WO2013140671A1 - Fire detection system and fire detection method - Google Patents

Fire detection system and fire detection method Download PDF

Info

Publication number
WO2013140671A1
WO2013140671A1 PCT/JP2012/081143 JP2012081143W WO2013140671A1 WO 2013140671 A1 WO2013140671 A1 WO 2013140671A1 JP 2012081143 W JP2012081143 W JP 2012081143W WO 2013140671 A1 WO2013140671 A1 WO 2013140671A1
Authority
WO
WIPO (PCT)
Prior art keywords
fire
camera
visible
preset
control device
Prior art date
Application number
PCT/JP2012/081143
Other languages
French (fr)
Japanese (ja)
Inventor
翔 西野
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Publication of WO2013140671A1 publication Critical patent/WO2013140671A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/12Actuation by presence of radiation or particles, e.g. of infrared radiation or of ions
    • G08B17/125Actuation by presence of radiation or particles, e.g. of infrared radiation or of ions by using a video camera to detect fire or smoke
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/005Fire alarms; Alarms responsive to explosion for forest fires, e.g. detecting fires spread over a large or outdoors area
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/181Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a plurality of remote sources

Definitions

  • the present invention relates to a fire detection system and a fire detection method for monitoring a fire in a forest or the like, and more particularly to a fire detection system and a fire detection method for monitoring by combining an infrared camera and a visible camera.
  • Patent Document 1 As a system for detecting a fire in a predetermined monitoring area, a system that uses both an infrared camera and a visible camera for monitoring is employed (see Patent Document 1).
  • Patent Document 1 As a system for detecting such a fire, a fire in a monitoring area is detected by an infrared camera, and is issued and displayed.
  • the supervisor can easily detect the fire.
  • the fire information is displayed on the display means, the supervisor can easily detect the fire.
  • the fire information is displayed on the display means, it is possible to analyze at the time of early detection and investigation of the cause of the fire by knowing the time and elapsed time of the fire, the place where the fire occurred, and the scale of the fire Become.
  • it can be used as data for restoration and construction of important facilities.
  • it is an effective means for a fire that has occurred in a narrow area, as it is only necessary to expedite fire extinguishing activities at the site where the fire occurred.
  • An object of the present invention is to provide a fire detection system and a fire detection method that enable quick fire extinguishing activities by performing fire detection in a wide area such as a forest.
  • the fire detection system and the fire detection method of the present invention are a system for monitoring a forest fire with a plurality of infrared cameras and a plurality of visible cameras.
  • An operation device for operating any one of the camera or the plurality of visible cameras, position-related information indicating a mutual positional relationship between the plurality of infrared cameras and the visible cameras, and a turning direction and a turning amount of each camera.
  • a control device having a preset information table in which preset turning amount information is registered, and when the control device detects a fire, based on the position related information and the preset turning amount information in the preset information table, the visible camera To the fire detection position, the control device predicts the fire spread direction based on environmental information, and It is for displaying the fire direction predicted in the apparatus.
  • the fire detection system of the present invention is designated as a monitoring area divided into a plurality of preset areas, an infrared camera unit that performs a preset operation for imaging the predetermined preset area and transmitting the captured infrared image.
  • a visible camera unit that captures an area of position coordinates and transmits a captured visual image
  • a weather observation device that observes weather information
  • a monitoring terminal that is monitored by a supervisor
  • the infrared camera unit the visible camera unit
  • the weather comprising an observation meter and a control device for controlling the monitoring terminal, wherein the infrared camera unit moves the predetermined preset area at a predetermined cycle under the control of the control device.
  • the visible camera unit changes the pan angle, tilt angle, and zoom magnification, and designates from the control device.
  • the area of the position coordinates is captured, and the captured visual image is transmitted, the meteorological observation device observes the weather condition of the installation location, and the monitoring terminal transmits an infrared image and a visible image transmitted from the control device,
  • the map information of the infrared camera unit and the visible camera unit is displayed on the display unit, and when the fire button is pressed or the negative button is pressed, the investigation result is transmitted to the control device.
  • the preset operation of the infrared camera unit is resumed when a negative button is pressed as an operation result from the monitoring terminal.
  • control device may stop the preset operation of the infrared camera unit when the fire button is pressed as an operation result from the monitoring terminal.
  • the fire detection method of the present invention performs a preset operation of imaging a predetermined preset area among monitoring areas divided into a plurality of preset areas, and transmitting the captured infrared image to the control device, and performing image processing.
  • a visual image is captured of the position where the fire was detected, and at least one of the meteorological information received from a weather station, a meteorological satellite, or an external organization
  • a direction is predicted, a display image in which the predicted fire spread direction is displayed on a map indicating the monitoring area together with the visible video is transmitted to the monitoring terminal, and the visible video and the display image are displayed on the monitoring terminal.
  • the fire button When the fire button is pressed, it is determined that a fire has actually occurred, the preset operation of the infrared camera unit is stopped, and the negative button is pressed. If the is characterized by resuming the preset operation of the infrared camera unit.
  • the present invention it is possible to automatically detect fire in a wide area and automatically display a video in the area where the fire is detected, thereby reducing the amount of operation by the supervisor and enabling accurate fire extinguishing work instructions.
  • the present invention relates to a fire detection system and a fire detection method for monitoring a forest fire using an infrared camera such as a plurality of far infrared cameras and a plurality of visible cameras, and the infrared cameras are registered in a preset information table.
  • an infrared camera such as a plurality of far infrared cameras and a plurality of visible cameras
  • the infrared cameras are registered in a preset information table.
  • FIG. 1 is a block diagram for explaining the configuration of an embodiment of the fire detection system of the present invention, and the block diagram for explaining the configuration of an embodiment of the fire detection system in the forest where the monitoring area is a forest. It is. 111 and 112 are far-infrared cameras, 121 and 122 are visible cameras, 131 to 134 are encoders, 140 is an anemometer installed at a predetermined place in the monitoring area, 150 is a network, 160 is a monitoring terminal such as a personal computer, Reference numeral 170 denotes a control server.
  • 171 is a preset information table
  • 172 is a weather information memory
  • 173 is a map information memory
  • 174 is a pan head operation processing unit
  • 175 is an infrared camera image memory
  • 176 is an infrared camera image processing unit
  • 177 is The fire spread direction prediction processing unit 179 is a control unit of the control device 170.
  • the far-infrared cameras 111 and 112 and the visible cameras 121 and 122 each include a pan head for variably controlling the pan angle and the tilt angle, and a zoom mechanism for variably controlling the zoom magnification.
  • monitoring devices such as the infrared cameras 111 and 112, the visible cameras 121 and 122, and the anemometer 140 installed in the monitoring area can be considered as drive power sources for these devices.
  • the supply may be received from the commercial power supply, but other batteries may be provided, and a solar cell may be further provided. .
  • far-infrared cameras 111 and 112, and visible cameras 121 and 122 are arranged at predetermined positions in a monitoring area, and each captures an image within a designated angle of view, and displays the captured video. Output as a signal.
  • the encoder 131 converts the video input from the far-infrared camera 111 into video data in a format that can be transmitted by the network 150 and transmits the video data to the control device 170 via the network 150.
  • the encoder 132 converts the video input from the far-infrared camera 112 into video data in a format that can be transmitted by the network 150 and transmits the video data to the control device 170 via the network 150.
  • the encoder 133 converts the video input from the visible camera 121 into video data in a format that can be transmitted by the network 150 and transmits the video data to the control device 170 via the network 150.
  • the encoder 134 converts the video input from the visible camera 122 into video data in a format that can be transmitted by the network 150, and transmits the video data to the control device 170 via the network 150.
  • the anemometer 140 observes the wind speed and the wind direction at the installation location, and transmits them to the control device 170 via the network 150 at a predetermined cycle.
  • a visible camera capable of imaging a monitoring area (a preset area described later) captured by an infrared camera such as a far-infrared camera is always provided.
  • the visible camera 121 is installed so as to be able to capture the same monitoring area with respect to the far-infrared camera 111
  • the visible camera 122 is capable of capturing the same monitoring area with respect to the far-infrared camera 112. is set up.
  • one visible camera does not have to correspond to one infrared camera, and a visible camera is installed so that one visible camera covers the surveillance area of multiple infrared cameras or a part of them. You may do it.
  • a plurality of visible cameras may be installed on one infrared camera so that the same surveillance area can be imaged simultaneously. Note that when the far-infrared cameras 111 and 112 and the visible cameras 121 and 122 are Web cameras, an encoder is not necessary.
  • the network 150 functions as a communication medium among the encoders 131 to 134, the anemometer 140, the monitoring terminal 160, and the control device 170.
  • the monitor operates using the input / output device (not shown) for the operation of the control device 170 and communication with other monitoring terminals while looking at the operation screen 161 (described later) of the monitoring terminal 160.
  • the control device 170 communicates with the far-infrared cameras 111 and 112, the visible cameras 121 and 122, and the anemometer 140 via the network 150.
  • FIG. 2 is a diagram for explaining an embodiment of the operation screen displayed on the display unit of the monitoring terminal of the forest fire system of FIG. 161 is an operation screen
  • 162 is a video display area for displaying the output video of the selected camera among the infrared cameras 111 and 112 and the visible cameras 121 and 122
  • 163 is a map of the monitoring area, and the camera at which position on the map Surveillance camera installation display area for displaying an icon indicating whether or not is installed.
  • 164 is an operation button display area for displaying an operation graphic such as a button for an operator (not shown) to operate by a GUI operation or the like from an input / output device.
  • 166 is a zoom magnification for changing the zoom magnification of the selected camera in the operation button display area 164.
  • a change button 167 is a weather for displaying weather information such as wind speed and direction observed by the anemometer 140 Broadcast display area, 181 fire button, the 182 is negative button.
  • 168 is a camera display area
  • 111 a is a camera icon representing the far-infrared camera 111 displayed in the camera display area 168
  • 112 a is a far-infrared camera 112 displayed in the camera display area 168.
  • a camera icon 121a is a camera icon representing the visible camera 121 displayed in the camera display area 168
  • a camera icon 122a is a camera icon representing the visible camera 122 displayed in the camera display area 168.
  • 111b is a camera selection button representing the far-infrared camera 111
  • 112b is a camera selection button representing the far-infrared camera 112
  • 121b is a camera selection button representing the visible camera 121
  • 122b is the visible camera 122.
  • the monitoring terminal 160 of the present invention includes at least a display unit for displaying such an operation screen, a CPU, and an input / output device for an operator to operate the operation screen (not shown).
  • the operation screen 161 displays at least a video display area 162, a monitoring camera installation display area 163, an operation button display area 164, and a weather information display area of the anemometer 140.
  • a video display area 162 camera icons 111a, 112a, 121a, 122a displayed in the monitoring camera installation display area 163, or camera selection buttons 111b, 112b, 121b, 122b displayed in the operation button display area 164 are displayed.
  • the image captured by either the far-infrared camera 111 or 112 or the visible camera 121 or 122 selected in (1) is displayed.
  • the monitoring camera installation display area 163 corresponds to the outline of the monitoring area stored in the map information memory 173 of the control server 170 and the installation location of the far-infrared cameras 111 and 112 or the visible cameras 121 and 122 in the monitoring area.
  • the camera icons 111a to 122a are displayed.
  • the camera icons 111a to 122a are displayed according to the positional relationship information registered in the preset information table 151 of the control server 170. For example, the far-infrared camera 111, the visible camera 121, the far-infrared camera 112, and the visible camera 122 are arranged in this order from the left of the monitoring camera installation display area 163.
  • the operation button display area 164 includes camera selection buttons 111b to 122b of the far-infrared cameras 111 and 112 and the visible cameras 121 and 122 in the monitoring area, and any one of the far-infrared cameras 111 and 112 and the visible cameras 121 and 122.
  • a turn operation button 165 for operating the turn of the table, and a weather information display area 166 showing weather information (wind speed and direction in the present embodiment) stored in the weather information memory 157 are displayed.
  • the selected camera icons 111a to 122a and the camera name display units 111b to 122b are, for example, Another color (for example, blue) may be displayed in blue or the like.
  • Another color for example, blue
  • any of the selected camera icons 111a to 122a can be easily distinguished from the unselected camera icons 111a to 122a.
  • the video image captured by the camera far infrared camera 111 or 112 or visible camera 121 or 122
  • the display color of the camera icon and the camera selection button corresponding to the selected camera may be displayed in another color (for example, blue).
  • any of the selected camera icons 111a to 122a can be easily distinguished from the unselected camera icons 111a to 122a.
  • the camera icon corresponding to the camera that captured the image displayed in the camera icon image display area 162 is highlighted by means such as blue display or blinking display. You may do it.
  • the camera selection button corresponding to the camera that captured the video displayed in the camera icon video display area 162 in the operation button display area 164 is highlighted by means such as blue display or blinking display. Also good. More preferably, the highlighting may be highlighted in the same manner by the camera icon and the camera selection button. As a result, the operator can quickly and easily distinguish which of the camera icons 111a to 122a and the camera selection buttons 111b to 122b is selected.
  • the control device 170 in FIG. 1 includes positional relationship information indicating the mutual positional relationship between the far-infrared cameras 111 and 112 and the visible cameras 121 and 122, and turning of the far-infrared cameras 111 and 112 and the visible cameras 121 and 122, respectively. It has a preset information table 171 in which turning amount information indicating amounts (pan angle and tilt angle and zoom magnification) is registered.
  • the control device 170 has a weather information memory 172 that stores information on the anemometer 140.
  • the control device 170 has a map information memory 173 that stores an overview of the monitored area and a result of predicting the spread of fire direction.
  • control device 170 controls the panning amount (pan angle and tilt angle, and zoom magnification) of either one of the infrared camera or the visible camera in accordance with an operation from the monitoring terminal 160.
  • the pan head control unit 174 periodically turns the far-infrared cameras 111 and 112 based on the positional relationship information in the preset information table 151 and the turning amount information for the preset periodically to change the zoom magnification.
  • the control device 170 has a far infrared camera memory 175 that stores image data captured by the far infrared cameras 111 and 112.
  • control device 170 performs image recognition determination processing for determining, for example, whether or not the fire is captured by the far-infrared camera 111 based on the image data stored in the far-infrared camera memory 173.
  • a processing unit 176 is included. That is, the far-infrared camera image processing unit 176 determines whether or not a fire has occurred by detecting a change in image data between frames in the captured video.
  • the control device 170 performs a fire spread simulation based on the weather information in the weather information memory 172, the positional relationship information in the preset information table 171 and the preset turning amount information, and the result is stored in the map information memory 173.
  • a fire spread direction prediction processing unit 177 is provided. Note that the fire spread direction prediction processing is executed using an existing fire spread prediction simulation such as Hamada's fire spread rate formula.
  • FIG. 3 is a diagram for explaining an example of display in the monitoring camera setting display area 163 of FIG.
  • FIG. 4 is a flowchart for explaining an operation procedure of an embodiment of the fire detection system and the fire detection method of the present invention. This operation is executed by the control unit 179 of the control device 170.
  • the grids in the monitoring camera setting display area 163 indicate the imaging range (hereinafter referred to as a preset area) when the far infrared camera images the entire monitoring area at a predetermined preset position.
  • the far-infrared cameras 111a and 112a are controlled by the control device 170 based on turning amount information (preset information) for presetting at predetermined time intervals, and control the pan head and zoom lens to control the pan angle and tilt. The angle and zoom magnification are changed, and imaging is performed at a predetermined preset position.
  • Reference numeral 201 denotes a preset area where the far-infrared camera 111a determines that a fire has been detected, and 201a to 202e denote preset areas where the spread of fire is predicted.
  • Each far-infrared camera has a preset position registered in advance, and rotates (moves) to a preset position registered at a predetermined cycle to image the preset area, and the captured infrared image is transmitted via an encoder and a network.
  • the control unit 179 of the control device 170 stores the received infrared video in the infrared camera image memory 175.
  • the far-infrared cameras 111 and 112 operate independently and communicate with the control device 170 independently, and the control device 170 controls the far-infrared cameras 111 and 112 separately.
  • the far-infrared camera 111 changes the preset position in a predetermined cycle in the order of the preset areas 1p1, 1p2, and 1p3 in the monitoring area 163, and performs imaging at the preset position.
  • the captured image is transmitted to the control device 170.
  • the following description is demonstrated by the far-infrared camera 111 and the visible camera 121.
  • observation data transmitted from a weather observation device such as an anemometer is input to the weather information memory 172 and is always stored.
  • all meteorological information input such as meteorological observation meters, meteorological information from meteorological satellites, and meteorological information transmitted from external organizations such as the Japan Meteorological Agency are always met It continues to be stored in the memory 172.
  • step S2 the far-infrared camera 111 is preset moved to the preset position in the preset area i.
  • step S ⁇ b> 3 the far-infrared camera 111 captures the preset area i and transmits the captured image to the control device 170.
  • step S4 the video is stored in the infrared camera image memory 175.
  • step S5 the infrared camera image processing unit 176 obtains a difference from the background image or a difference from the image of the previous frame, and performs image processing such as binarization.
  • step S6 it is determined from the image processing result whether or not a fire has been detected.
  • step S7 it is detected by image processing whether there is a cluster of pixels having a predetermined temperature (for example, 80 ° C.) or more. If it is determined that a fire has been detected, the process branches to step S7. If it is determined that no fire is detected, the process branches to step S12.
  • a predetermined temperature for example, 80 ° C.
  • step S7 the visible camera 121 is turned to the preset area i where the fire is detected, and the zoom magnification is also changed in some cases.
  • the control unit 179 rotates the visible camera 121 (and changes the zoom magnification) based on the positional relationship information and the preset turning amount information in the preset information table 171.
  • step S ⁇ b> 8 the visible camera 121 that has finished turning images the preset area i where the fire is detected, and transmits the captured image to the control device 170.
  • step S9 the fire spread direction prediction processing unit 177 of the control device 170 performs a simulation process to obtain a fire spread direction and a fire spread prediction area after a predetermined time.
  • the size of the area that is expected to spread after a certain period of time is usually determined for each preset area that divides the monitoring area, and is not the estimated area that is expected to spread after a certain period of time. Determine whether. For example, it is predicted that the fire spread direction prediction processing unit 177 performs a fire spread simulation based on the weather information in the weather information memory 172, the preset information table 171 positional relationship information, and the preset turning amount information and spreads after a predetermined time. Simulate whether or not it is a predicted fire spread area.
  • step S ⁇ b> 10 the preset area i where the fire is detected and the fire spread prediction area are stored in the map information memory 173.
  • step S11 a control signal is transmitted to each monitoring terminal so as to output an alarm sound, and each transmitting terminal 160 outputs an alarm and, as shown in FIG. 3, a fire occurs in the monitoring camera installation display area 163.
  • a symbol (mark) indicating the occurrence of a fire is displayed in a preset area corresponding to the place, and a symbol (mark) indicating the spread of fire is displayed in a preset area predicted to spread after the next predetermined time.
  • the display color may be changed to another color, and icons, frames, and the like may be blinked.
  • the surveillance camera installation display area 163 it is applied to an infrared camera or a visible camera that simultaneously displays a symbol or color that is the same as or similar to the symbol or color of a preset area where a fire has occurred or where a fire spread is predicted.
  • the monitoring person next performs an operation for confirming whether or not a fire has actually occurred.
  • the monitor selects a preset area by operating the operation unit, position information, vegetation information, information on wooden houses, rebar houses, etc., and extinguishing the nearest fire extinguisher are selected. If information such as an organization is displayed in the monitoring camera installation display area 163, the monitor can obtain more useful information and make a more appropriate determination.
  • step S13 it is determined whether i is greater than the number n of preset positions of the far-infrared camera 111 (n is a natural number). If i is smaller than or equal to n, the process branches to step S2. If i is larger than n (i> n), the process branches to step S1. Thereafter, the operation from step S2 or step S1 is repeated.
  • each monitoring terminal 160 automatically turns to the video display area 162 of the operation screen 161 of the display unit as shown in FIG.
  • the image captured by the visible camera 121 is displayed, and the fire detection position 201 and the fire spread direction predicted positions 202a to 202e are displayed in the monitoring camera installation display area 163.
  • the monitoring terminal 160 outputs the alarm sound which calls attention.
  • the alarm may be transmitted by auditory means such as an alarm, or may be transmitted by visual means such as light emission, or may be a combination thereof.
  • the process of this flowchart will be in a standby
  • step S11 when an alarm is output from the monitoring terminal 160, the monitoring staff first checks the operation screen of the nearby monitoring terminal 160 to confirm whether or not a fire has actually occurred.
  • the monitor looks at the video in the video display area 162 on the operation screen, and if necessary, selects the video of another far-infrared camera or other visible camera and switches the image to be displayed. To check. Note that the video displayed in the video display area 162 is the currently captured video in the normal setting, but can be reproduced retroactively to the video captured in the past.
  • the monitoring person determines that a fire has not actually occurred, the monitoring person operates (presses) the negative button 182 on the operation screen.
  • the operation result is transmitted from the monitoring terminal 160 to the control device 170, and the control device 170 proceeds to step S12 assuming that there is no fire.
  • the monitor When it is determined that a fire has actually occurred, the monitor operates (presses) the fire button 181 on the operation screen.
  • the operation result is transmitted from the monitoring terminal 160 to the control device 170, and promptly notified to related parties and related departments. And a fire occurrence place, a predicted fire spread direction, or a predicted fire spread place can be confirmed on the map of the operation screen. For this reason, fire fighting activities can be started quickly and easily.
  • the monitor operates (presses) the fire button 181
  • the fact that a fire has occurred is transmitted to the control device 170.
  • the control device 170 stops the monitoring process of the far-infrared camera (the process of the flowchart in FIG. 4). Depending on the setting, the processing of other far-infrared cameras may be stopped.
  • the fire detection system is based on a plurality of far-infrared cameras and a plurality of visible cameras. However, it can also be operated as a system that detects fire with one infrared camera and one visible camera. It can also be operated as a system for detecting fire by combining one infrared camera and a plurality of visible cameras. It can also be operated as a system that detects fire by combining a plurality of infrared cameras and one visible camera.
  • FIG. 6 is a block diagram for explaining the configuration of the second embodiment of the fire detection system of the present invention.
  • a single monitoring terminal 160 has been described.
  • a plurality of monitoring terminals 601 are provided via the network 150, and the monitoring staff can use one of the monitoring terminals 160 and 601.
  • Information detected by the control device 170 may be confirmed to confirm whether a fire has actually occurred. In that case, the control device 170 performs the processing of the flowchart of FIG. 4 with priority given to the information received first (information on whether or not a fire has occurred).
  • the monitoring terminal or monitoring staff with the higher priority within the predetermined time Y will reverse If there is information (for example, information indicating that the first information is not a fire, or a high-priority monitoring terminal or monitoring person is a fire), the control device 170 ignores the first information and reverse information. Depending on the process.
  • the second embodiment since it is possible to monitor with a plurality of monitoring terminals, it is possible to realize more rapid and appropriate fire detection than in the first embodiment. In addition, even if one monitoring terminal goes down, other monitoring terminals can perform processing, thereby improving the reliability of the system.
  • the wind speed and the wind direction received from the anemometer 140 are stored in the weather information memory 172 of the control device 170, and the fire spread direction prediction processing unit 177 stores the wind speed and the wind direction as weather information.
  • the fire spread direction prediction processing unit 177 may predict the fire spread direction using these weather information as weather information.
  • each of the meteorological observation devices 701-1 to 701-m observes the meteorological condition at the ground contact location, and transmits the observed information to the control device 170 via the network 150.
  • the control unit 179 of the control device 170 stores the received weather state in the weather information memory 172.
  • FIG. 7 is a block diagram for explaining the configuration of the third embodiment of the fire detection system of the present invention.
  • the meteorological observation meters 701-1 to 701-m are, for example, thermometers, hygrometers, illuminance meters, rain gauges, river water level meters, and the like.
  • the fire spread direction can be predicted more appropriately than the first and second embodiments, so that the reliability of the system is further improved.
  • FIG. 8 is a block diagram for explaining the configuration of the fourth embodiment of the fire detection system of the present invention.
  • the weather information stored in the weather information memory 172 is current and past information from various weather observation devices 701-1 to 701-m such as the anemometer 140.
  • the network 150 or the control device 170 directly receives the weather information from the weather satellite 801.
  • the weather information of the weather satellite is stored in the weather information memory 172.
  • the control device 170 can use the weather forecast information. Therefore, the fire spread direction can be predicted more appropriately than in the first to third embodiments.
  • a weather forecast may be received from a forecasting organization such as the Japan Meteorological Agency via a network to predict the same fire spread direction.
  • FIG. 9 is a block diagram for explaining the configuration of the fifth embodiment of the fire detection system of the present invention.
  • the system configuration of FIG. 9 is provided with a plurality of monitoring terminals 160 and 601 via the network 150 as in the second embodiment of the present invention, and further, in the same manner as in the third embodiment of the present invention, the wind speed
  • other meteorological observation meters 701-1 to 701-m are stored in the weather information memory 172 as weather information. Using these weather information as information, the fire spread direction is predicted.
  • the weather information stored in the weather information memory 172 is the current and past information by various weather observation devices 701-1 to 701-m such as the anemometer 140.
  • weather information is received from the weather satellite 801 and stored in the weather information memory 172.
  • the control device 170 can use the weather forecast information.
  • the fire spreading direction can be predicted more appropriately than in the first to fourth embodiments, and can be monitored by a plurality of monitoring terminals, so that more rapid and appropriate fire detection can be realized. .
  • other monitoring terminals can perform processing, thereby improving the reliability of the system.
  • the present invention can be applied not only to fire monitoring in a wide area such as a forest, but also to fire monitoring in a non-wide area such as a residential area or a factory site.
  • 111, 112 Far-infrared camera, 121, 122: Visible camera, 111a, 112a, 121a, 122a: Camera icon, 111b, 112b, 121b, 122b: Camera selection button, 131-134: Encoder, 140: Anemometer, 150 : Network, 160: Monitoring terminal, 161: Operation screen, 162: Video display area, 163: Surveillance camera installation display area, 164: Operation button display area, 165: Pan head operation button, 166: Zoom magnification change button, 167: Weather information display area, 168: Camera display area, 170: Control server, 171: Preset Information table, 172: Weather information memory, 173: Map information memory, 174: Head operation processing unit, 175: Infrared camera image memory, 176: Infrared camera image processing unit, 177: Fire spread direction prediction processing unit, 179: Control unit, 181: Fire button, 182: negative button, 201, 201a to 202e: prese

Abstract

[Problem] To provide a fire detection system and a fire detection method that enable prompt fire-extinguishing activity, by detecting fires in an extensive area such as a forest, and by predicting the fire progression. [Solution] A system for monitoring forest fires by means of multiple infrared cameras and multiple visible light cameras, equipped with: an operation device for operating any one of the multiple infrared cameras or the multiple visible light cameras; and a control device having preset information table, in which position-related information indicating the mutual positional relationships of the multiple infrared cameras and the multiple visible light cameras, as well as preset rotational amount information indicating for each camera the direction in which the camera is rotated and the amount of rotation, are registered. When a fire is detected, the control device controls a visible light camera and rotates the camera, on the basis of the position-related information and the preset rotational amount information in the preset information table, toward the position where the fire has been detected, and the control device predicts the direction in which the fire will spread on the basis of environment information, and displays on the operation device the predicted spreading direction.

Description

火災検知システム及び火災検知方法Fire detection system and fire detection method
 本発明は、森林等の火災監視を行う火災検知システム及び火災検知方法に関わり、特に、赤外線カメラと可視カメラを組み合わせて監視を行う火災検知システム及び火災検知方法に関する。 The present invention relates to a fire detection system and a fire detection method for monitoring a fire in a forest or the like, and more particularly to a fire detection system and a fire detection method for monitoring by combining an infrared camera and a visible camera.
 所定の監視エリア内の火災の検知を行うものとして、赤外線カメラと可視カメラを併用して監視するシステムが採用されている(特許文献1参照。)。
 特許文献1では、このような火災の検知を行うシステムとして、監視領域内の火災を赤外線カメラにて検出し、発報及び表示する。
As a system for detecting a fire in a predetermined monitoring area, a system that uses both an infrared camera and a visible camera for monitoring is employed (see Patent Document 1).
In Patent Document 1, as a system for detecting such a fire, a fire in a monitoring area is detected by an infrared camera, and is issued and displayed.
特開2009-100198号公報JP 2009-100198 A
 上述の特許文献1では、火災情報を表示手段に表示するので、監視者が容易に火災を検知できる。また、火災情報を表示手段に表示することにより、火災が発生した時間及び経過時間、火災が発生した場所、火災の規模がわかることで、早期発見及び火災の原因調査時に分析することが可能となる。更に、重要施設の復旧及び建築するときのデータとして利用することができる。
さらに、狭い区域で発生した火災については、火災が発生した現場に急行して消火活動を行えばよいので有効な手段である。しかし、森林などの広い区域においては監視範囲が広がること、及び、消火する人員及び危機が現場に到着するまでに時間がかかり、その間に延焼区域が広がるかまたは火災発生区域から離れた区域で火災があり、適切な消火活動ができない恐れがある。
本発明は、森林などの広い区域において火災検知を行うことで、速やかな消火活動を可能にする火災検知システム及び火災検知方法を提供することを目的とする。
In the above-mentioned patent document 1, since the fire information is displayed on the display means, the supervisor can easily detect the fire. In addition, by displaying the fire information on the display means, it is possible to analyze at the time of early detection and investigation of the cause of the fire by knowing the time and elapsed time of the fire, the place where the fire occurred, and the scale of the fire Become. Furthermore, it can be used as data for restoration and construction of important facilities.
Furthermore, it is an effective means for a fire that has occurred in a narrow area, as it is only necessary to expedite fire extinguishing activities at the site where the fire occurred. However, in large areas such as forests, the monitoring range is widened, and it takes time for the extinguishing personnel and the crisis to arrive at the scene, during which the fire spread area spreads or fires occur in areas away from the fire occurrence area. There is a risk that proper fire fighting may not be possible.
An object of the present invention is to provide a fire detection system and a fire detection method that enable quick fire extinguishing activities by performing fire detection in a wide area such as a forest.
 上記の目的を達成するために、本発明の火災検知システム及び火災検知方法は、複数台の赤外線カメラと、複数台の可視カメラにより、森林の火災監視を行うシステムにおいて、前記複数台の遠赤外線カメラまたは前記複数台の可視カメラのいずれか1台を操作する操作装置と、複数台の前記赤外線カメラ及び可視カメラの相互位置関係を示す位置関連情報及びそれぞれのカメラの旋回の向きや旋回量を示すプリセット旋回量情報が登録されているプリセット情報テーブルを有する制御装置とを備え、前記制御装置は火災を検知すると、前記プリセット情報テーブルの位置関連情報とプリセット旋回量情報とに基づき、前記可視カメラを火災検知位置に旋回する制御を行い、前記制御装置は環境情報を元に火災の延焼方向を予測し、前記操作装置に予測した前記延焼方向を表示するものである。 In order to achieve the above object, the fire detection system and the fire detection method of the present invention are a system for monitoring a forest fire with a plurality of infrared cameras and a plurality of visible cameras. An operation device for operating any one of the camera or the plurality of visible cameras, position-related information indicating a mutual positional relationship between the plurality of infrared cameras and the visible cameras, and a turning direction and a turning amount of each camera. A control device having a preset information table in which preset turning amount information is registered, and when the control device detects a fire, based on the position related information and the preset turning amount information in the preset information table, the visible camera To the fire detection position, the control device predicts the fire spread direction based on environmental information, and It is for displaying the fire direction predicted in the apparatus.
 即ち、本発明の火災検知システムは、複数のプリセット区域に分割された監視区域と、所定の前記プリセット区域を撮像し、撮像した赤外線映像を送信するプリセット動作を行う赤外線カメラ部と、指定された位置座標の区域を撮像し、撮像した可視映像送信する可視カメラ部と、気象情報を観測する気象観測計と、監視者が監視する監視端末と、前記赤外線カメラ部、前記可視カメラ部、前記気象観測計、及び前記監視端末を制御する制御装置とを備えた火災検知システムであって、前記赤外線カメラ部は、前記制御装置の制御によって、前記所定の前記プリセット区域を所定の周期でプリセット移動して撮像し、撮像した赤外線映像を送信し、前記可視カメラ部は、パン角、チルト角及びズーム倍率を変更して、前記制御装置から指定された位置座標の区域を撮像し、撮像した可視映像送信し、前記気象観測計は、設置場所の気象状態を観測し、前記監視端末は、前記制御装置から送信される赤外線映像及び可視映像、並びに赤外線カメラ部及び可視カメラ部のマップ情報を、表示部に表示し、火災ボタンが押されたか否定ボタンが押された場合には、当該捜査結果を前記制御装置に送信し、前記制御装置は、前記監視端末から操作結果として、否定ボタンが押された場合には、前記赤外線カメラ部の前記プリセット動作を再開することを特徴とする。 That is, the fire detection system of the present invention is designated as a monitoring area divided into a plurality of preset areas, an infrared camera unit that performs a preset operation for imaging the predetermined preset area and transmitting the captured infrared image. A visible camera unit that captures an area of position coordinates and transmits a captured visual image, a weather observation device that observes weather information, a monitoring terminal that is monitored by a supervisor, the infrared camera unit, the visible camera unit, and the weather A fire detection system comprising an observation meter and a control device for controlling the monitoring terminal, wherein the infrared camera unit moves the predetermined preset area at a predetermined cycle under the control of the control device. The visible camera unit changes the pan angle, tilt angle, and zoom magnification, and designates from the control device. The area of the position coordinates is captured, and the captured visual image is transmitted, the meteorological observation device observes the weather condition of the installation location, and the monitoring terminal transmits an infrared image and a visible image transmitted from the control device, In addition, the map information of the infrared camera unit and the visible camera unit is displayed on the display unit, and when the fire button is pressed or the negative button is pressed, the investigation result is transmitted to the control device. The preset operation of the infrared camera unit is resumed when a negative button is pressed as an operation result from the monitoring terminal.
 また、上記本発明の火災検知システムにおいて、前記制御装置は、前記監視端末から操作結果として、火災ボタンが押された場合には、前記赤外線カメラ部の前記プリセット動作を停止することを第2の特徴とする。 In the fire detection system of the present invention, the control device may stop the preset operation of the infrared camera unit when the fire button is pressed as an operation result from the monitoring terminal. Features.
 また、本発明の火災検知方法は、複数のプリセット区域に分割された監視区域のうちの、所定の前記プリセット区域を撮像し、撮像した赤外線映像を制御装置に送信するプリセット動作を行い、画像処理によって火災が検出された場合には、当該火災が検出された位置を可視映像を撮像すると共に、気象観測計、気象衛星、または外部機関から受信した気象情報の少なくともいずれかの気象情報によって、延焼方向を予測し、前記可視映像と共に、前記予測した延焼方向を前記監視区域を示すマップ上に表示した表示画像を、監視端末に送信し、前記監視端末に前記可視映像と前記表示画像を表示し、火災ボタンが押された場合には、実際に火災が発生したと判定して前記赤外線カメラ部の前記プリセット動作を停止し、否定ボタンが押された場合には、前記赤外線カメラ部の前記プリセット動作を再開することを特徴とする。 Further, the fire detection method of the present invention performs a preset operation of imaging a predetermined preset area among monitoring areas divided into a plurality of preset areas, and transmitting the captured infrared image to the control device, and performing image processing. When a fire is detected by the above, a visual image is captured of the position where the fire was detected, and at least one of the meteorological information received from a weather station, a meteorological satellite, or an external organization A direction is predicted, a display image in which the predicted fire spread direction is displayed on a map indicating the monitoring area together with the visible video is transmitted to the monitoring terminal, and the visible video and the display image are displayed on the monitoring terminal. When the fire button is pressed, it is determined that a fire has actually occurred, the preset operation of the infrared camera unit is stopped, and the negative button is pressed. If the is characterized by resuming the preset operation of the infrared camera unit.
 本発明によれば、広い区域の火災の検知、火災を検知した区域の映像表示を自動で行うことにより、監視者の操作量が減り、的確な消火作業指示が可能となる。 According to the present invention, it is possible to automatically detect fire in a wide area and automatically display a video in the area where the fire is detected, thereby reducing the amount of operation by the supervisor and enabling accurate fire extinguishing work instructions.
本発明の火災検知システムの一実施例の構成を説明するためのブロック図である。It is a block diagram for demonstrating the structure of one Example of the fire detection system of this invention. 図1の火災検知システムの監視端末の表示部に表示される操作画面の一実施例について説明するための図である。It is a figure for demonstrating one Example of the operation screen displayed on the display part of the monitoring terminal of the fire detection system of FIG. 図2の操作画面に表示される監視カメラ設定表示エリアの表示の一実施例を説明するための図である。It is a figure for demonstrating one Example of the display of the monitoring camera setting display area displayed on the operation screen of FIG. 本発明の火災検知システム及び火災検知方法の一実施例の動作手順を説明するためのフローチャートである。It is a flowchart for demonstrating the operation | movement procedure of one Example of the fire detection system and fire detection method of this invention. 遠赤外線カメラが撮像するプリセット区域を説明するための図である。It is a figure for demonstrating the preset area which a far-infrared camera images. 本発明の火災検知システムの一実施例の構成を説明するためのブロック図である。It is a block diagram for demonstrating the structure of one Example of the fire detection system of this invention. 本発明の火災検知システムの一実施例の構成を説明するためのブロック図である。It is a block diagram for demonstrating the structure of one Example of the fire detection system of this invention. 本発明の火災検知システムの一実施例の構成を説明するためのブロック図である。It is a block diagram for demonstrating the structure of one Example of the fire detection system of this invention. 本発明の火災検知システムの一実施例の構成を説明するためのブロック図である。It is a block diagram for demonstrating the structure of one Example of the fire detection system of this invention.
 本発明は、複数台の遠赤外線カメラ等の赤外線カメラ及び複数台の可視カメラにより、森林の火災監視を行う火災検知システム及び火災検知方法であり、赤外線カメラはプリセット情報テーブルに登録してある複数箇所の監視を行い、赤外線カメラが撮像した赤外線画像から火災を検出すると、その赤外線カメラに追従させて他の可視カメラを火災検出方向に旋回させ、今後の延焼方向を予測し、監視端末に表示するものである。そして、監視端末に可視カメラが撮像した可視光映像を送信して、監視員に実際の火災であるか否かを確認させるものである。
以下に本発明の一実施形態について、図面等を用いて説明する。
なお、以下の説明は、本発明の一実施形態を説明するためのものであり、本願発明の範囲を制限するものではない。従って、当業者であればこれらの各要素若しくは全要素をこれと均等なものに置換した実施形態を採用することが可能であり、これらの実施形態も本願発明の範囲に含まれる。
また、各図の説明において、同一の機能を有する構成要素には同一の参照番号を付し、重複を避け、できるだけ説明を省略する。
The present invention relates to a fire detection system and a fire detection method for monitoring a forest fire using an infrared camera such as a plurality of far infrared cameras and a plurality of visible cameras, and the infrared cameras are registered in a preset information table. When a fire is detected from the infrared image captured by the infrared camera, the other visible camera is swung in the fire detection direction to predict the future fire spread direction and displayed on the monitoring terminal. To do. And the visible light image which the visible camera imaged is transmitted to a monitoring terminal, and it is made to make a monitoring person confirm whether it is an actual fire.
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
In addition, the following description is for describing one embodiment of the present invention, and does not limit the scope of the present invention. Accordingly, those skilled in the art can employ embodiments in which these elements or all of the elements are replaced with equivalent ones, and these embodiments are also included in the scope of the present invention.
In the description of each drawing, the same reference numerals are assigned to components having the same function, and the description is omitted as much as possible to avoid duplication.
 本発明の火災検知システムの一実施例を図1によって説明する。図1は、本発明の火災検知システムの一実施例の構成を説明するためのブロック図で、監視区域が森林で、当該森林における火災検知システムの一実施例の構成を説明するためのブロック図である。111と112は遠赤外線カメラ、121と122は可視カメラ、131~134はエンコーダ、140は監視区域内の所定の場所に設置された風速計、150はネットワーク、160はパーソナルコンピュータ等の監視端末、170は制御サーバである。また、制御サーバ170において、171はプリセット情報テーブル、172は気象情報メモリ、173は地図情報メモリ、174は雲台操作処理部、175は赤外線カメラ画像メモリ、176は赤外線カメラ画像処理部、177は延焼方向予測処理部、179は制御装置170の制御部である。遠赤外線カメラ111と112、及び可視カメラ121と122は、それぞれ、パン角及びチルト角を可変制御するための雲台と、ズーム倍率を可変制御するためのズーム機構を備えている。
なお、監視区域内に設置された赤外線カメラ111、112、可視カメラ121、122、及び風速計140等の各監視機器は、それらの機器の駆動電源として、種々考えられる。例えば、個々にまたは複数台にまとめて供給するための商用電源がある場合には、商用電源から供給を受ける場合もあるが、その他バッテリを備え、更に、太陽電池等を備えている場合もある。
An embodiment of the fire detection system of the present invention will be described with reference to FIG. FIG. 1 is a block diagram for explaining the configuration of an embodiment of the fire detection system of the present invention, and the block diagram for explaining the configuration of an embodiment of the fire detection system in the forest where the monitoring area is a forest. It is. 111 and 112 are far-infrared cameras, 121 and 122 are visible cameras, 131 to 134 are encoders, 140 is an anemometer installed at a predetermined place in the monitoring area, 150 is a network, 160 is a monitoring terminal such as a personal computer, Reference numeral 170 denotes a control server. In the control server 170, 171 is a preset information table, 172 is a weather information memory, 173 is a map information memory, 174 is a pan head operation processing unit, 175 is an infrared camera image memory, 176 is an infrared camera image processing unit, and 177 is The fire spread direction prediction processing unit 179 is a control unit of the control device 170. The far- infrared cameras 111 and 112 and the visible cameras 121 and 122 each include a pan head for variably controlling the pan angle and the tilt angle, and a zoom mechanism for variably controlling the zoom magnification.
Various monitoring devices such as the infrared cameras 111 and 112, the visible cameras 121 and 122, and the anemometer 140 installed in the monitoring area can be considered as drive power sources for these devices. For example, when there is a commercial power supply for supplying individually or collectively to a plurality of units, the supply may be received from the commercial power supply, but other batteries may be provided, and a solar cell may be further provided. .
 図1において、遠赤外線カメラ111と112、及び可視カメラ121と122は、監視区域内の所定の位置に分散して配置され、それぞれ、指定された画角内を撮像し、撮像した映像を映像信号として出力する。
エンコーダ131は、遠赤外線カメラ111から入力された映像をネットワーク150が伝送可能な形式の映像データに変換してネットワーク150を介して制御装置170に送信する。同様に、エンコーダ132は、遠赤外線カメラ112から入力された映像をネットワーク150が伝送可能な形式の映像データに変換してネットワーク150を介して制御装置170に送信する。
エンコーダ133は、可視カメラ121から入力された映像をネットワーク150が伝送可能な形式の映像データに変換してネットワーク150を介して制御装置170に送信する。同様に、エンコーダ134は、可視カメラ122から入力された映像をネットワーク150が伝送可能な形式の映像データに変換してネットワーク150を介して制御装置170に送信する。
風速計140は、設置場所の風速及び風向を観測し、所定の周期でネットワーク150を介して制御装置170に送信する。
In FIG. 1, far- infrared cameras 111 and 112, and visible cameras 121 and 122 are arranged at predetermined positions in a monitoring area, and each captures an image within a designated angle of view, and displays the captured video. Output as a signal.
The encoder 131 converts the video input from the far-infrared camera 111 into video data in a format that can be transmitted by the network 150 and transmits the video data to the control device 170 via the network 150. Similarly, the encoder 132 converts the video input from the far-infrared camera 112 into video data in a format that can be transmitted by the network 150 and transmits the video data to the control device 170 via the network 150.
The encoder 133 converts the video input from the visible camera 121 into video data in a format that can be transmitted by the network 150 and transmits the video data to the control device 170 via the network 150. Similarly, the encoder 134 converts the video input from the visible camera 122 into video data in a format that can be transmitted by the network 150, and transmits the video data to the control device 170 via the network 150.
The anemometer 140 observes the wind speed and the wind direction at the installation location, and transmits them to the control device 170 via the network 150 at a predetermined cycle.
 本発明の火災検知システムの構成においては、遠赤外線カメラ等の赤外線カメラが撮像する監視区域(後述のプリセット区域)を撮像可能な可視カメラを必ず設けている。図1の実施例では、遠赤外線カメラ111に対して、可視カメラ121が同一の監視区域を撮像可能に設置され、遠赤外線カメラ112に対して、可視カメラ122が同一の監視区域を撮像可能に設置されている。しかし、赤外線カメラ1台に1台の可視カメラが対応する必要はなく、1台の可視カメラが複数の赤外線カメラの監視区域またはそれらの1部の監視区域をカバーするように、可視カメラを設置しても良い。また、1台の赤外線カメラに複数台の可視カメラが同時に同一の監視区域を撮像可能に設置されていても良い。
なお、遠赤外線カメラ111、112及び可視カメラ121、122がWebカメラの場合には、エンコーダは不要である。
In the configuration of the fire detection system of the present invention, a visible camera capable of imaging a monitoring area (a preset area described later) captured by an infrared camera such as a far-infrared camera is always provided. In the embodiment of FIG. 1, the visible camera 121 is installed so as to be able to capture the same monitoring area with respect to the far-infrared camera 111, and the visible camera 122 is capable of capturing the same monitoring area with respect to the far-infrared camera 112. is set up. However, one visible camera does not have to correspond to one infrared camera, and a visible camera is installed so that one visible camera covers the surveillance area of multiple infrared cameras or a part of them. You may do it. In addition, a plurality of visible cameras may be installed on one infrared camera so that the same surveillance area can be imaged simultaneously.
Note that when the far- infrared cameras 111 and 112 and the visible cameras 121 and 122 are Web cameras, an encoder is not necessary.
 ネットワーク150は、エンコーダ131~134、風速計140、監視端末160、及び、制御装置170それぞれの間の通信媒体として機能する。
監視者は、監視端末160の操作画面161(後述)を見ながら、制御装置170の操作、及び、他の監視端末との通信等のために、入出力装置(図示しない)を使って操作するものである。
制御装置170は、ネットワーク150を介して、遠赤外線カメラ111、112、可視カメラ121、122、及び風速計140と相互に通信を行う。
The network 150 functions as a communication medium among the encoders 131 to 134, the anemometer 140, the monitoring terminal 160, and the control device 170.
The monitor operates using the input / output device (not shown) for the operation of the control device 170 and communication with other monitoring terminals while looking at the operation screen 161 (described later) of the monitoring terminal 160. Is.
The control device 170 communicates with the far- infrared cameras 111 and 112, the visible cameras 121 and 122, and the anemometer 140 via the network 150.
 図2によって、本発明の火災検知システムの監視端末160について説明する。図2は、図1の森林火災システムの監視端末の表示部に表示される操作画面の一実施例について説明するための図である。
161は操作画面、162は赤外線カメラ111、112及び可視カメラ121、122のうち、選択されたカメラの出力映像を表示する映像表示エリア、163は監視区域のマップとそのマップ上のどの位置にカメラが設置されているかを示すアイコンを表示する監視カメラ設置表示エリア、164は図示しない操作者が入出力装置からGUI操作等によって操作するためのボタン等の操作図形を表示する操作ボタン表示エリア、165は操作ボタン表示エリア164内の選択したカメラのパン角とチルト角を操作するための雲台操作ボタン、166は操作ボタン表示エリア164内の選択されたカメラのズーム倍率を変更するためのズーム倍率変更ボタン、167は風速計140が観測した風速及び風向情報等の気象情報を表示する気象情報表示エリア、181は火災ボタン、182は否定ボタンである。
また、監視カメラ設置表示エリア163において、168はカメラ表示エリア、111aはカメラ表示エリア168に表示される遠赤外線カメラ111を表すカメラアイコン、112aはカメラ表示エリア168に表示される遠赤外線カメラ112を表すカメラアイコン、121aはカメラ表示エリア168に表示される可視カメラ121を表すカメラアイコン、122aはカメラ表示エリア168に表示される可視カメラ122を表すカメラアイコンである。また、操作ボタン表示エリア164において、111bは遠赤外線カメラ111を表すカメラ選択ボタン、112bは遠赤外線カメラ112を表すカメラ選択ボタン、121bは可視カメラ121を表すカメラ選択ボタン、122bは可視カメラ122を表すカメラ選択ボタンである。
本発明の監視端末160は、少なくとも、このような操作画面を表示するための表示部と、CPU、及び操作者が操作画面を操作するための入出力装置を備えている(図示しない)。
The monitoring terminal 160 of the fire detection system of the present invention will be described with reference to FIG. FIG. 2 is a diagram for explaining an embodiment of the operation screen displayed on the display unit of the monitoring terminal of the forest fire system of FIG.
161 is an operation screen, 162 is a video display area for displaying the output video of the selected camera among the infrared cameras 111 and 112 and the visible cameras 121 and 122, 163 is a map of the monitoring area, and the camera at which position on the map Surveillance camera installation display area for displaying an icon indicating whether or not is installed. 164 is an operation button display area for displaying an operation graphic such as a button for an operator (not shown) to operate by a GUI operation or the like from an input / output device. Is a pan head operation button for operating the pan angle and tilt angle of the selected camera in the operation button display area 164, and 166 is a zoom magnification for changing the zoom magnification of the selected camera in the operation button display area 164. A change button 167 is a weather for displaying weather information such as wind speed and direction observed by the anemometer 140 Broadcast display area, 181 fire button, the 182 is negative button.
In the surveillance camera installation display area 163, 168 is a camera display area, 111 a is a camera icon representing the far-infrared camera 111 displayed in the camera display area 168, and 112 a is a far-infrared camera 112 displayed in the camera display area 168. A camera icon 121a is a camera icon representing the visible camera 121 displayed in the camera display area 168, and a camera icon 122a is a camera icon representing the visible camera 122 displayed in the camera display area 168. In the operation button display area 164, 111b is a camera selection button representing the far- infrared camera 111, 112b is a camera selection button representing the far- infrared camera 112, 121b is a camera selection button representing the visible camera 121, and 122b is the visible camera 122. This is a camera selection button.
The monitoring terminal 160 of the present invention includes at least a display unit for displaying such an operation screen, a CPU, and an input / output device for an operator to operate the operation screen (not shown).
 図2において、操作画面161は、少なくとも、映像表示エリア162、監視カメラ設置表示エリア163、操作ボタン表示エリア164、風速計140の気象情報表示エリアを表示する。
映像表示エリア162には、監視カメラ設置表示エリア163に表示されているカメラアイコン111a、112a、121a、122a、または、操作ボタン表示エリア164に表示されているカメラ選択ボタン111b、112b、121b、122bにて選択された遠赤外線カメラ111、112、または可視カメラ121、122のいずれかが撮像した映像が表示される。
In FIG. 2, the operation screen 161 displays at least a video display area 162, a monitoring camera installation display area 163, an operation button display area 164, and a weather information display area of the anemometer 140.
In the video display area 162, camera icons 111a, 112a, 121a, 122a displayed in the monitoring camera installation display area 163, or camera selection buttons 111b, 112b, 121b, 122b displayed in the operation button display area 164 are displayed. The image captured by either the far- infrared camera 111 or 112 or the visible camera 121 or 122 selected in (1) is displayed.
 監視カメラ設置表示エリア163には、制御サーバ170の地図情報メモリ173に保存された監視区域の概要と、その監視区域における遠赤外線カメラ111、112、または可視カメラ121、122の設置場所に対応させたカメラアイコン111a~122aが表示される。
 また、これらのカメラアイコン111a~122aは、制御サーバ170のプリセット情報テーブル151に登録されている位置関係情報に応じて表示されるものである。例えば、監視カメラ設置表示エリア163の左から順に遠赤外線カメラ111、可視カメラ121、遠赤外線カメラ112、可視カメラ122の順に配置されている。
The monitoring camera installation display area 163 corresponds to the outline of the monitoring area stored in the map information memory 173 of the control server 170 and the installation location of the far- infrared cameras 111 and 112 or the visible cameras 121 and 122 in the monitoring area. The camera icons 111a to 122a are displayed.
The camera icons 111a to 122a are displayed according to the positional relationship information registered in the preset information table 151 of the control server 170. For example, the far-infrared camera 111, the visible camera 121, the far-infrared camera 112, and the visible camera 122 are arranged in this order from the left of the monitoring camera installation display area 163.
 さらに、操作ボタン表示エリア164には、監視区域における遠赤外線カメラ111、112及び可視カメラ121、122のカメラ選択ボタン111b~122bと、遠赤外線カメラ111、112及び可視カメラ121、122のいずれか1台の旋回を操作する旋回操作ボタン165と、気象情報メモリ157に保存された気象情報(本実施例では、風速及び風向)を示す気象情報表示エリア166とが表示されている。 Further, the operation button display area 164 includes camera selection buttons 111b to 122b of the far- infrared cameras 111 and 112 and the visible cameras 121 and 122 in the monitoring area, and any one of the far- infrared cameras 111 and 112 and the visible cameras 121 and 122. A turn operation button 165 for operating the turn of the table, and a weather information display area 166 showing weather information (wind speed and direction in the present embodiment) stored in the weather information memory 157 are displayed.
 また好ましくは、操作者の操作に応じて操作器からこれらのカメラアイコン111a~122aのいずれかが選択されると、その選択されたカメラアイコン111a~122a及びカメラ名称表示部111b~122bが、例えば青色等によって別の色(例えば青色)が表示されるようにしても良い。
これにより、選択されたカメラアイコン111a~122aのいずれかと、選択されていないカメラアイコン111a~122aとの区別が容易になる。
また、カメラアイコン111a~122aのいずれかが選択されると、その選択されたカメラアイコン111a~122aに対応するカメラ(遠赤外線カメラ111、112または可視カメラ121、122)が撮像した映像が、上記の映像表示エリア162に表示される。この時好ましくは、選択されたカメラに対応するカメラアイコン及びカメラ選択ボタンの表示色を、別の色(例えば青色)で表示するようにしても良い。
これにより、選択されたカメラアイコン111a~122aのいずれかと、選択されていないカメラアイコン111a~122aとの区別が容易になる。
逆の言い方をすると、監視カメラ設置エリア163では、カメラアイコン映像表示エリア162に表示されている映像を撮像したカメラに対応するカメラアイコンが、青色表示や点滅表示等の手段によって、強調表示されるようにしても良い。同様に、操作ボタン表示エリア164のカメラアイコン映像表示エリア162に表示されている映像を撮像したカメラに対応するカメラ選択ボタンが、青色表示や点滅表示等の手段によって、強調表示されるようにしても良い。さらに好ましくは、強調表示は、カメラアイコンとカメラ選択ボタンとで、同一の様式で強調表示されるようにしても良い。
この結果、カメラアイコン111a~122a、及びカメラ選択ボタン111b~122bのどれが選択されているかが、操作者には迅速容易に区別できる。
Preferably, when any one of these camera icons 111a to 122a is selected from the operating device in accordance with the operation of the operator, the selected camera icons 111a to 122a and the camera name display units 111b to 122b are, for example, Another color (for example, blue) may be displayed in blue or the like.
As a result, any of the selected camera icons 111a to 122a can be easily distinguished from the unselected camera icons 111a to 122a.
When any one of the camera icons 111a to 122a is selected, the video image captured by the camera (far infrared camera 111 or 112 or visible camera 121 or 122) corresponding to the selected camera icon 111a to 122a is displayed. Are displayed in the video display area 162. In this case, preferably, the display color of the camera icon and the camera selection button corresponding to the selected camera may be displayed in another color (for example, blue).
As a result, any of the selected camera icons 111a to 122a can be easily distinguished from the unselected camera icons 111a to 122a.
In other words, in the surveillance camera installation area 163, the camera icon corresponding to the camera that captured the image displayed in the camera icon image display area 162 is highlighted by means such as blue display or blinking display. You may do it. Similarly, the camera selection button corresponding to the camera that captured the video displayed in the camera icon video display area 162 in the operation button display area 164 is highlighted by means such as blue display or blinking display. Also good. More preferably, the highlighting may be highlighted in the same manner by the camera icon and the camera selection button.
As a result, the operator can quickly and easily distinguish which of the camera icons 111a to 122a and the camera selection buttons 111b to 122b is selected.
 図1における制御装置170は、それぞれの遠赤外線カメラ111、112、可視カメラ121、122の相互の位置関係を示す位置関係情報と、遠赤外線カメラ111、112、及び可視カメラ121、122それぞれの旋回量(パン角及びチルト角、並びにズーム倍率)を示す旋回量情報とが登録されているプリセット情報テーブル171を有している。
また、制御装置170は、風速計140の情報を保存する気象情報メモリ172を有する。
また、制御装置170は、監視区域の概要と延焼方向予測結果を保存する地図情報メモリ173を有する。
また、制御装置170は、監視端末160からの操作に応じて、赤外線カメラまたは可視カメラのいずれか1台の旋回量(パン角及びチルト角、並びにズーム倍率)を制御する雲台制御処理部174を有する。
雲台制御部174は、定期的に、上記のプリセット情報テーブル151の位置関係情報とプリセットのための旋回量情報とに基づき、遠赤外線カメラ111、112を自動で旋回させ、ズーム倍率を変更する。
また、制御装置170は、遠赤外線カメラ111、112が撮像した画像データを保存する遠赤外線カメラメモリ175を有する。
また、制御装置170は、遠赤外線カメラメモリ173に保存された画像データをもとに、たとえば遠赤外線カメラ111によって火災が撮像されたかどうかを判断するための画像認識判別処理を行う遠赤外線カメラ画像処理部176を有する。
即ち、遠赤外線カメラ画像処理部176は、撮像した映像におけるフレーム間の画像データの変化を検出することで、火災が発生したかどうかを判断する。
The control device 170 in FIG. 1 includes positional relationship information indicating the mutual positional relationship between the far- infrared cameras 111 and 112 and the visible cameras 121 and 122, and turning of the far- infrared cameras 111 and 112 and the visible cameras 121 and 122, respectively. It has a preset information table 171 in which turning amount information indicating amounts (pan angle and tilt angle and zoom magnification) is registered.
In addition, the control device 170 has a weather information memory 172 that stores information on the anemometer 140.
In addition, the control device 170 has a map information memory 173 that stores an overview of the monitored area and a result of predicting the spread of fire direction.
In addition, the control device 170 controls the panning amount (pan angle and tilt angle, and zoom magnification) of either one of the infrared camera or the visible camera in accordance with an operation from the monitoring terminal 160. Have
The pan head control unit 174 periodically turns the far- infrared cameras 111 and 112 based on the positional relationship information in the preset information table 151 and the turning amount information for the preset periodically to change the zoom magnification. .
In addition, the control device 170 has a far infrared camera memory 175 that stores image data captured by the far infrared cameras 111 and 112.
Further, the control device 170 performs image recognition determination processing for determining, for example, whether or not the fire is captured by the far-infrared camera 111 based on the image data stored in the far-infrared camera memory 173. A processing unit 176 is included.
That is, the far-infrared camera image processing unit 176 determines whether or not a fire has occurred by detecting a change in image data between frames in the captured video.
 また、制御装置170は、気象情報メモリ172の気象情報と、上記のプリセット情報テーブル171の位置関係情報とプリセット旋回量情報とを元に、延焼シミュレーションを行い、その結果を地図情報メモリ173に保存する延焼方向予測処理部177を有する。なお、延焼方向予測処理は浜田の延焼速度式等の既存の延焼予測シミュレーションを用いて実行する。 The control device 170 performs a fire spread simulation based on the weather information in the weather information memory 172, the positional relationship information in the preset information table 171 and the preset turning amount information, and the result is stored in the map information memory 173. A fire spread direction prediction processing unit 177 is provided. Note that the fire spread direction prediction processing is executed using an existing fire spread prediction simulation such as Hamada's fire spread rate formula.
 図1~図4を用いて、本発明の火災検知システムと火災検知方法の一実施例について説明する。図3は、図2の監視カメラ設定表示エリア163の表示の一実施例を説明するための図である。図4は、本発明の火災検知システム及び火災検知方法の一実施例の動作手順を説明するためのフローチャートである。この動作は、制御装置170の制御部179が実行する。 1 to 4 will be used to explain an embodiment of the fire detection system and fire detection method of the present invention. FIG. 3 is a diagram for explaining an example of display in the monitoring camera setting display area 163 of FIG. FIG. 4 is a flowchart for explaining an operation procedure of an embodiment of the fire detection system and the fire detection method of the present invention. This operation is executed by the control unit 179 of the control device 170.
 監視カメラ設定表示エリア163の桝目は、それぞれ、監視区域全体を、遠赤外線カメラが、所定のプリセット位置で撮像する場合の撮像範囲(以降、プリセット区域と称する)を示している。遠赤外線カメラ111a、112aはそれぞれ、所定の時間間隔でプリセットのための旋回量情報(プリセット情報)に基づき、制御装置170からの制御を受け、雲台及びズームレンズを制御してパン角、チルト角及びズーム倍率を変更し、所定のプリセット位置で撮像する。また、201は遠赤外線カメラ111aが火災発生を検出したと判断したプリセット区域、201a~202eは延焼が予測されるプリセット区域である。それぞれの遠赤外線カメラは、あらかじめ登録されたプリセット位置を有し、所定の周期で登録されたプリセット位置に旋回(移動)してそのプリセット区域を撮像し、撮像した赤外線映像をエンコーダ及びネットワークを介して制御装置170に送信する。制御装置170の制御部179は、受信した赤外線映像を赤外線カメラ画像メモリ175に保存する。 The grids in the monitoring camera setting display area 163 indicate the imaging range (hereinafter referred to as a preset area) when the far infrared camera images the entire monitoring area at a predetermined preset position. The far- infrared cameras 111a and 112a are controlled by the control device 170 based on turning amount information (preset information) for presetting at predetermined time intervals, and control the pan head and zoom lens to control the pan angle and tilt. The angle and zoom magnification are changed, and imaging is performed at a predetermined preset position. Reference numeral 201 denotes a preset area where the far-infrared camera 111a determines that a fire has been detected, and 201a to 202e denote preset areas where the spread of fire is predicted. Each far-infrared camera has a preset position registered in advance, and rotates (moves) to a preset position registered at a predetermined cycle to image the preset area, and the captured infrared image is transmitted via an encoder and a network. To the control device 170. The control unit 179 of the control device 170 stores the received infrared video in the infrared camera image memory 175.
 以下の動作は、それぞれの遠赤外線カメラ111及び112が、独立に動作し、独立に制御装置170と通信し、かつ、制御装置170は、遠赤外線カメラ111及び112をそれぞれ、別々に制御する。例えば、図5に示すように、遠赤外線カメラ111は、監視区域163内のプリセット区域1p1、1p2、1p3の順番に、所定の周期でプリセット位置を変更して、当該プリセット位置で撮像して、撮像した映像を制御装置170に送信する。
なお、以下の説明は、遠赤外線カメラ111と可視カメラ121によって説明する。また、気象情報メモリ172には、風速計等の気象観測計から送信される観測データ(気象情報)が入力され、常に保存され続けている。また、後述の実施例2~実施例5において述べる気象観測計、気象衛星からの気象情報、及び気象庁等、外部機関から送信される気象情報等、入力されるすべての気象情報が、常に気象情報メモリ172に保存され続けている。
In the following operations, the far- infrared cameras 111 and 112 operate independently and communicate with the control device 170 independently, and the control device 170 controls the far- infrared cameras 111 and 112 separately. For example, as shown in FIG. 5, the far-infrared camera 111 changes the preset position in a predetermined cycle in the order of the preset areas 1p1, 1p2, and 1p3 in the monitoring area 163, and performs imaging at the preset position. The captured image is transmitted to the control device 170.
In addition, the following description is demonstrated by the far-infrared camera 111 and the visible camera 121. FIG. Further, observation data (meteorological information) transmitted from a weather observation device such as an anemometer is input to the weather information memory 172 and is always stored. In addition, all meteorological information input such as meteorological observation meters, meteorological information from meteorological satellites, and meteorological information transmitted from external organizations such as the Japan Meteorological Agency are always met It continues to be stored in the memory 172.
 まず、ステップS1では、プリセット区域を示すID番号であるiを初期化する(i=1)。
ステップS2では、プリセット区域iのプリセット位置に遠赤外線カメラ111をプリセット移動する。
ステップS3では、遠赤外線カメラ111はプリセット区域iを撮像し、撮像した映像を制御装置170に送信する。
ステップS4では、赤外線カメラ画像メモリ175に映像を保存する。
ステップS5では、赤外線カメラ画像処理部176で、背景画像との差分または前のフレームの画像との差分を求め、2値化する等の画像処理を行う。
ステップS6では、画像処理の結果から、火災が検出されたか否かを判断する。例えば、所定の温度(例えば、80℃)以上の画素のかたまりがあるか否かを画像処理によって検出する。火災が検出されたと判断した場合には、ステップS7に分岐する。また、火災が検出されないと判断した場合には、ステップS12に分岐する。
First, in step S1, i, which is an ID number indicating a preset area, is initialized (i = 1).
In step S2, the far-infrared camera 111 is preset moved to the preset position in the preset area i.
In step S <b> 3, the far-infrared camera 111 captures the preset area i and transmits the captured image to the control device 170.
In step S4, the video is stored in the infrared camera image memory 175.
In step S5, the infrared camera image processing unit 176 obtains a difference from the background image or a difference from the image of the previous frame, and performs image processing such as binarization.
In step S6, it is determined from the image processing result whether or not a fire has been detected. For example, it is detected by image processing whether there is a cluster of pixels having a predetermined temperature (for example, 80 ° C.) or more. If it is determined that a fire has been detected, the process branches to step S7. If it is determined that no fire is detected, the process branches to step S12.
ステップS7では、可視カメラ121を火災が検出されたプリセット区域iに旋回させ、場合によってはズーム倍率も変更させる。例えば、制御部179は、プリセット情報テーブル171の位置関係情報とプリセット旋回量情報とに基づき、可視カメラ121を旋回させる(また、ズーム倍率を変更する)。
ステップS8では、旋回が終了した可視カメラ121は、火災が検出されたプリセット区域iを撮像し、撮像した映像を制御装置170に送信する。
ステップS9では、制御装置170の延焼方向予測処理部177は、シミュレーション処理して、所定時間後の延焼方向と延焼予測区域を求める。所定時間後に延焼することが予測される区域(延焼予測区域)の大きさは、通常、監視区域を分割したプリセット区域毎に求め、所定時間後に延焼することが予測される延焼予測区域であるかないかを判断する。例えば、延焼方向予測処理部177は、気象情報メモリ172の気象情報と、プリセット情報テーブル171位置関係情報及びプリセット旋回量情報とをもとに、延焼シミュレーションを行い所定時間後に延焼することが予測される延焼予測区域であるかないかをシミュレーションする。
In step S7, the visible camera 121 is turned to the preset area i where the fire is detected, and the zoom magnification is also changed in some cases. For example, the control unit 179 rotates the visible camera 121 (and changes the zoom magnification) based on the positional relationship information and the preset turning amount information in the preset information table 171.
In step S <b> 8, the visible camera 121 that has finished turning images the preset area i where the fire is detected, and transmits the captured image to the control device 170.
In step S9, the fire spread direction prediction processing unit 177 of the control device 170 performs a simulation process to obtain a fire spread direction and a fire spread prediction area after a predetermined time. The size of the area that is expected to spread after a certain period of time (expanded area) is usually determined for each preset area that divides the monitoring area, and is not the estimated area that is expected to spread after a certain period of time. Determine whether. For example, it is predicted that the fire spread direction prediction processing unit 177 performs a fire spread simulation based on the weather information in the weather information memory 172, the preset information table 171 positional relationship information, and the preset turning amount information and spreads after a predetermined time. Simulate whether or not it is a predicted fire spread area.
 ステップS10では、火災を検出したプリセット区域iと延焼予測区域を地図情報メモリ173に保存する。
ステップS11では、アラーム音を出力するように制御信号を各監視端末に送信し、各送信端末160は、アラームを出力すると共に、図3に示すように、監視カメラ設置表示エリア163において、火災発生場所に相当するプリセット区域に火災発生を示の記号(マーク)を表示し、次の所定時刻後に延焼すると予測したプリセット区域に延焼を示す記号(マーク)を表示する。
なお、延焼の複数の所定時間後に延焼するプリセット区域を示す場合には、それぞれ異なる色や記号(マーク)を表示するようにしても良い。
さらに好ましくは、表示色を別の色に変更するようしても良い、また、アイコンや枠等を点滅するようにしても良い。
さらに、監視カメラ設置表示エリア163において、火災が発生したプリセット区域、或いは、延焼が予測されるプリセット区域の記号や色と同じか類似する記号や色を同時に表示する赤外線カメラや可視カメラに施すことによって、次に監視員が、実際に火災が発生した否かを確認するための操作を行う時に、分かり易い。
またさらに、監視員が、操作器を操作することよってプリセット区域を選択すると、選択したプリセット区域の緯度や経度等に位置情報や、植生の情報、木造住宅や鉄筋住宅等の情報、至近の消火組織等の情報が、監視カメラ設置表示エリア163等に表示されるようにすると、監視員は、更に有益な情報が得られ、より適切な判断ができる。
In step S <b> 10, the preset area i where the fire is detected and the fire spread prediction area are stored in the map information memory 173.
In step S11, a control signal is transmitted to each monitoring terminal so as to output an alarm sound, and each transmitting terminal 160 outputs an alarm and, as shown in FIG. 3, a fire occurs in the monitoring camera installation display area 163. A symbol (mark) indicating the occurrence of a fire is displayed in a preset area corresponding to the place, and a symbol (mark) indicating the spread of fire is displayed in a preset area predicted to spread after the next predetermined time.
In addition, when showing the preset area which spreads after several predetermined time of a fire spread, you may make it display a respectively different color and a symbol (mark).
More preferably, the display color may be changed to another color, and icons, frames, and the like may be blinked.
Furthermore, in the surveillance camera installation display area 163, it is applied to an infrared camera or a visible camera that simultaneously displays a symbol or color that is the same as or similar to the symbol or color of a preset area where a fire has occurred or where a fire spread is predicted. Thus, it is easy to understand when the monitoring person next performs an operation for confirming whether or not a fire has actually occurred.
Furthermore, when the monitor selects a preset area by operating the operation unit, position information, vegetation information, information on wooden houses, rebar houses, etc., and extinguishing the nearest fire extinguisher are selected. If information such as an organization is displayed in the monitoring camera installation display area 163, the monitor can obtain more useful information and make a more appropriate determination.
 ステップS12では、iに1を加える(i=i+1)。
ステップS13では、iが当該遠赤外線カメラ111のプリセット位置の数nより大であるかないかを判定する(nは自然数)。iがnより小さいか等しければステップS2に分岐する。iがnより大(i>n)であればステップS1に分岐する。
以降、ステップS2からまたはステップS1の動作を繰り返す。
In step S12, 1 is added to i (i = i + 1).
In step S13, it is determined whether i is greater than the number n of preset positions of the far-infrared camera 111 (n is a natural number). If i is smaller than or equal to n, the process branches to step S2. If i is larger than n (i> n), the process branches to step S1.
Thereafter, the operation from step S2 or step S1 is repeated.
 上記の結果、制御装置170が火災の発生を検出した場合に、各監視端末160は、図2に示すように、表示部の操作画面161の映像表示エリア162には、自動的に旋回させた可視カメラ121が撮像した映像が表示され、監視カメラ設置表示エリア163には、火災の検出位置201及び延焼方向予測位置202a~202eが表示される。そして、監視端末160は、注意を促すアラーム音を出力する。なお、アラームは、警報等の聴覚的手段で伝達する他、発光等の視覚的手段で伝達するなど、いずれでも良いし、それらの複合でも良い。
なお、アラームを出力した後、監視員から、監視端末160を介して、火災か否かの情報を受信するまで、本フローチャートの処理は待機状態に入る。
しかし、監視員からの情報(火災発生か否か)が受信されない場合も考えられので、所定時間Zが経過しても情報受信が無い場合には、あらかじめ定められた関係者や関係部署(消防署、市役所、警察、森林等の管理事務所等)に通報するようにしても良い。
As a result, when the control device 170 detects the occurrence of a fire, each monitoring terminal 160 automatically turns to the video display area 162 of the operation screen 161 of the display unit as shown in FIG. The image captured by the visible camera 121 is displayed, and the fire detection position 201 and the fire spread direction predicted positions 202a to 202e are displayed in the monitoring camera installation display area 163. And the monitoring terminal 160 outputs the alarm sound which calls attention. The alarm may be transmitted by auditory means such as an alarm, or may be transmitted by visual means such as light emission, or may be a combination thereof.
In addition, after outputting an alarm, the process of this flowchart will be in a standby | waiting state until the information of whether it is a fire is received from the monitoring person via the monitoring terminal 160. FIG.
However, there is a possibility that information (whether or not a fire has occurred) is received from the observer, so if no information is received even after the predetermined time Z has elapsed, a predetermined person or department (fire department) , City offices, police, forest management offices, etc.).
 ステップS11において、監視端末160からアラームが出力されると、監視員は、先ず、近くの監視端末160の操作画面を見て、実際に火災が発生したか否かを確認する。
監視員は操作画面の映像表示エリア162の映像を見て、必要なら、他の遠赤外線カメラや他の可視カメラの映像を選択して表示する画像を切替えて、実際に火災が発生したか否かを確認する。
なお、映像表示エリア162に表示される映像は、通常設定では、現在撮像された映像であるが、過去に撮像された映像に遡って再生することも可能である。
In step S11, when an alarm is output from the monitoring terminal 160, the monitoring staff first checks the operation screen of the nearby monitoring terminal 160 to confirm whether or not a fire has actually occurred.
The monitor looks at the video in the video display area 162 on the operation screen, and if necessary, selects the video of another far-infrared camera or other visible camera and switches the image to be displayed. To check.
Note that the video displayed in the video display area 162 is the currently captured video in the normal setting, but can be reproduced retroactively to the video captured in the past.
 監視員は、実際には火災が発生していないと判断した場合には、操作画面の否定ボタン182を操作する(押す)。この操作結果は、監視端末160から制御装置170に送信され、制御装置170は、火災が無いとして、ステップS12に進む。 When the monitoring person determines that a fire has not actually occurred, the monitoring person operates (presses) the negative button 182 on the operation screen. The operation result is transmitted from the monitoring terminal 160 to the control device 170, and the control device 170 proceeds to step S12 assuming that there is no fire.
監視員は、火災が実際に発生したと判断した場合には、操作画面の火災ボタン181を操作する(押す)。この操作結果は、監視端末160から制御装置170に送信され、速やかに、関係者や関係部署に通報する。そして、火災発生場所や予測延焼方向または予測延焼場所が操作画面のマップ上で確認できる。このため、消火活動が迅速かつ容易に開始可能となる。例えば、監視員が火災ボタン181を操作(押)した場合には、火災が発生したことが制御装置170に送信される。すると、制御装置170は、この遠赤外線カメラの監視処理(図4のフローチャートの処理)を停止する。なお、設定によっては、他の遠赤外線カメラの処理も停止するようにしても良い。 When it is determined that a fire has actually occurred, the monitor operates (presses) the fire button 181 on the operation screen. The operation result is transmitted from the monitoring terminal 160 to the control device 170, and promptly notified to related parties and related departments. And a fire occurrence place, a predicted fire spread direction, or a predicted fire spread place can be confirmed on the map of the operation screen. For this reason, fire fighting activities can be started quickly and easily. For example, when the monitor operates (presses) the fire button 181, the fact that a fire has occurred is transmitted to the control device 170. Then, the control device 170 stops the monitoring process of the far-infrared camera (the process of the flowchart in FIG. 4). Depending on the setting, the processing of other far-infrared cameras may be stopped.
これにより、監視員は、常に、監視端末160を見て、各遠赤外線カメラが撮像した画像を見る必要がなくなる。この結果、監視活動の省人化が可能となる。また、操作画面上に表示される監視カメラ設置表示エリア163のマップから、火災の発生場所及び予測される延焼方向が分かるので、迅速かつ容易に消火作業指示を実行できる。 This eliminates the need for the monitoring staff to always look at the monitoring terminal 160 and view images captured by the far-infrared cameras. As a result, it is possible to save labor in monitoring activities. Further, since the location of the fire occurrence and the predicted fire spread direction can be known from the map of the monitoring camera installation display area 163 displayed on the operation screen, a fire extinguishing work instruction can be executed quickly and easily.
 上述の実施例では、複数台の遠赤外線カメラ及び複数台の可視カメラにより、火災検知を行うシステムであった。しかし、1台の赤外線カメラと1台の可視カメラで火災検知を行うシステムとしても運用可能である。また、1台の赤外線カメラと複数台の可視カメラを組み合わせて火災検知を行うシステムとしても運用可能である。また、複数台の赤外線カメラと1台の可視カメラを組み合わせて火災検知を行うシステムとしても運用可能である。 In the above-described embodiment, the fire detection system is based on a plurality of far-infrared cameras and a plurality of visible cameras. However, it can also be operated as a system that detects fire with one infrared camera and one visible camera. It can also be operated as a system for detecting fire by combining one infrared camera and a plurality of visible cameras. It can also be operated as a system that detects fire by combining a plurality of infrared cameras and one visible camera.
 図6は、本発明の火災検知システムの第2の実施例の構成を説明するためのブロック図である。上述の第1の実施例(実施例1)では、監視端末160を1台として説明した。しかし、図6の実施例2に示すように、監視端末160の他、ネットワーク150を介して複数台の監視端末601を設け、監視端末160、601のいずれかの監視端末を使って監視員が制御装置170で検出した情報を確認し、実際に火災が発生したかを確認しても良い。その場合には、制御装置170は、最初に受信した情報(火災発生か否かの情報)を優先して、上記図4のフローチャートの処理を行う。 FIG. 6 is a block diagram for explaining the configuration of the second embodiment of the fire detection system of the present invention. In the first embodiment (embodiment 1) described above, a single monitoring terminal 160 has been described. However, as shown in the second embodiment of FIG. 6, in addition to the monitoring terminal 160, a plurality of monitoring terminals 601 are provided via the network 150, and the monitoring staff can use one of the monitoring terminals 160 and 601. Information detected by the control device 170 may be confirmed to confirm whether a fire has actually occurred. In that case, the control device 170 performs the processing of the flowchart of FIG. 4 with priority given to the information received first (information on whether or not a fire has occurred).
 なお、監視端末若しくは監視員に優先順位を設け、最初に受信した情報(火災発生か否かの情報)があっても、所定の時間Y内に優先順位の高い監視端末若しくは監視員から逆の情報(例えば、最初の情報が火災ではない、優先順位が高い監視端末若しくは監視員からは火災であるとの情報)があれば、制御装置170は、最初の情報を無視して、逆の情報に応じて処理を行う。 In addition, even if there is a priority order for the monitoring terminal or the monitoring staff and there is the first received information (information on whether or not a fire has occurred), the monitoring terminal or monitoring staff with the higher priority within the predetermined time Y will reverse If there is information (for example, information indicating that the first information is not a fire, or a high-priority monitoring terminal or monitoring person is a fire), the control device 170 ignores the first information and reverse information. Depending on the process.
 実施例2によれば、複数の監視端末で監視することができるため、実施例1に比べ、さらに迅速かつ適切な火災検知を実現できる。また、1台の監視端末がダウンしても、他の監視端末が処理できるので、システムの信頼性が向上する。 According to the second embodiment, since it is possible to monitor with a plurality of monitoring terminals, it is possible to realize more rapid and appropriate fire detection than in the first embodiment. In addition, even if one monitoring terminal goes down, other monitoring terminals can perform processing, thereby improving the reliability of the system.
 上述の実施例1または実施例2では、制御装置170の気象情報メモリ172には、風速計140から受信した風速及び風向が保存され、延焼方向予測処理部177は、気象情報として風速及び風向鑿を利用して延焼方向を予測していた。
しかし、図7の第3の実施例に示すように、他の気象観測計701-1~701-m(mは自然数)を用い、それらの観測情報を気象情報として気象情報メモリ172に保存し、延焼方向予測処理部177が、気象情報としてこれらの気象情報を利用して延焼方向を予測するようにしても良い。例えば、気象観測計701-1~701-mは、それぞれ、接地場所の気象状態を観測し、観測した情報を、ネットワーク150を介して、制御装置170に送信する。制御装置170の制御部179は、受信した気象状態を気象情報メモリ172に保存する。
図7は、本発明の火災検知システムの第3の実施例の構成を説明するためのブロック図である。
なお、気象観測計701-1~701-mは、例えば、温度計、湿度計、照度計、及び雨量計、並びに河川の水位計等である。
実施例3によれば、延焼方向の予測が実施例1や実施例2よりも適切に実行できるので、システムの信頼性が一層向上する。
In the first embodiment or the second embodiment described above, the wind speed and the wind direction received from the anemometer 140 are stored in the weather information memory 172 of the control device 170, and the fire spread direction prediction processing unit 177 stores the wind speed and the wind direction as weather information. Was used to predict the direction of fire spread.
However, as shown in the third embodiment of FIG. 7, other meteorological observation meters 701-1 to 701-m (m is a natural number) are used, and the observation information is stored in the weather information memory 172 as weather information. The fire spread direction prediction processing unit 177 may predict the fire spread direction using these weather information as weather information. For example, each of the meteorological observation devices 701-1 to 701-m observes the meteorological condition at the ground contact location, and transmits the observed information to the control device 170 via the network 150. The control unit 179 of the control device 170 stores the received weather state in the weather information memory 172.
FIG. 7 is a block diagram for explaining the configuration of the third embodiment of the fire detection system of the present invention.
Note that the meteorological observation meters 701-1 to 701-m are, for example, thermometers, hygrometers, illuminance meters, rain gauges, river water level meters, and the like.
According to the third embodiment, the fire spread direction can be predicted more appropriately than the first and second embodiments, so that the reliability of the system is further improved.
 図8は、本発明の火災検知システムの第4の実施例の構成を説明するためのブロック図である。上述の実施例1乃至実施例3では、気象情報メモリ172に保存される気象情報は、風速計140等の各種気象観測計701-1~701-mによる現在と過去の情報であった。しかし、図8に示すように、ネットワーク150が、或いは制御装置170が直接、気象衛星801から気象情報を受信するようにする。そして、気象衛星の気象情報を気象情報メモリ172に保存する。この結果、制御装置170は、気象予報情報を利用することができる。従って、実施例1乃至実施例3よりも、適切に延焼方向を予測することができる。
なお、気象予報を気象庁等の予測機関からネットワークを介して受信するようにして、同様の延焼方向の予測をするようにしても良い。
FIG. 8 is a block diagram for explaining the configuration of the fourth embodiment of the fire detection system of the present invention. In the first to third embodiments described above, the weather information stored in the weather information memory 172 is current and past information from various weather observation devices 701-1 to 701-m such as the anemometer 140. However, as shown in FIG. 8, the network 150 or the control device 170 directly receives the weather information from the weather satellite 801. Then, the weather information of the weather satellite is stored in the weather information memory 172. As a result, the control device 170 can use the weather forecast information. Therefore, the fire spread direction can be predicted more appropriately than in the first to third embodiments.
Note that a weather forecast may be received from a forecasting organization such as the Japan Meteorological Agency via a network to predict the same fire spread direction.
 さらに、上述の実施例2、実施例3及び実施例4をすべて適用した本実施例5を、図9によって説明する。図9は、本発明の火災検知システムの第5の実施例の構成を説明するためのブロック図である。
図9のシステム構成は、本発明の第2の実施例と同様に、ネットワーク150を介して複数台の監視端末160及び601を設け、さらに、本発明の第3の実施例と同様に、風速計140の他に、他の気象観測計701-1~701-m(mは自然数)を用い、それらの情報を気象情報として気象情報メモリ172に保存し、延焼方向予測処理部177が、気象情報としてこれらの気象情報を利用して延焼方向を予測する。そしてさらに、本発明の第4の実施例と同様に、気象情報メモリ172に保存される気象情報は、風速計140等の各種気象観測計701-1~701-mによる現在と過去の情報に加え、気象衛星801から気象情報を受信して、気象情報メモリ172に保存する。この結果、制御装置170は、気象予報情報を利用することができる。
Further, a fifth embodiment to which all the second, third, and fourth embodiments are applied will be described with reference to FIG. FIG. 9 is a block diagram for explaining the configuration of the fifth embodiment of the fire detection system of the present invention.
The system configuration of FIG. 9 is provided with a plurality of monitoring terminals 160 and 601 via the network 150 as in the second embodiment of the present invention, and further, in the same manner as in the third embodiment of the present invention, the wind speed In addition to the total 140, other meteorological observation meters 701-1 to 701-m (m is a natural number) are stored in the weather information memory 172 as weather information. Using these weather information as information, the fire spread direction is predicted. Furthermore, as in the fourth embodiment of the present invention, the weather information stored in the weather information memory 172 is the current and past information by various weather observation devices 701-1 to 701-m such as the anemometer 140. In addition, weather information is received from the weather satellite 801 and stored in the weather information memory 172. As a result, the control device 170 can use the weather forecast information.
 以上の結果、実施例1乃至実施例4よりも、適切に延焼方向を予測することが可能となると共に、複数の監視端末で監視することができるため、さらに迅速かつ適切な火災検知を実現できる。また、1台の監視端末がダウンしても、他の監視端末が処理できるので、システムの信頼性が向上する。 As a result, the fire spreading direction can be predicted more appropriately than in the first to fourth embodiments, and can be monitored by a plurality of monitoring terminals, so that more rapid and appropriate fire detection can be realized. . In addition, even if one monitoring terminal goes down, other monitoring terminals can perform processing, thereby improving the reliability of the system.
 本発明は、例えば、森林等の広範なエリアの火災監視のみならず、住宅地や工場敷地内といった広範でないエリアの火災監視にも適用可能である。 The present invention can be applied not only to fire monitoring in a wide area such as a forest, but also to fire monitoring in a non-wide area such as a residential area or a factory site.
 111、112:遠赤外線カメラ、 121、122:可視カメラ、 111a、112a、121a、122a:カメラアイコン、 111b、112b、121b、122b:カメラ選択ボタン、 131~134:エンコーダ、 140:風速計、 150:ネットワーク、 160:監視端末、 161:操作画面、 162:映像表示エリア、
 163:監視カメラ設置表示エリア、 164:操作ボタン表示エリア、 165:雲台操作ボタン、 166:ズーム倍率変更ボタン、 167:気象情報表示エリア、 168:カメラ表示エリア、 170:制御サーバ、 171:プリセット情報テーブル、
 172:気象情報メモリ、 173:地図情報メモリ、 174:雲台操作処理部、 175:赤外線カメラ画像メモリ、 176:赤外線カメラ画像処理部、 177:延焼方向予測処理部、 179:制御部、 181:火災ボタン、 182:否定ボタン、 201、201a~202e:プリセット区域、 601:監視端末。
111, 112: Far-infrared camera, 121, 122: Visible camera, 111a, 112a, 121a, 122a: Camera icon, 111b, 112b, 121b, 122b: Camera selection button, 131-134: Encoder, 140: Anemometer, 150 : Network, 160: Monitoring terminal, 161: Operation screen, 162: Video display area,
163: Surveillance camera installation display area, 164: Operation button display area, 165: Pan head operation button, 166: Zoom magnification change button, 167: Weather information display area, 168: Camera display area, 170: Control server, 171: Preset Information table,
172: Weather information memory, 173: Map information memory, 174: Head operation processing unit, 175: Infrared camera image memory, 176: Infrared camera image processing unit, 177: Fire spread direction prediction processing unit, 179: Control unit, 181: Fire button, 182: negative button, 201, 201a to 202e: preset area, 601: monitoring terminal.

Claims (6)

  1.  複数のプリセット区域に分割された監視区域と、所定の前記プリセット区域を撮像し、撮像した赤外線映像を送信するプリセット動作を行う赤外線カメラ部と、指定された位置座標の区域を撮像し、撮像した可視映像送信する可視カメラ部と、監視者が監視する監視端末と、前記赤外線カメラ部、前記可視カメラ部、前記気象観測計、及び前記監視端末を制御する制御装置とを備えた火災検知システムであって、
     前記赤外線カメラ部は、前記制御装置の制御によって、前記所定の前記プリセット区域を所定の周期でプリセット移動して撮像し、撮像した赤外線映像を送信し、
     前記可視カメラ部は、パン角、チルト角及びズーム倍率を変更して、前記制御装置から指定された位置座標の区域を撮像し、撮像した可視映像送信し、
     前記監視端末は、前記制御装置から送信される赤外線映像及び可視映像、並びに赤外線カメラ部及び可視カメラ部のマップ情報を、表示部に表示し、火災ボタンが押されたか否定ボタンが押された場合には、当該捜査結果を前記制御装置に送信することを特徴とする火災検知システム。
    A monitoring area divided into a plurality of preset areas, an infrared camera unit that performs a preset operation for imaging a predetermined preset area and transmitting the captured infrared image, and an area of a specified position coordinate A fire detection system comprising: a visible camera unit that transmits visible video; a monitoring terminal that is monitored by a supervisor; and a control device that controls the infrared camera unit, the visible camera unit, the weather observation meter, and the monitoring terminal. There,
    The infrared camera unit is configured to perform a preset movement of the predetermined preset area at a predetermined cycle under the control of the control device, and to transmit an imaged infrared image;
    The visible camera unit changes a pan angle, a tilt angle, and a zoom magnification, captures an area of a position coordinate specified by the control device, transmits a captured visible image,
    The monitoring terminal displays the infrared image and the visible image transmitted from the control device, the map information of the infrared camera unit and the visible camera unit on the display unit, and when the fire button is pressed or the negative button is pressed In the fire detection system, the investigation result is transmitted to the control device.
  2.  請求項1に記載の火災検知システムは、さらに気象情報を観測する気象観測計を備え、
     前記気象観測計は、設置場所の気象状態を観測し、
     前記制御部は、前記気象観測計で観測した気象情報を基に、火災の延焼方向を予測し、延焼予測結果を前記表示部に表示することを特徴とする火災検知システム。
    The fire detection system according to claim 1, further comprising a meteorological observation device for observing weather information,
    The meteorological observation instrument observes the weather condition of the installation location,
    The control unit predicts a fire spread direction based on weather information observed by the meteorological observation meter, and displays a fire spread prediction result on the display unit.
  3.  前記制御装置は、前記監視端末から操作結果として、否定ボタンが押された場合には、前記赤外線カメラ部の前記プリセット動作を再開することを特徴とする請求項1に記載の火災検知システム。 The fire detection system according to claim 1, wherein the control device restarts the preset operation of the infrared camera unit when a negative button is pressed as an operation result from the monitoring terminal.
  4.  複数のプリセット区域に分割された監視区域のうちの、所定の前記プリセット区域を撮像し、撮像した赤外線映像を制御装置に送信するプリセット動作を行い、
     画像処理によって火災が検出された場合には、当該火災が検出された位置を可視映像を撮像すると共に、気象観測計、気象衛星、または外部機関から受信した気象情報の少なくともいずれかの気象情報によって、延焼方向を予測し、前記可視映像と共に、前記予測した延焼方向を前記監視区域を示すマップ上に表示した表示画像を、監視端末に送信し、
     前記監視端末に前記可視映像と前記表示画像を表示することを特徴とする火災検知方法。
    Of the monitoring areas divided into a plurality of preset areas, image the predetermined preset area, perform a preset operation to transmit the captured infrared image to the control device,
    When a fire is detected by image processing, a visible image is captured of the position where the fire is detected, and at least one of weather information received from a weather station, a meteorological satellite, or an external organization is used. Predicting the fire spread direction, and sending the display image displaying the predicted fire spread direction on the map indicating the monitoring area together with the visible image to the monitoring terminal,
    A fire detection method, wherein the visible video and the display image are displayed on the monitoring terminal.
  5.  取得した前記気象情報を基に、火災の延焼方向を予測し、延焼予測結果を表示することを特徴とする請求項4に記載の火災検知システム。 5. The fire detection system according to claim 4, wherein a fire spread direction is predicted based on the acquired weather information and a fire spread prediction result is displayed.
  6.  前記可視映像と前記表示画像を基に火災と判断された場合には、赤外線映像を取得したカメラの前記プリセット動作を停止し、火災でないと判断された場合には、前記赤外線を取得したカメラの前記プリセット動作を再開することを特徴とする火災検知方法。 When it is determined that the fire is based on the visible video and the display image, the preset operation of the camera that acquired the infrared video is stopped, and when it is determined that the camera is not a fire, A fire detection method, wherein the preset operation is resumed.
PCT/JP2012/081143 2012-03-23 2012-11-30 Fire detection system and fire detection method WO2013140671A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012066444A JP5940853B2 (en) 2012-03-23 2012-03-23 Fire detection system and fire detection method
JP2012-066444 2012-03-23

Publications (1)

Publication Number Publication Date
WO2013140671A1 true WO2013140671A1 (en) 2013-09-26

Family

ID=49222159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081143 WO2013140671A1 (en) 2012-03-23 2012-11-30 Fire detection system and fire detection method

Country Status (2)

Country Link
JP (1) JP5940853B2 (en)
WO (1) WO2013140671A1 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105261143A (en) * 2015-11-23 2016-01-20 四川汇源光通信有限公司 Method and device of mountain fire detection
CN106156759A (en) * 2016-07-29 2016-11-23 山东神戎电子股份有限公司 A kind of directional correction method being applicable to forest fire early-warning system
CN106710128A (en) * 2017-01-23 2017-05-24 无锡觅睿恪科技有限公司 Fire alarm early-warning unmanned aerial vehicle
CN107256566A (en) * 2017-05-26 2017-10-17 北京环境特性研究所 Forest fires detection method based on emittance
TWI637362B (en) * 2017-11-28 2018-10-01 南開科技大學 Fire rescue system and method thereof
JP2019219852A (en) * 2018-06-19 2019-12-26 日本電気株式会社 Fire-fighting command assistance device, method and program
CN110717393A (en) * 2019-09-06 2020-01-21 北京富吉瑞光电科技有限公司 Forest fire automatic detection method and system based on infrared panoramic system
US10653904B2 (en) 2017-12-02 2020-05-19 M-Fire Holdings, Llc Methods of suppressing wild fires raging across regions of land in the direction of prevailing winds by forming anti-fire (AF) chemical fire-breaking systems using environmentally clean anti-fire (AF) liquid spray applied using GPS-tracking techniques
US10695597B2 (en) 2017-12-02 2020-06-30 M-Fire Holdings Llc Method of and apparatus for applying fire and smoke inhibiting compositions on ground surfaces before the incidence of wild-fires, and also thereafter, upon smoldering ambers and ashes to reduce smoke and suppress fire re-ignition
WO2020146927A1 (en) * 2019-01-17 2020-07-23 Graham Pole An ember detector device, a bush/wild fire detection and threat management system, and methods of use of same
CN111599126A (en) * 2020-05-15 2020-08-28 安徽师范大学 Forest fire danger monitoring system based on Android framework
CN111751406A (en) * 2020-07-02 2020-10-09 应急管理部沈阳消防研究所 Quantitative identification method for fire spreading direction
US10814150B2 (en) 2017-12-02 2020-10-27 M-Fire Holdings Llc Methods of and system networks for wireless management of GPS-tracked spraying systems deployed to spray property and ground surfaces with environmentally-clean wildfire inhibitor to protect and defend against wildfires
US10970995B2 (en) 2015-02-17 2021-04-06 Nec Corporation System for monitoring event related data
CN112929413A (en) * 2021-01-22 2021-06-08 山东国泰科技有限公司 Intelligent fire-fighting terminal and intelligent fire-fighting system using same
CN113049025A (en) * 2020-11-18 2021-06-29 泰州市出彩网络科技有限公司 On-site state correction platform and method using signal analysis
WO2021168520A1 (en) * 2020-02-28 2021-09-02 Mitygo Pty Ltd A telemetry system for automated bush fire detection
CN113820443A (en) * 2021-09-02 2021-12-21 深圳职业技术学院 Flame spread characteristic measuring device and measuring method
US20220217322A1 (en) * 2022-03-25 2022-07-07 Intel Corporation Apparatus, articles of manufacture, and methods to facilitate generation of variable viewpoint media
US11395931B2 (en) 2017-12-02 2022-07-26 Mighty Fire Breaker Llc Method of and system network for managing the application of fire and smoke inhibiting compositions on ground surfaces before the incidence of wild-fires, and also thereafter, upon smoldering ambers and ashes to reduce smoke and suppress fire re-ignition
US20230100745A1 (en) * 2020-09-21 2023-03-30 Mehrooz Zamanzadeh Remote structure temperature monitor
CN115988183A (en) * 2023-03-17 2023-04-18 青岛峻海物联科技有限公司 Firing point image ranging-based instruction sending assembly, device, system and method
US11826592B2 (en) 2018-01-09 2023-11-28 Mighty Fire Breaker Llc Process of forming strategic chemical-type wildfire breaks on ground surfaces to proactively prevent fire ignition and flame spread, and reduce the production of smoke in the presence of a wild fire
US11865390B2 (en) 2017-12-03 2024-01-09 Mighty Fire Breaker Llc Environmentally-clean water-based fire inhibiting biochemical compositions, and methods of and apparatus for applying the same to protect property against wildfire
US11865394B2 (en) 2017-12-03 2024-01-09 Mighty Fire Breaker Llc Environmentally-clean biodegradable water-based concentrates for producing fire inhibiting and fire extinguishing liquids for fighting class A and class B fires
US11911643B2 (en) 2021-02-04 2024-02-27 Mighty Fire Breaker Llc Environmentally-clean fire inhibiting and extinguishing compositions and products for sorbing flammable liquids while inhibiting ignition and extinguishing fire

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6461751B2 (en) * 2015-04-17 2019-01-30 能美防災株式会社 Terminal device
JP6399356B2 (en) * 2015-05-26 2018-10-03 パナソニックIpマネジメント株式会社 Tracking support device, tracking support system, and tracking support method
JP6643922B2 (en) * 2016-03-14 2020-02-12 大阪瓦斯株式会社 Fire alarm
CN106652302A (en) * 2016-12-26 2017-05-10 安徽天立泰科技股份有限公司 All-weather forest fire recognition technology based on binocular camera
CN107576269B (en) * 2017-08-11 2019-12-24 国网湖南省电力公司 Power transmission line forest fire positioning method
JP6690839B2 (en) * 2018-03-23 2020-04-28 Necプラットフォームズ株式会社 Monitoring device, monitoring system, monitoring method, and program
JP7211826B2 (en) * 2019-01-18 2023-01-24 能美防災株式会社 fire detection system
JP7370139B2 (en) * 2019-01-22 2023-10-27 能美防災株式会社 Disaster prevention support system
JP7319066B2 (en) * 2019-03-25 2023-08-01 ホーチキ株式会社 Prevention system
KR102095154B1 (en) * 2019-07-01 2020-03-30 한창호 112 emergency bell call system for security using emergency bell and ip camera
KR102630275B1 (en) * 2021-12-13 2024-01-25 한남대학교 산학협력단 Multi-camera fire detector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0520561A (en) * 1991-07-16 1993-01-29 Hochiki Corp Fire monitor using television camera
JPH10214390A (en) * 1997-01-31 1998-08-11 Hochiki Corp Receiver for monitor and control of disaster prevention
JPH11345380A (en) * 1998-06-03 1999-12-14 Kawasaki Heavy Ind Ltd Monitoring device for urban community disaster prevention
JP2004304249A (en) * 2003-03-28 2004-10-28 Nohmi Bosai Ltd Fire detecting apparatus and disaster prevention system
JP2007164625A (en) * 2005-12-15 2007-06-28 Hitachi Software Eng Co Ltd Fire fighting support system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0520561A (en) * 1991-07-16 1993-01-29 Hochiki Corp Fire monitor using television camera
JPH10214390A (en) * 1997-01-31 1998-08-11 Hochiki Corp Receiver for monitor and control of disaster prevention
JPH11345380A (en) * 1998-06-03 1999-12-14 Kawasaki Heavy Ind Ltd Monitoring device for urban community disaster prevention
JP2004304249A (en) * 2003-03-28 2004-10-28 Nohmi Bosai Ltd Fire detecting apparatus and disaster prevention system
JP2007164625A (en) * 2005-12-15 2007-06-28 Hitachi Software Eng Co Ltd Fire fighting support system

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10970995B2 (en) 2015-02-17 2021-04-06 Nec Corporation System for monitoring event related data
US11670159B2 (en) 2015-02-17 2023-06-06 Nec Corporation System for monitoring event related data
CN105261143B (en) * 2015-11-23 2017-06-23 四川汇源光通信有限公司 Mountain fire detection method and device
CN105261143A (en) * 2015-11-23 2016-01-20 四川汇源光通信有限公司 Method and device of mountain fire detection
CN106156759A (en) * 2016-07-29 2016-11-23 山东神戎电子股份有限公司 A kind of directional correction method being applicable to forest fire early-warning system
CN106710128A (en) * 2017-01-23 2017-05-24 无锡觅睿恪科技有限公司 Fire alarm early-warning unmanned aerial vehicle
CN107256566A (en) * 2017-05-26 2017-10-17 北京环境特性研究所 Forest fires detection method based on emittance
TWI637362B (en) * 2017-11-28 2018-10-01 南開科技大學 Fire rescue system and method thereof
US11400324B2 (en) 2017-12-02 2022-08-02 Mighty Fire Breaker Llc Method of protecting life, property, homes and businesses from wild fire by proactively applying environmentally-clean anti-fire (AF) chemical liquid spray in advance of wild fire arrival and managed using a wireless network with GPS-tracking
US11697040B2 (en) 2017-12-02 2023-07-11 Mighty Fire Breaker Llc Wild fire defense system network using a command center, spraying systems and mobile computing systems configured to proactively defend homes and neighborhoods against threat of wild fire by spraying environmentally-safe anti-fire chemical liquid on property surfaces before presence of wild fire
US11642555B2 (en) 2017-12-02 2023-05-09 Mighty Fire Breaker Llc Wireless wildfire defense system network for proactively defending homes and neighborhoods against wild fires by spraying environmentally-clean anti-fire chemical liquid on property and buildings and forming GPS-tracked and mapped chemical fire breaks about the property
US11638844B2 (en) 2017-12-02 2023-05-02 Mighty Fire Breaker Llc Method of proactively protecting property from wild fire by spraying environmentally-clean anti-fire chemical liquid on property surfaces prior to wild fire arrival using remote sensing and GPS-tracking and mapping enabled spraying
US11794044B2 (en) 2017-12-02 2023-10-24 Mighty Fire Breaker Llc Method of proactively forming and maintaining GPS-tracked and mapped environmentally-clean chemical firebreaks and fire protection zones that inhibit fire ignition and flame spread in the presence of wild fire
US10814150B2 (en) 2017-12-02 2020-10-27 M-Fire Holdings Llc Methods of and system networks for wireless management of GPS-tracked spraying systems deployed to spray property and ground surfaces with environmentally-clean wildfire inhibitor to protect and defend against wildfires
US10653904B2 (en) 2017-12-02 2020-05-19 M-Fire Holdings, Llc Methods of suppressing wild fires raging across regions of land in the direction of prevailing winds by forming anti-fire (AF) chemical fire-breaking systems using environmentally clean anti-fire (AF) liquid spray applied using GPS-tracking techniques
US11730987B2 (en) 2017-12-02 2023-08-22 Mighty Fire Breaker Llc GPS tracking and mapping wildfire defense system network for proactively defending homes and neighborhoods against threat of wild fire by spraying environmentally-safe anti-fire chemical liquid on property surfaces to inhibit fire ignition and flame spread in the presence of wild fire
US11707639B2 (en) 2017-12-02 2023-07-25 Mighty Fire Breaker Llc Wireless communication network, GPS-tracked mobile spraying systems, and a command system configured for proactively spraying environmentally-safe anti-fire chemical liquid on combustible property surfaces to protect property against fire ignition and flame spread in the presence of wild fire
US11697041B2 (en) 2017-12-02 2023-07-11 Mighty Fire Breaker Llc Method of proactively defending combustible property against fire ignition and flame spread in the presence of wild fire
US11697039B2 (en) 2017-12-02 2023-07-11 Mighty Fire Breaker Llc Wireless communication network, GPS-tracked back-pack spraying systems and command center configured for proactively spraying environmentally-safe anti-fire chemical liquid on property surfaces to inhibit fire ignition and flame spread in the presence of wild fire
US10695597B2 (en) 2017-12-02 2020-06-30 M-Fire Holdings Llc Method of and apparatus for applying fire and smoke inhibiting compositions on ground surfaces before the incidence of wild-fires, and also thereafter, upon smoldering ambers and ashes to reduce smoke and suppress fire re-ignition
US11395931B2 (en) 2017-12-02 2022-07-26 Mighty Fire Breaker Llc Method of and system network for managing the application of fire and smoke inhibiting compositions on ground surfaces before the incidence of wild-fires, and also thereafter, upon smoldering ambers and ashes to reduce smoke and suppress fire re-ignition
US11654313B2 (en) 2017-12-02 2023-05-23 Mighty Fire Breaker Llc Wireless communication network, GPS-tracked ground-based spraying tanker vehicles and command center configured for proactively spraying environmentally-safe anti-fire chemical liquid on property surfaces to inhibit fire ignition and flame spread in the presence of wild fire
US11633636B2 (en) 2017-12-02 2023-04-25 Mighty Fire Breaker Llc Wireless neighborhood wildfire defense system network supporting proactive protection of life and property in a neighborhood through GPS-tracking and mapping of environmentally-clean anti-fire (AF) chemical liquid spray applied to the property before wild fires reach the neighborhood
US11654314B2 (en) 2017-12-02 2023-05-23 Mighty Fire Breaker Llc Method of managing the proactive spraying of environment ally-clean anti-fire chemical liquid on GPS-specified property surfaces so as to inhibit fire ignition and flame spread in the presence of wild fire
US11865394B2 (en) 2017-12-03 2024-01-09 Mighty Fire Breaker Llc Environmentally-clean biodegradable water-based concentrates for producing fire inhibiting and fire extinguishing liquids for fighting class A and class B fires
US11865390B2 (en) 2017-12-03 2024-01-09 Mighty Fire Breaker Llc Environmentally-clean water-based fire inhibiting biochemical compositions, and methods of and apparatus for applying the same to protect property against wildfire
US11826592B2 (en) 2018-01-09 2023-11-28 Mighty Fire Breaker Llc Process of forming strategic chemical-type wildfire breaks on ground surfaces to proactively prevent fire ignition and flame spread, and reduce the production of smoke in the presence of a wild fire
JP2019219852A (en) * 2018-06-19 2019-12-26 日本電気株式会社 Fire-fighting command assistance device, method and program
JP7206647B2 (en) 2018-06-19 2023-01-18 日本電気株式会社 Fire dispatch aid, method and program
US11482091B2 (en) 2019-01-17 2022-10-25 Fire S.A. Pty Ltd Ember detector device, a bush/wild fire detection and threat management system, and methods of use of same
WO2020146927A1 (en) * 2019-01-17 2020-07-23 Graham Pole An ember detector device, a bush/wild fire detection and threat management system, and methods of use of same
CN110717393A (en) * 2019-09-06 2020-01-21 北京富吉瑞光电科技有限公司 Forest fire automatic detection method and system based on infrared panoramic system
WO2021168520A1 (en) * 2020-02-28 2021-09-02 Mitygo Pty Ltd A telemetry system for automated bush fire detection
CN111599126A (en) * 2020-05-15 2020-08-28 安徽师范大学 Forest fire danger monitoring system based on Android framework
CN111751406A (en) * 2020-07-02 2020-10-09 应急管理部沈阳消防研究所 Quantitative identification method for fire spreading direction
CN111751406B (en) * 2020-07-02 2023-05-30 应急管理部沈阳消防研究所 Quantitative identification method for fire spreading direction
US20230100745A1 (en) * 2020-09-21 2023-03-30 Mehrooz Zamanzadeh Remote structure temperature monitor
US11821796B2 (en) * 2020-09-21 2023-11-21 Matergenics, Inc. Remote structure temperature monitor
CN113049025A (en) * 2020-11-18 2021-06-29 泰州市出彩网络科技有限公司 On-site state correction platform and method using signal analysis
CN112929413A (en) * 2021-01-22 2021-06-08 山东国泰科技有限公司 Intelligent fire-fighting terminal and intelligent fire-fighting system using same
US11911643B2 (en) 2021-02-04 2024-02-27 Mighty Fire Breaker Llc Environmentally-clean fire inhibiting and extinguishing compositions and products for sorbing flammable liquids while inhibiting ignition and extinguishing fire
CN113820443A (en) * 2021-09-02 2021-12-21 深圳职业技术学院 Flame spread characteristic measuring device and measuring method
US20220217322A1 (en) * 2022-03-25 2022-07-07 Intel Corporation Apparatus, articles of manufacture, and methods to facilitate generation of variable viewpoint media
CN115988183A (en) * 2023-03-17 2023-04-18 青岛峻海物联科技有限公司 Firing point image ranging-based instruction sending assembly, device, system and method

Also Published As

Publication number Publication date
JP5940853B2 (en) 2016-06-29
JP2013196655A (en) 2013-09-30

Similar Documents

Publication Publication Date Title
JP5940853B2 (en) Fire detection system and fire detection method
KR101321444B1 (en) A cctv monitoring system
EP2856266B1 (en) Object inspection in an industrial plant
CN103491339A (en) Video acquisition method, video acquisition equipment and video acquisition system
KR20160149406A (en) Apparatus for managing a disastear and method thereof
JP5715775B2 (en) Image monitoring system and image monitoring method
KR20110040699A (en) Forest fire monitiring system and control method thereof
KR20160099931A (en) Disaster preventing and managing method for the disaster harzard and interest area
JP4354391B2 (en) Wireless communication system
JP2013089076A (en) Support system of fire alarm facility
KR20130115445A (en) Integrated management system
KR102245887B1 (en) System and method for alarming indoor fire prevention
JP2008107870A (en) Electrical power failure related information provision system
KR20150083480A (en) System for managing facilities by using 3d stereoscopic images
KR20140120247A (en) Total mornitoring system
CN108234937B (en) Video monitoring system and monitoring video display method
EP3279758A1 (en) Condition determination system, condition determination method, decision-making support system, computer program, and storage medium
JP2024029185A (en) Disaster prevention support system
KR101250956B1 (en) An automatic system for monitoring
KR20200102390A (en) Mobile urgent disaster reporting and processing system
JP2010074527A (en) Monitor control apparatus, and monitor system
JP5824332B2 (en) Monitoring device
KR200411295Y1 (en) Accident preventing &amp; management System of inner tunnel
KR101276856B1 (en) Image data based remote monitoring and control system
WO2022041212A1 (en) Fire source location indication method, and related device and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12871739

Country of ref document: EP

Kind code of ref document: A1