WO2013139247A1 - 集流板及含有其的液流电池和液流电池堆 - Google Patents

集流板及含有其的液流电池和液流电池堆 Download PDF

Info

Publication number
WO2013139247A1
WO2013139247A1 PCT/CN2013/072832 CN2013072832W WO2013139247A1 WO 2013139247 A1 WO2013139247 A1 WO 2013139247A1 CN 2013072832 W CN2013072832 W CN 2013072832W WO 2013139247 A1 WO2013139247 A1 WO 2013139247A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
flow
flow path
current collecting
collecting plate
Prior art date
Application number
PCT/CN2013/072832
Other languages
English (en)
French (fr)
Inventor
汤浩
殷聪
谢光有
杨海玉
胡杨月
Original Assignee
中国东方电气集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国东方电气集团有限公司 filed Critical 中国东方电气集团有限公司
Publication of WO2013139247A1 publication Critical patent/WO2013139247A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0265Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant the reactant or coolant channels having varying cross sections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to the field of an all-vanadium redox flow energy storage battery, and more particularly to a current collecting plate and a liquid flow battery and a flow battery stack containing the same .
  • All-vanadium redox flow battery is a kind of redox flow battery, which has the advantages of long service life, high energy conversion efficiency, good safety and environmental friendliness, and can be used for large-scale wind power generation and photovoltaic power generation.
  • the energy storage system is one of the main choices for grid peaking and valley filling and balancing load.
  • the all-vanadium redox flow battery uses vanadium ions v 2+ /v 3+ and v 4+ /v 5+ in different valence states as the positive and negative bipolar redox couples of the battery, and stores the positive and negative electrolytes separately.
  • the active electrolyte is driven by the acid-resistant liquid pump to the reaction site (battery stack) and then returned to the liquid storage tank to form a circulating liquid flow circuit to realize the charging and discharging process.
  • the performance of the stack determines the charge and discharge performance of the whole system, especially the charge and discharge power and efficiency.
  • the battery stack is formed by stacking a plurality of single cells in series and pressing them in series.
  • the composition of the single-chip battery is shown in Figure 1.
  • 1 is a liquid flow frame
  • 2 is a current collecting plate
  • 3 is an electrode
  • 4 is a diaphragm.
  • Each component in FIG. 1 constitutes a single cell 5
  • the battery stack 6 is composed of a stack of N single cells 5.
  • the current collecting plates for all-vanadium redox flow batteries mainly include metal current collecting plates, conductive plastic collecting plates and high-density graphite plates, etc., which are integrated with the graphite felt electrodes.
  • the method is to use a flat plate and a direct direct thermocompression bonding of the electrodes.
  • the flow channel design is generally adopted on the current collecting plate, and the flow channel is used to realize the flow guiding effect on the electrolyte, thereby increasing the rate of the electrolyte passing through the battery pack.
  • the flow path design of the prior art makes the convection depth of the electrolyte in the porous electrode short, resulting in concentration polarization inside the electrode.
  • most of the electrolyte fails to enter the electrode to react and flow out of the battery.
  • the electrolyte utilization rate accounts for only a small part of the total amount of transportation, which affects the efficiency of the vanadium battery system.
  • the present invention is directed to a current collecting plate and a flow battery and a flow battery stack including the same, which are used for solving the short convection depth of the prior art electrolyte in the porous electrode, resulting in concentration polarization inside the electrode. And the problem of low electrolyte utilization.
  • a current collecting plate on which an electrolyte flow path is provided, the cross-sectional area of the electrolyte flow path being varied along the flow direction of the electrolyte. Further, the cross-sectional area is one of a continuous change or a step change in the flow direction of the electrolyte, and/or one of a periodic change or a monotonous change.
  • the electrolyte flow path is a wave-shaped flow path.
  • the current collecting plate has a plurality of the above-mentioned wave-shaped flow paths extending side by side in the flow direction of the electrolyte, wherein the peaks of the adjacent two wave-shaped flow channels are alternately arranged with the troughs.
  • the electrolyte flow channel is a serpentine flow channel, and the cross-sectional width of the serpentine flow channel gradually decreases along the flow direction of the electrolyte.
  • the current collecting plate has a plurality of flow channel regions extending side by side in the flow direction of the electrolyte, each of the flow channel regions includes a serpentine flow channel, and the serpentine flow channel includes a plurality of extending along the flow direction of the electrolyte. a plurality of parallel segments and a connecting segment connecting adjacent parallel segments, and the cross-sectional area of each parallel segment changes stepwise along the flow direction of the electrolyte.
  • the electrolyte flow path is a serpentine flow path, and the depth of the serpentine flow path decreases continuously or stepwise along the flow direction of the electrolyte.
  • the above-mentioned serpentine flow passage is one, and the cross-sectional area of the serpentine flow passage is monotonously reduced in a stepwise manner along the flow direction of the electrolyte.
  • the electrolyte flow path is formed by a portion that is not protruded between the spaced-apart bumps, and the bumps located in the same row are equally spaced, and the bumps located in the adjacent rows are staggered.
  • a flow battery comprising an electrode and a current collecting plate of the present invention, the electrode being located on a side of the current collecting plate on which the electrolyte flow path is provided.
  • a flow battery stack comprising one or more flow batteries of the present invention.
  • the current collecting plate provided by the present invention has an electrolyte flow path formed at different pressures when the electrolyte passes, and different pressures at different positions inside the porous electrode corresponding to the electrolyte flow field. Effectively improve the transmission state of the electrolyte inside the porous electrode, increase the uniformity of the electrode reaction, reduce the energy consumption of the liquid pump, effectively improve the efficiency of the all-vanadium redox flow battery system, prolong the service life of the battery, and, the manufacturing process Simple and easy to implement.
  • the present invention has other objects, features and advantages.
  • FIG. 1 is a schematic view showing the assembly of a single-chip battery and a battery stack which are commonly used in the prior art
  • FIG. 2 is a cross-sectional view showing a current collecting plate and an electrode according to an embodiment of the present invention, wherein a set is shown.
  • the flow plate has a wave-shaped flow path, and the crests and troughs of the flow channels of the adjacent current collecting plates are opposed to each other
  • FIG. 3 shows the surface pressure distribution of the porous electrode of the vanadium battery having the wave-shaped flow path shown in FIG.
  • FIG. 4 is a schematic view showing the structure of a serpentine flow path according to another embodiment of the present invention
  • FIG. 5 is a view showing a vanadium battery of a serpentine flow path shown in FIG. Schematic diagram of the surface pressure distribution of the porous electrode and the electrolyte flow inside the porous electrode
  • FIG. 6-1 shows a plan view of a serpentine flow path according to still another embodiment of the present invention
  • FIG. 6-2 shows a view of FIG. 6 according to the present invention. a left side cross-sectional view of the serpentine flow path shown in FIG. 1
  • FIG. 7 is a plan view showing an island-shaped flow path according to still another embodiment of the present invention
  • FIG. 8 shows an island as shown in FIG. 7 according to the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The technical solutions in the embodiments of the present invention will be described in detail below with reference to the accompanying drawings in the embodiments of the present invention.
  • the invention can be embodied in a multitude of different ways as defined and covered by the claims.
  • the inventors In order to solve the problem of low utilization rate of electrolyte in the prior art, the inventors have found through research that the electrolyte can be distributed inside the electrode to make the electrolyte distribute inside the electrode to avoid the occurrence of dead angle and polarization.
  • the electrolyte can be fully utilized; considering that the mode of transmission of the electrolyte inside the electrode is greatly affected by the pressure, the flow path of the cross-sectional area is designed to be used on the current collecting plate, and the electrolyte flows in the flow channel for the corresponding
  • the pressure generated inside the porous electrode will be different, and the mode of transfer of the electrolyte will also vary with the cross-sectional area of the flow channel.
  • the Bernoulli equation P+l/2pV 2 C (considering the flow in the same horizontal plane), the pressure corresponding to the position where the flow velocity is small is large, and the cross-sectional area on the flow channel is the same because the liquid flow rate through the same flow channel is the same.
  • the smaller flow rate is relatively fast, so the pressure of the electrolyte flow field at different cross-sectional areas corresponding to the same flow path is different. Therefore, the inventor performs the flow path design on the surface of the current collecting plate, and ensures a certain change in the cross-sectional area in the direction of the same flow path.
  • the pressure of the electrolyte corresponding to the inside of the porous electrode is also different, and the porous electrode The appearance of internal pressure difference can effectively improve the mass transfer state of the electrolyte inside the porous electrode material without increasing the consumption of the pump body.
  • a current collecting plate on which an electrolyte flow path 21 is provided, and a cross-sectional area of the electrolyte flow path 21 is along the electrolysis
  • the flow direction of the liquid changes.
  • the cross-sectional area of the electrolyte flow channel changes in the flow direction of the electrolyte, so the pressure of the electrolyte inside the corresponding porous electrode also changes, and the pressure difference between the various portions inside the porous electrode is used to promote the flow of the electrolyte from the high pressure portion to the low pressure portion.
  • the mass transfer effect of the electrolyte inside the electrode material is effectively improved.
  • the cross-sectional area of the electrolyte flow path 21 of the present invention is one of a continuous change or a step change in the flow direction of the electrolyte, and/or one of a periodic change or a monotonous change.
  • the invention utilizes different electrolyte pressures inside the electrodes corresponding to the electrolyte flow channels of different cross-sectional areas, enhances the flow of the electrolyte inside the electrodes, and designs the cross-sectional area to have a certain variation law, so that There is a certain regularity in the flow of the electrolyte in the electrode, which enhances the uniformity of the reaction of the electrolyte inside the electrode. As shown in Fig.
  • the electrolyte flow path 21 is a wave-shaped flow path.
  • the current collecting plate has a plurality of the above-mentioned wave-shaped flow paths extending side by side in the flow direction of the electrolyte, wherein the peaks of the adjacent two wave-shaped flow paths are alternately arranged with the troughs, as shown in FIGS. 2 and 3. Show, the direction of the arrow indicates the electrolyte Flow direction.
  • the internal pressure of the porous electrode 3 is small, and the electrolyte in the trough has a large internal pressure of the porous electrode 3 corresponding to a relatively large flow velocity of the flow channel. Therefore, the electrolyte inside the porous electrode 3 will be from a high pressure point to a low pressure. In the point transfer, the fluidity of the electrolyte inside the porous electrode 3 corresponding to the adjacent flow channel is enhanced, and the effect of effectively improving the mass transfer state of the electrolyte inside the electrode material is achieved without increasing the consumption of the pump body.
  • the electrolyte flow path 21 is a serpentine flow path, and the cross-sectional width of the serpentine flow path decreases in the flow direction of the electrolyte.
  • the current collecting plate has a plurality of flow channel regions extending side by side in the flow direction of the electrolyte, each flow channel region including a serpentine flow channel, and the serpentine flow channel includes a plurality of electrolytes along the electrolyte The plurality of parallel segments extending in the flow direction and the connecting segments connecting the adjacent parallel segments, and the cross-sectional area of each parallel segment changes stepwise along the flow direction of the electrolyte. As shown in Fig.
  • the direction of the arrow indicates the flow direction of the electrolyte.
  • the cross-sectional width of the flow path in the flow direction of the electrolyte decreases stepwise, when the electrolyte is in any one of the electrolyte flow paths 21 ( ⁇ ') and the adjacent electrolyte flow path 21 In the transmission of ( ⁇ +1 '), in the same flow path, along the flow direction of the electrolyte, the cross-sectional width of the parallel section is stepwise reduced, thereby achieving the purpose of reducing the flow cross-sectional area along the flow direction of the electrolyte, FIG.
  • the pressure distribution diagram of the vanadium battery electrode of the serpentine flow channel is shown, the direction of the arrow indicates the flow direction of the electrolyte in the porous electrode, the cross-sectional width of the serpentine flow channel is decreased, and the flow velocity of the electrolyte is increased, corresponding to the porous electrode.
  • the surface pressure also decreases with the increase of the electrolyte flow rate in the collector plate, and the electrolyte will flow from the larger pressure region to the smaller pressure region in the direction of the arrow to achieve a more uniform flow of the electrolyte in the porous electrode.
  • the electrolyte flow path 21 is a serpentine flow path, and the depth of the serpentine flow path decreases continuously or stepwise along the flow direction of the electrolyte to realize the flow path cross section. The area is reduced along the direction of flow of the electrolyte.
  • the serpentine flow path is one, and the flow cross section of the serpentine flow path is monotonously reduced in a stepwise manner along the flow direction of the electrolyte.
  • the flow cross sections of the serpentine flow channels of the above two current collector plates are gradually decreased along the flow direction of the electrolyte, and the flow velocity of the electrolyte is slowed down, thereby causing a change in the internal pressure of the electrodes corresponding to the flow channels, thereby effectively improving the internal electrolysis of the electrode materials.
  • the mass transfer effect of the liquid As shown in FIG. 7 and FIG. 8, in still another specific embodiment of the present invention, the electrolyte flow path 21 is formed by unexposed portions between the spaced-apart bumps 22, and the bumps located in the same row. 22 equally spaced arrangement, staggered between the bumps 22 located in adjacent rows.
  • the flow velocity of the electrolyte on the current collecting plate 2 is changed by the influence of the bumps 22, thereby affecting the surface pressure of the corresponding porous electrode and the flow of the electrolyte inside the porous electrode, thereby effectively improving the electrode material.
  • the mass transfer effect of the internal electrolyte there is also provided a flow battery, and a flow battery stack including the same, the flow battery including the electrode 3 and the current collecting plate 2 of the present invention
  • the electrode 3 is located on the side of the current collecting plate 2 where the electrolyte flow path is provided.
  • the flow battery and the flow battery stack of the present invention may be assembled by using an assembly method in the prior art.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明公开了一种集流板及含有其的液流电池和液流电池堆。其中,该集流板上设置有电解液流道(21),电解液流道(21)的横截面积沿电解液流动方向变化。本发明所提供的集流板,其上的电解液流道在电解液经过时形成具有不同压强的电解液流场,与电解液流场对应的多孔电极内部不同位置处也具有不同的压强,有效改善了多孔电极内部电解液的传输状况,增加电极反应的均匀性,减小液体泵能量消耗,有效提高全钒液流电池系统的效率,延长电池的使用寿命,而且,制作工艺简单,容易实现。

Description

集流板及含有其的液流电池和液流电池堆 技术领域 本发明涉及全钒氧化还原液流储能电池领域, 尤其涉及一种集流板及含有其的液 流电池和液流电池堆。 背景技术 全钒氧化还原液流电池是氧化还原液流电池的一种, 具有使用寿命长, 能量转化 效率高, 安全性好, 环境友好等优点, 能用于风能发电和光伏发电配套的大规模储能 系统, 是电网削峰填谷、 平衡负载的主要选择之一。 全钒氧化还原液流电池分别以不同价态的钒离子 v2+/v3+和 v4+/v5+作为电池的正 负两极氧化还原电对, 将正负极电解液分别存储于两个储液罐中, 由耐酸液体泵驱动 活性电解液至反应场所 (电池堆) 再回至储液罐中形成循环液流回路, 以实现充放电 过程。 在整个全钒氧化还原液流电池储能系统中, 电池堆性能的好坏决定着整个系统 的充放电性能, 尤其是充放电功率及效率。 电池堆是由多片单电池依次叠放压紧, 串 联而成。 其中, 单片电池的组成如图 1所示。 1为液流框, 2为集流板, 3为电极, 4 为隔膜, 图 1中各组件组成单体电池 5, 通过 N个单体电池 5的堆叠组成电池堆 6。 目前, 用于全钒氧化还原液流电池的集流板主要有金属集流板、 导电塑料集流板 及高密度石墨板等, 其与石墨毡电极集成一体化的过程中, 一种较为常见的方法是采 用集流板平板与电极直接热压结合的方式。 这种平板集流板用于全钒氧化还原液流电 池时, 会出现以下主要问题: 电解液在经过电极的过程中, 只能靠石墨毡的自身渗透 能力, 液流阻力大从而增加液体泵的消耗; 由于平板集流板对于液流没有导向作用, 电解液在流通过程中存在内部流动不均勾, 甚至液流没有流过的死角位置, 从而导致 严重极化现象以及各单电池间电压的不均勾性, 降低电极和隔膜的使用寿命及效率。 为了解决上述问题, 现有技术中通常采用在集流板上进行了流道设计, 采用流道 对电解液实现导流作用, 提高了电解液通过电池组的速率。 但是现有技术的流道设计 使得电解液在多孔电极中的对流深度短, 造成电极内部出现浓差极化。 另外, 大部分 电解液未能进入电极中进行反应即流出电池, 电解液利用率仅占输送总量的很小一部 分, 影响了钒电池系统的效率。 发明内容 本发明旨在提供一种集流板及含有其的液流电池和液流电池堆, 用于解决现有技 术电解液在多孔电极中的对流深度短, 造成电极内部出现浓差极化以及电解液利用率 低的问题。 根据本发明的一个方面, 提供了一种集流板, 其上设置有电解液流道, 电解液流 道的横截面积沿电解液流动方向变化。 进一步地,上述横截面积沿电解液流动方向呈连续性变化或阶梯状变化中的一种, 和 /或呈周期性变化或单调性变化中的一种。 进一步地, 上述电解液流道为波浪形流道。 进一步地,上述集流板上具有沿电解液流动方向并排延伸的多个上述波浪形流道, 其中相邻的两条波浪形流道的波峰与波谷交错排布。 进一步地, 上述电解液流道为蛇形流道, 蛇形流道的截面宽度沿电解液流动方向 逐渐减小。 进一步地, 上述集流板上具有沿电解液流动方向并排延伸的多个流道区域, 每个 流道区域中包括一个蛇形流道, 蛇形流道包括多个沿电解液流动方向延伸的多个平行 段和连接相邻平行段的连接段, 且各平行段的横截面积沿电解液流动方向呈阶梯状变 化。 进一步地, 上述电解液流道为蛇形流道, 蛇形流道的深度沿电解液流动方向呈连 续性或阶梯性减小。 进一步地, 上述蛇形流道为一条, 蛇形流道的横截面积沿电解液流动方向呈阶梯 性的单调减小。 进一步地, 上述电解液流道由间隔排布的凸块间未突出的部分形成, 位于同一排 中的凸块等间距排布, 位于相邻排中的凸块之间交错排布。 根据本发明的另一方面还提供了一种液流电池, 包括电极和本发明的集流板, 电 极位于集流板设置有电解液流道的一侧。 根据本发明的又一方面还提供了一种液流电池堆, 包括一个或多个本发明的液流 电池。 本发明所提供的集流板, 其上的电解液流道在电解液经过时形成具有不同压强的 电解液流场, 与电解液流场对应的多孔电极内部不同位置处也具有不同的压强, 有效 改善了多孔电极内部电解液的传输状况, 增加电极反应的均勾性, 减小液体泵能量消 耗, 有效提高全钒氧化还原液流电池系统的效率, 延长电池的使用寿命, 而且, 制作 工艺简单, 容易实现。 除了上面所描述的目的、特征和优点之外, 本发明还有其它的目的、特征和优点。 下面将参照图, 对本发明作进一步详细的说明。 附图说明 附图构成本说明书的一部分、 用于进一步理解本发明, 附图示出了本发明的优选 实施例, 并与说明书一起用来说明本发明的原理。 图中: 图 1示出了现有技术中常用的单片电池及电池堆的组装示意图; 图 2示出了根据本发明一种实施例的集流板和电极的剖面图, 其中示出集流板具 有波浪形流道, 且相邻的集流板的流道的波峰和波谷彼此相对; 图 3示出了具有图 2所示的波浪形流道的钒电池多孔电极的表面压强分布和多孔 电极内部电解液流动示意图; 图 4示出了根据本发明另一种实施例的蛇形流道的结构示意图; 图 5示出了根据本发明图 4所示的蛇形流道的钒电池多孔电极的表面压强分布和 多孔电极内部电解液流动示意图; 图 6-1示出了根据本发明又一实施例的蛇形流道的俯视图; 图 6-2示出了根据本发明如图 6-1所示的蛇形流道的左剖图; 图 7示出了根据本发明又一实施例的岛状流道的俯视图; 以及 图 8示出了根据本发明如图 7所示的岛状流道立体结构示意图。 具体实施方式 下面将结合本发明实施例中的附图, 对本发明的实施例中的技术方案进行详细的 说明, 但如下实施例以及附图仅是用以理解本发明, 而不能限制本发明, 本发明可以 由权利要求限定和覆盖的多种不同方式实施。 为了解决现有技术中电解液利用率低的问题, 发明人经研究发现可以通过改善电 解液在电极内部的传递方式, 使电解液在电极内部分布均勾, 避免死角和极化现象的 出现, 从而实现电解液的充分利用; 考虑电解液在电极内部的传递方式受到压强的影 响较大, 因此利用在集流板上设计横截面积变化的流道, 电解液在流道中流动时对于 其对应的多孔电极内部产生的压强会不同, 那么电解液的传递方式也会随着流道的横 截面积的变化而变化。 而且, 根据伯努利方程 P+l/2pV2=C (考虑液流在同一水平面), 流速较小的位置 所对应的压强较大, 由于通过同一流道的液流量相同, 流道上截面积较小处流速相对 较快, 因此在同一流道对应的不同截面积处的电解液流场的压强不同。 因此, 发明人 在集流板表面进行流道设计, 并确保在同一流道的方向上其截面积出现一定的变化, 结合静压原理,其对应多孔电极内部的电解液压强也不同, 多孔电极内部压差的出现, 会在不增加泵体的消耗量的基础上, 有效改善多孔电极材料内部电解液的传质状态。 在以上发明构思的基础上, 在本发明中的一种典型的实施方式中, 提供了一种集 流板, 其上设置有电解液流道 21, 电解液流道 21的横截面积沿电解液流动方向变化。 在电解液流动方向上电解液流道的横截面积出现变化, 因此其对应的多孔电极内 部的电解液压强也会出现变化, 利用多孔电极内部各部分的压差促进电解液从高压部 分流向低压部分, 在不增加液体泵的消耗量的基础上, 有效改善电极材料内部电解液 的传质效果。 本发明电解液流道 21 的横截面积沿电解液流动方向呈连续性变化或阶梯状变化 中的一种, 和 /或呈周期性变化或单调性变化中的一种。 本发明正是在利用与不同横截 面积的电解液流道对应的电极内部的电解液压强不同, 增强了电解液在电极内部的流 动, 将横截面积设计成具有一定的变化规律, 以使电解液在电极中的流动存在一定的 规律, 增强电解液在电极内部反应的均勾性。 如图 2所示, 在本发明的一种具体的实施例中, 电解液流道 21为波浪形流道。一 种实施例中, 集流板具有沿电解液流动方向并排延伸的多个上述波浪形流道, 其中相 邻的两条波浪形流道的波峰与波谷交错排布, 如图 2和 3所示, 箭头方向表示电解液 流动方向。 当电解液在任意一条电解液流道 21 (n)与相邻的电解液流道 21 (n+1 ) 中 传输时, 处于波峰的电解液由于流道横截面积较小流速较快所对应的多孔电极 3内部 压强较小, 处于波谷的电解液由于流道横截面积较大流速较慢所对应的多孔电极 3内 部压强较大, 因此在多孔电极 3内部电解液将从高压点向低压点的传输, 相邻流道对 应下的多孔电极 3内部的电解液流动性增强, 实现在不增加泵体的消耗量的基础上, 有效改善电极材料内部电解液的传质状态的效果。 如图 4和图 5所示,在本发明的另一种较为具体的实施例中, 电解液流道 21为蛇 形流道, 蛇形流道的截面宽度沿电解液流动方向减小。 在其中一种实施例中, 集流板 上具有沿电解液流动方向并排延伸的多个流道区域, 每个流道区域中包括一个蛇形流 道, 蛇形流道包括多个沿电解液流动方向延伸的多个平行段和连接相邻平行段的连接 段, 且各平行段的横截面积沿电解液流动方向呈阶梯状变化。 如图 4所示, 箭头方向 表示电解液流动方向。 保持蛇形流道的深度不变, 沿电解液流动方向流道的截面宽度 呈阶梯状减小,当电解液在任意一条电解液流道 21 (η' )与相邻的电解液流道 21 (η+1 ' ) 中传输时, 同一条流道中, 沿电解液流动方向, 平行段的截面宽度阶梯状减小, 从而 实现流道横截面积沿电解液流动方向减小的目的, 图 5示出了该蛇形流道的钒电池电 极压强分布图, 箭头方向表示电解液在多孔电极中的流动方向, 蛇形流道的截面宽度 减小, 电解液的流速增大, 对应多孔电极的表面压强也随着集流板内电解液流速的增 大而减小, 电解液将沿箭头方向从压强较大区域流向压强较小区域, 实现电解液在多 孔电极中更均勾的流动。 在本发明的另一种较为具体的实施例中, 电解液流道 21为蛇形流道,沿电解液流 动方向蛇形流道的深度呈连续性或阶梯性减小从而实现流道横截面积沿电解液流动方 向减小的目的。 又一种实施例中, 如图 6-1和图 6-2所示, 上述蛇形流道为一条, 蛇 形流道的流通截面呈沿电解液流动方向呈阶梯性的单调减小。 上述两种集流板的蛇形流道的流通截面都沿电解液流动方向逐渐减小, 同时电解 液流速减慢, 由此引起流道对应的电极内部压强的变化, 有效改善电极材料内部电解 液的传质的效果。 如图 7和图 8所示,在本发明的又一种较为具体的实施例中, 电解液流道 21由间 隔排布的凸块 22间未突出的部分形成, 位于同一排中的凸块 22等间距排布, 位于相 邻排中的凸块 22之间交错排布。 由于凸块 22的存在, 电解液在集流板 2上的流动速 度受到凸块 22的影响而发生变化,从而影响对应多孔电极的表面压强和电解液在多孔 电极内部的流动, 有效改善电极材料内部电解液的传质的效果。 同时, 在本发明的一种典型的实施方式中, 还提供了一种液流电池, 以及包括该 液流电池的液流电池堆, 该液流电池包括电极 3和本发明的集流板 2, 电极 3位于集 流板 2设置有电解液流道的一侧。 由于采用了本发明的集流板 2使得该液流电池和电 池堆的电极反应的均勾性较好, 液体泵能量消耗较低, 全钒氧化还原液流电池系统的 效率得到有效提高, 电池的使用寿命得以延长。 本发明的液流电池和液流电池堆采用 现有技术中的组装方式进行组装即可。 以上仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技术人 员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的任何 修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书 一种集流板,其上设置有电解液流道(21 ),其特征在于,所述电解液流道(21 ) 的横截面积沿电解液流动方向变化。 根据权利要求 1所述的集流板, 其特征在于, 所述横截面积沿电解液流动方向 呈连续性变化或阶梯状变化中的一种,和 /或呈周期性变化或单调性变化中的一 种。 根据权利要求 2所述的集流板, 其特征在于, 所述电解液流道 (21 ) 为波浪形 流道。 根据权利要求 3所述的集流板, 其特征在于, 所述集流板上具有沿电解液流动 方向并排延伸的多个所述波浪形流道, 其中相邻的两条所述波浪形流道的波峰 与波谷交错排布。 根据权利要求 2所述的集流板, 其特征在于, 所述电解液流道 (21 ) 为蛇形流 道, 所述蛇形流道的截面宽度沿电解液流动方向减小。 根据权利要求 5所述的集流板, 其特征在于, 所述集流板上具有沿电解液流动 方向并排延伸的多个流道区域, 每个所述流道区域中包括一个蛇形流道, 所述 蛇形流道包括多个沿电解液流动方向延伸的多个平行段和连接相邻平行段的连 接段, 且各平行段的横截面积沿电解液流动方向呈阶梯状变化。 根据权利要求 2所述的集流板, 其特征在于, 所述电解液流道 (21 ) 为蛇形流 道, 所述蛇形流道的深度沿电解液流动方向呈连续性或阶梯性减小。 根据权利要求 7所述的集流板, 其特征在于, 所述蛇形流道为一条, 所述蛇形 流道的横截面积沿电解液流动方向呈阶梯性的单调减小。 根据权利要求 2所述的集流板, 其特征在于, 所述电解液流道 (21 ) 由间隔排 布的凸块 (22) 间未突出的部分形成, 位于同一排中的所述凸块 (22) 等间距 排布, 位于相邻排中的所述凸块 (22) 之间交错排布。 一种液流电池, 其特征在于, 包括电极(3 )和权利要求 1-9中任一项所述的集 流板 (2), 所述电极 (3 ) 位于所述集流板 (2) 的设置有电解液流道 (21 ) 的
1. 一种液流电池堆,其特征在于,包括一个或多个权利要求 10中所述的液流电池。
PCT/CN2013/072832 2012-03-20 2013-03-18 集流板及含有其的液流电池和液流电池堆 WO2013139247A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210074607.5 2012-03-20
CN201210074607.5A CN102593482B (zh) 2012-03-20 2012-03-20 集流板及含有其的液流电池和液流电池堆

Publications (1)

Publication Number Publication Date
WO2013139247A1 true WO2013139247A1 (zh) 2013-09-26

Family

ID=46481841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/072832 WO2013139247A1 (zh) 2012-03-20 2013-03-18 集流板及含有其的液流电池和液流电池堆

Country Status (2)

Country Link
CN (1) CN102593482B (zh)
WO (1) WO2013139247A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104393308A (zh) * 2014-10-20 2015-03-04 中国东方电气集团有限公司 双极板和液流电池
CN112542628A (zh) * 2020-11-27 2021-03-23 深圳市科陆电子科技股份有限公司 冷板及电池模组
CN112768721A (zh) * 2021-02-02 2021-05-07 武汉理工大学 一种复合蛇形流道结构及含有其的全钒液流电池
CN114182278A (zh) * 2021-11-30 2022-03-15 中国华能集团清洁能源技术研究院有限公司 一种新型导向菱形结构的电极单元、电解单元及应用
EP3920286A4 (en) * 2019-01-30 2022-03-30 Sumitomo Electric Industries, Ltd. BATTERY CELL, CELL STACK AND REDOX FLOW BATTERY
CN114824338A (zh) * 2022-04-01 2022-07-29 香港科技大学 一种双极板上具有二分叉指型结构的液流电池流道
US11811105B2 (en) 2019-01-30 2023-11-07 Sumitomo Electric Industries, Ltd. Battery cell, cell stack, and redox flow battery

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102593482B (zh) * 2012-03-20 2015-02-04 中国东方电气集团有限公司 集流板及含有其的液流电池和液流电池堆
CN102760903B (zh) * 2012-08-07 2015-03-18 中国东方电气集团有限公司 钒电池
CN110024194A (zh) * 2016-12-13 2019-07-16 东丽株式会社 电极、氧化还原液流电池和电极的制造方法
CN106920985B (zh) * 2017-03-31 2019-06-11 大连融科储能技术发展有限公司 一种液流电池电堆及使电解液在各节电池中分布均匀以提高电池性能的方法
CN109411781A (zh) * 2017-08-18 2019-03-01 上海电气集团股份有限公司 集流板及包含其的电堆
CN109136976A (zh) * 2018-09-19 2019-01-04 郑州大学 一种电极室、电极板框及复极式电解槽
CN113437353A (zh) * 2021-06-30 2021-09-24 深圳大学 一种基于旁流式流场结构的流动式锂离子电池
CN115642270B (zh) * 2022-12-23 2023-04-07 南方科技大学 一种液流电池流场板和液流电池
CN116706183B (zh) * 2023-08-01 2023-10-03 寰泰储能科技股份有限公司 液流电池的电堆、双极板和电极框

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101800317A (zh) * 2010-04-09 2010-08-11 新源动力股份有限公司 一种带有气体流场的质子交换膜燃料电池双极板
CN102299356A (zh) * 2011-07-18 2011-12-28 中国东方电气集团有限公司 液流电池的集流板及液流电池
CN202127059U (zh) * 2011-07-18 2012-01-25 中国东方电气集团有限公司 液流电池的集流板及液流电池
CN102593482A (zh) * 2012-03-20 2012-07-18 中国东方电气集团有限公司 集流板及含有其的液流电池和液流电池堆

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4830190B2 (ja) * 1999-09-27 2011-12-07 住友電気工業株式会社 レドックスフロー電池
CN1248347C (zh) * 2002-04-03 2006-03-29 中国科学院大连化学物理研究所 一种用于质子交换膜燃料电池的流场分配板
CN100517829C (zh) * 2002-12-20 2009-07-22 上海神力科技有限公司 一种可提高燃料电池运行稳定性的导流极板
CN202474106U (zh) * 2012-03-20 2012-10-03 中国东方电气集团有限公司 集流板及含有其的液流电池和液流电池堆

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101800317A (zh) * 2010-04-09 2010-08-11 新源动力股份有限公司 一种带有气体流场的质子交换膜燃料电池双极板
CN102299356A (zh) * 2011-07-18 2011-12-28 中国东方电气集团有限公司 液流电池的集流板及液流电池
CN202127059U (zh) * 2011-07-18 2012-01-25 中国东方电气集团有限公司 液流电池的集流板及液流电池
CN102593482A (zh) * 2012-03-20 2012-07-18 中国东方电气集团有限公司 集流板及含有其的液流电池和液流电池堆

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104393308A (zh) * 2014-10-20 2015-03-04 中国东方电气集团有限公司 双极板和液流电池
EP3920286A4 (en) * 2019-01-30 2022-03-30 Sumitomo Electric Industries, Ltd. BATTERY CELL, CELL STACK AND REDOX FLOW BATTERY
US11769886B2 (en) 2019-01-30 2023-09-26 Sumitomo Electric Industries, Ltd. Battery cell, cell stack, and redox flow battery
US11811105B2 (en) 2019-01-30 2023-11-07 Sumitomo Electric Industries, Ltd. Battery cell, cell stack, and redox flow battery
CN112542628A (zh) * 2020-11-27 2021-03-23 深圳市科陆电子科技股份有限公司 冷板及电池模组
CN112768721A (zh) * 2021-02-02 2021-05-07 武汉理工大学 一种复合蛇形流道结构及含有其的全钒液流电池
CN114182278A (zh) * 2021-11-30 2022-03-15 中国华能集团清洁能源技术研究院有限公司 一种新型导向菱形结构的电极单元、电解单元及应用
CN114182278B (zh) * 2021-11-30 2023-11-07 中国华能集团清洁能源技术研究院有限公司 一种导向菱形结构的电极单元、电解单元及应用
CN114824338A (zh) * 2022-04-01 2022-07-29 香港科技大学 一种双极板上具有二分叉指型结构的液流电池流道
CN114824338B (zh) * 2022-04-01 2023-12-22 香港科技大学 一种双极板上具有二分叉指型结构的液流电池流道

Also Published As

Publication number Publication date
CN102593482B (zh) 2015-02-04
CN102593482A (zh) 2012-07-18

Similar Documents

Publication Publication Date Title
WO2013139247A1 (zh) 集流板及含有其的液流电池和液流电池堆
US20110281169A1 (en) Electrode for a flow battery
CN101719556B (zh) 氧化还原液流电池的电堆结构
CN102751525B (zh) 液流电池及含有其的液流电池堆和液流电池系统
CN102299356A (zh) 液流电池的集流板及液流电池
CN103413956A (zh) 一种质子交换膜燃料电池流道
CN113555580A (zh) 一种燃料电池电堆用的极板
CN111509256A (zh) 一种叉形叶脉状交指型质子交换膜燃料电池双极板的流场
CN109950573B (zh) 一种燃料电池流场板
CN116956633B (zh) 一种液流电池流场优化设计方法及液流电池
CN202127059U (zh) 液流电池的集流板及液流电池
CN102479963A (zh) 膜组件、液流电池单元以及电池堆
CN102097630B (zh) 复合型双极板流场结构
CN111224144B (zh) 一种液流电池电堆结构及其应用
CN203103411U (zh) 一种液流框装置及其组成的电堆
CN202474106U (zh) 集流板及含有其的液流电池和液流电池堆
CN115911439B (zh) 一种具有双螺旋结构的液流电池双极板流道
CN112201803A (zh) 一种液流电池用对流增强型蛇形流道
CN204596879U (zh) 一种结构优化的全钒液流电池用液流框装置
CN203659987U (zh) 一种用于锌溴液流电池的波纹结构双极板
CN115986266A (zh) 一种具有强温度均匀性保持能力的电池热管理装置
CN210805927U (zh) 一种燃料电池双极板
CN112086658A (zh) 一种燃料电池流场板及燃料电池
CN208637499U (zh) 一种具有极耳的电池极板
CN208078093U (zh) 进气稳定的氢氧燃料电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764495

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13764495

Country of ref document: EP

Kind code of ref document: A1