容易に得られる。また、前記アスペクト比を100,000以下とすることにより、例えば基板上に導電性層を塗布により設ける際の塗布液において、金属ナノワイヤー同士が絡まって凝集してしまう恐れのない、安定な塗布液が得られるので、製造が容易となる。
 また、前記金属ナノワイヤーの比率が、5%未満であると、導電性に寄与する導電性物質が減少し導電性が低下してしまうことがあり、同時に密なネットワークを形成できないために電圧集中が生じ、耐久性が低下してしまうことがある。また、金属ナノワイヤー以外の形状の粒子は、導電性に大きく寄与しない上に吸収を持つため好ましくない。特に金属の場合で、球形などのプラズモン吸収が強い場合には透明度が悪化してしまうことがある。
By setting the aspect ratio to 10 or more, a network in which metal nanowires are in contact with each other is easily formed, and a conductive layer having high conductivity can be easily obtained. Further, by setting the aspect ratio to 100,000 or less, for example, in a coating liquid when a conductive layer is provided on a substrate by coating, stable coating without risk of entanglement and aggregation of metal nanowires. Since a liquid is obtained, manufacture becomes easy.
In addition, when the ratio of the metal nanowire is less than 5%, the conductive material that contributes to conductivity may decrease and conductivity may decrease, and at the same time, a dense network cannot be formed. May occur and durability may be reduced. In addition, particles having a shape other than metal nanowires are not preferable because they do not greatly contribute to conductivity and have absorption. In particular, in the case of a metal, when the plasmon absorption such as a spherical shape is strong, the transparency may be deteriorated.
 ここで、前記金属ナノワイヤーの比率は、例えば、金属ナノワイヤーが銀ナノワイヤーである場合には、銀ナノワイヤー水分散液をろ過して、銀ナノワイヤーと、それ以外の粒子とを分離し、ICP発光分析装置を用いてろ紙に残っている銀の量と、ろ紙を透過した銀の量とを各々測定することで、金属ナノワイヤーの比率を求めることができる。ろ紙に残っている金属ナノワイヤーをTEMで観察し、300個の金属ナノワイヤーの平均短軸長さを観察し、その分布を調べることにより、平均短軸長さが200nm以下であり、かつ平均長軸長さが1μm以上である金属ナノワイヤーであることを確認する。なお、ろ紙は、TEM像で平均短軸長さが200nm以下であり、かつ平均長軸長さが1μm以上である金属ナノワイヤー以外の粒子の最長軸を計測し、その最長軸の2倍以上であり、かつ金属ナノワイヤーの長軸の最短長以下の長さのものを用いることが好ましい。 Here, the ratio of the metal nanowire is, for example, when the metal nanowire is a silver nanowire, the silver nanowire aqueous dispersion is filtered to separate the silver nanowire from the other particles. The ratio of metal nanowires can be determined by measuring the amount of silver remaining on the filter paper and the amount of silver transmitted through the filter paper using an ICP emission analyzer. By observing the metal nanowires remaining on the filter paper with a TEM, observing the average minor axis length of 300 metal nanowires, and examining the distribution thereof, the average minor axis length is 200 nm or less, and the average It confirms that it is a metal nanowire whose major axis length is 1 micrometer or more. The filter paper measures the longest axis of particles other than metal nanowires having an average minor axis length of 200 nm or less and an average major axis length of 1 μm or more in a TEM image, and more than twice the longest axis. It is preferable to use a metal nanowire having a length equal to or shorter than the shortest length of the major axis of the metal nanowire.
 ここで、前記金属ナノワイヤーの平均短軸長さ及び平均長軸長さは、例えば、透過型電子顕微鏡(TEM)や光学顕微鏡を用い、TEM像や光学顕微鏡像を観察することにより求めることができ、本発明においては、金属ナノワイヤーの平均短軸長さ及び平均長軸長さは、透過型電子顕微鏡(TEM)により300個の金属ナノワイヤーを観察し、その平均値から求めたものである。 Here, the average minor axis length and the average major axis length of the metal nanowire can be obtained by observing a TEM image or an optical microscope image using, for example, a transmission electron microscope (TEM) or an optical microscope. In the present invention, the average minor axis length and the average major axis length of the metal nanowire are obtained by observing 300 metal nanowires with a transmission electron microscope (TEM) and calculating the average value. is there.
 金属ナノワイヤーの塗布量は、パターン透明導電膜中0.001~0.1g/cm2が好ましく、0.002~0.05g/cm2がより好ましく、0.003~0.04g/cm2が特に好ましい。 The coating amount of the metal nanowires is preferably patterned transparent conductive film in 0.001 ~ 0.1g / cm 2, more preferably 0.002 ~ 0.05g / cm 2, 0.003 ~ 0.04g / cm 2 Is particularly preferred.
透明導電膜形成用組成物:
 前記パターン透明導電膜を形成する透明導電膜形成用組成物は、感光性組成物であってもよい。感光性組成物は、ネガ型であってもポジ型であってもよい。以下、パターン透明導電膜の形成に利用可能な、感光性組成物、ゾルゲル硬化物及び高分子を少なくとも含有する組成物の例について説明するが、以下の例に限定されるものではない。
Composition for forming transparent conductive film:
The composition for transparent conductive film formation which forms the said pattern transparent conductive film may be a photosensitive composition. The photosensitive composition may be negative or positive. Hereinafter, examples of a composition containing at least a photosensitive composition, a sol-gel cured product, and a polymer that can be used for forming a patterned transparent conductive film will be described, but the present invention is not limited to the following examples.
 前記パターン透明導電膜の形成には、前記金属ナノワイヤーとともに、マトリクス成分として、例えば、(1)バインダー及び光重合性組成物を少なくとも含有する感光性組成物、(2)ゾルゲル硬化物、(3)高分子を少なくとも含有する組成物等を用いることができる。
 本発明では、マトリクス成分(パターン透明導電膜塗布液に含まれる金属ナノワイヤー及び溶剤を除いた全ての成分)の金属ナノワイヤーに対する質量比が0.5~15(より好ましくは1.0~12、特に好ましくは2.0~10)であることが好ましい。
 前記質量比が0.5未満であると、マトリクス成分が少なく、金属ナノワイヤーの基板表面に対する密着性が弱く、膜強度が弱くなるということがあり、前記質量比が15を超えると、パターン透明導電膜の表面抵抗値が上昇してしまうことがある。
For the formation of the patterned transparent conductive film, for example, (1) a photosensitive composition containing at least a binder and a photopolymerizable composition as a matrix component together with the metal nanowires, (2) a sol-gel cured product, (3 ) A composition containing at least a polymer can be used.
In the present invention, the mass ratio of the matrix component (all components excluding the metal nanowire and the solvent contained in the pattern transparent conductive film coating solution) to the metal nanowire is 0.5 to 15 (more preferably 1.0 to 12). Particularly preferred is 2.0 to 10).
When the mass ratio is less than 0.5, the matrix component is small, the adhesion of the metal nanowires to the substrate surface is weak, and the film strength may be weak. When the mass ratio exceeds 15, the pattern is transparent. The surface resistance value of the conductive film may increase.
バインダー:
 バインダーとしては、線状有機高分子重合体であって、分子(好ましくは、アクリル系共重合体、スチレン系共重合体を主鎖とする分子)中に少なくとも1つのアルカリ可溶性を促進する基(例えばカルボキシル基、リン酸基、スルホン酸基など)を有するアルカリ可溶性樹脂の中から適宜選択することができる。
 これらの中でも、有機溶剤に可溶でアルカリ水溶液に可溶なものが好ましく、また、酸解離性基を有し、酸の作用により酸解離性基が解離した時にアルカリ可溶となるものが特に好ましい。
 ここで、前記酸解離性基とは、酸の存在下で解離することが可能な官能基を表す。
binder:
The binder is a linear organic high molecular polymer, and at least one group that promotes alkali solubility in a molecule (preferably a molecule having an acrylic copolymer or a styrene copolymer as a main chain) ( For example, it can be appropriately selected from alkali-soluble resins having a carboxyl group, a phosphoric acid group, a sulfonic acid group, and the like.
Among these, those that are soluble in an organic solvent and soluble in an aqueous alkali solution are preferable, and those that have an acid-dissociable group and become alkali-soluble when the acid-dissociable group is dissociated by the action of an acid are particularly preferable. preferable.
Here, the acid dissociable group represents a functional group that can dissociate in the presence of an acid.
 前記バインダーの製造には、例えば公知のラジカル重合法による方法を適用することができる。前記ラジカル重合法でアルカリ可溶性樹脂を製造する際の温度、圧力、ラジカル開始剤の種類及びその量、溶媒の種類等々の重合条件は、当業者において容易に設定可能であり、実験的に条件を定めることができる。 For the production of the binder, for example, a known radical polymerization method can be applied. Polymerization conditions such as temperature, pressure, type and amount of radical initiator, type of solvent, etc. when producing an alkali-soluble resin by the radical polymerization method can be easily set by those skilled in the art, and the conditions are determined experimentally. Can be determined.
 前記線状有機高分子重合体としては、側鎖にカルボン酸を有するポリマーが好ましい。
 前記側鎖にカルボン酸を有するポリマーとしては、例えば特開昭59-44615号、特公昭54-34327号、特公昭58-12577号、特公昭54-25957号、特開昭59-53836号、特開昭59-71048号の各公報に記載されているような、メタクリル酸共重合体、アクリル酸共重合体、イタコン酸共重合体、クロトン酸共重合体、マレイン酸共重合体、部分エステル化マレイン酸共重合体等、並びに側鎖にカルボン酸を有する酸性セルロース誘導体、水酸基を有するポリマーに酸無水物を付加させたポリマーもの等が挙げられ、更に側鎖に(メタ)アクリロイル基を有する高分子重合体も好ましいポリマーとして挙げられる。
As the linear organic polymer, a polymer having a carboxylic acid in the side chain is preferable.
Examples of the polymer having a carboxylic acid in the side chain include, for example, JP-A-59-44615, JP-B-54-34327, JP-B-58-12777, JP-B-54-25957, JP-A-59-53836, As described in JP-A-59-71048, methacrylic acid copolymer, acrylic acid copolymer, itaconic acid copolymer, crotonic acid copolymer, maleic acid copolymer, partial ester Maleic acid copolymers, acidic cellulose derivatives having a carboxylic acid in the side chain, polymers obtained by adding an acid anhydride to a polymer having a hydroxyl group, and further having a (meth) acryloyl group in the side chain A high molecular polymer is also mentioned as a preferable polymer.
 これらの中でも、ベンジル(メタ)アクリレート/(メタ)アクリル酸共重合体、ベンジル(メタ)アクリレート/(メタ)アクリル酸/他のモノマーからなる多元共重合体が特に好ましい。
 更に、側鎖に(メタ)アクリロイル基を有する高分子重合体や(メタ)アクリル酸/グリシジル(メタ)アクリレート/他のモノマーからなる多元共重合体も有用なものとして挙げられる。該ポリマーは任意の量で混合して用いることができる。
Among these, benzyl (meth) acrylate / (meth) acrylic acid copolymers and multi-component copolymers composed of benzyl (meth) acrylate / (meth) acrylic acid / other monomers are particularly preferable.
Furthermore, a high molecular polymer having a (meth) acryloyl group in the side chain and a multi-component copolymer composed of (meth) acrylic acid / glycidyl (meth) acrylate / other monomers are also useful. The polymer can be used by mixing in an arbitrary amount.
 前記以外にも、特開平7-140654号公報に記載の、2-ヒドロキシプロピル(メタ)アクリレート/ポリスチレンマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体、2-ヒドロキシ-3-フェノキシプロピルアクリレート/ポリメチルメタクリレートマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体、2-ヒドロキシエチルメタクリレート/ポリスチレンマクロモノマー/メチルメタクリレート/メタクリル酸共重合体、2-ヒドロキシエチルメタクリレート/ポリスチレンマクロモノマー/ベンジルメタクレート/メタクリル酸共重合体、などが挙げられる。 In addition to the above, 2-hydroxypropyl (meth) acrylate / polystyrene macromonomer / benzyl methacrylate / methacrylic acid copolymer, 2-hydroxy-3-phenoxypropyl acrylate / polymethyl described in JP-A-7-140654 Methacrylate macromonomer / benzyl methacrylate / methacrylic acid copolymer, 2-hydroxyethyl methacrylate / polystyrene macromonomer / methyl methacrylate / methacrylic acid copolymer, 2-hydroxyethyl methacrylate / polystyrene macromonomer / benzyl methacrylate / methacrylic acid copolymer Coalescence, etc.
 前記アルカリ可溶性樹脂における具体的な構成単位としては、(メタ)アクリル酸と、該(メタ)アクリル酸と共重合可能な他の単量体とが好適である。 As the specific structural unit in the alkali-soluble resin, (meth) acrylic acid and other monomers copolymerizable with the (meth) acrylic acid are suitable.
 前記(メタ)アクリル酸と共重合可能な他の単量体としては、例えばアルキル(メタ)アクリレート、アリール(メタ)アクリレート、ビニル化合物などが挙げられる。これらは、アルキル基及びアリール基の水素原子は、置換基で置換されていてもよい。
 前記アルキル(メタ)アクリレート又はアリール(メタ)アクリレートとしては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、トリル(メタ)アクリレート、ナフチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、グリシジルメタクリレート、テトラヒドロフルフリルメタクリレート、ポリメチルメタクリレートマクロモノマー、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
Examples of other monomers copolymerizable with the (meth) acrylic acid include alkyl (meth) acrylates, aryl (meth) acrylates, and vinyl compounds. In these, the hydrogen atom of the alkyl group and aryl group may be substituted with a substituent.
Examples of the alkyl (meth) acrylate or aryl (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, and pentyl (meth). Acrylate, hexyl (meth) acrylate, octyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, tolyl (meth) acrylate, naphthyl (meth) acrylate, cyclohexyl (meth) acrylate, dicyclopentanyl (meta ) Acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, glycidyl methacrylate, tetrahydrofurfuryl methacrylate, Polymethyl methacrylate macromonomer, and the like. These may be used individually by 1 type and may use 2 or more types together.
 前記ビニル化合物としては、例えば、スチレン、α-メチルスチレン、ビニルトルエン、アクリロニトリル、ビニルアセテート、N-ビニルピロリドン、ポリスチレンマクロモノマー、CH2=CR12〔ただし、R1は水素原子又は炭素数1~5のアルキル基を表し、R2は炭素数6~10の芳香族炭化水素環を表す。〕、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 Examples of the vinyl compound include styrene, α-methylstyrene, vinyl toluene, acrylonitrile, vinyl acetate, N-vinyl pyrrolidone, polystyrene macromonomer, CH 2 = CR 1 R 2 [where R 1 is a hydrogen atom or a carbon number. R 1 represents an alkyl group having 1 to 5 carbon atoms, and R 2 represents an aromatic hydrocarbon ring having 6 to 10 carbon atoms. ] And the like. These may be used individually by 1 type and may use 2 or more types together.
 前記バインダーの重量平均分子量は、アルカリ溶解速度、膜物性等の点から、1,000~500,000が好ましく、3,000~300,000がより好ましく、5,000~200,000が更に好ましい。
 ここで、前記重量平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC法)により測定し、標準ポリスチレン検量線を用いて求めることができる。
The weight average molecular weight of the binder is preferably from 1,000 to 500,000, more preferably from 3,000 to 300,000, and even more preferably from 5,000 to 200,000, from the viewpoints of alkali dissolution rate, film physical properties and the like. .
Here, the weight average molecular weight is measured by a gel permeation chromatography method (GPC method) and can be determined using a standard polystyrene calibration curve.
 バインダーの含有量は、前述の金属ナノワイヤーを含む光重合性組成物の固形分の総質量を基準として、5質量%~90質量%であることが好ましく、10質量%~85質量%がより好ましく、20質量%~80質量%が更に好ましい。前記好ましい含有量範囲であると、現像性と金属ナノワイヤーの導電性の両立が図れる。 The content of the binder is preferably 5% by mass to 90% by mass, more preferably 10% by mass to 85% by mass, based on the total mass of the solid content of the photopolymerizable composition containing the metal nanowires. Preferably, 20% by mass to 80% by mass is more preferable. When the content is within the preferable range, both developability and conductivity of the metal nanowire can be achieved.
光重合性組成物:
 光重合性組成物は、露光により画像を形成する機能をパターン透明導電膜に付与するか、又はそのきっかけを与える化合物を意味する。(a)付加重合性不飽和化合物と、(b)光が照射されるとラジカルを発生する光重合開始剤とを基本成分として含む。
Photopolymerizable composition:
The photopolymerizable composition means a compound that imparts a function of forming an image by exposure to the patterned transparent conductive film or gives a trigger for the function. The basic component includes (a) an addition-polymerizable unsaturated compound and (b) a photopolymerization initiator that generates radicals when irradiated with light.
[(a)付加重合性不飽和化合物]
 成分(a)の付加重合性不飽和化合物(以下、「重合性化合物」ともいう。)は、ラジカルの存在下で付加重合反応を生じて高分子化される化合物であり、通常、分子末端に少なくとも一つの、より好ましくは二つ以上の、更に好ましくは四つ以上の、更により好ましくは六つ以上のエチレン性不飽和二重結合を有する化合物が使用される。
 これらは、例えば、モノマー、プレポリマー、即ち2量体、3量体及びオリゴマー、又はそれらの混合物などの化学的形態をもつ。
 このような重合性化合物としては、種々のものが知られており、それらは成分(a)として使用することができる。
 このうち、特に好ましい重合性化合物としては、膜強度の観点から、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリトリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレートが特に好ましい。
[(A) Addition polymerizable unsaturated compound]
The component (a) addition-polymerizable unsaturated compound (hereinafter also referred to as “polymerizable compound”) is a compound that undergoes an addition-polymerization reaction in the presence of a radical to form a polymer, and usually has a molecular end. A compound having at least one, more preferably two or more, more preferably four or more, still more preferably six or more ethylenically unsaturated double bonds is used.
These have chemical forms such as monomers, prepolymers, i.e. dimers, trimers and oligomers, or mixtures thereof.
Various kinds of such polymerizable compounds are known, and they can be used as the component (a).
Among these, particularly preferred polymerizable compounds are, from the viewpoint of film strength, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth). Acrylates are particularly preferred.
 成分(a)の含有量は、前述の金属ナノワイヤーを含む光重合性組成物の固形分の総質量を基準として、2.6質量%以上37.5質量%以下であることが好ましく、5.0質量%以上20.0質量%以下であることがより好ましい。 The content of component (a) is preferably 2.6% by mass or more and 37.5% by mass or less based on the total mass of the solid content of the photopolymerizable composition containing the metal nanowires described above. More preferably, it is 0.0 mass% or more and 20.0 mass% or less.
[(b)光重合開始剤]
 成分(b)の光重合開始剤は、光が照射されるとラジカルを発生する化合物である。このよう光重合開始剤には、光照射により、最終的には酸となる酸ラジカルを発生する化合物及びその他のラジカルを発生する化合物などが挙げられる。以下、前者を「光酸発生剤」と呼び、後者を「光ラジカル発生剤」と呼ぶ。
-光酸発生剤-
 光酸発生剤としては、光カチオン重合の光開始剤、光ラジカル重合の光開始剤、色素類の光消色剤、光変色剤、あるいはマイクロレジスト等に使用されている活性光線又は放射線の照射により酸ラジカルを発生する公知の化合物及びそれらの混合物を適宜に選択して使用することができる。
[(B) Photopolymerization initiator]
The photopolymerization initiator of component (b) is a compound that generates radicals when irradiated with light. Examples of such photopolymerization initiators include compounds that generate acid radicals that ultimately become acids upon irradiation with light, and compounds that generate other radicals. Hereinafter, the former is referred to as “photoacid generator”, and the latter is referred to as “photoradical generator”.
-Photoacid generator-
Photoacid generator includes photoinitiator for photocationic polymerization, photoinitiator for photoradical polymerization, photodecoloring agent for dyes, photochromic agent, irradiation of actinic ray or radiation used for micro resist, etc. Thus, known compounds that generate acid radicals and mixtures thereof can be appropriately selected and used.
 このような光酸発生剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、キノンジアジド化合物、ジ-又はトリ-ハロメチル基を少なくとも一つ有するトリアジン又は1,3,4-オキサジアゾール、ナフトキノン-1,2-ジアジド-4-スルホニルハライド、ジアゾニウム塩、ホスホニウム塩、スルホニウム塩、ヨードニウム塩、イミドスルホネート、オキシムスルホネート、ジアゾジスルホン、ジスルホン、o-ニトロベンジルスルホネートなどが挙げられる。これらの中でも、スルホン酸を発生する化合物であるイミドスルホネート、オキシムスルホネート、o-ニトロベンジルスルホネートが特に好ましい。
 また、活性光線又は放射線の照射により酸ラジカルを発生する基、あるいは化合物を樹脂の主鎖又は側鎖に導入した化合物、例えば、米国特許第3,849,137号明細書、独国特許第3914407号明細書、特開昭63-26653号、特開昭55-164824号、特開昭62-69263号、特開昭63-146038号、特開昭63-163452号、特開昭62-153853号、特開昭63-146029号の各公報等に記載の化合物を用いることができる。
 更に、米国特許第3,779,778号、欧州特許第126,712号等の各明細書に記載の化合物も、酸ラジカル発生剤として使用することができる。
Such a photoacid generator is not particularly limited and may be appropriately selected depending on the intended purpose. For example, quinonediazide compound, triazine having at least one di- or tri-halomethyl group, or 1,3,4 -Oxadiazole, naphthoquinone-1,2-diazide-4-sulfonyl halide, diazonium salt, phosphonium salt, sulfonium salt, iodonium salt, imide sulfonate, oxime sulfonate, diazodisulfone, disulfone, o-nitrobenzyl sulfonate, etc. . Among these, imide sulfonate, oxime sulfonate, and o-nitrobenzyl sulfonate, which are compounds that generate sulfonic acid, are particularly preferable.
Further, a group in which an acid radical is generated by irradiation with actinic rays or radiation, or a compound in which a compound is introduced into the main chain or side chain of the resin, for example, US Pat. No. 3,849,137, German Patent 3914407. JP-A-63-26653, JP-A-55-164824, JP-A-62-69263, JP-A-63-146038, JP-A-63-163452, JP-A-62-153853 And compounds described in JP-A-63-146029, etc. can be used.
Furthermore, compounds described in each specification such as US Pat. No. 3,779,778 and European Patent 126,712 can also be used as an acid radical generator.
 前記トリアジン系化合物としては、例えば特開2011-018636号公報、特開2011-254046号公報に記載されている化合物を使用することができる。 As the triazine compound, for example, compounds described in JP2011-018636A and JP2011-254046A can be used.
 本発明においては、光酸発生剤の中でもスルホン酸を発生する化合物が好ましく、下記のようなオキシムスルホネート化合物が高感度である観点から特に好ましい。 In the present invention, among the photoacid generators, compounds that generate sulfonic acid are preferable, and the following oxime sulfonate compounds are particularly preferable from the viewpoint of high sensitivity.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 キノンジアジド化合物として、1,2-ナフトキノンジアジド基を有する化合物を用いると高感度で現像性が良好である。
 キノンジアジド化合物のうち、下記に示される化合物のDが各々独立して水素原子又は1,2-ナフトキノンジアジド基である化合物が高感度である観点から好ましい。
When a compound having a 1,2-naphthoquinonediazide group is used as the quinonediazide compound, high sensitivity and good developability are obtained.
Of the quinonediazide compounds, compounds in which D of the compounds shown below are each independently a hydrogen atom or a 1,2-naphthoquinonediazide group are preferred from the viewpoint of high sensitivity.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
-光ラジカル発生剤-
 光ラジカル発生剤は、光を直接吸収し、又は光増感されて分解反応若しくは水素引き抜き反応を起こし、ラジカルを発生する機能を有する化合物である。光ラジカル発生剤としては、波長300nm~500nmの領域に吸収を有する化合物であることが好ましい。
 このような光ラジカル発生剤としては、多数の化合物が知られており、例えば特開2008-268884号公報に記載されているようなトリアジン系化合物、カルボニル化合物、ケタール化合物、ベンゾイン化合物、アクリジン化合物、有機過酸化化合物、アゾ化合物、クマリン化合物、アジド化合物、メタロセン化合物、ヘキサアリールビイミダゾール化合物、有機ホウ酸化合物、ジスルホン酸化合物、オキシムエステル化合物、アシルホスフィン(オキシド)化合物、が挙げられる。これらは目的に応じて適宜選択することができる。これらの中でも、ベンゾフェノン化合物、アセトフェノン化合物、ヘキサアリールビイミダゾール化合物、オキシムエステル化合物、及びアシルホスフィン(オキシド)化合物が露光感度の観点から特に好ましい。
-Photoradical generator-
The photoradical generator is a compound that has a function of generating radicals by directly absorbing light or being photosensitized to cause a decomposition reaction or a hydrogen abstraction reaction. The photo radical generator is preferably a compound having absorption in the wavelength region of 300 nm to 500 nm.
As such a photo radical generator, many compounds are known. For example, triazine compounds, carbonyl compounds, ketal compounds, benzoin compounds, acridine compounds, as described in JP-A-2008-268884, Examples thereof include organic peroxide compounds, azo compounds, coumarin compounds, azide compounds, metallocene compounds, hexaarylbiimidazole compounds, organic boric acid compounds, disulfonic acid compounds, oxime ester compounds, and acylphosphine (oxide) compounds. These can be appropriately selected according to the purpose. Among these, benzophenone compounds, acetophenone compounds, hexaarylbiimidazole compounds, oxime ester compounds, and acylphosphine (oxide) compounds are particularly preferable from the viewpoint of exposure sensitivity.
 光ラジカル発生剤としては、例えば特開2011-018636号公報、特開2011-254046号公報に記載されている光ラジカル発生剤を使用することができる。 As the photo radical generator, for example, the photo radical generators described in JP 2011-018636 A and JP 2011-254046 A can be used.
 光重合開始剤は、1種単独で用いてもよく、2種以上を併用してもよく、その含有量は、金属ナノワイヤーを含む光重合性組成物の固形分の総質量を基準として、0.1質量%~50質量%であることが好ましく、0.5質量%~30質量%がより好ましく、1質量%~20質量%が更に好ましい。このような数値範囲において、後述の導電性領域と非導電性領域とを含むパターンを導電性層に形成する場合に、良好な感度とパターン形成性が得られる。 A photoinitiator may be used individually by 1 type and may use 2 or more types together, The content is based on the total mass of solid content of the photopolymerizable composition containing metal nanowire, The content is preferably 0.1% by mass to 50% by mass, more preferably 0.5% by mass to 30% by mass, and still more preferably 1% by mass to 20% by mass. In such a numerical range, when a pattern including a conductive region and a non-conductive region described later is formed on the conductive layer, good sensitivity and pattern formability can be obtained.
 上記成分以外のその他の添加剤としては、例えば、連鎖移動剤、架橋剤、分散剤、溶媒、界面活性剤、酸化防止剤、硫化防止剤、金属腐食防止剤、粘度調整剤、防腐剤等の各種の添加剤などが挙げられる。 Other additives other than the above components include, for example, chain transfer agents, crosslinking agents, dispersants, solvents, surfactants, antioxidants, sulfurization inhibitors, metal corrosion inhibitors, viscosity modifiers, preservatives, and the like. Various additives are mentioned.
[連鎖移動剤]
 連鎖移動剤は、光重合性組成物の露光感度向上のために使用されるものである。このような連鎖移動剤としては、例えば、N,N-ジメチルアミノ安息香酸エチルエステルなどのN,N-ジアルキルアミノ安息香酸アルキルエステル、2-メルカプトベンゾチアゾール、2-メルカプトベンゾオキサゾール、2-メルカプトベンゾイミダゾール、N-フェニルメルカプトベンゾイミダゾール、1,3,5-トリス(3-メルカプトブチルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオンなどの複素環を有するメルカプト化合物、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、1,4-ビス(3-メルカプトブチリルオキシ)ブタンなどの脂肪族多官能メルカプト化合物などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
[Chain transfer agent]
The chain transfer agent is used for improving the exposure sensitivity of the photopolymerizable composition. Examples of such chain transfer agents include N, N-dialkylaminobenzoic acid alkyl esters such as N, N-dimethylaminobenzoic acid ethyl ester, 2-mercaptobenzothiazole, 2-mercaptobenzoxazole, and 2-mercaptobenzoic acid. Complexes such as imidazole, N-phenylmercaptobenzimidazole, 1,3,5-tris (3-mercaptobutyloxyethyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione Aliphatic polyfunctional mercapto such as mercapto compounds having a ring, pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptobutyrate), 1,4-bis (3-mercaptobutyryloxy) butane Compound etc. are mentioned. These may be used individually by 1 type and may use 2 or more types together.
 連鎖移動剤の含有量は、前述の金属ナノワイヤーを含む光重合性組成物の固形分の総質量を基準として、0.01質量%~15質量%が好ましく、0.1質量%~10質量%がより好ましく、0.5質量%~5質量%が更に好ましい。 The content of the chain transfer agent is preferably 0.01% by mass to 15% by mass, preferably 0.1% by mass to 10% by mass, based on the total mass of the solid content of the photopolymerizable composition containing the metal nanowires. % Is more preferable, and 0.5% by mass to 5% by mass is still more preferable.
[架橋剤]
 架橋剤は、フリーラジカル又は酸及び熱により化学結合を形成し、パターン透明導電膜を硬化させる化合物で、例えばメチロール基、アルコキシメチル基、アシロキシメチル基から選ばれる少なくとも1つの基で置換されたメラミン系化合物、グアナミン系化合物、グリコールウリル系化合物、ウレア系化合物、フェノール系化合物もしくはフェノールのエーテル化合物、エポキシ系化合物、オキセタン系化合物、チオエポキシ系化合物、イソシアネート系化合物、又はアジド系化合物、メタクリロイル基又はアクリロイル基などを含むエチレン性不飽和基を有する化合物、などが挙げられる。これらの中でも、膜物性、耐熱性、溶剤耐性の点でエポキシ系化合物、オキセタン系化合物、エチレン性不飽和基を有する化合物が特に好ましい。
 また、前記オキセタン樹脂は、1種単独で又はエポキシ樹脂と混合して使用することができる。特にエポキシ樹脂との併用で用いた場合には反応性が高く、膜物性を向上させる観点から好ましい。
 なお、架橋剤としてエチレン性不飽和二重結合基を有する化合物を用いる場合、当該架橋剤も、また、前記重合性化合物に包含され、その含有量は、本発明における重合性化合物の含有量に含まれることを考慮すべきである。
 架橋剤の含有量は、前述の金属ナノワイヤーを含む光重合性組成物の固形分の総質量を100質量部としたとき、1質量部~250質量部が好ましく、3質量部~200質量部がより好ましい。
[Crosslinking agent]
The crosslinking agent is a compound that forms a chemical bond by free radical or acid and heat and cures the patterned transparent conductive film, and is substituted with at least one group selected from, for example, a methylol group, an alkoxymethyl group, and an acyloxymethyl group. Melamine compound, guanamine compound, glycoluril compound, urea compound, phenol compound or phenol ether compound, epoxy compound, oxetane compound, thioepoxy compound, isocyanate compound, azide compound, methacryloyl group or And compounds having an ethylenically unsaturated group containing an acryloyl group. Among these, an epoxy compound, an oxetane compound, and a compound having an ethylenically unsaturated group are particularly preferable in terms of film properties, heat resistance, and solvent resistance.
Moreover, the said oxetane resin can be used individually by 1 type or in mixture with an epoxy resin. In particular, when used in combination with an epoxy resin, the reactivity is high, which is preferable from the viewpoint of improving film properties.
In addition, when using the compound which has an ethylenically unsaturated double bond group as a crosslinking agent, the said crosslinking agent is also included by the said polymeric compound, The content is content of the polymeric compound in this invention. Should be included.
The content of the crosslinking agent is preferably 1 part by weight to 250 parts by weight, preferably 3 parts by weight to 200 parts by weight, when the total weight of the solid content of the photopolymerizable composition containing the metal nanowire is 100 parts by weight. Is more preferable.
[分散剤]
 分散剤は、光重合性組成物中における前述の金属ナノワイヤーが凝集することを防止しつつ分散させるために用いられる。分散剤としては、前記金属ナノワイヤーを分散させることができれば特に制限はなく、目的に応じて適否選択することができる。例えば、顔料分散剤として市販されている分散剤を利用でき、特に金属ナノワイヤーに吸着する性質を持つ高分子分散剤が好ましい。このような高分子分散剤としては、例えばポリビニルピロリドン、BYKシリーズ(ビックケミー社製)、ソルスパースシリーズ(日本ルーブリゾール社製など)、アジスパーシリーズ(味の素株式会社製)などが挙げられる。
 なお、分散剤として高分子分散剤を、前記金属ナノワイヤーの製造に用いたもの以外をさらに別に添加する場合、当該高分子分散剤も、また、前記バインダーに包含され、その含有量は、前述のバインダーの含有量に含まれることを考慮すべきである。
 分散剤の含有量としては、バインダー100質量部に対し、0.1質量部~50質量部が好ましく、0.5質量部~40質量部がより好ましく、1質量部~30質量部が特に好ましい。
 分散剤の含有量を0.1質量部以上とすることで、分散液中での金属ナノワイヤーの凝集が効果的に抑制され、50質量部以下とすることで、塗布工程において安定な液膜が形成され、塗布ムラの発生が抑制されるため好ましい。
[Dispersant]
A dispersing agent is used in order to disperse | distribute, preventing that the above-mentioned metal nanowire in a photopolymerizable composition aggregates. The dispersant is not particularly limited as long as the metal nanowires can be dispersed, and can be appropriately selected according to the purpose. For example, a commercially available dispersant can be used as a pigment dispersant, and a polymer dispersant having a property of adsorbing to metal nanowires is particularly preferable. Examples of such a polymer dispersant include polyvinyl pyrrolidone, BYK series (manufactured by Big Chemie), Solsperse series (manufactured by Nippon Lubrizol Co., Ltd.), and Ajisper series (manufactured by Ajinomoto Co., Inc.).
In addition, when a polymer dispersant is added as a dispersant other than that used in the production of the metal nanowires, the polymer dispersant is also included in the binder, and the content thereof is as described above. It should be considered that it is included in the content of the binder.
The content of the dispersant is preferably 0.1 to 50 parts by weight, more preferably 0.5 to 40 parts by weight, and particularly preferably 1 to 30 parts by weight with respect to 100 parts by weight of the binder. .
By setting the content of the dispersant to 0.1 parts by mass or more, aggregation of metal nanowires in the dispersion is effectively suppressed, and by setting the content to 50 parts by mass or less, a stable liquid film in the coating process Is preferable, and the occurrence of uneven coating is suppressed.
[溶媒]
 溶媒は、前述の金属ナノワイヤー並びに特定アルコキシド化合物と、光重合性組成物とを含む組成物を基板表面に膜状に形成するための塗布液とするために使用される成分であり、目的に応じて適宜選択することができ、例えば、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸メチル、乳酸エチル、3-メトキシブタノール、水、1-メトキシ-2-プロパノール、イソプロピルアセテート、乳酸メチル、N-メチルピロリドン(NMP)、γ-ブチロラクトン(GBL)、プロピレンカーボネート、などが挙げられる。この溶媒は、前述の金属ナノワイヤーの分散液の溶媒の少なくとも一部が兼ねていてもよい。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 このような溶媒を含む塗布液の固形分濃度は、0.1質量%~20質量%の範囲で含有させることが好ましい。
[solvent]
The solvent is a component used to form a coating solution for forming a composition containing the metal nanowire and the specific alkoxide compound and the photopolymerizable composition on the surface of the substrate in the form of a film. It can be appropriately selected according to, for example, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ethyl 3-ethoxypropionate, methyl 3-methoxypropionate, ethyl lactate, 3-methoxybutanol, water, 1-methoxy- Examples include 2-propanol, isopropyl acetate, methyl lactate, N-methylpyrrolidone (NMP), γ-butyrolactone (GBL), propylene carbonate, and the like. This solvent may also serve as at least a part of the solvent of the metal nanowire dispersion described above. These may be used individually by 1 type and may use 2 or more types together.
The solid content concentration of the coating solution containing such a solvent is preferably contained in the range of 0.1% by mass to 20% by mass.
[金属腐食防止剤]
 金属ナノワイヤーの金属腐食防止剤を含有させておくことが好ましい。このような金属腐食防止剤としては、特に制限はなく、目的に応じて適宜選択することができるが、例えばチオール類、アゾール類などが好適である。
 金属腐食防止剤を含有させることで、防錆効果を発揮させることができ、透明導電積層体の経時による導電性及び透明性の低下を抑制することができる。金属腐食防止剤は透明導電膜形成用組成物中に、適した溶媒で溶解した状態、又は粉末で添加するか、後述するパターン透明導電膜用塗布液による導電膜を作製後に、これを金属腐食防止剤浴に浸すことで付与することができる。
 金属腐食防止剤を添加する場合は、金属ナノワイヤーに対して0.5質量%~10質量%含有させることが好ましい。
[Metal corrosion inhibitor]
It is preferable to contain the metal nanowire metal corrosion inhibitor. There is no restriction | limiting in particular as such a metal corrosion inhibitor, Although it can select suitably according to the objective, For example, thiols, azoles, etc. are suitable.
By containing a metal corrosion inhibitor, a rust prevention effect can be exhibited, and the deterioration of the conductivity and transparency of the transparent conductive laminate over time can be suppressed. The metal corrosion inhibitor is added to the composition for forming a transparent conductive film in a state dissolved in a suitable solvent, or added as a powder, or after forming a conductive film with a coating liquid for a patterned transparent conductive film, which will be described later, this is subjected to metal corrosion. It can be applied by dipping in an inhibitor bath.
When a metal corrosion inhibitor is added, it is preferable to contain 0.5% by mass to 10% by mass with respect to the metal nanowires.
 その他マトリクスとしては、前述の金属ナノワイヤーの製造の際に使用された分散剤としての高分子化合物を、マトリクスを構成する成分の少なくとも一部として使用することが可能である。 As the other matrix, it is possible to use a polymer compound as a dispersant used in the production of the above-described metal nanowires as at least a part of components constituting the matrix.
 前記透明導電膜の形成には、前記金属ナノワイヤーとともに、マトリクス成分としてゾルゲル硬化物を少なくとも含有する組成物を用いることもできる。 For the formation of the transparent conductive film, a composition containing at least a sol-gel cured product as a matrix component can be used together with the metal nanowires.
<ゾルゲル硬化物>
 上記ゾルゲル硬化物は、Si、Ti、ZrおよびAlからなる群から選ばれた元素のアルコキシド化合物(以下、「特定アルコキシド化合物」ともいう。)を加水分解及び重縮合し、更に所望により加熱、乾燥して得られるものである。
〔特定アルコキシド化合物〕
 特定アルコキシド化合物は、下記一般式(I)で示される化合物であることが、入手が容易である点で好ましい。
   M1(OR1a2 4-a    (I)
 (一般式(I)中、M1はSi、TiおよびZrから選択される元素を示し、R1、R2はそれぞれ独立に水素原子または炭化水素基を示し、aは2~4の整数を示す。)
<Sol-gel cured product>
The sol-gel cured product is obtained by hydrolyzing and polycondensing an alkoxide compound of an element selected from the group consisting of Si, Ti, Zr and Al (hereinafter also referred to as “specific alkoxide compound”), and further heating and drying as desired. Is obtained.
[Specific alkoxide compound]
The specific alkoxide compound is preferably a compound represented by the following general formula (I) because it is easily available.
M 1 (OR 1 ) a R 2 4-a (I)
(In the general formula (I), M 1 represents an element selected from Si, Ti and Zr, R 1 and R 2 each independently represents a hydrogen atom or a hydrocarbon group, and a represents an integer of 2 to 4 Show.)
 一般式(I)におけるR1およびR2の各炭化水素基としては、好ましくはアルキル基又はアリール基が挙げられる。
 アルキル基を示す場合の炭素数は好ましくは1~18、より好ましくは1~8であり、さらにより好ましくは1~4である。また、アリール基を示す場合は、フェニル基が好ましい。
 アルキル基又はアリール基は置換基を有していてもよく、導入可能な置換基としては、ハロゲン原子、アミノ基、アルキルアミノ基、メルカプト基などが挙げられる。
 なお、一般式(I)で示される化合物は低分子化合物であり、分子量1000以下であることが好ましい。
As each hydrocarbon group of R 1 and R 2 in the general formula (I), an alkyl group or an aryl group is preferable.
The carbon number in the case of showing an alkyl group is preferably 1 to 18, more preferably 1 to 8, and still more preferably 1 to 4. Moreover, when showing an aryl group, a phenyl group is preferable.
The alkyl group or aryl group may have a substituent, and examples of the substituent that can be introduced include a halogen atom, an amino group, an alkylamino group, and a mercapto group.
The compound represented by the general formula (I) is a low molecular compound and preferably has a molecular weight of 1000 or less.
 一般式(I)で示される化合物の具体例としては、例えば、特開2010-064474号公報などに記載されている。 Specific examples of the compound represented by the general formula (I) are described in, for example, JP-A-2010-064474.
 本発明において前記ゾルゲル硬化物を導電性層のマトリクスとして用いる場合、前述の金属ナノワイヤーに対する特定アルコキシド化合物の比率、即ち、特定アルコキシド化合物/金属ナノワイヤーの質量比が0.25/1~30/1の範囲で使用される。上記質量比が0.25/1よりも小さい場合には、透明性が劣ると同時に、耐摩耗性、耐熱性、耐湿熱性および耐屈曲性のうちの少なくとも一つが劣った導電性層となってしまい、他方、上記質量比が30/1よりも大きい場合には、導電性および耐屈曲性の劣る導電性層となってしまう。
 上記質量比は、より好ましくは0.5/1~20/1の範囲、更に好ましくは1/1~15/1、最も好ましくは2/1~8/1の範囲が高い導電性と高い透明性(全光透過率及びヘイズ)を有すると共に、耐摩耗性、耐熱性および耐湿熱性に優れ、かつ耐屈曲性に優れる導電材料を安定的に得ることができるので、好ましい。
When the sol-gel cured product is used as a matrix of the conductive layer in the present invention, the ratio of the specific alkoxide compound to the metal nanowire, that is, the mass ratio of the specific alkoxide compound / metal nanowire is 0.25 / 1 to 30 / Used in the range of 1. When the mass ratio is less than 0.25 / 1, the transparency is inferior, and at the same time, the conductive layer is inferior in at least one of wear resistance, heat resistance, moist heat resistance and flex resistance. On the other hand, when the mass ratio is larger than 30/1, the conductive layer is inferior in conductivity and flex resistance.
The mass ratio is more preferably in the range of 0.5 / 1 to 20/1, more preferably in the range of 1/1 to 15/1, and most preferably in the range of 2/1 to 8/1. High conductivity and high transparency It is preferable because it can stably obtain a conductive material having high properties (total light transmittance and haze), excellent wear resistance, heat resistance and moist heat resistance, and excellent flex resistance.
 また前記導電膜の形成には、前記金属ナノワイヤーとともに、マトリクス成分として高分子物を少なくとも含有する組成物を用いることもできる。
 高分子としては合成高分子や天然高分子が含まれ、前記合成高分子としては、ポリエステル、ポリイミド、ポリアクリル、ポリビニロン、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、メタクリル酸樹脂、フッ素系樹脂、フェノール樹脂、メラミン樹脂、シリコーン樹脂、合成ゴムやこれらのラテックス等がある。前記天然高分子としては、セルロース系樹脂や天然ゴムなどがある。
For the formation of the conductive film, a composition containing at least a polymer as a matrix component can be used together with the metal nanowires.
Synthetic polymers and natural polymers are included as the polymers. Examples of the synthetic polymers include polyester, polyimide, polyacryl, polyvinylon, polyethylene, polypropylene, polystyrene, polyvinyl chloride, methacrylic resin, fluorine-based resin, and phenol. Examples thereof include resins, melamine resins, silicone resins, synthetic rubbers, and latexes thereof. Examples of the natural polymer include cellulosic resins and natural rubber.
 必要により、導電膜上には保護コート材からなる保護層を設けても良い。
保護コート材は、架橋剤、重合開始剤、安定剤(例えば、酸化防止剤および製品寿命長期化のための紫外線安定剤、および保存期間改善のための重合防止剤)、界面活性剤、および同様な効果を有するものを含んでもよい。また、保護コート材は、金属ナノワイヤーの腐食を防止する腐食防止剤をさらに含んでもよい。
If necessary, a protective layer made of a protective coating material may be provided on the conductive film.
Protective coating materials include crosslinkers, polymerization initiators, stabilizers (eg, antioxidants and UV stabilizers for prolonging product life, and polymerization inhibitors for improving shelf life), surfactants, and the like You may include what has a special effect. The protective coating material may further include a corrosion inhibitor that prevents corrosion of the metal nanowires.
 保護層を形成する方法としては公知のウェットコート方法であれば特に制限はない。具体的には、スプレーコート、バーコート、ロールコート、ダイコート、インクジェットコート、スクリーンコート、ディップコートなどが挙げられる。 The method for forming the protective layer is not particularly limited as long as it is a known wet coating method. Specifically, spray coating, bar coating, roll coating, die coating, ink jet coating, screen coating, dip coating and the like can be mentioned.
 保護コート材によってパターン透明導電膜を含浸しつつ保護層を形成するとき、塗布、乾燥後の保護層の膜厚は、塗布前のパターン透明導電膜に対して薄すぎると耐擦過性、耐摩耗性、耐候性等の保護層としての機能が低下し、厚すぎると導体としての接触抵抗が増加する。 When forming the protective layer while impregnating the pattern transparent conductive film with the protective coating material, if the film thickness of the protective layer after application and drying is too thin relative to the pattern transparent conductive film before application, the abrasion resistance and abrasion resistance The function as a protective layer such as property and weather resistance is lowered, and if it is too thick, the contact resistance as a conductor increases.
 保護層用塗料の塗布はパターン透明導電膜の膜厚が50~150nmの範囲で形成されているときは、塗布、乾燥後の膜厚が30~150nmであることが好ましく、透明導電膜の膜厚を考慮して表面抵抗率、ヘイズ等が所定の値を実現出来るよう調整することができる。40~175nmがより好ましく、50~150nmが特に好ましい。保護層用塗料の乾燥後の膜厚は、パターン透明導電膜の膜厚にもよるが、30nm以上の膜厚であると保護層による保護機能がより良好に働く傾向にあり、150nm以下の膜厚であるとより良好な導電性能が確保できる傾向にある。 When the thickness of the patterned transparent conductive film is 50 to 150 nm, the coating for the protective layer is preferably 30 to 150 nm after coating and drying. In consideration of the thickness, the surface resistivity, haze, and the like can be adjusted to achieve predetermined values. 40 to 175 nm is more preferable, and 50 to 150 nm is particularly preferable. Although the film thickness after drying of the coating material for the protective layer depends on the film thickness of the pattern transparent conductive film, the protective function by the protective layer tends to work better when the film thickness is 30 nm or more. When it is thick, it tends to be able to ensure better conductive performance.
透明導電膜の塗布方法:
 パターン透明導電膜を形成するための透明導電膜の塗布方法(形成方法)の一例は、以下の通りであるが、下記の例に限定されるものではない。
 まず、パターン透明導電膜用塗布液を調製する。該塗布液は、少なくとも平均短軸長が5~50nmの金属ナノワイヤー、及びマトリクス成分(好ましくはバインダー及び感光性化合物、ゾルゲル硬化物、又は高分子を少なくとも含有する組成物(透明導電膜形成用組成物)、さらには必要に応じてその他の成分)を混合して、常法により調製することができる。
Application method of transparent conductive film:
An example of a transparent conductive film coating method (formation method) for forming the pattern transparent conductive film is as follows, but is not limited to the following example.
First, a coating liquid for a patterned transparent conductive film is prepared. The coating solution comprises at least a metal nanowire having an average minor axis length of 5 to 50 nm and a matrix component (preferably a binder and a photosensitive compound, a sol-gel cured product, or a polymer (for forming a transparent conductive film). The composition) and, if necessary, other components) can be mixed and prepared by a conventional method.
 次に、前記パターン透明導電膜用塗布液を、ガラス板やフィルム等の基板表面に塗布する。塗布する方法としては、特に制限はなく、目的に応じて適宜選択することができるが、例えばスプレーコート法、エアブラシ法、カーテンスプレー法、ディップコート法、ローラーコート法、スピンコート法、インクジェット法、押出し法などが挙げられる。 Next, the pattern transparent conductive film coating solution is applied to a substrate surface such as a glass plate or a film. The method for applying is not particularly limited and can be appropriately selected depending on the purpose. For example, spray coating method, air brush method, curtain spray method, dip coating method, roller coating method, spin coating method, ink jet method, Examples include an extrusion method.
 塗布量としては、金属ナノワイヤーが0.005~0.5g/m2となるように塗布することが好ましい。 The coating amount is preferably such that the metal nanowires are 0.005 to 0.5 g / m 2 .
 次に、基板上に、前記パターン透明導電膜用塗布液を塗布し、塗布層を形成した後、露光し、硬化させる。
 露光方法としては、特に制限はなく、用途などに応じて適宜選択することができるが、紫外線照射装置や、紫外線照射ランプなどを用いた露光方法が好ましい。
Next, the pattern transparent conductive film coating solution is applied onto a substrate to form a coating layer, and then exposed and cured.
There is no restriction | limiting in particular as an exposure method, Although it can select suitably according to a use etc., the exposure method using an ultraviolet irradiation device, a ultraviolet irradiation lamp, etc. is preferable.
 前記露光後(硬化後)の透明導電膜をアルカリ溶液で処理(アルカリ処理)する工程を実施してもよい。
 前記アルカリ溶液に含まれるアルカリとしては、特に制限はなく、目的に応じて適宜選択することができ、例えばテトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、2-ヒドロキシエチルトリメチルアンモニウムハイドロオキサイド、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム、水酸化ナトリウム、水酸化カリウムなどが挙げられる。
You may implement the process of processing the transparent conductive film after the said exposure (after hardening) with an alkaline solution (alkali treatment).
The alkali contained in the alkaline solution is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include tetramethylammonium hydroxide, tetraethylammonium hydroxide, 2-hydroxyethyltrimethylammonium hydroxide, sodium carbonate, Examples thereof include sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, sodium hydroxide, potassium hydroxide and the like.
 前記アルカリ溶液には、必要に応じて、メタノール、エタノール、又は界面活性剤を添加してもよい。前記界面活性剤としては、例えばアニオン系界面活性剤、カチオン系界面活性剤、及びノニオン系界面活性剤から選択して使用することができる。これらの中でも、ノニオン系のポリオキシエチレンアルキルエーテルを添加すると、解像度が高くなるので特に好ましい。 In the alkaline solution, methanol, ethanol, or a surfactant may be added as necessary. As the surfactant, for example, an anionic surfactant, a cationic surfactant, and a nonionic surfactant can be selected and used. Among these, the addition of nonionic polyoxyethylene alkyl ether is particularly preferable because the resolution becomes high.
 前記アルカリ処理としては、特に制限はなく、目的に応じて適宜選択することができ、例えばディップ現像、パドル現像、シャワー現像のいずれも用いることができる。
 前記アルカリ処理を行うことにより、前記パターン透明導電膜の導電性を上げることができる。
 前記アルカリ溶液の浸漬時間は、特に制限はなく、目的に応じて適宜選択することができるが、10秒間~5分間であることが好ましい。
The alkali treatment is not particularly limited and may be appropriately selected depending on the intended purpose. For example, any of dip development, paddle development, and shower development can be used.
By performing the alkali treatment, the conductivity of the patterned transparent conductive film can be increased.
The immersion time of the alkaline solution is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10 seconds to 5 minutes.
パターン透明導電膜の形成:
 本発明は、以下の方法で、パターン透明導電膜を形成する。
Formation of pattern transparent conductive film:
In the present invention, a patterned transparent conductive film is formed by the following method.
 パターン透明導電膜の形成は、導電膜に対し、露光し、現像するものであり、パターン露光する工程と、現像工程とを含み、更に必要に応じてその他の工程を含んでなる。 Formation of the pattern transparent conductive film exposes and develops the conductive film, and includes a pattern exposure process and a development process, and further includes other processes as necessary.
 導電膜は、導電性エリアと非導電性エリアとからなる所望のパターンを有するようにパターニングされて、本発明に係る導電性パターン部材が製造される。このようなパターニングの方法としては、以下の方法が挙げられる。なお、以下の説明において、パターニングされる前の導電膜を「非パターン化導電性層」ともいう。
 導電膜のマトリックスが非感光性のものである場合には、下記の(1)~(2)の方法によりパターンニングされる。
(1)非パターン化導電性層上にフォトレジスト層を設け、このフォトレジスト層に所望のパターン露光および現像を行って、当該パターン状のレジストを形成したのちに(エッチングマスク材)、金属ナノワイヤーをエッチング可能なエッチング液で処理するウェットプロセスか、または反応性イオンエッチングのようなドライプロセスにより、レジストで保護されていない領域の導電性層中の金属ナノワイヤーをエッチングして断線または消失させるパターニング方法。この方法は、例えば特表2010-507199号公報(特に、段落0212~0217)に記載されている。
(2)非パターン化導電性層上の所望の領域に、光硬化性樹脂をインクジェット方式やスクリーン印刷方式によりパターン上に設け、この光硬化性樹脂層に所望の露光を行って、当該パターン状のレジスト(エッチングマスク材)を形成したのちに、金属ナノワイヤーをエッチング可能なエッチング液中に浸漬するか、または前記エッチング液をシャワリングして、レジストで保護されていない領域の導電性層中の金属ナノワイヤーを断線または消失させるパターニング方法。
 上記(1)または(2)の方法による場合には、パターニングが終了した後に、導電膜上のレジストは常法により除去することが、透明性に優れる導電積層体が得られるので好ましい。
The conductive film is patterned so as to have a desired pattern including a conductive area and a non-conductive area, and the conductive pattern member according to the present invention is manufactured. Examples of such a patterning method include the following methods. In the following description, the conductive film before patterning is also referred to as “non-patterned conductive layer”.
When the matrix of the conductive film is non-photosensitive, it is patterned by the following methods (1) to (2).
(1) A photoresist layer is provided on a non-patterned conductive layer, and a desired pattern exposure and development are performed on the photoresist layer to form the patterned resist (etching mask material). Etch the metal nanowires in the conductive layer in areas not protected by resist by wire processes with etchable etchants or dry processes such as reactive ion etching to break or disappear Patterning method. This method is described, for example, in JP-T-2010-507199 (particularly, paragraphs 0212 to 0217).
(2) In a desired region on the non-patterned conductive layer, a photocurable resin is provided on the pattern by an inkjet method or a screen printing method, and the photocurable resin layer is subjected to a desired exposure to form the pattern. After the resist (etching mask material) is formed, the metal nanowires are immersed in an etchable etchant or the etchant is showered to form a conductive layer in a region not protected by the resist. A patterning method for breaking or disappearing metal nanowires.
In the case of the method (1) or (2), it is preferable to remove the resist on the conductive film by a conventional method after the patterning is completed, because a conductive laminate having excellent transparency can be obtained.
 前記エッチングマスク材を付与する方法には特に制限がなく、例えば塗布法、印刷法、インクジェット法などが挙げられる。
 前記塗布法としては、特に制限はなく、例えばロールコート法、バーコート法、ディップコーティング法、スピンコーティング法、キャスティング法、ダイコート法、ブレードコート法、バーコート法、グラビアコート法、カーテンコート法、スプレーコート法、ドクターコート法、などが挙げられる。
 前記印刷法としては、例えば凸版(活版)印刷法、孔版(スクリーン)印刷法、平版(オフセット)印刷法、凹版(グラビア)印刷法、などが挙げられる。
なお、この工程で形成されるレジスト層はポジ型レジスト層でもよく、ネガ型レジスト層でもよい。ポジ型レジスト層の場合には、パターン状の露光領域が可溶化され、未露光領域(未溶解化領域)にパターン状のレジスト層が形成され、ネガ型レジスト層の場合には、露光領域が硬化されたレジスト層となり、溶解液の付与により、未露光部、即ち未硬化部のレジスト層が除去され、パターン状のレジスト層が形成される。
 この方法によれば、非導電性エリアは、導電膜に含まれる金属ナノワイヤー及びバインダーが何れも除去され、基板若しくは、基板上に形成された中間層が露出することになる。
There is no restriction | limiting in particular in the method of providing the said etching mask material, For example, the apply | coating method, the printing method, the inkjet method etc. are mentioned.
The coating method is not particularly limited. For example, a roll coating method, a bar coating method, a dip coating method, a spin coating method, a casting method, a die coating method, a blade coating method, a bar coating method, a gravure coating method, a curtain coating method, Examples thereof include a spray coating method and a doctor coating method.
Examples of the printing method include letterpress (letterpress) printing, stencil (screen) printing, lithographic (offset) printing, and intaglio (gravure) printing.
The resist layer formed in this step may be a positive resist layer or a negative resist layer. In the case of a positive resist layer, the pattern-shaped exposed region is solubilized, and a patterned resist layer is formed in the unexposed region (unsolubilized region). In the case of a negative resist layer, the exposed region is A cured resist layer is formed, and by application of the solution, the unexposed portion, that is, the uncured portion of the resist layer is removed, and a patterned resist layer is formed.
According to this method, in the non-conductive area, both the metal nanowires and the binder contained in the conductive film are removed, and the substrate or the intermediate layer formed on the substrate is exposed.
 前記(1)の方法に使用されるレジスト層形成用材料には特に制限は無く、ネガ型、ポジ型、ドライフィルム型などのいずれも用いることができる。
 フォトレジスト層の形成には、市販のアルカリ可溶性フォトレジストを適宜選択して用いることができ、例えば、富士フイルム製カラーモザイクシリーズ、FILSシリーズ、FIOSシリーズ、FMESシリーズ、FTENSシリーズ、FIESシリーズ、半導体プロセス用各ポジ型、ネガ型フォトレジストシリーズ、富士薬品製フジレジストシリーズを用いることができ、中でも、FRシリーズ、FPPRシリーズ、FMRシリーズ、FDERシリーズなどを好ましく用いることができる。また、AZエレクトロニックマテリアルズ製フォトレジストシリーズを用いることができ、中でも、RFPシリーズ、TFPシリーズ、SZPシリーズ、HKTシリーズ、SFP、シリーズ、SRシリーズ、SOPシリーズ、SZCシリーズ、CTPシリーズ、ANRシリーズ、P4000シリーズ、TPM606、40XT、nXTシリーズなどを好ましく用いることができる。さらに、JSR社製の各フォトレジストなども、高解像度タイプから、低解像度タイプまで広く用いることが可能である。
 ドライフィルムレジストとしては、日立化成工業製、プリント配線板用感光性フィルム、旭化成イーマテリアルズ製感光性ドライフィルムSUNFORTシリーズ、デュポンMRCドライフィルム製FXGシリーズ、FXRシリーズ、FX900シリーズ、JSF100シリーズ、SA100シリーズ、LDIシリーズ、FRAシリーズ、CMシリーズ、富士フイルム製トランサー各シリーズ等が挙げられ、これらを適宜使用することができる。
 これらレジスト層形成材料は、パターン透明導電膜において形成されるパターンの解像度などに応じて、適宜、選択すればよい。
 フォトレジスト層の形成において、ドライフィルム型のレジスト層形成用材料を用いる場合、予め作製されたドライフィルムレジストの感光性レジスト層を、形成された導電性層の表面に転写すればよい。
There is no restriction | limiting in particular in the resist layer forming material used for the method of said (1), Any, such as a negative type, a positive type, a dry film type, can be used.
For the formation of the photoresist layer, commercially available alkali-soluble photoresists can be appropriately selected and used. For example, Fujifilm color mosaic series, FILS series, FIOS series, FMES series, FTENS series, FIES series, semiconductor process Each positive type, negative type photoresist series, Fuji Chemical Fuji Resist series can be used, and among them, FR series, FPPR series, FMR series, FDER series, etc. can be preferably used. Also, AZ Electronic Materials photoresist series can be used, among them, RFP series, TFP series, SZP series, HKT series, SFP, series, SR series, SOP series, SZC series, CTP series, ANR series, P4000. Series, TPM606, 40XT, nXT series and the like can be preferably used. Furthermore, each photoresist made by JSR can be widely used from a high resolution type to a low resolution type.
As dry film resists, Hitachi Chemical, photosensitive film for printed wiring boards, Asahi Kasei E-materials photosensitive dry film SUNFORT series, DuPont MRC dry film FXG series, FXR series, FX900 series, JSF100 series, SA100 series , LDI series, FRA series, CM series, FUJIFILM Transer series, etc., which can be used as appropriate.
What is necessary is just to select these resist layer forming materials suitably according to the resolution etc. of the pattern formed in a pattern transparent conductive film.
In the formation of the photoresist layer, when a dry film type resist layer forming material is used, a photosensitive resist layer of a dry film resist prepared in advance may be transferred to the surface of the formed conductive layer.
 パターン透明導電膜の形成方法における露光工程は、光重合開始剤を含むエッチングマスク材を用いて酸素濃度が5%以下で露光を行う工程であることが好ましい。
 前記露光は酸素濃度が5%以下の雰囲気下にて行われることが好ましく、酸素濃度が2%以下であることがより好ましく、1%以下であることが更に好ましく、0.1%以下であることが特に好ましい。
 前記露光を酸素濃度が5%を超える雰囲気下で行うと、エッチングマスク材に含まれる光重合開始剤から生じる副生成物、或いは、オゾン等の酸化物との反応により金属ナノワイヤーが断線され、パターニング後の導電部配線抵抗値が上昇するため好ましくない。酸素濃度が高い雰囲気下における金属ナノワイヤーの断線は、直径の細い金属ナノワイヤーを用いる場合に特に顕著となる傾向がある。
 更に、前記露光を酸素濃度が5%を超える雰囲気下で行うと、エッチングマスク材の硬化における反応効率が低下し、タクトタイムが長くなるため好ましくない。
The exposure step in the method for forming the patterned transparent conductive film is preferably a step of performing exposure at an oxygen concentration of 5% or less using an etching mask material containing a photopolymerization initiator.
The exposure is preferably performed in an atmosphere having an oxygen concentration of 5% or less, more preferably 2% or less, still more preferably 1% or less, and 0.1% or less. It is particularly preferred.
When the exposure is performed in an atmosphere where the oxygen concentration exceeds 5%, by-products generated from the photopolymerization initiator contained in the etching mask material, or metal nanowires are disconnected by reaction with oxides such as ozone, Since the resistance value of the conductive part wiring after patterning is increased, it is not preferable. The disconnection of metal nanowires in an atmosphere having a high oxygen concentration tends to be particularly noticeable when metal nanowires having a small diameter are used.
Furthermore, it is not preferable to perform the exposure in an atmosphere in which the oxygen concentration exceeds 5% because the reaction efficiency in curing the etching mask material decreases and the tact time becomes longer.
 前記露光は、酸素濃度が5%以下の不活性ガス雰囲気下で行うことが好ましい。
 使用することができる不活性ガスは、紫外線照射装置や、紫外線照射ランプなどを用いて露光する場合は、UV硬化反応の妨げとならないものであれば特に制限がない。不活性ガスとしては、窒素ガス又はアルゴンガスが好ましく、入手が容易で安価な点から窒素ガスがより好ましい。
The exposure is preferably performed in an inert gas atmosphere having an oxygen concentration of 5% or less.
The inert gas that can be used is not particularly limited as long as it does not interfere with the UV curing reaction when exposed using an ultraviolet irradiation device or an ultraviolet irradiation lamp. As the inert gas, nitrogen gas or argon gas is preferable, and nitrogen gas is more preferable because it is easily available and inexpensive.
 前記露光方法としては、フォトマスクを利用しない面露光(ベタ露光)で行ってもよいし、フォトマスクを利用した面露光で行ってもよいし、レーザービームによる走査露光で行ってもよい。この際、レンズを用いた屈折式露光でも反射鏡を用いた反射式露光でもよく、コンタクト露光、プロキシミティー露光、縮小投影露光、反射投影露光などの露光方式を用いることができる。
 これらの露光方式は、必要に応じて適宜選択することができる。例えば、前記付与されたエッチングマスク材が予めパターン状に付与されている場合は、フォトマスクを利用せずベタ露光することも可能である。
 上記パターン露光や露光に用いる光源は、フォトレジスト組成物の感光波長域との関連で選定されるが、一般的にはg線、h線、i線、j線等の紫外線が好ましく用いられる。また、紫外線LEDを用いてもよい。
 パターン露光の方法にも特に制限はなく、フォトマスクを利用した面露光で行ってもよいし、レーザービーム等による走査露光で行ってもよい。この際、レンズを用いた屈折式露光でも反射鏡を用いた反射式露光でもよく、コンタクト露光、プロキシミティー露光、縮小投影露光、反射投影露光などの露光方式を用いることができる。また露光時のサンプル膜面温度は低い方が良く、0℃~80℃の範囲が好ましく、より好ましくは5℃~70℃が好ましく、更に好ましくは10℃~50℃が好ましい。露光時の温度が0℃より低いと温度を制御するのが難しく、80℃以上になると金属ナノワイヤーの断線数が増え、抵抗上昇倍率が大きくなってしまう。
As the exposure method, surface exposure (solid exposure) not using a photomask, surface exposure using a photomask, or scanning exposure using a laser beam may be performed. At this time, refractive exposure using a lens or reflection exposure using a reflecting mirror may be used, and exposure methods such as contact exposure, proximity exposure, reduced projection exposure, and reflection projection exposure can be used.
These exposure methods can be appropriately selected as necessary. For example, when the applied etching mask material is applied in a pattern in advance, solid exposure can be performed without using a photomask.
The light source used for the pattern exposure or exposure is selected in relation to the photosensitive wavelength range of the photoresist composition, but in general, ultraviolet rays such as g-line, h-line, i-line, and j-line are preferably used. Moreover, you may use ultraviolet LED.
The pattern exposure method is not particularly limited, and may be performed by surface exposure using a photomask, or may be performed by scanning exposure using a laser beam or the like. At this time, refractive exposure using a lens or reflection exposure using a reflecting mirror may be used, and exposure methods such as contact exposure, proximity exposure, reduced projection exposure, and reflection projection exposure can be used. The sample film surface temperature at the time of exposure is preferably low, preferably in the range of 0 ° C. to 80 ° C., more preferably 5 ° C. to 70 ° C., still more preferably 10 ° C. to 50 ° C. If the temperature at the time of exposure is lower than 0 ° C., it is difficult to control the temperature, and if it is 80 ° C. or higher, the number of disconnections of the metal nanowires increases and the resistance increase magnification increases.
 前記金属ナノワイヤーを溶解する溶解液(エッチング液という)としては、金属ナノワイヤーに応じて適宜選択することができる。例えば金属ナノワイヤーが銀ナノワイヤーの場合には、所謂写真科学業界において、主にハロゲン化銀カラー感光材料の印画紙の漂白、定着工程に使用される漂白定着液、強酸、酸化剤、過酸化水素などが挙げられる。これらの中でも、漂白定着液、希硝酸、過酸化水素が特に好ましい。なお、前記銀ナノワイヤーを溶解する溶解液による銀ナノワイヤーの溶解は、溶解液を付与した部分の銀ナノワイヤーを完全に溶解しなくてもよく、導電性が消失していれば一部が残存していてもよい。
 前記希硝酸の濃度は、1質量%~20質量%であることが好ましい。
 前記過酸化水素の濃度は、3質量%~30質量%であることが好ましい。
The solution for dissolving the metal nanowire (referred to as an etching solution) can be appropriately selected according to the metal nanowire. For example, when the metal nanowire is a silver nanowire, in the so-called photographic science industry, bleaching fixer, strong acid, oxidizing agent, peroxidation mainly used for bleaching and fixing process of photographic paper of silver halide color photosensitive material Examples include hydrogen. Of these, bleach-fixing solution, dilute nitric acid, and hydrogen peroxide are particularly preferable. In addition, the dissolution of the silver nanowire by the solution for dissolving the silver nanowire may not completely dissolve the portion of the silver nanowire provided with the solution, and if the conductivity is lost, a part of the dissolution It may remain.
The concentration of the diluted nitric acid is preferably 1% by mass to 20% by mass.
The concentration of the hydrogen peroxide is preferably 3% by mass to 30% by mass.
 前記漂白定着液としては、例えば特開平2-207250号公報の第26頁右下欄1行目~34頁右上欄9行目、及び特開平4-97355号公報の第5頁左上欄17行目~18頁右下欄20行目に記載の処理素材や処理方法が好ましく適用できる。
 漂白定着時間は、180秒間以下が好ましく、120秒間以下1秒間以上がより好ましく、90秒間以下5秒間以上が更に好ましい。また、水洗又は安定化時間は、180秒間以下が好ましく、120秒間以下1秒間以上がより好ましい。
 前記漂白定着液としては、写真用漂白定着液であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、富士フイルム株式会社製CP-48S、CP-49E(カラーペーパー用漂白定着剤)、コダック社製エクタカラーRA漂白定着液、大日本印刷株式会社製漂白定着液D-J2P-02-P2、D-30P2R-01、D-22P2R-01などが挙げられる。これらの中でも、CP-48S、CP-49Eが特に好ましい。
As the bleach-fixing solution, for example, JP-A-2-207250, page 26, lower right column, line 1 to page 34, upper-right column, line 9 and JP-A-4-97355, page 5, upper left column, line 17 The processing materials and processing methods described in the 20th page, lower right column, line 20 can be preferably applied.
The bleach-fixing time is preferably 180 seconds or shorter, more preferably 120 seconds or shorter and 1 second or longer, and further preferably 90 seconds or shorter and 5 seconds or longer. Moreover, the water washing or stabilization time is preferably 180 seconds or shorter, more preferably 120 seconds or shorter and 1 second or longer.
The bleach-fixing solution is not particularly limited as long as it is a photographic bleach-fixing solution, and can be appropriately selected according to the purpose. For example, CP-48S, CP-49E (color paper bleaching) manufactured by FUJIFILM Corporation. Fixing agent), Kodak Ektacolor RA bleach-fixing solution, Dai Nippon Printing Co., Ltd. bleach-fixing solution D-J2P-02-P2, D-30P2R-01, D-22P2R-01, and the like. Among these, CP-48S and CP-49E are particularly preferable.
(現像工程)
 前記露光工程において用いた前記パターン状のレジスト(エッチングマスク材)を除去する現像工程を含んでいてもよい。
 前記現像工程は、溶媒を付与して前記エッチングマスク材を除去する工程であることが好ましい。ポジ型レジストを用いた場合はマスク露光後の工程およびエッチング後の工程で実施することが好ましく、ネガ型レジストを用いた場合はエッチング後の工程で実施することが好ましい。
(Development process)
A development step for removing the patterned resist (etching mask material) used in the exposure step may be included.
The developing step is preferably a step of removing the etching mask material by applying a solvent. When a positive resist is used, it is preferably performed in a step after mask exposure and a step after etching, and when a negative resist is used, it is preferably performed in a step after etching.
 前記現像工程で用いる溶媒としては、アルカリ溶液が好ましい。
 前記アルカリ溶液に含まれるアルカリとしては、特に制限はなく、目的に応じて適宜選択することができ、例えばテトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、2-ヒドロキシエチルトリメチルアンモニウムハイドロオキサイド、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム、水酸化ナトリウム、水酸化カリウムなどが挙げられる。
 また、前記溶媒としては、市販のフォトレジスト用現像液を使用することができる。
As the solvent used in the development step, an alkaline solution is preferable.
The alkali contained in the alkaline solution is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include tetramethylammonium hydroxide, tetraethylammonium hydroxide, 2-hydroxyethyltrimethylammonium hydroxide, sodium carbonate, Examples thereof include sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, sodium hydroxide, potassium hydroxide and the like.
Further, as the solvent, a commercially available developer for photoresist can be used.
 前記アルカリ溶液の付与方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば塗布、浸漬、噴霧などが挙げられる。これらの中でも、浸漬が特に好ましい。
 前記アルカリ溶液の浸漬時間は、特に制限はなく、目的に応じて適宜選択することができるが、10秒間~5分間であることが好ましい。またアルカリ溶液の温度は目的に応じて適宜選択することができるが、5℃~50℃であることが好ましい。
There is no restriction | limiting in particular as the provision method of the said alkaline solution, According to the objective, it can select suitably, For example, application | coating, immersion, spraying etc. are mentioned. Among these, immersion is particularly preferable.
The immersion time of the alkaline solution is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10 seconds to 5 minutes. The temperature of the alkaline solution can be appropriately selected according to the purpose, but is preferably 5 ° C to 50 ° C.
(その他の工程)
 本発明の透明導電積層体においてパターン透明導電膜を形成するためのパターニング工程は、前記露光工程及び前記現像工程に加えて、必要に応じて更に他の工程を含んでいてもよい。
 その他の工程としては、エッチングマスク除去後の水洗、乾燥工程等が挙げられる。
(Other processes)
The patterning step for forming the patterned transparent conductive film in the transparent conductive laminate of the present invention may further include other steps as necessary in addition to the exposure step and the development step.
Examples of other processes include washing with water after removing the etching mask, and a drying process.
 また、導電膜は、転写材料を利用して、転写により、目的とする基板上に形成してもよい。 Further, the conductive film may be formed on a target substrate by transfer using a transfer material.
 また、導電膜を形成するために実施される塗布工程において、金属ナノワイヤーの配向性が促進されると、偏光性のある導電膜が形成される傾向がある。ナノワイヤーの配向のランダム性が維持される塗布方法としては、スプレー塗布法、インクジェット塗布法等が挙げられる。また、ナノワイヤーの配向性を促進する塗布方法(例えばスロットルダイ法等の塗布方法)を採用する場合であっても、一方向に沿って塗布した後、当該方向と異なる方向(例えば直交する方向)に沿って塗布することで、ナノワイヤーの配向性を緩和することができる。 Also, when the orientation of the metal nanowires is promoted in the coating process that is performed to form the conductive film, a polarizing conductive film tends to be formed. Examples of coating methods that maintain the randomness of the orientation of the nanowires include spray coating methods and inkjet coating methods. In addition, even when a coating method that promotes the orientation of nanowires (for example, a coating method such as a throttle die method) is employed, after coating along one direction, a direction different from the direction (for example, a direction orthogonal to the direction) ), The orientation of the nanowires can be relaxed.
 また、導電膜を形成した後、膜中の金属ナノワイヤーの配向性を軽減するための処理を行ってもよい。一方向に沿って塗布されて形成された導電膜中の金属ナノワイヤーは、当該方向に沿って配向する傾向がある。従って、塗布の方向とは異なる方向(例えば直交する方向)に沿って、延伸処理(例えば1%以上5%未満の延伸率の延伸処理)等を行うと、配向性が軽減されるので好ましい。なお、延伸処理を実施する場合は、高分子フィルム等の可撓性のある基板上に導電膜を形成した後、基板に支持された状態の導電膜を基板とともに延伸処理するのが好ましい。 Further, after the conductive film is formed, a treatment for reducing the orientation of the metal nanowires in the film may be performed. Metal nanowires in the conductive film formed by being applied along one direction tend to be oriented along the direction. Therefore, it is preferable to perform a stretching process (for example, a stretching process with a stretching ratio of 1% or more and less than 5%) along a direction (for example, a direction orthogonal to the direction) different from the direction of application because orientation is reduced. In addition, when implementing a extending | stretching process, after forming a electrically conductive film on flexible substrates, such as a polymer film, it is preferable to extend | stretch the electrically conductive film of the state supported by the board | substrate with a board | substrate.
 前記導電膜の表面抵抗は、1Ω/□~5,000Ω/□であることが好ましく、10Ω/□~500Ω/□であることがより好ましい。
 前記表面抵抗は、例えば表面抵抗計(三菱化学株式会社製、Loresta-GP MCP-T600)により、測定することができる。
The surface resistance of the conductive film is preferably 1 Ω / □ to 5,000 Ω / □, and more preferably 10 Ω / □ to 500 Ω / □.
The surface resistance can be measured by, for example, a surface resistance meter (Loresta-GP MCP-T600, manufactured by Mitsubishi Chemical Corporation).
 パターン透明導電膜の乾燥膜厚は、0.005~2μmが好ましく、0.01~1μmがより好ましい。 The dry film thickness of the pattern transparent conductive film is preferably 0.005 to 2 μm, more preferably 0.01 to 1 μm.
粘着層:
 本発明では、パターン透明導電膜を覆うように形成されている粘着層を有する。粘着層は、粘着剤からで構成されており、粘着層の粘着力が15N/25mm以上 (より好ましくは30~50N/25mm、特に好ましくは30~42N/25mm)であることが好ましい。
また、粘着層の吸水率が2.0%以下(より好ましくは1.0%以下、特に好ましくは0.9%以下)となるような粘着剤を使用することが好ましい。吸水率の具体的な下限はないが、一般的に、0.5%以上である。なお、本明細書では、粘着層に使用する粘着剤は広義の意味で接着剤を含むものとする。また、粘着層が粘着するバリア膜の材質によっては、同一の粘着層であっても粘着層の粘着力が異なることがあるが、本発明では、粘着層の粘着力が15N/25mm以上であれば特に制限はない。
Adhesive layer:
In this invention, it has the adhesion layer formed so that a pattern transparent conductive film may be covered. The adhesive layer is composed of an adhesive, and the adhesive strength of the adhesive layer is preferably 15 N / 25 mm or more (more preferably 30 to 50 N / 25 mm, particularly preferably 30 to 42 N / 25 mm).
In addition, it is preferable to use an adhesive whose water absorption rate of the adhesive layer is 2.0% or less (more preferably 1.0% or less, particularly preferably 0.9% or less). Although there is no specific lower limit of the water absorption rate, it is generally 0.5% or more. In the present specification, the pressure-sensitive adhesive used for the pressure-sensitive adhesive layer includes an adhesive in a broad sense. Also, depending on the material of the barrier film to which the adhesive layer adheres, the adhesive force of the adhesive layer may be different even in the same adhesive layer. However, in the present invention, the adhesive force of the adhesive layer is 15 N / 25 mm or more. There are no particular restrictions.
 粘着層に使用可能な粘着剤の例には、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ポリエステル系粘着剤等が挙げられ、中でも耐熱性、耐候性の観点からアクリル系粘着剤が好ましい。 Examples of pressure-sensitive adhesives that can be used for the pressure-sensitive adhesive layer include acrylic pressure-sensitive adhesives, rubber-based pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, urethane-based pressure-sensitive adhesives, and polyester-based pressure-sensitive adhesives. Acrylic adhesive is preferred.
 粘着層の形成方法としては特に制限はなく、例えば、特開2012-11637号公報に記載の方法を用いることができる。具体的には、塗布方式や印刷方式、貼り合わせ方式などを挙げることができ、その中でも塗布により設置する方法と粘着シートを貼り付けて形成する方法を好ましく用いることができ、粘着シートを貼り付けて形成する方法がより好ましい。 The method for forming the adhesive layer is not particularly limited, and for example, the method described in JP2012-11637A can be used. Specifically, a coating method, a printing method, a bonding method, and the like can be mentioned. Among them, a method of installing by coating and a method of forming by sticking an adhesive sheet can be preferably used. The method of forming is more preferable.
 粘着シートを貼り合わせる環境としては、露点温度が低い環境下で行うことが好ましい。低露点環境下で貼り合わせることにより、粘着層内への水分取り込みを低減・防止でき、透明導電膜の抵抗上昇を抑制する効果がある。露点温度は-40℃以下が好ましく、特に-60℃以下で行うのが好ましい。粘着シートを貼り合せ後には、オートクレーブ処理をすることが好ましい。オートクレーブ処理により、粘着層とバリア膜との密着力強化および透明導電積層体の透過率向上・ヘイズ低減等の光学特性を向上させる効果がある。
 さらに、粘着層とバリア膜との密着力を強化させる方法としては、貼り合せの前にバリア膜の表面を処理する方法がある。具体的には、紫外線照射処理、プラズマ処理、コロナ処理をバリア膜表面に行うことより、密着力は向上する。
As an environment for bonding the pressure-sensitive adhesive sheet, it is preferable to perform it in an environment where the dew point temperature is low. Bonding in a low dew point environment can reduce and prevent moisture uptake into the adhesive layer, and has an effect of suppressing an increase in resistance of the transparent conductive film. The dew point temperature is preferably −40 ° C. or lower, particularly preferably −60 ° C. or lower. After laminating the adhesive sheet, it is preferable to autoclave. The autoclave treatment has the effect of improving optical properties such as enhancing the adhesion between the adhesive layer and the barrier film and improving the transmittance and haze reduction of the transparent conductive laminate.
Furthermore, as a method for enhancing the adhesion between the adhesive layer and the barrier film, there is a method of treating the surface of the barrier film before the bonding. Specifically, the adhesion is improved by performing ultraviolet irradiation treatment, plasma treatment, and corona treatment on the barrier film surface.
 粘着層の厚みは、特に制限はなく、目的に応じて適宜選択することができ、例えば5~150μmであることが好ましく、20~100μmであることがより好ましい。粘着層の厚みを5μm以上とすることで貼り付けるパターン透明導電膜の段差や凹凸をカバーできるという効果が得られ、150μm以下とすることで粘着層の透過率を充分に確保できるという効果が得られる。 The thickness of the adhesive layer is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it is preferably 5 to 150 μm, more preferably 20 to 100 μm. By making the thickness of the adhesive layer 5 μm or more, it is possible to cover the steps and irregularities of the pattern transparent conductive film to be applied, and by making the thickness 150 μm or less, the transmittance of the adhesive layer can be sufficiently secured. Be
その他の層(機能層):
 本発明の透明導電積層体は、基板、導電膜、粘着層及びバリア膜等以外にその他の層(機能層)を有していてもよい。
 機能層としては、例えば、保護膜、下塗り層、密着層、クッション層、オーバーコート保護層、保護フィルム層、防汚層、撥水層、撥油層、ハードコート層などが挙げられる。
 また、例えば、アンチグレア層、反射防止層、低反射層、λ/4層、偏光層、位相差層などを積層させることで、光学的な機能を付与することができる。これらは単層でもよく、複数を積層してもよい。
Other layers (functional layers):
The transparent conductive laminate of the present invention may have other layers (functional layers) in addition to the substrate, conductive film, adhesive layer, barrier film, and the like.
Examples of the functional layer include a protective film, an undercoat layer, an adhesion layer, a cushion layer, an overcoat protective layer, a protective film layer, an antifouling layer, a water repellent layer, an oil repellent layer, and a hard coat layer.
For example, an optical function can be imparted by laminating an antiglare layer, an antireflection layer, a low reflection layer, a λ / 4 layer, a polarizing layer, a retardation layer, and the like. These may be a single layer or a plurality of layers.
 本発明の透明導電積層体は、タッチパネルに適用される。 The transparent conductive laminate of the present invention is applied to a touch panel.
タッチパネル:
 前記タッチパネルは、駆動電圧が1V以上であり、本発明の透明導電積層体を有する限り特に制限はなく、目的に応じて適宜選択することができ、例えば、表面型静電容量方式タッチパネル、投影型静電容量方式タッチパネル、抵抗膜式タッチパネルなどが挙げられる。なお、タッチパネルとは、いわゆるタッチセンサ及びタッチパッドを含むものとする。
 前記タッチパネルにおけるタッチパネルセンサー電極部の層構成が、2枚の透明電極を貼合する貼合方式、1枚の基板の両面に透明電極を具備する方式、片面ジャンパーあるいはスルーホール方式あるいは片面積層方式のいずれかであることが好ましい。
 また投影型静電容量式タッチパネルは、DC駆動よりAC駆動が好ましく、電極への電圧印加時間が少ない駆動方式がより好ましい。
Touch panel:
The touch panel has a drive voltage of 1 V or more and is not particularly limited as long as it has the transparent conductive laminate of the present invention, and can be appropriately selected according to the purpose. For example, a surface capacitive touch panel, a projection type Examples include a capacitive touch panel and a resistive touch panel. The touch panel includes a so-called touch sensor and a touch pad.
The layer structure of the touch panel sensor electrode part in the touch panel is a bonding method in which two transparent electrodes are bonded, a method in which transparent electrodes are provided on both surfaces of a single substrate, a single-sided jumper or a through-hole method, or a single-area layer method. Either is preferable.
In addition, the projected capacitive touch panel is preferably AC driven rather than DC driven, and more preferably is a drive system that requires less time to apply voltage to the electrodes.
 図2は、本発明の透明導電積層体を有するタッチパネルの一例の概略図である。タッチパネルは、本発明の透明導電積層体と、透明導電積層体の第1バリア膜を支持する透明フィルムの第1バリア膜と隣接している面と反対側の面に、透明導電膜と、透明導電膜を覆う粘着層と、第3バリア膜と、透明フィルムの順で積層されている積層体とを有する。この態様では、本発明の透明導電積層体の第1バリア膜は必要に応じて省略してもよい。図2に示す態様では、基板及び透明保護フィルム(以下、「カバーフィルム」ともいう。)に高分子からなるフィルム基板を使用しても外部からの水分がパターン透明導電膜に浸入しないことから、パターン透明導電膜の抵抗上昇を防止し、タッチパネルの動作不良を防止することができる。 FIG. 2 is a schematic view of an example of a touch panel having the transparent conductive laminate of the present invention. The touch panel has a transparent conductive film on a surface opposite to the surface adjacent to the first barrier film of the transparent conductive laminate of the present invention and the first barrier film of the transparent conductive laminate. It has the laminated body laminated | stacked in order of the adhesion layer which covers an electrically conductive film, the 3rd barrier film | membrane, and a transparent film. In this aspect, you may abbreviate | omit the 1st barrier film of the transparent conductive laminated body of this invention as needed. In the embodiment shown in FIG. 2, even when a film substrate made of a polymer is used for the substrate and the transparent protective film (hereinafter also referred to as “cover film”), moisture from the outside does not enter the pattern transparent conductive film. It is possible to prevent the resistance of the pattern transparent conductive film from increasing and to prevent malfunction of the touch panel.
 図3は、本発明の透明導電積層体を有するタッチパネルの他の一例の概略図である。タッチパネルは、透明フィルムと、第3バリア膜と、透明導電膜と、透明導電膜を覆う粘着層と、本発明の透明導電積層体とを有する態様である。第3バリア膜は、第1及び第2バリア膜と同一のバリア膜であってもよく、異なるバリア膜であってもよい。図3に示す態様では、基板及びカバーフィルムに高分子からなるフィルム基板を使用しても外部からの水分がパターン透明導電膜に浸入しないことから、パターン透明導電膜の抵抗上昇を防止し、タッチパネルの動作不良を防止することができる。 FIG. 3 is a schematic view of another example of a touch panel having the transparent conductive laminate of the present invention. A touch panel is an aspect which has a transparent film, a 3rd barrier film | membrane, a transparent conductive film, the adhesion layer which covers a transparent conductive film, and the transparent conductive laminated body of this invention. The third barrier film may be the same barrier film as the first and second barrier films, or may be a different barrier film. In the embodiment shown in FIG. 3, even if a film substrate made of a polymer is used as the substrate and the cover film, moisture from the outside does not enter the pattern transparent conductive film. Can be prevented from malfunctioning.
 図2及び図3で示される第3バリア膜の水蒸気透過率は、好ましくは0.1g/(m2・day)以下(より好ましくは、0.05g/(m2・day)以下)であり、上記第1バリア膜および第2バリア膜と同一のものを使用してもよく、異なるバリア膜であってもよい。 Water vapor permeability of the third barrier film shown in FIGS. 2 and 3 (more preferably, 0.05 g / (m 2 · day) or less) preferably 0.1 g / (m 2 · day) or less be The same film as the first barrier film and the second barrier film may be used, or different barrier films may be used.
 タッチパネルに使用する画像表示装置は、特に制限されず、小型電子端末に通常使用される液晶表示装置や、有機EL装置などが使用できる。 The image display device used for the touch panel is not particularly limited, and a liquid crystal display device or an organic EL device usually used for a small electronic terminal can be used.
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。なお、実施例中の含有率としての「%」、及び、「部」は、いずれも質量基準に基づくものである。本実施例において、配合量を示す「部」は特に述べない限り、「質量部」を示す。 Examples of the present invention will be described below, but the present invention is not limited to these examples. In the examples, “%” and “parts” as the contents are based on mass. In this example, “part” indicating the blending amount indicates “part by mass” unless otherwise specified.
(第1のバリア膜を有する基板の作製)
<基板1の作製>
 厚み125μmのPETフィルム上に、Si34ターゲットを用いて、O2ガスを導入し、スパッタ法により膜厚150nmのSiON(窒化酸化シリコン)のバリア膜を形成し基板1を作製した。
(Production of substrate having first barrier film)
<Production of substrate 1>
A substrate 1 was prepared by introducing an O 2 gas onto a 125 μm thick PET film using a Si 3 N 4 target and forming a 150 nm thick SiON (silicon nitride oxide) barrier film by sputtering.
<基板2の作製>
 厚み125μmのPETフィルム上に、アクリル樹脂を塗布することで膜厚1μmの膜2-1を形成した。
 形成した膜2-1の上に、Si34ターゲットを用いて、O2ガスを導入し、スパッタ法により膜厚150nmのSiONの膜2-2を形成した。
 膜2-2の上に、アクリル樹脂を塗布することで膜厚1μmの膜2-3を形成し、膜2-3の上に、Si34ターゲットを用いて、O2ガスを導入し、スパッタ法により膜厚150nmのSiONの膜4を形成することで膜2-1~2-4からなるバリア膜を形成し、基板2を作製した。
<Preparation of substrate 2>
A film 2-1 having a thickness of 1 μm was formed by applying an acrylic resin on a PET film having a thickness of 125 μm.
On the formed film 2-1, an Si 2 N 4 target was used to introduce O 2 gas, and a 150 nm thick SiON film 2-2 was formed by sputtering.
A film 2-3 having a thickness of 1 μm is formed on the film 2-2 by applying an acrylic resin, and an O 2 gas is introduced onto the film 2-3 using a Si 3 N 4 target. A barrier film composed of the films 2-1 to 2-4 was formed by forming a SiON film 4 having a thickness of 150 nm by sputtering, and the substrate 2 was manufactured.
<基板3の作製>
 厚み125μmのPETフィルム上に、Alターゲットを用いて、O2ガスを導入し、スパッタ法により膜厚100nmのアルミナのバリア膜を形成し基板3を作製した。
<Preparation of substrate 3>
An O 2 gas was introduced onto a PET film having a thickness of 125 μm using an Al target, and an alumina barrier film having a thickness of 100 nm was formed by sputtering to produce a substrate 3.
<基板4の作製>
 厚み125μmのPETフィルム上に、アクリル樹脂を塗布することで膜厚1μmの膜4-1を形成した。
 形成した膜4-1の上に、Alターゲットを用いて、O2ガスを導入し、スパッタより膜厚100nmのアルミナの膜4-2を形成した。
 膜4-2の上に、アクリル樹脂を塗布することで膜厚1μmの膜4-3を形成し、膜4-3の上に、Alターゲットを用いて、O2ガスを導入し、スパッタ法により膜厚100nmのアルミナの膜4-4を形成することで膜4-1~4-4からなるバリア膜を形成し、基板4を作製した。
<基板5の作製>
 厚み125μmのPETフィルム上に、Si34ターゲットを用いて、O2ガスを導入し、スパッタ法により膜厚100nmのSiONのバリア膜を形成し基板5を作製した。
<基板6の作製>
 厚み125μmのPETフィルム上に、Alターゲットを用いて、O2ガスを導入し、スパッタ法により膜厚150nmのアルミナのバリア膜を形成し基板6を作製した。
<Preparation of substrate 4>
A film 4-1 having a thickness of 1 μm was formed by applying an acrylic resin on a PET film having a thickness of 125 μm.
On the formed film 4-1, an O 2 gas was introduced using an Al target, and an alumina film 4-2 having a thickness of 100 nm was formed by sputtering.
A film 4-3 having a film thickness of 1 μm is formed on the film 4-2 by applying an acrylic resin, and O 2 gas is introduced onto the film 4-3 using an Al target, and a sputtering method is used. By forming an alumina film 4-4 with a film thickness of 100 nm, a barrier film composed of the films 4-1 to 4-4 was formed, and the substrate 4 was manufactured.
<Preparation of substrate 5>
A substrate 5 was produced by introducing an O 2 gas onto a PET film having a thickness of 125 μm using a Si 3 N 4 target and forming a 100 nm thick SiON barrier film by sputtering.
<Preparation of substrate 6>
An O 2 gas was introduced onto a PET film having a thickness of 125 μm using an Al target, and an alumina barrier film having a thickness of 150 nm was formed by sputtering to produce a substrate 6.
(第2のバリア膜を有するカバーフィルムの作製)
<カバーフィルム1の作製>
 厚み125μmのポリメタクリル酸メチル樹脂(PMMA)フィルム上に、Si34ターゲットを用いて、O2ガスを導入し、スパッタ法により膜厚150nmのSiON(窒化酸化シリコン)のバリア膜を形成しカバーフィルム1を作製した。
(Preparation of cover film having second barrier film)
<Preparation of cover film 1>
Using a Si 3 N 4 target, an O 2 gas was introduced on a 125 μm thick polymethyl methacrylate resin (PMMA) film, and a 150 nm thick SiON (silicon nitride oxide) barrier film was formed by sputtering. Cover film 1 was produced.
<カバーフィルム2の作製>
 厚み125μmのポリメタクリル酸メチル樹脂(PMMA)フィルム上に、アクリル樹脂を塗布することで膜厚1μmの膜2’-1を形成した。
 形成した膜2’-1の上に、Si34ターゲットを用いて、O2ガスを導入し、スパッタ法により膜厚150nmのSiONの膜2’-2を形成した。
 膜2’-2の上に、アクリル樹脂を塗布することで膜厚1μmの膜2’-3を形成し、膜3の上に、Si34ターゲットを用いて、O2ガスを導入し、スパッタ法により膜厚150nmのSiONの膜2’-4を形成することで膜2’-1~2’-4からなるバリア膜を形成しカバーフィルム2を作製した。
<Preparation of cover film 2>
A 1 μm thick film 2′-1 was formed by applying an acrylic resin on a 125 μm thick polymethyl methacrylate resin (PMMA) film.
On the formed film 2′-1, an O 2 gas was introduced using a Si 3 N 4 target, and a 150 nm-thick SiON film 2′-2 was formed by sputtering.
An acrylic resin is applied on the film 2′-2 to form a film 2′-3 having a thickness of 1 μm, and an O 2 gas is introduced onto the film 3 using a Si 3 N 4 target. A cover film 2 was prepared by forming a SiON film 2′-4 having a film thickness of 150 nm by sputtering to form a barrier film composed of the films 2′-1 to 2′-4.
<カバーフィルム3の作製>
 厚み125μmのポリメタクリル酸メチル樹脂(PMMA)フィルム上に、Alターゲットを用いて、O2ガスを導入し、スパッタ法により膜厚100nmのアルミナのバリア膜を形成しカバーフィルム3を作製した。
<Preparation of cover film 3>
A cover film 3 was prepared by introducing an O 2 gas onto a 125 μm thick polymethyl methacrylate resin (PMMA) film using an Al target and forming a 100 nm thick alumina barrier film by sputtering.
<カバーフィルム4の作製>
 厚み125μmのポリメタクリル酸メチル樹脂(PMMA)フィルム上に、Si34ターゲットを用いて、O2ガスを導入し、スパッタ法により膜厚400nmのSiONのバリア膜を形成しカバーフィルム4を作製した。
<Preparation of cover film 4>
A cover film 4 is produced by introducing an O 2 gas onto a 125 μm thick polymethyl methacrylate resin (PMMA) film using a Si 3 N 4 target and forming a 400 nm thick SiON barrier film by sputtering. did.
<カバーフィルム5の作製>
 厚み125μmのポリメタクリル酸メチル樹脂(PMMA)フィルムをカバーフィルム5として用いた。
<Preparation of cover film 5>
A polymethyl methacrylate resin (PMMA) film having a thickness of 125 μm was used as the cover film 5.
<カバーフィルム6の作製>
 厚み125μmのポリメタクリル酸メチル樹脂(PMMA)フィルム上に、アクリル樹脂を塗布することで膜厚1μmの膜6’-1を形成した。
 形成した膜6’-1の上に、Alターゲットを用いて、O2ガスを導入し、スパッタ法により膜厚100nmのアルミナの膜6’-2を形成した。
 膜6’-2の上に、アクリル樹脂を塗布することで膜厚1μmの膜6’-3を形成し、膜6’-3の上に、Alターゲットを用いて、O2ガスを導入し、スパッタ法により膜厚100nmのアルミナの膜6’-4を形成することで膜6’-1~6’-4からなるバリア膜を形成し、フィルムをカバーフィルム6を作製した。
<カバーフィルム7の作製>
 厚み125μmのポリメタクリル酸メチル樹脂(PMMA)フィルム上に、Si34ターゲットを用いて、O2ガスを導入し、スパッタ法により膜厚100nmのSiONのバリア膜を形成しカバーフィルム7を作製した。
<カバーフィルム8の作製>
 厚み125μmのポリメタクリル酸メチル樹脂(PMMA)フィルム上に、Alターゲットを用いて、O2ガスを導入し、スパッタ法により膜厚150nmのアルミナのバリア膜を形成しカバーフィルム3を作製した。
<Preparation of cover film 6>
A film 6′-1 having a thickness of 1 μm was formed by applying an acrylic resin on a polymethyl methacrylate resin (PMMA) film having a thickness of 125 μm.
On the formed film 6′-1, an O 2 gas was introduced using an Al target, and an alumina film 6′-2 having a thickness of 100 nm was formed by sputtering.
A film 6′-3 having a thickness of 1 μm is formed on the film 6′-2 by applying an acrylic resin, and an O 2 gas is introduced onto the film 6′-3 using an Al target. A barrier film composed of films 6′-1 to 6′-4 was formed by forming an alumina film 6′-4 with a film thickness of 100 nm by sputtering, and a cover film 6 was produced.
<Preparation of cover film 7>
A cover film 7 is produced by introducing an O 2 gas onto a 125 μm-thick polymethyl methacrylate resin (PMMA) film using a Si 3 N 4 target and forming a 100-nm thick SiON barrier film by sputtering. did.
<Preparation of cover film 8>
A cover film 3 was prepared by introducing an O 2 gas onto a 125 μm-thick polymethyl methacrylate resin (PMMA) film using an Al target and forming an alumina barrier film having a thickness of 150 nm by sputtering.
(バリア膜の水蒸気透過率の測定)
水蒸気透過率測定装置(MOCON社製、PERMATRAN-W3/31)を用いて、40℃・相対湿度90%の条件下でバリア膜を有する基板およびバリア膜を有するカバーフィルムの水蒸気透過率を測定した。また、別途バリア膜を有しない基板(すなわち、厚み125μmのPETフィルム)およびバリア膜を有しないカバーフィルム(すなわち、厚み125μmのポリメタクリル酸メチル樹脂(PMMA)フィルム)の水蒸気透過率を測定した結果、それぞれ10.5g/(m2・day)、12.4g/(m2・day)であった。いずれの水蒸気透過率も10g/(m2・day)を超えており、基板自体の水蒸気透過率が非常に大きいことから、バリア膜を有する基板およびバリア膜を有するカバーフィルムの水蒸気透過率を測定した結果は、バリア膜の水蒸気透過率として、算出できる。また、前記水蒸気透過率測定装置の測定限界である0.01g/(m2・day)以下の値は、次の方法を用いて測定することにより補完できる。まず、試料上に直に金属Caを蒸着し、蒸着Caが内側になるよう該フィルムとガラス基板を市販の有機EL用封止材で封止して封止試料を作成する。次に該封止試料を前記の温湿度条件に保持し、金属Caの光学濃度変化(水酸化あるいは酸化により金属光沢が減少)を求めることにより水蒸気透過率を求めることができる。
(Measurement of water vapor permeability of barrier film)
Using a water vapor transmission rate measuring device (manufactured by MOCON, PERMATRAN-W3 / 31), the water vapor transmission rate of a substrate having a barrier film and a cover film having a barrier film was measured at 40 ° C. and a relative humidity of 90%. . Further, the results of measuring the water vapor transmission rate of a substrate not having a barrier film (that is, a PET film having a thickness of 125 μm) and a cover film not having a barrier film (that is, a polymethyl methacrylate resin (PMMA) film having a thickness of 125 μm). each 10.5g / (m 2 · day) , was 12.4g / (m 2 · day) . Both water vapor transmission rates exceeded 10 g / (m 2 · day), and the water vapor transmission rate of the substrate itself and the cover film with the barrier film were measured because the water vapor transmission rate of the substrate itself was very large. The result obtained can be calculated as the water vapor permeability of the barrier film. Moreover, the value below 0.01 g / (m < 2 > * day) which is the measurement limit of the said water-vapor-permeability measuring apparatus can be supplemented by measuring using the following method. First, metal Ca is vapor-deposited directly on the sample, and the film and the glass substrate are sealed with a commercially available sealing material for organic EL so that the vapor-deposited Ca is on the inside, thereby producing a sealed sample. Next, the water vapor transmission rate can be obtained by holding the sealed sample at the above temperature and humidity conditions and obtaining the optical density change of the metallic Ca (the metallic luster is reduced by hydroxylation or oxidation).
<粘着シートAの作製>
[アクリル共重合体(1)の作製]
 アクリル共重合体の調製攪拌機、寒流冷却器、温度計、滴下漏斗及び窒素ガス導入口を備えた反応容器に、n-ブチルアクリレート95.5部、2-ヒドロキシエチルアクリレート0.5部、アクリル酸4.0部と重合開始剤として2,2’-アゾビスイソブチルニトリル0.2部とを酢酸エチル100部に溶解し、窒素置換後、80℃で8時間重合して重量平均分子量80万のアクリル共重合体(1)を得た。
<Preparation of adhesive sheet A>
[Preparation of acrylic copolymer (1)]
Preparation of acrylic copolymer In a reaction vessel equipped with a stirrer, cold flow cooler, thermometer, dropping funnel and nitrogen gas inlet, 95.5 parts of n-butyl acrylate, 0.5 parts of 2-hydroxyethyl acrylate, acrylic acid 4.0 parts and 0.2 part of 2,2′-azobisisobutylnitrile as a polymerization initiator are dissolved in 100 parts of ethyl acetate, and after substitution with nitrogen, polymerization is carried out at 80 ° C. for 8 hours to obtain a weight average molecular weight of 800,000. An acrylic copolymer (1) was obtained.
[アクリル共重合体(2)の作製]
 アクリル共重合体の調製攪拌機、寒流冷却器、温度計、滴下漏斗及び窒素ガス導入口を備えた反応容器に、メチルメタクリレート95.0部、ジメチルアミノエチルメタクリレート5.0部と重合開始剤として2,2’-アゾビスイソブチルニトリル1.0部とを酢酸エチル100部に溶解し、窒素置換後、80℃で8時間重合して重量平均分子量2万のメタクリル共重合体(2)を得た。
[Preparation of acrylic copolymer (2)]
Preparation of acrylic copolymer In a reaction vessel equipped with a stirrer, cold flow cooler, thermometer, dropping funnel and nitrogen gas inlet, 95.0 parts of methyl methacrylate, 5.0 parts of dimethylaminoethyl methacrylate and 2 as a polymerization initiator , 2′-azobisisobutylnitrile (1.0 part) was dissolved in ethyl acetate (100 parts), purged with nitrogen, and polymerized at 80 ° C. for 8 hours to obtain a methacrylic copolymer (2) having a weight average molecular weight of 20,000. .
「粘着剤Aの作製」
 上記アクリル共重合体(1)100部に、上記アクリル共重合体(2)を20部添加し、酢酸エチルで希釈し樹脂固形分30%の粘着剤Aを得た。
“Preparation of adhesive A”
20 parts of the acrylic copolymer (2) was added to 100 parts of the acrylic copolymer (1) and diluted with ethyl acetate to obtain a pressure-sensitive adhesive A having a resin solid content of 30%.
 上記粘着剤A100部にイソシアネート系架橋剤(日本ポリウレタン社製コロネートL-45、固形分45%)を0.7部添加し15分攪拌後、シリコーン化合物で片面を剥離処理した厚さ50μmのポリエステルフィルム(#50剥離フィルム)上に乾燥後の厚さが25μmになるように塗工して、75℃で5分間乾燥した。得られた粘着シートと、シリコーン化合物で片面を剥離処理した厚さ38μmのポリエステルフィルム(#38剥離フィルム)を貼り合わせた。その後23℃で5日間熟成し厚さ25μmの支持体レスの粘着シートAを得た。 Polyester having a thickness of 50 μm obtained by adding 0.7 part of an isocyanate-based cross-linking agent (Coronate L-45 manufactured by Nippon Polyurethane Co., Ltd., solid content: 45%) to 100 parts of the pressure-sensitive adhesive A, stirring for 15 minutes, and then removing one side with a silicone compound. The film (# 50 release film) was coated so that the thickness after drying was 25 μm, and dried at 75 ° C. for 5 minutes. The obtained pressure-sensitive adhesive sheet and a 38 μm-thick polyester film (# 38 release film) having one surface peel-treated with a silicone compound were bonded together. Thereafter, it was aged at 23 ° C. for 5 days to obtain a support-less pressure-sensitive adhesive sheet A having a thickness of 25 μm.
<粘着シートBの作製>
[アクリル共重合体(3)の作製]
 アクリル共重合体の調製攪拌機、寒流冷却器、温度計、滴下漏斗及び窒素ガス導入口を備えた反応容器に、n-ブチルアクリレート91.5部、2-ヒドロキシエチルアクリレート0.5部、アクリル酸8.0部と重合開始剤として2,2’-アゾビスイソブチルニトリル0.2部とを酢酸エチル100部に溶解し、窒素置換後、80℃で8時間重合して重量平均分子量80万のアクリル共重合体(3)を得た。
<Preparation of adhesive sheet B>
[Preparation of acrylic copolymer (3)]
Preparation of acrylic copolymer In a reaction vessel equipped with a stirrer, cold flow cooler, thermometer, dropping funnel and nitrogen gas inlet, 91.5 parts of n-butyl acrylate, 0.5 part of 2-hydroxyethyl acrylate, acrylic acid 8.0 parts and 0.2 part of 2,2′-azobisisobutylnitrile as a polymerization initiator are dissolved in 100 parts of ethyl acetate, and after substitution with nitrogen, polymerization is carried out at 80 ° C. for 8 hours to give a weight average molecular weight of 800,000. An acrylic copolymer (3) was obtained.
「粘着剤Bの作製」
 上記アクリル共重合体(3)100部に、上記アクリル共重合体(2)を10部添加し、酢酸エチルで希釈し樹脂固形分30%の粘着剤Bを得た。
“Preparation of adhesive B”
10 parts of the acrylic copolymer (2) was added to 100 parts of the acrylic copolymer (3), and diluted with ethyl acetate to obtain an adhesive B having a resin solid content of 30%.
 上記粘着剤B100部にイソシアネート系架橋剤(日本ポリウレタン社製コロネートL-45、固形分45%)を0.7部添加し15分攪拌後、シリコーン化合物で片面を剥離処理した厚さ50μmのポリエステルフィルム(#50剥離フィルム)上に乾燥後の厚さが25μmになるように塗工して、75℃で5分間乾燥した。得られた粘着シートと、シリコーン化合物で片面を剥離処理した厚さ38μmのポリエステルフィルム(#38剥離フィルム)を貼り合わせた。その後23℃で5日間熟成し厚さ25μmの支持体レスの粘着シートBを得た。 Polyester having a thickness of 50 μm obtained by adding 0.7 part of an isocyanate-based crosslinking agent (Coronate L-45 manufactured by Nippon Polyurethane Co., Ltd., solid content: 45%) to 100 parts of the above-mentioned adhesive B, stirring for 15 minutes, and then removing one side with a silicone compound. The film (# 50 release film) was coated so that the thickness after drying was 25 μm, and dried at 75 ° C. for 5 minutes. The obtained pressure-sensitive adhesive sheet and a 38 μm-thick polyester film (# 38 release film) having one surface peel-treated with a silicone compound were bonded together. Thereafter, it was aged at 23 ° C. for 5 days to obtain a support-less pressure-sensitive adhesive sheet B having a thickness of 25 μm.
<粘着シートCの作製>
「粘着剤Cの作製」
上記アクリル共重合体(2)100部に、上記アクリル共重合体(3)を10部添加し、酢酸エチルで希釈し樹脂固形分30%の粘着剤Cを得た。
<Preparation of adhesive sheet C>
“Preparation of adhesive C”
10 parts of the acrylic copolymer (3) was added to 100 parts of the acrylic copolymer (2), and diluted with ethyl acetate to obtain an adhesive C having a resin solid content of 30%.
 上記粘着剤C100部にイソシアネート系架橋剤(日本ポリウレタン社製コロネートL-45、固形分45%)を0.7部添加し15分攪拌後、シリコーン化合物で片面を剥離処理した厚さ50μmのポリエステルフィルム(#50剥離フィルム)上に乾燥後の厚さが25μmになるように塗工して、75℃で5分間乾燥した。得られた粘着シートと、シリコーン化合物で片面を剥離処理した厚さ38μmのポリエステルフィルム(#38剥離フィルム)を貼り合わせた。その後23℃で5日間熟成し厚さ25μmの支持体レスの粘着シートCを得た。 Polyester having a thickness of 50 μm obtained by adding 0.7 part of an isocyanate-based crosslinking agent (Coronate L-45 manufactured by Nippon Polyurethane Co., Ltd., solid content: 45%) to 100 parts of the above-mentioned pressure-sensitive adhesive, stirring for 15 minutes, and then removing one side with a silicone compound. The film (# 50 release film) was coated so that the thickness after drying was 25 μm, and dried at 75 ° C. for 5 minutes. The obtained pressure-sensitive adhesive sheet and a 38 μm-thick polyester film (# 38 release film) having one surface peel-treated with a silicone compound were bonded together. Thereafter, it was aged at 23 ° C. for 5 days to obtain a support-less pressure-sensitive adhesive sheet C having a thickness of 25 μm.
(粘着層の吸水率測定)
 上記で作製した粘着シートを100mm×100mmのサイズに切り出し、60℃、90%RH条件下に100時間放置した後、直ちに粘着シートの片面の剥離フィルムを剥がして150mm×150mmのアルミ箔に貼り合わせて秤量する(この質量をW1とする)。粘着シートのもう一方の剥離フィルムを剥がし、105℃条件下で2時間乾燥した後、秤量を行う(この質量をW2とする)。粘着シートの粘着層の吸水率は下記の式で算出した。
 粘着層の吸水率(%)=(W1-W2)/W2 × 100
(Measurement of water absorption of adhesive layer)
The pressure-sensitive adhesive sheet prepared above is cut out to a size of 100 mm × 100 mm, left under conditions of 60 ° C. and 90% RH for 100 hours, immediately peeled off the release film on one side of the pressure-sensitive adhesive sheet, and bonded to a 150 mm × 150 mm aluminum foil. And weigh (this mass is referred to as W1). The other release film of the pressure-sensitive adhesive sheet is peeled off, dried for 2 hours at 105 ° C., and then weighed (this mass is designated as W2). The water absorption rate of the adhesive layer of the adhesive sheet was calculated by the following formula.
Water absorption of adhesive layer (%) = (W1-W2) / W2 × 100
(粘着層の密着力測定)
 以下の方法で、バリア膜と粘着層と密着力を評価した。
 上記で作製した粘着シートの片面の剥離フィルムを剥がして、ポリエチレンテレフタレート製フィルム(厚さ:25μm)に貼り合わせ、幅25mm、長さ100mmに切断した後、他方の側の剥離フィルムを剥がして、バリア膜を有するカバーフィルムとを貼り合わせた。この時は、バリア膜が粘着シートとが面するように貼り合わせを行う。バリア膜を有するカバーフィルムに貼付した後に、45℃/0.5MPaの条件でオートクレーブ処理を20分処理した。オートクレーブ処理から30分後、180°ピール粘着力を測定した。なお、180°ピール粘着力の測定条件は、剥離角度:180°、引張速度:300mm/分、温度:23℃、湿度:50%RHであり、バリア膜を有するカバーフィルムから、ポリエチレンテレフタレート製フィルムに貼り合わせられた粘着シートを剥離することにより、180°ピール粘着力を測定して、バリア膜と粘着層と密着力を評価した。
(Measurement of adhesive strength of adhesive layer)
The adhesion strength between the barrier film and the adhesive layer was evaluated by the following method.
The release film on one side of the pressure-sensitive adhesive sheet prepared above is peeled off, bonded to a polyethylene terephthalate film (thickness: 25 μm), cut to a width of 25 mm and a length of 100 mm, and then the release film on the other side is peeled off. A cover film having a barrier film was attached. At this time, the bonding is performed so that the barrier film faces the adhesive sheet. After pasting on the cover film having the barrier film, the autoclave treatment was performed for 20 minutes under the condition of 45 ° C./0.5 MPa. Thirty minutes after the autoclave treatment, 180 ° peel adhesion was measured. The measurement conditions for 180 ° peel adhesive strength are peeling angle: 180 °, tensile speed: 300 mm / min, temperature: 23 ° C., humidity: 50% RH, and a film made of polyethylene terephthalate from a cover film having a barrier film. By peeling the pressure-sensitive adhesive sheet bonded to the film, 180 ° peel adhesive strength was measured, and the adhesion strength between the barrier film and the pressure-sensitive adhesive layer was evaluated.
(銀ナノワイヤーの水分散物の作製)
―銀ナノワイヤー分散液(1)の調製―
 プロピレングリコール370gに硝酸銀粉末60gを溶解させ、硝酸銀溶液101を調製した。プロピレングリコール4.45kgにポリビニルピロリドン(分子量55,000)72.0gを添加し、窒素ガスを容器の気相部分に通気しながら、90℃に昇温した。この液を反応溶液101とした。窒素ガスの通気を保持したまま、激しく攪拌している反応溶液101へ硝酸銀溶液101を3.00g添加して、加熱攪拌を1分間行った。さらに、この溶液へテトラブチルアンモニウムクロリド11.8gをプロピレングリコール100gに溶解させた溶液を添加し、反応溶液102とした。
(Preparation of aqueous dispersion of silver nanowires)
-Preparation of silver nanowire dispersion (1)-
A silver nitrate solution 101 was prepared by dissolving 60 g of silver nitrate powder in 370 g of propylene glycol. 72.0 g of polyvinylpyrrolidone (molecular weight 55,000) was added to 4.45 kg of propylene glycol, and the temperature was raised to 90 ° C. while venting nitrogen gas through the gas phase portion of the container. This solution was designated as reaction solution 101. While maintaining the aeration of nitrogen gas, 3.00 g of the silver nitrate solution 101 was added to the reaction solution 101 that was vigorously stirred, and the mixture was heated and stirred for 1 minute. Further, a solution in which 11.8 g of tetrabutylammonium chloride was dissolved in 100 g of propylene glycol was added to this solution to obtain a reaction solution 102.
 90℃に保ち、攪拌速度500rpmで攪拌している反応溶液102へ、硝酸銀溶液101を添加速度50ml/分で200g添加した。攪拌速度を100rpmに落とし、窒素ガスの通気を止めて、加熱攪拌を15時間行った。90℃に保ち、攪拌速度100rpmで攪拌しているこの液へ、硝酸銀溶液101を添加速度0.5ml/分にて220g添加し、添加終了後から2時間、加熱攪拌を続けた。攪拌を500rpmに変更し、蒸留水1.0kgを添加した後に、25℃まで冷却して仕込液101を作製した。 200 g of the silver nitrate solution 101 was added to the reaction solution 102 which was kept at 90 ° C. and stirred at a stirring speed of 500 rpm at an addition speed of 50 ml / min. The stirring speed was reduced to 100 rpm, the aeration of nitrogen gas was stopped, and heating and stirring were performed for 15 hours. 220 g of the silver nitrate solution 101 was added to this liquid which was kept at 90 ° C. and stirred at a stirring speed of 100 rpm at an addition speed of 0.5 ml / min, and stirring was continued for 2 hours after the addition was completed. The stirring was changed to 500 rpm, and after adding 1.0 kg of distilled water, the mixture was cooled to 25 ° C. to prepare a charged solution 101.
 分画分子量15万の限外濾過モジュールを用いて、限外濾過を次の通り実施した。蒸留水と1-プロパノールの混合溶液(体積比1対1)の仕込液101への添加と濃縮を、最終的にろ液の伝導度が50μS/cm以下になるまで繰り返した。得られたろ液を濃縮し、金属含有量0.45%の銀ナノワイヤー分散液(1)を得た。 Using an ultrafiltration module with a molecular weight cut off of 150,000, ultrafiltration was performed as follows. Addition and concentration of a mixed solution of distilled water and 1-propanol (volume ratio of 1: 1) to the charged solution 101 and concentration were repeated until the filtrate finally had a conductivity of 50 μS / cm or less. The obtained filtrate was concentrated to obtain a silver nanowire dispersion liquid (1) having a metal content of 0.45%.
 得られた銀ナノワイヤー分散液(1)の銀ナノワイヤーについて、前述のようにして平均短軸長、平均長軸長を測定した。
 その結果、平均短軸長32.5nm、平均長軸長15.6μmであった。以後、「銀ナノワイヤー分散液(1)」と表記する場合は、上記方法で得られた銀ナノワイヤー分散液を示す。
About the silver nanowire of the obtained silver nanowire dispersion liquid (1), the average minor axis length and the average major axis length were measured as described above.
As a result, the average minor axis length was 32.5 nm and the average major axis length was 15.6 μm. Hereinafter, when it describes with "silver nanowire dispersion liquid (1)", the silver nanowire dispersion liquid obtained by the said method is shown.
―銀ナノワイヤー分散液(2)の調製―
 銀ナノワイヤー分散液(1)の調製において、硝酸銀溶液101を4.50g使用したこと以外は銀ナノワイヤー分散液(1)の調製と同様にして、金属含有量0.45%の銀ナノワイヤー分散液(2)を得た。得られた銀ナノワイヤー分散液(2)の銀ナノワイヤーについて、前述のようにして平均短軸長、平均長軸長を測定した。その結果、平均短軸長70.6nm、平均長軸長9.2μmであった。以後、「銀ナノワイヤー分散液(2)」と表記する場合は、上記方法で得られた銀ナノワイヤー分散液を示す。
-Preparation of silver nanowire dispersion (2)-
In the preparation of the silver nanowire dispersion liquid (1), a silver nanowire having a metal content of 0.45% was prepared in the same manner as the preparation of the silver nanowire dispersion liquid (1) except that 4.50 g of the silver nitrate solution 101 was used. A dispersion (2) was obtained. About the silver nanowire of the obtained silver nanowire dispersion liquid (2), the average minor axis length and the average major axis length were measured as described above. As a result, the average minor axis length was 70.6 nm, and the average major axis length was 9.2 μm. Hereinafter, when it describes with "silver nanowire dispersion liquid (2)", the silver nanowire dispersion liquid obtained by the said method is shown.
―銀ナノワイヤー分散液(3)の調製―
 銀ナノワイヤー分散液(1)の調製において、硝酸銀溶液101を5.00g使用したこと以外は銀ナノワイヤー分散液(1)の調製と同様にして、金属含有量0.45%の銀ナノワイヤー分散液(3)を得た。得られた銀ナノワイヤー分散液(3)の銀ナノワイヤーについて、前述のようにして平均短軸長、平均長軸長を測定した。その結果、平均短軸長45.9nm、平均長軸長12.4μmであった。以後、「銀ナノワイヤー分散液(3)」と表記する場合は、上記方法で得られた銀ナノワイヤー分散液を示す。
-Preparation of silver nanowire dispersion (3)-
In the preparation of the silver nanowire dispersion liquid (1), a silver nanowire having a metal content of 0.45% was prepared in the same manner as the preparation of the silver nanowire dispersion liquid (1) except that 5.00 g of the silver nitrate solution 101 was used. A dispersion (3) was obtained. About the silver nanowire of the obtained silver nanowire dispersion liquid (3), the average minor axis length and the average major axis length were measured as described above. As a result, the average minor axis length was 45.9 nm and the average major axis length was 12.4 μm. Henceforth, when it describes with "silver nanowire dispersion liquid (3)", the silver nanowire dispersion liquid obtained by the said method is shown.
―銀ナノワイヤー分散液(4)の調製―
 銀ナノワイヤー分散液(1)の調製において、硝酸銀溶液101を6.50g使用したこと以外は銀ナノワイヤー分散液(1)の調製と同様にして、金属含有量0.45%の銀ナノワイヤー分散液(4)を得た。得られた銀ナノワイヤー分散液(4)の銀ナノワイヤーについて、前述のようにして平均短軸長、平均長軸長を測定した。その結果、平均短軸長112.8nm、平均長軸長7.8μmであった。以後、「銀ナノワイヤー分散液(4)」と表記する場合は、上記方法で得られた銀ナノワイヤー分散液を示す。
-Preparation of silver nanowire dispersion (4)-
In the preparation of the silver nanowire dispersion liquid (1), a silver nanowire having a metal content of 0.45% was prepared in the same manner as the preparation of the silver nanowire dispersion liquid (1) except that 6.50 g of the silver nitrate solution 101 was used. A dispersion (4) was obtained. About the silver nanowire of the obtained silver nanowire dispersion liquid (4), the average minor axis length and the average major axis length were measured as described above. As a result, the average minor axis length was 112.8 nm and the average major axis length was 7.8 μm. Henceforth, when it describes with "silver nanowire dispersion liquid (4)", the silver nanowire dispersion liquid obtained by the said method is shown.
―銀ナノワイヤー分散液(5)の調製―
 予め、下記の添加液A、B、C、及び、Dを調製した。
〔添加液A〕
 ステアリルトリメチルアンモニウムクロリド55mg、ステアリルトリメチルアンモニウムヒドロキシド10%水溶液5.5g、グルコース1.8gを蒸留水115.0gに溶解させ、反応溶液A-1とした。さらに、硝酸銀粉末65mgを蒸留水1.8gに溶解させ、硝酸銀水溶液A-1とした。反応溶液A-1を25℃に保ち、激しく攪拌しながら、硝酸銀水溶液A-1を添加した。硝酸銀水溶液A-1の添加後から180分間、激しい攪拌をし、添加液Aとした。
〔添加液B〕
 硝酸銀粉末42.0gを蒸留水958gに溶解した。
〔添加液C〕
 25%アンモニア水75gを蒸留水925gと混合した。
〔添加液D〕
 ポリビニルピロリドン(K30)400gを蒸留水1.6kgに溶解した。
次に、以下のようにして、銀ナノワイヤー分散液(5)を調製した。ステアリルトリメチルアンモニウムブロミド粉末1.30gと臭化ナトリウム粉末33.1gとグルコース粉末1,000g、硝酸(1N)115.0gを80℃の蒸留水12.7kgに溶解させた。この液を80℃に保ち、500rpmで攪拌しながら、添加液Aを添加速度250ml/分、添加液Bを500ml/分、添加液Cを500ml/分で順次添加した。攪拌速度を200rpmとし、80℃で加熱をした。ついで、攪拌速度を200rpmにしてから100分間、加熱攪拌を続けた後に、25℃に冷却した。その後、攪拌速度を500rpmに変更し、添加液Dを500ml/分で添加した。この液を仕込液101とした。次に、1-プロパノールを激しく攪拌しながら、そこへ仕込液101を混合比率が体積比1対1となるように一気に添加した。得られた混合液を3分間攪拌し、仕込液102とした。
-Preparation of silver nanowire dispersion (5)-
The following additive solutions A, B, C, and D were prepared in advance.
[Additive liquid A]
Stearyltrimethylammonium chloride 55 mg, stearyltrimethylammonium hydroxide 10% aqueous solution 5.5 g, and glucose 1.8 g were dissolved in distilled water 115.0 g to obtain reaction solution A-1. Further, 65 mg of silver nitrate powder was dissolved in 1.8 g of distilled water to obtain an aqueous silver nitrate solution A-1. The reaction solution A-1 was kept at 25 ° C., and the aqueous silver nitrate solution A-1 was added with vigorous stirring. After the addition of the aqueous silver nitrate solution A-1, the mixture was vigorously stirred for 180 minutes to obtain additive solution A.
[Additive solution B]
42.0 g of silver nitrate powder was dissolved in 958 g of distilled water.
[Additive liquid C]
75 g of 25% aqueous ammonia was mixed with 925 g of distilled water.
[Additive liquid D]
400 g of polyvinylpyrrolidone (K30) was dissolved in 1.6 kg of distilled water.
Next, a silver nanowire dispersion liquid (5) was prepared as follows. 1.30 g of stearyltrimethylammonium bromide powder, 33.1 g of sodium bromide powder, 1,000 g of glucose powder and 115.0 g of nitric acid (1N) were dissolved in 12.7 kg of distilled water at 80 ° C. While this liquid was kept at 80 ° C. and stirred at 500 rpm, the additive liquid A was added successively at an addition rate of 250 ml / min, the additive liquid B at 500 ml / min, and the additive liquid C at 500 ml / min. The stirring speed was 200 rpm and heating was performed at 80 ° C. Subsequently, after the stirring speed was set to 200 rpm, the heating and stirring was continued for 100 minutes, and then the mixture was cooled to 25 ° C. Thereafter, the stirring speed was changed to 500 rpm, and the additive solution D was added at 500 ml / min. This solution was used as the charged solution 101. Next, 1-propanol was vigorously stirred, and the charged solution 101 was added to the mixture so that the mixing ratio was 1: 1. The obtained mixed solution was stirred for 3 minutes to obtain a charged solution 102.
 分画分子量15万の限外濾過モジュールを用いて、限外濾過を次の通り実施した。仕込液102を4倍に濃縮した後、蒸留水と1-プロパノールの混合溶液(体積比1対1)の仕込液102への添加と濃縮を、最終的にろ液の伝導度が50μS/cm以下になるまで繰り返した。得られたろ液を濃縮し、金属含有量0.45%の銀ナノワイヤー分散液(5)を得た。 Using an ultrafiltration module with a molecular weight cut off of 150,000, ultrafiltration was performed as follows. After the feed solution 102 is concentrated four times, addition and concentration of a mixed solution of distilled water and 1-propanol (volume ratio of 1: 1) to the feed solution 102 is finally performed, and finally the conductivity of the filtrate is 50 μS / cm. Repeat until: The obtained filtrate was concentrated to obtain a silver nanowire dispersion liquid (5) having a metal content of 0.45%.
 得られた銀ナノワイヤー分散液(5)の銀ナノワイヤーについて、前述のようにして平均短軸長、平均長軸長を測定した。
 その結果、平均短軸長17.2nm、平均長軸長8.8μmであった。
About the silver nanowire of the obtained silver nanowire dispersion liquid (5), the average minor axis length and the average major axis length were measured as described above.
As a result, the average minor axis length was 17.2 nm and the average major axis length was 8.8 μm.
(透明導電積層体1の作製:実施例1)
<パターン透明導電膜1の作製>
 下記組成のアルコキシド化合物の溶液を60℃で1時間撹拌して均一になったことを確認した。得られたアルコキシド化合物の溶液(ゾルゲル液)の重量平均分子量(Mw)をGPC(ポリスチレン換算)で測定したところMwは4,400であった。ゾルゲル液2.24部と前記調整例1で得られた銀ナノワイヤー水分散液(1)17.76部を混合し、さらに蒸留水と1-プロパノールで希釈してゾルゲル塗布液を得た。得られたゾルゲル塗布液の溶剤比率は蒸留水:1-プロパノール=60:40であった。上記基板1のバリア膜側の面にバーコート法で銀量が0.015g/m2、全固形分塗布量が0.120g/m2となるように上記ゾルゲル塗布液を塗布したのち、120℃で1分間乾燥してゾルゲル反応を起こさせて、銀ナノワイヤーからなる透明導電膜1を形成した。
<アルコキシド化合物の溶液>
・テトラエトキシシラン                        5.0部
(KBE-04、信越化学工業(株)製)
・1%酢酸水溶液                          11.0部
・蒸留水                               4.0部
(Preparation of transparent conductive laminate 1: Example 1)
<Preparation of pattern transparent conductive film 1>
The solution of the alkoxide compound having the following composition was stirred at 60 ° C. for 1 hour to confirm that the solution became uniform. When the weight average molecular weight (Mw) of the obtained alkoxide compound solution (sol-gel solution) was measured by GPC (polystyrene conversion), Mw was 4,400. 2.24 parts of the sol-gel liquid and 17.76 parts of the aqueous silver nanowire dispersion (1) obtained in Preparation Example 1 were mixed, and further diluted with distilled water and 1-propanol to obtain a sol-gel coating liquid. The solvent ratio of the obtained sol-gel coating solution was distilled water: 1-propanol = 60: 40. Amount of silver 0.015 g / m 2 by a bar coating method on the surface of the barrier film side of the substrate 1, after the total solid content in the coating solution was applied to the gel coating solution so that 0.120 g / m 2, 120 The sol-gel reaction was caused to dry at 1 degreeC for 1 minute, and the transparent conductive film 1 which consists of silver nanowire was formed.
<Solution of alkoxide compound>
・ Tetraethoxysilane 5.0 parts (KBE-04, manufactured by Shin-Etsu Chemical Co., Ltd.)
・ 1% acetic acid aqueous solution 11.0 parts ・ Distilled water 4.0 parts
 特表2010-507199号公報の段落[0371]~[0372]に記載されている方法に従って、従来のフォトリソ・エッチング技術を用いて、透明導電膜1をパターニングできる。
 透明導電膜1にフォトレジスト(TMSMR-8900LB:東京応化製)を塗布し、マスクを用いてパターン露光後、現像液(NMD-W:東京応化製)にて現像し、透明導電膜1上にパターニングされたフォトレジストを形成後、銀エッチング液(SEA-2:関東化学製)で、銀ナノワイヤーをエッチングした。その後、中性剥離液(PK-SFR8120:パーカーコーポーレーション製)を用いてフォトレジストを剥離し、パターン透明導電膜1を作製した。なお、耐環境試験およびフレキシブル性評価の素子の導電性エリアのスペース幅は図4に示すように、50μmであった。また、ヘイズ評価用には、導電性エリアを5cm×5cmサイズにパターニングしたものを作製した。
According to the method described in paragraphs [0371] to [0372] of JP-T-2010-507199, the transparent conductive film 1 can be patterned using a conventional photolithography etching technique.
A photoresist (TMSMR-8900LB: manufactured by Tokyo Ohka Kogyo Co., Ltd.) is applied to the transparent conductive film 1, and after pattern exposure using a mask, development is performed with a developer (NMD-W: Tokyo Ohka Kogyo Co., Ltd.). After forming a patterned photoresist, the silver nanowires were etched with a silver etching solution (SEA-2: manufactured by Kanto Chemical Co., Inc.). Thereafter, the photoresist was stripped using a neutral stripping solution (PK-SFR8120: manufactured by Parker Corporation), and the pattern transparent conductive film 1 was prepared. In addition, as shown in FIG. 4, the space width of the conductive area of the element of the environmental resistance test and the flexibility evaluation was 50 μm. For haze evaluation, a conductive area was patterned to a size of 5 cm × 5 cm.
 その後、パターン透明導電膜1上に、Mo(40nm)/Al(100nm)/Mo(40nm)の取り出し電極をスパッタ法により作製した取り出し電極を形成させた。取り出し電極のパターニングには、スパッタ成膜時にシャドウメタルマスクを用いることにより、作製した。 Thereafter, an extraction electrode in which an extraction electrode of Mo (40 nm) / Al (100 nm) / Mo (40 nm) was produced by sputtering was formed on the patterned transparent conductive film 1. The extraction electrode was patterned by using a shadow metal mask during sputtering film formation.
 カバーフィルム1のバリア膜側の面と、パターン透明導電膜1とを、粘着シートAを用いて貼り合わせた。貼り合わせは、露点温度-60℃のグローブボックス内で実施した。貼り合せ後、45℃/0.5MPaの条件でオートクレーブ処理を20分することで透明導電積層体1を作製した。 The surface on the barrier film side of the cover film 1 and the pattern transparent conductive film 1 were bonded together using an adhesive sheet A. The bonding was performed in a glove box having a dew point temperature of −60 ° C. After bonding, the transparent conductive laminate 1 was produced by subjecting the autoclave treatment to a condition of 45 ° C./0.5 MPa for 20 minutes.
(透明導電積層体2~21の作製)
 透明導電積層体1の作製において、基板、カバーフィルム、及び銀ナノワイヤーの水分散物を下記表に示したように変えた以外は透明導電積層体1の作製と同様にして透明導電積層体2~21を作製した。
 また、透明導電積層体14、17、18,19と20においては、貼り合せ前に、カバーフィルムのバリア膜の表面に紫外線を照射し洗浄を行い、バリア膜と粘着層の密着力を強化させた。
(Preparation of transparent conductive laminates 2 to 21)
In the production of the transparent conductive laminate 1, the transparent conductive laminate 2 was prepared in the same manner as the production of the transparent conductive laminate 1, except that the aqueous dispersion of the substrate, the cover film, and the silver nanowire was changed as shown in the following table. To 21 were produced.
Moreover, in the transparent conductive laminates 14, 17, 18, 19 and 20, before bonding, the surface of the barrier film of the cover film is irradiated with ultraviolet rays to be washed to enhance the adhesion between the barrier film and the adhesive layer. It was.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(評価)
<耐環境試験>
 60℃90%RHの環境条件化で、DC10Vの電圧を120時間(5日間)、図4のA-B電極間に印加し続けた後に、+電極の抵抗変化を測定し、以下の基準で評価した。
 抵抗測定には、マイクロプローバ(MP-10A、日本マイクロニクス社製)とアナライザ(4155C、アジレント社製)を用いて測定した。
 抵抗変化は、以下の式で表される。
 抵抗変化=(240時間後+電極抵抗)/(試験前+電極抵抗)

AA:抵抗変化が1.1未満で、優秀なレベル
A:抵抗変化が1.1以上1.5未満で、良好なレベル
B:抵抗変化が1.5以上2.0未満で、問題ないレベル
C:抵抗変化が2.0以上で、問題なレベル
(Evaluation)
<Environmental resistance test>
Under an environmental condition of 60 ° C. and 90% RH, a voltage of 10 V DC was continuously applied for 120 hours (5 days) between the AB electrodes in FIG. 4, and then the resistance change of the + electrode was measured. evaluated.
The resistance was measured using a microprober (MP-10A, manufactured by Nihon Micronics) and an analyzer (4155C, manufactured by Agilent).
The resistance change is expressed by the following equation.
Resistance change = (240 hours later + electrode resistance) / (before test + electrode resistance)

AA: resistance change is less than 1.1, excellent level A: resistance change is 1.1 or more and less than 1.5, good level B: resistance change is 1.5 or more and less than 2.0, no problem level C: Resistance change is 2.0 or more, problematic level
<ヘイズ>
 導電性エリアのヘイズ値をガードナー社製のヘイズガードプラスを用いて測定した。測定は5cm×5cmのサンプルの中央部を測定した。

A:ヘイズ値が1.5%未満で、良好なレベル
B:ヘイズ値が1.5%以上2.5%未満で、問題ないレベル
C:ヘイズ値が2.5%以上で、問題なレベル
<Haze>
The haze value of the conductive area was measured using a haze guard plus manufactured by Gardner. The measurement was performed at the center of a 5 cm × 5 cm sample.

A: haze value is less than 1.5%, good level B: haze value is 1.5% or more and less than 2.5%, no problem level C: haze value is 2.5% or more, problematic level
<フレキシブル性(柔軟性)>
 直径20mmの円筒マンドレルを備えた円筒形マンドレル屈曲試験器(コーテック(株)社製)を用いて、透明導電積層体について10回曲げ試験を行い、その後上記の耐環境試験(イオンマイグレーション試験)を実施して、試験前後での+電極の抵抗変化を測定した。
 抵抗測定には、マイクロプローバ(MP-10A、日本マイクロニクス社製)とアナライザ(4155C、アジレント社製)を用いて測定した。
 抵抗変化は、以下の式で表される。
 抵抗変化=(240時間後+電極抵抗)/(試験前+電極抵抗)

A:抵抗変化1.5未満で、良好なレベル
B:抵抗変化1.5以上2.0未満で、問題ないレベル
C:抵抗変化2.0以上で、問題なレベル
<Flexibility (flexibility)>
Using a cylindrical mandrel bending tester (manufactured by Cortec Co., Ltd.) equipped with a cylindrical mandrel with a diameter of 20 mm, the transparent conductive laminate is subjected to a bending test 10 times, and then the above environmental resistance test (ion migration test) is performed. The resistance change of the + electrode before and after the test was measured.
The resistance was measured using a microprober (MP-10A, manufactured by Nihon Micronics) and an analyzer (4155C, manufactured by Agilent).
The resistance change is expressed by the following equation.
Resistance change = (240 hours later + electrode resistance) / (before test + electrode resistance)

A: resistance change less than 1.5, good level B: resistance change from 1.5 to less than 2.0, no problem level C: resistance change of 2.0 or more, problematic level
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表より、第1及び第2バリア膜の水蒸気透過率が、それぞれ、0.1g/(m2・day)以下であり、平均短軸長が50nm以下の金属ナノワイヤーを含有するパターン透明導電膜を第1及び第2バリア膜で封止した透明導電積層体は、ヘイズが良好で耐環境試験に優れていることがわかる。一方、水蒸気透過率が、それぞれ、0.1g/(m2・day)以下のバリア膜で封止されていない比較例は、実施例と比較して耐環境試験が劣ることがわかる。 From the table | surface, the water vapor permeability | transmittance of a 1st and 2nd barrier film | membrane is 0.1 g / (m < 2 > * day) or less respectively, The pattern transparent conductive film containing metal nanowire whose average short axis length is 50 nm or less It can be seen that the transparent conductive laminate in which is sealed with the first and second barrier films has good haze and excellent environmental resistance test. On the other hand, it can be seen that the comparative example which is not sealed with a barrier film having a water vapor transmission rate of 0.1 g / (m 2 · day) or less is inferior in the environmental resistance test as compared with the examples.
 比較例4~5から、平均短軸長が50nmを超える金属ナノワイヤーを用いた透明導電積層体は、水蒸気透過率0.1g/(m2・day)を超えるバリア膜を用いても、耐環境試験に優れているが、ヘイズが大きく視認性が悪いことが分かる。ヘイズが小さく視観的に優秀な平均短軸長50nm以下の銀ナノワイヤーを用いた透明導電積層体では、パターン透明導電膜の両面を水蒸気透過率0.1g/(m2・day)以下のバリア膜で封止することにより、耐環境試験特性を向上させることができ、視認性と耐環境試験特性の両立が可能となる。
 実施例1~11から、バリア膜と粘着層との密着力を30N/25mm以上、粘着層の吸水率を1%以下とすることにより、より耐環境試験特性は改善し、密着力を50N/25mm以下およびバリア膜の膜厚を300nm以下にすることにより、さらに柔軟性にも優れた透明導電積層体を提供できることがわかる。
From Comparative Examples 4 to 5, the transparent conductive laminate using metal nanowires having an average minor axis length of more than 50 nm is resistant even if a barrier film having a water vapor permeability of more than 0.1 g / (m 2 · day) is used. Although it is excellent in environmental tests, it can be seen that the haze is large and the visibility is poor. In a transparent conductive laminate using silver nanowires with an average minor axis length of 50 nm or less that has a small haze and is excellent in appearance, both sides of the patterned transparent conductive film have a water vapor transmission rate of 0.1 g / (m 2 · day) or less. By sealing with a barrier film, the environment resistance test characteristics can be improved, and both visibility and environment resistance test characteristics can be achieved.
From Examples 1 to 11, by setting the adhesive force between the barrier film and the adhesive layer to 30 N / 25 mm or more and the water absorption rate of the adhesive layer to 1% or less, the environmental resistance test characteristics were further improved, and the adhesive force was 50 N / It can be seen that by setting the thickness of 25 mm or less and the thickness of the barrier film to 300 nm or less, it is possible to provide a transparent conductive laminate having further excellent flexibility.
(タッチパネルの作製:実施例12)
 実施例1の透明導電積層体の基板に、粘着シートAを用いて透明導電膜フィルム、基板1を貼り合せることで、図3の態様のタッチパネルを作製した。
(Production of touch panel: Example 12)
The touch panel of the aspect of FIG. 3 was produced by bonding the transparent conductive film and the board | substrate 1 to the board | substrate of the transparent conductive laminated body of Example 1 using the adhesive sheet A. FIG.
(タッチパネルの作製:実施例13)
 実施例1の透明導電積層体の基板に、透明導電膜フィルム、粘着シートA、基板1を貼り合せることで、図2の態様のタッチパネルを作製した。
(Production of touch panel: Example 13)
The touch panel of the aspect of FIG. 2 was produced by bonding the transparent conductive film, the pressure-sensitive adhesive sheet A, and the substrate 1 to the substrate of the transparent conductive laminate of Example 1.
(タッチパネルの作製:比較例11)
 図6に示したように、バリア膜がない基板、カバーフィルムを用いてタッチパネルを作製した。
(Production of touch panel: Comparative Example 11)
As shown in FIG. 6, a touch panel was produced using a substrate without a barrier film and a cover film.
 実施例12、13及び比較例11のタッチパネルを85℃90%RHの環境条件下で240時間5Vで駆動した。 The touch panels of Examples 12 and 13 and Comparative Example 11 were driven at 5 V for 240 hours under an environmental condition of 85 ° C. and 90% RH.
 実施例12および13のタッチパネルは、240時間後も問題なく駆動したが、比較例11のタッチパネルは駆動しなかった。 The touch panels of Examples 12 and 13 were driven without problems after 240 hours, but the touch panel of Comparative Example 11 was not driven.
1       第1バリア膜
2       パターン透明導電膜
3、8     粘着層
4       第2バリア膜
5、10  透明フィルム
6       透明保護フィルム
7       第3バリア膜
9       透明導電膜
11      取り出し電極
DESCRIPTION OF SYMBOLS 1 1st barrier film 2 Pattern transparent conductive film 3, 8 Adhesive layer 4 2nd barrier film 5, 10 Transparent film 6 Transparent protective film 7 3rd barrier film 9 Transparent conductive film 11 Extraction electrode

Claims (10)

  1. 第1バリア膜と、前記第1バリア膜の表面に直接又は他の層を介して形成された、平均短軸長が5~50nmの金属ナノワイヤーを含有するパターン透明導電膜と、前記パターン透明導電膜を覆う粘着層と、前記粘着層に隣接している第2バリア膜とを有し、
    前記第1及び第2バリア膜の水蒸気透過率が、それぞれ、0.1g/(m2・day)以下であることを特徴とする透明導電積層体。
    A patterned transparent conductive film containing metal nanowires having an average minor axis length of 5 to 50 nm formed on the surface of the first barrier film directly or via another layer; and the pattern transparent An adhesive layer covering the conductive film, and a second barrier film adjacent to the adhesive layer,
    The transparent conductive laminate, wherein the water vapor permeability of each of the first and second barrier films is 0.1 g / (m 2 · day) or less.
  2. 前記第1バリア膜の前記パターン透明導電膜が形成された側の面と反対側の面に樹脂からなる透明フィルムを有し、かつ前記第2バリア膜の前記粘着層と隣接する面と反対側の面に樹脂からなる透明保護フィルムを有する請求項1に記載の透明導電積層体。 The first barrier film has a transparent film made of a resin on the surface opposite to the surface on which the patterned transparent conductive film is formed, and is opposite to the surface adjacent to the adhesive layer of the second barrier film. The transparent conductive laminate according to claim 1, comprising a transparent protective film made of a resin on the surface.
  3. 前記金属ナノワイヤーの平均短軸長が、5~25nmである請求項1又は2に記載の透明導電積層体。 The transparent conductive laminate according to claim 1 or 2, wherein the metal nanowire has an average minor axis length of 5 to 25 nm.
  4. 前記粘着層の粘着力が15N/25mm以上である請求項1~3のいずれか1項に記載の透明導電積層体。 The transparent conductive laminate according to any one of claims 1 to 3, wherein the adhesive strength of the adhesive layer is 15 N / 25 mm or more.
  5. 前記粘着層の粘着力が30~50N/25mmである請求項1~4のいずれか1項に記載の透明導電積層体。 The transparent conductive laminate according to any one of claims 1 to 4, wherein the adhesive strength of the adhesive layer is 30 to 50 N / 25 mm.
  6. 前記粘着層の吸水率が、1.0%以下である請求項1~5のいずれか1項に記載の透明導電積層体。 The transparent conductive laminate according to any one of claims 1 to 5, wherein the water absorption of the adhesive layer is 1.0% or less.
  7. 前記金属ナノワイヤーが、銀を含む請求項1~6のいずれか1項に記載の透明導電積層体。 The transparent conductive laminate according to any one of claims 1 to 6, wherein the metal nanowire contains silver.
  8. 前記第1及び第2のバリア膜がSiONであり、前記第1及び第2のバリア膜の膜厚が、それぞれ、300nm以下である請求項1~7のいずれか1項に記載の透明導電積層体。 The transparent conductive laminate according to any one of claims 1 to 7, wherein the first and second barrier films are SiON, and the film thicknesses of the first and second barrier films are each 300 nm or less. body.
  9. 請求項1~8のいずれか1項に記載の透明導電積層体を用いたことを特徴とするタッチパネル。 A touch panel comprising the transparent conductive laminate according to any one of claims 1 to 8.
  10. 駆動電圧が1V以上の請求項9に記載のタッチパネル。 The touch panel according to claim 9, wherein the drive voltage is 1 V or more.
PCT/JP2013/057990 2012-03-23 2013-03-21 Transparent conductive laminate and touch panel WO2013141275A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012066919A JP5749207B2 (en) 2012-03-23 2012-03-23 Transparent conductive film laminate and touch panel
JP2012-066919 2012-03-23

Publications (1)

Publication Number Publication Date
WO2013141275A1 true WO2013141275A1 (en) 2013-09-26

Family

ID=49222732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057990 WO2013141275A1 (en) 2012-03-23 2013-03-21 Transparent conductive laminate and touch panel

Country Status (2)

Country Link
JP (1) JP5749207B2 (en)
WO (1) WO2013141275A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045408A1 (en) * 2013-09-30 2015-04-02 凸版印刷株式会社 Touch panel
WO2015045965A1 (en) * 2013-09-30 2015-04-02 富士フイルム株式会社 Laminate for touch panels, and touch panel
WO2015192520A1 (en) * 2014-06-20 2015-12-23 京东方科技集团股份有限公司 Touchscreen, manufacturing method therefor, and display apparatus
CN105551582A (en) * 2016-02-03 2016-05-04 张家港康得新光电材料有限公司 Transparent conductive thin film and touch screen with same
CN106132687A (en) * 2014-03-28 2016-11-16 富士胶片株式会社 Conductive film layer stack and use the touch panel of this conductive film layer stack
WO2020204103A1 (en) * 2019-04-02 2020-10-08 凸版印刷株式会社 Transparent conductive gas barrier multilayer body, method for producing same, and device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6131165B2 (en) * 2013-10-09 2017-05-17 富士フイルム株式会社 Laminate for touch panel
WO2015072414A1 (en) * 2013-11-15 2015-05-21 コニカミノルタ株式会社 Method for producing touch panel
JP6355012B2 (en) * 2013-11-22 2018-07-11 大日本印刷株式会社 Film sensor, film sensor manufacturing method, display device with touch position detection function, and laminate for producing film sensor
KR20150077765A (en) * 2013-12-30 2015-07-08 주식회사 동진쎄미켐 Method for pattering metallic nanowire-based transparent conductive film by surface treatment
FI128433B (en) * 2018-05-09 2020-05-15 Canatu Oy An electrically conductive multilayer film including a coating layer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046011A1 (en) * 2009-10-14 2011-04-21 コニカミノルタホールディングス株式会社 Transparent conductor film with barrier properties, manufacturing method thereof, and organic electroluminescence element and organic solar cell using the transparent conductor film with barrier properties
WO2011078231A1 (en) * 2009-12-24 2011-06-30 日本写真印刷株式会社 Capacitance type touch sensor, electronic device, and method of manufacturing transparent conductive-film laminate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046011A1 (en) * 2009-10-14 2011-04-21 コニカミノルタホールディングス株式会社 Transparent conductor film with barrier properties, manufacturing method thereof, and organic electroluminescence element and organic solar cell using the transparent conductor film with barrier properties
WO2011078231A1 (en) * 2009-12-24 2011-06-30 日本写真印刷株式会社 Capacitance type touch sensor, electronic device, and method of manufacturing transparent conductive-film laminate

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045408A1 (en) * 2013-09-30 2015-04-02 凸版印刷株式会社 Touch panel
WO2015045965A1 (en) * 2013-09-30 2015-04-02 富士フイルム株式会社 Laminate for touch panels, and touch panel
JP2015069508A (en) * 2013-09-30 2015-04-13 凸版印刷株式会社 Touch panel
CN106132687A (en) * 2014-03-28 2016-11-16 富士胶片株式会社 Conductive film layer stack and use the touch panel of this conductive film layer stack
WO2015192520A1 (en) * 2014-06-20 2015-12-23 京东方科技集团股份有限公司 Touchscreen, manufacturing method therefor, and display apparatus
CN105551582A (en) * 2016-02-03 2016-05-04 张家港康得新光电材料有限公司 Transparent conductive thin film and touch screen with same
WO2020204103A1 (en) * 2019-04-02 2020-10-08 凸版印刷株式会社 Transparent conductive gas barrier multilayer body, method for producing same, and device
JP2020168775A (en) * 2019-04-02 2020-10-15 凸版印刷株式会社 Transparent conductive gas barrier laminate, its manufacturing method, and device
CN113573886A (en) * 2019-04-02 2021-10-29 凸版印刷株式会社 Transparent conductive gas barrier laminate, method for producing same, and apparatus
JP7287069B2 (en) 2019-04-02 2023-06-06 凸版印刷株式会社 Transparent conductive gas barrier laminate, manufacturing method thereof, and device

Also Published As

Publication number Publication date
JP5749207B2 (en) 2015-07-15
JP2013198990A (en) 2013-10-03

Similar Documents

Publication Publication Date Title
JP5749207B2 (en) Transparent conductive film laminate and touch panel
KR101707288B1 (en) Composition for forming silver-ion-diffusion inhibition layer, film for silver-ion diffusion inhibition layer, wiring board, electronic device, conductive film laminate, and touch panel
US9411080B2 (en) Method for manufacturing conductive member, conductive member, and touch panel using same
WO2013141274A1 (en) Electroconductive member, touch panel using same, display device, and input device
WO2012002332A1 (en) Conductive layer transfer material and touch panel
JP5563386B2 (en) Polarizing plate and display device with touch panel function
WO2013047147A1 (en) Conductive composition, method for producing same, conductive member, touch panel, and solar cell
US20140034360A1 (en) Conductive member, production method of the same, touch panel, and solar cell
JP5721601B2 (en) Touch panel and method for manufacturing touch panel
WO2011070801A1 (en) Conductive substrate, method for producing same, and touch panel
WO2013047699A1 (en) Conductive composition, conductive member and production method therefor, touch panel, and solar cell
JP6008790B2 (en) Conductive film laminate, touch panel, wiring board, electronic device, transparent double-sided adhesive sheet
US20150004327A1 (en) Conductive member and method for manufacturing same
JP2012022844A (en) Laminate for conductive film formation and method of manufacturing the same, and method of forming pattern, touch panel and integrated solar battery
JP2016177557A (en) Touch panel member, touch panel, and touch panel display device
JP5986934B2 (en) Protective film forming composition, transfer material, conductive film laminate, touch panel and image display device
JP2012009219A (en) Conductive material and touch panel
JP2012209232A (en) Conductive patterning material and touch panel
JP2013200953A (en) Conductive material, polarizer using the same, circular polarization plate, input device and display device
CN113412688A (en) Method for manufacturing conductive pattern
JP2012028183A (en) Conductive material and touch panel and display device with touch panel function
JP2017107426A (en) Substrate with conductive pattern, method for manufacturing substrate with conductive pattern, and touch panel
JP2013200996A (en) Method for manufacturing conductive material, conductive material manufactured thereby, touch panel with the same, and display device with touch panel function
JP7389071B2 (en) Method for forming conductive pattern, method for manufacturing metal mesh sensor, and method for manufacturing structure
JP2011254046A (en) Manufacturing method of three-dimensional curved surface structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13764130

Country of ref document: EP

Kind code of ref document: A1