WO2013140437A1 - 無線通信方法、無線通信システム、無線局、及び無線端末 - Google Patents
無線通信方法、無線通信システム、無線局、及び無線端末 Download PDFInfo
- Publication number
- WO2013140437A1 WO2013140437A1 PCT/JP2012/001908 JP2012001908W WO2013140437A1 WO 2013140437 A1 WO2013140437 A1 WO 2013140437A1 JP 2012001908 W JP2012001908 W JP 2012001908W WO 2013140437 A1 WO2013140437 A1 WO 2013140437A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- random access
- node
- signal
- wireless terminal
- wireless
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 203
- 238000000034 method Methods 0.000 title claims abstract description 43
- 230000008569 process Effects 0.000 claims abstract description 16
- 230000005540 biological transmission Effects 0.000 claims description 72
- 230000004044 response Effects 0.000 claims description 67
- 230000007704 transition Effects 0.000 claims description 3
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 36
- 238000010586 diagram Methods 0.000 description 28
- 230000015654 memory Effects 0.000 description 10
- 108010076504 Protein Sorting Signals Proteins 0.000 description 6
- 239000000284 extract Substances 0.000 description 5
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 4
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- 238000013468 resource allocation Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/002—Transmission of channel access control information
Definitions
- the present invention relates to a wireless communication method, a wireless communication system, a wireless station, and a wireless terminal.
- next-generation wireless communication technologies have been discussed in order to further increase the speed and capacity of wireless communication in wireless communication systems such as mobile phone systems.
- 3GPP 3rd Generation Partnership Project
- LTE Long Term Evolution
- LTE-A LTE-Advanced
- coordinated multipoint (hereinafter also referred to as CoMP) communication is being studied in order to reduce inter-cell interference and improve received signal strength.
- multipoint cooperative communication a plurality of geographically separated points (hereinafter also referred to as nodes) perform communication in cooperation. Each point corresponds to, for example, a base station, a communication unit, an antenna, or a cell formed by these.
- transmission or reception between multiple points is adjusted.
- downlink multipoint cooperative communication a method of jointly transmitting a plurality of points to a wireless terminal has been studied.
- uplink multipoint cooperative communication a method of combining signals received at a plurality of points while communicating between the points has been studied.
- the disclosed technology has been made in view of the above, and an object thereof is to provide a wireless communication method, a wireless communication system, a wireless station, and a wireless terminal capable of improving communication performance in multipoint cooperative communication.
- a wireless communication method disclosed in the present application includes a plurality of nodes to which common cell identification information is assigned, and is capable of cooperative communication with one or more nodes.
- a wireless communication method in a wireless communication system including: a group indicating a group of random access signals for each node among a plurality of random access signals usable in a cell corresponding to the cell identification information in the wireless terminal The information is acquired, and the wireless terminal transmits a random access signal included in the group indicated by the group information, and executes a random access process for each node.
- FIG. 1 is a diagram illustrating a configuration of a wireless communication system according to the first embodiment.
- FIG. 2 is a functional block diagram showing the configuration of the radio station according to the first embodiment.
- FIG. 3 is a functional block diagram showing the configuration of the wireless terminal according to the first embodiment.
- FIG. 4 is a diagram illustrating a hardware configuration of the radio station according to the first embodiment.
- FIG. 5 is a diagram illustrating a hardware configuration of the wireless terminal according to the first embodiment.
- FIG. 6 is a sequence diagram for explaining the operation of the wireless communication system according to the first embodiment.
- FIG. 7 is a diagram illustrating a configuration of a wireless communication system according to the second embodiment.
- FIG. 8 is a functional block diagram showing a configuration of a radio station according to the second embodiment.
- FIG. 1 is a diagram illustrating a configuration of a wireless communication system according to the first embodiment.
- FIG. 2 is a functional block diagram showing the configuration of the radio station according to the first embodiment.
- FIG. 3
- FIG. 9 is a functional block diagram showing the configuration of the wireless terminal according to the second embodiment.
- FIG. 10 is a sequence diagram for explaining the operation of the wireless communication system according to the second embodiment.
- FIG. 11 is a sequence diagram for explaining the operation of the wireless communication system according to the third embodiment.
- FIG. 12 is a sequence diagram for explaining the operation of the wireless communication system according to the fourth embodiment.
- FIG. 13 is a diagram illustrating a configuration of a wireless communication system according to the fifth embodiment.
- FIG. 14 is a sequence diagram for explaining the operation of the wireless communication system according to the fifth embodiment.
- FIG. 1 shows a configuration of a wireless communication system 1 according to the first embodiment.
- the wireless communication system 1 includes a wireless station 4 and wireless terminals 7 and 8.
- the radio station 4 is connected to the host device 3 via a wired connection, and the host device 3 is connected to the network 2 via a wired connection.
- the radio station 4 has a control unit 9 and remote units 5 and 6.
- the control unit 9 can be realized as eNodeB (evolved (Node B), for example.
- the remote units 5 and 6 can be realized as, for example, RRH (Remote Radio Radio Head) included in the eNodeB.
- the control unit 9 and the remote units 5 and 6 each have an antenna (point) and are arranged at points separated from each other.
- the control unit 9 and the remote units 5 and 6 correspond to nodes.
- the control unit 9 forms a cell C1, and the remote units 5 and 6 form cover areas R1 and R2 that overlap the cell C1, respectively.
- the wireless terminals 7 and 8 exist in the cell C1. At this time, the wireless terminal 7 is included in the cover area R1.
- the control unit 9 and the remote units 5 and 6 are assigned common cell identification information (cell ID), and are recognized as the same cell without being distinguished as cells.
- the control unit 9 and the remote units 5 and 6 communicate with each other via a wired connection and also perform CoMP communication with the wireless terminals 7 and 8. For example, in downlink CoMP communication with the wireless terminal 7, the same as the wireless terminal 7 from one or more nodes selected as a set used in the downlink CoMP communication among the control unit 9 and the remote units 5 and 6 Combined transmission is performed in which data is transmitted using time / frequency radio resources. Further, for example, in uplink CoMP communication with the radio terminal 7, one or more nodes selected as a set to be used for uplink CoMP communication among the control unit 9 and the remote units 5 and 6 are transmitted from the radio terminal 7. Are combined, and the received signal is combined between the nodes.
- FIG. 2 is a functional block diagram showing the configuration of the wireless station 4.
- the control unit 9 of the wireless station 4 includes an antenna 10, a transmission unit 11, a reception unit 12, and a control unit 13.
- the remote unit 5 of the wireless station 4 includes an antenna 14, a transmission unit 15, and a reception unit 16.
- the remote unit 6 of the wireless station 4 includes an antenna 17, a transmission unit 18, and a reception unit 19. Prepare. Each of these components is connected so that signals and data can be input and output in one direction or in both directions.
- the constituent parts 14 to 19 of the remote units 5 and 6 are the same as the constituent parts 10 to 12 of the control unit 9.
- the transmission unit 11 transmits a data signal and a control signal via the antenna 10.
- the signal to be transmitted includes, for example, information on a random access signal for establishing a connection.
- the information regarding the random access signal includes configuration information of the random access preamble and group information indicating a group of random access signals for each node among a plurality of random access signals.
- the receiving unit 12 receives data signals and control signals transmitted from the wireless terminals 7 and 8 via the antenna 10.
- the received signal includes, for example, a signal (random access signal) for establishing a connection.
- the antenna 10 may be separated for transmission and reception.
- the control unit 13 acquires information and signals from the host device 3 and other wireless stations via a wired connection or a wireless connection.
- the control unit 13 outputs data to be transmitted and control information to the transmission units 11, 15 and 18.
- the control unit 13 inputs received data and control information from the receiving units 12, 16, and 19.
- the control unit 13 notifies the system information in the cell C1 or in the cover areas R1 and R2.
- the system information is notified via, for example, a broadcast channel, a shared channel designated by the broadcast channel, or a shared channel designated by the dedicated control channel.
- a radio resource for example, a time position, a frequency position, etc.
- the system information includes, for example, group information indicating a group of random access signals for each node among a plurality of random access signals.
- the control unit 13 causes the transmission units 11, 15, and 18 to transmit reference signals (pilot signals) for propagation state estimation and signal demodulation.
- FIG. 3 is a functional block diagram showing the configuration of the wireless terminal 7.
- the wireless terminal 7 includes an antenna 20, a transmission unit 21, a reception unit 22, and a control unit 23. Each of these components is connected so that signals and data can be input and output in one direction or in both directions.
- the functional configuration and hardware configuration of the wireless terminal 8 are the same as the functional configuration and hardware configuration of the wireless terminal 7.
- the transmission unit 21 transmits a data signal and a control signal via the antenna 20.
- the signal to be transmitted includes, for example, a random access signal.
- the receiving unit 22 receives a data signal and a control signal transmitted from the wireless terminal via the antenna 20.
- the received signal includes, for example, group information indicating a group of random access signals for each node among a plurality of random access signals, and control information specifying a radio resource to which the random access response signal is transmitted.
- the antenna 20 may be separated for transmission and reception.
- the control unit 23 outputs data to be transmitted and control information to the transmission unit 21.
- the control unit 23 inputs data and control information received from the receiving unit 22.
- the control unit 23 transmits a random access signal included in the group information based on group information indicating a group of random access signals for each node among the plurality of random access signals, and at least one of the plurality of nodes. Random access processing for each node with one node is executed.
- the control unit 23 may acquire the reception level of the reference signal for each node from the reception signal of the entire reference signal transmitted from the wireless station 4, and may acquire the communication quality for each node.
- the control part 23 may determine the transmission power of the signal for connection establishment from the acquired communication quality for every node.
- Random access is a procedure for transmitting data from one wireless communication device (for example, a wireless terminal) to the other wireless communication device (for example, a wireless station) from a state where wireless resources used for data transmission are not allocated. It is.
- the random access signal is determined from a plurality of predetermined random access preambles.
- the random access preamble is randomly selected from a plurality of preambles prepared in advance in the cell.
- the random access preamble is, for example, a predetermined number of preambles generated by cyclically shifting one signal sequence. The predetermined number of preambles are grouped in advance.
- FIG. 4 is a diagram illustrating a hardware configuration of the wireless station 4.
- the wireless station 4 includes, as hardware components, RF (Radio Frequency) circuits 31, 38, 42 including antennas 30, 37, 41, and DSPs (Digital Signal Processors) 32, 39, for example. , 43, a CPU (Central Processing Unit) 34, memories 33, 35, 40, and 44, and a network IF (Interface) 36.
- the CPU 34 is connected through a network IF 36 such as a switch so that various signals and data can be input and output.
- the memories 33, 35, 40, and 44 include, for example, at least one of RAM (Random Access Memory), ROM (Read Only Memory), and flash memory such as SDRAM (Synchronous Dynamic Random Access Memory).
- the transmitters 11, 15, 18 and the receivers 12, 16, 19 are realized by integrated circuits such as RF circuits 31, 38, 42 and DSPs 32, 39, 43, for example.
- the control unit 13 is realized by an integrated circuit such as a CPU 34, for example.
- the control unit 9 corresponds to the components 30 to 36
- the remote unit 5 corresponds to the components 37 to 40
- the remote unit 6 corresponds to the components 41 to 44.
- FIG. 5 is a diagram illustrating a hardware configuration of the wireless terminal 7.
- the wireless terminal 7 includes, as hardware components, an RF circuit 51 including an antenna 50, a CPU 52, and a memory 53, for example.
- RF circuit 51 including an antenna 50
- CPU 52 a CPU 52
- memory 53 for example.
- the memory 53 includes at least one of RAM such as SDRAM, ROM, and flash memory, for example, and stores programs, control information, and data.
- the transmission unit 21 and the reception unit 22 are realized by the RF circuit 51, for example.
- the control unit 23 is realized by an integrated circuit such as a CPU 52, for example.
- FIG. 6 is a sequence diagram for explaining an operation related to connection establishment of the wireless communication system 1.
- the control unit 9 and the remote units 5 and 6 of the wireless station 4 are provided as nodes so that CoMP communication is possible.
- the cell identification information is common. That is, common cell identification information is used in the control unit 9 and the remote units 5 and 6. For example, the cell identification information of the cell C1 is notified in the cell C1 as system information.
- the wireless terminal 7 transmits a random access signal for establishing a connection before establishing a connection with the control unit 9 and the remote units 5 and 6. Then, the control unit 9 and the remote units 5 and 6 each receive the transmitted random access signal. Each of the control unit 9 and the remote units 5 and 6 performs a random access signal reception process, and acquires the level of the reception signal for each node. Then, the control unit 9 compares the reception level for each node.
- the wireless station 4 can transmit two types of random access response signals, that is, a random access response signal for each cell and a random access response signal for each node, to the random access signal.
- the random access response signal for each cell is transmitted to the entire cell via a channel that can be received by both a wireless terminal capable of CoMP communication and a wireless terminal that is not capable of CoMP communication. It is transmitted within the coverage area of a given node via a channel receivable by a possible wireless terminal.
- the comparison result in the control unit 9 indicates that the level of the received signal at the remote unit 5 is relatively high.
- the type information of the wireless terminal 7 is generally information notified to the wireless station 4 after the connection is established, the wireless terminal 7 can perform CoMP communication at the stage of receiving the random access signal. It is not possible to determine whether the terminal is a wireless terminal. For this reason, as a result of the reception process of the random access signal, for example, even if it is grasped that the level of the reception signal at the remote unit 5 is relatively high, whether the random access response signal is transmitted into the cover area of the remote unit 5 Therefore, it cannot be determined whether to transmit to the entire cell C1.
- a random access response signal for each node is transmitted in the cover area of the remote unit 5
- the wireless terminal 7 is not a wireless terminal capable of CoMP communication
- the wireless terminal cannot receive the random access response signal.
- a random access response signal for each cell is transmitted to the entire cell C1 regardless of the comparison result of the reception level.
- the wireless terminal 7 receives the random access response signal transmitted to the entire cell C1, continues the random access process, and establishes a connection.
- the random access response signal with respect to the random access signal of the radio station 4 exists in the cell C1, for example, and may cause interference or contention for the radio terminal 8 trying to establish a connection.
- an operation for establishing a connection is performed as follows.
- the wireless terminal 7 existing in the cell C1 is in a state where the connection with the wireless station 4 has not been established, and an operation of establishing a connection between the wireless station 4 and the wireless terminal 7 will be described as an example.
- the wireless terminal 7 is a wireless terminal capable of CoMP communication.
- the wireless terminal 7 uses a random access signal included in a group specified by group information based on group information indicating a group of random access signals for each node from a plurality of random access preambles.
- One random access signal is selected at random (S1).
- the group information indicating the group of random access signals for each node may be notified from the wireless station 4 in advance as the system information, for example, in the cell C1 and acquired by the wireless terminal 7, or stored in advance in the wireless terminal 7. Also good. Alternatively, default information stored in advance in the wireless terminal 7 may be updated and acquired with the notified information.
- the radio station 4 transmits system information from at least one of the control unit 9 and the remote units 5 and 6, for example.
- a plurality of preambles generated from one signal sequence are grouped to be used for both a random access signal for each cell and a random access signal for each node.
- an increase in control information can be suppressed as compared with a case where different signal sequences are used for the random access signal for each cell and the random access signal for each node.
- the wireless terminal 7 transmits the selected random access signal (S2).
- the selected random access preamble is transmitted through a channel for random access.
- the transmitted random access signal is received by the control unit 9 and the remote units 5 and 6 of the radio station 4, respectively.
- the wireless station 4 determines whether or not the received random access signal is a random access signal for a node (S3).
- the wireless station 4 determines whether or not the received random access signal is a random access signal included in group information indicating a group of random access signals for each node.
- the wireless terminal 7 is a wireless terminal capable of CoMP communication, and in the case of the random access signal included in the group information, the wireless terminal 7 is determined not to be a wireless terminal capable of CoMP communication. Is done.
- the wireless station 4 assigns a wireless access response signal for each node to one or more nodes selected based on the reception level
- the resource is transmitted through a control channel that can be set for each node (S4).
- radio resources to be allocated to the random access response signal for the entire cell are transmitted via a control channel set for each cell.
- the radio resource assigned to the random access response signal for the entire cell may be notified in advance from the radio station 4 to the cell C1 and acquired by the radio terminal 7, or may be stored in advance inside the radio terminal 7. Alternatively, default information stored in advance in the wireless terminal 7 may be updated and acquired with the notified information.
- the wireless station 4 transmits a random access response signal for each node using the set wireless resource (S5). If the result of the determination in S3 is not a random access signal for the node, a random access response signal for the entire cell is transmitted using the set radio resource.
- the wireless terminal 7 receives the random access signal for each node transmitted in S4, and establishes connection and cooperative communication with the selected node (S6).
- connection establishment and cooperative communication establishment with the selected node are performed by a random access response signal for each node.
- the radio terminal 8 in the cell C1 performs a random access sequence, interference and contention are reduced, so that the random access sequence can be performed using the same radio resource.
- wireless resources improves and communication performance improves.
- a wireless terminal that is not capable of CoMP communication can receive a random response signal for each cell and establish a connection.
- FIG. 7 shows a configuration of a wireless communication system 90 according to the second embodiment.
- the wireless communication system 90 includes a wireless station 100 and wireless terminals 103 to 105. Note that, as in the first embodiment, the wireless station 100 is connected to a host device via a wired connection, and the host device is connected to a network via a wired connection.
- the radio station 100 has a control unit 101 and remote units 102A to 102F.
- the control unit 101 can be realized as eNodeB, for example.
- the remote units 102A to 102F can be realized as, for example, RRHs that the eNodeB has.
- the control unit 101 and the remote units 102A to 102F each have an antenna (point) and are arranged at points separated from each other.
- the control unit 101 and the remote units 102A to 102F correspond to nodes.
- the control unit 101 forms a cell C100, and the remote units 102A to 102F form cover areas R102A to R102F that overlap the cell C100, respectively.
- the same cell identification information is assigned to the control unit 101 and each of the remote units 102A to 102F.
- Wireless terminals 103 to 105 exist in cell C100.
- the control unit 101 and the remote units 102A to 102F communicate with each other via a wired connection and perform CoMP communication with the wireless terminals 103 to 105.
- data is transmitted from one or more nodes selected as a set to be used for downlink CoMP communication from the control unit 101 and the remote units 102A to 102F to the wireless terminal 103.
- uplink CoMP communication with the wireless terminal 103 one or more nodes selected as a set to be used for uplink CoMP communication among the control unit 101 and the remote units 102A to 102F are transmitted from the wireless terminal 103.
- the received signal is synthesized between the nodes.
- the wireless terminal 104 performs downlink CoMP communication as a set in which the control unit 101 and the remote units 102C and D are used in downlink CoMP communication. Further, for example, the wireless terminal 105 performs uplink CoMP communication as a set in which the control unit 101 and the remote units 102E and 102F are used in uplink CoMP communication.
- FIG. 8 is a functional block diagram showing the configuration of the radio station 100.
- the radio station 100 includes an antenna 100, a transmission / reception switching unit 111, a receiving unit 112, and a transmitting unit 113.
- Radio station 100 also includes antennas 104A-F, transmission / reception switching units 115A-F, receiving units 116A-F, and transmitting units 117A-F.
- the radio station 100 also includes a data signal acquisition unit 118, a control signal acquisition unit 119, an RS acquisition unit 120, a reception quality calculation unit 121, a RACH (RandomandAccess Channel) preamble acquisition unit 122, and a RACH preamble determination unit. 123 and a scheduler 124.
- the radio station 100 includes a data signal generation unit 125, a data signal processing unit 126, a control signal generation unit 127, a control signal processing unit 128, an RS generation unit 129, and a signal allocation unit 130.
- Each of the components 110 to 113 and 118 to 130 are included in the control units 102A to 102F.
- Each component 114A-F, 115A-F, 116A-F, 117A-F is included in remote units 102A-F.
- Each of these components is connected so that signals and data can be input and output in one direction or in both directions. Further, the details of the respective constituent parts 114A to F, 115A to F, 116A to F, and 117A to F of the remote unit are the same as those of the respective constituent parts 110 to 113 of the control unit.
- the transmission / reception switching unit 111 switches between transmission and reception of the transmission / reception antenna 100.
- the signal output from the transmission unit 113 is transmitted via the antenna 100.
- a signal received via the antenna 100 is input to the reception unit 112.
- the antenna may be separated for transmission and reception. Further, a plurality of antennas may be provided.
- the receiving unit 112 receives an uplink signal via, for example, an uplink data channel or a control channel.
- Channels for receiving signals include PRACH (Physical Random Access Channel), PUSCH (Physical Uplink Shared Channel), and PUCCH (Physical Uplink Control Channel).
- the uplink signal includes a reference signal RS for estimating the propagation state and demodulating the signal, a control signal, and a data signal.
- the control signal includes, for example, a RACH signal (random access signal) as a signal for establishing a connection.
- the radio station 100 establishes a connection with the radio terminal by receiving the RACH signal.
- the RS acquisition unit 120 extracts a reference signal included in the uplink signal. Then, the RS acquisition unit 120 estimates a propagation state based on the received reference signal, and calculates a channel estimation value.
- the reference signal includes, for example, SRS (Sounding Reference Signal) used for channel estimation for each uplink frequency and DM-RS (DeModulation RS) for demodulation of the uplink signal.
- SRS Sounding Reference Signal
- DM-RS DeModulation RS
- the control signal acquisition unit 119 uses the channel estimation value to demodulate and decode the control signal included in the uplink signal, and extracts control information.
- the control signal acquisition unit 119 outputs control information related to decoding / demodulation of the data signal among the extracted control information to the data signal acquisition unit 118.
- the control signal acquisition unit 119 outputs the control information related to scheduling among the extracted control information to the scheduler 124.
- the data signal acquisition unit 118 demodulates and decodes the data signal included in the uplink signal using the control information and the channel estimation value, and extracts the data. For example, decoding is performed using a PUSCH channel estimation value estimated using a reference signal.
- the data signal acquisition unit 118 outputs ACK (ACKnowledgement) / NACK (Negative ACKnowledgement) to the scheduler 124 as a decoding result of the data signal.
- the reception quality calculation unit 121 calculates reception quality based on the channel estimation value.
- the calculated reception quality is output to the scheduler 124.
- the RACH preamble acquisition unit 122 extracts the RACH preamble from the received RACH signal.
- the RACH preamble determination unit 123 determines whether the received RACH preamble is a RACH preamble for each node based on group information indicating a group of RACH preambles for each node among a plurality of RACH preambles.
- Group information indicating a group of RACH preambles for each node may be notified from, for example, a higher-level device or may be stored in advance in the radio station 100.
- the RACH preamble is a predetermined number (for example, 64) of preambles generated by cyclically shifting one signal sequence (for example, Zadoff-Chu sequence).
- the predetermined number of preambles are grouped in advance. For example, 64 preambles are numbered and are divided into the following four groups according to the preamble number.
- Random preamble group A Preamble No. 17-32
- Random preamble group B Preamble No. 33-64 Group (1) is a dedicated access dedicated preamble.
- Groups (2) to (4) are non-dedicated access preambles.
- group (2) is a random access preamble (for RRH) for each node. Note that this group (2) is not recognized for RRH by wireless terminals that are not capable of CoMP communication, and is recognized as being included in group (1). Thus, it is easy to apply to a state where wireless terminals capable of CoMP communication and wireless terminals not capable of CoMP communication coexist.
- Groups (3) and (4) are preambles for random access for each cell, and are divided into groups A and B according to the amount of UL (Uplink) resources to be allocated.
- the scheduler 124 outputs a signal generation request to the data signal generation unit 125, the control signal generation unit 127, and the RS generation unit 129 using ACK / NACK, control information, reception quality, and the like. Further, the scheduler 124 outputs allocation information to the signal allocation unit 130.
- the control signal generation unit 127 is assigned to a random access response RAR (Random Access Response).
- RAR Random Access Response
- Control information specifying a resource is transmitted for each node via E-PDCCH (Enhanced--Physical-Downlink-Control-Channel).
- the control signal generation unit 127 specifies control information for specifying a radio resource allocated to the random access response RAR. Is transmitted to the entire cell via PDCCH (Physical Downlink Control Channel). Further, the random access response RAR is transmitted via PDSCH (Physical Downlink Shared Channel) designated by E-PDCCH or PDCCH.
- PDCCH Physical Downlink Control Channel
- PDSCH Physical Downlink Shared Channel
- the PDCCH is a channel that is set for each cell and can be received by both a wireless terminal capable of CoMP communication and a wireless terminal that is not capable of CoMP communication.
- the E-PDCCH is a channel that is set for each node and can be received by a wireless terminal capable of CoMP communication.
- the data signal generator 125 generates a data signal from the transmission data stored in the transmission buffer or the like based on the data signal generation request.
- the data to be transmitted includes, for example, data notified from the host device and data transferred from other radio stations.
- the data signal processing unit 126 performs processing such as encoding on the data signal using a predetermined parameter, and outputs the data signal to the signal allocation unit 130.
- the parameter may be stored in advance in the radio station 100 or may be notified from a higher-level device, another radio station, or a radio terminal.
- the control signal generation unit 127 generates a control signal to be transmitted based on the control signal generation request.
- control signals include MIB (Master Information Block) and SIB (System Information Block), L1 / L2 (Layer 1 / Layer 2) control signals, and RRC (Radio Resource Control) signals for storing system information. .
- the control signal includes, for example, information related to the RACH signal for establishing a connection.
- This information includes group information indicating a group of RACH signals for each node among a plurality of RACH signals.
- RACH preamble information Rach-ConfigCommon which is information related to the RACH signal for establishing a connection, includes the total number of preambles (Non-dedicated) preambles (2) to (4) of the RACH preamble, the RRH group It includes the start number and end number, the start number and end number of group A, and the start number and end number of group B.
- control signal includes, for example, E-PDCCH configuration information for each node, PDSCH configuration information for each node, and PUSCH configuration information for each node.
- the E-PDCCH configuration information, PDSCH configuration information, and PUSCH configuration information include control information related to decoding / demodulation of data signals and allocation information related to allocation / arrangement.
- the L1 / L2 control signal includes, for example, control information that specifies radio resources allocated to the RAR.
- control signal generation unit 127 generates a random access response RAR as a response signal for establishing a connection based on the reception result of the RACH signal.
- the control signal processing unit 128 performs processing such as encoding on the control signal using a predetermined parameter, and outputs the control signal to the signal allocation unit 130.
- the parameter may be stored in advance in the radio station 100 or may be notified from a higher-level device, another radio station, or a radio terminal.
- the RS generation unit 129 generates a reference signal to be transmitted based on the reference signal generation request and outputs the reference signal to the signal allocation unit 130.
- the downlink reference signal includes a reference signal for each cell and a reference signal for each node.
- the downlink reference signal includes, for example, downlink CRS (Cell-specific Reference Signal) and downlink CSI-RS (Channel State Information Reference Signal).
- CSI-RS is used to measure downlink communication quality and can be set for each node.
- the CRS is used for measurement of downlink communication quality and demodulation of downlink signals, and is set in association with cell identification information (cell ID).
- the signal allocation unit 130 allocates the generated data signal, control signal, and reference signal to a predetermined radio resource of a predetermined channel and arranges them, and among the transmission units 113 and 117A to F To a predetermined transmitter.
- Channels for transmitting signals include, for example, a synchronization channel PSCH (Physical Synchronization ⁇ Channel), a broadcast channel PBCH (Physical Broadcast Channel), a data channel PDSCH, a control channel PDCCH, an E-PDCCH, and the like.
- the signal allocation unit 130 allocates a signal including broadcast information to the broadcast channel PBCH and the shared channel PDSCH in which radio resources are specified by the broadcast channel.
- the signal assignment unit 130 assigns CRS and CSI-RS to PDCCH and E-PDCCH.
- FIG. 9 is a functional block diagram showing the configuration of the wireless terminal 103.
- the wireless terminal 103 includes a transmission / reception antenna 140, a transmission / reception switching unit 141, a reception unit 142, and a transmission unit 143.
- the wireless terminal 103 also includes a data signal acquisition unit 143, a control signal acquisition unit 144, an RS acquisition unit 145, and a reception quality calculation unit 146.
- the wireless terminal 103 includes a data signal generation unit 147, a data signal processing unit 148, a control signal generation unit 149, a control signal processing unit 150, an RS generation unit 151, a RACH preamble selection unit 152, and a RACH signal.
- a processing unit 153, a signal allocation unit 154, and a transmission control unit 156 are provided. Each of these components is connected so that signals and data can be input and output in one direction or in both directions.
- the functional configuration and hardware configuration of the wireless terminals 104 and 105 are the same as the functional configuration and hardware configuration of the wireless terminal 103.
- the transmission / reception switching unit 141 switches between transmission and reception of the transmission / reception antenna 140.
- a signal output from the transmission unit 143 is transmitted via the antenna 131.
- a signal received via the antenna 130 is input to the reception unit 142.
- the antenna may be separated for transmission and reception. Further, a plurality of antennas may be provided.
- the receiving unit 142 receives a downlink signal via, for example, a downlink data channel or a control channel.
- Channels that receive signals include, for example, PSCH, PBCH, PDCCH, and PDSCH.
- the downlink signal includes an RS signal for measurement and demodulation, a control signal, and a data signal.
- the control signal includes a signal for establishing synchronization and a response signal for establishing connection. Examples of the control signal include MIB, SIB, L1 / L2 control signal, and RRC signal.
- the RS acquisition unit 145 extracts the reference signal RS included in the downlink signal, estimates the propagation state based on the received reference signal, and calculates a channel estimation value.
- the reference signal includes, for example, CRS and CSI-RS.
- the channel estimation value is input to the data signal acquisition unit 143, the control signal acquisition unit 144, and the reception quality calculation unit 146.
- the control signal acquisition unit 144 demodulates and decodes the control signal included in the downlink signal using the channel estimation value, and acquires control information. For example, the control signal acquisition unit 144 acquires RACH preamble information stored in the received SIB as control information. Further, for example, the control signal acquisition unit 144 acquires, as control information, E-PDCCH configuration information for each node, PDSCH configuration information for each node, and PUSCH configuration information for each node stored in the received RRC signal. .
- the E-PDCCH configuration information, PDSCH configuration information, and PUSCH configuration information include control information related to decoding / demodulation of data signals and allocation information related to allocation / arrangement.
- the control signal acquisition unit 144 outputs the RACH preamble information to the RACH preamble selection unit 152. In addition, the control signal acquisition unit 144 outputs control information related to decoding / demodulation of the data signal among the acquired control information to the data signal acquisition unit 143. Further, the control signal acquisition unit 144 outputs allocation information related to allocation / arrangement among the extracted control information to the signal allocation unit 154.
- the data signal acquisition unit 143 demodulates and decodes the data signal included in the downlink signal using the control information and the channel estimation value, and acquires data.
- the data signal acquisition unit 143 outputs ACK (ACKnowledgement) / NACK (Negative ACKnowledgement) to the control signal generation unit 149 as a decoding result of the data signal.
- the reception quality calculation unit 146 calculates reception quality based on the channel estimation value. For example, SIR, SINR, RSRP, or RSRQ is used as the reception quality.
- the calculated reception quality is output to the control signal generation unit 149.
- the data signal generation unit 147 generates a data signal from transmission data stored in a transmission buffer or the like.
- the data signal processing unit 148 performs processing such as encoding of the data signal using a predetermined parameter, and outputs it to the signal allocation unit 154.
- the control signal generation unit 149 generates a control signal to be transmitted based on ACK / NACK, control information, reception quality, and the like.
- the control signal processing unit 150 performs processing such as encoding on the generated control signal using a predetermined parameter, and outputs it to the signal allocation unit 154.
- the RS generation unit 151 generates a reference signal to be transmitted and outputs the reference signal to the signal allocation unit 154.
- the RACH preamble selection unit 152 selects a RACH preamble based on control information such as RACH preamble information and generates a RACH signal as a signal for establishing a connection. At this time, in the case of a terminal capable of CoMP communication, the RACH preamble selection unit 152 obtains a preamble from a group of RACH signals for each node based on group information indicating a group of RACH signals for each node among a plurality of RACH signals. Select at random.
- the RACH signal processing unit 153 performs processing such as encoding on the generated RACH signal and outputs it to the signal allocation unit 154.
- the signal allocation unit 154 allocates the generated data signal, control signal, reference signal, and RACH signal to a predetermined radio resource of a predetermined channel, and outputs the signal to the transmission unit 143. To do.
- the signal allocation unit 154 allocates signals to, for example, PUSCH, PRACH, and PUCCH as uplink physical channels.
- the transmission control unit 156 controls uplink transmission power based on control information and reception quality. Specifically, the transmission control unit 156 calculates a path loss using the reference transmission power notified from the radio station 100 as control information and the reception quality. Then, the transmission control unit 156 calculates the initial transmission power by using the maximum transmission power of the wireless terminal 103, the initial transmission power calculation parameter notified in advance from the wireless station 100, and the path loss.
- the hardware configuration of the radio station 100 in the radio communication system 90 according to the second embodiment is the same as the hardware configuration of the radio station 4 of FIG.
- Each component 110 to 113, 114A to F, 115A to F, 116A to F, and 117A to F of the radio station 100 is realized by an integrated circuit such as an antenna, an RF circuit, and a DSP.
- Each component 118 to 130 of the radio station 100 is realized by an integrated circuit such as a CPU.
- the hardware configuration of the wireless terminal 103 in the wireless communication system 90 according to the second embodiment is the same as the hardware configuration of the mobile terminal 7 in FIG.
- Each component 140 to 142, 156 of the wireless terminal 103 is realized by, for example, an antenna, an RF circuit, and a DSP.
- Each component 143 to 155 of the radio station 100 is realized by an integrated circuit such as a CPU, for example.
- FIG. 10 is a sequence diagram for explaining an operation related to connection establishment of the wireless communication system 90.
- the wireless terminal 103 existing in the cell C100 has established a connection with the wireless station 100 in the past, and the cell C1 of the wireless station 100 is used as a serving cell, but no uplink data transmission is performed. .
- the wireless terminal 103 is a wireless terminal capable of CoMP communication.
- the E-PDCCH configuration information for each node, the PDSCH configuration information for each node, and the PUSCH configuration information for each node are acquired by the wireless terminal 103 by the RRC signal at the time of past connection establishment.
- the radio station 100 notifies system information including RACH preamble configuration information and the like in the cell (S11).
- the RACH preamble configuration information includes group information indicating a group of RACH signals for each node among a plurality of RACH preambles.
- the radio station 100 transmits the system information from, for example, the control unit 101 and at least one of the remote units 102A to 102F.
- group information indicating a group of RACH signals for each node may be stored in advance in the wireless terminal 103. Alternatively, default information stored in advance in the wireless terminal 103 may be updated with the notified information.
- a plurality of preambles generated from one signal sequence are grouped to be used for both the RACH signal for each cell and the RACH signal for each node.
- an increase in control information can be suppressed as compared with a case where different signal sequences are used for the RACH signal for each cell and the RACH signal for each node.
- the wireless terminal 103 generates transmission data (S12) and re-executes connection establishment.
- the RRC information is acquired at the time of past connection establishment.
- the wireless terminal 103 randomly selects a RACH signal to be used from a group of RACH signals for each node based on the group information (S13).
- the wireless terminal 103 transmits a RACH signal for each selected node (S14).
- the selected RACH preamble is transmitted via the PRACH.
- the transmitted RACH signal is received by the control unit and the remote unit of the radio station 100, respectively.
- the radio station 100 determines whether or not the received RACH signal is a RACH signal for a node (S15). Radio station 100 determines whether or not the received RACH signal is a RACH signal included in group information indicating a group of RACH signals for each node. In the case of the RACH signal included in the group information, the wireless terminal 103 is a wireless terminal capable of CoMP communication, and in the case of the RACH signal included in the group information, the wireless terminal 103 is determined not to be a wireless terminal capable of CoMP communication.
- the wireless station 100 assigns a wireless access signal RAR for each node to one or more nodes selected based on the reception level.
- the resource is transmitted via the control channel E-PDCCH that can be set for each node (S16).
- radio resources to be allocated to the random access response signal for the entire cell are transmitted via the control channel PDCCH set for each cell.
- the radio resource allocated to the random access response signal for the entire cell may be notified in advance from the radio station 100 in the cell, or may be stored in advance in the radio terminal 103. Alternatively, default information stored in advance in the wireless terminal 103 may be updated with the notified information.
- the wireless station 100 transmits a random access response signal for each node using the set wireless resource (S17). If the result of determination in S15 is not a node RACH signal, a random access response signal for the entire cell is transmitted using the set radio resource. Then, the wireless terminal 103 receives a RACH signal for each node.
- the wireless terminal 103 transmits the amount of data retained in the uplink data transmission buffer in the wireless terminal 103 as BSR (Buffer Status Report) via the PUSCH (S18), and establishes a connection with the selected node. Then, cooperative communication is established (S19).
- connection establishment and cooperative communication establishment with the selected node are performed by a random access response signal for each node. This makes it possible to multiplex random access response signals with other nodes in the cell. For example, when a radio terminal in a cell performs a random access sequence, interference and contention are reduced, and therefore the random access sequence can be performed using the same radio resource. Thereby, the utilization efficiency of radio
- a wireless terminal that is not capable of CoMP communication can receive a random response signal for each cell and establish a connection.
- FIG. 11 is a sequence diagram for explaining an operation related to connection establishment of the wireless communication system according to the third embodiment.
- the overall configuration of the wireless communication system according to the third embodiment is the same as the configuration of the wireless communication system 90 of FIG.
- the radio station according to the third embodiment is different from the radio station 100 according to the second embodiment in the functions of the control signal generation unit 127.
- the control signal generated by the control signal generation unit 127 includes, as system information, E-PDCCH configuration information for each node, PDSCH configuration information for each node, PUSCH configuration information for each node, and RACH preamble configuration information.
- the E-PDCCH configuration information for each node includes, for example, radio resources (time frequency resources), DM-RS port numbers, DM-RS sequences, and data part scrambling. Note that the E-PDCCH radio resource may be fixed and only one resource may be designated, or the terminal may perform blind decoding by designating a plurality of resources. Further, the PDSCH configuration information for each node includes, for example, a DM-RS port number, a DM-RS sequence, a data part scramble, and a transmission mode (Transmission mode). Further, the PUSCH configuration information for each node includes, for example, a DM-RS port number, a DM-RS sequence, and a scramble of a data part.
- radio station 100 of FIG. 9 of the second embodiment Other configurations and operations of the radio station according to the third embodiment are the same as those of the radio station 100 of FIG. 9 of the second embodiment.
- the hardware configuration of the radio station according to the third embodiment is the same as the hardware configuration of the radio station 100 according to the second embodiment.
- the wireless terminal according to the third embodiment is different from the wireless terminal 103 according to the second embodiment in functions related to the control signal acquisition unit 144, the data signal processing unit 148, the control signal processing unit 150, and the signal allocation unit 154. .
- the control signal acquisition unit 144 acquires, as control information, E-PDCCH configuration information for each node, PDSCH configuration information for each node, PUSCH configuration information for each node, and RACH preamble configuration information stored in the received SIB. To do. Then, the data signal processing unit 148 and the control signal processing unit 150 process the data signal and the control signal using the acquired control information. Further, the signal allocating unit 154 transmits the RAR allocation control information via the E-PDCCH using the acquired control information, transmits the RAR via the PDSCH, and transmits the RRC message and the BSR via the PUSCH. To do.
- FIG. 10 is a sequence diagram for explaining an operation related to connection establishment of the wireless communication system 90.
- the wireless terminal 103 existing in the cell C100 is in a standby state and is not in a state of establishing a connection with the wireless station 100.
- the wireless terminal 103 is a wireless terminal capable of CoMP communication.
- the radio station 100 notifies the system information in the cell (S31).
- the system information includes E-PDCCH configuration information, PUSCH configuration information, PDSCH configuration information, and RACH preamble configuration information.
- the RACH preamble configuration information includes group information indicating a group of RACH preambles for each node among a plurality of RACH preambles.
- the system information may be stored in advance inside the wireless terminal 103. Alternatively, default information stored in advance in the wireless terminal 103 may be updated with the notified information.
- the wireless terminal 103 transitions from the standby state (Idle mode) to the communication state (Connected mode) (S32), and executes connection establishment for initial access.
- the wireless terminal 103 randomly selects a RACH signal to be used from a group of RACH signals for each node based on the group information (S33).
- the wireless terminal 103 transmits a RACH signal for each selected node (S34).
- the selected RACH access preamble is transmitted via the PRACH.
- the transmitted RACH signal is received by the control unit and the remote unit of the radio station 100, respectively.
- the radio station 100 determines whether or not the received RACH signal is a RACH signal for a node (S35). Radio station 100 determines whether or not the received RACH signal is a RACH signal included in group information indicating a group of RACH signals for each node. In the case of the RACH signal included in the group information, the wireless terminal 103 is a wireless terminal capable of CoMP communication, and in the case of the RACH signal included in the group information, the wireless terminal 103 is determined not to be a wireless terminal capable of CoMP communication.
- the wireless station 100 assigns a wireless access signal RAR for each node to one or more nodes selected based on the reception level.
- the resource is transmitted via the control channel E-PDCCH that can be set for each node (S36).
- the radio resource allocated to the random access response signal for the entire cell is transmitted via the control channel PDCCH set for each cell.
- the radio resource allocated to the random access response signal for the entire cell may be notified in advance from the radio station 100 in the cell, or may be stored in advance in the radio terminal 103. Alternatively, default information stored in advance in the wireless terminal 103 may be updated with the notified information.
- the wireless station 100 transmits a random access response signal for each node using the set wireless resource (S37). If the result of determination in S35 is not a RACH signal for a node, a random access response signal for the entire cell is transmitted using the set radio resource. Then, the wireless terminal 103 receives a RACH signal for each node.
- the wireless terminal 103 transmits an RRC message including the wireless resource allocation information via the PUSCH, and the amount of data retained in the uplink data transmission buffer in the wireless terminal 103 is expressed as a BSR (Buffer Status Report ) Is transmitted via the PUSCH (S38).
- BSR Buffer Status Report
- connection establishment and cooperative communication establishment are performed between the wireless terminal 103 and the selected node of the wireless station 100 (S39).
- connection establishment and cooperative communication establishment with the selected node are performed by a random access response signal for each node. This makes it possible to multiplex random access response signals with other nodes in the cell.
- a wireless terminal that is not capable of CoMP communication can receive a random response signal for each cell and establish a connection.
- FIG. 12 is a sequence diagram for explaining an operation related to connection establishment of the wireless communication system according to the fourth embodiment.
- the overall configuration of the wireless communication system according to the fourth embodiment is the same as the configuration of the wireless communication system 90 of FIG.
- the radio station according to the fourth embodiment differs from the radio station 100 according to the second embodiment in operations of the scheduler 124, the control signal generation unit 127, the control signal processing unit 128, and the signal allocation unit 130.
- the scheduler 124 instructs the control signal generation unit 127 to generate a signal (PDCCH order) for requesting the radio terminal to transmit the RACH preamble.
- the control signal generation unit 127 generates the requested signal
- the control signal processing unit 128 processes the generated signal
- the signal allocation unit 130 transmits the processed signal via the PDCCH.
- radio station 100 of FIG. 9 of the second embodiment Other configurations and operations of the radio station according to the fourth embodiment are the same as those of the radio station 100 of FIG. 9 of the second embodiment.
- the hardware configuration of the radio station according to the fourth embodiment is the same as the hardware configuration of the radio station 100 according to the second embodiment.
- the wireless terminal according to the fourth embodiment differs from the wireless terminal 103 according to the second embodiment in operations related to the control signal acquisition unit 144 and the RACH preamble selection unit 152.
- the control signal acquisition unit 144 acquires the request signal PDCCH order transmitted from the radio station 100 and outputs it to the RACH preamble selection unit 152.
- the RACH preamble selection unit 152 performs a random access process according to the request signal PDCCH order, and selects a RACH preamble.
- FIG. 12 is a sequence diagram for explaining an operation related to connection establishment of the wireless communication system 90.
- the wireless terminal 103 existing in the cell C100 has established a connection with the wireless station 100, but is currently not in communication. And according to the request
- the wireless terminal 103 is a wireless terminal capable of CoMP communication.
- the radio station 100 notifies the system information in the cell (S51).
- the system information includes RACH preamble configuration information.
- the RACH preamble configuration information includes group information indicating a group of RACH preambles for each node among a plurality of RACH preambles.
- the system information may be stored in advance inside the wireless terminal 103. Alternatively, default information stored in advance in the wireless terminal 103 may be updated with the notified information.
- the radio terminal 103 receives the signal PDCCH order requesting transmission of the RACH preamble from the radio station 100 (S52), and selects the RACH preamble in order to establish a connection using the contention preamble accordingly.
- the wireless terminal 103 randomly selects a RACH signal to be used from a group of RACH signals for each node based on the group information (S53).
- the wireless terminal 103 transmits a RACH signal for each selected node (S54).
- the selected RACH preamble is transmitted via the PRACH.
- the transmitted RACH signal is received by the control unit and the remote unit of the radio station 100, respectively.
- the radio station 100 determines whether or not the received RACH signal is a RACH signal for a node (S55). Radio station 100 determines whether or not the received RACH signal is a RACH signal included in group information indicating a group of RACH signals for each node. In the case of the RACH signal included in the group information, the wireless terminal 103 is a wireless terminal capable of CoMP communication, and in the case of the RACH signal included in the group information, the wireless terminal 103 is determined not to be a wireless terminal capable of CoMP communication.
- the wireless station 100 assigns a wireless access signal RAR for each node to one or more nodes selected based on the reception level.
- the resource is transmitted via a control channel E-PDCCH that can be set for each node (S56).
- radio resources to be allocated to the random access response signal for the entire cell are transmitted via the control channel PDCCH set for each cell.
- the radio resource allocated to the random access response signal for the entire cell may be notified in advance from the radio station 100 in the cell, or may be stored in advance in the radio terminal 103. Alternatively, default information stored in advance in the wireless terminal 103 may be updated with the notified information.
- the wireless station 100 transmits a random access response signal for each node using the set wireless resource (S57). If the result of determination in S35 is not a RACH signal for a node, a random access response signal for the entire cell is transmitted using the set radio resource. Then, the wireless terminal 103 receives a RACH signal for each node.
- connection establishment and cooperative communication establishment are performed between the wireless terminal 103 and the selected node of the wireless station 100 (S58).
- connection establishment and cooperative communication establishment with the selected node are performed by a random access response signal for each node.
- a wireless terminal that is not capable of CoMP communication can receive a random response signal for each cell and establish a connection.
- FIG. 13 is a diagram illustrating a configuration of a wireless communication system 200 according to the fifth embodiment.
- the wireless station 210 includes a control unit 250 and remote units 240A to 240D.
- Radio station 220 includes a control unit 260 and remote units 240E-H.
- Radio station 230 includes a control unit 270 and remote units 240I-J.
- the control units 250, 260, and 270 can be realized as eNodeB (evolved Node B), for example.
- the remote units 240A to 240L can be realized as, for example, RRH (Remote Radio Radio Head) included in the eNodeB.
- Control units 250, 260, 270 and remote units 240A-L each have an antenna and are arranged at points distant from each other.
- Control units 250, 260, 270 and remote units 240A-L correspond to nodes, respectively.
- Control units 250, 260, 270 form cells C210, C220, C230, and remote units 240A-240L form cover areas R240A-L, respectively.
- the wireless terminal 300 exists in the cell C210. At this time, the wireless terminal 300 is included in the cover area R240A.
- the control unit 250 and the remote units 240A to 240D communicate with each other via a wired connection.
- the control unit 260 and the remote units 240E to H communicate with each other via a wired connection.
- the control unit 270 and the remote units 240I to 240L communicate with each other via a wired connection.
- the control units 250, 260, and 270 of the wireless stations 210, 220, and 230 and the remote units 240A to 240L coexist, and at least a part of them performs CoMP communication.
- downlink CoMP communication with the wireless terminal 300 wireless communication is performed from one or more communication points selected as a set to be used for downlink CoMP communication among the control units 250, 260, 270 and remote units 240A to 240L.
- the data is combined and transmitted to the terminal 300.
- uplink CoMP communication with the wireless terminal 300 at one or more communication points selected as a set to be used for uplink CoMP communication among the control units 250, 260, 270 and remote units 240A to 240L. , Receiving data from the wireless terminal 300 and combining the received signals between the communication points.
- the radio station 210 according to the fifth embodiment is different from the radio station 100 according to the second embodiment in operations related to the control signal acquisition unit 119, the scheduler 124, and the control signal generation unit 127.
- the control signal acquisition unit 119 acquires information regarding the reception level at the wireless terminal 300 of the received signal from the serving cell and the neighboring cells measured by the wireless terminal 300 and outputs the information to the scheduler 124. Further, the control signal acquisition unit 119 acquires a handover request response signal Handover Acknowledge transmitted from the target cell.
- the scheduler 124 determines whether or not a predetermined condition for executing the handover is satisfied based on the acquired reception level. When it is determined to execute the handover, the control signal generation unit 127 is instructed to generate a handover request signal to the target cell, and the allocation signal of the handover required signal is instructed to the signal allocation unit 130.
- the scheduler 124 instructs the control signal generation unit 127 to generate a handover command to be transmitted to the radio terminal 300 in response to the received handover request response signal.
- the control signal generation unit 127 generates a handover request signal Handover Request to the target cell.
- the control signal generation unit 127 generates a handover command.
- the handover command is included in, for example, a command RRC Connection Reconfiguration message for changing the RRC connection.
- the RRC ⁇ Connection Reconfiguration message includes, for example, information on ⁇ MobilityControlInfo, RadioResourceConfigCommon, Rach-ConfigCommon ⁇ .
- the RACH preamble information Rach-ConfigCommon includes group information indicating a group of RACH signals for each node among a plurality of RACH signals.
- the radio resource configuration information RadioResourceConfigCommon includes E-PDCCH configuration information for each node, PUSCH configuration information for each node, and PDSCH configuration information for each node.
- the E-PDCCH configuration information includes, for example, radio resources (time frequency resources), DM-RS port numbers, DM-RS sequences, and data part scrambling.
- the PDSCH configuration information for each node includes, for example, a DM-RS port number, a DM-RS sequence, a data part scramble, and a transmission mode.
- the PUSCH configuration information for each node includes, for example, a DM-RS port number, a DM-RS sequence, and a scramble of a data part.
- the signal allocation unit 130 allocates the RRC Connection Reconfiguration message to the PDSCH.
- radio station 210 is the same as the configurations of the radio station 100 of FIG. 9 of the second embodiment.
- hardware configuration of the radio station according to the fifth embodiment is the same as the hardware configuration of the radio terminal 100 of the second embodiment.
- the wireless terminal 300 according to the fifth embodiment is the same as the wireless terminal 103 of the second embodiment, the control signal acquisition unit 144, the RS acquisition unit 145, the reception quality calculation unit 146, the control signal generation unit 149, and the signal allocation unit 154. , And the functions related to the RACH preamble selection unit 152 are different.
- the RS acquisition unit 145 acquires RSs from neighboring cells when the reception quality of the received signal of the serving cell satisfies a predetermined condition.
- the reception signal calculation unit 146 calculates reception quality of reception signals from the serving cell, and calculates reception quality of reception signals from neighboring cells when a predetermined condition is satisfied.
- the calculated reception quality information is output to the control signal generation unit 149.
- the control signal generation unit 149 generates a notification signal Measurement ⁇ report of reception quality information, and the signal assignment unit 154 assigns the Measurement report to a channel and transmits it. Further, when the connection with the target cell is established, the control signal generation unit 149 generates an RRC Connection ReconfigurationComplete message indicating completion of the connection change. Assign to PDSCH. The signal allocation unit 154 allocates an RRC Connection ReconfigurationComplete message to the PDSCH and transmits it to the radio station 210 of the source cell.
- control signal acquisition unit 144 acquires an RRC Connection Reconfiguration message from the radio station 210 of the serving cell.
- the RACH preamble selection unit 152 selects a RACH preamble in order to execute a random access process in response to the Handow command included in this message.
- wireless terminal 300 according to the fifth embodiment is the same as those of the wireless terminal 103 according to the second embodiment.
- the hardware configuration of the wireless terminal 300 according to the third embodiment is the same as the hardware configuration of the wireless terminal 103 of the second embodiment.
- FIG. 14 is a sequence diagram for explaining an operation related to connection establishment of the wireless communication system 200.
- the wireless terminal 300 is a wireless terminal capable of CoMP communication.
- the radio station 210 determines to execute handover based on the reception quality information from the radio terminal 300 (S71).
- the radio station 210 transmits a handover request signal Handover Request to the radio station 220 of the target cell C220, and receives a handover request response signal Handover Acknowledge from the radio station 220.
- the wireless station 210 transmits a handover command including system information to the wireless terminal 300 (S72).
- the handover command is included in, for example, an RRC Connection Reconfiguration message.
- the RRC Connection Reconfiguration message includes E-PDCCH configuration information for each node, PUSCH configuration information for each node, PDSCH configuration information for each node, and RACH preamble configuration information for the target cell C220 as system information.
- the RACH preamble configuration information includes group information indicating a group of RACH preambles for each node among a plurality of RACH preambles.
- the wireless terminal 300 receives a handover command including system information. Note that these pieces of system information may be notified by the cell C210 and acquired by the radio terminal 300. Alternatively, such system information may be stored in advance in the wireless terminal 300. Alternatively, default information stored in advance in the wireless terminal 300 may be obtained by updating with information notified or transmitted.
- the radio terminal 300 establishes connection / cooperative communication with the node of the handover destination cell C220.
- the radio terminal 300 randomly selects a RACH signal to be used from a group of RACH signals for each node based on the group information of the RACH preamble of the handover destination (S73).
- the wireless terminal 300 transmits a RACH signal for each selected node (S74).
- the selected RACH preamble is transmitted via the PRACH.
- the transmitted RACH signal is received by the control unit and the remote unit of the radio station 220, respectively.
- the radio station 220 determines whether or not the received RACH signal is a RACH signal for a node (S75).
- the radio station 220 determines whether or not the received RACH signal is a RACH signal included in group information indicating a group of RACH signals for each node.
- the wireless terminal 300 is a wireless terminal capable of CoMP communication, and in the case of the RACH signal included in the group information, the wireless terminal 300 is determined not to be a wireless terminal capable of CoMP communication.
- the wireless station 220 assigns to the random access response signal RAR for each node to one or more nodes selected based on the reception level.
- the resource is transmitted via the control channel E-PDCCH that can be set for each node (S76). If the node is not a RACH signal for the node as a result of the determination in S75, radio resources to be allocated to the random access response signal for the entire cell are transmitted via the control channel PDCCH set for each cell.
- PDCCH configuration information such as radio resources allocated to the random access response signal for the entire cell may be acquired by the radio terminal 300 included in the handover command, or notified by the cell C210 and acquired by the radio terminal 300. Alternatively, it may be stored in advance in the wireless terminal 303. Alternatively, the default information stored in advance in the wireless terminal 300 may be obtained by updating with the notified information.
- the wireless station 220 transmits a random access response signal for each node using the set wireless resource (S77). If the result of the determination in S75 is not a node RACH signal, a random access response signal for the entire cell is transmitted using the set radio resource. Radio terminal 300 receives the RACH signal for each node.
- radio terminal 300 transmits an RRC message including radio resource allocation information via PUSCH, and the amount of data retained in the uplink data transmission buffer in radio terminal 300 is transmitted via PUSCH as a BSR. (S78).
- connection establishment and cooperative communication establishment are performed between the wireless terminal 300 and the selected node of the wireless station 220 (S79).
- connection establishment and cooperative communication establishment with the selected node are performed by a random access response signal for each node. This makes it possible to multiplex random access response signals with other nodes in the cell. For example, when a radio terminal in a cell performs a random access sequence, interference and contention are reduced, and therefore the random access sequence can be performed using the same radio resource. Thereby, the utilization efficiency of radio
- a wireless terminal that is not capable of CoMP communication can receive a random response signal for each cell and establish a connection.
- communication performance can be improved in a wireless communication system that performs CoMP communication.
- Radio link failure when Radio link failure occurs, the techniques disclosed in the first to fifth embodiments can be applied. For example, when Radio link failure occurs, if a cell with good quality is detected and accessed using the RACH preamble, when reconnecting to a cell that was connected before Radio link failure occurs, As in the case of transmission data generation in the second embodiment, reconnection can be established by a sequence similar to the sequence shown in FIG. In addition, when a new cell connection is made, which is different from before Radio ⁇ link failure occurs, reconnection can be established by the sequence shown in FIG. 11 as in the initial access of the third embodiment.
- RA-RNTI Random Access Radio Network Temporary Identity
- ID identification information
- RA-RNTI is an ID when a random access response signal is received, and is determined by the timing at which the preamble is sent and the frequency resource. This ID is shared by a plurality of wireless terminals. Specifically, when the PDCCH (E-PDCCH) is decoded, it is masked with the bit string of this ID, so that the PDSCH resource corresponding to this ID can be obtained. To understand. In this PDSCH, random access response signals for a plurality of wireless terminals are multiplexed.
- the RRH often has a relatively small cover area, and it is assumed that the number of wireless terminals that simultaneously access the RRH is relatively small. For this reason, the use efficiency of radio resources is not greatly improved by using the same physical channel between radio terminals.
- the search space needs to be common with other terminals (for example, called Common Search Space), which becomes a valuable resource.
- the random access response signal may be received using C-RNTI (Cell Radio Network Temporary Identity) as an ID when receiving the random access response signal.
- C-RNTI Cell Radio Network Temporary Identity
- PDCCH E-PDCCH
- the wireless communication systems of the first to fifth embodiments can be realized as, for example, an LTE-A system.
- the present invention can also be applied to a wireless communication system using a communication method other than LTE-A.
- first to fifth embodiments can be applied to mobile terminals such as mobile phones, smartphones, and PDAs (Personal Digital Assistants) as wireless terminals.
- first to fifth embodiments can be applied to various communication devices that communicate with a base station such as a mobile relay station.
- the first to fifth embodiments can be applied to base stations of various scales such as macro base stations and femto base stations as radio stations.
- the first to fifth embodiments can be applied to various communication devices such as a relay station that perform communication with a mobile station.
- each component of the radio station and radio terminal is not limited to the mode of the first to fifth embodiments, and all or a part thereof can be used for various loads, usage conditions, etc. Accordingly, it may be configured to be functionally or physically distributed / integrated in an arbitrary unit.
- the memory may be connected via a network or a cable as an external device of a wireless station or a wireless terminal.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
開示の技術は、上記に鑑みてなされたものであって、多地点協調通信において、通信性能を向上することのできる無線通信方法、無線通信システム、無線局、及び無線端末を提供することを目的とする。 無線通信方法は、共通のセル識別情報が割り当てられる複数のノードを含み、1以上のノードとの協調通信が可能な無線端末を有する無線通信システムにおける無線通信方法であって、前記無線端末で、前記セル識別情報に対応するセルで使用可能な複数のランダムアクセス信号のうちの、ノード毎のランダムアクセス信号のグループを示すグループ情報を取得し、前記無線端末で、前記グループ情報で示されるグループに含まれるランダムアクセス信号を送信して、ノード毎のランダムアクセス処理を実行する。
Description
本発明は、無線通信方法、無線通信システム、無線局、及び無線端末に関する。
近年、携帯電話システム等の無線通信システムにおいて、無線通信の更なる高速化・大容量化等を図るため、次世代の無線通信技術について議論が行われている。例えば、標準化団体である3GPP(3rd Generation Partnership Project)では、LTE(Long Term Evolution)と呼ばれる通信規格や、LTEの無線通信技術をベースとしたLTE-A(LTE - Advanced)と呼ばれる通信規格が提案されている。
LTE-Aシステム等において、セル間干渉の低減や受信信号強度の改善のため、多地点協調(Coordinated MultiPoint、以下、CoMPともいう。)通信が検討されている。多地点協調通信では、地理的に離れた複数のポイント(以下、ノードともいう。)が協調して通信を行う。各ポイントは、例えば、基地局、通信ユニット、アンテナ或いはこれらにより形成されるセルに相当する。これにより、多地点間での送信あるいは受信の調整が行われる。例えば、下りリンクの多地点協調通信では、複数のポイントから無線端末へ結合送信する方法が検討されている。また、例えば、上りリンクの多地点協調通信では、複数のポイントで受信された信号をポイント間で通信しながら結合処理する方法が検討されている。
3GPP TS36.211 V10.2.0(2011-06)
3GPP TR36.814 V9.0.0(2010-03)
しかしながら、多地点協調通信によりポイント間干渉の低減や受信信号強度の改善を実現するためには、制御の遅延やシグナリングの増大の考慮のもとで、ポイント間での適切な調整が必要である。例えば多地点協調通信では、多様な種類の複数のポイントとの間で無線端末が通信を行うことが想定される。このとき、例えば無線端末と各ポイントとの間の接続確立が適切に制御されないと、通信性能の向上を阻害する恐れがある。
開示の技術は、上記に鑑みてなされたものであって、多地点協調通信において、通信性能を向上することのできる無線通信方法、無線通信システム、無線局、及び無線端末を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本件の開示する無線通信方法は、共通のセル識別情報が割り当てられる複数のノードを含み、1以上のノードとの協調通信が可能な無線端末を有する無線通信システムにおける無線通信方法であって、前記無線端末で、前記セル識別情報に対応するセルで使用可能な複数のランダムアクセス信号のうちの、ノード毎のランダムアクセス信号のグループを示すグループ情報を取得し、前記無線端末で、前記グループ情報で示されるグループに含まれるランダムアクセス信号を送信して、ノード毎のランダムアクセス処理を実行する。
本件の開示する無線通信方法の一つの態様によれば、多地点協調通信において、通信性能を向上することができるという効果を奏する。
以下に、本件の開示する無線通信方法、無線通信システム、無線局、及び無線端末の実施例を、図面を参照しながら説明する。なお、以下の実施例により本件の開示する無線通信方法、無線通信システム、無線局、及び無線端末が限定されるものではない。
[第1実施形態]
図1は、第1実施形態に係る無線通信システム1の構成を示す。図1に示すように、無線通信システム1は、無線局4と、無線端末7,8とを有する。無線局4は、有線接続を介して上位装置3と接続されており、上位装置3は、有線接続を介してネットワーク2に接続されている。
[第1実施形態]
図1は、第1実施形態に係る無線通信システム1の構成を示す。図1に示すように、無線通信システム1は、無線局4と、無線端末7,8とを有する。無線局4は、有線接続を介して上位装置3と接続されており、上位装置3は、有線接続を介してネットワーク2に接続されている。
無線局4は、制御ユニット9と、遠隔ユニット5,6とを有する。制御ユニット9は、例えばeNodeB(evolved Node B)として実現できる。また、遠隔ユニット5,6は、例えばeNodeBが有するRRH(Remote Radio Head)として実現できる。制御ユニット9及び遠隔ユニット5,6はそれぞれアンテナ(ポイント)を有し、互いに離れた地点に配設される。制御ユニット9及び遠隔ユニット5,6がそれぞれノードに相当する。制御ユニット9はセルC1を形成し、遠隔ユニット5,6はそれぞれセルC1と重なるカバーエリアR1,R2を形成している。無線端末7,8は、セルC1に存在している。このとき、無線端末7はカバーエリアR1に含まれている。なお、制御ユニット9及び遠隔ユニット5,6には、共通のセル識別情報(セルID)が割り当てられており、セルとしては区別されずに同じセルと認識される。
制御ユニット9及び遠隔ユニット5,6は、有線接続を介して互いに通信を行うと共に、無線端末7,8に対してCoMP通信を行う。例えば、無線端末7との下りリンクのCoMP通信では、制御ユニット9及び遠隔ユニット5,6のうち下りリンクのCoMP通信で使用するセットとして選択される1以上のノードから、無線端末7に、同じ時間・周波数の無線リソースを用いてデータを送信する結合送信が行われる。また、例えば、無線端末7との上りリンクのCoMP通信では、制御ユニット9及び遠隔ユニット5,6のうち上りリンクのCoMP通信で使用するセットとして選択される1以上のノードで、無線端末7からのデータを受信し、受信信号をノード間で合成する合成する結合処理が行われる。
図2は、無線局4の構成を示す機能ブロック図である。図2に示すように、無線局4の制御ユニット9は、アンテナ10と、送信部11と、受信部12と、制御部13とを備える。また、無線局4の遠隔ユニット5は、アンテナ14と、送信部15と、受信部16とを備え、無線局4の遠隔ユニット6は、アンテナ17と、送信部18と、受信部19とを備える。これら各構成部分は、一方向又は双方向に、信号やデータの入出力が可能なように接続されている。なお、遠隔ユニット5,6の各構成部分14~19は、制御ユニット9の各構成部分10~12と同様である。
送信部11は、データ信号や制御信号を、アンテナ10を介して送信する。送信する信号は例えば、接続確立のためのランダムアクセス信号に関する情報を含む。ランダムアクセス信号に関する情報は、ランダムアクセスプリアンブルの構成情報や、複数のランダムアクセス信号のうちのノード毎のランダムアクセス信号のグループを示すグループ情報を含む。
受信部12は、無線端末7,8から送信されたデータ信号や制御信号を、アンテナ10を介して受信する。受信する信号は例えば、接続を確立するための信号(ランダムアクセス信号)を含む。なお、アンテナ10は送信と受信で別体としてもよい。
制御部13は、有線接続あるいは無線接続を介して、上位装置3や他の無線局から情報や信号を取得する。制御部13は、送信するデータや制御情報を送信部11,15,18に出力する。制御部13は、受信されるデータや制御情報を受信部12,16,19から入力する。制御部13は例えば、システム情報をセルC1であるいはカバーエリアR1,R2で通知させる。システム情報は例えば、報知チャネル、報知チャネルで指定される共有チャネル、又は個別制御チャネルで指定される共有チャネルを介して通知される。例えば、報知チャネル又は個別制御チャネルにより、共有チャネル上においてシステム情報が送信される無線リソース(例えば、時間位置や周波数位置等)が指定される。システム情報は例えば、複数のランダムアクセス信号のうちのノード毎のランダムアクセス信号のグループを示すグループ情報を含む。また、制御部13は例えば、送信部11,15,18に、伝搬状態の推定や信号の復調のための参照信号(パイロット信号)を送信させる。
図3は、無線端末7の構成を示す機能ブロック図である。図3に示すように、無線端末7は、アンテナ20と、送信部21と、受信部22と、制御部23とを備える。これら各構成部分は、一方向又は双方向に、信号やデータの入出力が可能なように接続されている。無線端末8の機能的構成およびハードウェア構成は、無線端末7の機能的構成及びハードウェア構成と同様である。
送信部21は、データ信号や制御信号を、アンテナ20を介して送信する。送信する信号は例えば、ランダムアクセス信号を含む。
受信部22は、無線端末から送信されたデータ信号や制御信号を、アンテナ20を介して受信する。受信する信号は例えば、複数のランダムアクセス信号のうちのノード毎のランダムアクセス信号のグループを示すグループ情報、ランダムアクセス応答信号が送信される無線リソースを指定する制御情報を含む。なお、アンテナ20は送信と受信で別体としてもよい。
制御部23は、送信するデータや制御情報を送信部21に出力する。また、制御部23は、受信部22から受信されるデータや制御情報を入力する。例えば、制御部23は、複数のランダムアクセス信号のうちのノード毎のランダムアクセス信号のグループを示すグループ情報に基づいて、グループ情報に含まれるランダムアクセス信号を送信させ、複数のノードのうち少なくとも1つのノードとの、ノード毎のランダムアクセス処理を実行する。また、制御部23は、無線局4から送信される参照信号全体の受信信号から、ノード毎の参照信号の受信レベルを取得し、ノード毎の通信品質を取得してもよい。また、制御部23は、取得したノード毎の通信品質から、接続確立のための信号の送信電力を決定してもよい。
ランダムアクセスは、一方の無線通信装置(例えば、無線端末)が、データ送信に用いる無線リソースが割り当てられていない状態から、他方の無線通信装置(例えば、無線局)にデータを送信するための手続きである。ランダムアクセス信号は、予め定められた複数のランダムアクセスプリアンブルから決定される。ランダムアクセスプリアンブルは、セル内に予め用意された複数のプリアンブルからランダムに選択される。ランダムアクセスプリアンブルは例えば、1つの信号系列を巡回シフトして生成される所定数のプリアンブルである。この所定数のプリアンブルは、予めグループ分けされる。
図4は、無線局4のハードウェア構成を示す図である。図4に示すように、無線局4は、ハードウェアの構成要素として、例えばアンテナ30,37,41を備えるRF(Radio Frequency)回路31,38,42と、DSP(Digital Signal Processor)32,39,43と、CPU(Central Processing Unit)34と、メモリ33,35,40,44と、ネットワークIF(Interface)36とを有する。CPU34は、スイッチ等のネットワークIF36を介して各種信号やデータの入出力が可能なように接続されている。メモリ33,35,40,44は、例えばSDRAM(Synchronous Dynamic Random Access Memory)等のRAM(Random Access Memory)、ROM(Read Only Memory)、及びフラッシュメモリの少なくともいずれかを含み、プログラムや制御情報やデータを格納する。送信部11,15,18及び受信部12,16,19は、例えばRF回路31,38,42、及びDSP32,39,43等の集積回路により実現される。制御部13は、例えばCPU34等の集積回路により実現される。なお、制御ユニット9が構成要素30~36に対応し、遠隔ユニット5が構成要素37~40に対応し、遠隔ユニット6が構成要素41~44に対応する。
図5は、無線端末7のハードウェア構成を示す図である。図5に示すように、無線端末7、ハードウェアの構成要素として、例えばアンテナ50を備えるRF回路51と、CPU52と、メモリ53とを有する。さらに、CPU52に接続されるLCD(Liquid Crystal Display)等の表示装置を有してもよい。メモリ53は、例えばSDRAM等のRAM、ROM、及びフラッシュメモリの少なくともいずれかを含み、プログラムや制御情報やデータを格納する。送信部21及び受信部22は、例えばRF回路51により実現される。制御部23は、例えばCPU52等の集積回路により実現される。
次に、第1実施形態における無線通信システム1の動作を説明する。図6は、無線通信システム1の接続確立に関する動作を説明するためのシーケンス図である。
まず前提として、無線通信システム1では、上述のように、無線局4の制御ユニット9及び遠隔ユニット5,6が、それぞれノードとしてCoMP通信可能に設けられている。そして、無線局4のセルC1では、セル識別情報は共通となっている。すなわち、制御ユニット9及び遠隔ユニット5,6で、共通のセル識別情報が使用される。セルC1のセル識別情報等は例えばシステム情報としてセルC1で通知されている。
また、無線端末7は、制御ユニット9及び遠隔ユニット5,6との接続確立前であり、接続確立のためのランダムアクセス信号を送信する。そして、制御ユニット9及び遠隔ユニット5,6は、送信されたランダムアクセス信号をそれぞれ受信する。制御ユニット9及び遠隔ユニット5,6はそれぞれ、ランダムアクセス信号の受信処理を行い、ノード毎の受信信号のレベルを取得する。そして、制御ユニット9が、ノード毎の受信レベルを比較する。
また、無線局4は、ランダムアクセス信号に対して、セル毎のランダムアクセス応答信号と、ノード毎のランダムアクセス応答信号との、2種類のランダムアクセス応答信号を送信可能となっている。セル毎のランダムアクセス応答信号は、例えば、CoMP通信可能な無線端末と可能でない無線端末との両方により受信可能なチャネルを介してセル全体に送信され、ノード毎のランダムアクセス応答信号は、CoMP通信可能な無線端末により受信可能なチャネルを介して所定のノードのカバーエリア内に送信される。
ここで、例えば、制御ユニット9での比較結果により、遠隔ユニット5での受信信号のレベルが比較的高いことが把握される。このとき、無線端末7の種別情報等は一般に、接続確立後に無線局4に通知される情報であるため、無線局4では、ランダムアクセス信号を受信した段階では、無線端末7が、CoMP通信可能な無線端末か否かを判断できない。このため、ランダムアクセス信号の受信処理の結果、例えば遠隔ユニット5での受信信号のレベルが比較的高いことを把握したとしても、ランダムアクセス応答信号を、遠隔ユニット5のカバーエリア内に送信するか、セルC1全体に送信するかを判断することができない。例えば、ノード毎のランダムアクセス応答信号を、遠隔ユニット5のカバーエリア内に送信すると、無線端末7がCoMP通信可能な無線端末でない場合、当該無線端末は、ランダムアクセス応答信号を受信できない。このため、受信レベルの比較結果に関わらず、セル毎のランダムアクセス応答信号を、セルC1全体に送信することとなる。無線端末7は、セルC1全体に送信されたランダムアクセス応答信号を受信して、ランダムアクセス処理を継続し、接続確立を行う。この場合、無線局4のランダムアクセス信号に対するランダムアクセス応答信号は、例えばセルC1に存在し、接続確立しようとする無線端末8にとって、干渉あるいは競合となる恐れがある。
そこで、第1実施形態では、以下のように接続確立のための動作が行われる。
以下の説明では、セルC1内に存在する無線端末7は、無線局4と接続確立がなされていない状態にあり、無線局4と無線端末7との接続確立の動作を例として説明する。なお、無線端末7は、CoMP通信可能な無線端末である。
図6に示すように、無線端末7は、複数のランダムアクセスプリアンブルから、ノード毎のランダムアクセス信号のグループを示すグループ情報に基づいて、グループ情報で指定されるグループに含まれるランダムアクセス信号から、1つのランダムアクセス信号をランダムに選択する(S1)。ノード毎のランダムアクセス信号のグループを示すグループ情報は、無線局4から例えばシステム情報として予めセルC1で通知されて無線端末7で取得されてもよく、無線端末7の内部に予め格納されていてもよい。あるいは、無線端末7の内部に予め格納されたデフォルトの情報を、通知される情報で更新して取得してもよい。無線局4は、システム情報を例えば、制御ユニット9及び遠隔ユニット5,6の少なくとも1つから送信する。
このように、1つの信号系列(同じconfiguration)から生成された複数のプリアンブルを、グループ分けすることで、セル毎のランダムアクセス信号およびノード毎のランダムアクセス信号の両方に使用する。これにより、例えばセル毎のランダムアクセス信号とノード毎のランダムアクセス信号とで別の信号系列を用いる場合に比べて、制御情報の増加を抑えることができる。
次に、無線端末7は、選択したランダムアクセス信号を送信する(S2)。選択されたランダムアクセスプリアンブルが、ランダムアクセス用のチャネルを介して送信される。送信されたランダムアクセス信号は、無線局4の制御ユニット9及び遠隔ユニット5,6でそれぞれ受信される。
次に、無線局4は、受信されたランダムアクセス信号が、ノード用のランダムアクセス信号であるか否かを判断する(S3)。無線局4は、受信されたランダムアクセス信号が、ノード毎のランダムアクセス信号のグループを示すグループ情報に含まれるランダムアクセス信号であるか否かを判断する。グループ情報に含まれるランダムアクセス信号の場合、無線端末7は、CoMP通信可能な無線端末であり、グループ情報に含まれるランダムアクセス信号の場合、無線端末7は、CoMP通信可能な無線端末でないと判断される。
次に、無線局4は、S3の判断の結果、ノード用のランダムアクセス信号である場合、受信レベルに基づいて選択される1以上のノードに対して、ノード毎のランダムアクセス応答信号に割り当てる無線リソースを、ノード毎に設定可能な制御チャネルを介して送信する(S4)。なお、S3の判断の結果、ノード用のランダムアクセス信号でない場合、セル全体のランダムアクセス応答信号に割り当てる無線リソースを、セル毎に設定される制御チャネルを介して送信する。セル全体のランダムアクセス応答信号に割り当てる無線リソースは、無線局4からセルC1内に予め通知されて無線端末7で取得されてもよく、無線端末7の内部に予め格納されていてもよい。あるいは、無線端末7の内部に予め格納されたデフォルトの情報を、通知される情報で更新して取得してもよい。
次に、無線局4は、S3の判断の結果、ノード用のランダムアクセス信号である場合、ノード毎のランダムアクセス応答信号を、設定された無線リソースで送信する(S5)。なお、S3の判断の結果、ノード用のランダムアクセス信号でない場合、セル全体のランダムアクセス応答信号を、設定された無線リソースで送信する。
次に、無線端末7は、S4で送信されるノード毎のランダムアクセス信号を受信して、選択されたノードとの接続確立および協調通信確立を行う(S6)。このように、CoMP通信可能な無線端末7の場合、ノード毎のランダムアクセス応答信号により、選択されたノードと接続確立および協調通信確立が行われる。これにより、セルC1内の他のノードとのランダムアクセス応答信号の多重が可能となる。例えばセルC1内の無線端末8がランダムアクセスシーケンスを行う場合、干渉や競合が低減されるので、同じ無線リソースを用いてランダムアクセスシーケンスを行うことができる。これにより、無線リソースの利用効率が向上し、通信性能が向上される。なお、CoMP通信可能でない無線端末は、セル毎のランダム応答信号を受信して、接続確立を行うことができる。
以上により、第1実施形態によれば、CoMP通信を行う無線通信システムにおいて、通信性能を向上することができる。
[第2実施形態]
図7は、第2実施形態に係る無線通信システム90の構成を示す。図7に示すように、無線通信システム90は、無線局100と、無線端末103~105とを有する。なお、無線局100は、第1実施形態と同様に、有線接続を介して上位装置と接続されており、上位装置は、有線接続を介してネットワークに接続されている。
[第2実施形態]
図7は、第2実施形態に係る無線通信システム90の構成を示す。図7に示すように、無線通信システム90は、無線局100と、無線端末103~105とを有する。なお、無線局100は、第1実施形態と同様に、有線接続を介して上位装置と接続されており、上位装置は、有線接続を介してネットワークに接続されている。
無線局100は、制御ユニット101と、遠隔ユニット102A~102Fとを有する。制御ユニット101は、例えばeNodeBとして実現できる。また、遠隔ユニット102A~102Fは、例えばeNodeBが有するRRHとして実現できる。制御ユニット101及び遠隔ユニット102A~102Fはそれぞれアンテナ(ポイント)を有し、互いに離れた地点に配設される。制御ユニット101及び各遠隔ユニット102A~102Fがそれぞれノードに相当する。制御ユニット101はセルC100を形成し、遠隔ユニット102A~102Fはそれぞれ、セルC100と重なるカバーエリアR102A~R102Fを形成している。制御ユニット101及び各遠隔ユニット102A~102Fには同じセル識別情報が割り当てられる。無線端末103~105は、セルC100に存在している。
制御ユニット101及び遠隔ユニット102A~102Fは、有線接続を介して互いに通信を行うと共に、無線端末103~105に対してCoMP通信を行う。例えば、無線端末103との下りリンクのCoMP通信では、制御ユニット101及び遠隔ユニット102A~102Fのうち下りリンクのCoMP通信で使用するセットとして選択される1以上のノードから、無線端末103に、データを結合送信する。また、例えば、無線端末103との上りリンクのCoMP通信では、制御ユニット101及び遠隔ユニット102A~102Fのうち上りリンクのCoMP通信で使用するセットとして選択される1以上のノードで、無線端末103からの信号を受信し、受信した信号をノード間で合成する。図7において、例えば、無線端末104は、制御ユニット101及び遠隔ユニット102C,Dを下りリンクのCoMP通信で使用するセットとして、下りCoMP通信を行う。また、例えば、無線端末105は、制御ユニット101及び遠隔ユニット102E,102Fを上りリンクのCoMP通信で使用するセットとして、上りCoMP通信を行う。
図8は、無線局100の構成を示す機能ブロック図である。図8に示すように、無線局100は、アンテナ100と、送信/受信切替え部111と、受信部112と、送信部113とを備える。また、無線局100は、アンテナ104A~Fと、送信/受信切替え部115A~Fと、受信部116A~Fと、送信部117A~Fとを備える。また、無線局100は、データ信号取得部118と、制御信号取得部119と、RS取得部120と、受信品質算出部121と、RACH(Random Access Channel)プリアンブル取得部122と、RACHプリアンブル判定部123と、スケジューラ124とを備える。また、無線局100は、データ信号生成部125と、データ信号処理部126と、制御信号生成部127と、制御信号処理部128と、RS生成部129と、信号割当て部130とを備える。各構成部分110~113,118~130は、制御ユニット102A~Fに含まれる。各構成部分114A~F、115A~F、116A~F、117A~Fは、遠隔ユニット102A~Fに含まれる。これら各構成部分は、一方向又は双方向に、信号やデータの入出力が可能なように接続されている。また、遠隔ユニットの各構成部分114A~F、115A~F、116A~F、117A~Fの詳細は、制御ユニットの各構成部分110~113と同様である。
送信/受信切替え部111は、送信/受信アンテナ100の送信と受信とを切替える。送信の場合、送信部113から出力される信号を、アンテナ100を介して送信する。受信の場合、アンテナ100を介して受信される信号を受信部112に入力する。なお、アンテナは送信と受信で別体としてもよい。また、複数のアンテナを備えるものとしてもよい。
受信部112は、例えば上りのデータチャネルや制御チャネルを介して、上り信号を受信する。信号を受信するチャネルは、PRACH(Physical Random Access Channel)や、PUSCH(Physical Uplink Shared Channel)やPUCCH(Physical Uplink Control Channel)を含む。上り信号は、伝搬状態の推定や信号の復調のための参照信号RSや、制御信号や、データ信号を含む。制御信号は、接続を確立するための信号として、例えばRACH信号(ランダムアクセス信号)を含む。無線局100は、RACH信号を受信することで、無線端末との接続を確立する。
RS取得部120は、上り信号に含まれる参照信号を抽出する。そして、RS取得部120は、受信した参照信号に基づいて伝搬状態を推定し、チャネル推定値を算出する。参照信号は例えば、上りの周波数毎のチャネル推定に用いられるSRS(Sounding Reference Signal)や、上りの信号の復調のためのDM-RS(DeModulation RS)を含む。チャネル推定値は、データ信号取得部118と、制御信号取得部119と、受信品質算出部121とに入力される。
制御信号取得部119は、チャネル推定値を用いて、上り信号に含まれる制御信号を復調して復号し、制御情報を抽出する。制御信号取得部119は、抽出した制御情報のうち、データ信号の復号・復調に関する制御情報を、データ信号取得部118に出力する。制御信号取得部119は、抽出した制御情報のうち、スケジューリングに関する制御情報を、スケジューラ124に出力する。
データ信号取得部118は、制御情報と、チャネル推定値とを用いて、上り信号に含まれるデータ信号を復調して復号し、データを抽出する。例えば、参照信号を用いて推定されたPUSCHのチャネル推定値を用いて復号される。データ信号取得部118は、データ信号の復号結果として、ACK(ACKnowledgement)/NACK(Negative ACKnowledgement)をスケジューラ124に出力する。
受信品質算出部121は、チャネル推定値に基づいて、受信品質を算出する。受信品質としては例えば、SIR(Signal to Interference Ratio)、SINR(Signal to Interference and Noise Ratio)、RSRP(Reference Signal Received Power)、又はRSRQ(Reference Signal Received Power)(=受信電力値/総電力値)を用いる。算出した受信品質は、スケジューラ124に出力される。
RACHプリアンブル取得部122は、受信されるRACH信号から、RACHプリアンブルを抽出する。
RACHプリアンブル判定部123は、複数のRACHプリアンブルのうちのノード毎のRACHプリアンブルのグループを示すグループ情報に基づいて、受信されたRACHプリアンブルが、ノード毎のRACHプリアンブルか否かを判定する。ノード毎のRACHプリアンブルのグループを示すグループ情報は、例えば、上位装置から通知されてもよく、無線局100の内部に予め格納されていてもよい。
例えば、RACHプリアンブルは、1つの信号系列(例えば、Zadoff-Chu sequence)を巡回シフトして生成される所定数(例えば、64個)のプリアンブルである。この所定数のプリアンブルは、予めグループ分けされる。例えば、64個のプリアンブルに番号を付し、プリアンブル番号で以下のような4つのグループに分ける。
(1)Dedicated preamble: Preamble No. 1-6
(2)Random preamble for RRH: Preamble No. 7-16
(3)Random preamble group A: Preamble No. 17-32
(4)Random preamble group B: Preamble No. 33-64
グループ(1)は、個別の(Dedicated)アクセス用のプリアンブルである。
(2)Random preamble for RRH: Preamble No. 7-16
(3)Random preamble group A: Preamble No. 17-32
(4)Random preamble group B: Preamble No. 33-64
グループ(1)は、個別の(Dedicated)アクセス用のプリアンブルである。
グループ(2)~(4)は、個別でない(Non dedicated)アクセス用のプリアンブルである。このうち、グループ(2)は、ノード毎のランダムアクセス用のプリアンブル(RRH用)である。なお、このグループ(2)は、CoMP通信可能でない無線端末には、RRH用とは認識されず、グループ(1)に含まれるものと認識される。このように、CoMP通信可能な無線端末とCoMP通信可能でない無線端末とが混在する状態への適用が容易である。
グループ(3)(4)は、セル毎のランダムアクセス用のプリアンブルで、割り当てるUL(Uplink)リソースの量に応じて、グループAとグループBとに分けられている。
スケジューラ124は、ACK/NACK、制御情報、受信品質等を用いて、データ信号生成部125、制御信号生成部127、RS生成部129に、信号生成要求を出力する。また、スケジューラ124は、信号割当て部130に割当て情報を出力する。このとき、制御信号生成部127は、RACHプリアンブル判定部123の判定の結果、受信されたRACHプリアンブルが、ノード毎のRACHプリアンブルである場合は、ランダムアクセス応答RAR(Random Access Response)に割り当てられる無線リソースを指定する制御情報を、E-PDCCH(Enhanced - Physical Downlink Control Channel)を介してノード毎に送信する。また、制御信号生成部127は、RACHプリアンブル判定部123の判定の結果、受信されたRACHプリアンブルが、セル毎のRACHプリアンブルである場合は、ランダムアクセス応答RARに割り当てられる無線リソースを指定する制御情報を、PDCCH(Physical Downlink Control Channel)を介してセル全体に送信する。また、ランダムアクセス応答RARは、E-PDCCH又はPDCCHで指定されるPDSCH(Physical Downlink Shared Channel)を介して送信される。PDCCHは、セル毎に設定される、CoMP通信可能な無線端末と可能でない無線端末との両方により受信可能なチャネルである。E-PDCCHは、ノード毎に設定される、CoMP通信可能な無線端末により受信可能なチャネルである。
データ信号生成部125は、データ信号生成要求に基づいて、送信バッファ等に格納された送信データからデータ信号を生成する。送信するデータは、例えば上位装置から通知されるデータや、他の無線局から転送されるデータを含む。
データ信号処理部126は、予め定められたパラメータを用いて、データ信号に符号化等の処理を行い、信号割当て部130に出力する。パラメータは、無線局100の内部に予め格納されていてもよく、上位装置や他の無線局や無線端末から通知されてもよい。
制御信号生成部127は、制御信号生成要求に基づいて、送信する制御信号を生成する。制御信号としては例えば、システム情報を格納するMIB(Master Information Block)及びSIB(System Information Block)、L1/L2(Layer 1 / Layer 2)制御信号、及びRRC(Radio Resource Control)信号等が挙げられる。
制御信号は例えば、接続確立のためのRACH信号に関する情報を含む。この情報は、複数のRACH信号のうちのノード毎のRACH信号のグループを示すグループ情報を含む。例えば、接続確立のためのRACH信号に関する情報として、RACHプリアンブル情報Rach-ConfigCommonは、RACHプリアンブルのうち個別でない(Non-dedicated)プリアンブル(2)~(4)のトータルのプリアンブル数、RRH用グループの開始番号と終了番号、グループAの開始番号と終了番号、クループBの開始番号と終了番号とを含む。
また、制御信号は例えば、ノード毎のE-PDCCH構成情報、ノード毎のPDSCH構成情報、およびノード毎のPUSCH構成情報を含む。E-PDCCH構成情報、PDSCH構成情報、およびPUSCH構成情報は、データ信号の復号・復調に関する制御情報および割当て・配置に関する割当て情報を含む。
また、L1/L2制御信号は、例えば、RARに割り当てられる無線リソースを指定する制御情報を含む。
また、制御信号生成部127は、RACH信号の受信結果に基づいて、接続を確立するための応答信号として、ランダムアクセス応答RARを生成する。
制御信号処理部128は、予め定められたパラメータを用いて、制御信号に符号化等の処理を行い、信号割当て部130に出力する。パラメータは、無線局100の内部に予め格納されていてもよく、上位装置や他の無線局や無線端末から通知されてもよい。
RS生成部129は、参照信号生成要求に基づいて、送信する参照信号を生成し、信号割当て部130に出力する。下りの参照信号は、セル毎の参照信号や、ノード毎の参照信号を含む。下りの参照信号は、例えば下りのCRS(Cell-specific Reference Signal)や下りのCSI-RS(Channel State Information Reference Signal)を含む。CSI-RSは下りの通信品質の測定に用いられ、ノード毎に設定することが可能である。CRSは下りの通信品質の測定や、下りの信号の復調に用いられ、セル識別情報(セルID)に対応付けて設定される。
信号割当て部130は、割当て情報に基づいて、生成されたデータ信号や、制御信号や、参照信号を、所定のチャネルの所定の無線リソースに割当てて配置し、送信部113,117A~Fのうちの所定の送信部に出力する。信号を送信するチャネルは例えば、同期チャネルPSCH(Physical Synchronization Channel)、報知チャネルPBCH(Physical Broadcast Channel)、データチャネルPDSCH、制御チャネルPDCCHおよびE-PDCCH等を含む。信号割当て部130は、報知情報を含む信号を、報知チャネルPBCHや、報知チャネルにより無線リソースが指定される共有チャネルPDSCHに割当てる。また、信号割当て部130は、CRSやCSI-RSを、PDCCHやE-PDCCHに割当てる。
図9は、無線端末103の構成を示す機能ブロック図である。図9に示すように、無線端末103は、送信/受信アンテナ140と、送信/受信切替え部141と、受信部142と、送信部143とを備える。また、無線端末103は、データ信号取得部143と、制御信号取得部144と、RS取得部145と、受信品質算出部146とを備える。また、無線端末103は、データ信号生成部147と、データ信号処理部148と、制御信号生成部149と、制御信号処理部150と、RS生成部151と、RACHプリアンブル選択部152と、RACH信号処理部153と、信号割当て部154と、送信制御部156とを備える。これら各構成部分は、一方向又は双方向に、信号やデータの入出力が可能なように接続されている。無線端末104,105の機能的構成およびハードウェア構成は、無線端末103の機能的構成及びハードウェア構成と同様である。
送信/受信切替え部141は、送信/受信アンテナ140の送信と受信とを切替える。送信の場合、送信部143から出力される信号が、アンテナ131を介して送信される。受信の場合、アンテナ130を介して受信される信号を受信部142に入力する。なお、アンテナは送信と受信で別体としてもよい。また、複数のアンテナを備えるものとしてもよい。
受信部142は、例えば下りのデータチャネルや制御チャネルを介して、下り信号を受信する。信号を受信するチャネルは、例えばPSCH、PBCH、PDCCH、及びPDSCHを含む。また、下り信号は、測定や復調のためのRS信号や、制御信号や、データ信号を含む。制御信号は、同期確立のための信号や、接続確立のための応答信号を含む。制御信号としては例えば、MIB、SIB、L1/L2制御信号、及びRRC信号等が挙げられる。
RS取得部145は、下り信号に含まれる参照信号RSを抽出し、受信した参照信号に基づいて伝搬状態を推定し、チャネル推定値を算出する。参照信号は、例えばCRSやCSI-RSを含む。チャネル推定値は、データ信号取得部143と、制御信号取得部144と、受信品質算出部146とに入力される。
制御信号取得部144は、チャネル推定値を用いて、下り信号に含まれる制御信号を復調して復号し、制御情報を取得する。例えば、制御信号取得部144は、制御情報として、受信されるSIBに格納されているRACHプリアンブル情報を取得する。また例えば、制御信号取得部144は、制御情報として、受信されるRRC信号に格納されているノード毎のE-PDCCH構成情報、ノード毎のPDSCH構成情報、およびノード毎のPUSCH構成情報を取得する。E-PDCCH構成情報、PDSCH構成情報、およびPUSCH構成情報は、データ信号の復号・復調に関する制御情報および割当て・配置に関する割当て情報を含む。制御信号取得部144は、RACHプリアンブル情報を、RACHプリアンブル選択部152に出力する。また、制御信号取得部144は、取得した制御情報のうち、データ信号の復号・復調に関する制御情報を、データ信号取得部143に出力する。また、制御信号取得部144は、抽出した制御情報のうち、割当て・配置に関する割当て情報を信号割当て部154に出力する。
データ信号取得部143は、制御情報と、チャネル推定値とを用いて、下り信号に含まれるデータ信号を復調して復号し、データを取得する。データ信号取得部143は、データ信号の復号結果として、ACK(ACKnowledgement)/NACK(Negative ACKnowledgement)を制御信号生成部149に出力する。
受信品質算出部146は、チャネル推定値に基づいて、受信品質を算出する。受信品質としては例えば、SIR、SINR、RSRP、又はRSRQを用いる。算出した受信品質は、制御信号生成部149に出力される。
データ信号生成部147は、送信バッファ等に格納された送信データからデータ信号を生成する。
データ信号処理部148は、予め定められたパラメータを用いて、データ信号の符号化等の処理を行い、信号割当て部154に出力する。
制御信号生成部149は、ACK/NACK、制御情報、受信品質等に基づいて、送信する制御信号を生成する。
制御信号処理部150は、予め定められたパラメータを用いて、生成された制御信号に符号化等の処理を行い、信号割当て部154に出力する。
RS生成部151は、送信する参照信号を生成し、信号割当て部154に出力する。
RACHプリアンブル選択部152は、RACHプリアンブル情報等の制御情報に基づいて、RACHプリアンブルを選択し、接続確立するための信号として、RACH信号を生成する。このとき、RACHプリアンブル選択部152は、CoMP通信可能な端末の場合、複数のRACH信号のうちのノード毎のRACH信号のグループを示すグループ情報に基づいて、ノード毎のRACH信号のグループからプリアンブルをランダムに選択する。
RACH信号処理部153は、生成されたRACH信号に符号化等の処理を行い、信号割当て部154に出力する。
信号割当て部154は、割当て情報に基づいて、生成されたデータ信号や、制御信号や、参照信号や、RACH信号を、所定のチャネルの所定の無線リソースに割当てて配置し、送信部143に出力する。信号割当て部154は、上りの物理チャネルとして、例えばPUSCHやPRACHやPUCCHに信号を割当てる。
送信制御部156は、制御情報や受信品質に基づいて、上りの送信電力を制御する。詳細には、送信制御部156は、無線局100から制御情報として通知される基準送信電力と、受信品質とを用いて、パスロスを算出する。そして、送信制御部156は、無線端末103の最大送信電力と、予め無線局100から通知されて取得された初期送信電力算出用パラメータと、パスロスとを用いて、初期送信電力を算出する。
なお、第2実施形態に係る無線通信システム90における無線局100のハードウェア構成は、図4の無線局4のハードウェア構成と同様である。無線局100の各構成部分110~113,114A~F、115A~F、116A~F、117A~Fは、例えばアンテナ、RF回路、およびDSP等の集積回路により実現される。無線局100の各構成部分118~130は、例えばCPU等の集積回路により実現される。
また、第2実施形態に係る無線通信システム90における無線端末103のハードウェア構成は、図6の移動端末7のハードウェア構成と同様である。無線端末103の各構成部分140~142,156は、例えばアンテナ、RF回路、およびDSPにより実現される。無線局100の各構成部分143~155は、例えばCPU等の集積回路により実現される。
次に、第2実施形態における無線通信システム90の動作を説明する。図10は、無線通信システム90の接続確立に関する動作を説明するためのシーケンス図である。
以下の説明では、セルC100内に存在する無線端末103は、無線局100と過去に接続確立がなされ、無線局100のセルC1をサービングセルとするが、上りデータ送信は行われていない状態にある。なお、無線端末103は、CoMP通信可能な無線端末である。図10の例では、過去の接続確立の際のRRC信号により、ノード毎のE-PDCCH構成情報、ノード毎のPDSCH構成情報、およびノード毎のPUSCH構成情報が無線端末103で取得されている。
図10に示すように、無線局100は、RACHプリアンブル構成情報等を含むシステム情報をセル内に通知する(S11)。RACHプリアンブル構成情報は、複数のRACHプリアンブルのうち、ノード毎のRACH信号のグループを示すグループ情報を含む。無線局100は、システム情報を例えば、制御ユニット101と、遠隔ユニット102A~102Fのうちの少なくとも1つから送信する。なお、ノード毎のRACH信号のグループを示すグループ情報は、無線端末103の内部に予め格納されていてもよい。あるいは、無線端末103の内部に予め格納されたデフォルトの情報を、通知される情報で更新して取得してもよい。
このように、1つの信号系列(同じconfiguration)から生成された複数のプリアンブルを、グループ分けすることで、セル毎のRACH信号およびノード毎のRACH信号の両方に使用する。これにより、例えばセル毎のRACH信号とノード毎のRACH信号とで別の信号系列を用いる場合に比べて、制御情報の増加を抑えることができる。
次に、無線端末103は、送信データを発生して(S12)、接続確立を再実行する。この状態では、RRC情報は、過去の接続確立の際に取得されている。
次に、無線端末103は、グループ情報に基づいて、ノード毎のRACH信号のグループから、使用するRACH信号をランダムに選択する(S13)。
次に、無線端末103は、選択したノード毎のRACH信号を送信する(S14)。選択されたRACHプリアンブルが、PRACHを介して送信される。送信されたRACH信号は、無線局100の制御ユニット及び遠隔ユニットでそれぞれ受信される。
次に、無線局100は、受信されたRACH信号が、ノード用のRACH信号であるか否かを判断する(S15)。無線局100は、受信されたRACH信号が、ノード毎のRACH信号のグループを示すグループ情報に含まれるRACH信号であるか否かを判断する。グループ情報に含まれるRACH信号の場合、無線端末103はCoMP通信可能な無線端末であり、グループ情報に含まれるRACH信号の場合、無線端末103はCoMP通信可能な無線端末でないと判断される。
次に、無線局100は、S15の判断の結果、ノード用のRACH信号である場合、受信レベルに基づいて選択される1以上のノードに対して、ノード毎のランダムアクセス応答信号RARに割り当てる無線リソースを、ノード毎に設定可能な制御チャネルE-PDCCHを介して送信する(S16)。なお、S15の判断の結果、ノード用のRACH信号でない場合、セル全体のランダムアクセス応答信号に割り当てる無線リソースを、セル毎に設定される制御チャネルPDCCHを介して送信する。セル全体のランダムアクセス応答信号に割り当てる無線リソースは、無線局100からセル内に予め通知されていてもよく、無線端末103の内部に予め格納されていてもよい。あるいは、無線端末103の内部に予め格納されたデフォルトの情報を、通知される情報で更新して取得してもよい。
次に、無線局100は、S15の判断の結果、ノード用のRACH信号である場合、ノード毎のランダムアクセス応答信号を、設定された無線リソースで送信する(S17)。なお、S15の判断の結果、ノード用のRACH信号でない場合、セル全体のランダムアクセス応答信号を、設定された無線リソースで送信する。そして、無線端末103は、ノード毎のRACH信号を受信する。
次に、無線端末103は、無線端末103における上りデータ用送信バッファに滞留されているデータ量をBSR(Buffer Status Report)としてPUSCHを介して送信し(S18)、選択されたノードとの接続確立および協調通信確立を行う(S19)。このように、CoMP通信可能な無線端末103の場合、ノード毎のランダムアクセス応答信号により、選択されたノードと接続確立および協調通信確立が行われる。これにより、セル内の他のノードとのランダムアクセス応答信号の多重が可能となる。例えばセル内の無線端末がランダムアクセスシーケンスを行う場合、干渉や競合が低減されるので、同じ無線リソースを用いてランダムアクセスシーケンスを行うことができる。これにより、無線リソースの利用効率が向上し、通信性能が向上される。なお、CoMP通信可能でない無線端末は、セル毎のランダム応答信号を受信して、接続確立を行うことができる。
以上により、第2実施形態によれば、CoMP通信を行う無線通信システムにおいて、通信性能を向上することができる。
[第3実施形態]
図11は、第3実施形態に係る無線通信システムの接続確立に関する動作を説明するためのシーケンス図である。第3実施形態に係る無線通信システムの全体的構成は、図7の無線通信システム90の構成と同様である。
[第3実施形態]
図11は、第3実施形態に係る無線通信システムの接続確立に関する動作を説明するためのシーケンス図である。第3実施形態に係る無線通信システムの全体的構成は、図7の無線通信システム90の構成と同様である。
第3実施形態に係る無線局は、第2実施形態の無線局100と、制御信号生成部127の機能が相違する。制御信号生成部127が生成する制御信号は、システム情報として、ノード毎のE-PDCCH構成情報、ノード毎のPDSCH構成情報、ノード毎のPUSCH構成情報、およびRACHプリアンブル構成情報を含む。
ノード毎のE-PDCCH構成情報は例えば、無線リソース(時間周波数リソース)、DM-RSのポート番号、DM-RSシーケンス、およびデータ部のスクランブルを含む。なお、E-PDCCHの無線リソースは、固定で1リソースのみを指定する場合と、複数のリソースを指定して端末がブラインドデコードする方法がある。また、ノード毎のPDSCH構成情報は例えば、DM-RSのポート番号、DM-RSシーケンス、データ部のスクランブル、および送信モード(Transmission mode)を含む。また、ノード毎のPUSCH構成情報は例えば、DM-RSのポート番号、DM-RSシーケンス、データ部のスクランブルを含む。
第3実施形態に係る無線局の他の構成及び動作は、第2実施形態の図9の無線局100の構成と同様である。また、第3実施形態に係る無線局のハードウェア構成は、第2実施形態の無線局100のハードウェア構成と同様である。
また、第3実施形態に係る無線端末は、第2実施形態の無線端末103と、制御信号取得部144、データ信号処理部148、制御信号処理部150および信号割当て部154に係る機能が相違する。
制御信号取得部144は、制御情報として、受信されるSIBに格納されているノード毎のE-PDCCH構成情報、ノード毎のPDSCH構成情報、ノード毎のPUSCH構成情報、およびRACHプリアンブル構成情報を取得する。そして、データ信号処理部148および制御信号処理部150は、取得された制御情報を用いて、データ信号や制御信号を処理する。また、信号割当て部154は、取得した制御情報を用いて、RAR割り当て制御情報をE-PDCCHを介して送信し、RARをPDSCHを介して送信し、RRCメッセージやBSRを、PUSCHを介して送信する。
第3実施形態に係る無線端末の他の構成及び動作は、第2実施形態の無線端末103と同様である。また、第3実施形態に係る無線端末のハードウェア構成は、第2実施形態の無線端末103のハードウェア構成と同様である。
次に、第2実施形態における無線通信システム90の動作を説明する。図10は、無線通信システム90の接続確立に関する動作を説明するためのシーケンス図である。
以下の説明では、セルC100内に存在する無線端末103は、待ち受け状態にあり、無線局100との接続確立が行われていない状態にある。なお、無線端末103は、CoMP通信可能な無線端末である。
図11に示すように、無線局100は、システム情報をセル内に通知する(S31)。システム情報は、E-PDCCH構成情報、PUSCH構成情報、PDSCH構成情報、およびRACHプリアンブル構成情報を含む。RACHプリアンブル構成情報は、複数のRACHプリアンブルのうち、ノード毎のRACHプリアンブルのグループを示すグループ情報を含む。なお、システム情報は、無線端末103の内部に予め格納されていてもよい。あるいは、無線端末103の内部に予め格納されたデフォルトの情報を、通知される情報で更新して取得してもよい。
次に、無線端末103は、待受け状態(Idle mode)から通信状態(Connected mode)に遷移し(S32)、初期アクセスの接続確立を実行する。
次に、無線端末103は、グループ情報に基づいて、ノード毎のRACH信号のグループから、使用するRACH信号をランダムに選択する(S33)。
次に、無線端末103は、選択したノード毎のRACH信号を送信する(S34)。選択されたRACHアクセスプリアンブルが、PRACHを介して送信される。送信されたRACH信号は、無線局100の制御ユニット及び遠隔ユニットでそれぞれ受信される。
次に、無線局100は、受信されたRACH信号が、ノード用のRACH信号であるか否かを判断する(S35)。無線局100は、受信されたRACH信号が、ノード毎のRACH信号のグループを示すグループ情報に含まれるRACH信号であるか否かを判断する。グループ情報に含まれるRACH信号の場合、無線端末103はCoMP通信可能な無線端末であり、グループ情報に含まれるRACH信号の場合、無線端末103はCoMP通信可能な無線端末でないと判断される。
次に、無線局100は、S35の判断の結果、ノード用のRACH信号である場合、受信レベルに基づいて選択される1以上のノードに対して、ノード毎のランダムアクセス応答信号RARに割り当てる無線リソースを、ノード毎に設定可能な制御チャネルE-PDCCHを介して送信する(S36)。なお、S35の判断の結果、ノード用のRACH信号でない場合、セル全体のランダムアクセス応答信号に割り当てる無線リソースを、セル毎に設定される制御チャネルPDCCHを介して送信する。セル全体のランダムアクセス応答信号に割り当てる無線リソースは、無線局100からセル内に予め通知されていてもよく、無線端末103の内部に予め格納されていてもよい。あるいは、無線端末103の内部に予め格納されたデフォルトの情報を、通知される情報で更新して取得してもよい。
次に、無線局100は、S35の判断の結果、ノード用のRACH信号である場合、ノード毎のランダムアクセス応答信号を、設定された無線リソースで送信する(S37)。なお、S35の判断の結果、ノード用のRACH信号でない場合、セル全体のランダムアクセス応答信号を、設定された無線リソースで送信する。そして、無線端末103は、ノード毎のRACH信号を受信する。
次に、無線端末103は、無線リソース割り当て情報を含む、RRCメッセージを、PUSCHを介して送信すると共に、無線端末103における上りデータ用送信バッファに滞留されているデータ量を、BSR(Buffer Status Report)としてPUSCHを介して送信する(S38)。これにより、無線端末103と無線局100の選択されたノードとの間で、接続確立および協調通信確立が行われる(S39)。このように、CoMP通信可能な無線端末103の場合、ノード毎のランダムアクセス応答信号により、選択されたノードと接続確立および協調通信確立が行われる。これにより、セル内の他のノードとのランダムアクセス応答信号の多重が可能となる。例えばセル内の無線端末がランダムアクセスシーケンスを行う場合、干渉や競合が低減されるので、同じ無線リソースを用いてランダムアクセスシーケンスを行うことができる。これにより、無線リソースの利用効率が向上し、通信性能が向上される。なお、CoMP通信可能でない無線端末は、セル毎のランダム応答信号を受信して、接続確立を行うことができる。
以上により、第3実施形態によれば、CoMP通信を行う無線通信システムにおいて、通信性能を向上することができる。
[第4実施形態]
図12は、第4実施形態に係る無線通信システムの接続確立に関する動作を説明するためのシーケンス図である。第4実施形態に係る無線通信システムの全体的構成は、図7の無線通信システム90の構成と同様である。
[第4実施形態]
図12は、第4実施形態に係る無線通信システムの接続確立に関する動作を説明するためのシーケンス図である。第4実施形態に係る無線通信システムの全体的構成は、図7の無線通信システム90の構成と同様である。
第4実施形態に係る無線局は、第2実施形態の無線局100と、スケジューラ124、制御信号生成部127、制御信号処理部128および信号割り当て部130の動作が相違する。
スケジューラ124は、無線端末にRACHプリンアンブルの送信を要求するための信号(PDCCH order)の生成を制御信号生成部127に指示する。制御信号生成部127は、要求された信号を生成し、制御信号処理部128は、生成された信号を処理し、信号割当て部130は、処理された信号を、PDCCHを介して送信する。
第4実施形態に係る無線局の他の構成及び動作は、第2実施形態の図9の無線局100の構成と同様である。また、第4実施形態に係る無線局のハードウェア構成は、第2実施形態の無線局100のハードウェア構成と同様である。
また、第4実施形態に係る無線端末は、第2実施形態の無線端末103と、制御信号取得部144、およびRACHプリアンブル選択部152に係る動作が相違する。
制御信号取得部144は、無線局100から送信された要求信号PDCCH orderを取得し、RACHプリアンブル選択部152に出力する。RACHプリアンブル選択部152は、要求信号PDCCH order に応じて、ランダムアクセス処理を実行し、RACHプリアンブルを選択する。
第4実施形態に係る無線端末の他の構成及び動作は、第2実施形態の無線端末103と同様である。また、第4実施形態に係る無線端末のハードウェア構成は、第2実施形態の無線端末103のハードウェア構成と同様である。
次に、第4実施形態における無線通信システム90の動作を説明する。図12は、無線通信システム90の接続確立に関する動作を説明するためのシーケンス図である。
以下の説明では、セルC100内に存在する無線端末103は、無線局100との接続確立を行ったが、現在は通信が行われていない状態にある。そして、無線局100からの要求に応じて、競合プリアンブルによる接続確立を行う。なお、無線端末103は、CoMP通信可能な無線端末である。
図12に示すように、無線局100は、システム情報をセル内に通知する(S51)。システム情報は、RACHプリアンブル構成情報を含む。RACHプリアンブル構成情報は、複数のRACHプリアンブルのうち、ノード毎のRACHプリアンブルのグループを示すグループ情報を含む。なお、システム情報は、無線端末103の内部に予め格納されていてもよい。あるいは、無線端末103の内部に予め格納されたデフォルトの情報を、通知される情報で更新して取得してもよい。
次に、無線端末103は、無線局100からRACHプリアンブルの送信を要求する信号PDCCH orderを受信し(S52)、これに応じて、競合プリアンブルによる接続確立を行うために、RACHプリアンブルを選択する。このとき、無線端末103は、グループ情報に基づいて、ノード毎のRACH信号のグループから、使用するRACH信号をランダムに選択する(S53)。
次に、無線端末103は、選択したノード毎のRACH信号を送信する(S54)。選択されたRACHプリアンブルが、PRACHを介して送信される。送信されたRACH信号は、無線局100の制御ユニット及び遠隔ユニットでそれぞれ受信される。
次に、無線局100は、受信されたRACH信号が、ノード用のRACH信号であるか否かを判断する(S55)。無線局100は、受信されたRACH信号が、ノード毎のRACH信号のグループを示すグループ情報に含まれるRACH信号であるか否かを判断する。グループ情報に含まれるRACH信号の場合、無線端末103はCoMP通信可能な無線端末であり、グループ情報に含まれるRACH信号の場合、無線端末103はCoMP通信可能な無線端末でないと判断される。
次に、無線局100は、S55の判断の結果、ノード用のRACH信号である場合、受信レベルに基づいて選択される1以上のノードに対して、ノード毎のランダムアクセス応答信号RARに割り当てる無線リソースを、ノード毎に設定可能な制御チャネルE-PDCCHを介して送信する(S56)。なお、S55の判断の結果、ノード用のRACH信号でない場合、セル全体のランダムアクセス応答信号に割り当てる無線リソースを、セル毎に設定される制御チャネルPDCCHを介して送信する。セル全体のランダムアクセス応答信号に割り当てる無線リソースは、無線局100からセル内に予め通知されていてもよく、無線端末103の内部に予め格納されていてもよい。あるいは、無線端末103の内部に予め格納されたデフォルトの情報を、通知される情報で更新して取得してもよい。
次に、無線局100は、S55の判断の結果、ノード用のRACH信号である場合、ノード毎のランダムアクセス応答信号を、設定された無線リソースで送信する(S57)。なお、S35の判断の結果、ノード用のRACH信号でない場合、セル全体のランダムアクセス応答信号を、設定された無線リソースで送信する。そして、無線端末103は、ノード毎のRACH信号を受信する。
これにより、無線端末103と無線局100の選択されたノードとの間で、接続確立および協調通信確立が行われる(S58)。このように、CoMP通信可能な無線端末103の場合、ノード毎のランダムアクセス応答信号により、選択されたノードと接続確立および協調通信確立が行われる。これにより、セル内の他のノードとのランダムアクセス応答信号の多重が可能となる。例えばセル内の無線端末がランダムアクセスシーケンスを行う場合、干渉や競合が低減されるので、同じ無線リソースを用いてランダムアクセスシーケンスを行うことができる。これにより、無線リソースの利用効率が向上し、通信性能が向上される。なお、CoMP通信可能でない無線端末は、セル毎のランダム応答信号を受信して、接続確立を行うことができる。
以上により、第4実施形態によれば、CoMP通信を行う無線通信システムにおいて、通信性能を向上することができる。
[第5実施形態]
図13は、第5実施形態に係る無線通信システム200の構成を示す図である。
[第5実施形態]
図13は、第5実施形態に係る無線通信システム200の構成を示す図である。
図13に示すように、無線通信システム200では、無線局210は、制御ユニット250と、遠隔ユニット240A~Dとを有する。無線局220は、制御ユニット260と、遠隔ユニット240E~Hとを有する。無線局230は、制御ユニット270と、遠隔ユニット240I~Jとを有する。制御ユニット250,260,270は、例えばeNodeB(evolved Node B)として実現できる。また、遠隔ユニット240A~Lは、例えばeNodeBが有するRRH(Remote Radio Head)として実現できる。制御ユニット250,260,270および遠隔ユニット240A~Lはそれぞれアンテナを有し、互いに離れた地点に配設される。制御ユニット250,260,270および遠隔ユニット240A~Lがそれぞれノードに相当する。制御ユニット250,260,270はセルC210,C220,C230を形成し、遠隔ユニット240A~240LはそれぞれカバーエリアR240A~Lを形成している。無線端末300は、セルC210に存在している。このとき、無線端末300はカバーエリアR240Aに含まれている。
制御ユニット250及び遠隔ユニット240A~Dは、有線接続を介して互いに通信を行う。また、制御ユニット260及び遠隔ユニット240E~Hは、有線接続を介して互いに通信を行う。また、制御ユニット270及び遠隔ユニット240I~Lは、有線接続を介して互いに通信を行う。
無線通信システム200では、無線局210,220,230の制御ユニット250,260,270と、遠隔ユニット240A~Lとが混在し、これらの少なくとも一部がCoMP通信を行う。例えば、無線端末300との下りリンクのCoMP通信では、制御ユニット250,260,270および遠隔ユニット240A~Lのうち下りリンクのCoMP通信で使用するセットとして選択される1以上の通信ポイントから、無線端末300に、データを結合送信する。また、例えば、無線端末300との上りリンクのCoMP通信では、制御ユニット250,260,270および遠隔ユニット240A~Lのうち上りリンクのCoMP通信で使用するセットとして選択される1以上の通信ポイントで、無線端末300からのデータを受信し、受信信号を通信ポイント間で合成する。
第5実施形態に係る無線局210は、第2実施形態の無線局100と、制御信号取得部119、スケジューラ124および制御信号生成部127に係る動作が相違する。
制御信号取得部119は、無線端末300で測定されたサービングセルおよび周辺セルからの受信信号の無線端末300での受信レベルに関する情報を取得し、スケジューラ124に出力する。また、制御信号取得部119は、ターゲットセルから送信される、ハンドオーバ要求応答信号Handover Acknowledgeを取得する。
スケジューラ124は、取得された受信レベルに基づいて、ハンドオーバの実行のための所定の条件を満たすか否かを判断する。ハンドーバを実行すると判断した場合、ターゲットセルへのハンドオーバ要求信号の生成を制御信号生成部127に指示すると共に、ハンドオーバ要空信号の割当て情報を信号割当て部130に指示する。
また、スケジューラ124は、受信されたハンドオーバ要求応答信号に応じて、無線端末300に送信するハンドオーバコマンドの生成を制御信号生成部127に指示する。
制御信号生成部127は、ターゲットセルへのハンドオーバ要求信号Handover Requestを生成する。制御信号生成部127は、ハンドオーバコマンドを生成する。ハンドオーバコマンドは、例えば、RRCコネクションの変更をするためのコマンドRRC Connection Reconfigurationメッセージに含まれる。RRC Connection Reconfigurationメッセージには例えば、{MobilityControlInfo, RadioResourceConfigCommon, Rach-ConfigCommon}の情報が含まれる。このとき、RACHプリアンブル情報Rach-ConfigCommonに、複数のRACH信号のうちのノード毎のRACH信号のグループを示すグループ情報が含まれる。また、無線リソース構成情報RadioResourceConfigCommonに、ノード毎のE-PDCCH構成情報、ノード毎のPUSCH構成情報、ノード毎のPDSCH構成情報が含まれる。
E-PDCCH構成情報は例えば、無線リソース(時間周波数リソース)、DM-RSのポート番号、DM-RSシーケンス、およびデータ部のスクランブルを含む。また、ノード毎のPDSCH構成情報は例えば、DM-RSのポート番号、DM-RSシーケンス、データ部のスクランブル、およびTransmission modeを含む。また、ノード毎のPUSCH構成情報は例えば、DM-RSのポート番号、DM-RSシーケンス、データ部のスクランブルを含む。
信号割当て部130は、RRC Connection ReconfigurationメッセージをPDSCHに割り当てる。
第5実施形態に係る無線局210の他の構成及び動作は、第2実施形態の図9の無線局100の構成と同様である。また、第5実施形態に係る無線局のハードウェア構成は、第2実施形態の無線端末100のハードウェア構成と同様である。
また、第5実施形態に係る無線端末300は、第2実施形態の無線端末103と、制御信号取得部144、RS取得部145、受信品質算出部146、制御信号生成部149、信号割当て部154、およびRACHプリアンブル選択部152に係る機能が相違する。
RS取得部145は、サービングセルの受信信号の受信品質が所定条件を満たす場合に、周辺セルからのRSを取得する。受信信号算出部146は、サービングセルからの受信信号の受信品質を算出するとともに、所定条件を満たす場合に、周辺セルからの受信信号の受信品質を算出する。算出された受信品質情報は、制御信号生成部149に出力される。
制御信号生成部149は、受信品質情報の通知信号Measurement reportを生成し、信号割当て部154は、Measurement reportをチャネルに割り当てて送信させる。また、制御信号生成部149は、ターゲットセルとの接続が確立すると、コネクションの変更の完了を示すRRC Connection ReconfigurationCompleteメッセージを生成する。PDSCHに割り当てる。信号割当て部154は、RRC Connection ReconfigurationCompleteメッセージをPDSCHに割り当てて移動元のセルの無線局210に送信する。
また、制御信号取得部144は、サービングセルの無線局210からのRRC Connection Reconfigurationメッセージを取得する。このメッセージに含まれるハンオドーバコマンドに応じて、RACHプリアンブル選択部152は、ランダムアクセス処理を実行するために、RACHプリアンブルを選択する。
第5実施形態に係る無線端末300の他の構成及び動作は、第2実施形態の無線端末103と同様である。また、第3実施形態に係る無線端末300のハードウェア構成は、第2実施形態の無線端末103のハードウェア構成と同様である。
次に、第5実施形態における無線通信システム200の動作を説明する。図14は、無線通信システム200の接続確立に関する動作を説明するためのシーケンス図である。
以下の説明では、セルC210内に存在する無線端末300が、他のセルC220にハンドオーバする際の接続確立に関する動作を例にして説明する。無線端末300は、CoMP通信可能な無線端末である。
図14に示すように、無線局210は、無線端末300からの受信品質情報に基づいて、ハンドオーバの実行を決定する(S71)。無線局210は、ターゲットセルC220の無線局220に、ハンドオーバ要求信号Handover Requestを送信し、無線局220から、ハンドオーバ要求応答信号Handover Acknowledgeを受信する。
次に、無線局210は、無線端末300に、システム情報を含むハンドオーバコマンドを送信する(S72)。ハンドオーバコマンドは、例えば、RRC Connection Reconfigurationメッセージに含まれる。RRC Connection Reconfigurationメッセージは、システム情報として、ターゲットセルC220に関する、ノード毎のE-PDCCH構成情報、ノード毎のPUSCH構成情報、ノード毎のPDSCH構成情報、およびRACHプリアンブル構成情報を含む。RACHプリアンブル構成情報は、複数のRACHプリアンブルのうち、ノード毎のRACHプリアンブルのグループを示すグループ情報を含む。無線端末300は、システム情報を含むハンドオーバコマンドを受信する。なお、これらのシステム情報は、セルC210で報知され、無線端末300で取得されていてもよい。または、これらのシステム情報は、無線端末300の内部に予め格納されていてもよい。あるいは、無線端末300の内部に予め格納されたデフォルトの情報を、報知あるいは送信される情報で更新して取得してもよい。
次に、無線端末300は、ハンドオーバ先のセルC220のノードとの接続確立・協調通信確立を行う。まず、無線端末300は、ハンドオーバ先のRACHプリアンブルのグループ情報に基づいて、ノード毎のRACH信号のグループから、使用するRACH信号をランダムに選択する(S73)。
次に、無線端末300は、選択したノード毎のRACH信号を送信する(S74)。選択されたRACHプリアンブルが、PRACHを介して送信される。送信されたRACH信号は、無線局220の制御ユニット及び遠隔ユニットでそれぞれ受信される。
次に、無線局220は、受信されたRACH信号が、ノード用のRACH信号であるか否かを判断する(S75)。無線局220は、受信されたRACH信号が、ノード毎のRACH信号のグループを示すグループ情報に含まれるRACH信号であるか否かを判断する。グループ情報に含まれるRACH信号の場合、無線端末300はCoMP通信可能な無線端末であり、グループ情報に含まれるRACH信号の場合、無線端末300はCoMP通信可能な無線端末でないと判断される。
次に、無線局220は、S75の判断の結果、ノード用のRACH信号である場合、受信レベルに基づいて選択される1以上のノードに対して、ノード毎のランダムアクセス応答信号RARに割り当てる無線リソースを、ノード毎に設定可能な制御チャネルE-PDCCHを介して送信する(S76)。なお、S75の判断の結果、ノード用のRACH信号でない場合、セル全体のランダムアクセス応答信号に割り当てる無線リソースを、セル毎に設定される制御チャネルPDCCHを介して送信する。セル全体のランダムアクセス応答信号に割り当てる無線リソース等の、PDCCH構成情報は、ハンドオーバコマンドに含まれて無線端末300で取得されていてもよく、セルC210で通知されて無線端末300で取得されていてもよく、無線端末303の内部に予め格納されていてもよい。あるいは、無線端末300の内部に予め格納されたデフォルトの情報を、通知される情報で更新して取得してもよい。
次に、無線局220は、S75の判断の結果、ノード用のRACH信号である場合、ノード毎のランダムアクセス応答信号を、設定された無線リソースで送信する(S77)。なお、S75の判断の結果、ノード用のRACH信号でない場合、セル全体のランダムアクセス応答信号を、設定された無線リソースで送信する。そして、無線端末300は、ノード毎のRACH信号を受信する。
次に、無線端末300は、無線リソース割り当て情報を含む、RRCメッセージを、PUSCHを介して送信すると共に、無線端末300における上りデータ用送信バッファに滞留されているデータ量を、BSRとしてPUSCHを介して送信する(S78)。これにより、無線端末300と無線局220の選択されたノードとの間で、接続確立および協調通信確立が行われる(S79)。このように、CoMP通信可能な無線端末300の場合、ノード毎のランダムアクセス応答信号により、選択されたノードと接続確立および協調通信確立が行われる。これにより、セル内の他のノードとのランダムアクセス応答信号の多重が可能となる。例えばセル内の無線端末がランダムアクセスシーケンスを行う場合、干渉や競合が低減されるので、同じ無線リソースを用いてランダムアクセスシーケンスを行うことができる。これにより、無線リソースの利用効率が向上し、通信性能が向上される。なお、CoMP通信可能でない無線端末は、セル毎のランダム応答信号を受信して、接続確立を行うことができる。
以上により、第5実施形態によれば、CoMP通信を行う無線通信システムにおいて、通信性能を向上することができる。
なお、他の実施形態として、例えば、Radio link failureが生じた場合に、第1~第5実施形態に開示される技術を適用することもできる。例えば、Radio link failureが生じた場合に、品質の良いセルを検出し、RACHプリアンブルを用いて当該セルにアクセスする場合、Radio link failureが生じる前に接続していたセルに再接続する際には、第2実施形態の送信データ発生時のように、図10に示すシーケンスと同様のシーケンスにより再接続を確立することができる。また、Radio link failureが生じる前とは別の、新たなセル接続する際には、第3実施形態の初期アクセス時のように、図11に示すシーケンスにより再接続を確立することができる。
また、第1~第5実施形態において、ランダムアクセス応答信号を受信するときの識別情報(ID)として、RA-RNTI(Random Access Radio Network Temporary Identity)を用いて受信することができる。RA-RNTIは、ランダムアクセス応答信号を受信するときのIDで、プリアンブルを送ったタイミング、周波数リソースにより決定される。このIDは、複数の無線端末で共有されることになり、具体的にはPDCCH(E-PDCCH)を復号するときにこのIDのbit列でマスクすることにより、このIDに対応するPDSCHリソースが分かることになっている。このPDSCHの中には、複数の無線端末に対するランダムアクセス応答信号が多重されている。
このとき、例えば、RRHはカバーエリアが比較的小さい場合が多く、そのRRHに同時にアクセスする無線端末の数は比較的少ないことが想定される。このため、無線端末間で同じ物理チャネルを使うことによる無線リソースの利用効率の向上は大きくない。一方、RA-RNTIで受けるためには、サーチスペースが他の端末と共通である必要があり(例えば、Common Search Spaceと呼ばれる)、これは、貴重なリソースとなる。
そこで、第1~第5実施形態において、ランダムアクセス応答信号を受信するときのIDとして、C-RNTI(Cell Radio Network Temporary Identity)を用いてランダムアクセス応答信号を受信するようにしてもよい。C-RNTIは、無線端末固有に割り当てられたIDであり、その無線端末のみに向けられたデータが格納されているPDSCHを指し示すPDCCH(E-PDCCH)がこのIDでマスクされている。
また、第1~第5実施形態の無線通信システムは、例えば、LTE-Aシステムとして実現できる。なお、LTE-A以外の通信方式を用いた無線通信システムに適用することも可能である。
また、第1~第5実施形態は、無線端末として、携帯電話機、スマートフォン、PDA(Personal Digital Assistant)などの携帯端末に適用可能である。また、第1~第5実施形態は、その他、移動中継局など、基地局との間で通信を行う様々な通信機器に対して適用可能である。
また、第1~第5実施形態は、無線局として、マクロ基地局、フェムト基地局など、様々な規模の基地局に適用可能である。また、第1~第5実施形態は、その他、中継局など、移動局との間で通信を行う様々な通信機器に対して適用可能である。
また、無線局、無線端末の各構成要素の分散・統合の具体的態様は、第1~第5実施形態の態様に限定されず、その全部又は一部を、各種の負荷や使用状況等に応じて、任意の単位で機能的又は物理的に分散・統合して構成することもできる。例えば、メモリを、無線局、無線端末の外部装置としてネットワークやケーブル経由で接続するようにしてもよい。
1 無線通信システム
2 ネットワーク
3 上位装置
4 無線局
5,6 遠隔ユニット
7,8 無線端末
9 制御ユニット
C1 セル
R1,R2 カバーエリア
10,14,17 アンテナ
11,15,18 送信部
12,16,19 受信部
13 制御部
20 アンテナ
21 送信部
22 受信部
23 制御部
30,37,41 アンテナ
31,38,42 RF回路
32,39,43 DSP
34 CPU
33,35,40,44 メモリ
36 ネットワークIF
50 アンテナ
51 RF回路
52 CPU
53 メモリ
90 無線通信システム
C100 セル
R100A~F カバーエリア
100 無線局
101 制御ユニット
102A~F 遠隔ユニット
103,104 無線端末
110 送信/受信アンテナ
111 送信/受信切替え部
112 受信部
113 送信部
114A~F 送信/受信アンテナ
115A~F 送信/受信切替え部
116A~F 受信部
117A~F 送信部
118 データ信号取得部
119 制御信号取得部
120 RS取得部
121 受信品質算出部
122 RACHプリアンブル取得部
123 RACHプリアンブル判定部
124 スケジューラ
125 データ信号生成部
126 データ信号処理部
127 制御信号生成部
128 制御信号処理部
129 RS生成部
130 信号割当て部
140 送信/受信アンテナ
141 送信/受信切替え部
142 受信部
143 データ信号取得部
144 制御信号取得部
145 RS取得部
146 受信品質算出部
147 データ信号生成部
148 データ信号処理部
149 制御信号生成部
150 制御信号処理部
151 RS生成部
152 RACHプリアンブル選択部
153 RACH信号処理部
154 信号割当て部
155 送信制御部
156 送信部
200 無線通信システム
210,220,230 無線局
C210,C220,C230 セル
250,260,270 制御ユニット
240A~L 遠隔ユニット
R240A~L カバーエリア
300 無線端末
2 ネットワーク
3 上位装置
4 無線局
5,6 遠隔ユニット
7,8 無線端末
9 制御ユニット
C1 セル
R1,R2 カバーエリア
10,14,17 アンテナ
11,15,18 送信部
12,16,19 受信部
13 制御部
20 アンテナ
21 送信部
22 受信部
23 制御部
30,37,41 アンテナ
31,38,42 RF回路
32,39,43 DSP
34 CPU
33,35,40,44 メモリ
36 ネットワークIF
50 アンテナ
51 RF回路
52 CPU
53 メモリ
90 無線通信システム
C100 セル
R100A~F カバーエリア
100 無線局
101 制御ユニット
102A~F 遠隔ユニット
103,104 無線端末
110 送信/受信アンテナ
111 送信/受信切替え部
112 受信部
113 送信部
114A~F 送信/受信アンテナ
115A~F 送信/受信切替え部
116A~F 受信部
117A~F 送信部
118 データ信号取得部
119 制御信号取得部
120 RS取得部
121 受信品質算出部
122 RACHプリアンブル取得部
123 RACHプリアンブル判定部
124 スケジューラ
125 データ信号生成部
126 データ信号処理部
127 制御信号生成部
128 制御信号処理部
129 RS生成部
130 信号割当て部
140 送信/受信アンテナ
141 送信/受信切替え部
142 受信部
143 データ信号取得部
144 制御信号取得部
145 RS取得部
146 受信品質算出部
147 データ信号生成部
148 データ信号処理部
149 制御信号生成部
150 制御信号処理部
151 RS生成部
152 RACHプリアンブル選択部
153 RACH信号処理部
154 信号割当て部
155 送信制御部
156 送信部
200 無線通信システム
210,220,230 無線局
C210,C220,C230 セル
250,260,270 制御ユニット
240A~L 遠隔ユニット
R240A~L カバーエリア
300 無線端末
Claims (10)
- 共通のセル識別情報が割り当てられる複数のノードを含み、1以上のノードとの協調通信が可能な無線端末を有する無線通信システムにおける無線通信方法であって、
前記無線端末で、前記セル識別情報に対応するセルで使用可能な複数のランダムアクセス信号のうちの、ノード毎のランダムアクセス信号のグループを示すグループ情報を取得し、
前記無線端末で、前記グループ情報で示されるグループに含まれるランダムアクセス信号を送信して、ノード毎のランダムアクセス処理を実行する、
ことを特徴とする無線通信方法。 - 前記複数のノードのうち少なくとも1つのノードで、受信する前記ランダムアクセス信号に応じて、ノード毎のランダムアクセス応答信号の受信のための制御情報を前記無線端末に送信し、
前記無線端末で、前記制御情報に基づいて、前記ノード毎のランダムアクセス応答を受信する、
ことを特徴とする請求項1に記載の無線通信方法。 - 前記無線端末で、前記セルをサービングセルとしている際に、送信データが発生した場合、前記グループ情報で示されるグループに含まれるランダムアクセス信号を送信して、ノード毎のランダムアクセス処理を実行する、
ことを特徴とする請求項1又は2に記載の無線通信方法。 - 前記無線端末で、待受け状態から接続状態に遷移する際に、前記グループ情報で示されるグループに含まれるランダムアクセス信号を送信して、ノード毎のランダムアクセス処理を実行する、
ことを特徴とする請求項1又は2に記載の無線通信方法。 - 前記無線端末で、前記待受け中に、前記セルで通知される前記ノード毎の接続確立のための制御情報を受信し、
前記無線端末で、前記待受け状態から前記接続状態に遷移する際に、前記ノード毎の接続確立のための制御情報を用いて、前記複数のノードのうち少なくとも1つのノードと、前記ノード毎のランダムアクセス処理を実行する、
ことを特徴とする請求項4に記載の無線通信方法。 - 前記無線端末で、前記セルへのハンドオーバの要求信号に含まれる前記グループ情報を受信し、
前記無線端末で、前記セルへのハンドオーバの際に、前記グループ情報で示されるグループに含まれるランダムアクセス信号を送信して、前記複数のノードのうち少なくとも1つのノードと、ノード毎のランダムアクセス処理を実行する、
ことを特徴とする請求項4又は5に記載の無線通信方法。 - 前記ハンドオーバのための要求信号に、前記ノード毎の接続確立のための制御情報を含めて通知する、
ことを特徴とする請求項6に記載の無線通信方法。 - 共通のセル識別情報が割り当てられる複数のノードを含み、1以上のノードとの協調通信が可能な無線端末を有する無線通信システムであって、
前記セル識別情報に対応するセルで使用可能な複数のランダムアクセス信号のうちの、ノード毎のランダムアクセス信号のグループを示すグループ情報を取得する制御部と、
ノード毎のランダムアクセス処理を実行するために、前記グループ情報で示されるグループに含まれるランダムアクセス信号を前記無線端末から送信する送信部と、を有する
ことを特徴とする無線通信システム。 - 共通のセル識別情報が割り当てられる複数のノードを含み、1以上のノードとの協調通信が可能な無線端末を有する無線通信システムで用いられる無線局であって、
前記セル識別情報に対応するセルで使用可能な複数のランダムアクセス信号のうちの、ノード毎のランダムアクセス信号のグループを示すグループ情報を取得する制御部と、
前記無線端末から、ノード毎のランダムアクセス処理を実行するために送信される、前記グループ情報で示されるグループに含まれるランダムアクセス信号を受信する受信部と、を有する
ことを特徴とする無線局。 - 共通のセル識別情報が割り当てられる複数のノードを含み、1以上のノードとの協調通信が可能な無線端末を有する無線通信システムで用いられる無線端末であって、
前記セル識別情報に対応するセルで使用可能な複数のランダムアクセス信号のうちの、ノード毎のランダムアクセス信号のグループを示すグループ情報を取得する制御部と、
ノード毎のランダムアクセス処理を実行するために、前記グループ情報で示されるグループに含まれるランダムアクセス信号を送信する送信部と、を有する
ことを特徴とする無線端末。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/001908 WO2013140437A1 (ja) | 2012-03-19 | 2012-03-19 | 無線通信方法、無線通信システム、無線局、及び無線端末 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/001908 WO2013140437A1 (ja) | 2012-03-19 | 2012-03-19 | 無線通信方法、無線通信システム、無線局、及び無線端末 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013140437A1 true WO2013140437A1 (ja) | 2013-09-26 |
Family
ID=49221943
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/001908 WO2013140437A1 (ja) | 2012-03-19 | 2012-03-19 | 無線通信方法、無線通信システム、無線局、及び無線端末 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013140437A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013211732A (ja) * | 2012-03-30 | 2013-10-10 | Ntt Docomo Inc | 無線通信システム、基地局装置、及び無線通信方法 |
JP2018515977A (ja) * | 2015-04-24 | 2018-06-14 | ノキア テクノロジーズ オーユー | 共通ランダムアクセスチャネルリソースに基づく協調ランダムアクセス |
JP2019516302A (ja) * | 2016-04-12 | 2019-06-13 | テレフオンアクチーボラゲット エルエム エリクソン(パブル) | システム情報の部分的な送受信 |
-
2012
- 2012-03-19 WO PCT/JP2012/001908 patent/WO2013140437A1/ja active Application Filing
Non-Patent Citations (4)
Title |
---|
"3rd Generation Partnership Project;Technical Specification Group Radio Access Network;Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN);Overall description;Stage 2 (Release 11)", 3GPP TS 36.300 V11.0.0, December 2011 (2011-12-01), pages 70, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/Specs/2011-12/Rel-11/36series/36300-b00.zip> [retrieved on 20120417] * |
MOTOROLA MOBILITY: "RA Response transmission for SCell RACH procedure", 3GPP TSG-RAN WG2#75BIS R2-115369., 14 October 2011 (2011-10-14), Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_75bis/Docs/R2-115369.zip> [retrieved on 20120417] * |
MOTOROLA: "eNodeB measurements for RACH optimization", 3GPP TSG RAN2#66 R2-093222., 8 May 2009 (2009-05-08), Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_66/Docs/R2-093222.zip> [retrieved on 20120417] * |
NEW POSTCOM: "RACH enhancement for uplink CoMP.", 3GPP TSG RAN WG1 MEETING #67 R1- 113695, 18 November 2011 (2011-11-18), Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR167/Docs/R1-113695.zip> [retrieved on 20120417] * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013211732A (ja) * | 2012-03-30 | 2013-10-10 | Ntt Docomo Inc | 無線通信システム、基地局装置、及び無線通信方法 |
US9769809B2 (en) | 2012-03-30 | 2017-09-19 | Ntt Docomo, Inc. | Radio communication system, base station apparatus and radio communication method |
JP2018515977A (ja) * | 2015-04-24 | 2018-06-14 | ノキア テクノロジーズ オーユー | 共通ランダムアクセスチャネルリソースに基づく協調ランダムアクセス |
US10764928B2 (en) | 2015-04-24 | 2020-09-01 | Nokia Technolgies Oy | Common random access channel resource based coordinated random access |
JP2019516302A (ja) * | 2016-04-12 | 2019-06-13 | テレフオンアクチーボラゲット エルエム エリクソン(パブル) | システム情報の部分的な送受信 |
US11317342B2 (en) | 2016-04-12 | 2022-04-26 | Telefonaktiebolaget Lm Ericsson (Publ) | Transmission and reception of system information in parts |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11184836B2 (en) | Device, network, and method for network adaptation and utilizing a downlink discovery reference signal | |
EP2984888B1 (en) | Systems and methods for network adaptation support in wireless network | |
CN110445591B (zh) | 用于在异构通信系统中进行随机接入的系统和方法 | |
US20200059811A1 (en) | Identification of a beamformed region | |
EP2719216B1 (en) | Signal quality measurements of a user equipment on a subset of radio resource elements | |
EP2979484B1 (en) | Systems and methods for adaptive transmissions in a wireless network | |
EP2673909B1 (en) | Base station (antenna) selection for receiving uplink transmissions of sounding reference signals, srs, signals from a user equipment, ue | |
EP3198744B1 (en) | Discovery signal design | |
US20130021929A1 (en) | Method of mobility management for mobile terminal in a heterogeneous network environment | |
WO2014020997A1 (ja) | 通信システム、基地局装置、移動端末装置及び通信方法 | |
JP2020505819A (ja) | ハンドオーバのためのビームを選択する方法、コンピュータプログラム、及び装置 | |
EP2983422B1 (en) | Terminal device, communication method, and integrated circuit | |
EP2983423B1 (en) | Terminal apparatus, communication method, and integrated circuit | |
JP6955024B2 (ja) | 無線通信ネットワークにおける通信を扱うための、無線ネットワークノード、および無線ネットワークノードにおいて実施される方法 | |
US20150334639A1 (en) | Communication system, mobile terminal apparatus, local area base station apparatus and communication method | |
US20150382376A1 (en) | Wireless communication method, wireless communication system, wireless station, and wireless terminal | |
WO2013140437A1 (ja) | 無線通信方法、無線通信システム、無線局、及び無線端末 | |
CN104244316B (zh) | 发现信号检测方法和设备 | |
KR101472101B1 (ko) | 단말, 상향링크 채널 추정 방법 및 통신 시스템 | |
WO2014203298A1 (ja) | 無線通信方法、無線通信システム、無線局および無線端末 | |
WO2013124881A1 (ja) | 無線通信方法、無線通信システム、無線局、及び無線端末 | |
JP5999099B2 (ja) | 無線通信システム、無線通信方法、及び無線通信装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12872045 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12872045 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |