WO2013140622A1 - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
WO2013140622A1
WO2013140622A1 PCT/JP2012/057593 JP2012057593W WO2013140622A1 WO 2013140622 A1 WO2013140622 A1 WO 2013140622A1 JP 2012057593 W JP2012057593 W JP 2012057593W WO 2013140622 A1 WO2013140622 A1 WO 2013140622A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
electrode
cell module
module according
covering material
Prior art date
Application number
PCT/JP2012/057593
Other languages
French (fr)
Japanese (ja)
Inventor
平 茂治
志敦 寺中
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to PCT/JP2012/057593 priority Critical patent/WO2013140622A1/en
Publication of WO2013140622A1 publication Critical patent/WO2013140622A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module.
  • the solar cell includes an electrode on the photoelectric conversion unit in order to collect carriers generated by light reception.
  • a wiring material is attached to a part of an electrode to electrically connect a plurality of solar cells, and the solar cells are covered with a covering material such as a glass substrate to form a module (see, for example, Patent Document 1). .
  • the covering material prevents, for example, damage to the solar cell and suppresses moisture and the like from acting on the solar cell.
  • a material having a high water vapor permeability such as a resin film may be used as a covering material.
  • the electrode structure is arbitrarily set, long-term reliability may be impaired. For this reason, it is required to employ an appropriate electrode structure in accordance with the moisture content in the module to suppress deterioration of the photoelectric conversion characteristics.
  • a solar cell module includes a solar cell and a covering material that covers the solar cell, and the solar cell includes a photoelectric conversion unit and an electrode configured by a binder and a conductive filler on the photoelectric conversion unit.
  • the coating material has a water vapor permeability to the solar cell in the thickness direction of 0.1 g / m 2 / day or more, and at least part of the electrode surface has a Raman spectrum wavelength of 1500 to 1700 cm ⁇ 1. Have at least one specific peak.
  • a solar cell module having excellent long-term reliability can be provided.
  • FIG. 3 is a cross-sectional view taken along line BB in FIG. 2, illustrating an example of an electrode cross-sectional structure.
  • FIG. 3 is a cross-sectional view taken along line BB in FIG. 2, illustrating another example of the electrode cross-sectional structure.
  • the solar cell module which is an example of embodiment of this invention, it is a figure which shows an example of the Raman spectrum of an electrode surface.
  • the solar cell module which is an example of embodiment of this invention, it is a figure which shows the result of a moisture resistance test.
  • the solar cell module which is an example of embodiment of this invention it is a figure which shows the result of a moisture resistance test.
  • the solar cell module 10 which is an example of the embodiment of the present invention will be described in detail below with reference to the drawings.
  • the drawings referred to in the embodiments are schematically described, and the dimensional ratios of the components drawn in the drawings may be different from the actual products. Specific dimensional ratios and the like should be determined in consideration of the following description.
  • FIG. 1 is a cross-sectional view showing a part of the solar cell module 10.
  • FIG. 2 is a plan view of the solar cell 11 applied to the solar cell module 10 as seen from the light receiving surface side.
  • FIG. 3 is a view showing a part of a cross section taken along the line AA of FIG. 2, in which the wiring member 14 is omitted.
  • the solar cell module 10 includes a plurality of solar cells 11, a first coating material 12 disposed on the light receiving surface side of the solar cell 11, and a second coating material 13 disposed on the back surface side of the solar cell 11.
  • the plurality of solar cells 11 are sandwiched between the first covering material 12 and the second covering material 13.
  • the solar cell module 10 includes a wiring member 14 that electrically connects the solar cells 11, a transition wiring member that connects the wiring members 14, a frame, and a terminal box.
  • the solar cell 11 includes a photoelectric conversion unit 20 that generates carriers by receiving sunlight, a first electrode 30 that is a light-receiving surface electrode formed on the light-receiving surface of the photoelectric conversion unit 20, and the photoelectric conversion unit 20. And a second electrode 40 that is a back electrode formed on the back surface.
  • carriers generated by the photoelectric conversion unit 20 are collected by the first electrode 30 and the second electrode 40.
  • the “light receiving surface” means a surface on which sunlight mainly enters from the outside of the solar cell 11
  • the “back surface” means a surface opposite to the light receiving surface. For example, more than 50% to 100% of the sunlight incident on the solar cell 11 enters from the light receiving surface side.
  • the photoelectric conversion unit 20 includes a substrate 21 made of a semiconductor material such as crystalline silicon (c-Si), gallium arsenide (GaAs), or indium phosphorus (InP).
  • a substrate 21 made of a semiconductor material such as crystalline silicon (c-Si), gallium arsenide (GaAs), or indium phosphorus (InP).
  • c-Si crystalline silicon
  • GaAs gallium arsenide
  • InP indium phosphorus
  • the substrate 21 an n-type single crystal silicon substrate is particularly suitable.
  • the light receiving surface and the back surface of the substrate 21 have a texture structure (not shown) having an uneven height of about 1 ⁇ m to 15 ⁇ m.
  • an amorphous silicon layer 22 and a transparent conductive layer 23 made of a light-transmitting conductive oxide (TCO) mainly composed of indium oxide or the like are formed in this order.
  • An amorphous silicon layer 24 and a transparent conductive layer 25 are sequentially formed on the back surface of the substrate 21.
  • the amorphous silicon layer 22 has a layer structure in which, for example, an i-type amorphous silicon layer and a p-type amorphous silicon layer are sequentially formed.
  • the amorphous silicon layer 24 has a layer structure in which, for example, an i-type amorphous silicon layer and an n-type amorphous silicon layer are sequentially formed.
  • the first electrode 30 includes a plurality of (for example, 50) fingers 31 and a plurality of (for example, two) bus bars 32.
  • the finger 31 is a thin line electrode formed over a wide range on the light receiving surface in order to collect carriers generated by the photoelectric conversion unit 20.
  • the bus bar 32 is an electrode that collects carriers from the fingers 31, and is electrically connected to all the fingers 31.
  • the second electrode 40 is also composed of a plurality of (for example, 250) fingers 41 and a plurality of (for example, two) bus bars 42, and has the same electrode arrangement as the first electrode 30.
  • the first covering material 12 has a filler 12 b that closes the gap between the glass substrate 12 a and the solar cell 11 and seals the solar cell 11.
  • a light-transmitting resin can be used, and an olefin resin obtained by polymerizing at least one ⁇ -olefin, such as an ethylene-propylene copolymer or an ethylene-vinyl acetate copolymer.
  • a resin mainly composed of coalescence (EVA) or the like is preferable.
  • EVA crosslinked with an organic peroxide or the like is particularly preferable.
  • the filler 12b contains, for example, 50% by weight or more (50 to 100% by weight) of crosslinked EVA with respect to the total weight.
  • the resin film 13a For the second covering material 13, it is preferable to use a resin film 13a from the viewpoints of cost reduction and weight reduction.
  • the resin film 13a include films made of olefin resins, styrene resins, polyester resins, and the like. Among these, a polyester resin film is preferable, and a polyethylene terephthalate (PET) film is particularly preferable. Since PET film is excellent in translucency, it is also suitable for applications that assume light reception from the back side.
  • a filler 13 b containing 50% by weight or more of crosslinked EVA is provided in the gap between the second covering material 13 and the solar cell 11, as in the case of the first covering material 12.
  • the resin film 13a can be provided with a gas barrier layer 13c in order to reduce the water vapor permeability described later.
  • the gas barrier layer 13c include a layer made of a resin or a metal compound (silica or alumina) having a lower water vapor permeability than the PET film.
  • a silica layer having a thickness of submicron order.
  • the silica layer can be provided on one side of the PET film by vapor deposition. In this case, it is preferable to laminate the silica layer with another PET film to obtain a resin film 13a having a laminated structure.
  • Wiring member 14 connects solar cells 11 arranged adjacent to each other.
  • One end side of the wiring member 14 is attached to the first electrode 30 (bus bar 32) of one solar cell 11 among the solar cells 11 arranged adjacent to each other.
  • the other end side of the wiring member 14 is connected to the second electrode 40 (bus bar 42) of the other solar cell 11. That is, the wiring member 14 bends in the thickness direction of the solar cell module 10 between the adjacent solar cells 11 and connects the adjacent solar cells 11 in series.
  • the wiring member 14 is attached using, for example, a non-conductive adhesive or a conductive adhesive containing a conductive filler such as silver (Ag).
  • a string of solar cells 11 obtained by connecting the wiring material 14 is made of a glass substrate 12 a, a resin film 13 a (for example, a PET film), and sheet-like fillers 12 b and 13 b (for example, an EVA sheet). ).
  • the glass substrate 12a / EVA sheet / string / EVA sheet / PET film are arranged in this order on the heater and heated to about 150 ° C. in a vacuum state. Thereafter, heating is continued while pressing the module material against the heater under atmospheric pressure to crosslink EVA.
  • a solar cell module 10 is obtained by attaching a frame or the like.
  • the thickness of the first coating material 12 and the second coating material 13 and the water vapor permeability in the thickness direction in the solar cell module 10 will be described below.
  • the water vapor permeability can be measured under the following conditions. Apparatus: Water vapor permeability tester (Techno Eye "DELTAPERRM”) Temperature / humidity: 40 ° C / 90%
  • the thickness t1 of the first covering material 12 is, for example, about 0.5 to 3 mm. Most of the thickness t1 is the thickness of the glass substrate 12a. The thickness of the glass substrate 12a is preferably about 0.5 to 3 mm, and the thickness of the filler 12b is preferably about 50 to 200 ⁇ m.
  • the water vapor permeability in the thickness direction that is, the water vapor permeability from the surface of the glass substrate 12a to the solar cell 11 has a value significantly smaller than 0.1 g / m 2 / day.
  • the thickness t2 of the second covering material 13 is, for example, about 100 to 500 ⁇ m.
  • the thickness of the resin film 13a is preferably about 50 to 300 ⁇ m, and the thickness of the filler 12b is preferably about 50 to 200 ⁇ m.
  • the second coating material 13 has a water vapor permeability in the thickness direction of 0.1 g / m 2 / day or more.
  • the water vapor permeability is about 10 g / m 2 / day, and when the thickness is doubled (300 ⁇ m), the thickness is approximately 1 ⁇ 2 times (5 g / m 2 / day).
  • an EVA sheet having a thickness of about 50 to 200 ⁇ m has a water vapor permeability of about 50 g / m 2 / day.
  • the thickness of the resin film 13a is more preferably 50 to 200 ⁇ m, and particularly preferably 75 to 150 ⁇ m.
  • the water vapor permeability in the thickness direction of the second covering material 13 is about 0.1 to 100 g / m 2 / day.
  • the gas barrier layer 13c When a silica layer having a thickness of the order of submicron is provided as the gas barrier layer 13c, the water vapor permeability can be easily adjusted in the range of about 0.1 to 10 g / m 2 / day.
  • FIG. 4 and 5 show a cross-sectional structure of the finger 31.
  • FIG. FIG. 4 is a diagram showing a part of the cross section taken along line BB in FIG. 2, and shows a cross section obtained by cutting the solar cell 11 in the thickness direction perpendicular to the fingers 31 and 41.
  • FIG. 5 shows a modification of the embodiment shown in FIG.
  • Both the finger 31 and the bus bar 32 are composed of an insulating binder 33 and a conductive filler 34. It is preferable that the conductive filler 34 is dispersed substantially uniformly in the binder 33. The conductive fillers 34 are in contact with each other to form a conductive path, for example.
  • the electrode material may contain a small amount of an additive such as a filler dispersant.
  • the electrode material and composition may be changed between the fingers and the bus bar, and between the first electrode 30 and the second electrode 40, but in the present embodiment, the fingers 31, 41 and the bus bars 32, 42 (hereinafter collectively referred to as these). Are sometimes made of the same material and the same composition.
  • the binder 33 most of the surface of the finger 31 is covered with the binder 33, and only a part of the conductive filler 34 is exposed from the surface of the finger 31.
  • the ratio at which the conductive filler 34 is exposed from the surface of the finger 31 can be adjusted, for example, by changing the mixing ratio of the binder 33 and the conductive filler 34.
  • a resin coating layer 35 that covers the surface of the finger 31 is provided.
  • the resin coating layer 35 is made of, for example, only the same resin as the binder 33 and covers the conductive filler 34 exposed from the surface of the finger 31.
  • the resin coating layer 35 can be formed on the finger 31 by the same method as the finger 31 or by another coating method.
  • the resin coating layer 35 is preferably provided only on the fingers 31 and 41.
  • the collector electrode is preferably formed by a screen printing method.
  • a paste containing an electrode material is transferred onto the photoelectric conversion unit 20 by using a screen plate having an opening corresponding to the shape of the collector electrode and a squeegee. Then, the transferred paste is solidified by heating or the like to form a collecting electrode.
  • a heat curing type conductive paste in which a binder 33 as an electrode material and a conductive filler 34 are mixed in a solvent is suitable.
  • the conductive filler 34 for example, metal particles such as silver (Ag), copper (Cu), nickel (Ni), aluminum (Al), silver-coated copper, silver-coated aluminum, carbon, or a mixture thereof is used. be able to.
  • the conductive filler 34 include particles having a spherical shape, a spindle shape, a needle shape, a flake shape (flaky shape), and the like, and in particular, a flaky particle having an average particle size of 3 to 20 ⁇ m and an average particle size of 0. It is preferable to use spherical particles of 5 to 1 ⁇ m in combination.
  • the average particle diameter means a 50% cumulative value when the arithmetic average value of the major axis and the minor axis is measured by the microtrack type particle size distribution measuring method.
  • the content of Ag particles is preferably 70 to 90% by weight, more preferably 75 to 87% by weight, and particularly preferably 80 to 85% by weight based on the total weight of the electrode material.
  • the content of the binder 33 is preferably 10 to 30% by weight, more preferably 13 to 25% by weight, and particularly preferably 15 to 20% by weight with respect to the total weight of the electrode material.
  • thermosetting resin such as an epoxy resin, a urethane resin, a urea resin, an acrylic resin, an imide resin, or a phenol resin, or a modified product or a mixture thereof can be used.
  • the thermosetting resin becomes a binder 33 due to the curing reaction of the components by the heat treatment.
  • the curing reaction of the thermosetting resin proceeds even at a low temperature, it is preferable to block the functional groups of the constituent components.
  • the isocyanate group can be protected using a blocking agent such as imidazoles, phenols, and oximes.
  • Such thermosetting resins may be those classified into a plurality of groups (for example, resins that can be classified into both epoxy resins and urethane resins).
  • thermosetting resin at least one thermosetting resin (hereinafter referred to as “specific thermosetting resin”) selected from the group consisting of an epoxy resin, a urethane resin, and an acrylic resin is used as a binder. It is preferable to contain 80% by weight or more based on the total weight of 33. For example, it is preferable to use an epoxy resin as a main component (50% by weight or more) among the specific thermosetting resins. It is also preferable that the specific thermosetting resin is contained in an amount of 80 to 95.5% by weight and the silicone resin is contained in an amount of 0.5 to 20% by weight. Examples of the silicone resin include straight silicone resins such as methyl and methylphenyl, modified silicone resins modified with epoxy resins, alkyd resins, ester resins, acrylic resins, and the like.
  • the epoxy resins include alicyclic epoxy resins, chain epoxy resins, bisphenol A type epoxy resins, epoxy phenol novolac type resins, polyglycidyl ether type epoxy resins, polyalkylene ether type epoxy resins, epoxy acrylate resins, and fatty acid-modified resins.
  • examples thereof include an epoxy resin, a urethane-modified epoxy resin, and a silicone-modified epoxy resin.
  • the curing agent for example, imidazoles and tertiary amines can be used.
  • component A component having an epoxy equivalent of 1000 or less
  • component B component having an epoxy equivalent of 1500 or higher
  • the weight mixing ratio of the A component and the B component is preferably 30 to 90% by weight for the A component (10 to 70% by weight for the B component).
  • Examples of the urethane resin include resins composed of diisocyanate and polyol.
  • Examples of the diisocyanate include aromatic diisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate, polymethylene polyphenyl polyisocyanate, tolidine diisocyanate, xylylene diisocyanate, and naphthalene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, hydrogenated xylylene diisocyanate, and dicyclohexyl.
  • aromatic diisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate, polymethylene polyphenyl polyisocyanate, tolidine diisocyanate, xylylene diisocyanate, and naphthalene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, hydrogenated
  • Aliphatic diisocyanates such as methane diisocyanate, octamethylene diisocyanate, and trimethylhexamethylene diisocyanate can be used.
  • polyol for example, polyether polyols, polyester polyols, polycarbonate polyols and the like can be used.
  • acrylic resins examples include (meth) acrylic acid esters and ethylenically unsaturated monomers (for example, acrylic acid) having a crosslinkable functional group (for example, carboxyl group, hydroxyl group, amino group, methylol group, epoxy group).
  • a crosslinkable functional group for example, carboxyl group, hydroxyl group, amino group, methylol group, epoxy group.
  • An aromatic vinyl monomer such as styrene may be copolymerized.
  • the solvent contained in the conductive paste it is preferable to use a high boiling point solvent such as ethyl carbitol acetate, butyl carbitol acetate, terpineol, or the like.
  • the solvent is volatilized and removed when the conductive paste transferred onto the photoelectric conversion unit 20 is heated.
  • the heating temperature is approximately 200 ° C., although it varies depending on the curing conditions of the binder 33 and the like.
  • FIG. 6 shows an example of a Raman spectrum (solid line) on the surface of the finger 31.
  • a two-dot chain line in FIG. 6 is a Raman spectrum of a comparison module described later.
  • similar Raman spectra are obtained for the other collector electrodes.
  • the Raman spectrum of the surface of the finger 31 has a peak Z that is at least one specific peak at wavelengths of 1500 to 1700 cm ⁇ 1 .
  • a peak Z is defined as a scattering intensity (also called signal intensity) at the peak top that is 10% or more higher than the scattering intensity on the long wavelength side of 50 cm ⁇ 1 from the wavelength of the peak top.
  • one peak Z exists at a wavelength of 1500 to 1700 cm ⁇ 1 .
  • the peak Z has a peak top wavelength of 1650 cm ⁇ 1 , and the peak top scattering intensity Ip is at least 10% higher than the scattering intensity Ik on the long wavelength side (1700 cm ⁇ 1 ) 50 cm ⁇ 1 from the peak top wavelength. It has become.
  • the Raman spectrum of the finger 31 can be measured under the following conditions. Apparatus: Microscopic laser Raman spectrometer ("InVia Reflex" manufactured by Renishaw) Excitation light source; laser light with a wavelength of 785 nm Measurement mode: Extension mode, 20-second exposure
  • the peak Z is an important factor that affects the photoelectric conversion characteristics of the solar cell module 10 as will be described in detail later.
  • the wavelength of the peak top is not particularly limited as long as it is in the range of 1500 to 1700 cm ⁇ 1 . Further, the number of peaks Z is not particularly limited, and a plurality of peaks Z may exist.
  • the scattering intensity Ip is preferably higher from the viewpoint of improving long-term reliability. For example, the scattering intensity Ip is preferably 15% or more higher than the scattering intensity Ik, more preferably 20% or more, and particularly preferably 30% or more. .
  • the peak Z is more likely to appear as the proportion of the binder 33 on the electrode surface increases, and the scattering intensity Ip increases.
  • the scattering intensity Ip increases as the proportion of the conductive filler 34 exposed from the electrode surface decreases.
  • Such an electrode structure can be formed using, for example, a conductive paste in which the content of Ag particles is 80 to 85% by weight with respect to the total weight of the electrode material as described above.
  • the bottom wavelength is not particularly limited as long as it is in the range of 800 to 1200 cm ⁇ 1 .
  • the ratio of the scattering intensity Ib to the scattering intensity Ip tends to increase as the degree of cure of the binder 33 increases. That is, it is suggested that the degree of cure of the binder 33 constituting the collector electrode is higher when Ib / Ip is 1.0 than when Ib / Ip is 0.7.
  • FIG. 7 the result of the moisture resistance test in the solar cell module 10 is shown.
  • the test time was 2000 hours under the conditions of a constant temperature and humidity furnace with a temperature of 85 ° C. and a humidity of 85%.
  • the horizontal axis represents the test time, and the vertical axis represents the deterioration improvement rate.
  • solar cell modules 10 having Ib / Ip of about 0.70 ( ⁇ ), about 0.75 ( ⁇ ), about 0.80 ( ⁇ ), and about 1.00 ( ⁇ ), respectively.
  • the result of the moisture resistance test in is shown.
  • the horizontal axis represents the test time
  • the vertical axis represents the FF change rate. Details are as follows.
  • the deterioration improvement rate means that the Raman spectrum of the surfaces of the first electrode 30 and the second electrode 40 has a fill factor FF 10 of the solar cell module 10 having a peak Z at a wavelength of 1500 to 1700 cm ⁇ 1 and no peak Z.
  • FF 10 / FF 50 a comparative solar cell module
  • FIG. 6 shows a Raman spectrum of the comparison module.
  • the comparison module was manufactured by reducing the weight of the binder 33 (epoxy resin) to 2/3 with respect to the solar cell module 10 having Ib / Ip of about 0.70.
  • the solar cell module 10 having Ib / Ip of about 0.70, about 0.75, about 0.80, and about 1.00 was produced by changing only the curing time of the binder 33.
  • the heat treatment temperatures are all 200 ° C., and the curing treatment times are 25 minutes, 35 minutes, 45 minutes, and 90 minutes in this order.
  • the Raman spectra of the surfaces of the first electrode 30 and the second electrode 40 have a peak Z at a wavelength of 1500 to 1700 cm ⁇ 1
  • the photoelectric spectrum is smaller than that without the peak Z. Conversion characteristics are less likely to deteriorate. That is, it means that the solar cell module 10 has higher moisture resistance than the comparative module. This is because the higher the moisture content, the more easily the metal of the electrode is ionized and diffuses.
  • the electrode having the peak Z the coverage of the conductive filler 34 by the binder 33 and the resin coating layer 35 is high, and the metal ions are photoelectric. This is presumed to be difficult to diffuse into the converter 20. In particular, the difference between the two increases as the test time increases.
  • both the first covering material 12 and the second covering material 13 have a water vapor permeability of less than 0.1 g / m 2 / day, diffusion of metal ions hardly occurs in the first place, and the solar cell module 10 and the comparison module The deterioration improvement rate was a value close to 1.
  • the lower the Ib / Ip the smaller the decrease in the FF change rate and the higher the moisture resistance. In particular, it has good moisture resistance when Ib / Ip ⁇ 0.8. That is, the higher the degree of cure of the binder 33, the better the moisture resistance.
  • the results of the moisture resistance test shown in FIGS. 7 and 8 indicate that the performance evaluation of the solar cell 11 and the solar cell module 10 including the solar cell 11 can be performed using the Raman spectrum of the collector electrode.
  • the Raman spectrum of the surface of the collector electrode is measured, and the moisture resistance performance of the solar cell 11 can be evaluated based on the presence or absence of the peak Z at a wavelength of 1500 to 1700 cm ⁇ 1 of the obtained spectrum.
  • the peak Z is confirmed in the Raman spectrum of the collector electrode, it can be evaluated that the solar cell can produce a module having excellent long-term reliability even in an environment with a high moisture content.
  • the peak Z cannot be confirmed it can be evaluated that the solar cell cannot be used in an environment with a high water content.
  • the moisture resistance performance of the solar cell 11 can be evaluated based on the ratio between the scattering intensity Ip at the peak top at the peak Z and the scattering intensity Ib at the bottom at a wavelength of Raman spectrum of 800 to 1200 cm ⁇ 1 .
  • a ratio can also be used to know the degree of cure of the binder 33.
  • the solar cell in the Raman spectrum of the collector electrode, when Ib / Ip ⁇ 0.7, preferably ⁇ 0.8, the solar cell can produce a module having excellent long-term reliability even in an environment with a high water content. Can be evaluated.
  • the solar cell module 10 in the configuration using the coating material (second coating material 13) having a water vapor permeability of 0.1 g / m 2 / day or more, deterioration of photoelectric conversion characteristics is suppressed. be able to. And excellent long-term reliability can be realized.
  • the Raman spectra of the fingers 31 and 41 may have a peak Z.
  • the scattering intensity Ip of the peak Z related to the fingers 31 and 41 may be higher than the scattering intensity Ip of the peak Z related to the bus bars 32 and 42.
  • Such a configuration can be realized, for example, by providing the resin coating layer 35 limited to the fingers 31 and 41 as described above. Thereby, deterioration of a photoelectric conversion characteristic can be suppressed, maintaining the favorable electrical connection with the wiring material 14.
  • the Raman spectrum of the second electrode 40 may have a peak Z.
  • the Raman spectrum of the finger 41 may have the peak Z, and the scattering intensity Ip of the peak Z related to the finger 41 may be higher than the scattering intensity Ip of the peak Z related to other electrodes.
  • the reason for adopting such a configuration is that the portion having a higher moisture content in the module is more likely to deteriorate the photoelectric conversion characteristics. That is, since the second covering material 13 close to the finger 41 has a higher water vapor permeability than the first covering material 12, it is effective to increase the scattering intensity Ip related to the finger 41.
  • Such a photoelectric conversion unit includes, for example, an i-type amorphous silicon layer, an n-type amorphous silicon layer, and a transparent conductive layer formed in this order on the light-receiving surface side of an n-type single crystal silicon substrate.
  • a p-type region composed of an i-type amorphous silicon layer and a p-type amorphous silicon layer, an i-type amorphous silicon layer, and an n-type amorphous silicon layer are formed. And an n-type region.
  • a transparent conductive layer and an electrode are provided on the p-type region and the n-type region, respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A solar cell module (10) is provided with: a solar cell (11) that comprises, on a photoelectric conversion unit (20), a first electrode (30) and a second electrode (40), which are configured of a binder (33) and a conductive filler (34); and a first covering material (12) and a second covering material (13), which cover the solar cell (11). The second covering material (13) has a water vapor transmission rate of 0.1 g/m2/day or more in the thickness direction up to the solar cell (11). The first electrode (30) and the second electrode (40) have at least one specific peak at a wavelength of from 1,500 cm-1 to 1,700 cm-1 in the Raman spectra of the surfaces thereof.

Description

太陽電池モジュールSolar cell module
 本発明は、太陽電池モジュールに関する。 The present invention relates to a solar cell module.
 太陽電池は、受光により発生したキャリアを収集するために、光電変換部上に電極を備える。一般的には、電極の一部に配線材を取り付けて複数の太陽電池を電気的に接続し、ガラス基板等の被覆材で太陽電池を被覆してモジュール化する(例えば、特許文献1参照)。被覆材は、例えば、太陽電池の損傷を防ぎ、太陽電池に水分等が作用することを抑制する。 The solar cell includes an electrode on the photoelectric conversion unit in order to collect carriers generated by light reception. In general, a wiring material is attached to a part of an electrode to electrically connect a plurality of solar cells, and the solar cells are covered with a covering material such as a glass substrate to form a module (see, for example, Patent Document 1). . The covering material prevents, for example, damage to the solar cell and suppresses moisture and the like from acting on the solar cell.
特開2011-049283号公報JP 2011-049283 A
 ところで、太陽電池モジュールでは、被覆材として、樹脂フィルム等の水蒸気透過度が高い材料を用いることがある。かかる構成において、電極構造を任意に設定すると長期信頼性を損なうおそれがある。このため、モジュール内の水分含量に応じて適切な電極構造を採用し、光電変換特性の劣化を抑制することが求められる。 By the way, in a solar cell module, a material having a high water vapor permeability such as a resin film may be used as a covering material. In such a configuration, if the electrode structure is arbitrarily set, long-term reliability may be impaired. For this reason, it is required to employ an appropriate electrode structure in accordance with the moisture content in the module to suppress deterioration of the photoelectric conversion characteristics.
 本発明に係る太陽電池モジュールは、太陽電池と、太陽電池を被覆する被覆材とを備え、太陽電池は、光電変換部と、光電変換部上にバインダと導電性フィラーとで構成された電極とを有し、被覆材は、その厚み方向に対する前記太陽電池までの水蒸気透過度が0.1g/m2/day以上であり、電極表面の少なくとも一部は、ラマンスペクトルの波長1500~1700cm-1に、少なくとも1つの特定ピークを有する。 A solar cell module according to the present invention includes a solar cell and a covering material that covers the solar cell, and the solar cell includes a photoelectric conversion unit and an electrode configured by a binder and a conductive filler on the photoelectric conversion unit. And the coating material has a water vapor permeability to the solar cell in the thickness direction of 0.1 g / m 2 / day or more, and at least part of the electrode surface has a Raman spectrum wavelength of 1500 to 1700 cm −1. Have at least one specific peak.
 本発明によれば、長期信頼性に優れた太陽電池モジュールを提供することができる。 According to the present invention, a solar cell module having excellent long-term reliability can be provided.
本発明の実施形態の一例である太陽電池モジュールを示す断面図である。It is sectional drawing which shows the solar cell module which is an example of embodiment of this invention. 本発明の実施形態の一例である太陽電池を受光面側から見た平面図である。It is the top view which looked at the solar cell which is an example of embodiment of this invention from the light-receiving surface side. 図2のA‐A線断面図である。It is the sectional view on the AA line of FIG. 図2のB‐B線断面図であって、電極断面構造の一例を示す図である。FIG. 3 is a cross-sectional view taken along line BB in FIG. 2, illustrating an example of an electrode cross-sectional structure. 図2のB‐B線断面図であって、電極断面構造の他の一例を示す図である。FIG. 3 is a cross-sectional view taken along line BB in FIG. 2, illustrating another example of the electrode cross-sectional structure. 本発明の実施形態の一例である太陽電池モジュールにおいて、電極表面のラマンスペクトルの一例を示す図である。In the solar cell module which is an example of embodiment of this invention, it is a figure which shows an example of the Raman spectrum of an electrode surface. 本発明の実施形態の一例である太陽電池モジュールにおいて、耐湿試験の結果を示す図である。In the solar cell module which is an example of embodiment of this invention, it is a figure which shows the result of a moisture resistance test. 本発明の実施形態の一例である太陽電池モジュールにおいて、耐湿試験の結果を示す図である。In the solar cell module which is an example of embodiment of this invention, it is a figure which shows the result of a moisture resistance test.
 図面を参照しながら、本発明の実施形態の一例である太陽電池モジュール10について以下詳細に説明する。実施形態において参照する図面は、模式的に記載されたものであり、図面に描画された構成要素の寸法比率などは、現物と異なる場合がある。具体的な寸法比率等は、以下の説明を参酌して判断されるべきである。 The solar cell module 10 which is an example of the embodiment of the present invention will be described in detail below with reference to the drawings. The drawings referred to in the embodiments are schematically described, and the dimensional ratios of the components drawn in the drawings may be different from the actual products. Specific dimensional ratios and the like should be determined in consideration of the following description.
 図1~図3を参照しながら、太陽電池モジュール10の構成について説明する。図1は、太陽電池モジュール10の一部を示す断面図である。図2は、太陽電池モジュール10に適用される太陽電池11を受光面側から見た平面図である。図3は、図2のA‐A線断面の一部を示す図であって、配線材14を省略した図である。 The configuration of the solar cell module 10 will be described with reference to FIGS. FIG. 1 is a cross-sectional view showing a part of the solar cell module 10. FIG. 2 is a plan view of the solar cell 11 applied to the solar cell module 10 as seen from the light receiving surface side. FIG. 3 is a view showing a part of a cross section taken along the line AA of FIG. 2, in which the wiring member 14 is omitted.
 太陽電池モジュール10は、複数の太陽電池11と、太陽電池11の受光面側に配置される第1被覆材12と、太陽電池11の裏面側に配置される第2被覆材13とを備える。そして、複数の太陽電池11は、第1被覆材12と第2被覆材13とにより挟持されている。また、太陽電池モジュール10は、太陽電池11同士を電気的に接続する配線材14、配線材14同士を接続する渡り配線材、フレーム、端子ボックスなどを備える。 The solar cell module 10 includes a plurality of solar cells 11, a first coating material 12 disposed on the light receiving surface side of the solar cell 11, and a second coating material 13 disposed on the back surface side of the solar cell 11. The plurality of solar cells 11 are sandwiched between the first covering material 12 and the second covering material 13. The solar cell module 10 includes a wiring member 14 that electrically connects the solar cells 11, a transition wiring member that connects the wiring members 14, a frame, and a terminal box.
 太陽電池11は、太陽光を受光することでキャリアを生成する光電変換部20と、光電変換部20の受光面上に形成された受光面電極である第1電極30と、光電変換部20の裏面上に形成された裏面電極である第2電極40とを備える。太陽電池11では、光電変換部20で生成されたキャリアが第1電極30及び第2電極40により収集される。ここで、「受光面」とは太陽電池11の外部から太陽光が主に入射する面を、「裏面」とは受光面と反対側の面をそれぞれ意味する。例えば、太陽電池11に入射する太陽光のうち50%超過~100%が受光面側から入射する。 The solar cell 11 includes a photoelectric conversion unit 20 that generates carriers by receiving sunlight, a first electrode 30 that is a light-receiving surface electrode formed on the light-receiving surface of the photoelectric conversion unit 20, and the photoelectric conversion unit 20. And a second electrode 40 that is a back electrode formed on the back surface. In the solar cell 11, carriers generated by the photoelectric conversion unit 20 are collected by the first electrode 30 and the second electrode 40. Here, the “light receiving surface” means a surface on which sunlight mainly enters from the outside of the solar cell 11, and the “back surface” means a surface opposite to the light receiving surface. For example, more than 50% to 100% of the sunlight incident on the solar cell 11 enters from the light receiving surface side.
 光電変換部20は、例えば、結晶系シリコン(c‐Si)、ガリウム砒素(GaAs)、又はインジウム燐(InP)等の半導体材料からなる基板21を有する。基板21としては、n型単結晶シリコン基板が特に好適である。また、基板21の受光面及び裏面は、凹凸高さが1μm~15μm程度のテクスチャ構造(図示せず)を有することが好適である。 The photoelectric conversion unit 20 includes a substrate 21 made of a semiconductor material such as crystalline silicon (c-Si), gallium arsenide (GaAs), or indium phosphorus (InP). As the substrate 21, an n-type single crystal silicon substrate is particularly suitable. In addition, it is preferable that the light receiving surface and the back surface of the substrate 21 have a texture structure (not shown) having an uneven height of about 1 μm to 15 μm.
 基板21の受光面上には、非晶質シリコン層22と、酸化インジウム等を主成分とする透光性導電酸化物(TCO)からなる透明導電層23とが順に形成される。基板21の裏面上には、非晶質シリコン層24と、透明導電層25とが順に形成される。非晶質シリコン層22は、例えば、i型非晶質シリコン層と、p型非晶質シリコン層とが順に形成された層構造である。非晶質シリコン層24は、例えば、i型非晶質シリコン層と、n型非晶質シリコン層とが順に形成された層構造である。 On the light receiving surface of the substrate 21, an amorphous silicon layer 22 and a transparent conductive layer 23 made of a light-transmitting conductive oxide (TCO) mainly composed of indium oxide or the like are formed in this order. An amorphous silicon layer 24 and a transparent conductive layer 25 are sequentially formed on the back surface of the substrate 21. The amorphous silicon layer 22 has a layer structure in which, for example, an i-type amorphous silicon layer and a p-type amorphous silicon layer are sequentially formed. The amorphous silicon layer 24 has a layer structure in which, for example, an i-type amorphous silicon layer and an n-type amorphous silicon layer are sequentially formed.
 第1電極30は、複数(例えば、50本)のフィンガー31と、複数(例えば、2本)のバスバー32とで構成される。フィンガー31は、光電変換部20で生成されたキャリアを収集するために、受光面上の広範囲に形成される細線状の電極である。バスバー32は、フィンガー31からキャリアを集電する電極であって、全てのフィンガー31に電気的に接続されている。 The first electrode 30 includes a plurality of (for example, 50) fingers 31 and a plurality of (for example, two) bus bars 32. The finger 31 is a thin line electrode formed over a wide range on the light receiving surface in order to collect carriers generated by the photoelectric conversion unit 20. The bus bar 32 is an electrode that collects carriers from the fingers 31, and is electrically connected to all the fingers 31.
 第1電極30では、2本のバスバー32が所定の間隔を空けて互いに平行に配置され、これに交差して複数のフィンガー31が配置されている。複数のフィンガー31は、一部がバスバー32の各々から受光面の端縁側に延び、残りが2本のバスバー32を繋ぐように配置される。本実施形態では、第2電極40も、複数(例えば、250本)のフィンガー41と、複数(例えば、2本)のバスバー42とで構成され、第1電極30と同様の電極配置を有する。 In the first electrode 30, two bus bars 32 are arranged in parallel with each other at a predetermined interval, and a plurality of fingers 31 are arranged so as to cross this. The plurality of fingers 31 are arranged so that a part thereof extends from each of the bus bars 32 to the edge side of the light receiving surface, and the rest connects the two bus bars 32. In the present embodiment, the second electrode 40 is also composed of a plurality of (for example, 250) fingers 41 and a plurality of (for example, two) bus bars 42, and has the same electrode arrangement as the first electrode 30.
 第1被覆材12には、透光性を有する種々の部材を用いることができるが、耐久性等の観点からガラス基板12aを用いることが好適である。また、第1被覆材12は、ガラス基板12aと太陽電池11との隙間を塞ぎ、太陽電池11を封止する充填材12bを有する。充填材12bには、例えば、透光性を有する樹脂を用いることでき、少なくとも1種のαオレフィンを重合して得られるオレフィン系樹脂、例えば、エチレン-プロピレン共重合体やエチレン-酢酸ビニル共重合体(EVA)等を主成分とする樹脂が好ましい。これらのうち、有機過酸化物等を用いて架橋したEVAが特に好ましい。充填材12bは、例えば、その総重量に対して50重量%以上(50~100重量%)の架橋EVAを含有する。 Although various members having translucency can be used for the first covering material 12, it is preferable to use the glass substrate 12a from the viewpoint of durability and the like. Further, the first covering material 12 has a filler 12 b that closes the gap between the glass substrate 12 a and the solar cell 11 and seals the solar cell 11. As the filler 12b, for example, a light-transmitting resin can be used, and an olefin resin obtained by polymerizing at least one α-olefin, such as an ethylene-propylene copolymer or an ethylene-vinyl acetate copolymer. A resin mainly composed of coalescence (EVA) or the like is preferable. Of these, EVA crosslinked with an organic peroxide or the like is particularly preferable. The filler 12b contains, for example, 50% by weight or more (50 to 100% by weight) of crosslinked EVA with respect to the total weight.
 第2被覆材13には、コストの削減や軽量化等の観点から、樹脂フィルム13aを用いることが好適である。樹脂フィルム13aとしては、オレフィン系樹脂やスチレン系樹脂、ポリエステル系樹脂等からなるフィルムが例示できる。これらのうち、ポリエステル系樹脂フィルムが好ましく、ポリエチレンテレフタレート(PET)フィルムが特に好ましい。PETフィルムは、透光性に優れるため、裏面側からの受光を想定する用途にも好適である。第2被覆材13と太陽電池11との隙間には、第1被覆材12の場合と同様に、50重量%以上の架橋EVAを含有する充填材13bが設けられる。 For the second covering material 13, it is preferable to use a resin film 13a from the viewpoints of cost reduction and weight reduction. Examples of the resin film 13a include films made of olefin resins, styrene resins, polyester resins, and the like. Among these, a polyester resin film is preferable, and a polyethylene terephthalate (PET) film is particularly preferable. Since PET film is excellent in translucency, it is also suitable for applications that assume light reception from the back side. In the gap between the second covering material 13 and the solar cell 11, as in the case of the first covering material 12, a filler 13 b containing 50% by weight or more of crosslinked EVA is provided.
 樹脂フィルム13aには、後述の水蒸気透過度を低減するために、ガスバリア層13cを設けることができる。ガスバリア層13cとしては、PETフィルムよりも水蒸気透過性の低い樹脂や金属化合物(シリカやアルミナ)等からなる層が例示できる。透光性を損なうことなく、水蒸気透過度を低減したい場合には、厚みがサブミクロンオーダーのシリカ層を設けることが好適である。シリカ層は、PETフィルムの片面に蒸着により設けることができる。この場合、シリカ層をもう1枚のPETフィルムでラミネートして積層構造を有する樹脂フィルム13aとすることが好ましい。 The resin film 13a can be provided with a gas barrier layer 13c in order to reduce the water vapor permeability described later. Examples of the gas barrier layer 13c include a layer made of a resin or a metal compound (silica or alumina) having a lower water vapor permeability than the PET film. When it is desired to reduce the water vapor transmission rate without impairing the translucency, it is preferable to provide a silica layer having a thickness of submicron order. The silica layer can be provided on one side of the PET film by vapor deposition. In this case, it is preferable to laminate the silica layer with another PET film to obtain a resin film 13a having a laminated structure.
 配線材14は、隣接して配置される太陽電池11同士を接続する。配線材14の一端側は、隣接して配置される太陽電池11のうち、一方の太陽電池11の第1電極30(バスバー32)に取り付けられる。配線材14の他端側は、他方の太陽電池11の第2電極40(バスバー42)に接続される。つまり、配線材14は、隣接する太陽電池11の間で太陽電池モジュール10の厚み方向に曲がり、隣接する太陽電池11を直列接続する。配線材14は、例えば、非導電性接着剤や銀(Ag)等の導電性フィラーを含有する導電性接着剤を用いて取り付けられる。 Wiring member 14 connects solar cells 11 arranged adjacent to each other. One end side of the wiring member 14 is attached to the first electrode 30 (bus bar 32) of one solar cell 11 among the solar cells 11 arranged adjacent to each other. The other end side of the wiring member 14 is connected to the second electrode 40 (bus bar 42) of the other solar cell 11. That is, the wiring member 14 bends in the thickness direction of the solar cell module 10 between the adjacent solar cells 11 and connects the adjacent solar cells 11 in series. The wiring member 14 is attached using, for example, a non-conductive adhesive or a conductive adhesive containing a conductive filler such as silver (Ag).
 太陽電池モジュール10は、配線材14を接続して得られた太陽電池11のストリングをガラス基板12a、樹脂フィルム13a(例えば、PETフィルム)、及びシート状の充填材12b,13b(例えば、EVAシート)を用いてラミネートすることにより製造される。ラミネート装置では、ヒーター上にガラス基板12a/EVAシート/ストリング/EVAシート/PETフィルムの順に配置して、真空状態で150℃程度に加熱する。その後、大気圧下でヒーター側にモジュール材料を押し付けながら加熱を継続し、EVAを架橋させる。最後に、フレーム等を取り付けて太陽電池モジュール10が得られる。 In the solar cell module 10, a string of solar cells 11 obtained by connecting the wiring material 14 is made of a glass substrate 12 a, a resin film 13 a (for example, a PET film), and sheet- like fillers 12 b and 13 b (for example, an EVA sheet). ). In the laminating apparatus, the glass substrate 12a / EVA sheet / string / EVA sheet / PET film are arranged in this order on the heater and heated to about 150 ° C. in a vacuum state. Thereafter, heating is continued while pressing the module material against the heater under atmospheric pressure to crosslink EVA. Finally, a solar cell module 10 is obtained by attaching a frame or the like.
 太陽電池モジュール10における、第1被覆材12及び第2被覆材13の厚み、厚み方向の水蒸気透過度について以下説明する。なお、水蒸気透過度は、下記条件にて測定できる。
  装置;水蒸気透過度試験機(テクノ・アイ社製「DELTAPERM」)
  温度・湿度;40℃・90%
The thickness of the first coating material 12 and the second coating material 13 and the water vapor permeability in the thickness direction in the solar cell module 10 will be described below. The water vapor permeability can be measured under the following conditions.
Apparatus: Water vapor permeability tester (Techno Eye "DELTAPERRM")
Temperature / humidity: 40 ° C / 90%
 第1被覆材12の厚みt1は、例えば、0.5~3mm程度である。厚みt1のうち大部分がガラス基板12aの厚みである。ガラス基板12aの厚みは、0.5~3mm程度が好適であり、充填材12bの厚みは、50~200μm程度が好適である。第1被覆材12では、その厚み方向の水蒸気透過度、即ちガラス基板12aの表面から太陽電池11までの水蒸気透過度が、0.1g/m2/dayよりも大幅に小さい値を有する。 The thickness t1 of the first covering material 12 is, for example, about 0.5 to 3 mm. Most of the thickness t1 is the thickness of the glass substrate 12a. The thickness of the glass substrate 12a is preferably about 0.5 to 3 mm, and the thickness of the filler 12b is preferably about 50 to 200 μm. In the first covering material 12, the water vapor permeability in the thickness direction, that is, the water vapor permeability from the surface of the glass substrate 12a to the solar cell 11 has a value significantly smaller than 0.1 g / m 2 / day.
 第2被覆材13の厚みt2は、例えば、100~500μm程度である。そして、樹脂フィルム13aの厚みは、50~300μm程度が好適であり、充填材12bの厚みは、50~200μm程度が好適である。第2被覆材13は、その厚み方向の水蒸気透過度が、0.1g/m2/day以上である。例えば、厚みが150μmのPETフィルムでは、水蒸気透過度が10g/m2/day程度であり、厚みが2倍(300μm)になると概ね1/2倍(5g/m2/day)に、厚みが1/2倍(75μm)になると概ね2倍(20g/m2/day)になる。また、厚みが50~200μm程度のEVAシートでは、水蒸気透過度が50g/m2/day程度である。 The thickness t2 of the second covering material 13 is, for example, about 100 to 500 μm. The thickness of the resin film 13a is preferably about 50 to 300 μm, and the thickness of the filler 12b is preferably about 50 to 200 μm. The second coating material 13 has a water vapor permeability in the thickness direction of 0.1 g / m 2 / day or more. For example, in the case of a PET film having a thickness of 150 μm, the water vapor permeability is about 10 g / m 2 / day, and when the thickness is doubled (300 μm), the thickness is approximately ½ times (5 g / m 2 / day). When it becomes 1/2 times (75 μm), it becomes almost twice (20 g / m 2 / day). In addition, an EVA sheet having a thickness of about 50 to 200 μm has a water vapor permeability of about 50 g / m 2 / day.
 樹脂フィルム13aの厚みは、50~200μmがより好ましく、75~150μmが特に好ましい。そして、第2被覆材13の厚み方向の水蒸気透過度は、0.1~100g/m2/day程度となる。ガスバリア層13cとして、厚みがサブミクロンオーダーのシリカ層を設けた場合には、上記水蒸気透過度を0.1~10g/m2/day程度の範囲で容易に調整できる。 The thickness of the resin film 13a is more preferably 50 to 200 μm, and particularly preferably 75 to 150 μm. The water vapor permeability in the thickness direction of the second covering material 13 is about 0.1 to 100 g / m 2 / day. When a silica layer having a thickness of the order of submicron is provided as the gas barrier layer 13c, the water vapor permeability can be easily adjusted in the range of about 0.1 to 10 g / m 2 / day.
 図4及び図5にフィンガー31の断面構造を示す。
 図4は、図2のB‐B線断面の一部を示す図であって、フィンガー31,41に直交して太陽電池11を厚み方向に切断した断面を示す。図5は、図4に示す形態の変形例を示す。
4 and 5 show a cross-sectional structure of the finger 31. FIG.
FIG. 4 is a diagram showing a part of the cross section taken along line BB in FIG. 2, and shows a cross section obtained by cutting the solar cell 11 in the thickness direction perpendicular to the fingers 31 and 41. FIG. 5 shows a modification of the embodiment shown in FIG.
 フィンガー31及びバスバー32は、いずれも、絶縁性のバインダ33と導電性フィラー34とで構成される。導電性フィラー34は、バインダ33中に略均一に分散されていることが好ましい。そして、導電性フィラー34同士は、例えば、互いに接触して導電パスを形成する。電極材料には、フィラー分散剤等の添加剤が少量含まれていてもよい。フィンガーとバスバーで、また第1電極30と第2電極40とで電極材料や組成を変更してもよいが、本実施形態では、フィンガー31,41、バスバー32,42(以下、これらを総称して「集電極」という場合がある)は、同一材料、同一組成で構成されているものとする。 Both the finger 31 and the bus bar 32 are composed of an insulating binder 33 and a conductive filler 34. It is preferable that the conductive filler 34 is dispersed substantially uniformly in the binder 33. The conductive fillers 34 are in contact with each other to form a conductive path, for example. The electrode material may contain a small amount of an additive such as a filler dispersant. The electrode material and composition may be changed between the fingers and the bus bar, and between the first electrode 30 and the second electrode 40, but in the present embodiment, the fingers 31, 41 and the bus bars 32, 42 (hereinafter collectively referred to as these). Are sometimes made of the same material and the same composition.
 図4に例示する形態では、フィンガー31の表面の大部分がバインダ33で覆われており、一部の導電性フィラー34のみがフィンガー31の表面から露出している。フィンガー31の表面から導電性フィラー34が露出する割合は、例えば、バインダ33と導電性フィラー34との混合比率を変更することで調整可能である。 4, most of the surface of the finger 31 is covered with the binder 33, and only a part of the conductive filler 34 is exposed from the surface of the finger 31. The ratio at which the conductive filler 34 is exposed from the surface of the finger 31 can be adjusted, for example, by changing the mixing ratio of the binder 33 and the conductive filler 34.
 一方、図5に例示する形態では、フィンガー31の表面を被覆する樹脂コーティング層35が設けられている。樹脂コーティング層35は、例えば、バインダ33と同様の樹脂のみから構成され、フィンガー31の表面から露出する導電性フィラー34を覆っている。樹脂コーティング層35は、フィンガー31と同様の方法により又は別のコーティング法により、フィンガー31上に形成できる。なお、バスバー32,42は配線材14との良好な電気的接続を実現する必要があるため、樹脂コーティング層35は、フィンガー31,41に限定して設けられることが好ましい。 On the other hand, in the embodiment illustrated in FIG. 5, a resin coating layer 35 that covers the surface of the finger 31 is provided. The resin coating layer 35 is made of, for example, only the same resin as the binder 33 and covers the conductive filler 34 exposed from the surface of the finger 31. The resin coating layer 35 can be formed on the finger 31 by the same method as the finger 31 or by another coating method. In addition, since it is necessary for the bus bars 32 and 42 to realize good electrical connection with the wiring member 14, the resin coating layer 35 is preferably provided only on the fingers 31 and 41.
 集電極は、いずれもスクリーン印刷法により形成されることが好適である。スクリーン印刷法では、例えば、集電極の形状に対応した開口部を有するスクリーン版、及びスキージを用いて、光電変換部20上に電極材料を含むペーストを転写する。そして、転写されたペーストを加熱等により固化させて集電極を形成する。ペーストとしては、溶剤に電極材料であるバインダ33と導電性フィラー34とを混合した加熱硬化タイプの導電性ペーストが好適である。 The collector electrode is preferably formed by a screen printing method. In the screen printing method, for example, a paste containing an electrode material is transferred onto the photoelectric conversion unit 20 by using a screen plate having an opening corresponding to the shape of the collector electrode and a squeegee. Then, the transferred paste is solidified by heating or the like to form a collecting electrode. As the paste, a heat curing type conductive paste in which a binder 33 as an electrode material and a conductive filler 34 are mixed in a solvent is suitable.
 導電性フィラー34には、例えば、銀(Ag)、銅(Cu)、ニッケル(Ni)、アルミニウム(Al)、銀被覆銅、銀被覆アルミニウム等の金属粒子やカーボン、又はこれらの混合物などを用いることができる。導電性フィラー34としては、球状や紡錘状、針状、フレーク状(薄片状)等の形状を有する粒子が例示でき、特に平均粒径が3~20μmのフレーク状粒子、及び平均粒径が0.5~1μmの球状粒子を併用することが好適である。ここで、平均粒径とは、長径と短径の算術平均値をマイクロトラック式粒度分布測定法で測定した場合における50%累積値を意味する。 For the conductive filler 34, for example, metal particles such as silver (Ag), copper (Cu), nickel (Ni), aluminum (Al), silver-coated copper, silver-coated aluminum, carbon, or a mixture thereof is used. be able to. Examples of the conductive filler 34 include particles having a spherical shape, a spindle shape, a needle shape, a flake shape (flaky shape), and the like, and in particular, a flaky particle having an average particle size of 3 to 20 μm and an average particle size of 0. It is preferable to use spherical particles of 5 to 1 μm in combination. Here, the average particle diameter means a 50% cumulative value when the arithmetic average value of the major axis and the minor axis is measured by the microtrack type particle size distribution measuring method.
 特に、導電性フィラー34としてAg粒子を適用することが好適である。Ag粒子の含有量は、電極材料の総重量に対して、70~90重量%が好ましく、75~87重量%がより好ましく、80~85重量%が特に好ましい。換言すると、バインダ33の含有量は、電極材料の総重量に対して、10~30重量%が好ましく、13~25重量%がより好ましく、15~20重量%が特に好ましい。 In particular, it is preferable to apply Ag particles as the conductive filler 34. The content of Ag particles is preferably 70 to 90% by weight, more preferably 75 to 87% by weight, and particularly preferably 80 to 85% by weight based on the total weight of the electrode material. In other words, the content of the binder 33 is preferably 10 to 30% by weight, more preferably 13 to 25% by weight, and particularly preferably 15 to 20% by weight with respect to the total weight of the electrode material.
 バインダ33には、例えば、エポキシ系樹脂、ウレタン系樹脂、ウレア系樹脂、アクリル系樹脂、イミド系樹脂、フェノール系樹脂等の熱硬化性樹脂、又はこれらの変性物や混合物などを用いることができる。熱硬化性樹脂は、上記加熱処理により構成成分が硬化反応してバインダ33となる。熱硬化性樹脂の硬化反応が低温でも進行する場合には、構成成分の官能基をブロック化しておくことが好適である。例えば、ウレタン系樹脂の場合、イミダゾール類、フェノール類、オキシム類等のブロック化剤を用いてイソシアネート基を保護しておくことができる。かかる熱硬化性樹脂は、複数のグループに分類されるもの(例えば、エポキシ系樹脂及びウレタン系樹脂の両方に分類できる樹脂)であってもよい。 For the binder 33, for example, a thermosetting resin such as an epoxy resin, a urethane resin, a urea resin, an acrylic resin, an imide resin, or a phenol resin, or a modified product or a mixture thereof can be used. . The thermosetting resin becomes a binder 33 due to the curing reaction of the components by the heat treatment. When the curing reaction of the thermosetting resin proceeds even at a low temperature, it is preferable to block the functional groups of the constituent components. For example, in the case of a urethane-based resin, the isocyanate group can be protected using a blocking agent such as imidazoles, phenols, and oximes. Such thermosetting resins may be those classified into a plurality of groups (for example, resins that can be classified into both epoxy resins and urethane resins).
 上記熱硬化性樹脂としては、エポキシ系樹脂、ウレタン系樹脂、及びアクリル系樹脂からなる群より選択される少なくとも1種の熱硬化性樹脂(以下、「特定熱硬化性樹脂」という)を、バインダ33の総重量に対して80重量%以上含有することが好適である。例えば、特定熱硬化性樹脂のうち、エポキシ系樹脂を主成分(50重量%以上)とすることが好ましい。また、特定熱硬化性樹脂を80~95.5重量%含有し、シリコーン系樹脂を0.5~20重量%含有することも好ましい。シリコーン樹脂としては、メチル系やメチルフェニル系のようなストレートシリコーン樹脂、エポキシ系樹脂、アルキド系樹脂、エステル系樹脂、アクリル系樹脂等で変性した変性シリコーン樹脂などが例示できる。 As the thermosetting resin, at least one thermosetting resin (hereinafter referred to as “specific thermosetting resin”) selected from the group consisting of an epoxy resin, a urethane resin, and an acrylic resin is used as a binder. It is preferable to contain 80% by weight or more based on the total weight of 33. For example, it is preferable to use an epoxy resin as a main component (50% by weight or more) among the specific thermosetting resins. It is also preferable that the specific thermosetting resin is contained in an amount of 80 to 95.5% by weight and the silicone resin is contained in an amount of 0.5 to 20% by weight. Examples of the silicone resin include straight silicone resins such as methyl and methylphenyl, modified silicone resins modified with epoxy resins, alkyd resins, ester resins, acrylic resins, and the like.
 上記エポキシ系樹脂としては、脂環式エポキシ樹脂、鎖状エポキシ樹脂、ビスフェノールA型エポキシ樹脂、エポキシフェノールノボラック型樹脂、ポリグリシジルエーテル型エポキシ樹脂、ポリアルキレンエーテル型エポキシ樹脂、エポキシアクリレート樹脂、脂肪酸変性エポキシ樹脂、ウレタン変性エポキシ樹脂、シリコーン変性エポキシ樹脂等が例示できる。硬化剤には、例えば、イミダゾール類や三級アミン類を使用できる。熱硬化性樹脂としてエポキシ系樹脂のみを用いる場合、エポキシ当量が1000以下の成分(A成分という)と、エポキシ当量が1500以上の成分(B成分という)とを用いることが好ましい。そして、A成分とB成分との重量混合比は、A成分が30~90重量%(B成分が10~70重量%)であることが好ましい。 Examples of the epoxy resins include alicyclic epoxy resins, chain epoxy resins, bisphenol A type epoxy resins, epoxy phenol novolac type resins, polyglycidyl ether type epoxy resins, polyalkylene ether type epoxy resins, epoxy acrylate resins, and fatty acid-modified resins. Examples thereof include an epoxy resin, a urethane-modified epoxy resin, and a silicone-modified epoxy resin. As the curing agent, for example, imidazoles and tertiary amines can be used. When only an epoxy resin is used as the thermosetting resin, it is preferable to use a component having an epoxy equivalent of 1000 or less (referred to as component A) and a component having an epoxy equivalent of 1500 or higher (referred to as component B). The weight mixing ratio of the A component and the B component is preferably 30 to 90% by weight for the A component (10 to 70% by weight for the B component).
 上記ウレタン系樹脂としては、ジイソシアネートとポリオールとからなる樹脂等が例示できる。ジイソシアネートには、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ポリメチレンポリフェニルポリイソシアネート、トリジンジイソシアネート、キシリレンジイソシアネート、ナフタリンジイソシアネート等の芳香族系ジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、水添キシリレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、オクタメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート等の脂肪族系ジイソシアネート等を用いることができる。ポリオールには、例えば、ポリエーテルポリオール類、ポリエステルポリオール類、ポリカーボネートポリオール類等を用いることができる。 Examples of the urethane resin include resins composed of diisocyanate and polyol. Examples of the diisocyanate include aromatic diisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate, polymethylene polyphenyl polyisocyanate, tolidine diisocyanate, xylylene diisocyanate, and naphthalene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, hydrogenated xylylene diisocyanate, and dicyclohexyl. Aliphatic diisocyanates such as methane diisocyanate, octamethylene diisocyanate, and trimethylhexamethylene diisocyanate can be used. As the polyol, for example, polyether polyols, polyester polyols, polycarbonate polyols and the like can be used.
 上記アクリル系樹脂としては、(メタ)アクリル酸エステルと、架橋性官能基(例えば、カルボキシル基、水酸基、アミノ基、メチロール基、エポキシ基)を有するエチレン性不飽和単量体(例えば、アクリル酸、メタクリル酸、アクリルアミド、メタクリルアミド、N-メチロールアクリルアミド、アリルグリシジルエーテル、グルシジルメタクリレート)との共重合体等が例示できる。また、スチレン等の芳香族ビニル単量体を共重合してもよい。 Examples of the acrylic resins include (meth) acrylic acid esters and ethylenically unsaturated monomers (for example, acrylic acid) having a crosslinkable functional group (for example, carboxyl group, hydroxyl group, amino group, methylol group, epoxy group). Methacrylic acid, acrylamide, methacrylamide, N-methylolacrylamide, allyl glycidyl ether, glycidyl methacrylate) and the like. An aromatic vinyl monomer such as styrene may be copolymerized.
 また、導電性ペーストに含まれる溶剤には、例えば、エチルカルビトールアセテート、ブチルカルビトールアセテート、ターピネオール等の高沸点溶剤を用いることが好適である。溶剤は、光電変換部20上に転写された導電性ペーストを加熱処理するときに揮発除去される。加熱温度は、バインダ33の硬化条件等によっても異なるが、概ね200℃前後である。 Further, as the solvent contained in the conductive paste, it is preferable to use a high boiling point solvent such as ethyl carbitol acetate, butyl carbitol acetate, terpineol, or the like. The solvent is volatilized and removed when the conductive paste transferred onto the photoelectric conversion unit 20 is heated. The heating temperature is approximately 200 ° C., although it varies depending on the curing conditions of the binder 33 and the like.
 図6に、フィンガー31の表面のラマンスペクトル(実線)の一例を示す。図6の二点鎖線は、後述する比較モジュールのラマンスペクトルである。なお、本実施形態では、その他の集電極についても同様のラマンスペクトルが得られる。 FIG. 6 shows an example of a Raman spectrum (solid line) on the surface of the finger 31. A two-dot chain line in FIG. 6 is a Raman spectrum of a comparison module described later. In the present embodiment, similar Raman spectra are obtained for the other collector electrodes.
 図6に示すように、太陽電池11では、フィンガー31の表面のラマンスペクトルが、波長1500~1700cm-1に少なくとも1つの特定ピークであるピークZを有する。本明細書では、ピークトップにおける散乱強度(シグナル強度とも呼ばれる)が、ピークトップの波長から50cm-1長波長側における散乱強度よりも10%以上高いものをピークZと定義する。図6に示すラマンスペクトルには、波長1500~1700cm-1に1つのピークZが存在する。かかるピークZは、ピークトップの波長が1650cm-1にあり、ピークトップの散乱強度Ipが、ピークトップの波長から50cm-1長波長側(1700cm-1)における散乱強度Ikよりも10%以上高くなっている。 As shown in FIG. 6, in the solar cell 11, the Raman spectrum of the surface of the finger 31 has a peak Z that is at least one specific peak at wavelengths of 1500 to 1700 cm −1 . In the present specification, a peak Z is defined as a scattering intensity (also called signal intensity) at the peak top that is 10% or more higher than the scattering intensity on the long wavelength side of 50 cm −1 from the wavelength of the peak top. In the Raman spectrum shown in FIG. 6, one peak Z exists at a wavelength of 1500 to 1700 cm −1 . The peak Z has a peak top wavelength of 1650 cm −1 , and the peak top scattering intensity Ip is at least 10% higher than the scattering intensity Ik on the long wavelength side (1700 cm −1 ) 50 cm −1 from the peak top wavelength. It has become.
 フィンガー31のラマンスペクトルは、下記条件にて測定できる。
  装置;顕微レーザーラマン分光装置(レニショー社製「inVia Reflex」)
  励起光源;波長785nmのレーザー光
  測定モード;Extentionモード、20秒露光
The Raman spectrum of the finger 31 can be measured under the following conditions.
Apparatus: Microscopic laser Raman spectrometer ("InVia Reflex" manufactured by Renishaw)
Excitation light source; laser light with a wavelength of 785 nm Measurement mode: Extension mode, 20-second exposure
 ピークZは、詳しくは後述するように、太陽電池モジュール10の光電変換特性に影響を及ぼす重要な要素である。ピークトップの波長は、1500~1700cm-1にあればよく、特に限定されない。また、ピークZの数も、特に限定されず、複数存在してもよい。一方、散乱強度Ipは、長期信頼性向上等の観点から、高い方が好ましく、例えば、散乱強度Ikに対して15%以上高いことが好ましく、20%以上がより好ましく、30%以上が特に好ましい。 The peak Z is an important factor that affects the photoelectric conversion characteristics of the solar cell module 10 as will be described in detail later. The wavelength of the peak top is not particularly limited as long as it is in the range of 1500 to 1700 cm −1 . Further, the number of peaks Z is not particularly limited, and a plurality of peaks Z may exist. On the other hand, the scattering intensity Ip is preferably higher from the viewpoint of improving long-term reliability. For example, the scattering intensity Ip is preferably 15% or more higher than the scattering intensity Ik, more preferably 20% or more, and particularly preferably 30% or more. .
 ピークZは、例えば、電極表面におけるバインダ33の割合が多くなるほど出現し易くなり、散乱強度Ipが高くなる。換言すると、電極表面から導電性フィラー34が露出する割合を減らすほど、散乱強度Ipが高くなる。かかる電極構造は、例えば、上記のように、電極材料の総重量に対するAg粒子の含有量を80~85重量%とした導電性ペーストを用いて形成することができる。 For example, the peak Z is more likely to appear as the proportion of the binder 33 on the electrode surface increases, and the scattering intensity Ip increases. In other words, the scattering intensity Ip increases as the proportion of the conductive filler 34 exposed from the electrode surface decreases. Such an electrode structure can be formed using, for example, a conductive paste in which the content of Ag particles is 80 to 85% by weight with respect to the total weight of the electrode material as described above.
 また、太陽電池11では、散乱強度Ipと、ラマンスペクトルの波長800~1200cm-1におけるボトムの散乱強度Ibとの比率が、Ib/Ip≧0.7であることが好適である。即ち、散乱強度Ibは、散乱強度Ipの70%以上であることが好適であり、80%以上がより好適であり、100%程度(即ち、Ib=Ip)が特に好適である。これにより、太陽電池モジュール10の長期信頼性をさらに向上させることができる。ボトムの波長は、800~1200cm-1にあればよく、特に限定されない。 In the solar cell 11, it is preferable that the ratio of the scattering intensity Ip and the bottom scattering intensity Ib at the Raman spectrum wavelength of 800 to 1200 cm −1 is Ib / Ip ≧ 0.7. That is, the scattering intensity Ib is preferably 70% or more of the scattering intensity Ip, more preferably 80% or more, and particularly about 100% (that is, Ib = Ip). Thereby, the long-term reliability of the solar cell module 10 can be further improved. The bottom wavelength is not particularly limited as long as it is in the range of 800 to 1200 cm −1 .
 散乱強度Ipに対する散乱強度Ibの比率は、例えば、バインダ33の硬化度が高くなるほど上昇する傾向にある。つまり、Ib/Ipが0.7の場合よりも1.0である方が、集電極を構成するバインダ33の硬化度が高いことが示唆される。 For example, the ratio of the scattering intensity Ib to the scattering intensity Ip tends to increase as the degree of cure of the binder 33 increases. That is, it is suggested that the degree of cure of the binder 33 constituting the collector electrode is higher when Ib / Ip is 1.0 than when Ib / Ip is 0.7.
 図7に、太陽電池モジュール10における耐湿試験の結果を示す。この耐湿試験では、温度を85℃、湿度を85%とした恒温恒湿炉の条件にて、2000時間を試験時間とした。同図では、横軸に試験時間を、縦軸に劣化改善率をとる。また、図8に、Ib/Ipが、それぞれ、約0.70(▲)、約0.75(■)、約0.80(●)、約1.00(○)である太陽電池モジュール10における耐湿試験の結果を示す。同図では、横軸に試験時間を、縦軸にFF変化率をとる。詳細は下記の通りである。
 劣化改善率とは、第1電極30及び第2電極40の表面のラマンスペクトルが波長1500~1700cm-1にピークZを有する太陽電池モジュール10の曲線因子FF10と、ピークZを有さない以外は太陽電池モジュール10と同じ構成を備える比較用の太陽電池モジュール(以下、比較モジュールという)の曲線因子FF50とに基づいて算出(FF10/FF50)した。図6(二点鎖線)に、比較モジュールのラマンスペクトルを示す。
 比較モジュールは、Ib/Ipが約0.70である太陽電池モジュール10に対して、バインダ33(エポキシ樹脂)の重量を2/3に減量して作製した。
 Ib/Ipが、約0.70、約0.75、約0.80、約1.00である太陽電池モジュール10は、バインダ33の硬化処理時間のみを変更して作製した。加熱処理温度は、いずれも200℃であり、硬化処理時間は順に25分、35分、45分、90分である。
In FIG. 7, the result of the moisture resistance test in the solar cell module 10 is shown. In this moisture resistance test, the test time was 2000 hours under the conditions of a constant temperature and humidity furnace with a temperature of 85 ° C. and a humidity of 85%. In the figure, the horizontal axis represents the test time, and the vertical axis represents the deterioration improvement rate. Further, in FIG. 8, solar cell modules 10 having Ib / Ip of about 0.70 (▲), about 0.75 (■), about 0.80 (●), and about 1.00 (◯), respectively. The result of the moisture resistance test in is shown. In the figure, the horizontal axis represents the test time, and the vertical axis represents the FF change rate. Details are as follows.
The deterioration improvement rate means that the Raman spectrum of the surfaces of the first electrode 30 and the second electrode 40 has a fill factor FF 10 of the solar cell module 10 having a peak Z at a wavelength of 1500 to 1700 cm −1 and no peak Z. Was calculated (FF 10 / FF 50 ) based on the fill factor FF 50 of a comparative solar cell module (hereinafter referred to as a comparison module) having the same configuration as the solar cell module 10 . FIG. 6 (two-dot chain line) shows a Raman spectrum of the comparison module.
The comparison module was manufactured by reducing the weight of the binder 33 (epoxy resin) to 2/3 with respect to the solar cell module 10 having Ib / Ip of about 0.70.
The solar cell module 10 having Ib / Ip of about 0.70, about 0.75, about 0.80, and about 1.00 was produced by changing only the curing time of the binder 33. The heat treatment temperatures are all 200 ° C., and the curing treatment times are 25 minutes, 35 minutes, 45 minutes, and 90 minutes in this order.
 図7に示すように、第1電極30及び第2電極40の表面のラマンスペクトルが、波長1500~1700cm-1にピークZを有する場合には、ピークZを有さない場合と比較して光電変換特性の劣化が起こり難くなる。即ち、太陽電池モジュール10は比較モジュールよりも耐湿性能が高いことを意味する。これは、水分含量が高い部分ほど電極の金属がイオン化して拡散し易くなるが、ピークZを有する電極ではバインダ33や樹脂コーティング層35による導電性フィラー34の被覆率が高く、金属イオンが光電変換部20に拡散し難くなるからと推察される。特に、試験時間が長くなるほど両者の差は大きくなる。但し、第1被覆材12及び第2被覆材13共に、水蒸気透過度が0.1g/m2/day未満である場合には、そもそも金属イオンの拡散が生じ難く、太陽電池モジュール10と比較モジュールとの劣化改善率は1に近似する値であった。 As shown in FIG. 7, when the Raman spectra of the surfaces of the first electrode 30 and the second electrode 40 have a peak Z at a wavelength of 1500 to 1700 cm −1 , the photoelectric spectrum is smaller than that without the peak Z. Conversion characteristics are less likely to deteriorate. That is, it means that the solar cell module 10 has higher moisture resistance than the comparative module. This is because the higher the moisture content, the more easily the metal of the electrode is ionized and diffuses. However, in the electrode having the peak Z, the coverage of the conductive filler 34 by the binder 33 and the resin coating layer 35 is high, and the metal ions are photoelectric. This is presumed to be difficult to diffuse into the converter 20. In particular, the difference between the two increases as the test time increases. However, when both the first covering material 12 and the second covering material 13 have a water vapor permeability of less than 0.1 g / m 2 / day, diffusion of metal ions hardly occurs in the first place, and the solar cell module 10 and the comparison module The deterioration improvement rate was a value close to 1.
 図8に示すように、太陽電池モジュール10では、Ib/Ipが高くなるほどFF変化率の低下が小さく、耐湿性能が高くなる。特に、Ib/Ip≧0.8の場合に良好な耐湿性能を有する。つまり、バインダ33の硬化度が高くするほど、良好な耐湿性能が得られる。 As shown in FIG. 8, in the solar cell module 10, the lower the Ib / Ip, the smaller the decrease in the FF change rate and the higher the moisture resistance. In particular, it has good moisture resistance when Ib / Ip ≧ 0.8. That is, the higher the degree of cure of the binder 33, the better the moisture resistance.
 図7及び図8に示す耐湿試験の結果は、集電極のラマンスペクトルを用いて、太陽電池11及びそれを備える太陽電池モジュール10の性能評価が可能であることを示す。具体的には、集電極表面のラマンスペクトルを測定し、得られたスペクトルの波長1500~1700cm-1におけるピークZの有無に基づいて、太陽電池11の耐湿性能を評価することができる。例えば、集電極のラマンスペクトルにピークZが確認された場合には、水分含量が高い環境下においても長期信頼性に優れるモジュールを作製できる太陽電池であると評価できる。一方、ピークZが確認できない場合には、水分含量が高い環境下では使用できない太陽電池であると評価できる。 The results of the moisture resistance test shown in FIGS. 7 and 8 indicate that the performance evaluation of the solar cell 11 and the solar cell module 10 including the solar cell 11 can be performed using the Raman spectrum of the collector electrode. Specifically, the Raman spectrum of the surface of the collector electrode is measured, and the moisture resistance performance of the solar cell 11 can be evaluated based on the presence or absence of the peak Z at a wavelength of 1500 to 1700 cm −1 of the obtained spectrum. For example, when the peak Z is confirmed in the Raman spectrum of the collector electrode, it can be evaluated that the solar cell can produce a module having excellent long-term reliability even in an environment with a high moisture content. On the other hand, when the peak Z cannot be confirmed, it can be evaluated that the solar cell cannot be used in an environment with a high water content.
 また、ピークZにおけるピークトップの散乱強度Ipと、ラマンスペクトルの波長800~1200cm-1におけるボトムの散乱強度Ibとの比率に基づいて、太陽電池11の耐湿性能を評価することもできる。かかる比率は、バインダ33の硬化度を知るために利用することもできる。例えば、集電極のラマンスペクトルにおいて、Ib/Ip≧0.7、好ましくは≧0.8である場合には、水分含量が高い環境下においても長期信頼性に優れるモジュールを作製できる太陽電池であると評価できる。 Further, the moisture resistance performance of the solar cell 11 can be evaluated based on the ratio between the scattering intensity Ip at the peak top at the peak Z and the scattering intensity Ib at the bottom at a wavelength of Raman spectrum of 800 to 1200 cm −1 . Such a ratio can also be used to know the degree of cure of the binder 33. For example, in the Raman spectrum of the collector electrode, when Ib / Ip ≧ 0.7, preferably ≧ 0.8, the solar cell can produce a module having excellent long-term reliability even in an environment with a high water content. Can be evaluated.
 以上のように、太陽電池モジュール10によれば、水蒸気透過度が0.1g/m2/day以上の被覆材(第2被覆材13)を用いた構成において、光電変換特性の劣化を抑制することができる。そして、優れた長期信頼性を実現することができる。 As described above, according to the solar cell module 10, in the configuration using the coating material (second coating material 13) having a water vapor permeability of 0.1 g / m 2 / day or more, deterioration of photoelectric conversion characteristics is suppressed. be able to. And excellent long-term reliability can be realized.
 なお、フィンガー31,41のラマンスペクトルのみが、ピークZを有していてもよい。或いは、フィンガー31,41に係るピークZの散乱強度Ipが、バスバー32,42に係るピークZの散乱強度Ipより高くてもよい。かかる構成は、例えば、上記のように、フィンガー31,41のみに限定して樹脂コーティング層35を設けることで実現できる。これにより、配線材14との良好な電気的接続を維持しながら、光電変換特性の劣化を抑制することができる。 Note that only the Raman spectra of the fingers 31 and 41 may have a peak Z. Alternatively, the scattering intensity Ip of the peak Z related to the fingers 31 and 41 may be higher than the scattering intensity Ip of the peak Z related to the bus bars 32 and 42. Such a configuration can be realized, for example, by providing the resin coating layer 35 limited to the fingers 31 and 41 as described above. Thereby, deterioration of a photoelectric conversion characteristic can be suppressed, maintaining the favorable electrical connection with the wiring material 14. FIG.
 また、第2電極40のラマンスペクトルのみが、ピークZを有していてもよい。或いは、フィンガー41のラマンスペクトルのみが、ピークZを有していてもよく、フィンガー41に係るピークZの散乱強度Ipが、他の電極に係るピークZの散乱強度Ipより高くてもよい。かかる構成を採用する理由は、モジュール内における水分含量が高い部分ほど光電変換特性の劣化が進行し易いからである。つまり、フィンガー41に近い第2被覆材13は、第1被覆材12よりも水蒸気透過度が高いため、フィンガー41に係る散乱強度Ipを高めることは有効である。 Further, only the Raman spectrum of the second electrode 40 may have a peak Z. Alternatively, only the Raman spectrum of the finger 41 may have the peak Z, and the scattering intensity Ip of the peak Z related to the finger 41 may be higher than the scattering intensity Ip of the peak Z related to other electrodes. The reason for adopting such a configuration is that the portion having a higher moisture content in the module is more likely to deteriorate the photoelectric conversion characteristics. That is, since the second covering material 13 close to the finger 41 has a higher water vapor permeability than the first covering material 12, it is effective to increase the scattering intensity Ip related to the finger 41.
 また、裏面上のみにn側電極及びp側電極を備える光電変換部では、いずれの電極のラマンスペクトルもピークZを有することが好ましい。かかる光電変換部は、例えば、n型単結晶シリコン基板の受光面側に、i型非晶質シリコン層、n型非晶質シリコン層、及び透明導電層が順に形成され、n型単結晶シリコン基板の裏面側に、i型非晶質シリコン層とp型非晶質シリコン層とで構成されたp型領域と、i型非晶質シリコン層とn型非晶質シリコン層とで構成されたn型領域とが形成された構造を有する。そして、p型領域上及びn型領域上に、それぞれ透明導電層と電極とが設けられる。 Moreover, in the photoelectric conversion part provided with the n-side electrode and the p-side electrode only on the back surface, it is preferable that the Raman spectrum of any electrode has a peak Z. Such a photoelectric conversion unit includes, for example, an i-type amorphous silicon layer, an n-type amorphous silicon layer, and a transparent conductive layer formed in this order on the light-receiving surface side of an n-type single crystal silicon substrate. On the back side of the substrate, a p-type region composed of an i-type amorphous silicon layer and a p-type amorphous silicon layer, an i-type amorphous silicon layer, and an n-type amorphous silicon layer are formed. And an n-type region. A transparent conductive layer and an electrode are provided on the p-type region and the n-type region, respectively.
 10 太陽電池モジュール、11 太陽電池、12 第1被覆材、12a ガラス基板、12b 充填材、13 第2被覆材、13a 樹脂フィルム、13b 充填材、13c ガスバリア層、14 配線材、20 光電変換部、21 基板、22,24 非晶質シリコン層、23,25 透明導電層、30 第1電極、31,41 フィンガー、32,42 バスバー、33 バインダ、34 導電性フィラー、35 コーティング層、40 第2電極。 10 solar cell module, 11 solar cell, 12 first covering material, 12a glass substrate, 12b filler, 13 second covering material, 13a resin film, 13b filler, 13c gas barrier layer, 14 wiring material, 20 photoelectric conversion part, 21 substrate, 24, 24 amorphous silicon layer, 23, 25 transparent conductive layer, 30 first electrode, 31, 41 finger, 32, 42 bus bar, 33 binder, 34 conductive filler, 35 coating layer, 40 second electrode .

Claims (10)

  1.  太陽電池と、
     前記太陽電池を被覆する被覆材と、
     を備え、
     前記太陽電池は、
     光電変換部と、
     前記光電変換部上にバインダと導電性フィラーとで構成された電極と、
     を有し、
     前記被覆材は、その厚み方向に対する前記太陽電池までの水蒸気透過度が0.1g/m2/day以上であり、
     前記電極表面の少なくとも一部は、ラマンスペクトルの波長1500~1700cm-1に、少なくとも1つの特定ピークを有する太陽電池モジュール。
    Solar cells,
    A covering material for covering the solar cell;
    With
    The solar cell is
    A photoelectric conversion unit;
    An electrode composed of a binder and a conductive filler on the photoelectric conversion unit;
    Have
    The covering material has a water vapor permeability of 0.1 g / m 2 / day or more to the solar cell in the thickness direction,
    At least a part of the electrode surface is a solar cell module having at least one specific peak at a wavelength of 1500 to 1700 cm −1 of a Raman spectrum.
  2.  請求項1に記載の太陽電池モジュールにおいて、
     前記特定ピークにおけるピークトップのシグナル強度Ipと、前記ラマンスペクトルの波長800~1200cm-1におけるボトムのシグナル強度Ibとの比率が、Ib/Ip≧0.7である。
    The solar cell module according to claim 1, wherein
    The ratio between the peak top signal intensity Ip at the specific peak and the bottom signal intensity Ib at the wavelength of 800 to 1200 cm −1 of the Raman spectrum is Ib / Ip ≧ 0.7.
  3.  請求項1又は2に記載の太陽電池モジュールにおいて、
     前記電極は、フィンガーとバスバーとを含み、
     前記フィンガーの前記ラマンスペクトルのみが、波長1500~1700cm-1に少なくとも1つの前記特定ピークを有する。
    In the solar cell module according to claim 1 or 2,
    The electrode includes a finger and a bus bar,
    Only the Raman spectrum of the finger has at least one specific peak at a wavelength of 1500-1700 cm −1 .
  4.  請求項1~3のいずれか1項に記載の太陽電池モジュールにおいて、
     前記被覆材は、前記太陽電池の裏面側を被覆する裏面側被覆材を含み、
     前記裏面側被覆材は、
     厚みが50μm以上300μm以下の樹脂フィルムと、
     エチレン酢酸ビニル共重合体を主成分として構成され、前記樹脂フィルムと前記太陽電池との間に設けられる充填材と、
     を有し、
     前記水蒸気透過度が、0.1g/m2/day以上100g/m2/day以下である。
    The solar cell module according to any one of claims 1 to 3,
    The covering material includes a back surface side covering material that covers the back surface side of the solar cell,
    The back side covering material is
    A resin film having a thickness of 50 μm or more and 300 μm or less;
    An ethylene vinyl acetate copolymer as a main component, and a filler provided between the resin film and the solar cell;
    Have
    The water vapor permeability is 0.1 g / m 2 / day or more and 100 g / m 2 / day or less.
  5.  請求項4に記載の太陽電池モジュールにおいて、
     前記電極は、前記太陽電池の前記裏面に設けられた裏面電極を含み、
     前記裏面電極の前記ラマンスペクトルのみが、波長1500~1700cm-1に少なくとも1つの前記特定ピークを有する。
    In the solar cell module according to claim 4,
    The electrode includes a back electrode provided on the back surface of the solar cell,
    Only the Raman spectrum of the back electrode has at least one specific peak at a wavelength of 1500-1700 cm −1 .
  6.  請求項4又は5に記載の太陽電池モジュールにおいて、
     前記樹脂フィルムは、ガスバリア層を含み、
     前記裏面側被覆材の前記水蒸気透過度は、0.1g/m2/day以上10g/m2/day以下である。
    In the solar cell module according to claim 4 or 5,
    The resin film includes a gas barrier layer,
    The water vapor permeability of the back-side coating material is 0.1 g / m 2 / day or more and 10 g / m 2 / day or less.
  7.  請求項1~6のいずれか1項に記載の太陽電池モジュールにおいて、
     前記電極を構成する前記バインダは、エポキシ系樹脂、ウレタン系樹脂、及びアクリル系樹脂からなる群より選択される少なくとも1種の熱硬化性樹脂を80重量%以上含有する。
    The solar cell module according to any one of claims 1 to 6,
    The binder constituting the electrode contains at least 80% by weight of at least one thermosetting resin selected from the group consisting of epoxy resins, urethane resins, and acrylic resins.
  8.  請求項7に記載の太陽電池モジュールにおいて、
     前記バインダは、シリコーン系樹脂を0.5重量%以上20重量%以下含有する。
    In the solar cell module according to claim 7,
    The binder contains 0.5% to 20% by weight of a silicone resin.
  9.  請求項1~8のいずれか1項に記載の太陽電池モジュールにおいて、
     前記導電性フィラーは、銀粒子であり、
     前記銀粒子の含有量は、前記電極の総重量に対して、70重量%以上90重量%以下である。
    The solar cell module according to any one of claims 1 to 8,
    The conductive filler is silver particles,
    The silver particle content is 70 wt% or more and 90 wt% or less with respect to the total weight of the electrode.
  10.  請求項1~9のいずれか1項に記載の太陽電池モジュールにおいて、
     前記電極には、その表面を被覆する樹脂コーティング層が設けられる。
    The solar cell module according to any one of claims 1 to 9,
    The electrode is provided with a resin coating layer covering its surface.
PCT/JP2012/057593 2012-03-23 2012-03-23 Solar cell module WO2013140622A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/057593 WO2013140622A1 (en) 2012-03-23 2012-03-23 Solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/057593 WO2013140622A1 (en) 2012-03-23 2012-03-23 Solar cell module

Publications (1)

Publication Number Publication Date
WO2013140622A1 true WO2013140622A1 (en) 2013-09-26

Family

ID=49222113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057593 WO2013140622A1 (en) 2012-03-23 2012-03-23 Solar cell module

Country Status (1)

Country Link
WO (1) WO2013140622A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017139351A (en) * 2016-02-04 2017-08-10 京都エレックス株式会社 Manufacturing method of solar cell element, and solar cell element
JP6243581B1 (en) * 2016-12-01 2017-12-06 信越化学工業株式会社 High photoelectric conversion efficiency solar cell and method for producing high photoelectric conversion efficiency solar cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05102511A (en) * 1991-10-08 1993-04-23 Canon Inc Solar cell module
JPH05110124A (en) * 1991-10-18 1993-04-30 Canon Inc Solar battery
JPH06196741A (en) * 1992-12-24 1994-07-15 Canon Inc Solar battery module, manufacture thereof, and installation structure thereof
JPH0794767A (en) * 1993-09-21 1995-04-07 Canon Inc Photoelectric converter
JP2007207957A (en) * 2006-01-31 2007-08-16 Sanyo Electric Co Ltd Optoelectric transducer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05102511A (en) * 1991-10-08 1993-04-23 Canon Inc Solar cell module
JPH05110124A (en) * 1991-10-18 1993-04-30 Canon Inc Solar battery
JPH06196741A (en) * 1992-12-24 1994-07-15 Canon Inc Solar battery module, manufacture thereof, and installation structure thereof
JPH0794767A (en) * 1993-09-21 1995-04-07 Canon Inc Photoelectric converter
JP2007207957A (en) * 2006-01-31 2007-08-16 Sanyo Electric Co Ltd Optoelectric transducer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017139351A (en) * 2016-02-04 2017-08-10 京都エレックス株式会社 Manufacturing method of solar cell element, and solar cell element
JP6243581B1 (en) * 2016-12-01 2017-12-06 信越化学工業株式会社 High photoelectric conversion efficiency solar cell and method for producing high photoelectric conversion efficiency solar cell
WO2018100596A1 (en) * 2016-12-01 2018-06-07 信越化学工業株式会社 Solar cell having high photoelectric conversion efficiency and method for producing solar cell having high photoelectric conversion efficiency
EP3355361A4 (en) * 2016-12-01 2019-02-06 Shin-Etsu Chemical Co., Ltd Solar cell having high photoelectric conversion efficiency and method for producing solar cell having high photoelectric conversion efficiency
CN110024136A (en) * 2016-12-01 2019-07-16 信越化学工业株式会社 The manufacturing method of high photoelectricity conversion efficiency solar battery born of the same parents and high photoelectricity conversion efficiency solar battery born of the same parents
US10700223B2 (en) 2016-12-01 2020-06-30 Shin-Etsu Chemical Co., Ltd. High photoelectric conversion efficiency solar battery cell and method for manufacturing high photoelectric conversion solar battery cell
CN110024136B (en) * 2016-12-01 2022-10-04 信越化学工业株式会社 High photoelectric conversion efficiency solar cell and method for manufacturing high photoelectric conversion efficiency solar cell

Similar Documents

Publication Publication Date Title
KR100325952B1 (en) Photovoltaic devices and how to manufacture them
US9153719B2 (en) Solar cell module and method for manufacturing the same
US20120055539A1 (en) Solar cell module
US10453981B2 (en) Solar cell, solar cell module, method for manufacturing solar cell, and method for manufacturing solar cell module
EP2573819B1 (en) Bifacial solar cell module
KR19980063242A (en) A solar cell module having a special surface covering material excellent in moisture resistance and transparency
KR102107209B1 (en) Interconnector and solar cell module with the same
WO2017100080A1 (en) Photovoltaic module interconnect joints
US9148961B2 (en) Solar cell panel
WO2016104304A1 (en) Solar cell module and method for manufacturing same
JPH07106617A (en) Transparent electrode, formation thereof and solar cell employing same
US11316061B2 (en) Photovoltaic devices, photovoltaic modules provided therewith, and solar power generation systems
KR101044606B1 (en) Solar cell panel
US6706960B2 (en) Coating material and photovoltaic element
WO2013140622A1 (en) Solar cell module
US9362435B2 (en) Solar cell apparatus and method of fabricating the same
JP7353272B2 (en) Solar cell device and method for manufacturing solar cell device
US8975507B2 (en) Solar cell module
JPH06204544A (en) Solar cell module and solar cell
US8507788B2 (en) Solar cell panel
KR20120044541A (en) Conductive film, solar cell panel with the same and manufacturing method thereof
KR20120137670A (en) Solar cell module
WO2016114371A1 (en) Photoelectric conversion element, solar cell module equipped with same, and solar-light-generating system
JPWO2012118085A1 (en) Method for manufacturing solar cell device
KR20140056524A (en) Solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12872033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12872033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP