WO2013140970A1 - Optical communication system and optical communication method having high phase noise resistance - Google Patents

Optical communication system and optical communication method having high phase noise resistance Download PDF

Info

Publication number
WO2013140970A1
WO2013140970A1 PCT/JP2013/055266 JP2013055266W WO2013140970A1 WO 2013140970 A1 WO2013140970 A1 WO 2013140970A1 JP 2013055266 W JP2013055266 W JP 2013055266W WO 2013140970 A1 WO2013140970 A1 WO 2013140970A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
phase
signal
communication system
optical communication
Prior art date
Application number
PCT/JP2013/055266
Other languages
French (fr)
Japanese (ja)
Inventor
大作 小笠原
林 和則
Original Assignee
日本電気株式会社
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社, 国立大学法人京都大学 filed Critical 日本電気株式会社
Publication of WO2013140970A1 publication Critical patent/WO2013140970A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2543Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to fibre non-linearities, e.g. Kerr effect
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • H04B10/6163Compensation of non-linear effects in the fiber optic link, e.g. self-phase modulation [SPM], cross-phase modulation [XPM], four wave mixing [FWM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • H04B10/6165Estimation of the phase of the received optical signal, phase error estimation or phase error correction

Definitions

  • the present invention relates to an optical communication system, and more particularly to an optical communication system having high phase noise tolerance.
  • the optical phase modulation method is a method in which data modulation is not performed only on the light intensity of the transmission laser light as in the conventional light intensity modulation method, but also on the optical phase of the transmission laser light.
  • BPSK Binary Phase Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • 8PSK Quadrature Phase Shift Keying
  • QAM Quadrature Amplitude Modulation
  • 1 bit for example, 0, 1 is assigned to each of two optical phases (for example, 90 degrees and 180 degrees).
  • FIG. 1A is an example of a constellation diagram of BPSK.
  • QPSK 2 bits (for example, 00, 01, 11, 10) are allocated to four optical phases (for example, 45 degrees, 135 degrees, 225 degrees, and 315 degrees).
  • FIG. 1B is an example of a constellation diagram of QPSK.
  • the symbol rate of QPSK can be reduced to 1 ⁇ 2 of the symbol rate (that is, bit rate) of the light intensity modulation method.
  • the symbol rate that is, bit rate
  • the multi-level optical phase modulation method since a symbol rate (baud rate) can be lowered by assigning a plurality of bits to one symbol, the operation speed of an electric device can be reduced. Reduction of device manufacturing cost can be expected.
  • BPSK assigns 1 bit to one optical phase, and thus the above-mentioned effect cannot be obtained.
  • the distance between symbols is larger than other phase modulation methods, Since it has high tolerance against phase noise due to the nonlinear optical effect, it has a feature that it is suitable for a modulation system of an ultra-long distance optical communication system that transmits between continents.
  • signal light and laser light referred to as local oscillation light or local light
  • An optical coherent method is used in which the output is received by a photodetector after being coupled by an optical element.
  • the AC component of the electrical signal output from the photodetector is the signal when the optical coherent method is used. It is a beat signal of light and local oscillation light, its amplitude is proportional to the light intensity of the signal light and local oscillation light, and if the phase is the same as the carrier frequency of the signal light and the optical frequency of the local oscillation light, This is the difference in optical phase between the signal light and the local light. If the optical phase of the local oscillation light is the same as the optical phase of the laser beam input to the optical modulator at the transmission end, the beat signal phase is the optical phase added to the laser beam at the transmission end.
  • the value of the carrier frequency of the signal light and the value of the optical frequency of the local oscillation light do not completely match, and the optical phase of the local oscillation light at the receiver and the laser input to the optical modulator at the optical transmitter It does not match the optical phase of light. Therefore, it depends on the optical phase deviation which is the optical phase difference between the signal light and the local oscillation light input to the optical modulator in the optical transmitter, and the optical carrier frequency deviation which is the difference between the carrier frequency of the signal light and the optical frequency of the local light. The effect needs to be compensated.
  • polarization multiplexing / demultiplexing technology using digital signal processing is also attracting attention as one of the technologies for realizing an ultrahigh-speed optical communication system.
  • the polarization demultiplexing technique multiplexes two independent optical signals whose carrier waves are arranged in the same frequency band and whose polarization states are orthogonal to each other in the optical transmitter, and in the optical receiver, the received signal is multiplexed from the received signal.
  • This is a technology that realizes a double transmission speed by separating two independent optical signals. In other words, since the symbol rate (baud rate) of the optical signal can be halved, the operation speed of the electric device can be reduced and the apparatus cost can be reduced.
  • FIG. 2 is an example of a block diagram showing an optical transmitter 600 in a polarization multiplexed optical communication system using an optical digital coherent communication system.
  • the continuous light that is transmitted from the laser oscillator 101 at a predetermined optical frequency and branched into two is modulated by the drive signals transmitted from the drive signal transmission units 106-1 and 106-2 in the optical orthogonal modulators 102-1 and 102-2, respectively.
  • the drive signals are respectively generated by the signal generators 105-1 and 105-2 so as to be suitable for the optical phase modulation method from the transmission bit string. For example, in the case of BPSK or QPSK, a binary electric signal is generated, but when the multi-value number becomes large, such as 16QAM, it is necessary to generate a complex electric signal such as a quaternary value.
  • the drive signal transmitters 106-1 and 106-2 can be configured with only an amplifier when using an optical phase modulation method with a small multi-value number such as BPSK or QPSK, but when using a QAM with a large multi-value number, etc. Needs to be composed of a combination of a digital analog converter (DAC) and an amplifier.
  • the driving signal transmission units 106-1 and 106-2 transmit a real axis signal on the phase plane and a driving signal of an imaginary axis signal, respectively.
  • the output optical signal of the optical quadrature modulator 102-1 and the output optical signal of the optical quadrature modulator 102-2 are multiplexed in a state where the polarization states are orthogonal to each other in the polarization multiplexing unit 103.
  • FIG. 3 is an example of a block diagram showing a configuration of an optical receiver 700 in an optical communication system using an optical digital coherent communication system.
  • the optical signal received from the optical transmission line is input to the 90-degree optical hybrid 201 together with the local oscillation light having an optical frequency substantially the same as the carrier frequency of the received optical signal.
  • the 90-degree optical hybrid 201 outputs a total of four optical signals of a real part component and an imaginary part component of an optical signal having a polarization state parallel to each of two orthogonal polarization axes.
  • optical signals are converted into analog electric signals by the optical detectors 202-1 to 202-1, and then converted into digital electric signals by the analog-digital converters (ADC) 203-1 to 20.
  • ADC analog-digital converters
  • These digital electrical signals are converted into digital electrical signals sampled at the symbol rate of the received optical signal by a resampling unit (not shown in FIG. 3), and then input to the chromatic dispersion compensation unit 209.
  • the chromatic dispersion compensation unit 209 compensates for waveform distortion due to chromatic dispersion by setting the residual chromatic dispersion of received light to zero.
  • the signal data in which the waveform distortion due to wavelength dispersion is compensated is input to the polarization separation unit 204.
  • the polarization separation unit 204 extracts two independent optical signals that are polarization multiplexed based on the four input digital electrical signals. Each of the extracted optical signals is compensated by the optical carrier frequency deviation / optical phase deviation compensation units 205-1 and 205-2 for optical phase rotation due to optical carrier frequency deviation and optical phase deviation between the received optical signal and the local oscillation light. After that, the symbol identifying sections 206-1 and 206-2 demodulate the original transmission bit strings, respectively. As described above, after combining optical phase modulation and polarization demultiplexing technology, the effects of optical carrier frequency deviation and optical phase deviation are compensated for each of the two independent optical signals that have undergone polarization separation. By doing so, it becomes possible to realize an ultra-high-speed optical communication system exceeding 100 Gbps per channel.
  • This type of optical communication system is also disclosed in Patent Documents 1 and 2, for example.
  • the optical receiver disclosed in Patent Document 1 performs fast Fourier transform on a time domain received signal, performs frequency equalization on a frequency domain component, and returns the time domain signal by inverse fast Fourier transform.
  • the optical signal transmission device disclosed in Patent Document 2 performs chromatic dispersion pre-equalization on signal light.
  • Patent Document 3 in order to improve the bit error rate by removing the influence of intersymbol interference, fast Fourier transform is performed on the received signal in the time domain, frequency equalization is performed on the frequency domain component, A wireless terminal that returns to a time domain signal by inverse fast Fourier transform is disclosed.
  • phase noise increases as the magnitude (line width) of the oscillation frequency fluctuates, and the inter-symbol distance decreases as the multi-value number of the optical signal modulation method increases.
  • an object of the present invention is to provide an optical communication system having high phase noise tolerance.
  • the optical transmitter includes an optical transmitter that modulates and transmits an optical signal at a predetermined symbol interval, and an optical receiver that receives the optical signal.
  • the optical transmitter is an electrical signal corresponding to a bit string.
  • a signal processing unit that generates a signal having a transmission characteristic in which an impulse response length is equal to or greater than the symbol interval, and applies a phase change corresponding to a frequency to the transmission light of the optical transmitter to the generated electrical signal
  • a phase adding unit to be implemented; a driving unit that generates a driving signal in accordance with the filtered electrical signal; a light source that outputs continuous light; and the continuous light is modulated based on the driving signal and transmitted.
  • a modulation unit that outputs light, and the optical receiver is included in the photoelectric conversion unit that converts the optical signal transmitted from the optical transmitter into an electrical signal, and the converted electrical signal,
  • the phase change given by the phase adder The optical communication system is obtained, characterized in that it comprises a phase compensation unit for amortization.
  • a light output step of outputting continuous light from a light source in the optical device, a modulation step of modulating the continuous light based on the drive signal in the optical transmitter and outputting transmission light, and A photoelectric conversion step for converting the optical signal transmitted from the optical transmitter into an electric signal, and a phase change given in the phase addition step included in the converted electric signal in the optical receiver are compensated.
  • the optical communication system according to the present invention has improved phase noise tolerance of optical signals.
  • FIG. 1A is a BPSK constellation diagram
  • FIG. 1B is a QPSK constellation diagram
  • FIG. 2 is a block diagram showing a configuration of an optical transmitter in an optical communication system using an optical digital coherent communication system according to a related technique.
  • FIG. 3 is a block diagram showing a configuration of an optical receiver in an optical communication system using an optical digital coherent communication system according to a related technique.
  • FIG. 4 is a block diagram showing the configuration of the optical transmitter in the optical communication system using the optical digital coherent communication system according to the first embodiment of the present invention.
  • FIG. 5 is a block diagram showing the configuration of the optical receiver in the optical communication system using the optical digital coherent communication system according to the first embodiment of the present invention.
  • FIG. 6A is a QPSK constellation diagram of an optical communication system according to the related art
  • FIG. 6B is a QPSK constellation diagram of an optical communication system according to the present invention
  • FIG. 7 is a block diagram showing the configuration of the optical transmitter in the optical communication system using the optical digital coherent communication system according to the second embodiment of the present invention
  • FIG. 8 is a block diagram showing the configuration of the optical receiver in the optical communication system using the optical digital coherent communication system according to the second embodiment of the present invention.
  • FIG. 4 is a block diagram showing the configuration of the optical transmitter 100 in the first embodiment of the present invention.
  • an optical transmitter 100 is an optical transmitter in an optical communication system using an optical digital coherent communication system, and a laser oscillator 101 that transmits continuous light at a predetermined optical frequency, and phase modulation from a transmission bit string.
  • a signal generation unit 105 that generates a drive signal so as to be suitable for the system, and a drive signal transmission unit 106 that transmits at least a drive signal based on a signal obtained from the signal generation unit 105 via a phase addition unit 107 described later.
  • an optical quadrature modulator 102 that QPSK-modulates the continuous light transmitted from the laser oscillator 101 with the drive signal from the drive signal transmission unit 106.
  • the optical transmitter 100 is further based on the chromatic dispersion that the optical signal output from the optical quadrature modulator 102 will receive during transmission with respect to the electrical signal generated by the signal generation unit 105.
  • a chromatic dispersion pre-equalization unit that performs filter processing for adding a phase according to frequency may be included.
  • the optical transmitter 100 in the present embodiment differs from the configuration of the optical transmitter 600 according to the related art shown in FIG. 2 in that a phase adding unit 107 that adds a phase change to a transmission optical signal And a first phase setting unit 108 for setting a phase change with respect to the phase adding unit 107. Note that the first phase setting unit 108 is not necessarily provided.
  • an optical receiver 200 is an optical receiver in an optical communication system using an optical digital coherent communication system, and an optical detector 202 that converts an optical signal received from an optical transmission path into an analog electric signal; Based on an analog-digital converter (ADC) 203 that converts an analog electrical signal transmitted from the optical detector 202 into a digital electrical signal, and a digital electrical signal that is input from the ADC 203 via a phase compensation unit 207 described later, residual chromatic dispersion is achieved.
  • ADC analog-digital converter
  • An optical carrier wave that compensates for optical phase rotation due to optical carrier frequency deviation and optical phase deviation between the received optical signal and the local oscillation light, from the chromatic dispersion compensation unit 209 that compensates, and the signal data from which the waveform distortion due to chromatic dispersion has been removed Frequency deviation / optical phase deviation compensation unit 205 and optical carrier frequency deviation / optical phase deviation compensation unit 2
  • the chromatic dispersion compensator 209 gives each wavelength component included in the input signal from the phase compensator 207 a different amplification factor and delay amount by a plurality of taps, and then combines the components to thereby combine the wavelengths. Waveform distortion due to chromatic dispersion is removed.
  • the optical receiver 200 in the present embodiment is different from the configuration of the optical receiver 700 according to the related art shown in FIG. 3, and includes a phase compensation unit 207 that adds a phase change to the received electric signal. And a second phase setting unit 208 that sets a phase change with respect to the phase compensation unit 207. Note that the second phase setting unit 208 is not necessarily provided.
  • the phase adding unit 107 of the optical transmitter 100 performs a Fourier transform process on the time domain signal generated by the signal generating unit 105 and then performs a predetermined amount of phase change on each frequency component of the signal.
  • the signal is reconverted into a time domain signal by an inverse Fourier transform process.
  • the signal to which the predetermined amount of phase change is added is supplied to the optical quadrature modulator 102 by the drive signal transmission unit 106 as in the related art described above. If the signal generated by the signal generation unit 105 is a signal in the frequency domain, the above-described Fourier transform process can be omitted.
  • the magnitude of the phase change added to the signal in the phase adding unit 107 is the time spread (phase phase) of the signal output from the phase adding unit 107 when an impulse signal is used as the signal input to the phase adding unit 107.
  • the impulse response length of the transfer characteristic of the adding unit 107 is required to be at least larger than the symbol interval of the optical signal.
  • the finite resource includes, for example, the number of filter coefficients of the filters that constitute the phase adding unit 107. That is, the magnitude of the phase fluctuation is controlled so that the time spread of the signal output from the phase adding unit 107 is made as large as possible with respect to the number of filter coefficients of the filters constituting the phase adding unit 107.
  • Equation (1) can be used as the phase change amount that maximizes the impulse response length of the transfer characteristic of the phase adding unit 107.
  • ⁇ k is the phase change amount of each frequency component
  • k is an integer of 0 to M
  • M is the window size of the Fourier transform process or inverse Fourier transform process.
  • Equation (1) can be derived on condition that the entropy H defined by the following equation (2) is maximized.
  • h i is an impulse response of the phase adding unit 107.
  • the phase compensator 207 of the optical receiver 200 performs Fourier transform processing on the received signal in the time domain, and then drives each frequency component of the received signal in the phase adder 107 of the optical transmitter 100. After adding a phase change amount having the same magnitude and a different sign from the phase change added to each frequency component of the signal, it is reconverted into a time domain received signal by inverse Fourier transform processing.
  • the received signal to which a predetermined amount of phase change is added is supplied to the chromatic dispersion compensation unit 209.
  • phase compensation unit 207 since the phase change added by the optical transmitter 100 is compensated by the phase compensation unit 207, the subsequent demodulation processing can be performed in the same manner as a conventional optical receiver. It should be noted that chromatic dispersion pre-equalization for adding chromatic dispersion in the optical transmitter can be performed simultaneously with the phase addition of the present invention by the phase adding unit 107, and the residual chromatic dispersion of the received light in the optical receiver.
  • the phase compensation unit 207 can be implemented simultaneously with the phase compensation of the present invention. In this case, an effect of reducing power consumption can be obtained by reducing the circuit scale of the LSI realizing the present invention. The effect of improving the phase noise tolerance by applying the present invention is shown in FIG. FIG.
  • FIG. 6A is a constellation diagram of a QPSK signal received by adding phase noise in the related art transmitter / receiver 700 described above as a comparative example.
  • FIG. 6B shows a case where the transceiver 200 of the present invention is used.
  • the constellation of the QPSK signal shown in FIG. 6A has a larger symbol spread in the phase direction due to phase noise than the symbol spread in the polar direction.
  • the constellation of the QPSK signal shown in FIG. 6B has substantially the same symbol spread in the polar and phase directions, and the present invention can reduce the symbol spread in the phase direction due to phase noise. I understand.
  • FIG. 7 is a block diagram showing the configuration of the optical transmitter 300 in the second embodiment of the present invention.
  • an optical transmitter 300 is an optical transmitter in a polarization multiplexed optical communication system using an optical digital coherent communication system, as in the related art shown in FIG. 2, and is continuously transmitted at a predetermined optical frequency.
  • the laser oscillator 101 that transmits light, the signal generation units 105-1 and 10-2 that generate drive signals from the transmission bit string so as to be suitable for the phase modulation method, and at least an amplifier, are described below from the signal generation units 105-1 and 105-2.
  • Driving signal transmitting units 106-1 to 106-2 for transmitting a driving signal based on signals obtained through the phase adding units 107-1 to 107-2, and continuous light branched from the laser oscillator 101.
  • Optical quadrature modulators 102-1 and 102-2 that perform QPSK modulation using the drive signals from the signal transmitters 106-1 and 106-2, respectively, and states in which their polarization states are orthogonal to each other After having multiplexed, and a polarization multiplexing unit 103 to be output to the optical transmission path.
  • the optical transmitter 300 further transmits the optical signals output from the optical quadrature modulators 102-1 and 102-2 to the electrical signals generated by the signal generators 105-1 and 105-2.
  • FIG. 8 is a block diagram showing the configuration of the optical receiver 400 in the embodiment of the present invention.
  • an optical receiver 400 is an optical receiver in a polarization multiplexed optical communication system using an optical digital coherent communication system, as in the related art shown in FIG.
  • a 90-degree optical hybrid 201 that outputs a total of four optical signals
  • optical detectors 202-1 to 202-4 that convert the four optical signals transmitted from the 90-degree optical hybrid 201 into analog electrical signals
  • an optical detector respectively.
  • Analog-to-digital converter (ADC) 2 for converting the four analog electric signals sent from 202-1 to 202-4 into digital electric signals, respectively.
  • chromatic dispersion compensation unit 209 that compensates for residual chromatic dispersion based on four digital electric signals input from ADCs 203-1 to 207 through phase compensation unit 207, which will be described later, and chromatic dispersion A polarization separation unit 204 that extracts two independent optical signals polarization-multiplexed from the signal data from which the waveform distortion has been removed, and an optical carrier frequency between the received optical signal and the local oscillation light, respectively.
  • Optical carrier frequency deviation / optical phase deviation compensation units 205-1 and 20-2 that compensate for optical phase rotation due to deviation and optical phase deviation, and signals from optical carrier frequency deviation and optical phase deviation compensation units 205-1 and 205-2, Symbol identifying units 206-1 and 206-2 that demodulate the original transmission bit string.
  • the chromatic dispersion compensator 209 gives each wavelength component included in the input signal from the phase compensator 207 a different amplification factor and delay amount by a plurality of taps, and then combines the components to thereby combine the wavelengths. Waveform distortion due to chromatic dispersion is removed.
  • the optical receiver 400 in this embodiment differs from the configuration of the optical receiver 700 according to the related art shown in FIG.
  • phase compensation unit 207 that adds a phase change to the received electric signal.
  • second phase setting unit 208 that sets a phase change with respect to the phase compensation unit 207. Note that the second phase setting unit 208 is not necessarily provided.
  • the Fourier transform processing is performed on the time domain signals generated by the signal generation units 105-1 and 105-2, and then each frequency component of the signal is converted.
  • the signal is reconverted into a time domain signal by inverse Fourier transform processing.
  • Signals to which a predetermined amount of phase change is added are supplied to the optical quadrature modulators 102-1 and 102-2 by the drive signal transmission units 106-1 and 106-2, as in the related art described above.
  • the signals generated by the signal generators 105-1 to 105-2 are signals in the frequency domain, the above-described Fourier transform process can be omitted.
  • the magnitude of the phase change added to the signal in the phase adding units 107-1 and 107-2 is the same as that in the case where an impulse signal is used as the signal input to the phase adding units 107-1 and 107-2.
  • the time spread of the signal output from ⁇ 2 impulse response length of the transfer characteristic of the phase adding units 107-1 and 107-2) needs to be larger than at least the symbol interval of the optical signal.
  • the finite resource includes, for example, the number of filter coefficients of the filters constituting the phase adding units 107-1 and 107-2.
  • Equation (3) can be used as the phase change amount that maximizes the impulse response length of the transfer characteristics of the phase adding units 107-1 and 107-2.
  • ⁇ k is a phase change amount of each frequency component
  • k is an integer of 0 or more and M or less
  • M is a window size of the Fourier transform process or the inverse Fourier transform process. Equation (3) can be derived on condition that the entropy H defined by the following equation (4) is maximized.
  • h i is an impulse response of the phase adding units 107-1 and 107-2.
  • the method for generating the transmission optical signal of the present invention using digital signal processing has been described above. However, if there is an optical device capable of adding the same phase change as the above-described phase change, the transmission optical signal of the present invention is thereby determined. Can also be generated.
  • a method for demodulating a signal using the optical receiver 400 of the present invention will be described. In the phase compensation unit 207 of the optical receiver 400, the Fourier transform processing is performed on the received signal in the time domain, and then the phase adding unit 107-1 of the optical transmitter 300 is applied to each frequency component of the received signal.
  • phase change added by the optical transmitter 300 is compensated by the phase compensation unit 207, the demodulation processing after the polarization separation unit 204 can be performed in the same manner as a conventional optical receiver.
  • chromatic dispersion pre-equalization for adding chromatic dispersion in the optical transmitter can be performed simultaneously with the phase addition of the present invention by the phase adding units 107-1 and 107-2. Residual chromatic dispersion can be performed simultaneously with the phase compensation of the present invention by the phase compensation unit 207. In this case, an effect of reducing power consumption can be obtained by reducing the circuit scale of the LSI realizing the present invention.
  • the phase adding unit 107 in the optical transmitter 100 of the first embodiment and the optical transmitter 300 of the second embodiment can be configured using an FIR filter (Finite Impulse Response filter). That is, it is possible to generate a drive signal by filtering a time domain signal using an FIR filter having a filter coefficient as a value obtained by performing an inverse Fourier transform process on a phase change in the frequency domain.
  • FIR filter Finite Impulse Response filter
  • the optical transmitter is A signal generator for generating an electrical signal corresponding to the bit string;
  • a phase adding unit that has a transmission characteristic in which an impulse response length is equal to or greater than the symbol interval, and that performs a filtering process on the generated electric signal to apply a phase change corresponding to a frequency to the transmission light of the optical transmitter;
  • a drive unit that generates a drive signal according to the electrical signal subjected to the filtering process;
  • a light source that outputs continuous light;
  • a modulator that modulates the continuous light based on the drive signal and outputs transmission light;
  • the optical receiver is: A photoelectric converter that converts the optical signal transmitted from the optical transmitter into an electrical signal;
  • An optical communication system comprising: a phase compensation unit that compensates for a phase change provided by the phase addition unit included in the converted electrical signal.
  • the phase addition unit generates a filter process for adding a phase corresponding to the frequency so as to maximize the impulse response length with respect to the number of filter coefficients of the phase addition unit that performs the filter process.
  • the optical communication system according to appendix 1 which is performed on the electrical signal.
  • the phase adding unit is configured to maximize entropy defined by a value obtained by adding a negative sign to a sum of products of amplitude squares of coefficients of the impulse response and a logarithmic value based on 2 of the square of the amplitude.
  • the optical communication system according to appendix 1, wherein filtering processing for adding a phase corresponding to the frequency to the generated electrical signal is performed.
  • the optical communication system according to appendix 4 wherein the phase adding unit performs a filtering process for further adding a phase corresponding to a frequency based on chromatic dispersion that the optical signal receives during transmission to the generated electric signal.
  • the optical transmitter further includes a first phase setting unit that sets a phase change with respect to the phase adding unit, 6.
  • the optical receiver further includes a second phase setting unit that sets a phase change with respect to the phase compensation unit.
  • the present invention is not limited to the embodiments described above, and it goes without saying that various modifications are possible within the technical scope described in the claims.
  • the phase change addition means and the compensation means are not necessarily digital signal processing. Need not be.
  • the present invention is also applicable to an optical communication system that uses a single-polarized optical signal that is not polarization multiplexed.
  • this application claims its benefit on the basis of priority from Japanese Patent Application No. 2012-066543 filed on March 22, 2012, the disclosure of which is hereby incorporated herein in its entirety Incorporated as a reference.

Abstract

Provided is an optical communication system whereby phase noise resistance of an optical signal is improved. This optical communication system comprises an optical transmission apparatus which transmits an optical signal which is phase shifted at a prescribed symbol gap, and an optical receiving apparatus which receives the optical signal. The optical transmission apparatus further comprises a phase addition unit. The phase addition unit has a transmission characteristic in which an impulse response length is greater than or equal to the symbol gap, and carries out on a generated electrical signal a filtering process which applies a phase change upon the transmitted light of the optical transmission apparatus according to the frequency thereof. The light receiving apparatus further comprises a phase correction unit. The phase correction unit corrects the phase shift which is applied in the optical transmission apparatus and which is included in the phase shifted electrical signal.

Description

高い位相雑音耐力を有する光通信システムおよび光通信方法Optical communication system and optical communication method having high phase noise tolerance
 本発明は、光通信システムに関し、特に、高い位相雑音耐力を有する光通信システムに関する。 The present invention relates to an optical communication system, and more particularly to an optical communication system having high phase noise tolerance.
 インターネットの普及により、基幹ネットワークのトラフィック量が急増していることから、一チャネルあたり100Gbpsを超える超高速長距離光通信システムの開発が強く望まれている。このような超高速長距離光通信システムを実現する技術として、ディジタル信号処理技術を活用した光位相変調方式や偏光多重分離技術などが注目されている。
 光位相変調方式は、従来の光強度変調方式のように送信レーザ光の光強度に対してのみデータ変調を行うのではなく、送信レーザ光の光位相に対してもデータ変調を行う方式であって、BPSK(Binary Phase Shift Keying)、QPSK(Quadrature Phase Shift Keying)や8PSK(8 Phase Shift Keying)、あるいはQAM(Quadrature Amplitude Modulation)などの方式が知られている。
 例えば、BPSKでは、2個の光位相(例えば90度、180度)に対して、それぞれ1ビット(例えば0、1)を割り当てる。図1(a)は、BPSKのコンスタレーション図の一例である。また、QPSKでは、4個の光位相(例えば45度、135度、225度、315度)に対して、それぞれ2ビット(例えば00、01、11、10)を割り当てる。図1(b)は、QPSKのコンスタレーション図の一例である。QPSKでは、1つの光位相に対して2ビットを割り当てるため、QPSKのシンボルレートは光強度変調方式のシンボルレート(すなわちビットレート)の1/2に低減可能である。このように、多値の光位相変調方式では、1シンボルに対して複数のビットを割り当てることにより、シンボルレート(ボーレート)を低下させることが可能であるため、電気デバイスの動作速度を低減できることから、装置の製造コストの削減が期待できる。一方、BPSKは、1個の光位相に1ビットを割り当てるため、上述の効果は得られないものの、シンボル間の距離が他の位相変調方式に比べて大きいことから、光アンプの自然放出光や非線形光学効果による位相雑音に対して高い耐力が得られるため、大陸間を伝送させるような超長距離光通信システムの変調方式に適するという特徴を有している。
 光位相変調方式が適用された信号光を受信するためには、信号光と、信号光とほぼ同一の光周波数を有するレーザ光(局所発振光または局所光と呼ばれる)を90度光ハイブリッドと呼ばれる光学素子によって結合した上で、その出力を光検出器によって受光する光コヒーレント方式を用いる。
 理解の助けのために信号光と局所発振光の偏波状態は同一の直線偏光であると仮定すると、光コヒーレント方式を用いた場合、光検出器から出力される電気信号の交流成分は、信号光と局所発振光のビート信号であり、その振幅は信号光と局所発振光の光強度に比例し、また、その位相は信号光の搬送波周波数と局所発振光の光周波数が同一であれば、信号光と局所光の光位相の差となる。局所発振光の光位相が、送信端の光変調器に入力されるレーザ光の光位相と同一であれば、ビート信号の位相が送信端でレーザ光に付加された光位相であるため、シンボルマッピングを用いてビート信号の位相をビット列に変換することによって送信データを復調することが可能である。
 実際には、信号光の搬送波周波数と局所発振光の光周波数の値は完全には一致しないし、さらに受信器における局所発振光の光位相と、光送信器において光変調器に入力されるレーザ光の光位相とも一致しない。したがって、光送信器において光変調器に入力される信号光と局所発振光の光位相差である光位相偏差、及び信号光の搬送波周波数と局所光の光周波数の差である光搬送波周波数偏差による影響を補償する必要がある。
 一方、ディジタル信号処理を用いた偏光多重分離技術も、超高速光通信システムを実現する技術の1つとして注目されている。偏光多重分離技術は、光送信器において、搬送波が同一の周波数帯に配備され、かつ、偏光状態が互いに直交する2個の独立した光信号を多重し、また光受信器において、受信信号から前述の2個の独立した光信号を分離することにより、2倍の伝送速度を実現する技術である。逆に云えば、光信号のシンボルレート(ボーレート)を1/2にすることができるため、電気デバイスの動作速度を低減でき、装置コストを削減可能である。
 上述した光位相変調方式と偏光多重分離技術とを組み合わせることにより、一チャネルあたり100Gbpsを超えるような超高速長距離光通信システムを実現することができる。光搬送波周波数偏差及び光位相偏差を補償する処理、及び、2個の独立した光信号に分離する処理(偏光分離処理)を、LSIなどによって実装されたディジタル信号処理回路で実施することにより、高精度に復調する技術が提案されており、光ディジタルコヒーレント通信方式と呼ばれる。
 次に、光ディジタルコヒーレント通信方式を用いた超高速光通信システムにおける送受信処理について、図を用いて詳細に説明する。
 図2は、光ディジタルコヒーレント通信方式を用いた偏光多重光通信システムにおける光送信器600を示すブロック図の一例である。レーザ発振器101から所定の光周波数で送出され、2分岐された連続光はそれぞれ、光直交変調器102−1~2において駆動信号送信部106−1~2から送出される駆動信号によって変調される。駆動信号は、信号生成部105−1~2において送信ビット列から光位相変調方式に適するようにそれぞれ生成される。例えば、BPSKやQPSKの場合は2値の電気信号が生成されるが、16QAMなどのように多値数が大きくなると4値などの複雑な電気信号を生成する必要がある。駆動信号送信部106−1~2は、BPSKやQPSKのような多値数の小さい光位相変調方式を用いる場合は、増幅器のみで構成可能であるが、多値数の大きいQAMなどを用いる場合は、ディジタルアナログコンバーター(DAC)と増幅器の組み合わせなどで構成する必要がある。駆動信号送信部106−1~2からは、一般に、位相平面上の実軸信号と、虚軸信号の駆動信号とが、それぞれ送出される。その後、光直交変調器102−1の出力光信号と、光直交変調器102−2の出力光信号とを、偏光多重部103において互いの偏光状態が直交となるようにした状態で多重した上で光伝送路に出力する。以上に説明した光送信器の構成は、ここでは説明しないが、光直交変調器以外の各光位相変調方式に特化した光送信器の構成を用いることもできる。
 図3は、光ディジタルコヒーレント通信方式を用いた光通信システムにおける光受信器700の構成を示すブロック図の一例である。光伝送路から受信した光信号は、受信光信号の搬送波周波数とほぼ同一の光周波数を有する局所発振光と共に、90度光ハイブリッド201に入力される。90度光ハイブリッド201は、直交する2つの偏光軸それぞれに対して平行な偏光状態を有する光信号の実部成分と虚部成分の合計4個の光信号を出力する。これら4個の光信号は、光ディテクタ202−1~4によってアナログ電気信号に変換された後、アナログディジタルコンバータ(ADC)203−1~4によってディジタル電気信号に変換される。これらのディジタル電気信号は、リサンプリング部(図3に記載せず)によって受信光信号のシンボルレートで標本化されたディジタル電気信号に変換された後、波長分散補償部209に入力される。波長分散補償部209は、受信光の残留波長分散をゼロにして、波長分散による波形歪を補償する。波長分散による波形歪が補償された信号データは偏光分離部204に入力される。偏光分離部204は、入力された4個のディジタル電気信号を元に、偏光多重された2つの独立した光信号を抽出する。抽出された光信号はそれぞれ、光搬送波周波数偏差・光位相偏差補償部205−1~2により、受信光信号と局所発振光との間の光搬送波周波数偏差と光位相偏差による光位相回転が補償された後、シンボル識別部206−1~2により、それぞれ元の送信ビット列に復調される。
 以上説明したように、光位相変調方式と偏光多重分離技術を組み合わせた上で、偏光分離された2個の独立した光信号のそれぞれに対して、光搬送波周波数偏差及び光位相偏差による影響を補償することにより、一チャネルあたり100Gbpsを超えるような超高速光通信システムを実現することが可能となる。
 尚、この種の光通信システムは、例えば、特許文献1、2に開示されている。特許文献1に開示された光受信器は、時間領域の受信信号に対して高速フーリエ変換を行い、周波数領域成分に対して周波数等化を行い、逆高速フーリエ変換で時間領域信号に戻している。また、特許文献2に開示された光信号送信装置は、信号光に対して波長分散予等化を行っている。特許文献3には、符号間干渉の影響を除去することによってビット誤り率を改善すべく、時間領域の受信信号に対して高速フーリエ変換を行い、周波数領域成分に対して周波数等化を行い、逆高速フーリエ変換で時間領域信号に戻す無線端末が開示されている。
With the spread of the Internet, the amount of traffic on the backbone network has increased rapidly. Therefore, development of an ultrahigh-speed long-distance optical communication system exceeding 100 Gbps per channel is strongly desired. As a technique for realizing such an ultra-high-speed long-distance optical communication system, attention is paid to an optical phase modulation method using a digital signal processing technique, a polarization demultiplexing technique, and the like.
The optical phase modulation method is a method in which data modulation is not performed only on the light intensity of the transmission laser light as in the conventional light intensity modulation method, but also on the optical phase of the transmission laser light. BPSK (Binary Phase Shift Keying), QPSK (Quadrature Phase Shift Keying), 8PSK (8 Phase Shift Keying), or QAM (Quadrature Amplitude Modulation) are known.
For example, in BPSK, 1 bit (for example, 0, 1) is assigned to each of two optical phases (for example, 90 degrees and 180 degrees). FIG. 1A is an example of a constellation diagram of BPSK. In QPSK, 2 bits (for example, 00, 01, 11, 10) are allocated to four optical phases (for example, 45 degrees, 135 degrees, 225 degrees, and 315 degrees). FIG. 1B is an example of a constellation diagram of QPSK. In QPSK, since 2 bits are allocated to one optical phase, the symbol rate of QPSK can be reduced to ½ of the symbol rate (that is, bit rate) of the light intensity modulation method. As described above, in the multi-level optical phase modulation method, since a symbol rate (baud rate) can be lowered by assigning a plurality of bits to one symbol, the operation speed of an electric device can be reduced. Reduction of device manufacturing cost can be expected. On the other hand, BPSK assigns 1 bit to one optical phase, and thus the above-mentioned effect cannot be obtained. However, since the distance between symbols is larger than other phase modulation methods, Since it has high tolerance against phase noise due to the nonlinear optical effect, it has a feature that it is suitable for a modulation system of an ultra-long distance optical communication system that transmits between continents.
In order to receive signal light to which an optical phase modulation method is applied, signal light and laser light (referred to as local oscillation light or local light) having substantially the same optical frequency as the signal light is called a 90-degree optical hybrid. An optical coherent method is used in which the output is received by a photodetector after being coupled by an optical element.
For the sake of understanding, assuming that the polarization state of the signal light and the local oscillation light is the same linear polarization, the AC component of the electrical signal output from the photodetector is the signal when the optical coherent method is used. It is a beat signal of light and local oscillation light, its amplitude is proportional to the light intensity of the signal light and local oscillation light, and if the phase is the same as the carrier frequency of the signal light and the optical frequency of the local oscillation light, This is the difference in optical phase between the signal light and the local light. If the optical phase of the local oscillation light is the same as the optical phase of the laser beam input to the optical modulator at the transmission end, the beat signal phase is the optical phase added to the laser beam at the transmission end. It is possible to demodulate transmission data by converting the phase of the beat signal into a bit string using mapping.
Actually, the value of the carrier frequency of the signal light and the value of the optical frequency of the local oscillation light do not completely match, and the optical phase of the local oscillation light at the receiver and the laser input to the optical modulator at the optical transmitter It does not match the optical phase of light. Therefore, it depends on the optical phase deviation which is the optical phase difference between the signal light and the local oscillation light input to the optical modulator in the optical transmitter, and the optical carrier frequency deviation which is the difference between the carrier frequency of the signal light and the optical frequency of the local light. The effect needs to be compensated.
On the other hand, polarization multiplexing / demultiplexing technology using digital signal processing is also attracting attention as one of the technologies for realizing an ultrahigh-speed optical communication system. The polarization demultiplexing technique multiplexes two independent optical signals whose carrier waves are arranged in the same frequency band and whose polarization states are orthogonal to each other in the optical transmitter, and in the optical receiver, the received signal is multiplexed from the received signal. This is a technology that realizes a double transmission speed by separating two independent optical signals. In other words, since the symbol rate (baud rate) of the optical signal can be halved, the operation speed of the electric device can be reduced and the apparatus cost can be reduced.
By combining the above-described optical phase modulation method and polarization multiplexing / demultiplexing technology, it is possible to realize an ultrahigh-speed long-distance optical communication system exceeding 100 Gbps per channel. By performing processing for compensating optical carrier frequency deviation and optical phase deviation and processing for separating into two independent optical signals (polarization separation processing) with a digital signal processing circuit implemented by LSI or the like, A technique for accurately demodulating has been proposed and is called an optical digital coherent communication system.
Next, transmission / reception processing in an ultrahigh-speed optical communication system using an optical digital coherent communication system will be described in detail with reference to the drawings.
FIG. 2 is an example of a block diagram showing an optical transmitter 600 in a polarization multiplexed optical communication system using an optical digital coherent communication system. The continuous light that is transmitted from the laser oscillator 101 at a predetermined optical frequency and branched into two is modulated by the drive signals transmitted from the drive signal transmission units 106-1 and 106-2 in the optical orthogonal modulators 102-1 and 102-2, respectively. . The drive signals are respectively generated by the signal generators 105-1 and 105-2 so as to be suitable for the optical phase modulation method from the transmission bit string. For example, in the case of BPSK or QPSK, a binary electric signal is generated, but when the multi-value number becomes large, such as 16QAM, it is necessary to generate a complex electric signal such as a quaternary value. The drive signal transmitters 106-1 and 106-2 can be configured with only an amplifier when using an optical phase modulation method with a small multi-value number such as BPSK or QPSK, but when using a QAM with a large multi-value number, etc. Needs to be composed of a combination of a digital analog converter (DAC) and an amplifier. In general, the driving signal transmission units 106-1 and 106-2 transmit a real axis signal on the phase plane and a driving signal of an imaginary axis signal, respectively. Thereafter, the output optical signal of the optical quadrature modulator 102-1 and the output optical signal of the optical quadrature modulator 102-2 are multiplexed in a state where the polarization states are orthogonal to each other in the polarization multiplexing unit 103. To output to the optical transmission line. Although the configuration of the optical transmitter described above is not described here, the configuration of the optical transmitter specialized for each optical phase modulation method other than the optical quadrature modulator can also be used.
FIG. 3 is an example of a block diagram showing a configuration of an optical receiver 700 in an optical communication system using an optical digital coherent communication system. The optical signal received from the optical transmission line is input to the 90-degree optical hybrid 201 together with the local oscillation light having an optical frequency substantially the same as the carrier frequency of the received optical signal. The 90-degree optical hybrid 201 outputs a total of four optical signals of a real part component and an imaginary part component of an optical signal having a polarization state parallel to each of two orthogonal polarization axes. These four optical signals are converted into analog electric signals by the optical detectors 202-1 to 202-1, and then converted into digital electric signals by the analog-digital converters (ADC) 203-1 to 20. These digital electrical signals are converted into digital electrical signals sampled at the symbol rate of the received optical signal by a resampling unit (not shown in FIG. 3), and then input to the chromatic dispersion compensation unit 209. The chromatic dispersion compensation unit 209 compensates for waveform distortion due to chromatic dispersion by setting the residual chromatic dispersion of received light to zero. The signal data in which the waveform distortion due to wavelength dispersion is compensated is input to the polarization separation unit 204. The polarization separation unit 204 extracts two independent optical signals that are polarization multiplexed based on the four input digital electrical signals. Each of the extracted optical signals is compensated by the optical carrier frequency deviation / optical phase deviation compensation units 205-1 and 205-2 for optical phase rotation due to optical carrier frequency deviation and optical phase deviation between the received optical signal and the local oscillation light. After that, the symbol identifying sections 206-1 and 206-2 demodulate the original transmission bit strings, respectively.
As described above, after combining optical phase modulation and polarization demultiplexing technology, the effects of optical carrier frequency deviation and optical phase deviation are compensated for each of the two independent optical signals that have undergone polarization separation. By doing so, it becomes possible to realize an ultra-high-speed optical communication system exceeding 100 Gbps per channel.
This type of optical communication system is also disclosed in Patent Documents 1 and 2, for example. The optical receiver disclosed in Patent Document 1 performs fast Fourier transform on a time domain received signal, performs frequency equalization on a frequency domain component, and returns the time domain signal by inverse fast Fourier transform. . Further, the optical signal transmission device disclosed in Patent Document 2 performs chromatic dispersion pre-equalization on signal light. In Patent Document 3, in order to improve the bit error rate by removing the influence of intersymbol interference, fast Fourier transform is performed on the received signal in the time domain, frequency equalization is performed on the frequency domain component, A wireless terminal that returns to a time domain signal by inverse fast Fourier transform is disclosed.
日本国公開特許公報第2010−057016号Japanese Patent Publication No. 2010-057016 日本国平成7年公開特許公報第7475号Japanese Patent Publication No. 7475 published in 1995 国際公開第2008/139624号公報International Publication No. 2008/139624
 しかし、図2、図3に示したものをも含め、関連技術においては、光信号に位相雑音が付加されることにより伝送特性が劣化するという問題がある。
 位相雑音が付加される例として、局所発振光の発振周波数の揺らぎは、上述の光ディジタルコヒーレント通信方式によって生成されるビート信号(受信電気信号)に位相雑音を付加するため、受信信号の伝送特性を劣化させる原因となる。その他、発振周波数の揺らぎの大きさ(線幅)が大きいほど位相雑音も大きくなり、また、光信号の変調方式の多値数が大きくなるほどシンボル間距離が小さくなるため、伝送特性の劣化が大きくなる。
 また、他の例として、光ファイバの伝送中に非線形光学効果によって光信号に位相雑音が付加されるために、受信信号の伝送特性が劣化するという問題もある。
 それ故、本発明の課題は、高い位相雑音耐力を有する光通信システムを提供することである。
However, related techniques including those shown in FIGS. 2 and 3 have a problem that transmission characteristics deteriorate due to the addition of phase noise to an optical signal.
As an example in which phase noise is added, fluctuations in the oscillation frequency of the local oscillation light add phase noise to the beat signal (received electrical signal) generated by the optical digital coherent communication method described above, so that the transmission characteristics of the received signal Cause deterioration. In addition, the phase noise increases as the magnitude (line width) of the oscillation frequency fluctuates, and the inter-symbol distance decreases as the multi-value number of the optical signal modulation method increases. Become.
As another example, phase noise is added to the optical signal due to the nonlinear optical effect during the transmission of the optical fiber, so that the transmission characteristic of the received signal is deteriorated.
Therefore, an object of the present invention is to provide an optical communication system having high phase noise tolerance.
 本発明によれば、光信号を所定のシンボル間隔で変調して送信する光送信器と、前記光信号を受信する光受信器とを有し、前記光送信器は、ビット列に応じた電気信号を生成する信号生成部と、インパルス応答長が前記シンボル間隔以上である伝達特性を有し、前記光送信器の送信光に周波数に応じた位相変化を与えるフィルタ処理を前記生成された電気信号に実施する位相付加部と、前記フィルタ処理が施された電気信号に応じた駆動信号を生成する駆動部と、連続光を出力する光源と、前記駆動信号に基づいて前記連続光を変調し、送信光を出力する変調部とを有し、前記光受信器は、前記光送信器から送信された前記光信号を電気信号に変換する光電変換部と、前記変換された電気信号に含まれる、前記位相付加部が与えた位相変化を補償する位相補償部とを有することを特徴とする光通信システムが得られる。
 また、本発明によれば、光信号を所定のシンボル間隔で変調して送信する光送信器と、前記光信号を受信する光受信器との間で実行する光通信方法であって、前記光送信器においてビット列に応じた電気信号を生成する信号生成工程と、前記光送信器においてインパルス応答長が前記シンボル間隔以上である伝達特性を有し、前記光送信器の送信光に周波数に応じた位相変化を与えるフィルタ処理を前記生成された電気信号に実施する位相付加工程と、前記光送信器において前記フィルタ処理が施された電気信号に応じた駆動信号を生成する駆動工程と、前記光送信器において光源から連続光を出力する光出力工程と、前記光送信器において前記駆動信号に基づいて前記連続光を変調し、送信光を出力する変調工程と、前記光受信器において前記光送信器から送信された前記光信号を電気信号に変換する光電変換工程と、前記光受信器において前記変換された電気信号に含まれる、前記位相付加工程において与えられた位相変化を補償する位相補償工程とを有することを特徴とする光通信方法が得られる。
According to the present invention, the optical transmitter includes an optical transmitter that modulates and transmits an optical signal at a predetermined symbol interval, and an optical receiver that receives the optical signal. The optical transmitter is an electrical signal corresponding to a bit string. And a signal processing unit that generates a signal having a transmission characteristic in which an impulse response length is equal to or greater than the symbol interval, and applies a phase change corresponding to a frequency to the transmission light of the optical transmitter to the generated electrical signal A phase adding unit to be implemented; a driving unit that generates a driving signal in accordance with the filtered electrical signal; a light source that outputs continuous light; and the continuous light is modulated based on the driving signal and transmitted. A modulation unit that outputs light, and the optical receiver is included in the photoelectric conversion unit that converts the optical signal transmitted from the optical transmitter into an electrical signal, and the converted electrical signal, The phase change given by the phase adder The optical communication system is obtained, characterized in that it comprises a phase compensation unit for amortization.
According to the present invention, there is provided an optical communication method executed between an optical transmitter that modulates an optical signal at a predetermined symbol interval and transmits the modulated optical signal, and an optical receiver that receives the optical signal. A signal generation step of generating an electrical signal corresponding to a bit string in the transmitter, and a transmission characteristic in which the impulse response length is equal to or greater than the symbol interval in the optical transmitter, and the transmission light of the optical transmitter is in accordance with the frequency A phase adding step for performing a filtering process for giving a phase change to the generated electric signal; a driving step for generating a driving signal in accordance with the electric signal subjected to the filtering process in the optical transmitter; and the optical transmission. A light output step of outputting continuous light from a light source in the optical device, a modulation step of modulating the continuous light based on the drive signal in the optical transmitter and outputting transmission light, and A photoelectric conversion step for converting the optical signal transmitted from the optical transmitter into an electric signal, and a phase change given in the phase addition step included in the converted electric signal in the optical receiver are compensated. And an optical communication method characterized by comprising a phase compensation step.
 本発明による光通信システムは、光信号の位相雑音耐力が向上している。 The optical communication system according to the present invention has improved phase noise tolerance of optical signals.
 図1は、(a)はBPSKのコンスタレーション図であり、(b)はQPSKのコンスタレーション図である。
 図2は、関連技術による光ディジタルコヒーレント通信方式を用いた光通信システムにおける光送信器の構成を示すブロック図である。
 図3は、関連技術による光ディジタルコヒーレント通信方式を用いた光通信システムにおける光受信器の構成を示すブロック図である。
 図4は、本発明の第1の実施例による光ディジタルコヒーレント通信方式を用いた光通信システムにおける光送信器の構成を示すブロック図である。
 図5は、本発明の第1の実施例による光ディジタルコヒーレント通信方式を用いた光通信システムにおける光受信器の構成を示すブロック図である。
 図6は、(a)は関連技術による光通信システムのQPSKのコンスタレーション図であり、(b)は本発明による光通信システムのQPSKのコンスタレーション図である。
 図7は、本発明の第2の実施例による光ディジタルコヒーレント通信方式を用いた光通信システムにおける光送信器の構成を示すブロック図である。
 図8は、本発明の第2の実施例による光ディジタルコヒーレント通信方式を用いた光通信システムにおける光受信器の構成を示すブロック図である。
1A is a BPSK constellation diagram, and FIG. 1B is a QPSK constellation diagram.
FIG. 2 is a block diagram showing a configuration of an optical transmitter in an optical communication system using an optical digital coherent communication system according to a related technique.
FIG. 3 is a block diagram showing a configuration of an optical receiver in an optical communication system using an optical digital coherent communication system according to a related technique.
FIG. 4 is a block diagram showing the configuration of the optical transmitter in the optical communication system using the optical digital coherent communication system according to the first embodiment of the present invention.
FIG. 5 is a block diagram showing the configuration of the optical receiver in the optical communication system using the optical digital coherent communication system according to the first embodiment of the present invention.
6A is a QPSK constellation diagram of an optical communication system according to the related art, and FIG. 6B is a QPSK constellation diagram of an optical communication system according to the present invention.
FIG. 7 is a block diagram showing the configuration of the optical transmitter in the optical communication system using the optical digital coherent communication system according to the second embodiment of the present invention.
FIG. 8 is a block diagram showing the configuration of the optical receiver in the optical communication system using the optical digital coherent communication system according to the second embodiment of the present invention.
 以下、図面を参照して、本発明による光通信システムを、より具体的に説明する。
 尚、以下の説明において、図2、図3に示された関連技術と同一または同様の構成には同符号を付すと共に、詳細な説明は省略する。
Hereinafter, an optical communication system according to the present invention will be described more specifically with reference to the drawings.
In the following description, the same or similar components as those in the related technology shown in FIGS. 2 and 3 are denoted by the same reference numerals and detailed description thereof is omitted.
 図4は、本発明の第1の実施例における光送信器100の構成を示すブロック図である。図4を参照すると、光送信器100は、光ディジタルコヒーレント通信方式を用いた光通信システムにおける光送信器であり、所定の光周波数で連続光を送出するレーザ発振器101と、送信ビット列から位相変調方式に適するように駆動信号を生成する信号生成部105と、少なくとも増幅器から成り、信号生成部105から後述する位相付加部107を経て得られる信号に基づいて駆動信号を送出する駆動信号送信部106と、レーザ発振器101から送出された連続光を、駆動信号送信部106からの駆動信号によってQPSK変調する光直交変調器102とを有している。
 尚、図示はしないが、光送信器100はさらに、信号生成部105によって生成された電気信号に対し、光直交変調器102から出力される光信号が伝送中に受けるであろう波長分散に基づいて周波数に応じた位相を付加するフィルタ処理を実施する波長分散予等化部を有していてもよい。
 図4に示すように、本実施例における光送信器100は、図2に示された関連技術による光送信器600の構成とは異なり、送信光信号に位相変化を付加する位相付加部107と、位相付加部107に対して位相変化を設定する第1の位相設定部108とを有している。
 尚、第1の位相設定部108は、必ずしも具備される必要はない。
 図5は、本発明の第1の実施例における光受信器200の構成を示すブロック図である。図5を参照すると、光受信器200は、光ディジタルコヒーレント通信方式を用いた光通信システムにおける光受信器であり、光伝送路から受信した光信号をアナログ電気信号に変換する光ディテクタ202と、光ディテクタ202から送出されるアナログ電気信号をディジタル電気信号に変換するアナログディジタルコンバータ(ADC)203と、ADC203から後述する位相補償部207を経て入力されるディジタル電気信号に基づいて、残留波長分散を補償する波長分散補償部209と、波長分散による波形歪が取り除かれた信号データを、受信光信号と局所発振光との間の光搬送波周波数偏差と光位相偏差による光位相回転を補償する光搬送波周波数偏差・光位相偏差補償部205と、光搬送波周波数偏差・光位相偏差補償部205からの信号を、元の送信ビット列に復調するシンボル識別部206とを有している。
 波長分散補償部209は、位相補償部207からの入力信号に含まれる各波長成分に対して複数のタップによってそれぞれ異なる増幅率と遅延量を与えた後に、各成分を合波することにより、波長分散(chromatic dispersion)による波形歪を除去する。
 図5に示すように、本実施例における光受信器200は、図3に示された関連技術による光受信器700の構成とは異なり、受信電気信号に位相変化を付加する位相補償部207と、位相補償部207に対して位相変化を設定する第2の位相設定部208とを有している。
 尚、第2の位相設定部208は、必ずしも具備される必要はない。
 以下、本発明の光送信器100を用いて送信信号を生成する方法について説明する。
 光送信器100の位相付加部107においては、信号生成部105より生成された時間領域の信号に対してフーリエ変換処理を行った上で、信号の各周波数成分に対して所定量の位相変化を付加した後、逆フーリエ変換処理によって時間領域の信号に再変換する。所定量の位相変化が付加された信号は、前述した関連技術と同様に駆動信号送信部106によって光直交変調器102に供給される。尚、信号生成部105が生成する信号が周波数領域上の信号であれば、上述のフーリエ変換処理を省略することができる。
 ここで、位相付加部107において信号に付加する位相変化の大きさは、位相付加部107に入力する信号としてインパルス信号を用いた場合に、位相付加部107から出力される信号の時間広がり(位相付加部107の伝達特性のインパルス応答長)が、少なくとも光信号のシンボル間隔よりも大きいことが必要である。これにより、複数のシンボルに情報を分散させることができるため、任意の時刻に付加された位相雑音によってビット誤りが発生する確率を低減することができる。その結果、位相雑音耐力を向上させることが可能となる。
 さらに、位相付加部107から出力される信号の時間広がり(位相付加部107の伝達特性のインパルス応答長)を、所定のリソースにおいてできる限り大きくすることが、位相雑音耐力の向上に最も望ましい。
 有限のリソースとしては、例えば、位相付加部107を構成するフィルタのフィルタ係数の数がある。即ち、位相付加部107を構成するフィルタのフィルタ係数の数に対して、位相付加部107から出力される信号の時間広がりをできる限り大きくするように位相変動の大きさを制御する。
 例えば、位相付加部107の伝達特性のインパルス応答長を最大化する位相変化量として次の式(1)を用いることができる。
Figure JPOXMLDOC01-appb-I000001
 式(1)において、φkは各周波数成分の位相変化量、kは0以上M以下の整数、Mはフーリエ変換処理または逆フーリエ変換処理のウィンドウサイズである。
 式(1)は、次の式(2)で定義するエントロピーHを最大化することを条件として導出することができる。
Figure JPOXMLDOC01-appb-I000002
 式(2)において、hは、位相付加部107のインパルス応答である。
 上述ではディジタル信号処理を用いて本発明の送信光信号を生成する方法について説明したが、上述の位相変化と同一の位相変化を付加可能な光学デバイスがあれば、それによって本発明の送信光信号を生成することも可能である。
 次に、本発明の光受信器200を用いて信号を復調する方法について説明する。
 光受信器200の位相補償部207においては、時間領域の受信信号に対してフーリエ変換処理を行った上で、受信信号の各周波数成分に対して、光送信器100の位相付加部107において駆動信号の各周波数成分に対して付加された位相変化と大きさが同一で符号が異なる位相変化量を付加した後、逆フーリエ変換処理によって時間領域の受信信号に再変換する。所定量の位相変化が付加された受信信号は、波長分散補償部209に供給される。
 以上のように、位相補償部207によって光送信器100で付加された位相変化が補償されるため、以降の復調処理は従来の光受信器と同様に実施することができる。
 尚、光送信器において波長分散を付加する波長分散予等化を位相付加部107によって本発明の位相付加と同時に実施することも可能であり、また、光受信器において受信光の残留波長分散を位相補償部207によって本発明の位相補償と同時に実施することも可能である。この場合、本発明を実現するLSIの回路規模削減により、消費電力低減の効果が得られる。
 本発明を適用することによる位相雑音耐力向上の効果を図6に示す。図6(a)は、比較例として、前述した関連技術の送受信器700において位相雑音を付加して受信したQPSK信号のコンスタレーション図である。一方、図6(b)は本発明の送受信器200を用いた場合である。
 図6(a)に示すQPSK信号のコンスタレーションは、極方向のシンボル広がりに比べて、位相雑音による位相方向のシンボル広がりが大きくなっている。
 これに対し、図6(b)に示すQPSK信号のコンスタレーションは、極方向と位相方向のシンボル広がりがほぼ同一であり、本発明によって位相雑音による位相方向のシンボル広がりを低減できていることが分かる。
FIG. 4 is a block diagram showing the configuration of the optical transmitter 100 in the first embodiment of the present invention. Referring to FIG. 4, an optical transmitter 100 is an optical transmitter in an optical communication system using an optical digital coherent communication system, and a laser oscillator 101 that transmits continuous light at a predetermined optical frequency, and phase modulation from a transmission bit string. A signal generation unit 105 that generates a drive signal so as to be suitable for the system, and a drive signal transmission unit 106 that transmits at least a drive signal based on a signal obtained from the signal generation unit 105 via a phase addition unit 107 described later. And an optical quadrature modulator 102 that QPSK-modulates the continuous light transmitted from the laser oscillator 101 with the drive signal from the drive signal transmission unit 106.
Although not shown, the optical transmitter 100 is further based on the chromatic dispersion that the optical signal output from the optical quadrature modulator 102 will receive during transmission with respect to the electrical signal generated by the signal generation unit 105. In addition, a chromatic dispersion pre-equalization unit that performs filter processing for adding a phase according to frequency may be included.
As shown in FIG. 4, the optical transmitter 100 in the present embodiment differs from the configuration of the optical transmitter 600 according to the related art shown in FIG. 2 in that a phase adding unit 107 that adds a phase change to a transmission optical signal And a first phase setting unit 108 for setting a phase change with respect to the phase adding unit 107.
Note that the first phase setting unit 108 is not necessarily provided.
FIG. 5 is a block diagram showing the configuration of the optical receiver 200 in the first embodiment of the present invention. Referring to FIG. 5, an optical receiver 200 is an optical receiver in an optical communication system using an optical digital coherent communication system, and an optical detector 202 that converts an optical signal received from an optical transmission path into an analog electric signal; Based on an analog-digital converter (ADC) 203 that converts an analog electrical signal transmitted from the optical detector 202 into a digital electrical signal, and a digital electrical signal that is input from the ADC 203 via a phase compensation unit 207 described later, residual chromatic dispersion is achieved. An optical carrier wave that compensates for optical phase rotation due to optical carrier frequency deviation and optical phase deviation between the received optical signal and the local oscillation light, from the chromatic dispersion compensation unit 209 that compensates, and the signal data from which the waveform distortion due to chromatic dispersion has been removed Frequency deviation / optical phase deviation compensation unit 205 and optical carrier frequency deviation / optical phase deviation compensation unit 2 The signal from 5, and a symbol identification unit 206 for demodulating the original transmission bit sequence.
The chromatic dispersion compensator 209 gives each wavelength component included in the input signal from the phase compensator 207 a different amplification factor and delay amount by a plurality of taps, and then combines the components to thereby combine the wavelengths. Waveform distortion due to chromatic dispersion is removed.
As shown in FIG. 5, the optical receiver 200 in the present embodiment is different from the configuration of the optical receiver 700 according to the related art shown in FIG. 3, and includes a phase compensation unit 207 that adds a phase change to the received electric signal. And a second phase setting unit 208 that sets a phase change with respect to the phase compensation unit 207.
Note that the second phase setting unit 208 is not necessarily provided.
Hereinafter, a method for generating a transmission signal using the optical transmitter 100 of the present invention will be described.
The phase adding unit 107 of the optical transmitter 100 performs a Fourier transform process on the time domain signal generated by the signal generating unit 105 and then performs a predetermined amount of phase change on each frequency component of the signal. After the addition, the signal is reconverted into a time domain signal by an inverse Fourier transform process. The signal to which the predetermined amount of phase change is added is supplied to the optical quadrature modulator 102 by the drive signal transmission unit 106 as in the related art described above. If the signal generated by the signal generation unit 105 is a signal in the frequency domain, the above-described Fourier transform process can be omitted.
Here, the magnitude of the phase change added to the signal in the phase adding unit 107 is the time spread (phase phase) of the signal output from the phase adding unit 107 when an impulse signal is used as the signal input to the phase adding unit 107. The impulse response length of the transfer characteristic of the adding unit 107 is required to be at least larger than the symbol interval of the optical signal. Thereby, since information can be distributed to a plurality of symbols, it is possible to reduce the probability that a bit error will occur due to phase noise added at an arbitrary time. As a result, the phase noise tolerance can be improved.
Furthermore, it is most desirable for improving the phase noise tolerance to increase the time spread of the signal output from the phase adding unit 107 (impulse response length of the transfer characteristic of the phase adding unit 107) as much as possible in a predetermined resource.
The finite resource includes, for example, the number of filter coefficients of the filters that constitute the phase adding unit 107. That is, the magnitude of the phase fluctuation is controlled so that the time spread of the signal output from the phase adding unit 107 is made as large as possible with respect to the number of filter coefficients of the filters constituting the phase adding unit 107.
For example, the following equation (1) can be used as the phase change amount that maximizes the impulse response length of the transfer characteristic of the phase adding unit 107.
Figure JPOXMLDOC01-appb-I000001
In Equation (1), φk is the phase change amount of each frequency component, k is an integer of 0 to M, and M is the window size of the Fourier transform process or inverse Fourier transform process.
Equation (1) can be derived on condition that the entropy H defined by the following equation (2) is maximized.
Figure JPOXMLDOC01-appb-I000002
In Expression (2), h i is an impulse response of the phase adding unit 107.
The method for generating the transmission optical signal of the present invention using digital signal processing has been described above. However, if there is an optical device capable of adding the same phase change as the above-described phase change, the transmission optical signal of the present invention is thereby determined. Can also be generated.
Next, a method for demodulating a signal using the optical receiver 200 of the present invention will be described.
The phase compensator 207 of the optical receiver 200 performs Fourier transform processing on the received signal in the time domain, and then drives each frequency component of the received signal in the phase adder 107 of the optical transmitter 100. After adding a phase change amount having the same magnitude and a different sign from the phase change added to each frequency component of the signal, it is reconverted into a time domain received signal by inverse Fourier transform processing. The received signal to which a predetermined amount of phase change is added is supplied to the chromatic dispersion compensation unit 209.
As described above, since the phase change added by the optical transmitter 100 is compensated by the phase compensation unit 207, the subsequent demodulation processing can be performed in the same manner as a conventional optical receiver.
It should be noted that chromatic dispersion pre-equalization for adding chromatic dispersion in the optical transmitter can be performed simultaneously with the phase addition of the present invention by the phase adding unit 107, and the residual chromatic dispersion of the received light in the optical receiver. The phase compensation unit 207 can be implemented simultaneously with the phase compensation of the present invention. In this case, an effect of reducing power consumption can be obtained by reducing the circuit scale of the LSI realizing the present invention.
The effect of improving the phase noise tolerance by applying the present invention is shown in FIG. FIG. 6A is a constellation diagram of a QPSK signal received by adding phase noise in the related art transmitter / receiver 700 described above as a comparative example. On the other hand, FIG. 6B shows a case where the transceiver 200 of the present invention is used.
The constellation of the QPSK signal shown in FIG. 6A has a larger symbol spread in the phase direction due to phase noise than the symbol spread in the polar direction.
On the other hand, the constellation of the QPSK signal shown in FIG. 6B has substantially the same symbol spread in the polar and phase directions, and the present invention can reduce the symbol spread in the phase direction due to phase noise. I understand.
 本発明の第2の実施例は、本発明による光ディジタルコヒーレント通信方式に対してさらに偏光多重分離技術を適用した点が、第1の実施例と異なっている。
 図7は、本発明の第2の実施例における光送信器300の構成を示すブロック図である。図7を参照すると、光送信器300は、図2に示された関連技術と同様に、光ディジタルコヒーレント通信方式を用いた偏光多重光通信システムにおける光送信器であり、所定の光周波数で連続光を送出するレーザ発振器101と、送信ビット列から位相変調方式に適するように駆動信号をそれぞれ生成する信号生成部105−1~2と、少なくとも増幅器から成り、信号生成部105−1~2から後述する位相付加部107−1~2を経て得られる信号に基づいて駆動信号を送出する駆動信号送信部106−1~2と、レーザ発振器101から送出されて2分岐された連続光それぞれを、駆動信号送信部106−1~2からの駆動信号によってそれぞれQPSK変調する光直交変調器102−1~2と、互いの偏光状態を直交となるようにした状態で多重した上で、光伝送路に出力する偏光多重部103とを有している。
 尚、図示はしないが、光送信器300はさらに、信号生成部105−1~2によって生成された電気信号に対し、光直交変調器102−1~2から出力される光信号が伝送中に受けるであろう波長分散に基づいて周波数に応じた位相を付加するフィルタ処理を実施する波長分散予等化部を有していてもよい。
 図7に示すように、本実施例における光送信器300は、図2に示された関連技術による光送信器600の構成とは異なり、送信光信号に位相変化を付加する位相付加部107−1~2と、位相付加部107−1~2に対して位相変化を設定する第1の位相設定部108とを有している。
 尚、第1の位相設定部108は、必ずしも具備される必要はない。
 図8は、本発明の実施例における光受信器400の構成を示すブロック図である。図8を参照すると、光受信器400は、図3に示された関連技術と同様に、光ディジタルコヒーレント通信方式を用いた偏光多重光通信システムにおける光受信器であり、光伝送路から受信した光信号が受信光信号の搬送波周波数とほぼ同一の光周波数を有する局所発振光と共に入力され、直交する2つの偏光軸それぞれに対して平行な偏光状態を有する光信号の実部成分と虚部成分の合計4個の光信号を出力する90度光ハイブリッド201と、90度光ハイブリッド201から送出される4個の光信号をそれぞれアナログ電気信号に変換する光ディテクタ202−1~4と、光ディテクタ202−1~4からそれぞれ送出される4個のアナログ電気信号をそれぞれディジタル電気信号に変換するアナログディジタルコンバータ(ADC)203−1~4と、ADC203−1~4から後述する位相補償部207を経て入力される4個のディジタル電気信号に基づいて、残留波長分散を補償する波長分散補償部209と、波長分散による波形歪が取り除かれた信号データから偏光多重された2つの独立した光信号を抽出する偏光分離部204と、抽出された光信号をそれぞれ、受信光信号と局所発振光との間の光搬送波周波数偏差と光位相偏差による光位相回転を補償する光搬送波周波数偏差・光位相偏差補償部205−1~2と、光搬送波周波数偏差・光位相偏差補償部205−1~2それぞれからの信号を、元の送信ビット列に復調するシンボル識別部206−1~2とを有している。
 波長分散補償部209は、位相補償部207からの入力信号に含まれる各波長成分に対して複数のタップによってそれぞれ異なる増幅率と遅延量を与えた後に、各成分を合波することにより、波長分散(chromatic dispersion)による波形歪を除去する。
 図8に示すように、本実施例における光受信器400は、図3に示された関連技術による光受信器700の構成とは異なり、受信電気信号に位相変化を付加する位相補償部207と、位相補償部207に対して位相変化を設定する第2の位相設定部208とを有している。
 尚、第2の位相設定部208は、必ずしも具備される必要はない。
 以下、本発明の光送信器300を用いて送信信号を生成する方法について説明する。
 光送信器300の位相付加部107−1~2においては、信号生成部105−1~2より生成された時間領域の信号に対してフーリエ変換処理を行った上で、信号の各周波数成分に対して所定量の位相変化を付加した後、逆フーリエ変換処理によって時間領域の信号に再変換する。所定量の位相変化が付加された信号は、前述した関連技術と同様に駆動信号送信部106−1~2によって光直交変調器102−1~2に供給される。尚、信号生成部105−1~2が生成する信号が周波数領域上の信号であれば、上述のフーリエ変換処理を省略することができる。
 ここで、位相付加部107−1~2において信号に付加する位相変化の大きさは、位相付加部107−1~2に入力する信号としてインパルス信号を用いた場合に、位相付加部107−1~2から出力される信号の時間広がり(位相付加部107−1~2の伝達特性のインパルス応答長)が、少なくとも光信号のシンボル間隔よりも大きいことが必要である。これにより、複数のシンボルに情報を分散させることができるため、任意の時刻に付加された位相雑音によってビット誤りが発生する確率を低減することができる。その結果、位相雑音耐力を向上させることが可能となる。
 さらに、位相付加部107−1~2から出力される信号の時間広がり(位相付加部107−1~2の伝達特性のインパルス応答長)を、所定のリソースにおいてできる限り大きくすることが、位相雑音耐力の向上に最も望ましい。
 有限のリソースとしては、例えば、位相付加部107−1~2を構成するフィルタのフィルタ係数の数がある。即ち、位相付加部107−1~2を構成するフィルタのフィルタ係数の数に対して、位相付加部107−1~2から出力される信号の時間広がりをできる限り大きくするように位相変動の大きさを制御する。
 例えば、位相付加部107−1~2の伝達特性のインパルス応答長を最大化する位相変化量として次の式(3)を用いることができる。
Figure JPOXMLDOC01-appb-I000003
 式(3)において、φkは各周波数成分の位相変化量、kは0以上M以下の整数、Mはフーリエ変換処理または逆フーリエ変換処理のウィンドウサイズである。
 式(3)は、次の式(4)で定義するエントロピーHを最大化することを条件として導出することができる。
Figure JPOXMLDOC01-appb-I000004
 式(4)において、hは、位相付加部107−1~2のインパルス応答である。
 上述ではディジタル信号処理を用いて本発明の送信光信号を生成する方法について説明したが、上述の位相変化と同一の位相変化を付加可能な光学デバイスがあれば、それによって本発明の送信光信号を生成することも可能である。
 次に、本発明の光受信器400を用いて信号を復調する方法について説明する。
 光受信器400の位相補償部207においては、時間領域の受信信号に対してフーリエ変換処理を行った上で、受信信号の各周波数成分に対して、光送信器300の位相付加部107−1~2において駆動信号の各周波数成分に対して付加された位相変化と大きさが同一で符号が異なる位相変化量を付加した後、逆フーリエ変換処理によって時間領域の受信信号に再変換する。所定量の位相変化が付加された受信信号は、前述した関連技術と同様に偏光分離部204に供給される。
 以上のように、位相補償部207によって光送信器300で付加された位相変化が補償されるため、偏光分離部204以降の復調処理は従来の光受信器と同様に実施することができる。
 尚、光送信器において波長分散を付加する波長分散予等化を位相付加部107−1~2によって本発明の位相付加と同時に実施することも可能であり、また、光受信器において受信光の残留波長分散を位相補償部207によって本発明の位相補償と同時に実施することも可能である。この場合、本発明を実現するLSIの回路規模削減により、消費電力低減の効果が得られる。
The second embodiment of the present invention differs from the first embodiment in that a polarization multiplexing / demultiplexing technique is further applied to the optical digital coherent communication system according to the present invention.
FIG. 7 is a block diagram showing the configuration of the optical transmitter 300 in the second embodiment of the present invention. Referring to FIG. 7, an optical transmitter 300 is an optical transmitter in a polarization multiplexed optical communication system using an optical digital coherent communication system, as in the related art shown in FIG. 2, and is continuously transmitted at a predetermined optical frequency. The laser oscillator 101 that transmits light, the signal generation units 105-1 and 10-2 that generate drive signals from the transmission bit string so as to be suitable for the phase modulation method, and at least an amplifier, are described below from the signal generation units 105-1 and 105-2. Driving signal transmitting units 106-1 to 106-2 for transmitting a driving signal based on signals obtained through the phase adding units 107-1 to 107-2, and continuous light branched from the laser oscillator 101. Optical quadrature modulators 102-1 and 102-2 that perform QPSK modulation using the drive signals from the signal transmitters 106-1 and 106-2, respectively, and states in which their polarization states are orthogonal to each other After having multiplexed, and a polarization multiplexing unit 103 to be output to the optical transmission path.
Although not shown, the optical transmitter 300 further transmits the optical signals output from the optical quadrature modulators 102-1 and 102-2 to the electrical signals generated by the signal generators 105-1 and 105-2. You may have a wavelength dispersion pre-equalization part which performs the filter process which adds the phase according to a frequency based on the wavelength dispersion which will be received.
As shown in FIG. 7, the optical transmitter 300 according to the present embodiment is different from the configuration of the optical transmitter 600 according to the related art shown in FIG. 1 and 2 and a first phase setting unit 108 for setting a phase change for the phase adding units 107-1 and 107-2.
Note that the first phase setting unit 108 is not necessarily provided.
FIG. 8 is a block diagram showing the configuration of the optical receiver 400 in the embodiment of the present invention. Referring to FIG. 8, an optical receiver 400 is an optical receiver in a polarization multiplexed optical communication system using an optical digital coherent communication system, as in the related art shown in FIG. 3, and is received from an optical transmission line. Real and imaginary part components of an optical signal in which an optical signal is input together with local oscillation light having an optical frequency substantially the same as the carrier frequency of the received optical signal and has a polarization state parallel to each of two orthogonal polarization axes A 90-degree optical hybrid 201 that outputs a total of four optical signals, optical detectors 202-1 to 202-4 that convert the four optical signals transmitted from the 90-degree optical hybrid 201 into analog electrical signals, and an optical detector, respectively. Analog-to-digital converter (ADC) 2 for converting the four analog electric signals sent from 202-1 to 202-4 into digital electric signals, respectively. 3-1 to 4, chromatic dispersion compensation unit 209 that compensates for residual chromatic dispersion based on four digital electric signals input from ADCs 203-1 to 207 through phase compensation unit 207, which will be described later, and chromatic dispersion A polarization separation unit 204 that extracts two independent optical signals polarization-multiplexed from the signal data from which the waveform distortion has been removed, and an optical carrier frequency between the received optical signal and the local oscillation light, respectively. Optical carrier frequency deviation / optical phase deviation compensation units 205-1 and 20-2 that compensate for optical phase rotation due to deviation and optical phase deviation, and signals from optical carrier frequency deviation and optical phase deviation compensation units 205-1 and 205-2, Symbol identifying units 206-1 and 206-2 that demodulate the original transmission bit string.
The chromatic dispersion compensator 209 gives each wavelength component included in the input signal from the phase compensator 207 a different amplification factor and delay amount by a plurality of taps, and then combines the components to thereby combine the wavelengths. Waveform distortion due to chromatic dispersion is removed.
As shown in FIG. 8, the optical receiver 400 in this embodiment differs from the configuration of the optical receiver 700 according to the related art shown in FIG. 3, and includes a phase compensation unit 207 that adds a phase change to the received electric signal. And a second phase setting unit 208 that sets a phase change with respect to the phase compensation unit 207.
Note that the second phase setting unit 208 is not necessarily provided.
Hereinafter, a method for generating a transmission signal using the optical transmitter 300 of the present invention will be described.
In the phase addition units 107-1 and 107-2 of the optical transmitter 300, the Fourier transform processing is performed on the time domain signals generated by the signal generation units 105-1 and 105-2, and then each frequency component of the signal is converted. On the other hand, after a predetermined amount of phase change is added, the signal is reconverted into a time domain signal by inverse Fourier transform processing. Signals to which a predetermined amount of phase change is added are supplied to the optical quadrature modulators 102-1 and 102-2 by the drive signal transmission units 106-1 and 106-2, as in the related art described above. If the signals generated by the signal generators 105-1 to 105-2 are signals in the frequency domain, the above-described Fourier transform process can be omitted.
Here, the magnitude of the phase change added to the signal in the phase adding units 107-1 and 107-2 is the same as that in the case where an impulse signal is used as the signal input to the phase adding units 107-1 and 107-2. The time spread of the signal output from ~ 2 (impulse response length of the transfer characteristic of the phase adding units 107-1 and 107-2) needs to be larger than at least the symbol interval of the optical signal. Thereby, since information can be distributed to a plurality of symbols, it is possible to reduce the probability that a bit error will occur due to phase noise added at an arbitrary time. As a result, the phase noise tolerance can be improved.
Further, it is possible to increase the time spread of the signals output from the phase adding units 107-1 and 2-2 (impulse response length of the transfer characteristics of the phase adding units 107-1 and 10-2) as much as possible in a predetermined resource. Most desirable to improve yield strength.
The finite resource includes, for example, the number of filter coefficients of the filters constituting the phase adding units 107-1 and 107-2. That is, the magnitude of the phase fluctuation is large so that the time spread of the signals output from the phase addition units 107-1 and 107-2 is as large as possible with respect to the number of filter coefficients of the filters constituting the phase addition units 107-1 and 107-2. To control.
For example, the following equation (3) can be used as the phase change amount that maximizes the impulse response length of the transfer characteristics of the phase adding units 107-1 and 107-2.
Figure JPOXMLDOC01-appb-I000003
In Expression (3), φk is a phase change amount of each frequency component, k is an integer of 0 or more and M or less, and M is a window size of the Fourier transform process or the inverse Fourier transform process.
Equation (3) can be derived on condition that the entropy H defined by the following equation (4) is maximized.
Figure JPOXMLDOC01-appb-I000004
In Expression (4), h i is an impulse response of the phase adding units 107-1 and 107-2.
The method for generating the transmission optical signal of the present invention using digital signal processing has been described above. However, if there is an optical device capable of adding the same phase change as the above-described phase change, the transmission optical signal of the present invention is thereby determined. Can also be generated.
Next, a method for demodulating a signal using the optical receiver 400 of the present invention will be described.
In the phase compensation unit 207 of the optical receiver 400, the Fourier transform processing is performed on the received signal in the time domain, and then the phase adding unit 107-1 of the optical transmitter 300 is applied to each frequency component of the received signal. After adding a phase change amount having the same magnitude and different sign from the phase change added to each frequency component of the drive signal in ˜2, it is reconverted into a time domain received signal by inverse Fourier transform processing. The received signal to which the predetermined amount of phase change is added is supplied to the polarization separation unit 204 as in the related art described above.
As described above, since the phase change added by the optical transmitter 300 is compensated by the phase compensation unit 207, the demodulation processing after the polarization separation unit 204 can be performed in the same manner as a conventional optical receiver.
Note that chromatic dispersion pre-equalization for adding chromatic dispersion in the optical transmitter can be performed simultaneously with the phase addition of the present invention by the phase adding units 107-1 and 107-2. Residual chromatic dispersion can be performed simultaneously with the phase compensation of the present invention by the phase compensation unit 207. In this case, an effect of reducing power consumption can be obtained by reducing the circuit scale of the LSI realizing the present invention.
 本発明においては、第1の実施例の光送信器100、第2の実施例の光送信器300における位相付加部107を、FIRフィルタ(Finite Impulse Responseフィルタ)を用いて構成することができる。
 即ち、周波数領域上の位相変化を逆フーリエ変換処理することにより得られる値をフィルタ係数とするFIRフィルタを用い、時間領域の信号をフィルタ処理することによって駆動信号を生成することが可能である。
 以上に説明したように、本発明によれば位相雑音耐力の高い光通信システムを実現可能である。
 また、以上説明した幾つかの実施例の一部または全部は、以下の付記のようにも記載され得るが、以下には限られない。
(付記1)
 光信号を所定のシンボル間隔で変調して送信する光送信器と、前記光信号を受信する光受信器とを有し、
 前記光送信器は、
 ビット列に応じた電気信号を生成する信号生成部と、
 インパルス応答長が前記シンボル間隔以上である伝達特性を有し、前記光送信器の送信光に周波数に応じた位相変化を与えるフィルタ処理を前記生成された電気信号に実施する位相付加部と、
 前記フィルタ処理が施された電気信号に応じた駆動信号を生成する駆動部と、
 連続光を出力する光源と、
 前記駆動信号に基づいて前記連続光を変調し、送信光を出力する変調部とを有し、
 前記光受信器は、
 前記光送信器から送信された前記光信号を電気信号に変換する光電変換部と、
 前記変換された電気信号に含まれる、前記位相付加部が与えた位相変化を補償する位相補償部とを有することを特徴とする光通信システム。
(付記2)
 前記位相付加部は、前記フィルタ処理を実施する前記位相付加部のフィルタ係数の数に対し、前記インパルス応答長を最大化するように前記周波数に応じた位相を付加するフィルタ処理を、生成された前記電気信号に実施する付記1の光通信システム。
(付記3)
 前記位相付加部は、前記インパルス応答の各係数の振幅の二乗と、振幅の二乗の2を基底とする対数値の積の総和に負号を付加した値で定義されるエントロピーが最大となるように前記周波数に応じた位相を付加するフィルタ処理を前記生成された電気信号に実施する付記1の光通信システム。
(付記4)
 前記位相補償部はさらに、受信光に残存する波長分散を補償する付記1乃至3のいずれか一項の光通信システム。
(付記5)
 前記位相付加部は、前記生成された電気信号に対し、前記光信号が伝送中に受ける波長分散に基づいて周波数に応じた位相をさらに付加するフィルタ処理を実施する付記4の光通信システム。
(付記6)
 前記光送信器は、前記位相付加部に対して位相変化を設定する第1の位相設定部をさらに有し、
 前記光受信器は、前記位相補償部に対して位相変化を設定する第2の位相設定部をさらに有する付記1乃至5のいずれか一項の光通信システム。
(付記7)
 光信号を所定のシンボル間隔で変調して送信する光送信器と、前記光信号を受信する光受信器との間で実行する光通信方法であって、
 前記光送信器においてビット列に応じた電気信号を生成する信号生成工程と、
 前記光送信器においてインパルス応答長が前記シンボル間隔以上である伝達特性を有し、前記光送信器の送信光に周波数に応じた位相変化を与えるフィルタ処理を前記生成された電気信号に実施する位相付加工程と、
 前記光送信器において前記フィルタ処理が施された電気信号に応じた駆動信号を生成する駆動工程と、
 前記光送信器において光源から連続光を出力する光出力工程と、
 前記光送信器において前記駆動信号に基づいて前記連続光を変調し、送信光を出力する変調工程と、
 前記光受信器において前記光送信器から送信された前記光信号を電気信号に変換する光電変換工程と、
 前記光受信器において前記変換された電気信号に含まれる、前記位相付加工程において与えられた位相変化を補償する位相補償工程とを有することを特徴とする光通信方法。
(付記8)
 前記位相付加工程において、前記フィルタ処理のフィルタ係数の数に対し、前記インパルス応答長を最大化するように前記周波数に応じた位相を付加するフィルタ処理を、生成された前記電気信号に実施する付記7の光通信方法。
(付記9)
 前記位相付加工程において、前記インパルス応答の各係数の振幅の二乗と、振幅の二乗の2を基底とする対数値の積の総和に負号を付加した値で定義されるエントロピーが最大となるように前記周波数に応じた位相を付加するフィルタ処理を前記生成された電気信号に実施する付記7の光通信方法。
(付記10)
 前記位相補償工程においてはさらに、受信光に残存する波長分散を補償する付記7乃至9のいずれか一項の光通信方法。
(付記11)
 前記位相付加工程において、前記生成された電気信号に対し、前記光信号が伝送中に受ける波長分散に基づいて周波数に応じた位相をさらに付加するフィルタ処理を実施する付記10の光通信方法。
(付記12)
 前記光送信器において前記位相付加工程において付加される位相変化を設定する第1の位相設定工程と、
 前記光受信器において前記位相補償工程において補償される位相変化を設定する第2の位相設定工程とをさらに有する付記7乃至11のいずれか1つの光通信方法。
In the present invention, the phase adding unit 107 in the optical transmitter 100 of the first embodiment and the optical transmitter 300 of the second embodiment can be configured using an FIR filter (Finite Impulse Response filter).
That is, it is possible to generate a drive signal by filtering a time domain signal using an FIR filter having a filter coefficient as a value obtained by performing an inverse Fourier transform process on a phase change in the frequency domain.
As described above, according to the present invention, an optical communication system with high phase noise tolerance can be realized.
Further, some or all of the embodiments described above may be described as in the following supplementary notes, but are not limited to the following.
(Appendix 1)
An optical transmitter that modulates and transmits an optical signal at a predetermined symbol interval; and an optical receiver that receives the optical signal;
The optical transmitter is
A signal generator for generating an electrical signal corresponding to the bit string;
A phase adding unit that has a transmission characteristic in which an impulse response length is equal to or greater than the symbol interval, and that performs a filtering process on the generated electric signal to apply a phase change corresponding to a frequency to the transmission light of the optical transmitter;
A drive unit that generates a drive signal according to the electrical signal subjected to the filtering process;
A light source that outputs continuous light;
A modulator that modulates the continuous light based on the drive signal and outputs transmission light;
The optical receiver is:
A photoelectric converter that converts the optical signal transmitted from the optical transmitter into an electrical signal;
An optical communication system comprising: a phase compensation unit that compensates for a phase change provided by the phase addition unit included in the converted electrical signal.
(Appendix 2)
The phase addition unit generates a filter process for adding a phase corresponding to the frequency so as to maximize the impulse response length with respect to the number of filter coefficients of the phase addition unit that performs the filter process. The optical communication system according to appendix 1, which is performed on the electrical signal.
(Appendix 3)
The phase adding unit is configured to maximize entropy defined by a value obtained by adding a negative sign to a sum of products of amplitude squares of coefficients of the impulse response and a logarithmic value based on 2 of the square of the amplitude. The optical communication system according to appendix 1, wherein filtering processing for adding a phase corresponding to the frequency to the generated electrical signal is performed.
(Appendix 4)
The optical communication system according to any one of appendices 1 to 3, wherein the phase compensation unit further compensates for chromatic dispersion remaining in the received light.
(Appendix 5)
The optical communication system according to appendix 4, wherein the phase adding unit performs a filtering process for further adding a phase corresponding to a frequency based on chromatic dispersion that the optical signal receives during transmission to the generated electric signal.
(Appendix 6)
The optical transmitter further includes a first phase setting unit that sets a phase change with respect to the phase adding unit,
6. The optical communication system according to claim 1, wherein the optical receiver further includes a second phase setting unit that sets a phase change with respect to the phase compensation unit.
(Appendix 7)
An optical communication method executed between an optical transmitter for modulating and transmitting an optical signal at a predetermined symbol interval and an optical receiver for receiving the optical signal,
A signal generation step of generating an electrical signal corresponding to a bit string in the optical transmitter;
A phase in which the generated electric signal is subjected to a filtering process that has a transfer characteristic in which the impulse response length is equal to or greater than the symbol interval in the optical transmitter, and applies a phase change corresponding to the frequency to the transmission light of the optical transmitter Additional process;
A drive step of generating a drive signal in accordance with the filtered electrical signal in the optical transmitter;
A light output step of outputting continuous light from a light source in the optical transmitter;
A modulation step of modulating the continuous light based on the drive signal in the optical transmitter and outputting transmission light;
A photoelectric conversion step of converting the optical signal transmitted from the optical transmitter into an electric signal in the optical receiver;
A phase compensation step of compensating for a phase change given in the phase addition step included in the converted electrical signal in the optical receiver.
(Appendix 8)
Note that in the phase addition step, a filter process for adding a phase corresponding to the frequency so as to maximize the impulse response length with respect to the number of filter coefficients of the filter process is performed on the generated electric signal. 7. Optical communication method of 7.
(Appendix 9)
In the phase addition step, the entropy defined by the sum of the square of the amplitude of each coefficient of the impulse response and the logarithmic product based on 2 of the square of the amplitude is added to a maximum value so that the entropy is maximized. The optical communication method according to appendix 7, wherein filtering processing for adding a phase corresponding to the frequency to the generated electric signal is performed on the generated electric signal.
(Appendix 10)
The optical communication method according to any one of appendices 7 to 9, wherein in the phase compensation step, chromatic dispersion remaining in the received light is further compensated.
(Appendix 11)
The optical communication method according to appendix 10, wherein, in the phase addition step, a filter process is further performed for the generated electrical signal to further add a phase corresponding to a frequency based on chromatic dispersion that the optical signal receives during transmission.
(Appendix 12)
A first phase setting step for setting a phase change added in the phase adding step in the optical transmitter;
The optical communication method according to any one of appendices 7 to 11, further comprising a second phase setting step of setting a phase change compensated in the phase compensation step in the optical receiver.
 以上説明した実施例に限定されることなく、本発明は、特許請求の範囲に記載された技術範囲内であれば、種々の変形が可能であることは云うまでもない。例えば、上記実施例では、現時点で広く研究開発が進められているディジタルコヒーレント光通信システムに対して本発明を適用する例について説明したが、位相変化の付加手段及び補償手段は、必ずしもディジタル信号処理である必要はない。また、本発明は、偏光多重しない単一偏光の光信号を用いる光通信システムに対しても適用可能である。
 また、本出願は、2012年3月22日に出願された、日本国特許出願第2012−065443号からの優先権を基礎として、その利益を主張するものであり、その開示はここに全体として参考文献として取り込む。
The present invention is not limited to the embodiments described above, and it goes without saying that various modifications are possible within the technical scope described in the claims. For example, in the above-described embodiment, the example in which the present invention is applied to the digital coherent optical communication system that is currently being researched and developed widely has been described. However, the phase change addition means and the compensation means are not necessarily digital signal processing. Need not be. The present invention is also applicable to an optical communication system that uses a single-polarized optical signal that is not polarization multiplexed.
In addition, this application claims its benefit on the basis of priority from Japanese Patent Application No. 2012-066543 filed on March 22, 2012, the disclosure of which is hereby incorporated herein in its entirety Incorporated as a reference.

Claims (10)

  1.  光信号を所定のシンボル間隔で変調して送信する光送信器と、前記光信号を受信する光受信器とを有し、
     前記光送信器は、
     ビット列に応じた電気信号を生成する信号生成部と、
     インパルス応答長が前記シンボル間隔以上である伝達特性を有し、前記光送信器の送信光に周波数に応じた位相変化を与えるフィルタ処理を前記生成された電気信号に実施する位相付加部と、
     前記フィルタ処理が施された電気信号に応じた駆動信号を生成する駆動部と、
     連続光を出力する光源と、
     前記駆動信号に基づいて前記連続光を変調し、送信光を出力する変調部とを有し、
     前記光受信器は、
     前記光送信器から送信された前記光信号を電気信号に変換する光電変換部と、
     前記変換された電気信号に含まれる、前記位相付加部が与えた位相変化を補償する位相補償部とを有することを特徴とする光通信システム。
    An optical transmitter for modulating and transmitting an optical signal at a predetermined symbol interval; and an optical receiver for receiving the optical signal;
    The optical transmitter is
    A signal generator for generating an electrical signal corresponding to the bit string;
    A phase adding unit that has a transmission characteristic in which an impulse response length is equal to or greater than the symbol interval, and that performs a filtering process on the generated electric signal to apply a phase change corresponding to a frequency to the transmission light of the optical transmitter;
    A drive unit that generates a drive signal according to the electrical signal subjected to the filtering process;
    A light source that outputs continuous light;
    A modulator that modulates the continuous light based on the drive signal and outputs transmission light;
    The optical receiver is:
    A photoelectric converter that converts the optical signal transmitted from the optical transmitter into an electrical signal;
    An optical communication system, comprising: a phase compensation unit that compensates for a phase change provided by the phase addition unit included in the converted electrical signal.
  2.  前記位相付加部は、前記フィルタ処理を実施する前記位相付加部のフィルタ係数の数に対し、前記インパルス応答長を最大化するように前記周波数に応じた位相を付加するフィルタ処理を、生成された前記電気信号に実施する請求項1に記載の光通信システム。 The phase adding unit generates a filter process for adding a phase corresponding to the frequency so as to maximize the impulse response length with respect to the number of filter coefficients of the phase adding unit that performs the filter process. The optical communication system according to claim 1, wherein the optical communication system is applied to the electrical signal.
  3.  前記位相付加部は、前記インパルス応答の各係数の振幅の二乗と、振幅の二乗の2を基底とする対数値の積の総和に負号を付加した値で定義されるエントロピーが最大となるように前記周波数に応じた位相を付加するフィルタ処理を前記生成された電気信号に実施する請求項1に記載の光通信システム。 The phase adding unit maximizes the entropy defined by a value obtained by adding a negative sign to the sum of products of the square of the amplitude of each coefficient of the impulse response and a logarithmic value based on 2 of the square of the amplitude. The optical communication system according to claim 1, wherein a filter process for adding a phase corresponding to the frequency to the generated electric signal is performed.
  4.  前記位相補償部はさらに、受信光に残存する波長分散を補償する請求項1乃至3のいずれか一項に記載の光通信システム。 The optical communication system according to any one of claims 1 to 3, wherein the phase compensation unit further compensates chromatic dispersion remaining in the received light.
  5.  前記位相付加部は、前記生成された電気信号に対し、前記光信号が伝送中に受ける波長分散に基づいて周波数に応じた位相をさらに付加するフィルタ処理を実施する請求項4に記載の光通信システム。 5. The optical communication according to claim 4, wherein the phase addition unit performs a filter process for further adding a phase corresponding to a frequency based on chromatic dispersion that the optical signal receives during transmission to the generated electrical signal. system.
  6.  前記光送信器は、前記位相付加部に対して位相変化を設定する第1の位相設定部をさらに有し、
     前記光受信器は、前記位相補償部に対して位相変化を設定する第2の位相設定部をさらに有する請求項1乃至5のいずれか一項に記載の光通信システム。
    The optical transmitter further includes a first phase setting unit that sets a phase change with respect to the phase adding unit,
    The optical communication system according to any one of claims 1 to 5, wherein the optical receiver further includes a second phase setting unit that sets a phase change with respect to the phase compensation unit.
  7.  光信号を所定のシンボル間隔で変調して送信する光送信器と、前記光信号を受信する光受信器との間で実行する光通信方法であって、
     前記光送信器においてビット列に応じた電気信号を生成する信号生成工程と、
     前記光送信器においてインパルス応答長が前記シンボル間隔以上である伝達特性を有し、前記光送信器の送信光に周波数に応じた位相変化を与えるフィルタ処理を前記生成された電気信号に実施する位相付加工程と、
     前記光送信器において前記フィルタ処理が施された電気信号に応じた駆動信号を生成する駆動工程と、
     前記光送信器において光源から連続光を出力する光出力工程と、
     前記光送信器において前記駆動信号に基づいて前記連続光を変調し、送信光を出力する変調工程と、
     前記光受信器において前記光送信器から送信された前記光信号を電気信号に変換する光電変換工程と、
     前記光受信器において前記変換された電気信号に含まれる、前記位相付加工程において与えられた位相変化を補償する位相補償工程とを有することを特徴とする光通信方法。
    An optical communication method executed between an optical transmitter that modulates an optical signal at a predetermined symbol interval and transmits the optical signal and an optical receiver that receives the optical signal,
    A signal generation step of generating an electrical signal corresponding to a bit string in the optical transmitter;
    A phase in which the generated electric signal is subjected to a filtering process that has a transfer characteristic in which the impulse response length is equal to or greater than the symbol interval in the optical transmitter, and applies a phase change corresponding to the frequency to the transmission light of the optical transmitter Additional process;
    A drive step of generating a drive signal in accordance with the filtered electrical signal in the optical transmitter;
    A light output step of outputting continuous light from a light source in the optical transmitter;
    A modulation step of modulating the continuous light based on the drive signal in the optical transmitter and outputting transmission light;
    A photoelectric conversion step of converting the optical signal transmitted from the optical transmitter into an electrical signal in the optical receiver;
    A phase compensation step of compensating for a phase change given in the phase addition step included in the converted electrical signal in the optical receiver.
  8.  前記位相付加工程において、前記フィルタ処理のフィルタ係数の数に対し、前記インパルス応答長を最大化するように前記周波数に応じた位相を付加するフィルタ処理を、生成された前記電気信号に実施する請求項7に記載の光通信方法。 The said phase addition process implements the filter process which adds the phase according to the said frequency so that the said impulse response length may be maximized with respect to the number of the filter coefficients of the said filter process to the produced | generated said electric signal. Item 8. The optical communication method according to Item 7.
  9.  前記位相付加工程において、前記インパルス応答の各係数の振幅の二乗と、振幅の二乗の2を基底とする対数値の積の総和に負号を付加した値で定義されるエントロピーが最大となるように前記周波数に応じた位相を付加するフィルタ処理を前記生成された電気信号に実施する請求項7に記載の光通信方法。 In the phase addition step, the entropy defined by the sum of the square of the amplitude of each coefficient of the impulse response and the logarithmic value based on 2 of the square of the amplitude is added to a maximum value so as to be maximized. The optical communication method according to claim 7, wherein filtering processing for adding a phase corresponding to the frequency to the generated electric signal is performed on the generated electric signal.
  10.  前記位相補償工程においてはさらに、受信光に残存する波長分散を補償する請求項7乃至9のいずれか一項に記載の光通信方法。 The optical communication method according to any one of claims 7 to 9, wherein in the phase compensation step, chromatic dispersion remaining in the received light is further compensated.
PCT/JP2013/055266 2012-03-22 2013-02-21 Optical communication system and optical communication method having high phase noise resistance WO2013140970A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-065443 2012-03-22
JP2012065443 2012-03-22

Publications (1)

Publication Number Publication Date
WO2013140970A1 true WO2013140970A1 (en) 2013-09-26

Family

ID=49222433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055266 WO2013140970A1 (en) 2012-03-22 2013-02-21 Optical communication system and optical communication method having high phase noise resistance

Country Status (2)

Country Link
JP (1) JPWO2013140970A1 (en)
WO (1) WO2013140970A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103916189A (en) * 2014-04-22 2014-07-09 山西大学 Method for compressing low-frequency phase noise in optical fiber transmission process
CN114844574A (en) * 2022-07-04 2022-08-02 浙江大学湖州研究院 Optical fiber communication system and communication method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008263590A (en) * 2007-03-20 2008-10-30 Fujitsu Ltd Polarization-multiplexing optical transmitter, polarization-multiplexing optical receiver, polarization-multiplexing optical transceiving system, and controlling method thereof
JP2012120010A (en) * 2010-12-02 2012-06-21 Fujitsu Ltd Optical transmitter and optical transmission device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008263590A (en) * 2007-03-20 2008-10-30 Fujitsu Ltd Polarization-multiplexing optical transmitter, polarization-multiplexing optical receiver, polarization-multiplexing optical transceiving system, and controlling method thereof
JP2012120010A (en) * 2010-12-02 2012-06-21 Fujitsu Ltd Optical transmitter and optical transmission device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103916189A (en) * 2014-04-22 2014-07-09 山西大学 Method for compressing low-frequency phase noise in optical fiber transmission process
CN103916189B (en) * 2014-04-22 2016-05-11 山西大学 In optical fibre transmission, compress the method for low frequency phase noise
CN114844574A (en) * 2022-07-04 2022-08-02 浙江大学湖州研究院 Optical fiber communication system and communication method

Also Published As

Publication number Publication date
JPWO2013140970A1 (en) 2015-08-03

Similar Documents

Publication Publication Date Title
US8873968B2 (en) Optical field receiver, optical multilevel signal receiver, and optical transmission system
JP6104948B2 (en) System and method for blind equalization and carrier phase recovery in quadrature amplitude modulation systems
EP2648346B1 (en) Optical transport system, optical transmitter device and optical receiver device
EP2738956B1 (en) Optical multilevel signal pre-equalization circuit, optical multilevel signal pre-equalization transmitter, and polarization-multiplexed pre-equalization transmitter
Li et al. Signal-signal beat interference cancellation in spectrally-efficient WDM direct-detection Nyquist-pulse-shaped 16-QAM subcarrier modulation
JP6195661B2 (en) Frequency diversity MIMO processing for optical transmission
JP6040288B1 (en) Optical data transmission system
JP2009512285A (en) Method and apparatus for optical transmission of digital signals
AU2007304876B2 (en) Single sideband orthogonal frequency division multiplexed optical fibre transmission
US10014954B2 (en) Imaging cancellation in high-speed intensity modulation and direct detection system with dual single sideband modulation
JP6107807B2 (en) Optical transmitter, optical communication system, and optical communication method
WO2014155775A1 (en) Signal processing device, optical communication system, and signal processing method
JP2018042073A (en) Optical transmitter, optical transmission system and optical receiver
WO2013140970A1 (en) Optical communication system and optical communication method having high phase noise resistance
US11108468B2 (en) Optical transmitter, optical receiver and communication system
WO2020121901A1 (en) Optical transmission system, optical transmission device, optical receiving device, and transfer function estimation method
WO2015114800A1 (en) Light transfer apparatus and light transfer method
JP6116001B2 (en) Optical transmitter and optical receiver
JP5523582B2 (en) Optical transmission system, optical transmitter and optical receiver
US11546058B1 (en) Systems and methods for chromatic dispersion pre-compensation
US20230085546A1 (en) Perturbative-based nonlinear compensation for digital subcarrier systems
WO2023073927A1 (en) Digital signal processing circuit, method, receiver, and communication system
Weng et al. Spectrally efficient Nyquist-WDM PDM-64QAM signal generation using interleaved DAC with zero-order holding
US11736199B1 (en) Systems and methods for phase compensation
WO2023248285A1 (en) Multicarrier signal waveform equalization circuit and multicarrier signal waveform equalization method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764120

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014506105

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13764120

Country of ref document: EP

Kind code of ref document: A1