WO2013138891A1 - Processo de produção de bioquerosene em rota integrada e bioquerosenes assim obtidos - Google Patents

Processo de produção de bioquerosene em rota integrada e bioquerosenes assim obtidos Download PDF

Info

Publication number
WO2013138891A1
WO2013138891A1 PCT/BR2013/000087 BR2013000087W WO2013138891A1 WO 2013138891 A1 WO2013138891 A1 WO 2013138891A1 BR 2013000087 W BR2013000087 W BR 2013000087W WO 2013138891 A1 WO2013138891 A1 WO 2013138891A1
Authority
WO
WIPO (PCT)
Prior art keywords
biokerosene
biogasoline
hydrocarbons
production
mixture
Prior art date
Application number
PCT/BR2013/000087
Other languages
English (en)
French (fr)
Inventor
Rubens MACIEL FILHO
Nívea DE LIMA DA SILVA
César BENEDITO BATISTELLA
Maria Regina WOLF MACIEL
Original Assignee
Universidade Estadual De Campinas - Unicamp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from BR102012006421-9A external-priority patent/BR102012006421B1/pt
Priority claimed from BR132012032606A external-priority patent/BR132012032606F1/pt
Application filed by Universidade Estadual De Campinas - Unicamp filed Critical Universidade Estadual De Campinas - Unicamp
Publication of WO2013138891A1 publication Critical patent/WO2013138891A1/pt

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • C10G3/49Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/03Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/023Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for spark ignition
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/003Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • This patent application refers to two subsequent biokerosene production processes, which correspond to fuels of plant origin with characteristics and / or properties similar to those of fossil origin kerosene.
  • the first process yields a fuel consisting of an ester mixture.
  • the second process it is possible to obtain a product composed of hydrocarbons, with a composition similar to fossil kerosene and, optionally, a better use of the byproduct characterized as biogasoline, since it was possible to obtain a product consisting of hydrocarbons, containing number of carbons between 4 and 9.
  • the biogasoline obtained in the present invention corresponds to a fuel of vegetable origin with characteristics and / or properties similar to gasoline of fossil origin.
  • Kerosene is a fossil fuel responsible for emissions of pollutants harmful to the environment.
  • the local environmental impacts generated by air activity are varied. They cover soil and water pollution, noise to local air quality problems.
  • this technology presents the obtaining of plant fuels, alternative to aviation kerosene that aims to reduce pollutant emissions and has low toxicity.
  • Kerosene also called illuminating petroleum or paraffin oil, is a liquid resulting from the fractional distillation of petroleum, boiling between 150 and 290 degrees Celsius, a fraction of gasoline. and diesel oil. It is a complex combination of hydrocarbons (aliphatic, naphthenic and aromatic) with a majority of carbons within the range of C9 to C16, produced by distillation of crude oil, with a distillation range of 150 ° C to 239 ° C.
  • Gasoline is a fuel consisting primarily of hydrocarbons and, to a lesser extent, oxygenated products. These hydrocarbons are generally "lighter” than those that make up diesel oil because they are made up of smaller carbon chain molecules (usually 4 to 12 carbon atoms). In addition to hydrocarbons and oxygenates, gasoline may also contain sulfur compounds and nitrogen compounds. The distillation range of automotive gasoline ranges from 30 to 220 ° C.
  • Biodiesel is defined by the American Society for Testing Materials
  • ASTM as a synthetic liquid fuel, originating from renewable raw material and consisting of a mixture of long chain fatty acid alkyl esters derived from vegetable oils or animal fats.
  • waste is a fuel produced from renewable sources such as vegetable oils, frying waste or animal fat. Using waste as a raw material reduces costs with sewage treatment and waste disposal.
  • Synthesis gas is produced through a process called Solene's plasma gasification vitrification (SPGV) technology. Then, through the Fischer Tropsch process (F-T synthesis) biodiesel, naphtha and biokerosene are obtained.
  • SPGV Solene's plasma gasification vitrification
  • This technology is more expensive than the proposed technology because it uses plasma, among other technologies that increase the cost of production by making a large-scale system unfeasible.
  • A1 describe the use of biomass (wood) as a raw material for fuel production by means of Fischer Tropsch.
  • biomass wood
  • Fischer Tropsch The main drawback of these technologies is that most of the products obtained have characteristics similar to diesel and not kerosene.
  • 0092724-A1 refers to the production of hydrocarbons from fatty acids and esters. In this process a series of reactions occur (hydrogenation, ketonization, hydrodeoxygenation, isomerizatior ⁇ ), that cause the increase of the cost of the process. These reactions turn triglycerides, esters, fatty acids into hydrocarbons.
  • US 7,915,460-B2 produces hydrocarbons by hydrogenation, decarboxylation and hydrodeoxygenation.
  • Process can be used for vegetable oils, fat and sludge. Flexible process as it can be used for various raw materials. Disadvantage: high molecular weight compounds may form causing catalyst deactivation as well as coke generation on the catalyst.
  • US7,972,392-B2 utilizes biomass as a feedstock and converts into hydrocarbons by C5-C1 hydrocarbons and
  • US0215137-A1 describes the use of fermentation to transform sugars into biofuels, the product obtained has the characteristic of alcohols.
  • This technology utilizes a long and unfeasible biofuel production route.
  • it produces alcohols that cannot be used in aircraft, as they have different characteristics of fossil origin kerosene and high cost.
  • JPO 201 1052077-A / WO201 1025002-A1 disclose the production of biokerosene from vegetable oils, animal fat and other glyceride and oxygen containing feedstocks by dehydrogenation and hydrogenation. These inventions utilize group 8 metal-containing bifunctional catalysts from the periodic table.
  • the process route of the present invention has several features that make it technically and economically efficient and flexible in view of recent processes for obtaining these biofuels.
  • the process is flexible because it allows obtaining two types of biokerosene (biokerosene (1) and biokerosene (2)) and two types of biogasoline (biogasoline (1) and biogasoline (2)), which can direct production to fuel. preferably and / or convenience.
  • the process is technically and economically efficient because it produces hydrocarbons using mild operating conditions compared to the processes already described in the prior art, which enables the process cost to be reduced as well as much faster processing as described below:
  • a first process allows to obtain an (oxygenated) biokerosene, consisting of an ester mixture, which can be obtained from 60 to 70% of the initial volume of the raw material, according to the flow chart shown in Figure 1.
  • the remaining by-product (30 to 40%) of the first process may also be used as biodiesel, or used for a second process of the present invention, which would be the hydrocarbon generation reaction (hydrogenation and / or decarboxylation and / or decarbonylation), biokerosene (lighter and lower freezing liquid fraction due to the presence of cyclic compounds - approximately 50% of the charge), and in another oxygenated byproduct, which is subjected to the decarboxylation and / or hydrogenation reaction biogasoline, or even biokerosene, according to the flow chart presented in Figure 1. Brief Description of the Invention
  • biokerosene (1) and biokerosene (2) two biofuels which are alternatives to fossil kerosene
  • biogasoline (1) and biogasoline (2) two biofuels which are alternatives to gasoline of fossil origin
  • biokerosenes obtained here oxygenated fuels, consisting of a mixture of esters with high purity and characteristics similar to those of kerosene, and these fuels can be used in blends with fossil kerosene, or pure by the use of anti -freezers
  • the biogasolines obtained here are fuels consisting of a hydrocarbon mixture (C ⁇ 9) of high purity and gasoline-like characteristics, which may be used in blends with gasoline, and / or ethanol, or pure.
  • vegetable oils preferably those rich in medium chain fatty acids - AGCM (10 to 16 carbons)
  • undergo a transesterification process and then glycerine and alcohol are separated.
  • glycerine and alcohol are separated.
  • a biokerosene (1) (oxygenated) is obtained by molecular distillation which separates it very efficiently and with a high degree of purity.
  • the glycerin obtained here can be processed to produce higher value added products such as ethanol.
  • a second fuel, biokerosene (2) obtained in this process is a mixture of hydrocarbons with straight and cyclic chains, which has a composition similar to that of fossil kerosene. They can be used in blends or pure, without the use of antifreeze.
  • the byproducts obtained in the previous step the esters, are subjected to a decarbonylation reaction to obtain hydrocarbons and oxygenated hydrocarbons, and biogasoline may be the oxygenated fraction obtained after decarbonylation (biogasoline (1), rich in oxygenated compounds ), or only as the hydrocarbon-rich fraction (in this case, biogasoline (2)), which is obtained after the decarboxylation / hydrogenation reaction.
  • the pure hydrocarbons that are biokerosene (2) in the form of hydrocarbons are obtained, as well as the oxygenated compounds, which are sent to the next processing step for the decaboxylation reaction (and / or hydrogenation).
  • another hydrocarbon stream is obtained which, depending on operating conditions, may be either biokerosene (2) or biogasoline (2).
  • the oxygenated compounds may also be used as biogasoline, depending on the operating conditions of the previous steps.
  • the great advantage of the present invention is that the process as a whole does not require cyclization (reforming reaction as in other existing biofuel production processes) and the next hydrogenation step (hydrocracking) is only used in the final phase, and in a percentage material in relation to the original raw material, since an important part of product already comes out as hydrocarbons and the processing is done in very short times, that is, it has high productivity.
  • all the raw material is hydrogenated making it more difficult and difficult.
  • the hydrogenation of the raw material is dispensed performed only for oxygenated compounds obtained after decabonylation of the esters.
  • esters in the hydrogenation and / or decarboxylation step is very interesting because hydrogenation and / or decarboxylation is possible because the reaction can be obtained under mild process conditions, with minimal coke generation and hydrocarbons in the biogasoline / hydrocarbon range.
  • biokerosene that is, between C4 to C16, and with cyclic compounds, fact made difficult to use vegetable oils in the form of triglycerides, or fatty acids requiring much higher operating temperatures and with significant coke formation.
  • hydrocarbon generation step which efficiently They will also generate high-octane cyclic hydrocarbons without the reforming reaction, which is used in the processes already described in the prior art.
  • Oxygenated hydrocarbons can be (or not for use as biogasoline) likewise converted to hydrocarbons by their hydrogenation.
  • Another differential of the process is the possibility of directing production to the biofuel of preference and / or convenience, be it biokerosene (biokerosene (1) and biokerosene (2)) or biogasoline (biogasoline (1) and biogasoline (2)).
  • biokerosene biokerosene (1) and biokerosene (2)
  • biogasoline biogasoline (1) and biogasoline (2)
  • Such targeting can take place, for example, depending on the raw material used.
  • the use of vegetable oils rich in medium chain fatty acids - AGCM (between 10 and 16 carbons) when submitted to the production process of biokerosene allows yields between 70 and 80% of biokerosene and between 20 and 30% of biogasoline in purification that is performed after hydrogenation.
  • This yield for gasoline represents an increase of up to 10% over the yield obtained with, for example, short chain fatty acid-rich vegetable oils - AGCC, and allows for a higher volume of said biogasoline when it is used. is desirable.
  • the entire transesterification reaction (ester generation) can be developed in continuous processes, gaining production scale.
  • the hydrogenation and / or decarboxylation step hydrogenation and / or decarboxylation can be easily conducted in systems and catalysts well known in the fuel industry, which are zeolites, and in fluidized bed equipment (FCC), which also has high capacity. operational.
  • the hydrogenation step can be done in well-mastered systems, that is, a technology that can be easily operable and high capacity.
  • Figure 1 shows a flowchart of the process of obtaining biokerosene and biogasoline in order to detail the sequence of reactions occurring in the invention as well as the purification steps of the obtained products.
  • FIG. 2 shows a flowchart of the process of obtaining biokerosene to detail the use of glycerin, which is a byproduct of the transesterification reaction, to obtain various chemicals, such as ethanol.
  • the present invention relates to two production processes of biokerosene, which correspond to two biofuels with characteristics and / or properties similar to those of fossil kerosene and to two other biofuels with characteristics and / or properties similar to fossil gasoline. , all of plant origin.
  • a first process yields a fuel consisting of a mixture of esters, here called type 1 biokerosene [biokerosene (1)], while a second process makes it possible to obtain a hydrocarbon product having a composition similar to fossil kerosene, here is called type 2 biokerosene [biokerosene (2)].
  • an integrated process for obtaining biofuels comprises the following main steps:
  • the product obtained is purified by high vacuum with pressures of the order of 0.001 to 5 mmHg or 1.33.10 “6 to 10 " 2 bar obtaining the biokerosene (1);
  • decarbonylation is performed in fixed or fluidized bed reactors and in the presence of zeolites as catalysts at temperatures ranging from 150 to 800 ° C;
  • biogasoline (1) the stream consisting of oxygenated compounds, which are called biogasoline (1), is subjected to the decarboxylation and / or hydrogenation reaction;
  • reaction product is then purified by distillation at atmospheric pressure to yield hydrocarbons, which are called biokerosene (2) and biogasoline (2).
  • Figure 1 shows a flowchart of the integrated biofuel production process, where it is possible to obtain two (02) special types of biokerosene and biogasoline, as well as a description of the sequence of reactions that occur in said process.
  • the raw material consisting of, for example, vegetable oils is prepared, preferably those rich in medium chain fatty acids - AGCM (between 10 and 16 carbons) - but the raw materials useful for carrying out the invention include but are not are limited to glyceride rich materials containing triglycerides and / or diglycerides and / or monoglycerides and / or free fatty acids, such as vegetable oils; animal oils; vegetable fats; animal fats; mineral oils; esters of transesterification reactions; esters of esterification reactions of vegetable oils and animal fats; partially saturated hydrocarbons from fermentation processes; saturated hydrocarbons from partially saturated hydrocarbon hydrogenation or fermentation process; hydrocarbons from thermal cracking; mixture thereof; etc.
  • the raw material is then subjected to a transesterification reaction, resulting in a mixture of esters which is further purified, resulting in 2 streams: the heavy fraction, rich in long chain esters and the light fraction. high purity, which are the medium chain esters: oxygenated biokerosene [biokerosene (1)].
  • the transesterification reaction provides greater conversion in less time and therefore has been preferentially treated in the embodiment of this invention, other reactions may be employed for carrying out the invention which include, but are not limited to esterification reactions. , acylation of oleophins or condensation of aldehydes.
  • esters are usually produced by batch continuous stirring reactors (BSTR).
  • BSTR batch continuous stirring reactors
  • Transesterification is usually performed in continuously stirred reactors in the presence of basic catalysis and low molecular weight alcohols.
  • the products of this reaction are 90% by weight of esters and 10% by weight of glycerine.
  • the esters can then be separated using a high vacuum purification process which enables a high purity (> 99% wt.) Mixture of low molecular weight (C ⁇ 16) esters to be obtained. of biokerosene (1).
  • Another option is the use of esters as raw material for hydrocarbon production (see Figure 1), direct hydrocarbon route. It is noteworthy that this process can occur at atmospheric pressure or under vacuum and between temperatures of 150 to 800 ° C.
  • biokerosene (1) Basically to obtain biokerosene (1), the following steps must be followed:
  • the short chain alcohols of the present invention are preferably selected from alcohols of up to 5 carbon atoms.
  • examples of such alcohols include, but are not limited to, methanol, ethanol, propanol, butanol, isopropanyl, 1-butanol, 2-butanol, isobutanol, amyl and / or isomers among others, as well as a mixture thereof;
  • the solvent of the present invention should have a solvent: vegetable oil molar ratio ranging from 3: 1 to 15: 1 (w / w);
  • the solvent of the present invention is preferably ethanol used at a ratio of 0: 1 to vegetable oil;
  • the catalyst of the present invention is a catalyst chosen from the group comprising basic catalysts such as NaOH, KOH, NaOCH 3 , NaOCH 2 CH 3) KOCH 3 , KOCH 2 CH 3 , among others, as well as a mixture thereof, guanidines such as 1,7,7-triazabicyclo [4.4.0] dec-5-ene (TBD), 1,1,3-tetramethylguanidine (TMG), among others, as well as a mixture thereof;
  • acid catalysts may also be used, such as sulfuric acid, or other metal containing catalysts such as Cr, Mo, among others, in the form of oxides, salts, or in combination with supports such as aluminates, among others.
  • the catalyst is used in molar proportions ranging from 0,01 to
  • the homogeneous catalyst is NaOH and KOH and the heterogeneous catalyst is guanidine, and the catalyst mass used must be up to 2% by weight of the vegetable oil mass;
  • the use of vegetable oils preferably those rich in medium chain fatty acids AGCM (between 10 and 16 carbons), provides biokerosene and biogasoline, respectively, in the following proportions: 70-80% and 20-30%.
  • any fatty acid chain from C8 to C20 is useful in the process described in the present invention and may even increase biogasoline yield either as a function of grease chain length or by adjusting reaction conditions: for example, If C10 to C16 medium chain fatty acid rich vegetable oils (AGCM) are employed and the decarbonylation step is carried out over a preferred temperature range of 400 to 800 ° C, biogasoline production is favored. , since it allows to increase its yield by up to 10%, besides increasing its volume.
  • the heavy ester stream (residue; C> 16) obtained in the previous step (distillation) is subjected to a special reaction called decarbonylation and / or hydrogenation (hydrocarbon generation) carried out in fixed (or fluidized) bed reactors. ) and in the presence of zeolites as catalysts.
  • This reaction consists of heating the esters in a reactor (fixed or fluidized bed) supported or filled by zeolites or metals such as nickel, palladium and platinum at temperatures from 150 to 800 ° C, preferably from 250 to 450 ° C, obtaining a mixture of hydrocarbons and oxygenated compounds containing approximately 50% of each stream.
  • the product of this reaction (hydrocarbons, oxygenated hydrocarbons, C0 2 and water vapor) is subjected to a separation process such as atmospheric distillation, a light fraction being obtained, consisting of hydrocarbon compatible with the composition of fossil fuel, such hydrocarbons are called biokerosene (2) and another heavy composed of oxygenated hydrocarbons: due to the particularities of these 02 streams they are easily separated into conventional distillation columns.
  • This oxygen-rich stream can be used as biogasoline (1).
  • the oxygenated hydrocarbon stream is finally subjected to hydrogenation and / or decarboxylation to remove oxygen from the molecule, in the presence of a commercial hydrogenation catalyst, and under pressure.
  • the product of this reaction is purified by distillation at atmospheric pressure, obtaining hydrocarbons, which can also be used as fuel: biokerosene (2) or biogasoline (2), according to the size of the generated molecules.
  • Biogasoline was obtained in the purification stage of biokerosene, this byproduct which is a fuel consisting of a high purity hydrocarbon mixture (C ⁇ 9) and similar characteristics to gasoline. This fuel can be used in blends with gasoline, and / or ethanol, or pure.
  • Biokerosene (2) is similar to fossil kerosene in terms of composition and physical properties.
  • biogasoline this is an alternative to gasoline of fossil origin.
  • a fuel preferably consisting of a mixture of high purity hydrocarbons and gasoline-like characteristics. This fuel can be used in blends with gasoline, and / or ethanol, or pure.
  • Glycerin which is the byproduct of the transesterification reaction can be used to obtain various chemicals.
  • glycerin which is the byproduct of the transesterification reaction
  • the cosmetics industry that absorbs 40% of all production
  • the food industry that uses 24%
  • the production of resins and esters uses 18% of glycerine
  • the pharmaceutical industry absorbs 11%, among other applications.
  • This study aims to reuse glycerin, as shown in Figure 2, aiming to obtain ethanol, which will be used as raw material for transesterification reaction.
  • the reuse of glycerin aims to reduce the cost of the reaction as it will be used in the production of one of the transesterification reaction reagents.
  • the first process consists of thermal degradation of glycerine, between 750 ° C and 900 ° C, to obtain synthesis gas (mixture of carbon monoxide and hydrogen). Then the synthesis gas is converted to ethanol through the reaction known as direct synthesis.
  • the second process consists of the fermentation of glycerin in the presence of the bacteria Escherichia Coli, giving rise to a mixture of butanol and ethanol.
  • the reaction will be described below.
  • First step Transesterification reaction (20 ⁇ T ⁇ 150 ° C), and preferably between 30 and 60 ° C.
  • Second step Decarbonylation reaction (150 ⁇ T ⁇ 800 ° C) and preferably between 250 and 450 ° C.
  • Third step Decarboxylation and / or hydrogenation (2 ⁇ P ⁇ 100 bar), preferably between 10 and 50 bar.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

A presente invenção descreve o processo de obtenção de dois combustíveis compatíveis com o querosene de origem fóssil. O primeiro combustível é constituído por mistura de ésteres com alto grau de pureza, o segundo combustível é constituído por mistura de hidrocarbonetos com características similares ao querosene de origem fóssil. E, adicionalmente, a presente invenção também descreve o processo de obtenção de biogasolina. A biogasolina é um subproduto do processo de produção do bioquerosene, o processo de obtenção deste subproduto também foi descrito nesse pedido de patente. O combustível é constituído por mistura de hidrocarbonetos com características similares a gasolina de origem fóssil.

Description

PROCESSO DE PRODUÇÃO DE BIOQUEROSENE EM ROTA INTEGRADA E BIOQUEROSENES ASSIM OBTIDOS
Campo da invenção
Refere-se o presente pedido de patente a dois processos subsequentes de produção de bioquerosene, que correspondem a combustíveis de origem vegetal com características e/ou propriedades semelhantes com as do querosene de origem fóssil. O primeiro processo origina um combustível constituído por mistura de ésteres. Já o segundo processo possibilita a obtenção de um produto constituído por hidrocarbonetos, com composição semelhante ao querosene de origem fóssil e, opcionalmente, um melhor aproveitamento do subproduto caracterizado como biogasolina, uma vez que foi possível obter um produto constituído por hidrocarbonetos, contendo número de carbonos entre 4 e 9. A biogasolina obtida na presente invenção corresponde a um combustível de origem vegetal com características e/ou propriedades semelhantes a gasolina de origem fóssil.
Ambos os processos originam biocombustíveis de baixo custo e possuem aplicabilidade industrial direcionada a empresas produtoras de etanol e/ou biocombustíveis. Esta tecnologia está inserida no mercado dos biocombustíveis e combustíveis provenientes de fontes renováveis.
Fundamentos da invenção
O querosene é um combustível de origem fóssil responsável por emissões de poluentes nocivos ao meio ambiente. Os impactos ambientais locais gerados pela atividade aérea são variados. Abrangem poluição do solo e da água, passando por ruído a problemas na qualidade do ar local. Nesse sentido, essa tecnologia apresenta a obtenção de combustíveis de origem vegetal, alternativos ao querosene de aviação que visa reduzir as emissões de poluentes e possui baixa toxidade.
O querosene, também designado por petróleo iluminante ou óleo de parafina, é um líquido resultante da destilação fracionada do petróleo, com temperatura de ebulição entre 150 e 290 graus Celsius, fração entre a gasolina e o óleo diesel. É uma combinação complexa de hidrocarbonetos (alifáticos, naftênicos e aromáticos) com um número de carbonos na sua maioria dentro do intervalo de C9 a C16, produzida por destilação do petróleo bruto, com faixa de destilação compreendida entre 150°C e 239°C.
A gasolina é um combustível constituído basicamente por hidrocarbonetos e, em menor quantidade, por produtos oxigenados. Esses hidrocarbonetos são, em geral, mais "leves" do que aqueles que compõem o óleo diesel, pois são formados por moléculas de menor cadeia carbónica (normalmente de 4 a 12 átomos de carbono). Além dos hidrocarbonetos e dos oxigenados, a gasolina também pode conter compostos de enxofre e compostos de nitrogénio. A faixa de destilação da gasolina automotiva varia de 30 a 220 °C.
O biodiesel é definido pela American Society for Testing Materials
(ASTM), como um combustível líquido sintético, originário de matéria prima renovável e constituída por mistura de ésteres alquílicos de ácidos graxos de cadeias longas, derivados de óleos vegetais ou gorduras animais.
O frequente aumento do preço do petróleo e a possibilidade de esgotamentos dos combustíveis fósseis vêm motivando inúmeros pesquisadores pela busca de combustível alternativo. Essa preocupação também existe por parte dos ambientalistas visando reduzir a poluição provocada pelo uso do diesel e foi intensificada após o Protocolo de Kyoto.
A utilização do biodiesel como combustível vem apresentando um potencial promissor no mundo todo, sendo um mercado que cresce aceleradamente devido a inúmeras vantagens, tais como:
- é um combustível produzido a partir de fontes renováveis, como óleos vegetais, resíduos de fritura ou gordura animal. A utilização de resíduos como matéria-prima reduz os custos com tratamento de esgotos e disposição de resíduos.
- é biodegradável. Estudos mostram que o biodiesel de óleo de soja e canola são facilmente absorvidos pelo meio ambientes. A utilização de misturas contendo 20% v/v de biodiesel (B20) aumenta a biodegradabilidade do diesel em presença de água. Além disso, foi observado o crescimento de algas em tanques de estocagem de biodiesel.
- é um combustível não tóxico, pois a utilização de biodiesel provoca redução substancial na emissão de monóxido de carbono e material particulado. Além disso, é livre de enxofre e aromáticos, impede a formação de fuligem, pois possui 10% v/v de oxigénio. A utilização de 20% v/v de biodiesel ao diesel reduz a emissão de dióxido de carbono em 15,66% v/v.
Algumas tecnologias apresentam o processo de produção de hidrocarbonetos de origem renovável. Na patente US6.987.79-B2 foi utilizada biomassa como matéria prima para a produção de gás de síntese. O gás de síntese é produzido através de um processo chamado Solene's plasma gasification vitrífication (SPGV) technology. Em seguida, através do processo de Fischer Tropsch (F-T synthesis) é obtido biodiesel, nafta e bioquerosene.
Essa tecnologia é mais cara que a tecnologia proposta, porque utiliza plasma, entre outras tecnologias que aumentam o custo de produção inviabilizando um sistema em grande escala.
Os documentos US0264061 -A1/ 01 1 1599-A1 e AU2010201903-
A1 descrevem a utilização de biomassa (madeira) como matéria prima para a produção de combustíveis, mediante Fischer Tropsch. O principal inconveniente dessas tecnologias é que a maior parte dos produtos obtidos possui característica semelhante ao diesel e não querosene.
Já o documento americano US0015459-A1/ 01058 4-A1/
0092724-A1 refere-se a produção de hidrocarbonetos a partir de ácidos graxos e ésteres. Nesse processo ocorre uma série de reações {hidrogenação, ketonization, hydrodeoxygenation, isomerizatiorí), que ocasianam o aumento do custo do processo. Essas reações transformam triglicerídeos, ésteres, ácidos graxos em hidrocarbonetos.
O documento americano US7589243 descreve a utilização de matéria prima proveniente de biomassa e difere do pedido aqui solicitado que utiliza matéria prima constituída por ácidos graxos e/ou triacilglicerois. A vantagem do processo proposto está no baixo custo e produção mais rápida o que facilitaria um processo contínuo.
A patente US7.915.460-B2 produz hidrocarbonetos mediante hidrogenação, decarboxilação e hidrodeoxigenação. Processo pode ser utilizado para óleos vegetais, gordura e lamas. Processo flexível, pois pode ser utilizado para várias matérias primas. Desvantagem: pode ocorrer a formação de compostos com alto peso molecular ocasionando a desativação de catalisadores, bem como geração de coque sobre o catalisador.
A patente US7.972.392-B2, utiliza biomassa como matéria prima e converte em hidrocarbonetos por de hidrocarbonetos de C5-C1 1 e álcoois de
C2-C8 mediante gaseificação de biomassa e Fischer Tropsch. Processo com alto custo em comparação a tecnologia proposta.
O documento americano US0215137-A1 descreve a utilização da fermentação para transformar açúcares em bicombustíveis, o produto obtido tem característica de álcoois. Essa tecnologia utiliza uma rota de produção de bicombustível longa e inviável. Além disso, produz álcoois que não podem ser usados em aeronaves, pois possuem características diferentes do querosene de origem fóssil e alto custo.
Os documentos JPO 201 1052077-A / WO201 1025002-A1 apresentam a produção de bioquerosene a partir de óleos vegetais, gordura animal e outras matérias-primas que contenham glicerídeos e oxigénio mediante dehidrogenação e hidrogenação. Esses inventos utilizam catalisadores bifuncionais contendo metal do grupo 8 da tabela periódica.
Processo possui custo superior a tecnologia aqui proposta.
Em suma, os processos de biocombustíveis descritos no estado da técnica apresentam 03 rotas principais de obtenção, a saber:
1 - Uso de caldo de cana e fermentação por leveduras geneticamente modificadas: processo caro, de baixo rendimento, etc;
2- Uso de oleaginosas, utilizando hidrocraqueamento e reforma catalítica para geração de hidrocarbonentos cíclicos, apresentando baixo rendimento, alto custo e longo tempo de processamento (5 a 10 horas de reação); e
3- Uso de gás de síntese via Fischer Tropsch, o qual requer matérias- primas não abundantes (gases de síntese) e rota de custo elevado.
A rota de processo da presente invenção tem várias particularidades que a torna técnico e economicamente eficiente e flexível frente aos processos recentes de obtenção destes biocombustíveis. O processo é flexível por permitir a obtenção de dois tipos de bioquerosene (bioquerosene (1 ) e bioquerosene (2)) e dois tipos de biogasolina (biogasolina (1) e biogasolina (2)), podendo-se direcionar a produção para o combustível de preferência e/ou conveniência. O processo é eficiente técnico e economicamente por que se produz hidrocarbonetos utilizando condições operacionais amenas em relação aos processos já descritos no estado da técnica, o que possibilita a diminuição do custo do processo, bem como processamento muito mais rápido, como descrito a seguir:
- Um primeiro processo permite obter um bioquerosene (oxigenado), constituído por mistura de ésteres, no qual se pode obter entre 60 a 70% em relação do volume inicial da matéria prima, conforme o fluxograma apresentado na Figura 1.
- O subproduto restante (30 a 40 %) do primeiro processo pode ser usado também como biodiesel, ou usado para um segundo processo da presente invenção, que seria a reação de geração de hidrocarbonetos (hidrogenação e/ou descarboxilação e/ou descarbonilação), obtendo-se o bioquerosene (fração líquida mais leve e de baixo ponto de congelamento devido à presença de compostos cíclicos - aproximadamente 50% da carga), e num outro subproduto oxigenado, que é submetido à reação de descarboxilação e/ou hidrogenação obtendo-se a biogasolina, ou mesmo o bioquerosene, conforme fluxograma apresentado na Figura 1. Breve descrição da invenção
O presente pedido de patente de invenção descreve a produção de dois biocombustíveis que são alternativas ao querosene de origem fóssil (bioquerosene (1 ) e bioquerosene (2)) e dois biocombustíveis (biogasolina (1 ) e biogasolina (2)) que são alternativas a gasolina de origem fóssil, sendo que os bioquerosenes aqui obtidos são combustíveis oxigenados, constituídos por uma mistura de ésteres com alta pureza e características semelhantes as do querosene, podendo esses combustíveis serem utilizados em blends com o querosene fóssil, ou puro mediante a utilização de anti-congelantes, enquanto que as biogasolinas aqui obtidas são combustíveis constituídos por uma mistura de hidrocarbonetos (C < 9) com alto grau de pureza e características semelhantes as da gasolina, podendo esses combustíveis serem utilizados em blends com a gasolina, e/ ou etanol, ou puro.
Serão descritos a seguir os principais produtos e subprodutos obtidos no processo de produção de bioquerosene e biogasolina em rota integrada reivindicados na presente invenção e uma breve descrição do dito processo.
Resumidamente, óleos vegetais, de preferência àqueles mais ricos em ácidos graxos de cadeias médias - AGCM (entre 10 e 16 carbonos), são submetidos a um processo de transesterificação e, a seguir, são separados a glicerina e o álcool. Na etapa seguinte, é obtido um bioquerosene (1) (oxigenado) por meio da destilação molecular que o separa de forma muito eficiente e com alto grau de pureza.
A glicerina aqui obtida pode ser processada para elaborar produtos de maior valor agregado, como o etanol.
Um segundo combustível, o bioquerosene (2) obtido nesse processo, é constituído por uma mistura de hidrocarbonetos com cadeias lineares e cíclicas, que possui a composição similar ao do querosene fóssil. Podem ser utilizados em blends ou puro, sem a necessidade de utilização de anti-congelantes. Resumidamente, os subprodutos obtidos na etapa anterior, os ésteres, são submetidos a uma reação de descarbonilação obtendo-se hidrocarbonetos e hidrocarbonetos oxigenados, sendo que a biogasolina pode ser a fração oxigenada obtida após a descarbonilação (biogasolina (1 ), rica em compostos oxigenados), ou somente como a fração rica em hidrocarbonetos (neste caso, a biogasolina (2)), a qual é obtida após a reação descarboxilação/hidrogenação.
Após a separação destas duas classes de produtos por destilação, obtêm-se os hidrocarbonetos puros que é o bioquerosene (2) na forma de hidrocarbonetos, e também os compostos oxigenados, estes são encaminhados para próxima etapa de processamento para a reação de descaboxilação (e/ou hidrogenação). Após a etapa de hidrogenação e/ou descarboxilação, obtém-se outra corrente de hidrocarbonetos que, dependendo das condições operacionais, podem ser, ou bioquerosene (2), ou biogasolina (2). Entretanto, os compostos oxigenados também podem ser utilizados tal qual como biogasolina, dependendo das condições operacionais das etapas anteriores.
De forma alternativa, nesta etapa poderia ter partido com matéria prima dos ésteres obtidos após a transesterificação, sem passar pela destilação molecular que, neste caso, não obteria, portanto, o bioquerosene (1 ) (oxigenado) daquela etapa.
A grande vantagem da presente invenção é que o processo como um todo não requer ciclização (reação de reforma, como nos outros processos existentes de produção de biocombustíveis) e a etapa seguinte de hidrogenação (hidrocraqueamento) somente é utilizada na fase final, e num porcentual pequeno de material em relação à matéria prima original, visto que uma parte importante de produto já sai como hidrocarbonetos e o processamento é feito em tempos muito curtos, ou seja, tem-se alta produtividade. Nos processos descritos no estado da técnica toda a matéria prima é hidrogenada encarecendo e dificultando muito seus processos. Na invenção proposta a hidrogenação da matéria-prima é dispensada sendo realizada apenas para os compostos oxigenados obtidos após a descabonilação dos ésteres. Ainda, o uso de ésteres na etapa de hidrogenação e/ou descarboxilação hidrogenação e/ou descarboxilação é extremamente interessante, pois se consegue obter a reação em condições suaves de processo, com mínima geração de coque e com obtenção de hidrocarbonetos na faixa da biogasolina/bioquerosene, ou seja, entre C4 a C16, e com compostos cíclicos, fato dificultado se utilizar óleos vegetais na forma de triacilgliceróis, ou ácidos graxos requerendo temperaturas operacionais bem mais elevadas e com formação importante de coque.
Adicionalmente, caso se tenha como objetivo obter somente hidrocarbonetos com o processo integrado proposto na presente invenção, é possível direcionar todos os ésteres obtidos no primeiro processo para a etapa de hidrogenação e/ou descarboxilação (geração de hidrocarbonetos) que, de uma forma eficiente, já gerarão também hidrocarbonentos cíclicos de alta octanagem, sem necessitar da reação de reforma, esta usada nos processos já descritos no estado da técnica. Os hidrocarbonetos oxigenados podem ser (ou não para uso como biogasolina), da mesma forma, convertidos em hidrocarbonetos pela sua hidrogenação.
Outro diferencial do processo é a possibilidade de direcionar a produção para o biocombustível de preferência e/ou conveniência, seja este bioquerosene (bioquerosene (1 ) e bioquerosene (2)) ou biogasolina (biogasolina (1 ) e biogasolina (2)). Tal direcionamento pode se dar, por exemplo, em função da matéria-prima utilizada. O uso de óleos vegetais ricos em ácidos graxos de cadeias médias - AGCM (entre 10 e 16 carbonos) quando submetidos ao processo de produção de bioquerosene possibilitam rendimentos entre 70 e 80% de bioquerosene e entre 20 e 30% de biogasolina, na etapa de purificação que é realizada após a hidrogenação. Esse rendimento obtido para a gasolina representa um aumento de até 10% em relação ao rendimento obtido com o emprego, por exemplo, de óleos vegetais ricos em ácidos graxos de cadeias curtas - AGCC, além de permitir obter um volume maior da referida biogasolina quando este for desejável. Em termos de equipamentos necessários, pode-se desenvolver toda a reação de transesterificação (geração de ésteres) em processos contínuos, ganhando escala de produção. Ainda, a etapa de hidrogenação e/ou descarboxilação hidrogenação e/ou descarboxilação pode ser facilmente conduzida em sistemas e catalisadores bem conhecidos na indústria de combustíveis, que são as zeólitas, e em equipamentos de leitos fluidizados (FCC), que também tem alta capacidade operacional. A etapa de hidrogenação pode ser feita em sistemas também bem dominados, ou seja, uma tecnologia que pode ser facilmente operável, e de alta capacidade.
Breve descrição da figura
A Figura 1 demonstra um fluxograma do processo de obtenção de bioquerosene e de biogasolina de forma a detalhar a sequência de reações que ocorrem na invenção, assim como as etapas de purificação dos produtos obtidos.
A Figura 2 demonstra um fluxograma do processo de obtenção de bioquerosene de forma a detalhar a utilização da glicerina, que é um subproduto da reação de transesterificação, para a obtenção de diversos produtos químicos, como o etanol, por exemplo.
Descrição detalhada da invenção
Refere-se a presente invenção a dois processos de produção de bioquerosene, que correspondem a dois biocombustíveis com características e/ou propriedades semelhantes com as do querosene de origem fóssil e a outros dois biocombustíveis com características e/ou propriedades semelhantes a gasolina de origem fóssil, todos de origem vegetal. Um primeiro processo origina um combustível constituído por uma mistura de ésteres, aqui chamado de bioquerosene tipo 1 [bioquerosene (1 )], enquanto que um segundo processo possibilita a obtenção de um produto constituído por hidrocarbonetos, com composição semelhante ao querosene de origem fóssil, aqui chamado de bioquerosene tipo 2 [bioquerosene (2)]. Consequentemente é objeto da presente invenção um processo integrado para obtenção de biocombustíveis que compreende as seguintes etapas principais:
• prepara-se a matéria prima contendo materiais ricos em glicerídeos, e pelo menos um álcool de cadeia curta de C1 a C5, e pelo menos um catalisador (homogéneo e/ou heterogéneo) realizada a pressão atmosférica;
• promove-se a reação de transesterificação (Pressão atmosférica e temperatura entre ambiente a até 150°C);
• purifica-se o produto obtido por alto vácuo, com pressões da ordem de 0,001 a 5 mmHg ou 1 ,33.10"6 a 10"2 bar obtendo o bioquerosene (1);
• obtém-se um resíduo constituído de ésteres pesados (C > 16);
• promove-se a descarbonilação realizada em reatores de leito fixo ou fluidizado e em presença de zeólitas como catalisadores sob temperaturas entre 150 a até 800°C;
• obtém-se uma mistura de hidrocarbonetos e compostos oxigenados contendo aproximadamente 50% de cada corrente;
• submete-se a mistura obtida a um processo de separação;
• obtém-se uma fração constituída por hidrocarbonetos compatíveis com a composição do querosene de origem fóssil;
• a corrente constituída de compostos oxigenados, que são chamados de biogasolina (1 ), é submetida à reação de descarboxilação e/ou hidrogenação;
• em seguida, o produto desta reação é purificado mediante destilação a pressão atmosférica, obtendo-se hidrocarbonetos, que são chamados de bioquerosene (2) e biogasolina (2).
A Figura 1 apresenta um fluxograma do processo integrado de produção de biocombustível, onde é possível obter dois (02) tipos especiais de bioquerosene e biogasolina, bem como a descrição da sequência de reações que ocorrem no dito processo. Inicialmente prepara-se a matéria prima constituída, por exemplo, por óleos vegetais, preferencialmente àqueles mais ricos em ácidos graxos de cadeias médias - AGCM (entre 10 e 16 carbonos)— porém as matérias primas úteis para a realização da invenção incluem, mas não se limitam a materiais ricos em glicerídeos que contenham triglicerídeos e/ou diglicerídeos e/ou monoglicerídeos e/ou ácidos graxos livres, tais como óleos vegetais; óleos animais; gorduras vegetais; gorduras animais; óleos minerais; ésteres de reações de transesterificação; ésteres de reações de esterificação de óleos vegetais e gorduras animais; hidrocarbonetos parcialmente saturados de processos fermentativos; hidrocarbonetos saturados de hidrogenação de hidrocarbonetos parcialmente saturados ou de processo de fermentação; hidrocarbonetos provenientes do craqueamento térmico; mistura dos mesmos; etc.
A matéria-prima é então submetida, preferencialmente, a uma reação de transesterificação, obtendo-se uma mistura de ésteres que posteriormente é purificada, resultando-se 02 correntes: a fração pesada, rica em ésteres de cadeias longas e a fração leve, de alta pureza, que são os ésteres de cadeias médias: o bioquerosene oxigenado [bioquerosene (1 )]. Embora a reação de transesterificação forneça maior conversão em menor tempo e, por esse motivo, a mesma foi preferencialmente tratada na concretização desta invenção, outras reações podem ser empregadas para a realização da invenção, as quais incluem, mas não se limitam a reações de esterificação, acilação de oleofinas ou condensação de aldeídos.
A reação realizada para a obtenção da mistura de ésteres pode ocorrer em diferentes condições de temperatura e pressão, a especificação dessas condições está em função do tipo de matéria prima e do tipo de equipamento usado na reação. Os ésteres são normalmente produzidos por meio de reatores de agitação contínua em batelada (BSTR). Atualmente, diversos tipos de sistemas vêm sendo estudados visando o aumento da eficiência destes processos e consequentemente, a produção de forma mais rápida e económica. Como exemplos desses sistemas podem ser citados: reatores de agitação contínua em série; a destilação reativa; reatores de alta rotação; reatores com ultrasson; micro-ondas; micro-reatores; reatores com placas de troca térmica; reatores tubulares em série com reatores de agitação contínua; coluna com resina de troca-iônica; reator com duas fases (líquida- gasosa) a altas temperaturas; reatores oscilatórios (Harvey, 2003).
A transesterificação é normalmente realizada em reatores com agitação contínua, em presença de catálise básica e álcoois de baixo peso molecular. Os produtos desta reação são 90 % peso de ésteres e 10 % peso de glicerina. Em seguida, os ésteres podem ser separados utilizando um processo de purificação de alto vácuo, que possibilita a obtenção de uma mistura de ésteres de baixo peso molecular (C < 16), com alto grau de pureza (>99 % peso.), chamado de bioquerosene (1). Outra opção é a utilização dos ésteres como matéria prima para a produção de hidrocarbonetos (ver na Figura 1 ), via direta de hidrocarbonetos. Ressalta-se que esse processo pode ocorrer à pressão atmosférica ou sob vácuo e entre temperaturas de 150 a 800°C.
Basicamente para se obter o bioquerosene (1), deve-se se seguir as seguintes etapas:
a) Prepara-se a matéria prima contendo materiais ricos em glicerídeos, e pelo menos um álcool de cadeia curta de C1 a C5, e pelo menos um catalisador (homogéneo e/ou heterogéneo) realizada a pressão atmosférica;
b) Promove-se a reação de transesterificação (Pressão atmosférica e temperatura entre ambiente a até 50°C);
c) Purifica-se o produto obtido por alto vácuo, com pressões da ordem de 0,001 a 5 mmHg ou 1 ,33.10"6 a 10"2 bar.
Sendo que,
- os álcoois de cadeia curta da presente invenção são preferencialmente escolhidos dentre os álcoois com até 5 átomos de carbono. Exemplos de tais álcoois incluem, sem contudo se limita a metanol, etanol, propanol, butanol, isopropanoi, 1-butanol, 2-butanol, isobutanol, amílico e/ou seus isômeros dentre outros possíveis, bem como a mistura dos mesmos; - o solvente da presente invenção deve apresentar proporção molar solvente: óleo vegetal variando de 3:1 a 15:1 (p/p);
- o solvente da presente invenção é, preferencialmente, etanol utilizado na proporção 0:1 em relação ao óleo vegetal;
- o catalisador da presente invenção é um catalisador escolhido do grupo que compreende os catalisadores básicos tais como o NaOH, KOH, NaOCH3, NaOCH2 CH3) KOCH3, KOCH2 CH3, dentre outras possíveis bem como a mistura das mesmas, as guanidinas tais como 1 ,5,7- triazabiciclo[4.4.0]dec-5-eno (TBD), 1 ,1 ,3,3-tetrametilguanidina (TMG), dentre outras possíveis, bem como a mistura das mesmas;
- dependendo da matéria prima, catalisadores ácidos também podem ser utilizados, como ácido sulfúrico, ou outros catalisadores contendo metais, como Cr, Mo, entre outros, na forma de óxidos, sais, ou em combinação com suportes, como aluminatos, entre outros.
- o catalisador é utilizado em proporção molar que varia de 0,01 a
6% em peso em relação ao óleo vegetal;
- o catalisador homogéneo é o NaOH e KOH e o catalisador heterogéneo é a guanidina, sendo que a massa de catalisador utilizada deve ter até 2% em peso da massa de óleo vegetal;
- o emprego de óleos vegetais, de preferência àqueles mais ricos em ácidos graxos de cadeias médias AGCM (entre 10 e 16 carbonos), permite obter bioquerosene e biogasolina, respectivamente, nas seguintes proporções: 70-80% e 20-30%. Entretanto, qualquer cadeia de ácidos graxos, de C8 a C20, é útil ao processo descrito na presente invenção, podendo inclusive aumentar o rendimento de biogasolina, ou em função do comprimento da cadeia graxa, ou por ajustes nas condições da reação: por exemplo, no caso de se empregar óleos vegetais ricos em ácidos graxos de cadeias médias - (AGCM) de C10 a C16 e realizar a etapa de descarbonilação em uma faixa de temperatura preferencial situada na faixa de 400 a 800 °C, a produção de biogasolina é favorecida, uma vez que permite aumentar o rendimento da mesma em até 10%, além de aumentar seu volume. A corrente composta por ésteres pesados (resíduo; C>16), obtida na etapa anterior (de destilação), é submetida a uma reação especial chamada descarbonilação e/ou hidrogenação (geração de hidrocarbonetos), realizada em reatores de leito fixo (ou fluidizado) e em presença de zeólitas como catalisadores. Essa reação consiste no aquecimento dos ésteres, num reator (leito fixo ou fluidizado) suportado ou preenchido por zeólitas ou metais como níquel, paládio e platina sob temperaturas entre 150 a até 800°C, preferencialmente de 250 a 450°C, obtendo-se uma mistura de hidrocarbonetos e compostos oxigenados contendo aproximadamente 50% de cada corrente.
O produto dessa reação (hidrocarbonetos, hidrocarbonetos oxigenados, C02 e vapor de água) é submetido a um processo de separação, como a destilação atmosférica, sendo obtida uma fração leve, composta por hidrocarbonetos compatíveis com a composição do querosene de origem fóssil, esses hidrocarbonetos são chamados de bioquerosene (2) e uma outra pesada composta por hidrocarbonetos oxigenados: devido às particularidades destas 02 correntes são facilmente separadas em colunas de destilação convencional. Esta corrente rica em oxigenados pode ser utilizada como biogasolina (1 ). Ou então, a corrente de hidrocarbonetos oxigenados são, finalmente, submetidos a uma hidrogenação e/ou descarboxilação para eliminação do oxigénio da molécula, na presença de um catalisador de hidrogenação comercial, e sob pressão. Em seguida, o produto desta reação é purificado mediante destilação a pressão atmosférica, obtendo-se hidrocarbonetos, que também podem ser utilizados como combustível: bioquerosene (2) ou biogasolina (2), de acordo com o tamanho das moléculas geradas.
A biogasolina foi obtida na etapa de purificação do bioquerosene, esse subproduto que é um combustível constituído por mistura de hidrocarbonetos (C < 9) com alto grau de pureza, e características semelhantes as da gasolina. Podendo esse combustível ser utilizado em blends com a gasolina, e/ ou etanol, ou puro.
Dependendo das condições operacionais das etapas anteriores, como condução em temperaturas menores, ou maiores, podem aumentar ou diminuir os rendimentos em biquerosene/biogasolina respectivamente, conforme já mencionado.
Ressalta-se que, ambos os bioquerosenes podem ser utilizados em blends com o querosene de origem fóssil, sendo que ao bioquerosene (1 ) por ser constituído por mistura de ésteres deve ser adicionado anticongelantes caso seja utilizado puro. O bioquerosene (2) é semelhante ao querosene de origem fóssil, em termos de composição e propriedades físicas. Já a biogasolina, esta é uma alternativa a gasolina de origem fóssil. Um combustível constituído preferencialmente por mistura de hidrocarbonetos com alto grau de pureza, e características semelhantes as da gasolina. Podendo esse combustível ser utilizado em blends com a gasolina, e/ ou etanol, ou puro.
Tabela 1 - Propriedades do Bioquerosene (1)
VALOR LIMITE ABNT ASTM
CARACTERÍSTICA OBTIDO (ANP) NBR
APARÊNCIA
Aspecto límpido claro, límpido e Visual Visual /
isento de água não / D 4176 dissolvida e (Procedimento 1 ) material sólido à
temperatura
ambiente
COMPOSIÇÃO
Aromáticos, máx (3) 0% volume 25,0% volume 14.932 D 1.319
ou
Aromáticos totais, 26,5 - D 6.379
máx. (3)
Enxofre Total, máx. 0% massa 0,30 % massa 6.563 , D 1.266, D 1.552
14.875 , D 2.622, D 4.294, D 14.533 , 5.453
Enxofre mercaptídico, 0% massa 0,0030% massa 6.298 D 3.227
max. ou
Negativo Negativo 14.642 D 4.952
Ensaio Doctor (4)
Componentes na
expedição da
refinaria produtora (5)
Fração 0% volume Anotar - - hidroprocessada
Fração severamente 0% volume Anotar - - hidroprocessada
VOLATILIDADE
Destilação (6) 9.619 D 86
P.I.E. (Ponto Inicial 251 SC anotar
de Ebulição)
10% vol. SC 205,0
Recuperados, máx.
50% vol. SC anotar
Recuperados
90% vol. SC anotar
Recuperados
P.F.E. (Ponto Final 343eC 300,0
de Ebulição), máx.
Resíduo, máx. <0,05% 1 ,5
volume
Perda, máx. % volume 1 ,5
Ponto de Fulgor, min. 50SC 40,0 ou 7.974 D 56
38,0 - D 3.828
Teor de mono, di e 0,5% - - BS EM 14105-03 triglicerídeos
Massa Específica a 834,8kg/m3 771 ,3 - 836,6 7.148 D 1.298 ou D 4.052 20ÔC (7) ou
14.065
FLUIDEZ
Viscosidade a -20QC, 3,02 8,0 10.441 D 445
máx. (mm2/s) cst
COMBUSTÃO
Naftalenos, máx. 0% volume 3,00 - D 1.840
A glicerina que é o subproduto da reação de transesterificação pode ser utilizada para a obtenção de diversos produtos químicos. Dentre as principais utilizações da glicerina estão a indústria de cosméticos que absorve 40% de toda a produção, a indústria alimentícia que utiliza 24%, já a produção de resinas e ésteres utiliza 18% de glicerina, por fim a indústria farmacêutica absorve 11%, entre outras aplicações. Nesse estudo pretende-se reaproveitar a glicerina, como mostra a Figura 2, visando a obtenção de etanol, que será utilizado como matéria prima para reação de transesterificação. O reaproveitamento da glicerina visa reduzir o custo da reação, uma vez que será utilizada na produção de um dos reagentes da reação de transesterificação. Além da redução do custo do processo, o reaproveitamento desse subproduto contribuirá para diminuição da geração de resíduos do processo. Haja vista que existe um excedente de glicerina no mercado proveniente do processo de produção de biodiesel, não sendo viável comercialização desse subproduto.
Dois processos podem ser utilizados na produção de etanol a partir da glicerina. Esses processos serão descritos a seguir.
O primeiro processo consiste em degradação térmica da glicerina, entre 750°C e 900°C, para obtenção de gás de síntese (mistura de monóxido de carbono e hidrogénio). Em seguida, o gás de síntese é convertido em etanol através da reação conhecida como síntese direta.
2CO(g) + 4H2(g) <-> C2H5OH(g) + ¾(½
O segundo processo consiste na fermentação da glicerina em presença da bactéria Escherichia Coli, dando origem a uma mistura de butanol e etanol. A reação será descrita a seguir.
Exemplo de concretização
A seguir serão apresentadas as conversões obtidas em cada etapa do processo de obtenção de bioquerosene.
Primeira etapa: Reação de transesterificação (20 < T < 150°C), e preferencialmente entre 30 e 60°C.
Conversão: 85 - 99% em peso.
Segunda etapa: Reação de descarbonilação (150 < T < 800°C) e preferencialmente entre 250 e 450°C.
Conversão: Aproximadamente 50% em peso de hidrocarbonetos e Aproximadamente 50% em peso de compostos oxigenados.
Terceira etapa: Descarboxilação e/ou hidrogenação (2 < P < 100 bar), preferencialmente entre 10 e 50 bar.
Conversão em bioquerosene: 70 - 80% de hidrocarbonetos com número de carbonos entre 9 e 16 (9<C< 6) e entre 20 - 30% de hidrocarbonetos contendo entre 4 e 9 carbonos (4<C<9) que caracteriza a biogasolina.

Claims

REIVINDICAÇÕES
1. Processo de produção de bioquerosene em rota integrada caracterizado por compreender as seguintes etapas:
• prepara-se a matéria prima contendo materiais ricos em glicerídeos, e pelo menos um álcool de cadeia curta de C1 a C5, e pelo menos um catalisador (homogéneo e/ou heterogéneo) realizada a pressão atmosférica;
• promove-se a reação de transesterificação (Pressão atmosférica e temperatura entre ambiente a até 150°C);
• purifica-se o produto obtido por alto vácuo, com pressões da ordem de 0,001 a 5 mmHg ou 1 ,33.10"6 a 10"2 bar obtendo o bioquerosene (1);
• obtém-se um resíduo constituído de ésteres pesados (C > 16);
• promove-se a descarbonilação realizada em reatores de leito fixo ou fluidizado e em presença de zeólitas como catalisadores sob temperaturas entre 150 a até 800°C;
• obtém-se umâ mistura de hidrocarbonetos e compostos oxigenados contendo aproximadamente 50% de cada corrente;
• submete-se a mistura obtida a um processo de separação;
• obtém-se uma fração constituída por hidrocarbonetos compatíveis com a composição do querosene de origem fóssil;
• a corrente constituída de compostos oxigenados, que são chamados de biogasolina (1 ), é submetida à reação de descarboxilação e/ou hidrogenação;
• em seguida, o produto desta reação é purificado mediante destilação a pressão atmosférica, obtendo-se hidrocarbonetos, que são chamados de bioquerosene (2) e biogasolina (2).
2. Processo de produção de bioquerosene em rota integrada, de acordo com a reivindicação 1 , caracterizado por os hidrocarbonetos com cadeias menores (C < 9) poderem ser utilizados como biogasolina.
3. Processo de produção de bioquerosene em rota integrada, de acordo com a reivindicação 1 , caracterizado por a temperatura do processo de descarbonilação se dar preferencialmente em 250 a 450°C.
4. Processo de produção de bioquerosene em rota integrada, de acordo com as reivindicações 1 e 2, caracterizado pelo processo de descarbonilação, quando realizado para prover um aumento do rendimento na obtenção de biogasolina, ocorrer em uma temperatura preferencial situada na faixa de 400 a 800 °C.
5. Processo de produção de bioquerosene em rota integrada, de acordo com as reivindicações 1 , 2 e 4, caracterizado pelo fato de a matéria- prima, quando usada para prover um aumento do rendimento na obtenção de biogasolina, compreender preferencialmente óleos vegetais ricos em ácidos graxos de cadeias médias - AGCM (entre 10 e 16 carbonos).
6. Processo de produção de bioquerosene em rota integrada, de acordo com as reivindicações 1 , 4 e 5, caracterizado por o aumento do rendimento na obtenção da biogasolina compreender cerca de 10%.
7. Processo de produção de bioquerosene em rota integrada, de acordo com a reivindicação 1 , caracterizado por o processo de separação se dar preferencialmente por destilação atmosférica.
8. Processo de produção de bioquerosene em rota integrada, de acordo com a reivindicação 1 , caracterizado por a glicerina, subproduto da reação de transesterificação, poder ser utilizada para a obtenção de diversos produtos químicos.
9. Processo de produção de bioquerosene (1) caracterizado por compreender as seguintes etapas:
• prepara-se a matéria prima contendo materiais ricos em glicerídeos, e pelo menos um álcool de cadeia curta de C1 a C5, e pelo menos um catalisador (homogéneo e/ou heterogéneo) realizada a pressão atmosférica;
• promove-se a reação de transesterificação (Pressão atmosférica e temperatura entre ambiente a até 150°C); • purifica-se o produto obtido por alto vácuo, com pressões da ordem de 0,001 a 5 mmHg ou 1 ,33.10"6 a 10'2 bar obtendo o bioquerosene (1).
10. Bioquerosene (1 ), obtido pelo processo descrito na reivindicação 9, caracterizado por o referido bioqueresene (1) ser um bioquerosene oxigenado compreendido por uma mistura de ésteres de cadeias médias de alta pureza.
11. Processo de produção do bioquerosene (2) caracterizado por dar-se a partir das seguintes etapas:
• obtém-se ésteres pesados (C>16) como matéria prima;
• promove-se a descarbonilação realizada em reatores de leito fixo ou fluidizado e na presença de zeólitas como catalisadores sob temperaturas entre 150 a até 800°C, preferencialmente entre 250 a 450°C.
• obtém-se uma mistura de hidrocarbonetos e compostos oxigenados contendo aproximadamente 50% de cada corrente;
• submete-se a mistura obtida a um processo de separação; e
• obtém-se uma fração constituída por hidrocarbonetos compatíveis com a composição do querosene de origem fóssil.
12. Bioquerosene (2), obtido pelo processo descrito na reivindicação 11 , caracterizado por ter as mesmas propriedades físico-químicas do querosene de origem fóssil.
13. Processo de produção de biogasolina (1) caracterizado por dar-se a partir das seguintes etapas:
• obtém-se ésteres pesados (C>16) como matéria prima;
• promove-se a descarbonilação realizada em reatores de leito fixo ou fluidizado e na presença de ao menos um catalisador sob temperaturas entre 150 a até 800°C, preferencialmente entre 400 e 800°C;
• obtém-se uma mistura de hidrocarbonetos e hidrocarbonetos oxigenados, sendo que a fração oxigenada é a biogasolina (1).
14. Processo de produção de biogasolina (1), de acordo com a reivindicação 13, caracterizado pelo fato de o catalisador compreender zeolita ou um catalisador metálico.
15. Processo de produção de biogasolina (1 ), de acordo com as reivindicações 13 e 14, caracterizado pelo fato de o catalisador metálico poder ser qualquer um selecionado do grupo compreendido por níquel; paládio; e platina.
16. Biogasolina (1), obtida conforme processo descrito nas reivindicações 13 a 15, caracterizado por compreender hidrocarbonetos oxigenados gerados após separação das correntes da reaçao de descarbonilação.
17. Processo de produção de biogasolina (2) caracterizado por dar-se a partir das seguintes etapas:
• obtém-se ésteres pesados (C>16) como matéria prima;
• promove-se a descarbonilação realizada em reatores de leito fixo ou fluidizado e na presença de ao menos um catalisador sob temperaturas entre 150 a até 800°C, preferencialmente entre 400 e 800°C;
• obtém-se uma mistura de hidrocarbonetos e compostos oxigenados contendo aproximadamente 50% de cada corrente;
• submete-se a mistura obtida a um processo de separação; e
• obtém-se uma fração constituída por hidrocarbonetos de cadeias menores (C<9) com alto grau de pureza com características semelhantes as da gasolina de origem fóssil.
18. Processo de produção de biogasolina (2), de acordo com a reivindicação 17, caracterizado pelo fato de o catalisador compreender zeolita ou um catalisador metálico.
19. Processo de produção de biogasolina (2), de acordo com as reivindicações 17 e 18, caracterizado pelo fato de o catalisador metálico poder ser qualquer um selecionado do grupo compreendido por níquel; paládio; e platina.
20. Biogasolina (2), obtida conforme processo descrito nas reivindicações 17 a 19, caracterizado por compreender hidrocarbonetos contendo entre 4 e 9 carbonos.
21. Biogasolina (2), de acordo com a reivindicação 20, caracterizado por ter as mesmas propriedades físico-químicas de uma gasolina de origem fóssil.
PCT/BR2013/000087 2012-03-22 2013-03-22 Processo de produção de bioquerosene em rota integrada e bioquerosenes assim obtidos WO2013138891A1 (pt)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
BR102012006421-9A BR102012006421B1 (pt) 2012-03-22 2012-03-22 Processo de produção de bioquerosene em rota integrada e bioquerosenes assim obtidos
BRBR1020120064219 2012-03-22
BR132012032606A BR132012032606F1 (pt) 2012-12-18 2012-12-18 Processo de produção de bioquerosene em rota integrada e bioquerosenes assim obtidos
BRBR1320120326069 2012-12-20

Publications (1)

Publication Number Publication Date
WO2013138891A1 true WO2013138891A1 (pt) 2013-09-26

Family

ID=49221730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2013/000087 WO2013138891A1 (pt) 2012-03-22 2013-03-22 Processo de produção de bioquerosene em rota integrada e bioquerosenes assim obtidos

Country Status (1)

Country Link
WO (1) WO2013138891A1 (pt)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100140136A1 (en) * 2008-12-08 2010-06-10 Chevron U.S.A. Inc., Selective, integrated processing of bio-derived ester species to yield low molecular weight hydrocarbons and hydrogen for the production of biofuels
WO2011007046A2 (en) * 2009-07-17 2011-01-20 Neste Oil Oyj Process for the preparation of light fuels
WO2011143728A1 (pt) * 2010-05-21 2011-11-24 Petróleo Brasileiro S.A. - Petrobras Processo de produção de bioquerosene de aviaçáo e composição de querosene de aviação
BRPI0803465C1 (pt) * 2008-09-11 2019-04-09 Unicamp processo de obtenção de bioquerosene e bioquerosene assim obtido

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0803465C1 (pt) * 2008-09-11 2019-04-09 Unicamp processo de obtenção de bioquerosene e bioquerosene assim obtido
US20100140136A1 (en) * 2008-12-08 2010-06-10 Chevron U.S.A. Inc., Selective, integrated processing of bio-derived ester species to yield low molecular weight hydrocarbons and hydrogen for the production of biofuels
WO2011007046A2 (en) * 2009-07-17 2011-01-20 Neste Oil Oyj Process for the preparation of light fuels
WO2011143728A1 (pt) * 2010-05-21 2011-11-24 Petróleo Brasileiro S.A. - Petrobras Processo de produção de bioquerosene de aviaçáo e composição de querosene de aviação

Similar Documents

Publication Publication Date Title
Xu et al. Thermochemical conversion of triglycerides for production of drop-in liquid fuels
Deneyer et al. Alkane production from biomass: chemo-, bio-and integrated catalytic approaches
Serrano-Ruiz et al. From biodiesel and bioethanol to liquid hydrocarbon fuels: new hydrotreating and advanced microbial technologies
AU2007347872B2 (en) Method for cold stable biojet fuel
EP1741767B2 (en) Process for the manufacture of diesel range hydrocarbons
US8333949B2 (en) Method for creating high carbon content products from biomass oil
US8076504B2 (en) Method for production of short chain carboxylic acids and esters from biomass and product of same
BRPI1010343A2 (pt) processo de produção de biodiesel integrado
Weber et al. Production of hydrocarbons from fatty acids and animal fat in the presence of water and sodium carbonate: Reactor performance and fuel properties
Martinez-Villarreal et al. Drop-in biofuels production from microalgae to hydrocarbons: Microalgal cultivation and harvesting, conversion pathways, economics and prospects for aviation
Zanon Costa et al. Hydrothermal treatment of vegetable oils and fats aiming at yielding hydrocarbons: A review
US11674096B2 (en) Method of processing a bio-based material and apparatus for processing the same
CN105143407B (zh) 在烯烃存在下的热解反应
Razak et al. Resource planning for sustainable production of tailor-made green diesel
WO2013138891A1 (pt) Processo de produção de bioquerosene em rota integrada e bioquerosenes assim obtidos
MX2010007010A (es) Metodo de produccion de acidos carboxilicos y esteres de cadena corta a partir de biomasa y producto del mismo.
Kiatkittipong et al. Bioresources and biofuels—From classical to perspectives and trends
RU2376062C1 (ru) Способ приготовления катализатора и способ получения дизельного топлива с использованием этого катализатора
BR132012032606E2 (pt) Processo de produção de bioquerosene em rota integrada e bioquerosenes assim obtidos
BR102012006421A2 (pt) Processo de produçao de bioquerosene em rota integrada e bioquerosenes assim obtidos
Arifin et al. Production of biodiesel from waste cooking oil and Rbd palm oil using batch transesterification process
US9273252B2 (en) Production of aromatics from noncatalytically cracked fatty acid based oils
US20230235234A1 (en) Renewable diesel
Bezergianni et al. Catalytic hydrotreating of waste cooking oil for white diesel production
PT107637A (pt) Produção de combustíveis utilizando glicolípidos microbianos com cadeias lipídicas compostas por 6 a 14 carbonos

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13764855

Country of ref document: EP

Kind code of ref document: A1