WO2013140549A1 - Solar cell and method for manufacturing same - Google Patents

Solar cell and method for manufacturing same Download PDF

Info

Publication number
WO2013140549A1
WO2013140549A1 PCT/JP2012/057190 JP2012057190W WO2013140549A1 WO 2013140549 A1 WO2013140549 A1 WO 2013140549A1 JP 2012057190 W JP2012057190 W JP 2012057190W WO 2013140549 A1 WO2013140549 A1 WO 2013140549A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
paste
solar cell
height
photoelectric conversion
Prior art date
Application number
PCT/JP2012/057190
Other languages
French (fr)
Japanese (ja)
Inventor
平 茂治
志敦 寺中
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to PCT/JP2012/057190 priority Critical patent/WO2013140549A1/en
Publication of WO2013140549A1 publication Critical patent/WO2013140549A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41PINDEXING SCHEME RELATING TO PRINTING, LINING MACHINES, TYPEWRITERS, AND TO STAMPS
    • B41P2215/00Screen printing machines
    • B41P2215/50Screen printing machines for particular purposes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell and a manufacturing method thereof.
  • the solar cell includes an electrode on the main surface of the photoelectric conversion unit in order to collect carriers generated by light reception.
  • Such an electrode is required to suppress the resistance of the electrode itself, the contact resistance between the electrode and the photoelectric conversion unit, the contact resistance between the electrode and the wiring material, and the like.
  • Patent Documents 1 and 2 disclose a method for manufacturing a solar cell in which electrodes are formed by repeating screen printing of a conductive paste a plurality of times.
  • the unevenness of the electrode surface can be reduced, for example, the contact resistance between the electrode and the wiring material can be lowered.
  • further improvement in photoelectric conversion efficiency is required.
  • a solar cell includes a photoelectric conversion unit, a binder, and an electrode provided on a main surface of the photoelectric conversion unit, and at least a part of the electrode has a length of 1 mm or more.
  • the variation coefficient of the electrode height over the entire length is 15% or less.
  • a method for manufacturing a solar cell according to one embodiment of the present invention is a method for manufacturing a solar cell including an electrode on a main surface of a photoelectric conversion unit, and is printed by printing a paste for forming an electrode on the main surface. And pressing the at least part of the paste in the height direction to flatten the upper surface of the paste, and then curing the paste.
  • a solar cell having good photoelectric conversion characteristics can be provided.
  • a second object for example, a transparent conductive layer
  • a first object for example, a main surface of a photoelectric conversion unit
  • FIG. 1 is a plan view of a solar cell 10 as an example of an embodiment of the present invention as viewed from the light receiving surface side.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1 and shows a cross section of the solar cell 10 cut in the thickness direction along the direction in which the finger electrodes 21 and 31 extend.
  • the solar cell 10 includes a photoelectric conversion unit 11 that generates carriers by receiving light such as sunlight, a first electrode 20 that is a light-receiving surface electrode provided on the light-receiving surface of the photoelectric conversion unit 11, and photoelectric conversion. And a second electrode 30 that is a back surface electrode provided on the back surface of the portion 11. On the back surface of the solar cell 10, the second electrode 30 can be formed in a larger area than the first electrode 20 because the influence of the light blocking loss on the photoelectric conversion characteristics is less than that of the light receiving surface.
  • the “light-receiving surface” means a main surface on which sunlight mainly enters from the outside of the solar cell 10. For example, more than 50% to 100% of the sunlight incident on the solar cell 10 enters from the light receiving surface side.
  • the “back surface” means a main surface opposite to the light receiving surface. In other words, the surface having the large electrode area among the main surfaces is the back surface.
  • the photoelectric conversion unit 11 includes a substrate made of a semiconductor material such as crystalline silicon (c-Si), gallium arsenide (GaAs), or indium phosphorus (InP).
  • the photoelectric conversion unit 11 is, for example, a translucent conductive material mainly composed of an i-type amorphous silicon layer, a p-type amorphous silicon layer, indium oxide, and the like on a light-receiving surface of an n-type single crystal silicon substrate.
  • a transparent conductive layer made of an oxide (TCO).
  • TCO oxide
  • an i-type amorphous silicon layer, an n-type amorphous silicon layer, and a transparent conductive layer are sequentially provided on the back surface of the n-type single crystal silicon substrate.
  • the photoelectric conversion unit 11 is not limited to this configuration, and various configurations can be adopted as will be described later.
  • the light receiving surface and the back surface of the photoelectric conversion unit 11 have a texture structure (not shown).
  • the texture structure is a surface uneven structure having a height of about 1 ⁇ m to 15 ⁇ m that suppresses surface reflection and increases the light absorption amount of the photoelectric conversion unit 11.
  • the texture structure there is a pyramidal (quadrangular pyramid or quadrangular pyramid-shaped) uneven structure obtained by performing anisotropic etching on the light receiving surface of a substrate made of single crystal silicon having a (100) plane. It can be illustrated.
  • the first electrode 20 includes, for example, a plurality (for example, 50) of finger electrodes 21 and a plurality (for example, two) of bus bar electrodes 22.
  • the finger electrode 21 is a thin line-shaped electrode formed over a wide range on the light receiving surface in order to collect carriers generated by the photoelectric conversion unit 11.
  • the bus bar electrode 22 is an electrode that collects carriers from the finger electrodes 21, and is electrically connected to all the finger electrodes 21.
  • the first electrode 20 two bus bar electrodes 22 are arranged in parallel with each other at a predetermined interval, and a plurality of finger electrodes 21 are arranged so as to intersect with each other.
  • the plurality of finger electrodes 21 are arranged so that a part thereof extends from each of the bus bar electrodes 22 to the edge side of the light receiving surface and the remaining part connects the two bus bar electrodes 22.
  • the second electrode 30 has the same electrode arrangement as that of the first electrode 20 and includes a plurality (for example, 250) of finger electrodes 31 and a plurality (for example, two) of bus bar electrodes 32.
  • the first electrode 20 and the second electrode 30 are both preferably formed using a conductive paste described later, and include an insulating binder and a conductive filler as electrode materials.
  • the electrode material may contain a small amount of an additive such as a filler dispersant.
  • the electrode material and composition may be changed between the finger electrode and the bus bar electrode, and between the first electrode 20 and the second electrode 30, but in this embodiment, the finger electrodes 21 and 31 and the bus bar electrodes 22 and 32 are It shall be comprised with the same material and the same composition.
  • the width (average value) of the finger electrode 21 is not particularly limited, but is preferably 30 ⁇ m to 150 ⁇ m from the viewpoint of reducing light shielding loss.
  • the width may be narrowed as the distance from the bus bar electrode 22 increases.
  • the width of the finest details is preferably 30 ⁇ m to 80 ⁇ m.
  • the width (average value) of the bus bar electrode 22 is preferably 0.5 mm to 1.5 mm, for example.
  • the width of the finger electrode 31 is preferably larger than that of the finger electrode 21, and is set to 60 ⁇ m to 250 ⁇ m, for example.
  • the height (average value) of the first electrode 20 is not particularly limited, but is preferably 20 ⁇ m to 140 ⁇ m, more preferably 30 ⁇ m to 110 ⁇ m, and particularly preferably 40 ⁇ m to 90 ⁇ m from the viewpoint of reducing resistance loss.
  • the height of the bus bar electrode 22 may be higher than that of the finger electrode 21, but in this embodiment, the average height of the finger electrode 21 and the bus bar electrode 22 is substantially equal.
  • the “substantially equivalent” includes a state that can be regarded as substantially equivalent, for example, a case where the difference in average values is ⁇ 5% or less (the same applies hereinafter).
  • the height of the first electrode 20 is “height h 20 ”
  • the height of the finger electrode 21 is “height h 21 ”
  • the height (average value) of the second electrode 30 is also not particularly limited. However, since the electrode area can be made larger than that of the first electrode 20, it can be made lower than that of the first electrode 20 from the viewpoint of reducing the electrode material. Is preferred. Specifically, it is preferably 5 ⁇ m to 70 ⁇ m, more preferably 10 ⁇ m to 60 ⁇ m, and particularly preferably 15 ⁇ m to 50 ⁇ m.
  • the height of the bus bar electrode 32 may be higher than that of the finger electrode 31 as in the case of the first electrode 20, but in this embodiment, the average height of the finger electrode 31 and the bus bar electrode 32 is substantially equal. It is.
  • the height of the second electrode 30 is “height h 30 ”
  • the height of the finger electrode 31 is “height h 31 ”
  • the height h 20 (the same applies to the height h 30 ) is measured by cross-sectional observation using a scanning electron microscope (SEM), and is measured from the uppermost surface of the photoelectric conversion unit 11 (for example, the convex portion of the texture structure). This is the length to the top surface of one electrode 20.
  • the height h 20 is measured for a cross section obtained by cutting the finger electrode 21 along its longitudinal direction.
  • the coefficient of variation (referred to as “CV 30 ”) is 15% or less. That is, in the solar cell 10, the upper surfaces 23 and 33 of the first electrode 20 and the second electrode 30 are flat and have less unevenness.
  • CV 20 (same for CV 30 ) is a value obtained by dividing the standard deviation of the height h 20 measured over a length of 1 mm or more of the first electrode 20 by the average value of the height h 20. . As CV 20 is smaller, the variation in height h 20 is smaller and the flatness of the upper surface 23 of the first electrode 20 is higher.
  • the standard deviation can be obtained using Microsoft's Excel STDEV function in the above-mentioned range.
  • the coefficient of variation (referred to as “CV 21 ”) of the height h 21 of the finger electrode 21 is such that CV 21 is 15% or less over a length of 1 mm or more along the longitudinal direction.
  • CV 21 is preferably 12% or less, particularly preferably 8% or less.
  • the coefficient of variation (referred to as “CV 22 ”) of the height h 22 of the bus bar electrode 22 is substantially equal to, for example, CV 21 . That is, in the first electrode 20, the upper surfaces 24 and 25 of the finger electrode 21 and the bus bar electrode 22 are both flat and uneven.
  • the finger electrode 21 and the bus bar electrode 22 preferably have CV 21 and CV 22 within the above-mentioned range over their entire length. Furthermore, it is preferable that CV 21 and CV 22 are within the above range in more than half of the plurality of finger electrodes 21 and the plurality of bus bar electrodes 22. In particular, it is preferable CV 22 CV 21 and all of the bus bar electrodes 22 of all the finger electrodes 21 is within the above range. That is, CV 20 is preferably 15% or less over the entire first electrode 20, more preferably 12% or less, and particularly preferably 8% or less.
  • the CV 30 of the second electrode 30 is preferably 15% or less, more preferably 12% or less, and particularly preferably 8% or less over the entire second electrode 30.
  • the coefficient of variation (referred to as “CV 31 ”) of the height h 31 of the finger electrode 31 and the coefficient of variation (referred to as “CV 32 ”) of the height h 32 of the bus bar electrode 32 are CV 31 , CV over the entire length. 32 is 15% or less, preferably 12% or less, particularly preferably 8% or less.
  • CV 21 and CV 22 may be different from each other.
  • the CV 22 may be smaller than the CV 21 . That is, the upper surface 25 of the bus bar electrode 22 may be flatter than the upper surface 24 of the finger electrode 21. By flattening the upper surface 25 to reduce the unevenness, for example, connectivity with a wiring material attached in the modularization is improved.
  • FIG. 3 sectional drawing of the solar cell 10x which is a modification of the solar cell 10 is shown. Similar to the solar cell 10, the solar cell 10 x includes a first electrode 20 x and a second electrode 30 x. On the other hand, in the solar cell 10x, a metal film 31x such as silver (Ag) is provided instead of the finger electrode 31. The metal film 31x is formed in substantially the entire region on the back surface of the photoelectric conversion unit 11 (for example, 95% or more on the transparent conductive layer).
  • the bus bar electrode 32x is formed on the metal film 31x. As with the bus bar electrode 32, the bus bar electrode 32x has a height variation coefficient of 15% or less over a length of 1 mm or more along the longitudinal direction thereof.
  • the height of the finger electrode 21x and the bus bar electrode 22x varies greatly, the upper surface has large irregularities, and the coefficient of variation in height exceeds 15%. That is, in the solar cell 10x, the variation coefficient of the height of the bus bar electrode 32x (second electrode 30x) is smaller than the variation coefficient of the height of the finger electrode 21x and the bus bar electrode 22x (first electrode 20x). The flatness of the electrodes is different between 20x and the second electrode 30x.
  • the second electrode 30 x including the metal film 31 x may be provided instead of the second electrode 30.
  • FIG. 4 is a diagram for explaining the principle of the screen printing method.
  • 5 and 6 are diagrams showing an electrode forming process of the solar cell 10.
  • 7 and 8 are diagrams showing another example of the electrode forming process of the solar cell 10.
  • 5 to 8 are schematic views of FIG. 5 to 8, the paste 50 printed on the light receiving surface of the photoelectric conversion unit 11 to form the first electrode 20 is “paste 50a”, and the paste 50 printed on the back surface to form the second electrode 30 is “ This is referred to as “paste 50b”.
  • paste 50b the paste 50 printed on the light receiving surface of the photoelectric conversion unit 11 to form the first electrode 20
  • the paste 50 printed on the back surface to form the second electrode 30 is “ This is referred to as “paste 50b”.
  • a description will be given by attaching a and b to the related elements of the pastes 50a and 50b.
  • the photoelectric conversion unit 11 is manufactured by a known method.
  • the paste 50a to be the first electrode 20 and the paste 50b to be the second electrode 30 are printed on the main surface.
  • the electrode printing method is not particularly limited as long as the paste 50 containing the electrode material (the binder and the filler) can be printed on the main surface.
  • a stencil printing method offset printing method, screen printing method
  • a paste jet method can be used.
  • the printing order of the pastes 50a and 50b is not limited, the following description will be made assuming that the paste 50b is printed first.
  • the paste 50b is preferably printed by a screen printing method from the viewpoint of productivity and accuracy.
  • a screen printing method plate making and squeegee 44 are used.
  • a screen plate 40 illustrated in FIG. 4 or a metal mask plate (not shown) can be used.
  • the screen printing method using the screen plate 40 is illustrated.
  • the screen plate 40 b having the opening 43 b corresponding to the shape of the second electrode 30 and the squeegee 44 are used on the back surface of the photoelectric conversion unit 11.
  • the paste 50b is transferred to the substrate.
  • the paste 50b is preferably printed at substantially the same height according to the shape of the finger electrode 31 and the bus bar electrode 32. That is, it is preferable that the paste 50b transferred onto the back surface has substantially the same height over the entire length of each electrode.
  • the screen printing process of the paste 50b is performed, for example, by placing the photoelectric conversion unit 11 on the flat table 51 with the back surface facing the screen plate 40b. More specifically, the paste 50 is placed on the screen plate 40b in which the opening 43b is formed only on the portion to which the paste 50b is to be transferred, and the squeegee 44 is slid to fill the opening 50 with the paste 50. Subsequently, when the portion of the screen plate 40b through which the squeegee 44 passes is separated from the back surface, the paste 50 is discharged from the opening 43b and transferred onto the back surface. In this embodiment, off-contact printing is described, but on-contact printing may be applied.
  • the screen plate 40 has a mesh 41 stretched on a frame (not shown).
  • the mesh 41 is a woven fabric or the like that transmits the paste 50, and the mesh 41 is provided with a mask material 42 corresponding to a region on the main surface where the paste 50 is not desired to be applied. That is, the screen plate 40 allows the paste 50 to pass through only the opening 43 which is a portion of the mesh 41 that is not masked by the mask material 42.
  • the material, wire diameter, number of meshes, opening, opening rate, etc. of the mesh 41 are selected according to the width, height, etc. of the second electrode 30 to be formed.
  • the mesh 41 is made of, for example, a resin fiber such as polyester or a metal wire such as stainless steel.
  • the wire diameter of the mesh 41 is selected according to the height of the second electrode 30 and the like.
  • the number of meshes is selected according to the strength of the mesh 41 and the definition of the second electrode 30.
  • the opening is selected according to the particle size of the filler contained in the paste 50, and is generally preferably at least twice the particle size.
  • the opening rate is selected according to the height and the width of the second electrode 30.
  • a photosensitive emulsion is usually used.
  • the emulsion is selected according to the resolution, exposure sensitivity, and the like.
  • a diazo or stilbazolium material is used.
  • a metal foil can be used.
  • the emulsion is coated on the mesh 41 and becomes a mask material 42 through an ultraviolet exposure process and an unexposed part removal process.
  • the thickness (plate thickness) of the screen plate 40 can be easily adjusted by increasing or decreasing the thickness (emulsion thickness) of the mask material 42.
  • the electrode height can be increased as the plate thickness increases.
  • the squeegee 44 is made of a material suitable for spreading the paste 50 on the screen plate 40.
  • the squeegee 44 is preferably composed of an elastic body having solvent resistance.
  • urethane rubber or the like is suitable.
  • the shape of the squeegee 44 is not particularly limited, but a flat squeegee is suitable.
  • the paste 50 is a fluid fluid paste.
  • a heat-curing type conductive paste in which a binder and a filler, which are electrode materials, and a solvent are mixed is suitable.
  • a binder for example, an epoxy resin, a urethane resin, a urea resin, an acrylic resin, an imide resin, a thermosetting resin such as a phenol resin, or a modified or mixture thereof can be used.
  • epoxy resins are preferred.
  • metal particles such as silver (Ag), copper (Cu), nickel (Ni), aluminum (Al), silver-coated copper, silver-coated aluminum, carbon, or a mixture thereof can be used. . Of these, silver particles are preferred.
  • solvent for example, alcohol-based, glycol ether-based, hydrocarbon-based organic solvents, or mixed solvents thereof can be used.
  • a squeegee angle As main parameters for determining printing conditions, a squeegee angle, a squeegee speed, a squeegee printing pressure (also simply referred to as a printing pressure), a clearance that is a distance between the screen plate 40 and the photoelectric conversion unit 11, and the like.
  • the squeegee angle is preferably about 50 ° to 80 °
  • the printing pressure is preferably about 2 to 6 kgf / cm 2 .
  • the paste 50b printed on the back surface is pressed in the height direction, and the upper surface 53b of the paste 50b is flattened.
  • a pressing device is placed on the paste 50b printed on the back surface and the upper surface 53b is pressed.
  • a flattening screen plate 45 that is a plate making without an opening and a squeegee 44 used in the screen printing step can be used.
  • the flattening screen plate 45 is composed of the same mesh 41 and mask material 42 as the screen plate 40. However, the flattening screen plate 45 does not have an opening corresponding to the electrode shape.
  • the entire mesh 41 is masked by the mask material 42.
  • the surface of the mask material 42 that contacts the paste 50b is a flat surface without unevenness, and preferably has no unevenness of 5 ⁇ m or more.
  • the squeegee 44 is slid on the surface opposite to the surface that contacts the paste 50b of the screen plate 45 for flattening.
  • the paste 50b is compressed and the upper surface 53b is flattened.
  • the angle and speed of the squeegee 44, the pressing force by the squeegee 44 (the force by which the squeegee 44 pushes the flattening screen plate 45), etc. are not particularly limited, and can be set similarly to the screen printing step. Normally, the higher the pressing force by the squeegee 44, the stronger the paste 50b is compressed, the lower the height of the paste 50b, and the higher the flatness of the upper surface 53b.
  • the solvent contained in the paste 50b Before proceeding to the flattening step, it is preferable to remove the solvent contained in the paste 50b as long as the upper surface 53b can be flattened.
  • the solvent can be removed by heat treatment or the like.
  • the heat treatment hereinafter referred to as “temporary drying process” is performed at 150 ° C. for 5 minutes to eliminate the tack (adhesiveness) of the paste 50b and the paste with the printing pressure in the printing process of the paste 50a. 50b is crushed and adjusted to an amount of solvent that can be plastically deformed.
  • the curing reaction of the binder resin may proceed as long as the upper surface 53b can be flattened.
  • the paste 50b whose upper surface 53b is flattened is subjected to a heat treatment (hereinafter referred to as “main drying treatment”) at a temperature higher than the temporary drying treatment for a long time (for example, 200 ° C. ⁇ 60 minutes).
  • the paste 50b can be cured by removing the solvent and heat-curing the binder.
  • the main drying process of the paste 50b is preferably performed together with the main drying process of the paste 50a from the viewpoint of reducing process costs.
  • the paste 50a is printed on the light receiving surface, and the upper surface 53a of the paste 50a is flattened using the flattening screen plate 45 similarly to the paste 50b, and then the pastes 50a and 50b are simultaneously subjected to the main drying process. It is. In this case, if the paste 50a is printed on the table 51 as described later, the paste 50b may be further flattened.
  • the first electrode 20 having a CV 20 of 15% or less and the second electrode 30 having a CV 30 of 15% or less can be produced.
  • the screen printing of the paste 50a can be performed in the same manner as the screen printing of the paste 50b. However, since height h 20 > height h 30 , printing is performed using the screen plate 40a having a plate thickness larger than that of the screen plate 40b used for printing the paste 50a. In the screen plate 40a, it is possible to print a paste 50a in which the mask material 42a is thicker than the mask material 42b and higher than the paste 50b. Further, since the width of the finger electrode 21 ⁇ the width of the finger electrode 31, the opening width of the opening 43a is narrower than the opening width of the opening 43b, and a paste 50a having a smaller width than the paste 50b can be printed.
  • the paste 50b can be flattened by a method different from the above method.
  • the photoelectric conversion unit 11 is inverted, and the photoelectric conversion unit 11 is arranged on the table 51 with the light receiving surface facing the screen plate 40a side. To do.
  • the paste 50a is printed on the light receiving surface while pressing the paste 50b printed on the back surface onto the table 51 to flatten the upper surface 53b.
  • the paste 50b is strongly pressed in the height direction by the printing pressure of the paste 50a in the screen printing process, and the upper surface 53b is flattened.
  • the table 51 is, for example, a table having a flat surface without unevenness (preferably having no unevenness of 5 ⁇ m or more). Such a flat surface is larger than the main surface of the photoelectric conversion unit 11, and it is preferable that the entire main surface can be uniformly supported and pressed.
  • the printing pressure in the screen printing of the paste 50a affects not only the printing characteristics of the paste 50a but also the flattening of the paste 50b. Normally, as the printing pressure increases, the pressing force against the paste 50b increases and the paste 50b is strongly compressed, the height of the paste 50b decreases, and the flatness of the upper surface 53b improves.
  • the intermediate body 12 in which the paste 50 b having the flat upper surface 53 b is formed on the back surface of the photoelectric conversion unit 11 and the paste 50 a is printed on the light receiving surface can be obtained. Since the intermediate body 12 has not undergone the flattening process of the paste 50a, large irregularities exist on the upper surface 53a.
  • the solvent in the pastes 50a and 50b can be removed, and the binder can be subjected to a thermosetting reaction to cure the pastes 50a and 50b.
  • the CV 30 of the second electrode 30 is 15% or less, and the CV 20 of the first electrode 20 exceeds 15%. That is, the second electrode 30 is flatter than the first electrode 20.
  • a flattening step of the paste 50a can be further provided.
  • a flattening screen plate 45 may be used, or the photoelectric conversion unit 11 may be reversed and the paste 50 a may be pressed against the table 51.
  • the main drying process is performed after the flattening step of the paste 50a or in a state where pressing by the press plate 52 is continued.
  • the solvents in the pastes 50a and 50b can be removed, and the pastes 50a and 50b can be cured by thermosetting the binder.
  • the first electrode 20 having a flat upper surface 25 and CV 20 of 15% or less and the second electrode 30 having a flat upper surface 35 and CV 30 of 15% or less are manufactured. be able to.
  • the paste for forming the second electrode 30x by limiting the printing order of each paste for forming the first electrode 20x and the second electrode 30x. is there. Specifically, after the paste for forming the bus bar electrode 32x is printed on the metal film 31x and planarized, the paste for forming the first electrode 20x is printed on the light receiving surface. Thereby, the sulfidation and oxidation of the metal film 31x in the heat treatment step of the first electrode 20x can be prevented, and the contact resistance between the metal film 31x and the bus bar electrode 32x can be kept low.
  • FIG. 9A shows measured values of the height along the longitudinal direction of the finger electrode 81 of the conventional battery 60
  • FIGS. 9B and 9C show the measured value along the longitudinal direction of the finger electrode 31 of the solar cell 10.
  • the measured value of the height h 31 is shown.
  • the horizontal axis represents the electrode length
  • the vertical axis represents the electrode height.
  • FIG. 10 shows a cross-sectional view of the conventional battery 60.
  • the solar cell 10 and the conventional battery 60 are provided with the same photoelectric conversion unit 11 and differ only in electrode form. Similar to the solar battery 10, the conventional battery 60 includes the finger electrode 71, the first electrode 70 including the bus bar electrode 72, and the second electrode 80 including the finger electrode 81 and the bus bar electrode 82. , 50b is different from the solar cell 10 in that it has not undergone the flattening process.
  • Figure 9 (b) to the finger electrode 31 measurements is shown a height h 31 (hereinafter referred to as “finger electrodes 31A”), and the finger electrode measured value of the height h 31 in FIG. 9 (c) are shown 31 (hereinafter referred to as “finger electrode 31B”) is obtained by flattening the upper surface 34 by pressing paste 50b printed at substantially the same height with different pressures.
  • the finger electrode 31A was formed through a low-pressure (0.5 MPa) flattening step, and the finger electrode 31B was formed through a high-pressure (1.0 MPa) flattening step.
  • the finger electrodes 31A and 31B both have a small variation in the height h 31 and the CV 31 over a length of 1 mm or more is 15% or less.
  • the average value of the height h 31 was 33.1 ⁇ m, and the CV 31 was 11.5%.
  • the average value of the height h 31 was 30.3 ⁇ m, and the CV 31 was 7.2%. That found the pressing force is higher in the flattening process, CV 31 becomes paste 50b is compressed strongly height h 31 low is reduced.
  • the finger electrode 81 had an average height value of 26.0 ⁇ m and a height variation coefficient of 17.9%. That is, the finger electrode 81 has a height variation coefficient of more than 15%, and the top surface has large irregularities compared to the finger electrodes 31A and 31B, and the height varies.
  • the finger electrode on the light-receiving surface side having substantially the same dimensions as the finger electrodes 31A, 31B, and 81, and the light reception, respectively.
  • Bus bar electrodes on the surface side and the back surface side were provided.
  • the wiring material was attached to the bus-bar electrode of each solar cell, and the output characteristic was evaluated. The evaluation results are shown as a ratio to the conventional battery 60 (curve factor of solar cells 10A and 10B / curve factor of conventional battery 60).
  • the solar cells 10A and 10B having a high flatness on the electrode upper surface have lower output resistance than the conventional battery 60 having a lower flatness on the electrode upper surface and have good output characteristics.
  • the output characteristics improve as the flatness increases.
  • the photoelectric conversion unit 11 is less likely to be damaged when the wiring member is thermocompression bonded to the bus bar electrode. This tendency becomes remarkable when the coefficient of variation is about 15%.
  • the paste printed on the main surface of the photoelectric conversion unit 11 is pressed and compressed, so that the unevenness on the upper surface of the paste is reduced and a flattened electrode is formed.
  • Such an electrode has a variation coefficient of electrode height of 15% or less over a length of 1 mm or more, preferably over the entire length.
  • the electrode material is strongly compressed and the fillers are in strong contact with each other, and a good conductive path is obtained. Can be formed. For this reason, the resistance of the electrode itself can be reduced.
  • the adhesion between the electrode and the photoelectric conversion unit 11 can be improved, and the contact resistance between the electrode and the photoelectric conversion unit 11 can be reduced.
  • the manufacturing cost can be reduced by reducing the amount of conductive paste used while maintaining low resistance loss. Further, the finger electrode can be further thinned while maintaining a low resistance loss, thereby reducing a light shielding loss.
  • the connectivity with the wiring material attached when modularizing is improved.
  • the contact area between the electrode and the wiring material is increased, the adhesion between the electrode and the wiring material is improved, and the contact resistance between the two is also reduced.
  • the wiring material is thermocompression bonded to the electrode, the influence of the stress generated at that time can be reduced.
  • the unevenness of the upper surface of the electrode is large, pressure is likely to be applied to the convex portion, and stress concentrates on a part of the photoelectric conversion portion 11, and damage such as cracks or cracks may occur in the photoelectric conversion portion 11.
  • the flatness of the upper surface of the electrode is high, the stress applied to the photoelectric conversion unit 11 can be dispersed, and damage to the photoelectric conversion unit 11 can be suppressed.
  • the solar cell 10 exhibits good photoelectric conversion characteristics due to, for example, a synergistic effect thereof.
  • the photoelectric conversion unit 11 includes an n-type amorphous silicon layer 101 and an n-type amorphous silicon film 102 formed on the light-receiving surface side of an n-type single crystal silicon substrate 100.
  • a structure having an n-type region composed of the n-type amorphous silicon layer 107, the transparent conductive layer 108, and an insulating layer 111 provided between the p-type region and the n-type region may be employed.
  • an electrode is provided only on the back side of n-type single crystal silicon substrate 100.
  • the electrodes include a p-side collector electrode 109 formed on the p-type region and an n-side collector electrode 110 formed on the n-type region.
  • the photoelectric conversion unit 11 includes a p-type polycrystalline silicon substrate 120, an n-type diffusion layer 121 formed on the surface side of the p-type polycrystalline silicon substrate 120, and a p-type polycrystalline.
  • a structure having an aluminum metal film 122 formed on the back surface of the silicon substrate 120 may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A solar cell (10) is provided with: a photoelectric conversion unit (11); and a first electrode (20) and a second electrode (30), which contain a binder and a filler, and are provided on the main surfaces of the photoelectric conversion unit (11), respectively. At least a part of the first electrode (20) and at least a part of the second electrode (30) have an electrode height variation coefficient of 15 % or less for a length of 1 mm or more. The first electrode (20) and the second electrode (30) are manufactured by printing paste portions (50a, 50b) on respective main surfaces, said paste portions forming respective electrodes, flattening the upper surfaces (53a, 53b) of the paste portions (50a, 50b) by pressing, in the height direction, at least a part of each of the printed paste portions (50a, 50b), then, hardening the paste portions (50a, 50b).

Description

太陽電池及びその製造方法Solar cell and manufacturing method thereof
 本発明は、太陽電池及びその製造方法に関する。 The present invention relates to a solar cell and a manufacturing method thereof.
 太陽電池は、受光により発生したキャリアを収集するために、光電変換部の主面上に電極を備える。かかる電極には、電極自体の抵抗や電極と光電変換部との接触抵抗、電極と配線材との接触抵抗等を低く抑えることが求められている。例えば、特許文献1,2には、導電性ペーストのスクリーン印刷を複数回繰り返して電極を形成する太陽電池の製造方法が開示されている。 The solar cell includes an electrode on the main surface of the photoelectric conversion unit in order to collect carriers generated by light reception. Such an electrode is required to suppress the resistance of the electrode itself, the contact resistance between the electrode and the photoelectric conversion unit, the contact resistance between the electrode and the wiring material, and the like. For example, Patent Documents 1 and 2 disclose a method for manufacturing a solar cell in which electrodes are formed by repeating screen printing of a conductive paste a plurality of times.
特開平11-103084号公報JP-A-11-103084 特開2011-61109号公報JP 2011-61109 A
 上記従来技術によれば、電極表面の凹凸を低減して、例えば、電極と配線材との接触抵抗を低くすることができる。しかしながら、太陽電池の普及が急速に進んでいる現状において、さらなる光電変換効率の向上が要求されている。 According to the above prior art, the unevenness of the electrode surface can be reduced, for example, the contact resistance between the electrode and the wiring material can be lowered. However, in the current situation where the spread of solar cells is rapidly progressing, further improvement in photoelectric conversion efficiency is required.
 本発明の一態様に係る太陽電池は、光電変換部と、バインダとフィラーとを含み、光電変換部の主面上に設けられた電極とを備え、電極の少なくとも一部は、1mm以上の長さに亘る電極高さの変動係数が15%以下である。 A solar cell according to one embodiment of the present invention includes a photoelectric conversion unit, a binder, and an electrode provided on a main surface of the photoelectric conversion unit, and at least a part of the electrode has a length of 1 mm or more. The variation coefficient of the electrode height over the entire length is 15% or less.
 本発明の一態様に係る太陽電池の製造方法は、光電変換部の主面上に電極を備えた太陽電池の製造方法であって、電極を形成するペーストを主面上に印刷し、印刷されたペーストの少なくとも一部を高さ方向に押圧してペーストの上面を平坦化した後、当該ペーストを硬化させる工程を備える。 A method for manufacturing a solar cell according to one embodiment of the present invention is a method for manufacturing a solar cell including an electrode on a main surface of a photoelectric conversion unit, and is printed by printing a paste for forming an electrode on the main surface. And pressing the at least part of the paste in the height direction to flatten the upper surface of the paste, and then curing the paste.
 本発明によれば、良好な光電変換特性を有する太陽電池を提供することができる。 According to the present invention, a solar cell having good photoelectric conversion characteristics can be provided.
本発明に係る実施形態の一例である太陽電池を受光面側から見た平面図である。It is the top view which looked at the solar cell which is an example of embodiment which concerns on this invention from the light-receiving surface side. 図1のA‐A線断面図である。It is the sectional view on the AA line of FIG. 本発明に係る実施形態の一例である太陽電池の変形例を示す断面図である。It is sectional drawing which shows the modification of the solar cell which is an example of embodiment which concerns on this invention. 本発明に係る実施形態の一例におけるスクリーン印刷法の原理を示す図である。It is a figure which shows the principle of the screen printing method in an example of embodiment which concerns on this invention. 本発明に係る実施形態の一例である太陽電池の製造過程の一部を示す図である。It is a figure which shows a part of manufacturing process of the solar cell which is an example of embodiment which concerns on this invention. 本発明に係る実施形態の一例である太陽電池の製造過程の一部を示す図である。It is a figure which shows a part of manufacturing process of the solar cell which is an example of embodiment which concerns on this invention. 本発明に係る実施形態の他の一例である太陽電池の製造過程の一部を示す図である。It is a figure which shows a part of manufacturing process of the solar cell which is another example of embodiment which concerns on this invention. 本発明に係る実施形態の他の一例である太陽電池の製造過程の一部を示す図である。It is a figure which shows a part of manufacturing process of the solar cell which is another example of embodiment which concerns on this invention. 本発明に係る実施形態の一例である太陽電池、及び従来の太陽電池において、電極の長手方向に沿った電極高さの測定値を示す図である。In the solar cell which is an example of embodiment which concerns on this invention, and the conventional solar cell, it is a figure which shows the measured value of the electrode height along the longitudinal direction of an electrode. 従来の太陽電池を示す断面図である。It is sectional drawing which shows the conventional solar cell. 本発明に係る実施形態の一例である太陽電池において、光電変換部の変形例を示す断面図である。In the solar cell which is an example of embodiment which concerns on this invention, it is sectional drawing which shows the modification of a photoelectric conversion part. 本発明に係る実施形態の一例である太陽電池において、光電変換部の他の変形例を示す断面図である。In the solar cell which is an example of embodiment which concerns on this invention, it is sectional drawing which shows the other modification of a photoelectric conversion part.
 図面を参照して、本発明の実施形態を詳細に説明する。
 本発明は、以下の実施形態に限定されない。また、実施形態において参照する図面は、模式的に記載されたものであり、図面に描画された構成要素の寸法比率などは、現物と異なる場合がある。具体的な寸法比率等は、以下の説明を参酌して判断されるべきである。また、特別な限定を付さない限り、「数値X~数値Y」の記載は「数値X以上数値Y以下」を意味する。
Embodiments of the present invention will be described in detail with reference to the drawings.
The present invention is not limited to the following embodiments. The drawings referred to in the embodiments are schematically described, and the dimensional ratios of the components drawn in the drawings may be different from the actual products. Specific dimensional ratios and the like should be determined in consideration of the following description. Unless otherwise specified, the description of “numerical value X to numerical value Y” means “numerical value X or more and numerical value Y or less”.
 本明細書では、「第1のオブジェクト(例えば、光電変換部の主面)上に、第2のオブジェクト(例えば、透明導電層)が形成される」との記載は、特に限定を付さない限り、第1及び第2のオブジェクトが直接接触して形成される場合のみを意図しない。すなわち、この記載は、第1及び第2のオブジェクトの間に、その他のオブジェクトが存在する場合を含むものである。 In the present specification, the description “a second object (for example, a transparent conductive layer) is formed on a first object (for example, a main surface of a photoelectric conversion unit)” is not particularly limited. As long as the first and second objects are formed in direct contact, it is not intended. That is, this description includes a case where another object exists between the first and second objects.
 図1は、本発明の実施形態の一例である太陽電池10を受光面側から見た平面図である。図2は、図1のA‐A線断面図であって、フィンガー電極21,31が延びる方向に沿って太陽電池10を厚み方向に切断した断面を示す図である。 FIG. 1 is a plan view of a solar cell 10 as an example of an embodiment of the present invention as viewed from the light receiving surface side. FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1 and shows a cross section of the solar cell 10 cut in the thickness direction along the direction in which the finger electrodes 21 and 31 extend.
 太陽電池10は、太陽光等の光を受光することでキャリアを生成する光電変換部11と、光電変換部11の受光面上に設けられた受光面電極である第1電極20と、光電変換部11の裏面上に設けられた裏面電極である第2電極30とを備える。太陽電池10の裏面では、受光面と比べて光電変換特性に対する遮光ロスの影響が少ないため、第1電極20よりも大面積に第2電極30を形成できる。 The solar cell 10 includes a photoelectric conversion unit 11 that generates carriers by receiving light such as sunlight, a first electrode 20 that is a light-receiving surface electrode provided on the light-receiving surface of the photoelectric conversion unit 11, and photoelectric conversion. And a second electrode 30 that is a back surface electrode provided on the back surface of the portion 11. On the back surface of the solar cell 10, the second electrode 30 can be formed in a larger area than the first electrode 20 because the influence of the light blocking loss on the photoelectric conversion characteristics is less than that of the light receiving surface.
 ここで、「受光面」とは、太陽電池10の外部から太陽光が主に入射する主面を意味する。例えば、太陽電池10に入射する太陽光のうち50%超過~100%が受光面側から入射する。また、「裏面」とは、受光面と反対側の主面を意味する。換言すると、主面のうち電極面積が大きな面が裏面である。 Here, the “light-receiving surface” means a main surface on which sunlight mainly enters from the outside of the solar cell 10. For example, more than 50% to 100% of the sunlight incident on the solar cell 10 enters from the light receiving surface side. Further, the “back surface” means a main surface opposite to the light receiving surface. In other words, the surface having the large electrode area among the main surfaces is the back surface.
 光電変換部11は、例えば、結晶系シリコン(c‐Si)、ガリウム砒素(GaAs)、又はインジウム燐(InP)等の半導体材料からなる基板を有する。光電変換部11は、例えば、n型単結晶シリコン基板の受光面上に、i型非晶質シリコン層と、p型非晶質シリコン層と、酸化インジウム等を主成分とする透光性導電酸化物(TCO)からなる透明導電層とを順に有する。また、n型単結晶シリコン基板の裏面上に、i型非晶質シリコン層と、n型非晶質シリコン層と、透明導電層とを順に有する。なお、光電変換部11は、この構成に限定されるものではなく、後述するように種々の構成を採ることができる。 The photoelectric conversion unit 11 includes a substrate made of a semiconductor material such as crystalline silicon (c-Si), gallium arsenide (GaAs), or indium phosphorus (InP). The photoelectric conversion unit 11 is, for example, a translucent conductive material mainly composed of an i-type amorphous silicon layer, a p-type amorphous silicon layer, indium oxide, and the like on a light-receiving surface of an n-type single crystal silicon substrate. And a transparent conductive layer made of an oxide (TCO). In addition, an i-type amorphous silicon layer, an n-type amorphous silicon layer, and a transparent conductive layer are sequentially provided on the back surface of the n-type single crystal silicon substrate. The photoelectric conversion unit 11 is not limited to this configuration, and various configurations can be adopted as will be described later.
 光電変換部11の受光面及び裏面は、図示しないテクスチャ構造を有することが好適である。テクスチャ構造とは、表面反射を抑制し、光電変換部11の光吸収量を増大させる、高さ1μm~15μm程度の表面凹凸構造である。テクスチャ構造の具体例としては、(100)面を有する単結晶シリコンからなる基板の受光面に異方性エッチングを施すことによって得られるピラミッド状(四角錐状や四角錐台状)の凹凸構造が例示できる。 It is preferable that the light receiving surface and the back surface of the photoelectric conversion unit 11 have a texture structure (not shown). The texture structure is a surface uneven structure having a height of about 1 μm to 15 μm that suppresses surface reflection and increases the light absorption amount of the photoelectric conversion unit 11. As a specific example of the texture structure, there is a pyramidal (quadrangular pyramid or quadrangular pyramid-shaped) uneven structure obtained by performing anisotropic etching on the light receiving surface of a substrate made of single crystal silicon having a (100) plane. It can be illustrated.
 第1電極20は、例えば、複数(例えば、50本)のフィンガー電極21と、複数(例えば、2本)のバスバー電極22とを含む。フィンガー電極21は、光電変換部11で生成されキャリアを収集するために、受光面上の広範囲に形成される細線状の電極である。バスバー電極22は、フィンガー電極21からキャリアを集電する電極であって、全てのフィンガー電極21に電気的に接続されている。 The first electrode 20 includes, for example, a plurality (for example, 50) of finger electrodes 21 and a plurality (for example, two) of bus bar electrodes 22. The finger electrode 21 is a thin line-shaped electrode formed over a wide range on the light receiving surface in order to collect carriers generated by the photoelectric conversion unit 11. The bus bar electrode 22 is an electrode that collects carriers from the finger electrodes 21, and is electrically connected to all the finger electrodes 21.
 第1電極20では、2本のバスバー電極22が所定の間隔を空けて互いに平行に配置され、これに交差して複数のフィンガー電極21が配置されている。複数のフィンガー電極21は、一部がバスバー電極22の各々から受光面の端縁側に延び、残りが2本のバスバー電極22を繋ぐように配置される。第2電極30も第1電極20と同様の電極配置を有し、複数(例えば、250本)のフィンガー電極31と、複数(例えば、2本)のバスバー電極32とを含む。 In the first electrode 20, two bus bar electrodes 22 are arranged in parallel with each other at a predetermined interval, and a plurality of finger electrodes 21 are arranged so as to intersect with each other. The plurality of finger electrodes 21 are arranged so that a part thereof extends from each of the bus bar electrodes 22 to the edge side of the light receiving surface and the remaining part connects the two bus bar electrodes 22. The second electrode 30 has the same electrode arrangement as that of the first electrode 20 and includes a plurality (for example, 250) of finger electrodes 31 and a plurality (for example, two) of bus bar electrodes 32.
 第1電極20及び第2電極30は、いずれも後述する導電性ペーストを用いて形成されることが好適であり、電極材料として絶縁性のバインダと導電性のフィラーとを含む。電極材料には、フィラー分散剤等の添加剤が少量含まれていてもよい。フィンガー電極とバスバー電極とで、また第1電極20と第2電極30とで電極材料や組成を変更してもよいが、本実施形態では、フィンガー電極21,31、バスバー電極22,32は、同一材料、同一組成で構成されているものとする。 The first electrode 20 and the second electrode 30 are both preferably formed using a conductive paste described later, and include an insulating binder and a conductive filler as electrode materials. The electrode material may contain a small amount of an additive such as a filler dispersant. The electrode material and composition may be changed between the finger electrode and the bus bar electrode, and between the first electrode 20 and the second electrode 30, but in this embodiment, the finger electrodes 21 and 31 and the bus bar electrodes 22 and 32 are It shall be comprised with the same material and the same composition.
 フィンガー電極21の幅(平均値)は、特に限定されないが、遮光ロス低減等の観点から30μm~150μmが好適である。バスバー電極22からの距離が遠くなるほど幅を細くしてもよく、この場合、最細部の幅は30μm~80μmが好適である。バスバー電極22の幅(平均値)は、例えば、0.5mm~1.5mmが好適である。第2電極30では、フィンガー電極31の幅をフィンガー電極21よりも太くすることが好適であり、例えば、60μm~250μmに設定する。 The width (average value) of the finger electrode 21 is not particularly limited, but is preferably 30 μm to 150 μm from the viewpoint of reducing light shielding loss. The width may be narrowed as the distance from the bus bar electrode 22 increases. In this case, the width of the finest details is preferably 30 μm to 80 μm. The width (average value) of the bus bar electrode 22 is preferably 0.5 mm to 1.5 mm, for example. In the second electrode 30, the width of the finger electrode 31 is preferably larger than that of the finger electrode 21, and is set to 60 μm to 250 μm, for example.
 第1電極20の高さ(平均値)は、特に限定されないが、抵抗損失低減等の観点から20μm~140μmが好ましく、30μm~110μmがより好ましく、40μm~90μmが特に好ましい。バスバー電極22の高さは、フィンガー電極21より高くしてもよいが、本実施形態では、フィンガー電極21及びバスバー電極22の高さの平均値が略同等である。「略同等」とは、実質的に同等とみなすことができる状態、例えば、平均値の差が±5%以下である場合を含む(以下同様)。以下では、第1電極20の高さを「高さh20」とし、必要により、フィンガー電極21の高さを「高さh21」、バスバー電極22の高さを「高さh22」とする(特別な限定を付さない限り、高さh20=高さh21=高さh22として説明する)。 The height (average value) of the first electrode 20 is not particularly limited, but is preferably 20 μm to 140 μm, more preferably 30 μm to 110 μm, and particularly preferably 40 μm to 90 μm from the viewpoint of reducing resistance loss. The height of the bus bar electrode 22 may be higher than that of the finger electrode 21, but in this embodiment, the average height of the finger electrode 21 and the bus bar electrode 22 is substantially equal. The “substantially equivalent” includes a state that can be regarded as substantially equivalent, for example, a case where the difference in average values is ± 5% or less (the same applies hereinafter). Hereinafter, the height of the first electrode 20 is “height h 20 ”, the height of the finger electrode 21 is “height h 21 ”, and the height of the bus bar electrode 22 is “height h 22 ” as necessary. (Unless otherwise specified, description will be made assuming that height h 20 = height h 21 = height h 22 ).
 第2電極30の高さ(平均値)も、特に限定されないが、第1電極20よりも電極面積を大きくできるため、電極材料低減等の観点から第1電極20の場合よりも低くすることが好適である。具体的には、5μm~70μmが好ましく、10μm~60μmがより好ましく、15μm~50μmが特に好ましい。バスバー電極32の高さは、第1電極20の場合と同様に、フィンガー電極31より高くしてもよいが、本実施形態では、フィンガー電極31及びバスバー電極32の高さの平均値が略同等である。以下では、第2電極30の高さを「高さh30」とし、必要により、フィンガー電極31の高さを「高さh31」、バスバー電極32の高さを「高さh32」とする(特別な限定を付さない限り、高さh30=高さh31=高さh32として説明する)。 The height (average value) of the second electrode 30 is also not particularly limited. However, since the electrode area can be made larger than that of the first electrode 20, it can be made lower than that of the first electrode 20 from the viewpoint of reducing the electrode material. Is preferred. Specifically, it is preferably 5 μm to 70 μm, more preferably 10 μm to 60 μm, and particularly preferably 15 μm to 50 μm. The height of the bus bar electrode 32 may be higher than that of the finger electrode 31 as in the case of the first electrode 20, but in this embodiment, the average height of the finger electrode 31 and the bus bar electrode 32 is substantially equal. It is. Hereinafter, the height of the second electrode 30 is “height h 30 ”, the height of the finger electrode 31 is “height h 31 ”, and the height of the bus bar electrode 32 is “height h 32 ” as necessary. (Unless otherwise specified, description will be made assuming that height h 30 = height h 31 = height h 32 ).
 高さh20(高さh30についても同様)とは、走査型電子顕微鏡(SEM)を用いた断面観察により計測され、光電変換部11の最上面(例えば、テクスチャ構造の凸部)から第1電極20の最上面までの長さである。例えば、フィンガー電極21をその長手方向に沿って切断した断面について高さh20を計測する。 The height h 20 (the same applies to the height h 30 ) is measured by cross-sectional observation using a scanning electron microscope (SEM), and is measured from the uppermost surface of the photoelectric conversion unit 11 (for example, the convex portion of the texture structure). This is the length to the top surface of one electrode 20. For example, the height h 20 is measured for a cross section obtained by cutting the finger electrode 21 along its longitudinal direction.
 太陽電池10では、1mm以上の長さに亘る第1電極20の高さh20の変動係数(「CV20」とする)、及び1mm以上の長さに亘る第2電極30の高さh30の変動係数(「CV30」とする)が、いずれも15%以下である。つまり、太陽電池10において、第1電極20及び第2電極30は、その上面23,33が平坦であり凹凸が少ない。 In the solar cell 10, the coefficient of variation (referred to as “CV 20 ”) of the height h 20 of the first electrode 20 over a length of 1 mm or more and the height h 30 of the second electrode 30 over a length of 1 mm or more. The coefficient of variation (referred to as “CV 30 ”) is 15% or less. That is, in the solar cell 10, the upper surfaces 23 and 33 of the first electrode 20 and the second electrode 30 are flat and have less unevenness.
 CV20(CV30についても同様)とは、第1電極20の1mm以上の長さに亘って計測した高さh20の標準偏差を、当該高さh20の平均値で割った値である。CV20が小さいほど、高さh20のバラツキが小さく、第1電極20の上面23の平坦度が高いことを意味する。標準偏差は、前述の範囲でMicrosoft社のExcelのSTDEV関数を用いて得ることができる。 CV 20 (same for CV 30 ) is a value obtained by dividing the standard deviation of the height h 20 measured over a length of 1 mm or more of the first electrode 20 by the average value of the height h 20. . As CV 20 is smaller, the variation in height h 20 is smaller and the flatness of the upper surface 23 of the first electrode 20 is higher. The standard deviation can be obtained using Microsoft's Excel STDEV function in the above-mentioned range.
 フィンガー電極21の高さh21の変動係数(「CV21」とする)は、その長手方向に沿った1mm以上の長さに亘ってCV21が15%以下である。CV21は、好ましくは12%以下であり、特に好ましくは8%以下である。また、バスバー電極22の高さh22の変動係数(「CV22」とする)は、例えば、CV21と略同等である。つまり、第1電極20では、フィンガー電極21及びバスバー電極22のいずれの上面24,25も平坦であり凹凸が小さい。 The coefficient of variation (referred to as “CV 21 ”) of the height h 21 of the finger electrode 21 is such that CV 21 is 15% or less over a length of 1 mm or more along the longitudinal direction. CV 21 is preferably 12% or less, particularly preferably 8% or less. Further, the coefficient of variation (referred to as “CV 22 ”) of the height h 22 of the bus bar electrode 22 is substantially equal to, for example, CV 21 . That is, in the first electrode 20, the upper surfaces 24 and 25 of the finger electrode 21 and the bus bar electrode 22 are both flat and uneven.
 フィンガー電極21及びバスバー電極22は、その全長に亘ってCV21,CV22が上記範囲内であることが好適である。さらに、複数のフィンガー電極21及び複数のバスバー電極22のうち、半数以上において、CV21,CV22が上記範囲内であることが好適である。特に、全てのフィンガー電極21のCV21及び全てのバスバー電極22のCV22が上記範囲内であることが好ましい。つまり、第1電極20の全体に亘ってCV20は、15%以下であることが好ましく、12%以下がより好ましく、8%以下が特に好ましい。 The finger electrode 21 and the bus bar electrode 22 preferably have CV 21 and CV 22 within the above-mentioned range over their entire length. Furthermore, it is preferable that CV 21 and CV 22 are within the above range in more than half of the plurality of finger electrodes 21 and the plurality of bus bar electrodes 22. In particular, it is preferable CV 22 CV 21 and all of the bus bar electrodes 22 of all the finger electrodes 21 is within the above range. That is, CV 20 is preferably 15% or less over the entire first electrode 20, more preferably 12% or less, and particularly preferably 8% or less.
 第2電極30についても、第1電極20と同様に、第2電極30の全体に亘ってCV30は、15%以下であることが好ましく、12%以下がより好ましく、8%以下が特に好ましい。フィンガー電極31の高さh31の変動係数(「CV31」とする)及びバスバー電極32の高さh32の変動係数(「CV32」とする)は、その全長に亘ってCV31,CV32が15%以下であり、好ましくは12%以下、特に好ましくは8%以下である。 Similarly to the first electrode 20, the CV 30 of the second electrode 30 is preferably 15% or less, more preferably 12% or less, and particularly preferably 8% or less over the entire second electrode 30. . The coefficient of variation (referred to as “CV 31 ”) of the height h 31 of the finger electrode 31 and the coefficient of variation (referred to as “CV 32 ”) of the height h 32 of the bus bar electrode 32 are CV 31 , CV over the entire length. 32 is 15% or less, preferably 12% or less, particularly preferably 8% or less.
 CV21及びCV22(CV31及びCV32についても同様)は互いに異なっていてもよい。例えば、高さh22を高さh21より高く設定した場合等において、CV22をCV21より小さくしてもよい。即ち、フィンガー電極21の上面24よりもバスバー電極22の上面25の方が平坦である構成としてもよい。上面25を平坦化して凹凸を小さくすることにより、例えば、モジュール化に際して取り付けられる配線材との接続性が向上する。 CV 21 and CV 22 (the same applies to CV 31 and CV 32 ) may be different from each other. For example, when the height h 22 is set higher than the height h 21 , the CV 22 may be smaller than the CV 21 . That is, the upper surface 25 of the bus bar electrode 22 may be flatter than the upper surface 24 of the finger electrode 21. By flattening the upper surface 25 to reduce the unevenness, for example, connectivity with a wiring material attached in the modularization is improved.
 図3に、太陽電池10の変形例である太陽電池10xの断面図を示す。
 太陽電池10xは、太陽電池10と同様に、第1電極20x及び第2電極30xを備える。一方、太陽電池10xでは、フィンガー電極31の代わりに銀(Ag)等の金属膜31xが設けられている。金属膜31xは、光電変換部11の裏面上の略全域(例えば、透明導電層上の95%以上)に形成されている。そして、バスバー電極32xは、金属膜31x上に形成されている。バスバー電極32xは、バスバー電極32と同様に、その長手方向に沿った1mm以上の長さに亘って、高さの変動係数が15%以下である。
In FIG. 3, sectional drawing of the solar cell 10x which is a modification of the solar cell 10 is shown.
Similar to the solar cell 10, the solar cell 10 x includes a first electrode 20 x and a second electrode 30 x. On the other hand, in the solar cell 10x, a metal film 31x such as silver (Ag) is provided instead of the finger electrode 31. The metal film 31x is formed in substantially the entire region on the back surface of the photoelectric conversion unit 11 (for example, 95% or more on the transparent conductive layer). The bus bar electrode 32x is formed on the metal film 31x. As with the bus bar electrode 32, the bus bar electrode 32x has a height variation coefficient of 15% or less over a length of 1 mm or more along the longitudinal direction thereof.
 太陽電池10xでは、フィンガー電極21x及びバスバー電極22xの高さのバラツキが大きく、上面に大きな凹凸があり、高さの変動係数が15%を超える。即ち、太陽電池10xは、バスバー電極32x(第2電極30x)の高さの変動係数が、フィンガー電極21x及びバスバー電極22x(第1電極20x)の高さの変動係数よりも小さく、第1電極20xと第2電極30xとで電極の平坦度が相違する構成である。 In the solar cell 10x, the height of the finger electrode 21x and the bus bar electrode 22x varies greatly, the upper surface has large irregularities, and the coefficient of variation in height exceeds 15%. That is, in the solar cell 10x, the variation coefficient of the height of the bus bar electrode 32x (second electrode 30x) is smaller than the variation coefficient of the height of the finger electrode 21x and the bus bar electrode 22x (first electrode 20x). The flatness of the electrodes is different between 20x and the second electrode 30x.
 第1電極20xの代わりに平坦化された第1電極20を備える構成としてもよい。また、図2に例示する構成において、第2電極30の代わりに金属膜31xを含む第2電極30xを設けてもよい。 It is good also as a structure provided with the 1st electrode 20 planarized instead of the 1st electrode 20x. In the configuration illustrated in FIG. 2, the second electrode 30 x including the metal film 31 x may be provided instead of the second electrode 30.
 以下、上記構成を備えた太陽電池10の製造方法について詳説する。
 図4は、スクリーン印刷法の原理を説明するための図である。図5,6は、太陽電池10の電極形成工程を示す図である。図7,8は、太陽電池10の電極形成工程の他の例を示す図である。図5~8は、図4をさらに模式化したものである。図5~8では、光電変換部11の受光面上に印刷されて第1電極20を形成するペースト50を「ペースト50a」、裏面上に印刷されて第2電極30を形成するペースト50を「ペースト50b」とする。また、必要により、ペースト50a,50bの関連要素にa,bを付して説明する。
Hereinafter, the manufacturing method of the solar cell 10 provided with the said structure is explained in full detail.
FIG. 4 is a diagram for explaining the principle of the screen printing method. 5 and 6 are diagrams showing an electrode forming process of the solar cell 10. 7 and 8 are diagrams showing another example of the electrode forming process of the solar cell 10. 5 to 8 are schematic views of FIG. 5 to 8, the paste 50 printed on the light receiving surface of the photoelectric conversion unit 11 to form the first electrode 20 is “paste 50a”, and the paste 50 printed on the back surface to form the second electrode 30 is “ This is referred to as “paste 50b”. In addition, if necessary, a description will be given by attaching a and b to the related elements of the pastes 50a and 50b.
 太陽電池10の製造工程では、光電変換部11が公知の方法により製造される。光電変換部11が準備されると、その主面上に第1電極20となるペースト50a及び第2電極30となるペースト50bを印刷する。電極の印刷方法は、電極材料(上記バインダ、上記フィラー)を含むペースト50を主面上に印刷できる方法であれば特に限定されない。例えば、孔版印刷法(オフセット印刷法、スクリーン印刷法)やペーストジェット法が挙げられる。また、ペースト50a,50bの印刷順序は、限定されるものではないが、以下では、ペースト50bを先に印刷するものとして説明する。 In the manufacturing process of the solar cell 10, the photoelectric conversion unit 11 is manufactured by a known method. When the photoelectric conversion unit 11 is prepared, the paste 50a to be the first electrode 20 and the paste 50b to be the second electrode 30 are printed on the main surface. The electrode printing method is not particularly limited as long as the paste 50 containing the electrode material (the binder and the filler) can be printed on the main surface. For example, a stencil printing method (offset printing method, screen printing method) and a paste jet method can be used. In addition, although the printing order of the pastes 50a and 50b is not limited, the following description will be made assuming that the paste 50b is printed first.
 ペースト50bは、生産性や精度等の観点からスクリーン印刷法により印刷することが好適である。スクリーン印刷法では、製版及びスキージ44を用いる。製版としては、図4に例示するスクリーン版40や図示しないメタルマスク版を用いることができる。以下では、スクリーン版40を用いたスクリーン印刷法を例示する。 The paste 50b is preferably printed by a screen printing method from the viewpoint of productivity and accuracy. In the screen printing method, plate making and squeegee 44 are used. As the plate making, a screen plate 40 illustrated in FIG. 4 or a metal mask plate (not shown) can be used. Below, the screen printing method using the screen plate 40 is illustrated.
 図4,5に示されるように、ペースト50bのスクリーン印刷工程では、第2電極30の形状に対応した開口部43bを有するスクリーン版40b、及びスキージ44を用いて、光電変換部11の裏面上にペースト50bを転写する。ペースト50bは、フィンガー電極31及びバスバー電極32の形状に合わせて略同等の高さで印刷することが好適である。つまり、裏面上に転写されたペースト50bは、各電極の全長に亘って略同等の高さとなることが好適である。 As shown in FIGS. 4 and 5, in the screen printing process of the paste 50 b, the screen plate 40 b having the opening 43 b corresponding to the shape of the second electrode 30 and the squeegee 44 are used on the back surface of the photoelectric conversion unit 11. The paste 50b is transferred to the substrate. The paste 50b is preferably printed at substantially the same height according to the shape of the finger electrode 31 and the bus bar electrode 32. That is, it is preferable that the paste 50b transferred onto the back surface has substantially the same height over the entire length of each electrode.
 ペースト50bのスクリーン印刷工程は、例えば、裏面をスクリーン版40b側に向けた状態で光電変換部11を平坦なテーブル51上に配置して行われる。より詳しくは、ペースト50bを転写したい部分のみに開口部43bが形成されたスクリーン版40b上にペースト50を載せ、スキージ44を摺動させることにより、開口部43bにペースト50を充填する。続いて、スクリーン版40bのスキージ44が通り過ぎた部分が裏面から離れるときに、開口部43bからペースト50が吐出されて裏面上に転写される。本実施形態では、オフコンタクト印刷について説明するが、オンコンタクト印刷を適用してもよい。 The screen printing process of the paste 50b is performed, for example, by placing the photoelectric conversion unit 11 on the flat table 51 with the back surface facing the screen plate 40b. More specifically, the paste 50 is placed on the screen plate 40b in which the opening 43b is formed only on the portion to which the paste 50b is to be transferred, and the squeegee 44 is slid to fill the opening 50 with the paste 50. Subsequently, when the portion of the screen plate 40b through which the squeegee 44 passes is separated from the back surface, the paste 50 is discharged from the opening 43b and transferred onto the back surface. In this embodiment, off-contact printing is described, but on-contact printing may be applied.
 スクリーン版40は、図示しない枠に張られたメッシュ41を有する。メッシュ41は、ペースト50を透過する織物等であり、メッシュ41には、ペースト50を塗布したくない主面上の領域に対応してマスク材42が設けられる。つまり、スクリーン版40は、メッシュ41においてマスク材42でマスキングされていない部分である開口部43のみからペースト50を透過可能とする。 The screen plate 40 has a mesh 41 stretched on a frame (not shown). The mesh 41 is a woven fabric or the like that transmits the paste 50, and the mesh 41 is provided with a mask material 42 corresponding to a region on the main surface where the paste 50 is not desired to be applied. That is, the screen plate 40 allows the paste 50 to pass through only the opening 43 which is a portion of the mesh 41 that is not masked by the mask material 42.
 メッシュ41の材質、線径、メッシュ数、オープニング、オープニング率等は、形成される第2電極30の幅、高さ等に応じて選定される。メッシュ41は、例えば、ポリエステル等の樹脂繊維やステンレス等の金属線から構成される。メッシュ41の線径は、第2電極30の高さ等に応じて選定される。メッシュ数は、メッシュ41の強度や第2電極30の精細度に応じて選定される。オープニングは、ペースト50に含まれるフィラーの粒径に応じて選定され、一般的に粒径の2倍以上とすることが好適である。オープニング率は、第2電極30の高さやだれ幅などに応じて選定される。 The material, wire diameter, number of meshes, opening, opening rate, etc. of the mesh 41 are selected according to the width, height, etc. of the second electrode 30 to be formed. The mesh 41 is made of, for example, a resin fiber such as polyester or a metal wire such as stainless steel. The wire diameter of the mesh 41 is selected according to the height of the second electrode 30 and the like. The number of meshes is selected according to the strength of the mesh 41 and the definition of the second electrode 30. The opening is selected according to the particle size of the filler contained in the paste 50, and is generally preferably at least twice the particle size. The opening rate is selected according to the height and the width of the second electrode 30.
 マスク材42には、通常、感光性の乳剤が使用される。乳剤は、解像度や露光感度等に応じて選定され、例えば、ジアゾ系やスチルバゾリウム系の材料が用いられる。また、乳剤以外に金属箔を用いることもできる。乳剤は、例えば、メッシュ41上に塗布され、紫外線の露光過程、未露光部の除去過程を経てマスク材42となる。なお、マスク材42の厚み(乳剤厚)を増減させることで、スクリーン版40の厚み(版厚)を容易に調整することができる。通常、版厚が厚くなるほど、電極高さを高くすることができる。 For the mask material 42, a photosensitive emulsion is usually used. The emulsion is selected according to the resolution, exposure sensitivity, and the like. For example, a diazo or stilbazolium material is used. In addition to the emulsion, a metal foil can be used. For example, the emulsion is coated on the mesh 41 and becomes a mask material 42 through an ultraviolet exposure process and an unexposed part removal process. Note that the thickness (plate thickness) of the screen plate 40 can be easily adjusted by increasing or decreasing the thickness (emulsion thickness) of the mask material 42. Usually, the electrode height can be increased as the plate thickness increases.
 スキージ44は、スクリーン版40上にペースト50を塗り広げるために適した材料で構成される。スキージ44は、耐溶剤性のある弾性体で構成することが好適である。例えば、ウレタンゴム等が好適である。スキージ44の形状は、特に限定されないが、平スキージが好適である。 The squeegee 44 is made of a material suitable for spreading the paste 50 on the screen plate 40. The squeegee 44 is preferably composed of an elastic body having solvent resistance. For example, urethane rubber or the like is suitable. The shape of the squeegee 44 is not particularly limited, but a flat squeegee is suitable.
 ペースト50は、流動性のあるペースト状の流体物である。ペースト50としては、電極材料であるバインダ及びフィラーと溶剤とを混合した加熱硬化タイプの導電性ペーストが好適である。バインダには、例えば、エポキシ系樹脂、ウレタン系樹脂、ウレア系樹脂、アクリル系樹脂、イミド系樹脂、フェノール系樹脂等の熱硬化性樹脂、又はこれらの変性物や混合物などを用いることができる。これらのうち、エポキシ系樹脂が好適である。また、当該熱硬化性樹脂にシリコーン系樹脂等を混合してもよい。フィラーには、例えば、銀(Ag)、銅(Cu)、ニッケル(Ni)、アルミニウム(Al)、銀被覆銅、銀被覆アルミニウム等の金属粒子やカーボン、又はこれらの混合物などを用いることができる。これらのうち、銀粒子が好適である。溶剤には、例えば、アルコール系、グリコールエーテル系、炭化水素系等の有機溶剤、又はこれらの混合溶剤などを用いることができる。 The paste 50 is a fluid fluid paste. As the paste 50, a heat-curing type conductive paste in which a binder and a filler, which are electrode materials, and a solvent are mixed is suitable. For the binder, for example, an epoxy resin, a urethane resin, a urea resin, an acrylic resin, an imide resin, a thermosetting resin such as a phenol resin, or a modified or mixture thereof can be used. Of these, epoxy resins are preferred. Moreover, you may mix a silicone type resin etc. with the said thermosetting resin. As the filler, for example, metal particles such as silver (Ag), copper (Cu), nickel (Ni), aluminum (Al), silver-coated copper, silver-coated aluminum, carbon, or a mixture thereof can be used. . Of these, silver particles are preferred. As the solvent, for example, alcohol-based, glycol ether-based, hydrocarbon-based organic solvents, or mixed solvents thereof can be used.
 上記スクリーン印刷工程では、印刷条件を決定する主要なパラメータとして、スキージ角度、スキージ速度、スキージ印圧(単に印圧とも呼ばれる)、及びスクリーン版40と光電変換部11との距離であるクリアランス等が挙げられる。例えば、スキージ角度は、50°~80°程度が好適であり、印圧は、2~6kgf/cm2程度が好適である。 In the screen printing process, as main parameters for determining printing conditions, a squeegee angle, a squeegee speed, a squeegee printing pressure (also simply referred to as a printing pressure), a clearance that is a distance between the screen plate 40 and the photoelectric conversion unit 11, and the like. Can be mentioned. For example, the squeegee angle is preferably about 50 ° to 80 °, and the printing pressure is preferably about 2 to 6 kgf / cm 2 .
 図6(a)に示されるように、続いて、裏面上に印刷されたペースト50bを高さ方向に押圧し、ペースト50bの上面53bを平坦化する。かかる平坦化工程では、例えば、裏面上に印刷されたペースト50b上にプレス器具を載せて上面53bを押圧する。プレス器具としては、開口部を有さない製版である平坦化用スクリーン版45と、上記スクリーン印刷工程で使用したスキージ44とを用いことができる。平坦化用スクリーン版45は、スクリーン版40と同じメッシュ41及びマスク材42から構成されている。但し、平坦化用スクリーン版45は、電極形状に対応した開口部を有さず、例えば、メッシュ41の全体がマスク材42によりマスキングされている。また、マスク材42のペースト50bに接触する面は、凹凸のない平坦な面であり、5μm以上の凹凸が存在しないことが好ましい。 6A, subsequently, the paste 50b printed on the back surface is pressed in the height direction, and the upper surface 53b of the paste 50b is flattened. In the flattening step, for example, a pressing device is placed on the paste 50b printed on the back surface and the upper surface 53b is pressed. As the pressing device, a flattening screen plate 45 that is a plate making without an opening and a squeegee 44 used in the screen printing step can be used. The flattening screen plate 45 is composed of the same mesh 41 and mask material 42 as the screen plate 40. However, the flattening screen plate 45 does not have an opening corresponding to the electrode shape. For example, the entire mesh 41 is masked by the mask material 42. In addition, the surface of the mask material 42 that contacts the paste 50b is a flat surface without unevenness, and preferably has no unevenness of 5 μm or more.
 上記平坦化工程では、平坦化用スクリーン版45のペースト50bに接触する面と反対側の面上でスキージ44を摺動させる。これにより、図6(b)に示されるように、ペースト50bが圧縮されて上面53bが平坦化する。スキージ44の角度や速度、スキージ44による押圧力(スキージ44が平坦化用スクリーン版45を押す力)等は、特に限定されず、上記スクリーン印刷工程と同様の設定とすることもできる。通常、スキージ44による押圧力が高くなるほどペースト50bが強く圧縮されて、ペースト50bの高さが低くなり上面53bの平坦度が向上する。 In the flattening step, the squeegee 44 is slid on the surface opposite to the surface that contacts the paste 50b of the screen plate 45 for flattening. As a result, as shown in FIG. 6B, the paste 50b is compressed and the upper surface 53b is flattened. The angle and speed of the squeegee 44, the pressing force by the squeegee 44 (the force by which the squeegee 44 pushes the flattening screen plate 45), etc. are not particularly limited, and can be set similarly to the screen printing step. Normally, the higher the pressing force by the squeegee 44, the stronger the paste 50b is compressed, the lower the height of the paste 50b, and the higher the flatness of the upper surface 53b.
 上記平坦化工程に進む前に、上面53bの平坦化が可能な範囲でペースト50bに含まれる溶剤を除去することが好適である。溶剤は、加熱処理等により除去することができる。例えば、150℃×5分の条件で加熱処理(以下、「仮乾燥処理」という)を行うことで、ペースト50bにタック感(粘着性)をなくし、且つペースト50aの印刷工程における印圧でペースト50bを押し潰して塑性変形させることが可能な溶剤量に調整する。このとき、上面53bの平坦化が可能な範囲でバインダ樹脂の硬化反応が進んでもよい。 Before proceeding to the flattening step, it is preferable to remove the solvent contained in the paste 50b as long as the upper surface 53b can be flattened. The solvent can be removed by heat treatment or the like. For example, the heat treatment (hereinafter referred to as “temporary drying process”) is performed at 150 ° C. for 5 minutes to eliminate the tack (adhesiveness) of the paste 50b and the paste with the printing pressure in the printing process of the paste 50a. 50b is crushed and adjusted to an amount of solvent that can be plastically deformed. At this time, the curing reaction of the binder resin may proceed as long as the upper surface 53b can be flattened.
 続いて、上面53bが平坦化したペースト50bを仮乾燥処理よりも高温、長時間(例えば、200℃×60分)で加熱処理(以下、「本乾燥処理」という)することにより、ペースト50b中の溶剤を除去し、バインダを熱硬化反応させて、ペースト50bを硬化させることができる。ペースト50bの本乾燥処理は、プロセスコスト低減等の観点から、ペースト50aの本乾燥処理と共に行うことが好適である。つまり、受光面上にペースト50aを印刷し、ペースト50bと同様に平坦化用スクリーン版45を用いてペースト50aの上面53aを平坦化した後、ペースト50a,50bを同時に本乾燥処理することが好適である。この場合、後述のようにテーブル51上でペースト50aを印刷すれば、ペースト50bがさらに平坦化することがある。こうして、CV20が15%以下の第1電極20、及びCV30が15%以下の第2電極30を作製することができる。 Subsequently, the paste 50b whose upper surface 53b is flattened is subjected to a heat treatment (hereinafter referred to as “main drying treatment”) at a temperature higher than the temporary drying treatment for a long time (for example, 200 ° C. × 60 minutes). The paste 50b can be cured by removing the solvent and heat-curing the binder. The main drying process of the paste 50b is preferably performed together with the main drying process of the paste 50a from the viewpoint of reducing process costs. That is, it is preferable that the paste 50a is printed on the light receiving surface, and the upper surface 53a of the paste 50a is flattened using the flattening screen plate 45 similarly to the paste 50b, and then the pastes 50a and 50b are simultaneously subjected to the main drying process. It is. In this case, if the paste 50a is printed on the table 51 as described later, the paste 50b may be further flattened. Thus, the first electrode 20 having a CV 20 of 15% or less and the second electrode 30 having a CV 30 of 15% or less can be produced.
 ペースト50aのスクリーン印刷は、ペースト50bのスクリーン印刷と同様にして行うことができる。但し、高さh20>高さh30であるため、ペースト50aの印刷で用いたスクリーン版40bよりも版厚が厚いスクリーン版40aを用いて印刷を行う。スクリーン版40aでは、マスク材42aの厚みが、マスク材42bの厚みよりも厚く、ペースト50bよりも高いペースト50aを印刷可能である。また、フィンガー電極21の幅<フィンガー電極31の幅であるため、開口部43aの開口幅は、開口部43bの開口幅よりも狭く、ペースト50bよりも小幅のペースト50aを印刷可能である。 The screen printing of the paste 50a can be performed in the same manner as the screen printing of the paste 50b. However, since height h 20 > height h 30 , printing is performed using the screen plate 40a having a plate thickness larger than that of the screen plate 40b used for printing the paste 50a. In the screen plate 40a, it is possible to print a paste 50a in which the mask material 42a is thicker than the mask material 42b and higher than the paste 50b. Further, since the width of the finger electrode 21 <the width of the finger electrode 31, the opening width of the opening 43a is narrower than the opening width of the opening 43b, and a paste 50a having a smaller width than the paste 50b can be printed.
 図7(a)に示されるように、上記方法と別の方法によってもペースト50bを平坦化することができる。図7に例示する平坦化工程では、裏面上にペースト50bを印刷した後、光電変換部11を反転させ、受光面をスクリーン版40a側に向けた状態で光電変換部11をテーブル51上に配置する。そして、裏面上に印刷されたペースト50bをテーブル51上に押し付けて上面53bを平坦化しながら、受光面上にペースト50aを印刷する。図7(b)に示されるように、ペースト50bは、ペースト50aのスクリーン印刷工程における印圧により高さ方向に強く押圧されて上面53bが平坦化する。この場合も、ペースト50aの印刷工程に進む前、即ち裏面上に印刷されたペースト50bを押圧する前に、上面53bの平坦化が可能な範囲でペースト50bに含まれる溶剤を除去することが好適である。 As shown in FIG. 7A, the paste 50b can be flattened by a method different from the above method. In the planarization step illustrated in FIG. 7, after printing the paste 50b on the back surface, the photoelectric conversion unit 11 is inverted, and the photoelectric conversion unit 11 is arranged on the table 51 with the light receiving surface facing the screen plate 40a side. To do. The paste 50a is printed on the light receiving surface while pressing the paste 50b printed on the back surface onto the table 51 to flatten the upper surface 53b. As shown in FIG. 7B, the paste 50b is strongly pressed in the height direction by the printing pressure of the paste 50a in the screen printing process, and the upper surface 53b is flattened. Also in this case, before proceeding to the printing process of the paste 50a, that is, before pressing the paste 50b printed on the back surface, it is preferable to remove the solvent contained in the paste 50b within a range in which the upper surface 53b can be flattened. It is.
 テーブル51は、例えば、凹凸のない平坦な面(5μm以上の凹凸が存在しないことが好ましい)を有する台である。かかる平坦な面は、光電変換部11の主面よりも大きく、主面全体を均等に支持して押圧できることが好適である。 The table 51 is, for example, a table having a flat surface without unevenness (preferably having no unevenness of 5 μm or more). Such a flat surface is larger than the main surface of the photoelectric conversion unit 11, and it is preferable that the entire main surface can be uniformly supported and pressed.
 ペースト50aのスクリーン印刷における印圧は、ペースト50aの印刷特性だけでなく、ペースト50bの平坦化にも影響する。通常、印圧が高くなるほど、ペースト50bに対する押圧力が高くなってペースト50bが強く圧縮され、ペースト50bの高さが低くなり上面53bの平坦度が向上する。 The printing pressure in the screen printing of the paste 50a affects not only the printing characteristics of the paste 50a but also the flattening of the paste 50b. Normally, as the printing pressure increases, the pressing force against the paste 50b increases and the paste 50b is strongly compressed, the height of the paste 50b decreases, and the flatness of the upper surface 53b improves.
 図7に例示する工程により、上面53bが平坦化されたペースト50bが光電変換部11の裏面上に形成され、受光面上にペースト50aが印刷された中間体12を得ることができる。中間体12は、ペースト50aの平坦化工程を経ていないため、上面53aに大きな凹凸が存在する。中間体12を上記本乾燥処理することにより、ペースト50a,50b中の溶剤を除去し、バインダを熱硬化反応させて、ペースト50a,50bを硬化させることができる。この場合、例えば、第2電極30のCV30のみが15%以下となり、第1電極20のCV20は15%を超える。即ち、第2電極30の方が第1電極20よりも平坦になる。 Through the process illustrated in FIG. 7, the intermediate body 12 in which the paste 50 b having the flat upper surface 53 b is formed on the back surface of the photoelectric conversion unit 11 and the paste 50 a is printed on the light receiving surface can be obtained. Since the intermediate body 12 has not undergone the flattening process of the paste 50a, large irregularities exist on the upper surface 53a. By subjecting the intermediate body 12 to the main drying process, the solvent in the pastes 50a and 50b can be removed, and the binder can be subjected to a thermosetting reaction to cure the pastes 50a and 50b. In this case, for example, only the CV 30 of the second electrode 30 is 15% or less, and the CV 20 of the first electrode 20 exceeds 15%. That is, the second electrode 30 is flatter than the first electrode 20.
 図8(a)に示されるように、ペースト50aの平坦化工程をさらに設けることができる。例えば、中間体12のペースト50aを凹凸のない平坦なプレス板52を用いて押圧し、ペースト50aの上面53aを平坦化することができる。或いは、プレス板52を用いる代わりに、平坦化用スクリーン版45を用いてもよく、また光電変換部11を反転させてペースト50aをテーブル51に押し付けてもよい。なお、ペースト50aを押圧する前に、上面53aの平坦化が可能な範囲で上記仮乾燥処理を行うことが好適である。 As shown in FIG. 8A, a flattening step of the paste 50a can be further provided. For example, it is possible to flatten the upper surface 53a of the paste 50a by pressing the paste 50a of the intermediate body 12 using a flat press plate 52 without unevenness. Alternatively, instead of using the press plate 52, a flattening screen plate 45 may be used, or the photoelectric conversion unit 11 may be reversed and the paste 50 a may be pressed against the table 51. In addition, before pressing the paste 50a, it is preferable to perform the said temporary drying process in the range which can planarize the upper surface 53a.
 ペースト50aの平坦化工程後、又はプレス板52による押圧を継続した状態で上記本乾燥処理を行う。この処理により、ペースト50a,50b中の溶剤を除去し、バインダを熱硬化反応させてペースト50a,50bを硬化させることができる。こうして、図8(b)に示されるように、上面25が平坦でCV20が15%以下の第1電極20、及び上面35が平坦でCV30が15%以下の第2電極30を作製することができる。 The main drying process is performed after the flattening step of the paste 50a or in a state where pressing by the press plate 52 is continued. By this treatment, the solvents in the pastes 50a and 50b can be removed, and the pastes 50a and 50b can be cured by thermosetting the binder. Thus, as shown in FIG. 8B, the first electrode 20 having a flat upper surface 25 and CV 20 of 15% or less and the second electrode 30 having a flat upper surface 35 and CV 30 of 15% or less are manufactured. be able to.
 なお、太陽電池10xの製造過程では、第1電極20x及び第2電極30xを形成する各ペーストの印刷順序を限定して、第2電極30xを形成するペーストの印刷を先に行うことが好適である。具体的には、金属膜31x上にバスバー電極32xを形成するペーストを印刷して平坦化した後、受光面上に第1電極20xを形成するペーストを印刷する。これにより、第1電極20xの加熱処理工程おける金属膜31xの硫化や酸化を防止でき、金属膜31xとバスバー電極32xとの接触抵抗を低く抑えることができる。 In the manufacturing process of the solar cell 10x, it is preferable to first print the paste for forming the second electrode 30x by limiting the printing order of each paste for forming the first electrode 20x and the second electrode 30x. is there. Specifically, after the paste for forming the bus bar electrode 32x is printed on the metal film 31x and planarized, the paste for forming the first electrode 20x is printed on the light receiving surface. Thereby, the sulfidation and oxidation of the metal film 31x in the heat treatment step of the first electrode 20x can be prevented, and the contact resistance between the metal film 31x and the bus bar electrode 32x can be kept low.
 太陽電池10の特性について、従来の太陽電池60(以下、「従来電池60」とする)と比較して説明する。
 図9(a)に、従来電池60のフィンガー電極81の長手方向に沿った高さの測定値を示し、図9(b)(c)に、太陽電池10のフィンガー電極31の長手方向に沿った高さh31の測定値を示す。同図では、横軸に電極長さを、縦軸に電極高さをとる。図10は、従来電池60の断面図を示す。
The characteristics of the solar battery 10 will be described in comparison with a conventional solar battery 60 (hereinafter referred to as “conventional battery 60”).
FIG. 9A shows measured values of the height along the longitudinal direction of the finger electrode 81 of the conventional battery 60, and FIGS. 9B and 9C show the measured value along the longitudinal direction of the finger electrode 31 of the solar cell 10. The measured value of the height h 31 is shown. In the figure, the horizontal axis represents the electrode length, and the vertical axis represents the electrode height. FIG. 10 shows a cross-sectional view of the conventional battery 60.
 太陽電池10及び従来電池60は、同一の光電変換部11を備え、電極形態のみが互いに異なる。従来電池60は、太陽電池10と同様に、フィンガー電極71、バスバー電極72を含む第1電極70、及びフィンガー電極81、バスバー電極82を含む第2電極80を備えるが、電極形成過程においてペースト50a,50bの平坦化工程を経ていない点で太陽電池10と異なる。 The solar cell 10 and the conventional battery 60 are provided with the same photoelectric conversion unit 11 and differ only in electrode form. Similar to the solar battery 10, the conventional battery 60 includes the finger electrode 71, the first electrode 70 including the bus bar electrode 72, and the second electrode 80 including the finger electrode 81 and the bus bar electrode 82. , 50b is different from the solar cell 10 in that it has not undergone the flattening process.
 図9(b)に高さh31の測定値が示されるフィンガー電極31(以下、「フィンガー電極31A」とする)、及び図9(c)に高さh31の測定値が示されるフィンガー電極31(以下、「フィンガー電極31B」とする)は、略同等の高さに印刷したペースト50bを異なる圧力で押圧して上面34を平坦化したものである。フィンガー電極31Aは、低圧(0.5MPa)の平坦化工程を経て形成し、フィンガー電極31Bは、高圧(1.0MPa)の平坦化工程を経て形成した。 Figure 9 (b) to the finger electrode 31 measurements is shown a height h 31 (hereinafter referred to as "finger electrodes 31A"), and the finger electrode measured value of the height h 31 in FIG. 9 (c) are shown 31 (hereinafter referred to as “finger electrode 31B”) is obtained by flattening the upper surface 34 by pressing paste 50b printed at substantially the same height with different pressures. The finger electrode 31A was formed through a low-pressure (0.5 MPa) flattening step, and the finger electrode 31B was formed through a high-pressure (1.0 MPa) flattening step.
 図9(b)(c)に示されるように、フィンガー電極31A,31Bのいずれも、高さh31のバラツキが小さく、1mm以上の長さに亘るCV31は15%以下である。具体的に、フィンガー電極31Aでは、高さh31の平均値が33.1μmであり、CV31が11.5%であった。フィンガー電極31Bでは、高さh31の平均値が30.3μmであり、CV31が7.2%であった。即ち、平坦化工程における押圧力が高い方が、ペースト50bが強く圧縮されて高さh31が低くなりCV31が小さくなる。 As shown in FIGS. 9B and 9C, the finger electrodes 31A and 31B both have a small variation in the height h 31 and the CV 31 over a length of 1 mm or more is 15% or less. Specifically, in the finger electrode 31A, the average value of the height h 31 was 33.1 μm, and the CV 31 was 11.5%. In the finger electrode 31B, the average value of the height h 31 was 30.3 μm, and the CV 31 was 7.2%. That found the pressing force is higher in the flattening process, CV 31 becomes paste 50b is compressed strongly height h 31 low is reduced.
 一方、図9(a)に示されるように、フィンガー電極81では、高さの平均値が26.0μmであり、高さの変動係数が17.9%であった。即ち、フィンガー電極81では、高さの変動係数が15%を超える値となり、フィンガー電極31A,31Bと比較して上面の凹凸が大きく高さにバラツキがあった。 On the other hand, as shown in FIG. 9A, the finger electrode 81 had an average height value of 26.0 μm and a height variation coefficient of 17.9%. That is, the finger electrode 81 has a height variation coefficient of more than 15%, and the top surface has large irregularities compared to the finger electrodes 31A and 31B, and the height varies.
 フィンガー電極31Aを備える太陽電池10A、フィンガー電極31Bを備える太陽電池10B、及び従来電池60には、各々、フィンガー電極31A,31B,81と略同等の寸法を有する受光面側のフィンガー電極、及び受光面側、裏面側のバスバー電極を設けた。そして、各太陽電池のバスバー電極に配線材を取り付けて出力特性の評価を行った。評価結果は、従来電池60に対する比率(太陽電池10A,10Bの曲線因子/従来電池60の曲線因子)として示す。
   太陽電池10A;1.005(上記変動係数11.5%)
   太陽電池10B;1.010(上記変動係数7.2%)
 このように、電極上面の平坦度が高い太陽電池10A,10Bは、電極上面の平坦度が低い従来電池60よりも電極の抵抗が低く良好な出力特性を有する。そして、かかる平坦度が高くなるほど出力特性が向上する。
 また、電極上面の平坦度が高くなるほど、配線材をバスバー電極に熱圧着する際に光電変換部11の損傷が発生し難くなる。この傾向は、上記変動係数が15%程度を境に顕著になる。
In the solar cell 10A including the finger electrode 31A, the solar cell 10B including the finger electrode 31B, and the conventional battery 60, the finger electrode on the light-receiving surface side having substantially the same dimensions as the finger electrodes 31A, 31B, and 81, and the light reception, respectively. Bus bar electrodes on the surface side and the back surface side were provided. And the wiring material was attached to the bus-bar electrode of each solar cell, and the output characteristic was evaluated. The evaluation results are shown as a ratio to the conventional battery 60 (curve factor of solar cells 10A and 10B / curve factor of conventional battery 60).
Solar cell 10A; 1.005 (the coefficient of variation is 11.5%)
Solar cell 10B; 1.010 (coefficient of variation of 7.2%)
Thus, the solar cells 10A and 10B having a high flatness on the electrode upper surface have lower output resistance than the conventional battery 60 having a lower flatness on the electrode upper surface and have good output characteristics. The output characteristics improve as the flatness increases.
In addition, as the flatness of the upper surface of the electrode increases, the photoelectric conversion unit 11 is less likely to be damaged when the wiring member is thermocompression bonded to the bus bar electrode. This tendency becomes remarkable when the coefficient of variation is about 15%.
 以上のように、上記製造方法によれば、光電変換部11の主面上に印刷したペーストを押圧して圧縮することにより、ペーストの上面の凹凸が低減されて平坦化した電極を形成することができる。かかる電極は、1mm以上の長さに亘って、好ましくは全長に亘って、電極高さの変動係数が15%以下となる。 As described above, according to the manufacturing method described above, the paste printed on the main surface of the photoelectric conversion unit 11 is pressed and compressed, so that the unevenness on the upper surface of the paste is reduced and a flattened electrode is formed. Can do. Such an electrode has a variation coefficient of electrode height of 15% or less over a length of 1 mm or more, preferably over the entire length.
 太陽電池10では、第1電極20及び第2電極30となるペースト50a,50bを硬化前に押圧することで、例えば、電極材料が強く圧縮されてフィラー同士が強く接触し、良好な導電パスを形成することができる。このため、電極自体の抵抗を低減することが可能となる。また、電極と光電変換部11との密着性も向上し、電極と光電変換部11との接触抵抗を低減することができる。或いは、低抵抗損失を維持しながら導電性ペーストの使用量を削減して製造コストを下げることができる。また、低抵抗損失を維持しながらフィンガー電極をさらに細線化して遮光ロスを低減できる。 In the solar cell 10, by pressing the pastes 50 a and 50 b to be the first electrode 20 and the second electrode 30 before curing, for example, the electrode material is strongly compressed and the fillers are in strong contact with each other, and a good conductive path is obtained. Can be formed. For this reason, the resistance of the electrode itself can be reduced. In addition, the adhesion between the electrode and the photoelectric conversion unit 11 can be improved, and the contact resistance between the electrode and the photoelectric conversion unit 11 can be reduced. Alternatively, the manufacturing cost can be reduced by reducing the amount of conductive paste used while maintaining low resistance loss. Further, the finger electrode can be further thinned while maintaining a low resistance loss, thereby reducing a light shielding loss.
 太陽電池10では、電極高さのバラツキが小さく電極上面の平坦度が高いため、例えば、モジュール化する際に取り付けられる配線材との接続性が向上する。例えば、電極と配線材との接触面積が増加して、電極と配線材との密着性が向上し、両者間の接触抵抗も低減する。さらに、配線材は、電極に対して熱圧着されるが、その際に発生する応力の影響を緩和することができる。電極上面の凹凸が大きい場合、凸部に圧力が加わり易く光電変換部11の一部に応力が集中して、光電変換部11に亀裂や割れ等の損傷が発生する場合がある。これに対して、太陽電池10では、電極上面の平坦度が高いため、光電変換部11に加わる応力を分散することができ光電変換部11の損傷を抑制できる。 In the solar cell 10, since the variation in the electrode height is small and the flatness of the upper surface of the electrode is high, for example, the connectivity with the wiring material attached when modularizing is improved. For example, the contact area between the electrode and the wiring material is increased, the adhesion between the electrode and the wiring material is improved, and the contact resistance between the two is also reduced. Furthermore, although the wiring material is thermocompression bonded to the electrode, the influence of the stress generated at that time can be reduced. When the unevenness of the upper surface of the electrode is large, pressure is likely to be applied to the convex portion, and stress concentrates on a part of the photoelectric conversion portion 11, and damage such as cracks or cracks may occur in the photoelectric conversion portion 11. On the other hand, in the solar cell 10, since the flatness of the upper surface of the electrode is high, the stress applied to the photoelectric conversion unit 11 can be dispersed, and damage to the photoelectric conversion unit 11 can be suppressed.
 太陽電池10は、例えば、これらの相乗効果により良好な光電変換特性を発現する。 The solar cell 10 exhibits good photoelectric conversion characteristics due to, for example, a synergistic effect thereof.
 上記実施形態は、本発明の目的を損なわない範囲で適宜設計変更できる。
 例えば、図11に示されるように、光電変換部11は、n型単結晶シリコン基板100の受光面側にi型非晶質シリコン層101及びn型非晶質シリコン膜102が形成され、n型単結晶シリコン基板100の裏面側に、i型非晶質シリコン層103とp型非晶質シリコン層104と透明導電層105とで構成されたp型領域と、i型非晶質シリコン層106とn型非晶質シリコン層107と透明導電層108とで構成されたn型領域と、p型領域及びn型領域の間に設けられた絶縁層111とを有する構造であってもよい。この場合、n型単結晶シリコン基板100の裏面側のみに電極が設けられる。電極は、p型領域上に形成されたp側集電極109と、n型領域上に形成されたn側集電極110とを含む。
 また、図12に示されるように、光電変換部11は、p型多結晶シリコン基板120と、p型多結晶シリコン基板120の表面側に形成されたn型拡散層121と、p型多結晶シリコン基板120の裏面上に形成されたアルミニウム金属膜122とを有する構造であってもよい。
The above embodiment can be appropriately changed in design without departing from the object of the present invention.
For example, as illustrated in FIG. 11, the photoelectric conversion unit 11 includes an n-type amorphous silicon layer 101 and an n-type amorphous silicon film 102 formed on the light-receiving surface side of an n-type single crystal silicon substrate 100. A p-type region composed of an i-type amorphous silicon layer 103, a p-type amorphous silicon layer 104, and a transparent conductive layer 105, and an i-type amorphous silicon layer A structure having an n-type region composed of the n-type amorphous silicon layer 107, the transparent conductive layer 108, and an insulating layer 111 provided between the p-type region and the n-type region may be employed. . In this case, an electrode is provided only on the back side of n-type single crystal silicon substrate 100. The electrodes include a p-side collector electrode 109 formed on the p-type region and an n-side collector electrode 110 formed on the n-type region.
12, the photoelectric conversion unit 11 includes a p-type polycrystalline silicon substrate 120, an n-type diffusion layer 121 formed on the surface side of the p-type polycrystalline silicon substrate 120, and a p-type polycrystalline. A structure having an aluminum metal film 122 formed on the back surface of the silicon substrate 120 may be used.
 10 太陽電池、11 光電変換部、12 中間体、20 第1電極、21,31 フィンガー電極、22,32 バスバー電極、23,24,25,33,34,35,53a,53b 上面、30 第2電極、40,40a,40b スクリーン版、41 メッシュ、42,42a,42b マスク材、43,43a,43b 開口部、44 スキージ、45 平坦化用スクリーン版、50,50a,50b ペースト、51 テーブル、52 プレス板。 10 solar cell, 11 photoelectric conversion unit, 12 intermediate, 20 first electrode, 21, 31 finger electrode, 22, 32 bus bar electrode, 23, 24, 25, 33, 34, 35, 53a, 53b upper surface, 30 second Electrode, 40, 40a, 40b screen plate, 41 mesh, 42, 42a, 42b mask material, 43, 43a, 43b opening, 44 squeegee, 45 flattening screen plate, 50, 50a, 50b paste, 51 table, 52 Press plate.

Claims (12)

  1.  光電変換部と、
     バインダとフィラーとを含み、前記光電変換部の主面上に設けられた電極と、
     を備え、
     前記電極の少なくとも一部は、1mm以上の長さに亘る電極高さの変動係数が15%以下である太陽電池。
    A photoelectric conversion unit;
    An electrode provided on a main surface of the photoelectric conversion unit, including a binder and a filler;
    With
    At least a part of the electrode is a solar cell having a coefficient of variation of electrode height of 15% or less over a length of 1 mm or more.
  2.  請求項1に記載の太陽電池において、
     前記電極は、前記光電変換部の前記主面のうち、受光面上に設けられる受光面電極と、裏面上に設けられる裏面電極とを有し、
     前記裏面電極の前記変動係数が、15%以下であり、且つ前記受光面電極の前記変動係数よりも小さい。
    The solar cell according to claim 1,
    The electrode includes a light receiving surface electrode provided on a light receiving surface and a back electrode provided on a back surface of the main surface of the photoelectric conversion unit,
    The coefficient of variation of the back electrode is 15% or less and smaller than the coefficient of variation of the light receiving surface electrode.
  3.  請求項2に記載の太陽電池において、
     前記受光面電極の前記変動係数が、15%以下である。
    The solar cell according to claim 2,
    The coefficient of variation of the light receiving surface electrode is 15% or less.
  4.  請求項1~3のいずれか1項に記載の太陽電池において、
     前記電極は、フィンガー電極を含み、
     前記フィンガー電極の前記変動係数が、15%以下である。
    The solar cell according to any one of claims 1 to 3,
    The electrode includes a finger electrode;
    The coefficient of variation of the finger electrode is 15% or less.
  5.  請求項1~4のいずれか1項に記載の太陽電池において、
     前記電極は、バスバー電極を含み、
     前記バスバー電極の前記変動係数が、15%以下である。
    The solar cell according to any one of claims 1 to 4,
    The electrode includes a bus bar electrode,
    The coefficient of variation of the bus bar electrode is 15% or less.
  6.  光電変換部の主面上に電極を備えた太陽電池の製造方法であって、
     前記電極を形成するペーストを前記主面上に印刷し、印刷された前記ペーストの少なくとも一部を高さ方向に押圧して当該ペーストの上面を平坦化した後、当該ペーストを硬化させる工程を備える太陽電池の製造方法。
    A method for manufacturing a solar cell including an electrode on a main surface of a photoelectric conversion unit,
    Printing a paste for forming the electrode on the main surface, pressing at least a part of the printed paste in a height direction to flatten the upper surface of the paste, and then curing the paste. A method for manufacturing a solar cell.
  7.  請求項6に記載の太陽電池の製造方法であって、
     前記電極は、前記主面のうち一方の面上に設けられる第1の電極と、他方の面上に設けられる第2の電極とを有し、
     前記工程では、前記一方の面上に前記第1の電極を形成する前記ペーストを印刷した後、当該ペーストを平面上に押し付けて前記上面を平坦化しながら、前記他方の面上に前記第2の電極を形成する前記ペーストを印刷する。
    It is a manufacturing method of the solar cell according to claim 6,
    The electrode includes a first electrode provided on one surface of the main surface and a second electrode provided on the other surface,
    In the step, after printing the paste for forming the first electrode on the one surface, the paste is pressed onto a flat surface to flatten the upper surface, and the second surface is formed on the other surface. The paste forming the electrode is printed.
  8.  請求項7に記載の太陽電池の製造方法であって、
     前記工程では、スクリーン印刷法を用いて、その印圧により前記一方の面上に印刷された前記ペーストを前記平面上に押し付けながら、前記他方の面上に前記第2の電極を形成する前記ペーストを印刷する。
    It is a manufacturing method of the solar cell of Claim 7, Comprising:
    In the step, the paste is used to form the second electrode on the other surface while pressing the paste printed on the one surface by the printing pressure using the screen printing method on the plane. To print.
  9.  請求項6に記載の太陽電池の製造方法であって、
     前記工程では、前記電極を形成するペーストを前記主面上に印刷した後、当該ペースト上にプレス器具を載せて前記上面を平坦化する。
    It is a manufacturing method of the solar cell according to claim 6,
    In the step, a paste for forming the electrode is printed on the main surface, and then a press tool is placed on the paste to flatten the upper surface.
  10.  請求項9に記載の太陽電池の製造方法であって、
     前記プレス器具は、開口部を有さない製版と、スキージとを含み、
     前記工程では、前記主面上に印刷された前記ペースト上に前記製版を載せ、前記製版の当該ペーストに接触する面と反対側の面上で前記スキージを摺動させて前記上面を平坦化する。
    It is a manufacturing method of the solar cell according to claim 9,
    The press device includes a plate making without an opening and a squeegee,
    In the step, the plate making is placed on the paste printed on the main surface, and the upper surface is flattened by sliding the squeegee on the surface of the plate making opposite to the surface in contact with the paste. .
  11.  請求項6~10のいずれか1項に記載の太陽電池の製造方法であって、
     前記電極は、前記主面のうち受光面上に設けられる受光面電極と、前記主面のうち裏面上に設けられる金属膜及び前記金属膜上に設けられるバスバー電極を含む裏面電極とを有し、
     前記工程では、前記金属膜上に前記バスバー電極を形成する前記ペーストを印刷して平坦化した後、前記受光面上に前記ペーストを印刷する。
    A method for manufacturing a solar cell according to any one of claims 6 to 10,
    The electrode includes a light receiving surface electrode provided on the light receiving surface of the main surface, and a back electrode including a metal film provided on the back surface of the main surface and a bus bar electrode provided on the metal film. ,
    In the step, the paste for forming the bus bar electrode is printed and planarized on the metal film, and then the paste is printed on the light receiving surface.
  12.  請求項6~11のいずれか1項に記載の太陽電池の製造方法であって、
     前記工程では、前記主面上に印刷された前記ペーストを押圧する前に、前記上面の平坦化が可能な範囲で当該ペーストに含まれる溶剤を除去する。
    A method for manufacturing a solar cell according to any one of claims 6 to 11,
    In the step, before pressing the paste printed on the main surface, the solvent contained in the paste is removed within a range where the upper surface can be flattened.
PCT/JP2012/057190 2012-03-21 2012-03-21 Solar cell and method for manufacturing same WO2013140549A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/057190 WO2013140549A1 (en) 2012-03-21 2012-03-21 Solar cell and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/057190 WO2013140549A1 (en) 2012-03-21 2012-03-21 Solar cell and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2013140549A1 true WO2013140549A1 (en) 2013-09-26

Family

ID=49222043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057190 WO2013140549A1 (en) 2012-03-21 2012-03-21 Solar cell and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2013140549A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10763435B2 (en) 2016-09-27 2020-09-01 Teknologian Tutkimuskeskus Vtt Oy Layered apparatus and its manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07335921A (en) * 1994-06-07 1995-12-22 Canon Inc Fabrication of current collecting electrode for photovoltaic element
JPH11103084A (en) * 1997-09-26 1999-04-13 Sanyo Electric Co Ltd Solar cell element and manufacture thereof
JP2008529264A (en) * 2005-01-20 2008-07-31 コミツサリア タ レネルジー アトミーク Method for metallization of semiconductor devices
WO2011004758A1 (en) * 2009-07-09 2011-01-13 株式会社シンク・ラボラトリー Solar battery manufacturing method and solar battery
JP2011061109A (en) * 2009-09-14 2011-03-24 Shin-Etsu Chemical Co Ltd Method of manufacturing solar cell element, and the solar cell element
JP2011249663A (en) * 2010-05-28 2011-12-08 Sanyo Electric Co Ltd Solar cell module and manufacturing method thereof
JP2012005988A (en) * 2010-06-28 2012-01-12 Dainippon Screen Mfg Co Ltd Pattern forming method and pattern forming apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07335921A (en) * 1994-06-07 1995-12-22 Canon Inc Fabrication of current collecting electrode for photovoltaic element
JPH11103084A (en) * 1997-09-26 1999-04-13 Sanyo Electric Co Ltd Solar cell element and manufacture thereof
JP2008529264A (en) * 2005-01-20 2008-07-31 コミツサリア タ レネルジー アトミーク Method for metallization of semiconductor devices
WO2011004758A1 (en) * 2009-07-09 2011-01-13 株式会社シンク・ラボラトリー Solar battery manufacturing method and solar battery
JP2011061109A (en) * 2009-09-14 2011-03-24 Shin-Etsu Chemical Co Ltd Method of manufacturing solar cell element, and the solar cell element
JP2011249663A (en) * 2010-05-28 2011-12-08 Sanyo Electric Co Ltd Solar cell module and manufacturing method thereof
JP2012005988A (en) * 2010-06-28 2012-01-12 Dainippon Screen Mfg Co Ltd Pattern forming method and pattern forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10763435B2 (en) 2016-09-27 2020-09-01 Teknologian Tutkimuskeskus Vtt Oy Layered apparatus and its manufacturing method

Similar Documents

Publication Publication Date Title
TWI627763B (en) Methods of forming solar cells with fired multilayer film stacks
EP2291866B1 (en) Method for the production of solar cells based on a monograin membrane
DE102012001269B4 (en) solar cell panel
JP2007103473A (en) Solar cell device and solar cell module
WO2011148839A1 (en) Solar cell module and solar cell
US20120125434A1 (en) Method for forming electrode of solar battery, method for manufacturing solar battery, and solar battery
WO2013076861A1 (en) Solar cell and solar cell manufacturing method
JP2009238959A (en) Press-bonding device, and manufacturing method of solar cell module
WO2011098273A2 (en) Solar cell, method for producing a solar cell and printing screen for applying a contact of a solar cell
WO2013140549A1 (en) Solar cell and method for manufacturing same
EP2835835A1 (en) Crystal system solar battery module and method for manufacturing same
JP5857245B2 (en) Solar cell, solar cell module and manufacturing method thereof
DE102011055143A1 (en) Double-sided contacted semiconductor wafer solar cell with surface-passivated backside
US20120285503A1 (en) Solar cell module and manufacturing method of same
EP2830101A1 (en) Solar cell module and method for manufacturing same
JP6037135B2 (en) Manufacturing method of solar cell
JP5938665B2 (en) Manufacturing method of solar cell module
JP5934985B2 (en) Solar cell module manufacturing method and solar cell module
JP2012054441A (en) Method of manufacturing solar cell and solar cell
US20170062649A1 (en) Solar cell
US20160043243A1 (en) Solar cell manufacturing method
JP7495341B2 (en) How solar cells are manufactured
CN115534502B (en) Screen printing screen, method for forming solar cell electrode and solar cell
CN110828597B (en) Solar cell string and preparation method thereof
JP2013049181A (en) Screen printing machine and screen printing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12871626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP