WO2013139074A1 - 多载波系统的上行同步方法及装置 - Google Patents

多载波系统的上行同步方法及装置 Download PDF

Info

Publication number
WO2013139074A1
WO2013139074A1 PCT/CN2012/075506 CN2012075506W WO2013139074A1 WO 2013139074 A1 WO2013139074 A1 WO 2013139074A1 CN 2012075506 W CN2012075506 W CN 2012075506W WO 2013139074 A1 WO2013139074 A1 WO 2013139074A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary carrier
carrier
timing group
terminal
uplink synchronization
Prior art date
Application number
PCT/CN2012/075506
Other languages
English (en)
French (fr)
Inventor
朱昀
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013139074A1 publication Critical patent/WO2013139074A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present invention relates to the field of communications, and in particular to an uplink synchronization method and apparatus for a multi-carrier system.
  • Uplink synchronization is one of the key technologies for wireless communication. Specifically, different terminals adjust their uplink signal transmission timing under the synchronization control of the base station, so that the uplink signal arriving at the base station can reach the base station receiving antenna port at the same time. on. Good uplink synchronization can minimize interference between users.
  • the performance of uplink synchronization is directly related to the performance of the entire system.
  • the uplink synchronization of the Long-Term Evolution (LTE) system is implemented as follows: First, the base station receives the uplink signal sent by the terminal last time, estimates the terminal path delay and the adjustment amount, and then accesses through the medium. The control command of the Media Access Control (MAC) layer is used to send the adjustment amount to the terminal, and the terminal adjusts the next transmission timing after receiving the terminal.
  • MAC Media Access Control
  • the above method is effective; however, with the introduction of multi-carrier technology in the LTE system, in a multi-carrier scenario, since the path delay of each carrier is different, the base station cannot adjust all using a uniform time adjustment amount.
  • the embodiments of the present invention provide an uplink synchronization method and apparatus for a multi-carrier system, so as to at least solve the problem that uplink synchronization is difficult in a multi-carrier application scenario.
  • an uplink synchronization method for a multi-carrier system including: acquiring, by a terminal, an uplink synchronization adjustment amount of a secondary carrier timing group; wherein, a specified performance parameter of each carrier in the secondary carrier timing group is configured The range is adjusted; the terminal adjusts the uplink synchronization of the carriers in the secondary carrier timing group according to the uplink synchronization adjustment amount.
  • the method further includes: after receiving the secondary carrier configuration information that is sent by the base station, the terminal determines, according to the specified performance parameter of the secondary carrier, the auxiliary device where the secondary carrier is located.
  • the terminal divides the secondary carrier into the determined secondary carrier timing group, and notifies the secondary carrier timing group in which the secondary carrier is located to the base station.
  • the foregoing specified performance parameter is a frequency band parameter.
  • the determining, by the terminal, the secondary carrier timing group in which the secondary carrier is located according to the specified performance parameter of the secondary carrier includes: the terminal searching, according to the frequency band to which the secondary carrier belongs, whether there is an existing secondary carrier timing group; If yes, the foregoing terminal searches the secondary carrier timing group as the secondary carrier timing group of the secondary carrier; if not, the terminal generates a new secondary carrier timing group for the secondary carrier.
  • the specified performance parameter is a frequency distance parameter; determining, by the terminal, the secondary carrier timing group in which the secondary carrier is located according to the specified performance parameter of the secondary carrier includes: calculating, by the terminal, a frequency of the carrier in the secondary carrier and the existing secondary carrier timing group If the calculated frequency distance is less than the specified distance, the terminal uses the existing secondary carrier timing group as the secondary carrier timing group of the secondary carrier; if the secondary carrier and the carrier in each existing secondary carrier timing group The frequency distance is greater than or equal to the specified distance, and the terminal generates a new secondary carrier timing group for the secondary carrier.
  • the acquiring, by the terminal, the uplink synchronization adjustment amount of the secondary carrier timing group includes: after the terminal detects the command for activating the designated secondary carrier that is sent by the base station, sending, by the terminal, the random access request of the specified carrier to the base station; a random access response, where the random access response carries an initial uplink synchronization amount of the secondary carrier timing group in which the secondary carrier is determined according to the random access request, and the terminal determines the downlink signal according to the random access response. And a timing value, and determining an uplink synchronization adjustment amount of the secondary carrier timing group according to the downlink signal timing value and the uplink synchronization initial amount.
  • the terminal obtains the uplink synchronization adjustment amount of the secondary carrier timing group, where the terminal receives the timing adjustment command sent by the base station, where the timing adjustment command carries the synchronization initial quantity of the secondary carrier timing group, where the synchronization initial quantity is
  • the base station detects a delay of an uplink signal of the secondary carrier timing group of the terminal, and determines the downlink signal according to the uplink signal and the clock of the base station; the terminal determines a downlink signal timing value according to the timing adjustment command, and according to the downlink signal
  • the timing value and the uplink synchronization initial amount determine the uplink synchronization adjustment amount of the secondary carrier timing group.
  • the adjusting, by the terminal, the uplink synchronization of the carriers in the secondary carrier timing group according to the uplink synchronization adjustment amount includes: determining, by the terminal, whether a reference carrier exists in the secondary carrier timing group; if yes, adjusting, by the terminal, the uplink synchronization adjustment amount The uplink signal transmission time of the reference carrier in the secondary carrier timing group; the activation carrier other than the reference carrier in the secondary carrier timing group, and the terminal adjusts the uplink signal transmission of the activated carrier according to the uplink signal transmission time of the reference carrier Time; if no, the above terminal is based on The uplink synchronization adjustment amount adjusts an active carrier in the secondary carrier timing group, and uses the activated carrier as a reference carrier.
  • the method may further include: the terminal receiving a deactivation command of the secondary carrier delivered by the base station; the terminal determining the corresponding secondary carrier according to the deactivation command, and deleting the corresponding candidate from the secondary carrier timing group where the corresponding secondary carrier is located If the secondary carrier in the secondary carrier timing group in which the corresponding secondary carrier is located does not have an activated secondary carrier, the terminal deletes the secondary carrier timing group in which the corresponding secondary carrier is located, and notifies the base station.
  • the corresponding secondary carrier is a reference carrier; after the terminal deletes the corresponding secondary carrier from the secondary carrier timing group in which the corresponding secondary carrier is located, the method further includes: the terminal is timed from the secondary carrier where the corresponding secondary carrier is located An activated carrier is randomly selected in the group as a new reference carrier. Alternatively, the terminal selects an active carrier with the smallest error from the reference carrier clock as a new reference carrier from the secondary carrier timing group in which the corresponding secondary carrier is located.
  • an uplink synchronization apparatus for a multi-carrier system including: an uplink synchronization adjustment amount acquisition module, configured to acquire an uplink synchronization adjustment amount of a secondary carrier timing group; wherein, in a secondary carrier timing group The specified performance parameter of each carrier meets the set range; the uplink synchronization adjustment module is configured to perform uplink synchronization adjustment on the carrier in the secondary carrier timing group according to the uplink synchronization adjustment amount acquired by the uplink synchronization adjustment quantity acquisition module.
  • the device may further include: a secondary carrier timing group determining module, configured to determine, after receiving the secondary carrier configuration information sent by the base station on the primary carrier, determining a secondary carrier timing group in which the secondary carrier is located according to the specified performance parameter of the secondary carrier;
  • the secondary carrier timing group dividing module is configured to divide the secondary carrier into the secondary carrier timing group determined by the secondary carrier timing group determining module, and the notification module is configured to set the secondary carrier divided by the secondary carrier timing group dividing module The secondary carrier timing group is notified to the above base station.
  • the foregoing secondary carrier timing group determining module includes: a searching unit, configured to: if the specified performance parameter is a frequency band parameter, searching whether there is an existing secondary carrier timing group according to the frequency band to which the secondary carrier belongs; the first determining unit is configured to be When the search result of the search unit is yes, the searched secondary carrier timing group is used as the secondary carrier timing group of the secondary carrier; and the first generating unit is configured to be in the case that the search result of the searching unit is negative. , generating a new secondary carrier timing group for the secondary carrier.
  • the foregoing secondary carrier timing group determining module includes: a frequency distance calculating unit configured to calculate a frequency distance between the secondary carrier and a carrier in the existing secondary carrier timing group when the specified performance parameter is a frequency distance parameter; And setting, when the calculation result of the frequency distance calculating unit is that the frequency distance is less than the specified distance, using the existing secondary carrier timing group as the secondary carrier timing group of the secondary carrier; and the second generating unit is configured to be at the frequency
  • the calculation result of the distance calculation unit is the above secondary carrier and each existing secondary carrier When the frequency distance of the carriers in the timing group is greater than or equal to the specified distance, a new secondary carrier timing group is generated for the secondary carrier.
  • the uplink synchronization adjustment quantity acquisition module includes: a request sending unit, configured to: after receiving the command to activate the designated secondary carrier delivered by the base station, send the random access request of the specified carrier to the base station; and the response receiving unit is set to Receiving a random access response returned by the base station, where the random access response carries an uplink synchronization initial quantity of the secondary carrier timing group of the secondary carrier determined by the base station according to the random access request sent by the request sending unit;
  • An adjustment amount determining unit is configured to determine a downlink signal timing value according to the random access response received by the response receiving unit, and determine an uplink synchronization adjustment amount of the secondary carrier timing group according to the downlink signal timing value and the uplink synchronization initial amount.
  • the uplink synchronization adjustment quantity acquisition module includes: a command receiving unit, configured to receive a timing adjustment command sent by the base station, where the timing adjustment command carries an initial synchronization amount of the secondary carrier timing group; wherein, the synchronization initial quantity is
  • the base station detects a delay when an uplink signal of the secondary carrier timing group of the terminal occurs, and is determined according to the uplink signal and a clock of the base station; and the second adjustment amount determining unit is configured to be configured according to the timing received by the command receiving unit.
  • the adjustment command determines a downlink signal timing value, and determines an uplink synchronization adjustment amount of the secondary carrier timing group according to the downlink signal timing value and the uplink synchronization initial amount.
  • the uplink synchronization adjustment module includes: a reference carrier determining unit, configured to determine whether a reference carrier exists in the secondary carrier timing group; and a time adjusting unit configured to adjust according to the uplink synchronization when the determination result of the reference carrier determining unit is yes
  • the amount of the uplink signal transmission time of the reference carrier in the secondary carrier timing group is adjusted; the active carrier other than the reference carrier in the secondary carrier timing group adjusts the uplink signal of the activated carrier according to the uplink signal sending time of the reference carrier.
  • the carrier adjustment unit is configured to adjust an activation carrier in the secondary carrier timing group according to the uplink synchronization adjustment amount when the determination structure of the reference carrier determination unit is negative, and use the activated carrier as a reference carrier.
  • the device may further include: a deactivation command receiving module, configured to receive a deactivation command of the secondary carrier delivered by the base station; and a secondary carrier deletion module configured to determine, according to the deactivation command received by the deactivation command receiving module, the corresponding auxiliary a carrier, the corresponding secondary carrier is deleted from the secondary carrier timing group in which the corresponding secondary carrier is located; and the secondary carrier timing group deleting module is configured to be inactive in the secondary carrier timing group where the corresponding secondary carrier is located.
  • the secondary carrier timing group in which the corresponding secondary carrier is located is deleted, and the base station is notified.
  • the foregoing apparatus may further include one of the following modules: a first reference carrier determining module, configured to: when the corresponding secondary carrier deleted by the secondary carrier timing group deleting module is a reference carrier, timing from a secondary carrier where the corresponding secondary carrier is located One active carrier is randomly selected in the group as a new reference carrier; a second reference carrier determining module, When the corresponding secondary carrier deleted by the secondary carrier timing group deleting module is used as the reference carrier, selecting an active carrier with the smallest error from the reference carrier clock as the new one from the secondary carrier timing group in which the corresponding secondary carrier is located Reference carrier.
  • a first reference carrier determining module configured to: when the corresponding secondary carrier deleted by the secondary carrier timing group deleting module is a reference carrier, timing from a secondary carrier where the corresponding secondary carrier is located One active carrier is randomly selected in the group as a new reference carrier
  • a second reference carrier determining module When the corresponding secondary carrier deleted by the secondary carrier timing group deleting module is used as the reference carrier, selecting an active carrier with the smallest error from the
  • the uplink synchronization of each carrier in the group is performed by using the mode of the secondary carrier timing group, which solves the problem that the uplink synchronization is difficult in the multi-carrier application scenario, and ensures that each carrier of the multi-carrier terminal transmits an uplink signal.
  • the signals of the carriers can reach the base station at the same time, thereby ensuring the service between the base station and the terminal.
  • FIG. 1 is a schematic diagram of multiple carrier groups in a multi-carrier terminal according to an embodiment of the present invention
  • FIG. 2 is a flowchart of an uplink synchronization method of a multi-carrier system according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of carrier activation according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of implementing uplink timing according to downlink timing of a reference carrier according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of uplink timing adjustment according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of carrier deactivation according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram of carrier deactivation according to an embodiment of the present invention
  • FIG. 10 is a block diagram showing a detailed structure of an uplink synchronization apparatus of a multi-carrier system according to an embodiment of the present invention
  • FIG. 11 is a structural block diagram of a secondary carrier timing group determining module according to an embodiment of the present invention
  • FIG. 12 is a structural block diagram of another secondary carrier timing group determining module according to an embodiment of the present invention
  • FIG. 13 is a structural block diagram of an uplink synchronization adjustment amount acquisition module according to an embodiment of the present invention
  • FIG. 14 is a structural block diagram of another uplink synchronization adjustment amount acquisition module according to an embodiment of the present invention.
  • Frequency band 3 The width and center frequency of each frequency band are specified in the International Telecommunications Union (ITU) specification and will not be described in detail here.
  • the carrier configures several carriers, that is, the carrier u to carrier in Figure 1. 32
  • each carrier falls within the corresponding frequency band, and its carrier width is variable.
  • the variable bandwidth values conforming to the LTE system are 1.4Mhz, 5Mhz, lOMhz, and the like.
  • the terminal In the initial state, the terminal only works on the primary carrier, and then the base station (system side) notifies the user equipment (including its frequency, bandwidth, and other information) of the other carrier (including the secondary carrier) through the primary carrier to the user equipment (User Equipment)
  • the UE is also referred to as a terminal.
  • the base station instructs the terminal to activate one or several secondary carriers by using a control command on the primary carrier.
  • the frequency band, the number of carriers, and the bandwidth in Figure 1 are only illustrative.
  • the number of bands supported by the terminal in the actual project is determined by the terminal capability.
  • the number of carriers and the bandwidth can be flexibly configured by the operator according to the network deployment plan.
  • Step S202 A terminal acquires an uplink synchronization adjustment amount of a secondary carrier timing group, where the secondary carrier in this embodiment
  • the specified performance parameters of each carrier in the timing group conform to the set range.
  • the performance parameter herein may be a frequency band parameter, or may be a frequency distance parameter between two carriers, and the performance parameter is only used to divide different carriers into different secondary carrier timing groups, which is not specifically limited in the embodiment of the present invention.
  • the secondary carrier timing group may be represented by a TAG (TA Group), and for the multi-carrier terminal shown in FIG.
  • the carrier u Carrier 12 And carrier 13 The same frequency band i, constitutes TAG1; carrier twenty one Composition TAG2; carrier 31 And carrier 32 Make up TAG3.
  • the carrier 21 is the primary carrier and exists from the initial state. Therefore, the terminal allocates TAG2 to it initially, and the other carriers are subsequently added with the configuration of the base station; and the base station can also delete the secondary carrier at any time.
  • the terminal will adjust the corresponding TAG, such as the base station will be the carrier 31 Carrier 32 Deleted, so that there is no carrier in TAG3, then the terminal will delete TAG3, and if only the carrier is deleted 31 , then there is a carrier in TAG3 32 , need to be retained.
  • the secondary carrier timing group in the embodiment of the present invention can be understood as the above TAG1 and TAG3.
  • the TAG referred to here refers to a group of carrier combinations with the same timing advance. For all carrier terminals in the same group, a unified timing advance is used to adjust their uplink transmission timing, and the base station only adjusts the timing of one TAG transmission.
  • Step S204 The terminal performs uplink synchronization adjustment on the carrier in the secondary carrier timing group according to the uplink synchronization adjustment amount.
  • the uplink synchronization is performed on each carrier in the group by using the mode of the secondary carrier timing group, which solves the problem that the uplink synchronization is difficult in the multi-carrier application scenario, and ensures that each carrier of the multi-carrier terminal sends an uplink signal.
  • the signals of the carrier can arrive at the base station at the same time, thereby ensuring the service between the base station and the terminal.
  • the secondary carrier timing group is divided before the terminal performs the uplink synchronization adjustment, and the subsequent terminal needs to perform uplink synchronization during the mobile process, and does not need to adjust the secondary carrier timing group where the secondary carrier is located again, that is, the auxiliary
  • the method of the secondary carrier timing group to which the carrier belongs may be completed when the secondary carrier is initially configured.
  • the method further includes: before the terminal acquiring the uplink synchronization adjustment amount of the secondary carrier timing group, the method further includes: receiving, by the terminal, the base station, After the secondary carrier configuration information, the secondary carrier timing group in which the secondary carrier is located is determined according to the specified performance parameter of the secondary carrier; the terminal divides the secondary carrier into the determined secondary carrier timing group, and the secondary carrier timing group where the secondary carrier is located Notify the base station.
  • the carrier division mode can combine the carriers with the same timing advance.
  • the terminal configures the new secondary carrier and the TAG, and then notifies the base station of each updated information, so that the terminal can perform uplink synchronization.
  • the specified performance parameter in the embodiment of the present invention is described by taking a frequency band parameter or a frequency distance parameter as an example.
  • the terminal determines that the secondary carrier timing group in which the secondary carrier is located may be adopted according to the specified performance parameter of the secondary carrier.
  • the method is implemented as follows: The terminal searches for the existing secondary carrier timing group according to the frequency band to which the secondary carrier belongs; if yes, the terminal searches the secondary carrier timing group as the secondary carrier timing group of the secondary carrier; if not, the terminal is The secondary carrier generates a new secondary carrier timing group.
  • the schematic diagram of the terminal configuration carrier shown in FIG. 3 includes the following steps: Step S300: The terminal receives information about configuring the secondary carrier on the primary carrier.
  • Step S302 The terminal determines whether the secondary carrier belongs to the secondary carrier to which the secondary carrier belongs.
  • the terminal first determines, in which frequency band the secondary carrier belongs, whether the secondary carrier is already configured in the vicinity of the frequency band. If yes, go to step S304; if not, go to step S306.
  • Step S304 the terminal classifies the carrier and the originally configured secondary carrier into the same TAG.
  • Step S306 the terminal creates a new TAG, and puts the carrier into the new TAG.
  • the above carrier configuration mode is simple and easy to operate. According to the carrier, the TAG is only one of the implementation methods of the TAG. There are other implementation methods. For example, when the specified performance parameter is a frequency distance parameter, the terminal determines the secondary carrier according to the specified performance parameter of the secondary carrier.
  • the secondary carrier timing group can be implemented in the following manner: The terminal calculates the frequency distance between the secondary carrier and the carrier in the existing secondary carrier timing group; if the calculated frequency distance is less than the specified distance, the terminal will have the existing secondary carrier timing group A secondary carrier timing group as a secondary carrier; if the frequency distance between the secondary carrier and the carrier in each existing secondary carrier timing group is greater than or equal to a specified distance, the terminal generates a new secondary carrier timing group for the secondary carrier. For example, how many frequency distances between the newly configured carrier i and any previously configured carrier j, if not exceeding a certain distance, the carrier i is divided into the TAG where the carrier j is located, otherwise a new TAG is placed and placed in the carrier i.
  • Step S402 The base station sends a command to instruct the terminal to activate a certain carrier; since there is a service, a certain carrier needs to be activated, and the base station sends a command to activate the carrier.
  • the command is equivalent to the above activation command.
  • Step S404 After receiving the foregoing command, the terminal sends a random access request to the base station on the carrier.
  • the terminal obtains the initialization of the uplink synchronization of the carrier, and the specific steps are as follows: The terminal continuously sends the same to the base station. Random access request until a response from the base station is received. Further, the random access request is a preamble sequence that is known to both the terminal and the base station, and each time the transmission repetition of the terminal increases the transmission power compared to the previous time during the transmission.
  • Step S406 After detecting the access request, the base station sends a random access response and simultaneously sends an initialization timing.
  • Step S408 After receiving the random access response of the base station, the terminal stops the random access request transmission, initializes an uplink transmission opportunity on the carrier, and then starts transmitting data between the carrier and the base station.
  • MAC CE Media Control message
  • the terminal and the base station perform the data transmission process in the following manner, which may be implemented in the following manner:
  • the uplink transmission timing is always associated with the The reference carriers in the TAG are consistent.
  • carrier A is the currently only activated carrier in the TAG to which it belongs.
  • the terminal adjusts the timing of its uplink signal according to the received downlink signal timing and MAC CE, and defines carrier A as the reference carrier of the TAG.
  • the uplink timing of each terminal of the terminal is based on TAG, that is, only one reference carrier in each TAG is used as a reference for uplink timing, and the uplink timing of other carriers is consistent with the reference carrier.
  • the adjusting, by the terminal, the uplink synchronization of the carriers in the secondary carrier timing group according to the uplink synchronization adjustment amount may include: determining, by the terminal, whether a reference carrier exists in the secondary carrier timing group; if yes, the terminal adjusting according to the uplink synchronization Adjusting the uplink signal transmission time of the reference carrier in the secondary carrier timing group; the active carrier other than the reference carrier in the secondary carrier timing group, and adjusting the uplink signal transmission time of the active carrier according to the uplink signal transmission time of the reference carrier; The terminal adjusts the activated carrier in the secondary carrier timing group according to the uplink synchronization adjustment amount, and uses the activated carrier as the reference carrier.
  • the uplink timing of the reference carrier in step S404 and step S408 is specifically implemented as shown in FIG. 5.
  • the upper half of Fig. 5 indicates the timing (downlink timing) of the downlink signal transmitted by the base station detected by the terminal, and the lower half of Fig. 5 indicates the timing of the reference carrier uplink signal.
  • the terminal first detects the time when the downlink signal arrives, and then determines the downlink timing. Since the length of each time slot in the LTE system is lms, the terminal can detect the downlink signal arrival time every lms time as the downlink timing; then the downlink timing The TA is advanced as the uplink timing. Due to the multipath characteristic of the wireless environment, the downlink signal sent by the base station may have multiple copies to reach the terminal.
  • the arrival time of the terminal detecting the downlink signal specifically refers to the first path signal detected by the terminal (ie, the first one) The arrival time of the signal replica, or the arrival time of the strongest path signal (ie, the strongest signal replica) detected by the terminal.
  • the timings of the downlink signals in FIG. 5 are evenly spaced, which is only a schematic diagram in an ideal situation. In the actual environment, the downlink arrival signal detected by the terminal often arrives unevenly, and the downlink timing is also detected according to the detection. The arrival time of the signal is adjusted at any time.
  • the uplink synchronization adjustment quantity obtained in this embodiment may be implemented in the following manner: 1) After the terminal detects the command to activate the designated secondary carrier delivered by the base station, the terminal sends a random connection of the designated carrier to the base station. 2) The terminal receives the random access response returned by the base station, where the random access response carries the uplink synchronization initial quantity (TA) of the secondary carrier timing group of the secondary carrier determined by the base station according to the random access request; 3) Determining a downlink signal timing value according to the random access response, and determining an uplink synchronization adjustment amount of the secondary carrier timing group according to the downlink signal timing value and the uplink synchronization initial amount.
  • TA uplink synchronization initial quantity
  • Step S602 The base station receives the uplink according to the received uplink.
  • the signal and the clock inside the base station calculate an uplink timing adjustment amount, and send a timing adjustment command to the terminal.
  • the timing adjustment command in this embodiment is sent in a media control message (MAC CE), but unlike the initialization timing processing, the timing adjustment command only occupies 6 bits.
  • the base station carries the corresponding TAG information while transmitting the timing amount, indicating that it adjusts the timing of the TAG.
  • Step S604 After receiving the timing adjustment command, the terminal finds the corresponding TAG, applies the TA value to adjust all activated carriers on the TAG, and adjusts their uplink sending timings.
  • the timing of the uplink transmission is specifically determined by the downlink signal timing and the MAC CE (refer to FIG. 5).
  • the terminal since the terminal needs to decode the downlink command for a certain period of time, if the terminal receives the timing adjustment command in the nth subframe (Subfmme), the uplink timing is re-adjusted in the n+6th subframe, such as Figure 7 shows.
  • the obtaining, by the terminal in step S202, the uplink synchronization adjustment amount of the secondary carrier timing group may further include: the terminal receiving the timing adjustment command sent by the base station, where the timing adjustment command carries the synchronization initialization of the secondary carrier timing group.
  • the initial amount of synchronization is determined by the base station detecting the delay of the uplink signal of the secondary carrier timing group of the terminal, and is determined according to the uplink signal and the internal clock of the base station; the terminal determines the downlink signal timing value according to the timing adjustment command. And determining an uplink synchronization adjustment amount of the secondary carrier timing group according to the downlink signal timing value and the uplink synchronization initial amount (TA).
  • the base station can activate a certain secondary carrier or activate a secondary carrier in an active state according to the needs of the service.
  • Step 8 the terminal determines the carrier A.
  • Step S806 the terminal determines whether there are other carriers in the TAG to which the carrier A belongs, if yes, perform steps S808; If not, step S810 is performed; Step S808, the terminal selects one carrier from the activated carrier of the TAG as a new reference carrier; the terminal selects a new reference carrier in two ways: mode one, the terminal is in the TAG remaining One carrier is randomly selected as a new reference carrier in the activated carrier; mode 2, corresponding to the carrier in step S408 Shii arrangement, the terminal selects the smallest index the carrier remaining TAG activated carrier (e.g., the carrier is a carrier B) as a reference carrier.
  • the carrier is a carrier B
  • the clock error between carrier B and the original reference carrier is the smallest, so it can be considered as the most reliable synchronization source remaining, which can reduce the adjustment hopping when the carrier synchronizes with the new reference carrier.
  • the terminal changes the index value of the new reference carrier to zero, and adjusts the uplink timing of other carriers in the TAG to be the same as the new reference carrier. Step S810, the terminal deactivates the carrier A. If the terminal deactivates the above carrier A, there is no active carrier and a dormant carrier in the TAG, and the terminal will internally delete the TAG.
  • the uplink synchronization method of the multi-carrier system further includes: the terminal receiving a deactivation command of the secondary carrier delivered by the base station; the terminal determining, according to the deactivation command, the corresponding secondary carrier, where the corresponding secondary carrier is located, The secondary carrier timing group deletes the secondary carrier; if there is no secondary secondary carrier in the secondary carrier timing group where the corresponding secondary carrier is located, the terminal deletes the secondary carrier timing group where the corresponding secondary carrier is located, and notifies the base station.
  • This method can optimize the TAG maintained by the terminal and reduce maintenance costs.
  • the method further includes: the terminal randomly selecting from the secondary carrier timing group where the corresponding secondary carrier is located An activated carrier is used as a new reference carrier; or, the terminal selects an active carrier with the smallest error from the reference carrier clock as a new reference carrier from the secondary carrier timing group in which the corresponding secondary carrier is located.
  • This method of re-determining the reference carrier can facilitate the uplink synchronization of the carriers in the TAG.
  • the embodiment of the present invention further provides an uplink synchronization device of a multi-carrier system, which can be implemented on a terminal. As shown in FIG.
  • the device further includes the following modules:
  • the secondary carrier timing group determining module 93 is configured to: after receiving the secondary carrier configuration information sent by the base station on the primary carrier, determine the secondary carrier timing group in which the secondary carrier is located according to the specified performance parameter of the secondary carrier; And the secondary carrier timing group determining module 93 is connected to be configured to divide the secondary carrier into the secondary carrier timing group determined by the secondary carrier timing group determining module 93; the notification module 95, the secondary carrier timing group dividing module 96, and the uplink synchronization adjustment amount.
  • the obtaining module 92 is connected to the base station to notify the base station of the secondary carrier timing group in which the secondary carrier divided by the secondary carrier timing group dividing module 96 is located.
  • the foregoing secondary carrier timing group determining module 93 may have multiple implementation manners, such as the structural block diagram of the secondary carrier timing group determining module shown in FIG. 11, the module includes the following unit:
  • the searching unit 932 is configured to specify the performance parameter as the frequency band parameter. If the frequency band to which the secondary carrier belongs is located, it is searched whether there is an existing secondary carrier timing group.
  • the first determining unit 934 is connected to the searching unit 932, and is set to be found when the search result of the searching unit 932 is YES.
  • the secondary carrier timing group is used as the secondary carrier timing group of the secondary carrier.
  • the first generating unit 936 is connected to the searching unit 932, and is configured to generate a new secondary carrier timing for the secondary carrier if the search result of the searching unit 932 is negative.
  • FIG. 12 is a structural block diagram of another secondary carrier timing group determining module, where the module includes the following unit:
  • the frequency distance calculating unit 931 is configured to calculate a secondary carrier and an existing one when the specified performance parameter is a frequency distance parameter.
  • the second determining unit 933 is connected to the frequency distance calculating unit 931, and is configured to set the existing secondary carrier when the frequency distance calculating unit 931 calculates that the frequency distance is less than the specified distance.
  • the timing group is used as the secondary carrier timing group of the secondary carrier;
  • the second generating unit 935 is connected to the frequency distance calculating unit 931, and is set to be in the frequency carrier calculating unit 931, and the calculation result is the secondary carrier and each existing secondary carrier timing group.
  • FIG. 13 is a structural block diagram of an uplink synchronization adjustment quantity acquisition module according to an embodiment of the present invention.
  • the uplink synchronization adjustment quantity acquisition module may include the following unit: based on the uplink synchronization mode in the carrier activation process: the request sending unit 922 is set to listen.
  • the uplink synchronization adjustment quantity acquisition module of the embodiment may include the following units:
  • the command receiving unit 921 is configured to receive the base station.
  • the timing adjustment command is sent, wherein the timing adjustment command carries the synchronization initial quantity of the secondary carrier timing group; wherein, the synchronization initial quantity is a delay when the base station detects the uplink signal of the secondary carrier timing group of the terminal, according to the uplink signal and the base station
  • the second clock adjustment unit 923 is connected to the command receiving unit 921, and is configured to determine the downlink signal timing value according to the timing adjustment command received by the command receiving unit 921, and according to the downlink signal timing value and the uplink synchronization initial amount. Determine the uplink synchronization adjustment amount of the secondary carrier timing group.
  • the uplink synchronization adjustment module includes: a reference carrier determining unit, configured to determine whether a reference carrier exists in the secondary carrier timing group; the time adjustment unit is connected to the reference carrier determining unit, and is configured to determine that the reference carrier determining unit is When yes, the uplink signal transmission time of the reference carrier in the secondary carrier timing group is adjusted according to the uplink synchronization adjustment amount; the active carrier other than the reference carrier in the secondary carrier timing group adjusts the uplink of the active carrier according to the uplink signal transmission time of the reference carrier.
  • the signal transmission unit is connected to the reference carrier determining unit, and is configured to adjust the active carrier in the secondary carrier timing group according to the uplink synchronization adjustment amount when the determining structure of the reference carrier determining unit is negative, and use the activated carrier as a reference. Carrier.
  • the device further includes: a deactivation command receiving module, configured to receive a deactivation command of the secondary carrier delivered by the base station; and a secondary carrier deletion module connected to the deactivation command receiving module, configured to be configured according to The deactivation command received by the deactivation command receiving module determines the corresponding secondary carrier, and deletes the corresponding secondary carrier from the secondary carrier timing group where the corresponding secondary carrier is located; the secondary carrier timing group deletion module is connected to the secondary carrier deletion module, and is set to When there is no activated secondary carrier in the secondary carrier timing group where the corresponding secondary carrier is located, the secondary carrier timing group in which the corresponding secondary carrier is located is deleted, and the base station is notified.
  • a deactivation command receiving module configured to receive a deactivation command of the secondary carrier delivered by the base station
  • a secondary carrier deletion module connected to the deactivation command receiving module, configured to be configured according to The deactivation command received by the deactivation command receiving module determines the corresponding secondary carrier, and deletes the corresponding secondary carrier from the secondary
  • the foregoing apparatus may further include one of the following modules: a first reference carrier determining module, configured to be when the corresponding secondary carrier deleted by the secondary carrier timing group deleting module is a reference carrier , randomly selecting an active carrier from the secondary carrier timing group in which the corresponding secondary carrier is located as a new Or a second reference carrier determining module, configured to: when the corresponding secondary carrier deleted by the secondary carrier timing group deleting module is a reference carrier, select one of the secondary carrier timing groups in which the secondary carrier is located and the reference carrier The active carrier with the smallest clock error is used as the new reference carrier.
  • a first reference carrier determining module configured to be when the corresponding secondary carrier deleted by the secondary carrier timing group deleting module is a reference carrier , randomly selecting an active carrier from the secondary carrier timing group in which the corresponding secondary carrier is located as a new
  • a second reference carrier determining module configured to: when the corresponding secondary carrier deleted by the secondary carrier timing group deleting module is a reference carrier, select one of the secondary carrier timing groups in which the secondary carrier is located
  • the embodiments of the present invention ensure that each carrier of the multi-carrier terminal can simultaneously arrive at the base station when transmitting the uplink signal, and the arrival time is also maintained between the terminal and the terminal. Consistently, it provides guarantee for the smooth progress of the business and enhances the stability and practicability of the system.
  • the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种多载波系统的上行同步方法及装置。其中,该方法包括:终端获取辅载波定时组的上行同步调整量;其中,该辅载波定时组中的各个载波的指定性能参数符合设定范围;终端根据该上行同步调整量对该辅载波定时组中的载波进行上行同步的调整。通过本发明,采用辅载波定时组的模式对组内的各个载波进行上行同步,解决了多载波应用场景中上行同步实现困难的问题,保证了多载波终端的各载波在发送上行信号时,每个载波的信号都能同时到达基站,进而保证了基站和终端间的业务。

Description

多载波系统的上行同步方法及装置 技术领域 本发明涉及通信领域, 具体而言, 涉及一种多载波系统的上行同步方法及装置。 背景技术 上行同步是无线通信的关键技术之一, 它具体是指不同的终端在基站的同步的控 制下调整各自的上行信号发送时机, 使得到达基站的上行信号能在同一时刻到达基站 接收天线端口上。 良好的上行同步可以最大限度减少用户间干扰, 上行同步性能的好 坏直接关系到整个系统性能的好坏。 目前, 无线长期演进 (Long-Term Evolution, 简称为 LTE) 系统的上行同步是这 样实现的: 首先, 基站接收终端上一次发送的上行信号, 估计出终端路径延迟和调整 量, 然后通过媒体接入控制(Media Access Control, 简称为 MAC)层的控制命令来将 调整量发送给终端, 终端接收到后调整下次的发送时机。 对于单载波的 LTE系统, 上 述方法比较有效; 但是随着 LTE系统引入了多载波技术, 在多载波场景中, 由于每个 载波的路径延迟不同, 基站无法使用一个统一的时间调整量来调整所有的载波的上行 发送时机; 另外, 在多载波场景中, 有的载波在很长一段时间内可能只用于上行, 有 的载波可能只用于下行, 对于只用于上行的载波, 基站在估计其路径延迟之后, 因为 其不用于下行, 无法直接通过该载波将调整量下发给终端。 针对相关技术中多载波应用场景中上行同步实现困难的问题, 目前尚未提出有效 的解决方案。 发明内容 本发明实施例提供了一种多载波系统的上行同步方法及装置, 以至少解决多载波 应用场景中上行同步实现困难的问题。 根据本发明的一个实施例, 提供了一种多载波系统的上行同步方法, 包括: 终端 获取辅载波定时组的上行同步调整量; 其中, 辅载波定时组中的各个载波的指定性能 参数符合设定范围; 终端根据上行同步调整量对辅载波定时组中的载波进行上行同步 的调整。 终端获取辅载波定时组的上行同步调整量之前, 上述方法还包括: 终端在主载波 上接收到基站下发的辅载波配置信息后, 根据上述辅载波的指定性能参数确定上述辅 载波所在的辅载波定时组;上述终端将上述辅载波划分到确定的上述辅载波定时组中, 并将上述辅载波所在的辅载波定时组通知给上述基站。 上述指定性能参数为频带参数; 上述终端根据上述辅载波的指定性能参数确定上 述辅载波所在的辅载波定时组包括: 上述终端根据上述辅载波所属的频带查找是否有 已存在的辅载波定时组; 如果是, 上述终端将查找到的上述辅载波定时组作为上述辅 载波的辅载波定时组; 如果否, 上述终端为上述辅载波生成一个新的辅载波定时组。 上述指定性能参数为频率距离参数; 上述终端根据上述辅载波的指定性能参数确 定上述辅载波所在的辅载波定时组包括: 上述终端计算上述辅载波与已存在的辅载波 定时组中的载波的频率距离; 如果计算得到的频率距离小于指定距离, 上述终端将上 述已存在的辅载波定时组作为上述辅载波的辅载波定时组; 如果上述辅载波与各个已 存在的辅载波定时组中的载波的频率距离均大于或等于上述指定距离, 上述终端为上 述辅载波生成一个新的辅载波定时组。 终端获取辅载波定时组的上行同步调整量包括: 上述终端侦听到上述基站下发的 激活指定辅载波的命令后, 向上述基站发送上述指定载波的随机接入请求; 上述终端 接收上述基站返回的随机接入响应, 其中, 上述随机接入响应携带有上述基站根据上 述随机接入请求确定的上述辅载波所在辅载波定时组的上行同步初始量; 上述终端根 据上述随机接入响应确定下行信号定时值, 并根据上述下行信号定时值和上述上行同 步初始量确定上述辅载波定时组的上行同步调整量。 终端获取辅载波定时组的上行同步调整量包括: 上述终端接收上述基站下发的定 时调整命令, 其中, 上述定时调整命令携带有上述辅载波定时组的同步初始量; 其中, 上述同步初始量为上述基站检测到上述终端的辅载波定时组的上行信号出现时延时, 根据上述上行信号和上述基站内部的时钟确定的; 上述终端根据上述定时调整命令确 定下行信号定时值, 并根据上述下行信号定时值和上述上行同步初始量确定上述辅载 波定时组的上行同步调整量。 上述终端根据上述上行同步调整量对上述辅载波定时组中的载波进行上行同步的 调整包括: 上述终端判断上述辅载波定时组中是否存在参考载波; 如果是, 上述终端 根据上述上行同步调整量调整上述辅载波定时组中的参考载波的上行信号发送时间; 上述辅载波定时组中除上述参考载波之外的激活载波, 上述终端按照上述参考载波的 上行信号发送时间调整上述激活载波的上行信号发送时间; 如果否, 上述终端根据上 述上行同步调整量调整上述辅载波定时组中的激活载波, 并将上述激活载波作为参考 载波。 上述方法还可以包括: 上述终端接收基站下发的辅载波的去激活命令; 上述终端 根据上述去激活命令确定对应的辅载波, 从上述对应的辅载波所在的辅载波定时组中 删除上述对应的辅载波; 如果上述对应的辅载波所在的辅载波定时组中没有激活的辅 载波时, 上述终端删除上述对应的辅载波所在的辅载波定时组, 并通知上述基站。 上述对应的辅载波为参考载波; 上述终端从上述对应的辅载波所在的辅载波定时 组中删除上述对应的辅载波之后, 上述方法还包括: 上述终端从上述对应的辅载波所 在的辅载波定时组中随机选择一个激活载波作为新的参考载波; 或者, 上述终端从上 述对应的辅载波所在的辅载波定时组中选择一个与上述参考载波时钟误差最小的激活 载波作为新的参考载波。 根据本发明的另一实施例, 提供了一种多载波系统的上行同步装置, 包括: 上行 同步调整量获取模块, 设置为获取辅载波定时组的上行同步调整量; 其中, 辅载波定 时组中的各个载波的指定性能参数符合设定范围; 上行同步调整模块, 设置为根据上 行同步调整量获取模块获取的上行同步调整量对辅载波定时组中的载波进行上行同步 的调整。 上述装置还可以包括: 辅载波定时组确定模块, 设置为在主载波上接收到基站下 发的辅载波配置信息后, 根据上述辅载波的指定性能参数确定上述辅载波所在的辅载 波定时组; 辅载波定时组划分模块, 设置为将上述辅载波划分到上述辅载波定时组确 定模块确定的上述辅载波定时组中; 通知模块, 设置为将上述辅载波定时组划分模块 划分的上述辅载波所在的辅载波定时组通知给上述基站。 上述辅载波定时组确定模块包括: 查找单元, 设置为当上述指定性能参数为频带 参数时, 根据上述辅载波所属的频带查找是否有已存在的辅载波定时组; 第一确定单 元, 设置为在上述查找单元的查找结果为是的情况下, 将查找到的上述辅载波定时组 作为上述辅载波的辅载波定时组; 第一生成单元, 设置为在上述查找单元的查找结果 为否的情况下, 为上述辅载波生成一个新的辅载波定时组。 上述辅载波定时组确定模块包括: 频率距离计算单元, 设置为当上述指定性能参 数为频率距离参数时,计算上述辅载波与已存在的辅载波定时组中的载波的频率距离; 第二确定单元, 设置为在上述频率距离计算单元的计算结果是上述频率距离小于指定 距离时, 将上述已存在的辅载波定时组作为上述辅载波的辅载波定时组; 第二生成单 元, 设置为在上述频率距离计算单元的计算结果是上述辅载波与各个已存在的辅载波 定时组中的载波的频率距离均大于或等于上述指定距离时, 为上述辅载波生成一个新 的辅载波定时组。 上述上行同步调整量获取模块包括: 请求发送单元, 设置为侦听到上述基站下发 的激活指定辅载波的命令后, 向上述基站发送上述指定载波的随机接入请求; 响应接 收单元, 设置为接收上述基站返回的随机接入响应, 其中, 上述随机接入响应携带有 上述基站根据上述请求发送单元发送的上述随机接入请求确定的上述辅载波所在辅载 波定时组的上行同步初始量; 第一调整量确定单元, 设置为根据上述响应接收单元接 收的上述随机接入响应确定下行信号定时值, 并根据上述下行信号定时值和上述上行 同步初始量确定上述辅载波定时组的上行同步调整量。 上述上行同步调整量获取模块包括: 命令接收单元, 设置为接收上述基站下发的 定时调整命令, 其中, 上述定时调整命令携带有上述辅载波定时组的同步初始量; 其 中, 上述同步初始量为上述基站检测到上述终端的辅载波定时组的上行信号出现时延 时, 根据上述上行信号和上述基站内部的时钟确定的; 第二调整量确定单元, 设置为 根据上述命令接收单元接收的上述定时调整命令确定下行信号定时值, 并根据上述下 行信号定时值和上述上行同步初始量确定上述辅载波定时组的上行同步调整量。 上述上行同步调整模块包括: 参考载波判断单元, 设置为判断上述辅载波定时组 中是否存在参考载波; 时间调整单元, 设置为在上述参考载波判断单元的判断结果为 是时, 根据上述上行同步调整量调整上述辅载波定时组中的参考载波的上行信号发送 时间; 上述辅载波定时组中除上述参考载波之外的激活载波, 按照上述参考载波的上 行信号发送时间调整上述激活载波的上行信号发送时间; 载波调整单元, 设置为在上 述参考载波判断单元的判断结构为否时, 根据上述上行同步调整量调整上述辅载波定 时组中的激活载波, 并将上述激活载波作为参考载波。 上述装置还可以包括: 去激活命令接收模块, 设置为接收基站下发的辅载波的去 激活命令; 辅载波删除模块, 设置为根据上述去激活命令接收模块接收的上述去激活 命令确定对应的辅载波, 从上述对应的辅载波所在的辅载波定时组中删除上述对应的 辅载波; 辅载波定时组删除模块, 设置为在当上述对应的辅载波所在的辅载波定时组 中没有激活的辅载波时, 删除上述对应的辅载波所在的辅载波定时组, 并通知上述基 站。 上述装置还可以包括以下模块之一: 第一参考载波确定模块, 设置为当上述辅载 波定时组删除模块删除的上述对应的辅载波为参考载波时, 从上述对应的辅载波所在 的辅载波定时组中随机选择一个激活载波作为新的参考载波;第二参考载波确定模块, 设置为当上述辅载波定时组删除模块删除的上述对应的辅载波为参考载波时, 从上述 对应的辅载波所在的辅载波定时组中选择一个与上述参考载波时钟误差最小的激活载 波作为新的参考载波。 通过本发明, 采用辅载波定时组的模式对组内的各个载波进行上行同步, 解决了 多载波应用场景中上行同步实现困难的问题, 保证了多载波终端的各载波在发送上行 信号时, 每个载波的信号都能同时到达基站, 进而保证了基站和终端间的业务。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1是根据本发明实施例的多载波终端中的多载波组成若干载波组的示意图; 图 2是根据本发明实施例的多载波系统的上行同步方法流程图; 图 3是根据本发明实施例的终端配置载波的示意图; 图 4是根据本发明实施例的载波激活示意图; 图 5是根据本发明实施例的参考载波根据下行定时来实现上行定时的示意图; 图 6是根据本发明实施例的上行定时维护的示意图; 图 7是根据本发明实施例的上行定时调整的示意图; 图 8是根据本发明实施例的载波去激活的示意图; 图 9是根据本发明实施例的多载波系统的上行同步装置的结构框图; 图 10是根据本发明实施例的多载波系统的上行同步装置的具体结构框图; 图 11是根据本发明实施例的辅载波定时组确定模块的结构框图; 图 12是根据本发明实施例的另一种辅载波定时组确定模块的结构框图; 图 13是根据本发明实施例的上行同步调整量获取模块的结构框图; 图 14是根据本发明实施例的另一种上行同步调整量获取模块的结构框图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 本发明实施例主要针对多载波终端实现上行同步进行说明, 如图 1所示的采用多 载波终端的示意图, 该终端支持三个频段, 即频段 i, 频段 2, 频段 3, 每个频段的宽 度和中心频点在国际电信联盟 (International Telecommunications Union, 简称为 ITU) 规范中有具体的规定, 这里不再详述。 在这三个频段上运营商配置了若干载波, 即图 1 中的载波 u到载波 32, 这里每个载波都落在相应的频段内, 其载波宽度是可变的, 目前, 符合 LTE系统的可变带宽值有 1.4Mhz, 5Mhz, lOMhz等。 在众多载波中, 载 波21是一个特殊的载波, 被称为主载波。 终端在初始状态下, 仅工作在主载波上, 之 后基站 (系统侧) 通过主载波将其他载波 (称为辅载波) 的信息 (包括其频点, 带宽 等信息) 通知到用户设备 (User Equipment, 简称为 UE, 也称作终端), 当需要终端 在辅载波上也工作时, 基站通过主载波上的控制命令来指示终端激活某个或某几个辅 载波。 图 1中的频段、 载波的个数及带宽仅是示意作用, 工程实际中终端支持的频段数 由终端能力确定, 载波个数及带宽可以由运营商根据网络部署方案灵活配置。 图 2示出了根据本发明实施例的多载波系统的上行同步方法流程图, 该方法包括 以下步骤: 步骤 S202, 终端获取辅载波定时组的上行同步调整量; 其中, 本实施例的辅载波 定时组中的各个载波的指定性能参数符合设定范围。 这里的性能参数可以是频带参数, 也可以是两个载波间的频率距离参数等, 该性 能参数仅是用于将不同的载波划分为不同的辅载波定时组, 本发明实施例不作具体限 制。 具体实现时, 该辅载波定时组可以用 TAG (TA Group, 定时组) 表示, 对于图 1 所示的多载波终端, 是按照频段来组建 TAG的示例, 载波 u、载波 12和载波 13同属于 频段 i, 组成 TAG1 ; 载波 21组成 TAG2; 载波 31和载波 32组成 TAG3。 这其中载波 21 因为是主载波, 从初始状态就存在, 因此终端从初始就为其分配了 TAG2, 而其它载 波是随着基站的配置后续增加的; 并且基站还可以随时删除辅载波, 这时终端会调整 相应的 TAG, 比如基站将载波 31, 载波 32都删除, 使得 TAG3中没有了载波, 那么终 端就会把 TAG3删除, 而如果仅删除了载波 31, 那么 TAG3中还有载波 32, 需要保留。 本发明实施例中的辅载波定时组可以理解为上述的 TAG1和 TAG3。 这里所指的 TAG是指一组具有相同的定时提前量的载波组合, 对于同一组中的所有载波终端采用 统一的时间提前量来调整它们的上行发送时机,基站也只对一个 TAG发送时间调整的 命令。 步骤 S204,终端根据上行同步调整量对上述辅载波定时组中的载波进行上行同步 的调整。 本实施例采用辅载波定时组的模式对组内的各个载波进行上行同步, 解决了多载 波应用场景中上行同步实现困难的问题, 保证了多载波终端的各载波在发送上行信号 时, 每个载波的信号都能同时到达基站, 进而保证了基站和终端间的业务。 上述辅载波定时组是在终端进行上行同步调整量之前就划分好的, 而后续终端在 移动过程中, 需要进行上行同步时, 不需要再次对辅载波所在的辅载波定时组进行调 整, 即辅载波归属于哪个辅载波定时组可以在最初配置辅载波时完成, 基于此, 上述 终端获取辅载波定时组的上行同步调整量之前, 上述方法还包括: 终端在主载波上接 收到基站下发的辅载波配置信息后, 根据辅载波的指定性能参数确定该辅载波所在的 辅载波定时组; 终端将该辅载波划分到确定的辅载波定时组中, 并将该辅载波所在的 辅载波定时组通知给基站。 这种载波划分方式可以使具有相同的定时提前量的载波组 合在一起, 同时, 终端配置了新的辅载波和 TAG后将每个更新的信息通知基站, 便于 终端进行上行同步。 本发明实施例中的指定性能参数以频带参数或频率距离参数为例进行说明, 对于 指定性能参数为频带参数时, 上述终端根据辅载波的指定性能参数确定辅载波所在的 辅载波定时组可以采用下述方式实现: 终端根据该辅载波所属的频带查找是否有已存 在的辅载波定时组; 如果是, 终端将查找到的辅载波定时组作为辅载波的辅载波定时 组; 如果否, 终端为辅载波生成一个新的辅载波定时组。 例如: 如图 3所示终端配置 载波的示意图, 包括以下步骤: 步骤 S300, 终端在主载波上收到关于配置辅载波的信息。 步骤 S302, 终端判断该辅载波所属频带是否已有辅载波被配置; 例如, 终端首先 判断该辅载波是落在哪个频带上的, 该频带附近是否已经有辅载波被配置。 如果有, 执行步骤 S304; 如果否则, 执行步骤 S306。 步骤 S304, 终端将该载波和原来配置的辅载波归入到同一个 TAG中。 步骤 S306, 终端新建一个 TAG, 并将该载波放入到新的 TAG中。 步骤 S308, 终端将该载波的 TAG信息上报给基站。 上述载波配置方式简单易行, 便于操作。 根据载波落在那个频段上来组成 TAG只是组成 TAG的一种实现方法, 还可以有 其它实现方法, 例如, 上述指定性能参数为频率距离参数时, 上述终端根据辅载波的 指定性能参数确定辅载波所在的辅载波定时组可以采用下述方式实现: 终端计算辅载 波与已存在的辅载波定时组中的载波的频率距离; 如果计算得到的频率距离小于指定 距离, 终端将已存在的辅载波定时组作为辅载波的辅载波定时组; 如果辅载波与各个 已存在的辅载波定时组中的载波的频率距离均大于或等于指定距离, 终端为辅载波生 成一个新的辅载波定时组。比如,新配置的载波 i与之前配置的任意载波 j之间相距多 少频率距离, 如果没有超过一定的距离, 则将载波 i分入到载波 j所在的 TAG中, 否 则新建一个 TAG并放入载波 i。 这种实现方式采用了计算频率距离来组成 TAG, 其可 靠性高。 终端配置好上述辅载波后, 在这个载波上并没有数据传输, 也就是说这个载波是 处在休眠状态的, 不需要进行上行定时同步, 之后终端继续保持对基站的侦听, 根据 侦听的内容触发载波激活过程。 如图 4所示的载波激活示意图, 该激活过程如下: 步骤 S402, 基站发送命令指示终端激活某个载波; 由于有了业务, 需要激活某个载波, 此时基站发送激活该载波的命令, 该命令相 当于上述激活命令。 步骤 S404, 终端接收到上述命令后, 在该载波上向基站发送随机接入请求; 在随机接入过程中, 终端取得该载波的上行同步的初始化, 具体步骤如下: 终端 不断地向基站发送相同随机接入请求, 直至收到基站的应答。 进一步地, 该随机接入请求是一段对终端和基站都是已知的前导序列, 并且在发 送过程中终端每一次的发送重复相比前一次都提高发射功率。 终端发送前导序列时, 有如下 2种可能: 第一种情况, 如果该载波(载波 A)所属的 TAG中已经有至少一个载波处在激活 状态, 那么该 TAG中一定有一个被称为参考载波的载波 (载波 R), 终端在载波 A上 发送前导序列的时机与载波 R的上行发送时机一致。 第二种情况, 如果载波 A所属的 TAG中还没有载波处在激活状态, 那么终端在 载波 A上发送前导序列的时机是随机的。 步骤 S406, 基站侦听到上述接入请求后, 发送随机接入响应, 同时发送初始化定 时; 进一步地, 该初始化定时被放在媒体控制消息 (MAC CE (Command Element)) 中发送,占用 libit,相应地其取值范围为 [0, 1, 2, 1282],它代表定时提前量值 TA=[0, 1, 2, 1282]*Ts (Ts为 LTE系统中最小的时间单位, Ts=l/(15000*2048) 秒)。 步骤 S408, 终端收到基站的随机接入响应后停止随机接入请求发送, 并初始化该 载波上的上行发送时机,然后开始在该载波上与基站间传输数据。对应步骤 S404中的 两种情形, 本实施例的终端与基站进行数据传输过程, 具体可以采用如下方式实现: 第一种情况, 终端在载波 A上发送数据时, 其上行发送时机始终与所属的 TAG 中的参考载波保持一致。 第二种情况, 载波 A是其所属的 TAG中当前唯一被激活的载波, 终端根据接收 的下行信号定时和 MAC CE来调整其上行信号的定时, 并将载波 A定义为该 TAG的 参考载波。 从前述描述中可以看出, 终端初始每个载波上的上行定时以 TAG为基础, 即每个 TAG中只有唯一的一个参考载波作为上行定时的参照物, 其它载波的上行定时与参考 载波保持一致。 进一步地, 终端可以通过设置标志位 (index) 来标示载波等级, 比如 index=0表 示该载波是所属 TAG的参考载波。优选地,对于被激活的非参考载波还可以通过 index 值表示其等级(比如 indeX=l,2,3等) 以表示该等级的载波与参考载波间的时钟误差关 系 (比如 index越小表示该载波与参考载波间的时钟误差越小)。 设置 index值的好处 是可以在去激活参考载波时及时地找到替代者。 由于距离参考载波距离越远的载波两 者间的时钟误差越大, 终端可以根据载波与参考载波之间的距离来定义 index值。 基 于此,上述步骤 S204中的终端根据上行同步调整量对辅载波定时组中的载波进行上行 同步的调整可以包括: 终端判断辅载波定时组中是否存在参考载波; 如果是, 终端根 据上行同步调整量调整辅载波定时组中的参考载波的上行信号发送时间; 辅载波定时 组中除参考载波之外的激活载波, 终端按照参考载波的上行信号发送时间调整激活载 波的上行信号发送时间; 如果否, 终端根据上行同步调整量调整辅载波定时组中的激 活载波, 并将激活载波作为参考载波。 在步骤 S404和步骤 S408中的参考载波的上行定时具体实现如图 5所示。 图 5的 上半部分表示终端检测到的由基站发过来的下行信号的时刻(下行定时), 图 5的下半 部分表示参考载波上行信号的定时。 终端首先检测下行信号到达的时刻, 然后确定下 行定时, 由于 LTE系统中每个时隙的长度为 lms, 终端可以检测到的下行信号到达时 刻之后每隔 lms的时刻作为下行定时; 然后在下行定时上提前 TA作为上行定时。 由于无线环境的多径特性, 基站所发送的下行信号可以有多个副本到达终端, 在 工程实现中, 终端检测下行信号的到达时刻具体是指终端检测到的第一径信号 (即第 一个信号副本)的到达时刻, 或者是指终端检测到的最强径信号(即最强的信号副本) 的到达时刻。 另外需要指出, 图 5中下行信号的定时是均匀间隔的, 这只是理想情况下的示意 图, 在实际环境中, 终端检测到的下行到达信号到达往往是不均匀变化, 而下行定时 也要根据检测的到达信号时刻而随时调整。 基于上述载波的激活过程, 本实施例获取的上述上行同步调整量可以通过下述方 式实现: 1 )终端侦听到基站下发的激活指定辅载波的命令后, 向基站发送指定载波的 随机接入请求; 2)终端接收基站返回的随机接入响应, 其中, 随机接入响应携带有基 站根据随机接入请求确定的辅载波所在辅载波定时组的上行同步初始量(TA); 3 )终 端根据随机接入响应确定下行信号定时值, 并根据下行信号定时值和上行同步初始量 确定辅载波定时组的上行同步调整量。 基站在持续与终端间传输的过程中,基站会始终保持对上行信号到达时刻的检测, 随着终端的移动或者是无线环境的变化, 其某个载波上行信号不可能一直保持同步。 当基站检测到这种误差时, 基站会下发命令调整终端的定时, 如图 6所示的本发明实 施例提供的上行定时维护的示意图, 其具体步骤如下: 步骤 S602, 基站根据接收的上行信号和基站内部的时钟计算出上行定时调整量, 并发送定时调整命令给终端。 进一步地, 与上述实施例中的初始化定时处理方式相同, 本实施例的定时调整命 令被放在媒体控制消息 (MAC CE) 中发送, 但与初始化定时处理不同的是, 定时调 整命令只占用 6bit,相应地其取值范围为 [0, 1, 2, 63],它代表定时提前量值 TA=[0, 1,
Figure imgf000011_0001
进一步地, 基站在发送定时量的同时, 还携带对应的 TAG信息, 表示其调整的是 那个 TAG的定时。 步骤 S604,终端收到定时调整命令后,找到对应的 TAG,将应用 TA值调整该 TAG 上所有被激活的载波, 并调整它们的上行发送定时。 进一步地, 与之前相同, 上行发送的定时具体实现由下行信号定时和 MAC CE来 确定 (参考图 5 )。 工程实际中, 由于终端解码下行命令需要一定的时间, 因此优选情况下, 如果终 端在第 n个子帧 (Subfmme) 接收到定时调整命令, 则在第 n+6个子帧重新调整其上 行定时, 如图 7所示。 基于上述上行定时维护过程,步骤 S202中的终端获取辅载波定时组的上行同步调 整量还可以包括: 终端接收基站下发的定时调整命令, 其中, 定时调整命令携带有辅 载波定时组的同步初始量; 其中, 该同步初始量为基站检测到终端的辅载波定时组的 上行信号出现时延时, 根据上行信号和该基站内部的时钟确定的; 终端根据上述定时 调整命令确定下行信号定时值, 并根据下行信号定时值和上行同步初始量(TA)确定 辅载波定时组的上行同步调整量。 根据业务的需要基站既可以激活某个辅载波, 也可以去激活某个处在激活状态的 辅载波, 如图 8所示的基站去激活辅载波时终端的处理流程图, 具体步骤如下: 步骤 S802,终端侦听到基站发送的去激活某个辅载波(本实施例以载波 A为例进 行说明) 的控制命令后, 终端终止在载波 A上的数据传输; 步骤 S804, 终端判断该载波 A是否是某个 TAG中的参考载波, 如果是, 则转步 骤 S806, 否则转步骤 S810; 步骤 S806,终端判断该载波 A所属的 TAG中是否还有其他处于激活状态的载波, 如果有, 执行步骤 S808; 如果没有, 执行步骤 S810; 步骤 S808, 终端从该 TAG的激活载波中选出一个载波作为新的参考载波; 终端 选择一个新的参考载波有两种方式: 方式一, 终端在该 TAG剩余的激活载波中随机地选一个载波作为新的参考载波; 方式二, 对应于步骤 S408中的载波标志位设置方式, 终端在该 TAG剩余的激活 载波中选择 index最小的载波 (例如, 该载波为载波 B) 作为参考载波。 载波 B与原 参考载波间的时钟误差最小, 因此可以认为它是剩下来的最可靠的同步源, 可以减少 载波向新参考载波同步时的调整跳跃量。 进一步地, 终端将新参考载波的 index值改为零, 并且将 TAG内其它的载波上行 定时调整到与新的参考载波相同。 步骤 S810, 终端去激活该载波 A。 如果终端去激活上述载波 A后, 其所在的 TAG中没有激活的载波和处于休眠的 载波, 则终端将在内部将该 TAG删除。 基于上述去激活载波的流程, 上述多载波系统的上行同步方法还包括: 终端接收 基站下发的辅载波的去激活命令; 终端根据去激活命令确定对应的辅载波, 从对应的 辅载波所在的辅载波定时组中删除该辅载波; 如果该对应的辅载波所在的辅载波定时 组中没有激活的辅载波时, 终端删除对应的辅载波所在的辅载波定时组, 并通知基站。 这种方式可以使终端维护的 TAG得到优化, 降低维护成本。 如果上述对应的辅载波为参考载波, 终端从对应的辅载波所在的辅载波定时组中 删除对应的辅载波之后, 该方法还包括: 终端从对应的辅载波所在的辅载波定时组中 随机选择一个激活载波作为新的参考载波; 或者, 终端从对应的辅载波所在的辅载波 定时组中选择一个与参考载波时钟误差最小的激活载波作为新的参考载波。 这种参考 载波的重新确定方式, 可以方便 TAG中的载波进行上行同步。 对应于上述方法, 本发明实施例还提供了一种多载波系统的上行同步装置, 该装 置可以设置在终端上实现, 如图 9所示, 该装置包括以下模块: 上行同步调整量获取模块 92,设置为获取辅载波定时组的上行同步调整量;其中, 辅载波定时组中的各个载波的指定性能参数符合设定范围; 上行同步调整模块 94, 与上行同步调整量获取模块 92相连, 设置为根据上行同 步调整量获取模块 92 获取的上行同步调整量对辅载波定时组中的载波进行上行同步 的调整。 本实施例采用辅载波定时组的模式对组内的各个载波进行上行同步, 解决了多载 波应用场景中上行同步实现困难的问题, 保证了多载波终端的各载波在发送上行信号 时, 每个载波的信号都能同时到达基站, 进而保证了基站和终端间的业务。 为了便于对各个载波进行划分, 本实施例提供了一种多载波系统的上行同步装置 具体结构框图, 如图 10所示, 在上述图 9的基础上, 该装置还包括以下模块: 辅载波定时组确定模块 93, 设置为在主载波上接收到基站下发的辅载波配置信息 后, 根据辅载波的指定性能参数确定辅载波所在的辅载波定时组; 辅载波定时组划分模块 96, 与辅载波定时组确定模块 93相连, 设置为将辅载波 划分到辅载波定时组确定 93模块确定的辅载波定时组中; 通知模块 95, 与辅载波定时组划分模块 96和上行同步调整量获取模块 92相连, 设置为将辅载波定时组划分模块 96划分的辅载波所在的辅载波定时组通知给基站。 上述辅载波定时组确定模块 93可以有多种实现方式, 如图 11所示的辅载波定时 组确定模块的结构框图, 该模块包括如下单元: 查找单元 932, 设置为当指定性能参数为频带参数时, 根据辅载波所属的频带查 找是否有已存在的辅载波定时组; 第一确定单元 934, 与查找单元 932相连, 设置为在查找单元 932的查找结果为 是的情况下, 将查找到的辅载波定时组作为辅载波的辅载波定时组; 第一生成单元 936, 与查找单元 932相连, 设置为在查找单元 932的查找结果为 否的情况下, 为辅载波生成一个新的辅载波定时组。 如图 12所示的另一种辅载波定时组确定模块的结构框图, 该模块包括以下单元: 频率距离计算单元 931, 设置为当指定性能参数为频率距离参数时, 计算辅载波 与已存在的辅载波定时组中的载波的频率距离; 第二确定单元 933, 与频率距离计算单元 931相连, 设置为在频率距离计算单元 931 的计算结果是频率距离小于指定距离时, 将已存在的辅载波定时组作为辅载波的 辅载波定时组; 第二生成单元 935, 与频率距离计算单元 931相连, 设置为在频率距离计算单元 931 的计算结果是辅载波与各个已存在的辅载波定时组中的载波的频率距离均大于或 等于指定距离时, 为辅载波生成一个新的辅载波定时组。 图 13是根据本发明实施例的上行同步调整量获取模块的结构框图,基于载波激活 过程中的上行同步方式, 上行同步调整量获取模块可以包括以下单元: 请求发送单元 922, 设置为侦听到基站下发的激活指定辅载波的命令后, 向基站 发送指定载波的随机接入请求; 响应接收单元 924, 与请求发送单元 922相连, 设置为接收基站返回的随机接入 响应, 其中, 随机接入响应携带有基站根据请求发送单元发送的随机接入请求确定的 辅载波所在辅载波定时组的上行同步初始量; 第一调整量确定单元 926, 与响应接收单元 924相连, 设置为根据响应接收单元 924 接收的随机接入响应确定下行信号定时值, 并根据下行信号定时值和上行同步初 始量确定辅载波定时组的上行同步调整量。 如图 14所示的另一种上行同步调整量获取模块的结构框图,基于上行同步维护过 程, 本实施例的上行同步调整量获取模块可以包括以下单元: 命令接收单元 921, 设置为接收基站下发的定时调整命令, 其中, 定时调整命令 携带有辅载波定时组的同步初始量; 其中, 同步初始量为基站检测到终端的辅载波定 时组的上行信号出现时延时, 根据上行信号和基站内部的时钟确定的; 第二调整量确定单元 923, 与命令接收单元 921相连, 设置为根据命令接收单元 921 接收的定时调整命令确定下行信号定时值, 并根据下行信号定时值和上行同步初 始量确定辅载波定时组的上行同步调整量。 优选地, 上述上行同步调整模块包括: 参考载波判断单元, 设置为判断辅载波定 时组中是否存在参考载波; 时间调整单元, 与参考载波判断单元相连, 设置为在参考 载波判断单元的判断结果为是时, 根据上行同步调整量调整辅载波定时组中的参考载 波的上行信号发送时间; 辅载波定时组中除参考载波之外的激活载波, 按照参考载波 的上行信号发送时间调整激活载波的上行信号发送时间; 载波调整单元, 与参考载波 判断单元相连, 设置为在参考载波判断单元的判断结构为否时, 根据上行同步调整量 调整辅载波定时组中的激活载波, 并将激活载波作为参考载波。 考虑到载波存在去激活的操作, 上述装置还包括: 去激活命令接收模块, 设置为 接收基站下发的辅载波的去激活命令; 辅载波删除模块, 与去激活命令接收模块相连, 设置为根据去激活命令接收模块接收的去激活命令确定对应的辅载波, 从对应的辅载 波所在的辅载波定时组中删除对应的辅载波; 辅载波定时组删除模块, 与辅载波删除 模块相连, 设置为在当对应的辅载波所在的辅载波定时组中没有激活的辅载波时, 删 除对应的辅载波所在的辅载波定时组, 并通知基站。 对应于上述方法实施例中的更新参考载波的方式, 上述装置还可以包括以下模块 之一: 第一参考载波确定模块, 设置为当辅载波定时组删除模块删除的对应的辅载波 为参考载波时, 从对应的辅载波所在的辅载波定时组中随机选择一个激活载波作为新 的参考载波; 或者, 第二参考载波确定模块, 设置为当辅载波定时组删除模块删除的 对应的辅载波为参考载波时, 从对应的辅载波所在的辅载波定时组中选择一个与参考 载波时钟误差最小的激活载波作为新的参考载波。 从以上的描述中可以看出, 本发明实施例保证了多载波终端的各载波在发送上行 信号时, 每个载波的信号都能同时到达基站, 并且该到达时刻在终端与终端之间也保 持一致, 为业务的顺利进行提供了保证, 增强了系统的稳定性和实用性。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 并且在某些情况下, 可以以不同于此处 的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将 它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任 何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种多载波系统的上行同步方法, 包括:
终端获取辅载波定时组的上行同步调整量; 其中, 所述辅载波定时组中的 各个载波的指定性能参数符合设定范围;
所述终端根据所述上行同步调整量对所述辅载波定时组中的载波进行上行 同步的调整。
2. 根据权利要求 1所述的方法, 其中, 终端获取辅载波定时组的上行同步调整量 之前, 所述方法还包括:
终端在主载波上接收到基站下发的辅载波配置信息后, 根据所述辅载波的 指定性能参数确定所述辅载波所在的辅载波定时组;
所述终端将所述辅载波划分到确定的所述辅载波定时组中, 并将所述辅载 波所在的辅载波定时组通知给所述基站。
3. 根据权利要求 2所述的方法, 其中, 所述指定性能参数为频带参数;
所述终端根据所述辅载波的指定性能参数确定所述辅载波所在的辅载波定 时组包括:
所述终端根据所述辅载波所属的频带查找是否有已存在的辅载波定时组; 如果是, 所述终端将查找到的所述辅载波定时组作为所述辅载波的辅载波 定时组;
如果否, 所述终端为所述辅载波生成一个新的辅载波定时组。
4. 根据权利要求 2所述的方法, 其中, 所述指定性能参数为频率距离参数; 所述终端根据所述辅载波的指定性能参数确定所述辅载波所在的辅载波定 时组包括:
所述终端计算所述辅载波与已存在的辅载波定时组中的载波的频率距离; 如果计算得到的频率距离小于指定距离, 所述终端将所述已存在的辅载波 定时组作为所述辅载波的辅载波定时组;
如果所述辅载波与各个已存在的辅载波定时组中的载波的频率距离均大于 或等于所述指定距离, 所述终端为所述辅载波生成一个新的辅载波定时组。
5. 根据权利要求 1所述的方法, 其中, 终端获取辅载波定时组的上行同步调整量 包括:
所述终端侦听到所述基站下发的激活指定辅载波的命令后, 向所述基站发 送所述指定载波的随机接入请求;
所述终端接收所述基站返回的随机接入响应, 其中, 所述随机接入响应携 带有所述基站根据所述随机接入请求确定的所述辅载波所在辅载波定时组的上 行同步初始量;
所述终端根据所述随机接入响应确定下行信号定时值, 并根据所述下行信 号定时值和所述上行同步初始量确定所述辅载波定时组的上行同步调整量。
6. 根据权利要求 1所述的方法, 其中, 终端获取辅载波定时组的上行同步调整量 包括:
所述终端接收所述基站下发的定时调整命令, 其中, 所述定时调整命令携 带有所述辅载波定时组的同步初始量; 其中, 所述同步初始量为所述基站检测 到所述终端的辅载波定时组的上行信号出现时延时, 根据所述上行信号和所述 基站内部的时钟确定的;
所述终端根据所述定时调整命令确定下行信号定时值, 并根据所述下行信 号定时值和所述上行同步初始量确定所述辅载波定时组的上行同步调整量。
7. 根据权利要求 1所述的方法, 其中, 所述终端根据所述上行同步调整量对所述 辅载波定时组中的载波进行上行同步的调整包括:
所述终端判断所述辅载波定时组中是否存在参考载波;
如果是, 所述终端根据所述上行同步调整量调整所述辅载波定时组中的参 考载波的上行信号发送时间; 所述辅载波定时组中除所述参考载波之外的激活 载波, 所述终端按照所述参考载波的上行信号发送时间调整所述激活载波的上 行信号发送时间;
如果否, 所述终端根据所述上行同步调整量调整所述辅载波定时组中的激 活载波, 并将所述激活载波作为参考载波。
8. 根据权利要求 1-7任一项所述的方法, 其中, 所述方法还包括: 所述终端接收基站下发的辅载波的去激活命令; 所述终端根据所述去激活命令确定对应的辅载波, 从所述对应的辅载波所 在的辅载波定时组中删除所述对应的辅载波;
如果所述对应的辅载波所在的辅载波定时组中没有激活的辅载波时, 所述 终端删除所述对应的辅载波所在的辅载波定时组, 并通知所述基站。
9. 根据权利要求 8所述的方法, 其中, 所述对应的辅载波为参考载波;
所述终端从所述对应的辅载波所在的辅载波定时组中删除所述对应的辅载 波之后, 所述方法还包括: 所述终端从所述对应的辅载波所在的辅载波定时组 中随机选择一个激活载波作为新的参考载波; 或者, 所述终端从所述对应的辅 载波所在的辅载波定时组中选择一个与所述参考载波时钟误差最小的激活载波 作为新的参考载波。
10. 一种多载波系统的上行同步装置, 包括:
上行同步调整量获取模块, 设置为获取辅载波定时组的上行同步调整量; 其中, 所述辅载波定时组中的各个载波的指定性能参数符合设定范围;
上行同步调整模块, 设置为根据所述上行同步调整量获取模块获取的所述 上行同步调整量对所述辅载波定时组中的载波进行上行同步的调整。
11. 根据权利要求 10所述的装置, 其中, 所述装置还包括: 辅载波定时组确定模块, 设置为在主载波上接收到基站下发的辅载波配置 信息后,根据所述辅载波的指定性能参数确定所述辅载波所在的辅载波定时组; 辅载波定时组划分模块, 设置为将所述辅载波划分到所述辅载波定时组确 定模块确定的所述辅载波定时组中;
通知模块, 设置为将所述辅载波定时组划分模块划分的所述辅载波所在的 辅载波定时组通知给所述基站。
12. 根据权利要求 11所述的装置, 其中, 所述辅载波定时组确定模块包括:
查找单元, 设置为当所述指定性能参数为频带参数时, 根据所述辅载波所 属的频带查找是否有已存在的辅载波定时组;
第一确定单元, 设置为在所述查找单元的查找结果为是的情况下, 将查找 到的所述辅载波定时组作为所述辅载波的辅载波定时组;
第一生成单元, 设置为在所述查找单元的查找结果为否的情况下, 为所述 辅载波生成一个新的辅载波定时组。
13. 根据权利要求 11所述的装置, 其中, 所述辅载波定时组确定模块包括: 频率距离计算单元, 设置为当所述指定性能参数为频率距离参数时, 计算 所述辅载波与已存在的辅载波定时组中的载波的频率距离;
第二确定单元, 设置为在所述频率距离计算单元的计算结果是所述频率距 离小于指定距离时, 将所述已存在的辅载波定时组作为所述辅载波的辅载波定 时组;
第二生成单元, 设置为在所述频率距离计算单元的计算结果是所述辅载波 与各个已存在的辅载波定时组中的载波的频率距离均大于或等于所述指定距离 时, 为所述辅载波生成一个新的辅载波定时组。
14. 根据权利要求 10所述的装置, 其中, 所述上行同步调整量获取模块包括: 请求发送单元, 设置为侦听到所述基站下发的激活指定辅载波的命令后, 向所述基站发送所述指定载波的随机接入请求;
响应接收单元, 设置为接收所述基站返回的随机接入响应, 其中, 所述随 机接入响应携带有所述基站根据所述请求发送单元发送的所述随机接入请求确 定的所述辅载波所在辅载波定时组的上行同步初始量;
第一调整量确定单元, 设置为根据所述响应接收单元接收的所述随机接入 响应确定下行信号定时值, 并根据所述下行信号定时值和所述上行同步初始量 确定所述辅载波定时组的上行同步调整量。
15. 根据权利要求 10所述的装置, 其中, 所述上行同步调整量获取模块包括: 命令接收单元, 设置为接收所述基站下发的定时调整命令, 其中, 所述定 时调整命令携带有所述辅载波定时组的同步初始量; 其中, 所述同步初始量为 所述基站检测到所述终端的辅载波定时组的上行信号出现时延时, 根据所述上 行信号和所述基站内部的时钟确定的;
第二调整量确定单元, 设置为根据所述命令接收单元接收的所述定时调整 命令确定下行信号定时值, 并根据所述下行信号定时值和所述上行同步初始量 确定所述辅载波定时组的上行同步调整量。
16. 根据权利要求 10所述的装置, 其中, 所述上行同步调整模块包括:
参考载波判断单元, 设置为判断所述辅载波定时组中是否存在参考载波; 时间调整单元, 设置为在所述参考载波判断单元的判断结果为是时, 根据 所述上行同步调整量调整所述辅载波定时组中的参考载波的上行信号发送时 间; 所述辅载波定时组中除所述参考载波之外的激活载波, 按照所述参考载波 的上行信号发送时间调整所述激活载波的上行信号发送时间;
载波调整单元, 设置为在所述参考载波判断单元的判断结构为否时, 根据 所述上行同步调整量调整所述辅载波定时组中的激活载波, 并将所述激活载波 作为参考载波。
17. 根据权利要求 10-16任一项所述的装置, 其中, 所述装置还包括: 去激活命令接收模块, 设置为接收基站下发的辅载波的去激活命令; 辅载波删除模块, 设置为根据所述去激活命令接收模块接收的所述去激活 命令确定对应的辅载波, 从所述对应的辅载波所在的辅载波定时组中删除所述 对应的辅载波;
辅载波定时组删除模块, 设置为在当所述对应的辅载波所在的辅载波定时 组中没有激活的辅载波时, 删除所述对应的辅载波所在的辅载波定时组, 并通 知所述基站。
18. 根据权利要求 17所述的装置, 其中, 所述装置还包括以下模块之一: 第一参考载波确定模块, 设置为当所述辅载波定时组删除模块删除的所述 对应的辅载波为参考载波时, 从所述对应的辅载波所在的辅载波定时组中随机 选择一个激活载波作为新的参考载波;
第二参考载波确定模块, 设置为当所述辅载波定时组删除模块删除的所述 对应的辅载波为参考载波时, 从所述对应的辅载波所在的辅载波定时组中选择 一个与所述参考载波时钟误差最小的激活载波作为新的参考载波。
PCT/CN2012/075506 2012-03-19 2012-05-15 多载波系统的上行同步方法及装置 WO2013139074A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210072668.8A CN102595590B (zh) 2012-03-19 2012-03-19 多载波系统的上行同步方法及装置
CN201210072668.8 2012-03-19

Publications (1)

Publication Number Publication Date
WO2013139074A1 true WO2013139074A1 (zh) 2013-09-26

Family

ID=46483674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/075506 WO2013139074A1 (zh) 2012-03-19 2012-05-15 多载波系统的上行同步方法及装置

Country Status (2)

Country Link
CN (1) CN102595590B (zh)
WO (1) WO2013139074A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112015031463B1 (pt) * 2013-08-09 2023-04-18 Huawei Technologies Co., Ltd Método e aparelho de ajuste de valor de temporização
CN107124758B (zh) 2016-02-25 2019-11-19 大唐移动通信设备有限公司 一种实现同步的方法及装置
CN110493880B (zh) * 2019-08-30 2023-04-18 成都天奥集团有限公司 广覆盖场景下基于终端侧等待的多用户上行资源调度方法
CN117221969A (zh) * 2022-06-01 2023-12-12 中国电信股份有限公司 上行信号发送方法、终端和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101646234A (zh) * 2009-09-01 2010-02-10 中兴通讯股份有限公司 一种定时提前量的获取方法
CN102014477A (zh) * 2009-10-30 2011-04-13 大唐移动通信设备有限公司 一种上行同步的方法、装置和系统
CN102158948A (zh) * 2011-02-16 2011-08-17 普天信息技术研究院有限公司 载波聚合中获得上行定时提前量的方法
WO2011121173A1 (en) * 2010-04-01 2011-10-06 Nokia Corporation Multiple timing advance and carrier aggregation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101646234A (zh) * 2009-09-01 2010-02-10 中兴通讯股份有限公司 一种定时提前量的获取方法
CN102014477A (zh) * 2009-10-30 2011-04-13 大唐移动通信设备有限公司 一种上行同步的方法、装置和系统
WO2011121173A1 (en) * 2010-04-01 2011-10-06 Nokia Corporation Multiple timing advance and carrier aggregation
CN102158948A (zh) * 2011-02-16 2011-08-17 普天信息技术研究院有限公司 载波聚合中获得上行定时提前量的方法

Also Published As

Publication number Publication date
CN102595590B (zh) 2019-02-12
CN102595590A (zh) 2012-07-18

Similar Documents

Publication Publication Date Title
US10687375B2 (en) Initial access and radio resource management for integrated access and backhaul (IAB) wireless networks
AU2017215885B2 (en) User equipment and random access method
KR102303964B1 (ko) 대역폭 부분들을 관리하기 위한 방법 및 장치
RU2702893C1 (ru) Применение команды опережения синхронизации в устройстве беспроводной связи в режиме расширенного покрытия
EP4383864A2 (en) Communiation terminal apparatus, base station apparatus and communication system
US9578616B2 (en) Forming carrier aggregation timing advance groups in a heterogeneous network
CN103597757B (zh) 载波聚合系统中用于载波激活的方法和设备
CN112468279B (zh) 资源确定的方法和装置
WO2020029849A1 (zh) 随机接入方法、通信装置、芯片及存储介质
CN108293195B (zh) 用于管理无线通信网络中的信令的无线设备、无线网络节点及在其中执行的方法
US20090016268A1 (en) Delay control in a mobile communication system
CN110535677B (zh) 一种定时信息配置方法、装置和系统
EP2695454A1 (en) Performing multiple timing advance adjustments in a carrier aggregation communication system
CN109302739A (zh) 一种同步信号的发送方法、接收方法和装置
KR20190100239A (ko) 정보 송신 방법, 정보 수신 방법, 장치 및 시스템
EP3513521A1 (en) Method and network node for enabling reduced interference in a wireless network
WO2018028270A1 (zh) 一种发送和检测同步信号的方法、设备
WO2013139074A1 (zh) 多载波系统的上行同步方法及装置
WO2021227985A1 (zh) 同步信号块的处理方法及装置、通信设备和可读存储介质
WO2019075876A1 (zh) 资源调度方法和终端设备
US10820284B2 (en) TBTT synchronization between Wi-Fi access points
WO2017000269A1 (zh) 一种数据传输方法及装置
WO2018052355A1 (en) Method and network node for enabling reduced interference in a wireless network
CN103796194A (zh) 载波汇聚中上行数据的传输方法和装置
WO2014007010A1 (ja) 基地局及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12871976

Country of ref document: EP

Kind code of ref document: A1