WO2013137567A1 - Method for differentiating human pluripotent stem cells into blood progenitor cells, vascular endothelial progenitor cells, endothelial cells, and smooth muscle cells using selenium - Google Patents
Method for differentiating human pluripotent stem cells into blood progenitor cells, vascular endothelial progenitor cells, endothelial cells, and smooth muscle cells using selenium Download PDFInfo
- Publication number
- WO2013137567A1 WO2013137567A1 PCT/KR2013/001403 KR2013001403W WO2013137567A1 WO 2013137567 A1 WO2013137567 A1 WO 2013137567A1 KR 2013001403 W KR2013001403 W KR 2013001403W WO 2013137567 A1 WO2013137567 A1 WO 2013137567A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cells
- stem cells
- pluripotent stem
- human
- differentiation
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0603—Embryonic cells ; Embryoid bodies
- C12N5/0606—Pluripotent embryonic cells, e.g. embryonic stem cells [ES]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0652—Cells of skeletal and connective tissues; Mesenchyme
- C12N5/0661—Smooth muscle cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0607—Non-embryonic pluripotent stem cells, e.g. MASC
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0634—Cells from the blood or the immune system
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/069—Vascular Endothelial cells
- C12N5/0691—Vascular smooth muscle cells; 3D culture thereof, e.g. models of blood vessels
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/05—Inorganic components
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/115—Basic fibroblast growth factor (bFGF, FGF-2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/155—Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/165—Vascular endothelial growth factor [VEGF]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2506/00—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
- C12N2506/02—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells
Definitions
- the present invention relates to a method for differentiating human pluripotent stem cells using selenium, and specifically, to a method for effectively differentiating human pluripotent stem cells into blood progenitor cells, vascular progenitor cells, vascular endothelial cells, and vascular smooth muscle cells.
- Stem cells are cells that can be differentiated into various cells constituting biological tissues, which collectively refer to undifferentiated cells obtained from each tissue of embryo, fetus and adult. Stem cells are differentiated into specific cells by differentiation stimulation (environment), and unlike the cells in which cell division is stopped due to differentiation, proliferation is possible due to cell division (self-renewal). (Proliferation; expansion) is characterized by being able to differentiate into other cells by different environments or different differentiation stimulation, which is characterized by having plasticity (differentiation).
- stem cells can be classified in various ways. One of the most commonly used methods is according to an individual in which stem cells are separated. Embryonic stem cells (ES cells) isolated from embryos and adult stem cells isolated from adults Can be divided into Another common classification is according to the differentiation capacity of stem cells, which can be divided into pluripotency, multipotency and unipotency stem cells. Pluripotent stem cells are pluripotency cells that have the potential to differentiate into all cells. Embryonic stem cells (ES cells) and induced pluripotent stem cells (iPSCs). ), Embryonic germ cells (EGC), embryonic tumor cells (embryonic carcinoma cells, ECC) and the like. Multipotent and / or unipotent stem cells include adult stem cells.
- ES cells Embryonic stem cells
- iPSCs induced pluripotent stem cells
- ECC embryonic tumor cells
- ECC embryonic tumor cells
- Multipotent and / or unipotent stem cells include adult stem cells.
- Embryonic stem cells are formed from the inner cell mass of the blastocytes, which are the early stages of embryonic development, and have the potential to differentiate into all cells, which can differentiate into any tissue cell and also do not die. It can be cultured in undifferentiated state, and unlike adult stem cells, it is also possible to produce germ cells, so it can be inherited to the next generation (Thomson et al., Science, 282: 1145-1147, 1998; Reubinoff et al., Nat. Biotechnol., 18: 399-404, 2000). Human embryonic stem cells are prepared by separating and culturing only inner cell mass when forming human embryos. Currently, human embryonic stem cells made worldwide are obtained from frozen embryos remaining after infertility.
- iPSCs are included as a concept of pluripotent stem cells.
- Induced pluripotent stem cells are cells which have redifferentiated differentiated adult cells in various ways and returned to embryonic stem cells, which are the early stages of differentiation.
- dedifferentiated cells have been reported to exhibit almost the same characteristics as embryonic stem cells, pluripotent stem cells, in gene expression and differentiation capacity.
- human pluripotent stem cells have a pluripotency capable of differentiating into almost all somatic cells with self-renewal to constantly proliferate and maintain a constant number.
- the research is expected to bring radical advances in various academic fields such as embryology, regenerative medicine, and new drug development, and differentiates human pluripotent stem cells into desired cells, which can be used in various intractable patients such as diabetes, neurological diseases, and cardiovascular diseases. It is very useful in that it can be used as a therapeutic agent.
- an increasing number of people with ischemic cardiovascular disease and cell therapy using adult stem cells have been studied for patients who are inadequate to existing surgery or drug treatment, but have difficulty in securing a sufficient number of adult stem cells. Therefore, efforts are being actively made to differentiate human pluripotent stem cells, which have superior self-proliferation and differentiation ability to adult stem cells, into vascular endothelial cells and utilize them for treatment.
- human pluripotent stem cells In order to use human pluripotent stem cells as a cardiovascular cell therapy, it is necessary to secure a sufficient number of differentiated cells necessary for transplantation.In order to do this, human pluripotent stem cells can be effectively induced into vascular progenitor cells or vascular endothelial cells and smooth muscle cells. Skill is essential.
- human embryonic stem cells can be differentiated into vascular endothelial cells using coculture with mouse-derived stromal cells, or using fetal bovine serum (FBS) or human recombinant growth factor / cytokines. It has been reported how. Among them, differentiation using co-culture with mouse bone marrow stromal matrix was performed by co-culture with human embryonic stem cells and 10% FBS culture using mouse bone marrow-derived stromal cells as a feeder layer. As a separate method, isolated KDR-positive cells can be further differentiated in culture containing 10% FBS and vascular endothelial growth factor A (VEGF) to obtain vascular endothelial cells (Pathway for differentiation of human embryonic stem cells to vascular cell components).
- FBS fetal bovine serum
- VEGF vascular endothelial growth factor A
- MIT's Robert Langer team reported how to induce differentiation of human embryonic stem cells into vascular cells using bovine serum.
- the method produces a three-dimensional embryonic body (EB) of human embryonic stem cells, incubates the embryonic body in a culture medium containing 20% FBS for 12 days, and isolates CD34 positive cells using a flow cytometer.
- EB embryonic body
- CD31 positive vascular endothelial cells were obtained by incubating for another 10 to 15 days in EGM-2 (endothelial growth medium-2) to which 5% FBS was added (Vascular Progenitor cells isolated from human embryonic stem cells give rise to endothelial and smooth muscle-like cells and form vascular networks in vivo.Ferreira LS, Gerecht S, Shieh HF, Watson N, Rupnick MA, Dallabrida SM, Vunjak-Novakovic G, Langer R. Circulation Research 2007 101: 286-94).
- the conventional method of differentiating human embryonic stem cells into vascular cells uses co-culture with bovine serum or animal-derived cells, and thus in the clinical application of vascular endothelial cells differentiated from human embryonic stem cells.
- human recombinant growth factor / cytokines required for differentiation into vascular cells in particular human recombinant vascular endothelial growth factor A, human recombinant bone morphogenic protein-4, human Using serum-free and xeno-free media containing recombinant recombinant fibroblast growth factor (bFGF), or human recombinant Activin A
- bFGF recombinant fibroblast growth factor
- the present inventors conducted various studies to develop a technique for improving the efficiency of vascular endothelial cell differentiation method that does not use serum and animal-derived materials or animal-derived cells, and as a result selenium Using human recombinant growth factor / cytokine medium comprising the human pluripotent stem cells were found to be able to differentiate into high efficiency blood progenitors, vascular progenitors, vascular endothelial and vascular smooth muscle cells and came to complete the present invention.
- the present invention selectively differentiates human pluripotent stem cells into mesoderm using selenium-added human recombinant growth factor / cytokine differentiation medium to increase the differentiation efficiency into blood and vascular progenitor cells or vascular endothelial and smooth muscle cells. It is an object to provide a method.
- the present invention provides a method for differentiating human pluripotent stem cells into mesodermal stem cells using a medium containing selenium (selenium).
- Human pluripotent stem cells used in the present invention include human embryonic stem cells, human induced pluripotent stem cells, embryonic germ cells, and embryonic tumor cells.
- the mesoderm stem cells may be differentiated into blood progenitor cells, vascular progenitor cells, vascular endothelial cells, and vascular smooth muscle cells.
- the medium may further contain human recombinant growth factor or cytokine.
- the human recombinant growth factor or cytokine used in the present invention is not limited, but may include human recombinant BMP-4, human recombinant bFGF, and / or human recombinant VEGF.
- the differentiation medium containing selenium When using the differentiation medium containing selenium according to the method of the present invention, there is an effect that can selectively differentiate human pluripotent stem cells into mesodermal stem cells, ultimately blood precursor cells, vascular precursor cells, vascular endothelial cells with high efficiency Cells, vascular smooth muscle cells and the like.
- FIG. 1 is a graph illustrating the gene expression patterns of cells in the selenium-treated group (white) and the treated group (black: selenium 20 ng / ml, gray: selenium 50 ng / ml) during differentiation of human embryonic stem cells.
- A undifferentiated human embryonic stem cell marker gene
- B mesoderm specific marker gene
- C endoderm specific marker gene
- D ectoderm specific marker gene
- Figure 2 shows the results of immunofluorescence staining of the cell differentiation of the selenium-treated group and the treated group (50 ng / ml) during the differentiation of human embryonic stem cells, 9 and 15 days after differentiation, respectively.
- Cell differentiation into mesoderm, endoderm, and ectoderm are shown (CD34: mesoderm marker, AFP (a-fetoprotein): endoderm marker, b III-tubulin: ectoderm marker).
- Figure 3 shows the gene expression patterns of cells in the selenium-free group (white) and the treated group (black: selenium 20 ng / ml, gray: selenium 50 ng / ml) during the differentiation of human embryonic stem cells
- EC endothelial cell
- SMC smooth muscle cell
- Figure 4 is an immunofluorescence staining showing the differentiation of vascular endothelial cells and vascular smooth muscle cells in the group treated with selenium (50 ng / ml) during the differentiation process of human embryonic stem cells (vascular endothelial cell specific markers : CD31, VE-cad, vascular smooth muscle cell specific marker: SMA).
- FIG. 5 is a flow cytometry analysis of the differentiation of human embryonic stem cells into vascular precursors and vascular endothelial cells in the selenium-treated group and the treated group (20 or 50 ng / ml) during the differentiation of human embryonic stem cells.
- CD31 vascular endothelial cell specific marker
- CD34 vascular progenitor cell specific marker
- the term 'stem cells' refers to master cells that can be regenerated without limitation to form specialized cells of tissues and organs. Stem cells are developable pluripotent or pluripotent cells. Stem cells can divide into two daughter cells, or one daughter cell and one derived ('transit') cell, and then proliferate into mature, fully formed cells of the tissue.
- the term 'pluripotent stem cell' refers to a stem having pluripotency capable of differentiating into three germ layers constituting a living body, that is, endoderm, mesoderm, and ectoderm. It refers to cells, and generally corresponds to embryonic stem cells, induced pluripotent stem cells, embryonic germ cells, embryonic tumor cells.
- the term 'embryonic stem cell' is a cell cultured by separating and cultured from an inner cell mass (inner cell mass) of the blastocyst, which is an early development after fertilization.
- the term 'adult cell' refers to a cell derived from an adult that is born and alive as opposed to an embryonic cell.
- the term 'induced pluripotent stem cell (iPSC)' is a cell induced by artificially dedifferentiating (reprogramming) the already differentiated adult cells to the pluripotency (pluripotency)
- iPSC induced pluripotent stem cell
- the term 'embryonic germ cell' used in the present invention refers to a cell derived from primordial germ cells occurring in the gonadal ridge region of the fetus and has characteristics similar to embryonic stem cells but embryonic stem. It has weaker differentiation and division ability than cells.
- the term 'embryonic tumor cell' used in the present invention is an undifferentiated stem cell established from teratocarcinomas formed by the tumorization of primordial germ cells, and the main material for multipotent research before embryonic stem cells are established. Was used. Embryonic tumor cells, although having problems such as chromosomal abnormalities, have pluripotency.
- the term "differentiation” refers to a phenomenon in which structures or functions are specialized to each other during cell division and proliferation. It means to change.
- a relatively simple system is divided into two or more qualitatively different sub systems. For example, qualitatively between parts of a living organism that were almost homogeneous in the first place, such as head or torso distinctions between eggs that were initially homogenous in the development, or cells such as muscle cells or neurons.
- Phosphorus difference or as a result, is a state divided into subclasses or subclasses that can be distinguished qualitatively.
- the term 'cell therapeutic agent' is a cell and tissue prepared by separating, culturing and special manipulation from a human being and used as a medicine used for the purpose of treatment, diagnosis, and prevention, and to restore the function of the cell or tissue. Or a medicine used for the purpose of treatment, diagnosis, and prevention through a series of actions such as proliferating, selecting, or otherwise altering a cell's biological properties in vitro.
- Cell therapy agents are classified into somatic cell therapy and stem cell therapy according to the degree of differentiation of cells.
- Human embryonic stem cells (H9, WiCell, USA) in undifferentiated state were removed using a cell detachment solution (ReproCell, Japan) according to a known method (Takahashi K et al. Cell (2007) 131 , 861-872). Formed.
- the embryoid body obtained from the above was human recombinant BMP-4 (10 ng / ml, Prospec), human recombinant bFGF (5 ng / ml, Prospec), human recombinant VEGF (10 ng / ml, R & D), sodium selenite (20-50).
- DMEM / F12 Gibco, composition: http://www.atcc.org/Portals/1/Pdf/30-
- 10% serum replacement Knockout TM Serum Replacement xenofree, Gibco
- the embryonic body differentiated in step I was transferred to a culture plate using a pipette, attached to a plate bottom, and then human recombinant BMP-4 (20 ng / ml, Prospec) and human recombinant bFGF (5 ng / ml , Prospec), endothelial cell Basal Medium-2 (Lonza) supplemented with human recombinant VEGF (50 ng / ml, R & D), sodium selenite (20-50 ng / ml, Sigma) Ie, 20% oxygen concentration) for an additional 7 days.
- human recombinant BMP-4 (20 ng / ml, Prospec
- human recombinant bFGF (5 ng / ml , Prospec)
- endothelial cell Basal Medium-2 Longza
- human recombinant VEGF 50 ng / ml, R & D
- sodium selenite (20-50 ng / ml, Sigma
- Cells were harvested after 8 and 15 days of differentiation from Example 1, and the differentiation patterns into ectoderm, endoderm, and mesoderm were examined by real-time RT-PCR.
- RNA of the cell was extracted using Trizol (Invitrogen), and expression of genes was observed using Real-time PCR.
- 1 ⁇ g of RNA was first synthesized into cDNA using a Superscript first-strand synthesis system (Invitrogen), and the amplified gene expression was amplified using the primers and real time PCR SYBR-Green PCR master mix (Applied Biosystems) of each gene. Measured by Step One PlusTM Real-time PCR system (Applied Biosystems), the results are shown in FIG.
- Oct4 and Nanog genes which are markers of undifferentiated stem cells, was significantly reduced during differentiation compared to undifferentiated human embryonic stem cells (H9), whereas ectoderm (Pax6, Nestin), Mesoderm (Brachyury, Mesp1, CD34), endoderm (Sox17, Gata6) It can be seen that the expression of various genes are increased. In particular, it can be seen that the expression of mesoderm marker genes is significantly increased when using a medium containing selenium during differentiation compared to ectoderm and endoderm.
- the differentiated cells obtained from Example 1 were fixed in 4% paraformaldehyde for 10 minutes and reacted for 10 minutes at 0.5% Triton X-100.
- PBS phosphate buffered saline
- the antibody was reacted at 4 ° C. for 24 hours.
- the resultant was washed with PBS, and reacted with fluorescent labeled secondary antibody at room temperature for about 2 hours, followed by washing with PBS.
- the nuclei were stained with 4,6-diamino-2-phenylindole (DAPI) and observed using a Nikon ECLIPSE Ti-U inverted microscope (Nikon Instruments Inc.).
- DAPI 4,6-diamino-2-phenylindole
- CD34 blood and vascular precursor cell-specific marker
- AFP endodermal cell marker
- bIII-tubulin ectoderm cell marker
- Example 4 Confirmation of gene expression promotion of pluripotent endothelial and vascular smooth muscle cells of human pluripotent stem cells by selenium treatment
- Example 2 Cells after 8 and 15 days of differentiation obtained from Example 1 were collected and examined for differentiation into vascular endothelial cells and vascular smooth muscle cells through real-time RT-PCR. RT-PCR method was performed in the same manner as in Example 2.
- PECAM CD31
- VE-cadherin genes which are vascular endothelial cell-specific markers, as well as specific markers of vascular smooth muscle cells during differentiation compared to undifferentiated human embryonic stem cells (H9) It can be seen that the expression of SMA and Myocardin genes are also increased.
- Example 5 Confirmation of the selective differentiation of human pluripotent stem cells into vascular endothelial and vascular smooth muscle cells by selenium treatment
- CD31 and VE-cadherin vascular endothelial specific marker
- SMA vascular smooth muscle cell specific marker
- selenium promotes the selective differentiation of human pluripotent stem cells into vascular endothelial and vascular smooth muscle cells.
- the cells were separated by treatment with Accutase (Innovative cell technologies, Inc.) for 15 minutes, and then reacted with an antibody (anti-human CD31, CD34 antibody) having a complex of fluorescent materials (anti-human CD31, CD34 antibody) at 4 ° C. for 1 hour, followed by PBS (phosphate buffered). saline).
- the number of CD34 positive cells, blood and vascular progenitor cell-specific markers in the cells on the 15th day of differentiation of 3.6% of the total increases by about 5% by selenium treatment.
- the excellent efficient differentiation induction technology of the present invention is essential for practical application of human pluripotent stem cells as a cardiovascular disease cell therapy, and the present invention is expected to contribute greatly to the practical use of cardiovascular cell therapy.
- selenium promotes the differentiation of hematopoietic progenitor cells, CD34-positive cells, into the treatment of malignant diseases such as immunodeficiency diseases, aplastic anemia, hemoglobin disease, myeloid leukemia, and malignant lymphoma that can be treated by hematopoietic stem cell transplantation. It is expected to contribute greatly.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Cell Biology (AREA)
- Developmental Biology & Embryology (AREA)
- Reproductive Health (AREA)
- Gynecology & Obstetrics (AREA)
- Immunology (AREA)
- Vascular Medicine (AREA)
- Rheumatology (AREA)
- Hematology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
The present invention relates to a method for increasing the efficiency of differentiating human pluripotent stem cells into blood progenitor cells, vascular endothelial progenitor cells, vascular endothelial cells, and vascular smooth muscle cells. More particularly, the present invention relates to a method for differentiating human pluripotent stem cells using a medium to which selenium is added. The present invention can enable human pluripotent stem cells to be selectively differentiated into mesenchymal stem cells, and the present invention has the remarkable effect of differentiating human pluripotent stem cells into blood progenitor cells, vascular endothelial progenitor cells, vascular endothelial cells, and vascular smooth muscle cells with high efficiency. Therefore, the present invention can be expected to significantly contribute to the development of a cell therapy for cardiovascular diseases or a cell therapy for hematodyscrasia using human pluripotent stem cells.
Description
본 발명은 selenium을 사용하여 인간 만능줄기세포를 분화시키는 방법으로, 구체적으로 인간 만능줄기세포를 효과적으로 혈액전구세포, 혈관전구세포, 혈관내피세포 및 혈관평활근세포 등으로 분화시키는 방법에 관한 것이다.The present invention relates to a method for differentiating human pluripotent stem cells using selenium, and specifically, to a method for effectively differentiating human pluripotent stem cells into blood progenitor cells, vascular progenitor cells, vascular endothelial cells, and vascular smooth muscle cells.
줄기세포(stem cell) 는 생물 조직을 구성하는 다양한 세포들로 분화될 수 있는 세포로서, 배아, 태아 및 성체의 각 조직에서 얻을 수 있는 분화되기 전 단계의 미분화 세포들을 총칭한다. 줄기세포는 분화 자극(환경)에 의하여 특정 세포로 분화가 진행되며, 분화가 완료되어 세포분열이 정지된 세포와는 달리 세포분열에 의해 자신과 동일한 세포를 생산(self-renewal)할 수 있어 증식(proliferation; expansion)하는 특성이 있으며, 다른 환경 또는 다른 분화 자극에 의해 다른 세포로도 분화될 수 있어 분화에 유연성(plasticity)을 가지고 있는 것이 특징이다.Stem cells are cells that can be differentiated into various cells constituting biological tissues, which collectively refer to undifferentiated cells obtained from each tissue of embryo, fetus and adult. Stem cells are differentiated into specific cells by differentiation stimulation (environment), and unlike the cells in which cell division is stopped due to differentiation, proliferation is possible due to cell division (self-renewal). (Proliferation; expansion) is characterized by being able to differentiate into other cells by different environments or different differentiation stimulation, which is characterized by having plasticity (differentiation).
이러한 줄기세포는 다양한 방법으로 분류할 수 있다. 그 중 가장 흔히 이용되는 방법 중 하나는 줄기세포가 분리된 개체에 따른 것으로, 배아(embryo)에서 분리된 배아줄기세포(embryonic stem cell, ES cell)와 성체에서 분리된 성체줄기세포(adult stem cell)로 나눌 수 있다. 또 다른 흔한 분류는 줄기세포의 분화능에 따른 것으로, 만능(pluripotency), 다분화능(multipotency) 및 단분화능(unipotency) 줄기세포로 나눌 수 있다. 만능줄기세포(pluripotent stem cells)는 모든 세포로 분화될 수 있는 잠재력을 지닌 전분화능(pluripotency)의 세포로서 배아줄기세포(embryonic stem cell, ES cell) 및 유도만능줄기세포(induced pluripotent stem cell, iPSC), 배아생식선세포(embryonic germ cell, EGC), 배아종양세포(embryonic carcinoma cell, ECC) 등이 이에 해당된다. 다분화능 및/또는 단분화능 줄기세포로는 성체줄기세포를 예로 들 수 있다.These stem cells can be classified in various ways. One of the most commonly used methods is according to an individual in which stem cells are separated. Embryonic stem cells (ES cells) isolated from embryos and adult stem cells isolated from adults Can be divided into Another common classification is according to the differentiation capacity of stem cells, which can be divided into pluripotency, multipotency and unipotency stem cells. Pluripotent stem cells are pluripotency cells that have the potential to differentiate into all cells. Embryonic stem cells (ES cells) and induced pluripotent stem cells (iPSCs). ), Embryonic germ cells (EGC), embryonic tumor cells (embryonic carcinoma cells, ECC) and the like. Multipotent and / or unipotent stem cells include adult stem cells.
배아줄기세포는 배아발생초기인 포배기(blastocyte)의 세포내괴(inner cell mass)로부터 형성되며, 모든 세포로 분화가능한 잠재력을 가지고 있어 어떠한 조직 세포로도 분화될 수 있으며, 또한 사멸하지 않고(immortal) 미분화상태에서 배양가능하며, 성체줄기세포와 달리 배세포(germ cell)의 제조도 가능하므로 다음 세대로 유전될 수 있는 특징도 가지고 있다(Thomson et al., Science, 282: 1145-1147, 1998; Reubinoff et al., Nat. Biotechnol., 18: 399-404, 2000). 인간 배아줄기세포는 인간 배아 형성시 세포내괴(inner cell mass) 만을 분리하여 배양함으로써 제조되는데, 현재 전 세계적으로 만들어진 인간 배아줄기세포는 불임시술 뒤 남은 냉동배아로부터 얻어진 것이다. 한편, 배아줄기세포에 더하여, 만능줄기세포의 개념으로 포함되고 있는 것으로 유도만능줄기세포(iPSC)가 있다. 유도만능줄기세포(iPSC)는 분화가 끝난 성체세포를 여러 가지 방법으로 역분화시켜, 분화 초기 단계인 배아줄기세포로의 상태로 회귀시킨 세포이다. 현재까지 역분화 세포는 유전자 발현과 분화능에서 만능줄기세포인 배아줄기세포와 거의 동일한 성격을 나타내는 것으로 보고되어 있다.Embryonic stem cells are formed from the inner cell mass of the blastocytes, which are the early stages of embryonic development, and have the potential to differentiate into all cells, which can differentiate into any tissue cell and also do not die. It can be cultured in undifferentiated state, and unlike adult stem cells, it is also possible to produce germ cells, so it can be inherited to the next generation (Thomson et al., Science, 282: 1145-1147, 1998; Reubinoff et al., Nat. Biotechnol., 18: 399-404, 2000). Human embryonic stem cells are prepared by separating and culturing only inner cell mass when forming human embryos. Currently, human embryonic stem cells made worldwide are obtained from frozen embryos remaining after infertility. Meanwhile, in addition to embryonic stem cells, iPSCs are included as a concept of pluripotent stem cells. Induced pluripotent stem cells (iPSCs) are cells which have redifferentiated differentiated adult cells in various ways and returned to embryonic stem cells, which are the early stages of differentiation. To date, dedifferentiated cells have been reported to exhibit almost the same characteristics as embryonic stem cells, pluripotent stem cells, in gene expression and differentiation capacity.
상기에서 살펴본 바와 같이, 인간 만능줄기세포는 끊임없이 증식하여 일정한 수를 유지하려는 자가재생산능력(self-renewal)과 함께 거의 모든 체세포로 분화할 수 있는 전분화능(pluripotency)을 가지고 있어, 인간 만능줄기세포 연구는 발생학, 재생의학, 및 신약개발 등 여러 학술분야에서 급진적인 진보를 가져올 것으로 예상되고 있으며, 인간 만능줄기세포를 원하는 세포로 분화하여 당뇨병, 신경계 질환, 심혈관계 질환 등의 여러 난치병 환자에 세포치료제로 사용될 수 있다는 면에서 매우 활용가치가 높다. 특히, 허혈성 심혈관계 질환을 가진 인구가 늘어나고, 기존의 수술이나 약물 치료에 부적응하는 환자를 위해 성체줄기세포를 이용한 세포치료법이 연구되고 있으나, 충분한 수의 성체줄기세포를 확보하는데 어려움을 겪고 있다. 이에 성체줄기세포보다 자가증식능력과 분화능력이 뛰어난 인간 만능줄기세포를 혈관내피세포로 분화하여 치료에 활용하고자 하는 노력이 활발하게 진행되고 있다.As described above, human pluripotent stem cells have a pluripotency capable of differentiating into almost all somatic cells with self-renewal to constantly proliferate and maintain a constant number. The research is expected to bring radical advances in various academic fields such as embryology, regenerative medicine, and new drug development, and differentiates human pluripotent stem cells into desired cells, which can be used in various intractable patients such as diabetes, neurological diseases, and cardiovascular diseases. It is very useful in that it can be used as a therapeutic agent. In particular, an increasing number of people with ischemic cardiovascular disease and cell therapy using adult stem cells have been studied for patients who are inadequate to existing surgery or drug treatment, but have difficulty in securing a sufficient number of adult stem cells. Therefore, efforts are being actively made to differentiate human pluripotent stem cells, which have superior self-proliferation and differentiation ability to adult stem cells, into vascular endothelial cells and utilize them for treatment.
인간 만능줄기세포를 심혈관계 질환 세포치료제로 실용화하기 위해서는 우선 환자이식에 필요한 충분한 수의 분화된 세포를 확보하여야 하는데, 이를 위해서는 인간 만능줄기세포를 혈관전구세포 혹은 혈관내피 및 평활근세포로 효과적으로 분화 유도하는 기술이 필수적이다.In order to use human pluripotent stem cells as a cardiovascular cell therapy, it is necessary to secure a sufficient number of differentiated cells necessary for transplantation.In order to do this, human pluripotent stem cells can be effectively induced into vascular progenitor cells or vascular endothelial cells and smooth muscle cells. Skill is essential.
이와 관련하여, 마우스 유래 골수 기질 세포(stromal cell)와의 공배양을 이용하거나, 소혈청(fetal bovine serum; FBS) 혹은 인간재조합 성장인자/사이토카인을 이용하여 인간 배아줄기세포를 혈관내피세포로 분화하는 방법이 보고된 바 있다. 이 중 마우스 유래 골수 기질과의 공배양을 이용한 분화법은, 마우스 골수 유래의 기질 세포를 지지층(feeder layer)으로 사용하여 인간 배아줄기세포와 10% FBS 배양액 조건하에 공배양한 다음 KDR 양성 세포를 분리하는 방법으로, 분리한 KDR 양성 세포는 10% FBS와 VEGF(vascular endothelial growth factor A)가 함유된 배양액에서 더 분화시켜 혈관내피세포를 얻게 된다(Pathway for differentiation of human embryonic stem cells to vascular cell components and their potential for vascular regeneration. Sone M, Itoh H, Yamahara K, Yamashita JK, Yurugi-Kobayashi T, Nonoguchi A, Suzuki Y, Chao TH, Sawada N, Fukunaga Y, Miyashita K, Park K, Oyamada N, Sawada N, Taura D, Tamura N, Kondo Y, Nito S, Suemori H, Nakatsuji N, Nishikawa S, Nakao K. Arterioscler Thromb Vasc Biol. 2007 Oct;27(10):2127-34).In this regard, human embryonic stem cells can be differentiated into vascular endothelial cells using coculture with mouse-derived stromal cells, or using fetal bovine serum (FBS) or human recombinant growth factor / cytokines. It has been reported how. Among them, differentiation using co-culture with mouse bone marrow stromal matrix was performed by co-culture with human embryonic stem cells and 10% FBS culture using mouse bone marrow-derived stromal cells as a feeder layer. As a separate method, isolated KDR-positive cells can be further differentiated in culture containing 10% FBS and vascular endothelial growth factor A (VEGF) to obtain vascular endothelial cells (Pathway for differentiation of human embryonic stem cells to vascular cell components). and their potential for vascular regeneration.Sone M, Itoh H, Yamahara K, Yamashita JK, Yurugi-Kobayashi T, Nonoguchi A, Suzuki Y, Chao TH, Sawada N, Fukunaga Y, Miyashita K, Park K, Oyamada N, Sawada N , Taura D, Tamura N, Kondo Y, Nito S, Suemori H, Nakatsuji N, Nishikawa S, Nakao K. Arterioscler Thromb Vasc Biol. 2007 Oct; 27 (10): 2127-34).
또한, 2007년 MIT의 Robert Langer 연구팀은 소혈청을 이용하여 인간 배아줄기세포를 혈관세포로 분화유도하는 방법을 보고하였다. 상기 방법은 인간 배아줄기세포의 3차원적 배상체(embryonic body: EB)를 만든 후, 배상체를 20% FBS 가 첨가된 배양액에서 12일 간 배양하고, 유세포 분석기를 이용하여 CD34 양성 세포를 분리한 후 혈관내피세포로의 분화를 위해 5% FBS가 첨가된 EGM-2 (endothelial growth medium-2)에서 10일에서 15일 더 배양하여 CD31 양성 혈관내피세포를 얻는 방법이다(Vascular Progenitor cells isolated from human embryonic stem cells give rise to endothelial and smooth muscle-like cells and form vascular networks in vivo. Ferreira LS, Gerecht S, Shieh HF, Watson N, Rupnick MA, Dallabrida SM, Vunjak-Novakovic G, Langer R. Circulation Research 2007;101:286-94).In 2007, MIT's Robert Langer team reported how to induce differentiation of human embryonic stem cells into vascular cells using bovine serum. The method produces a three-dimensional embryonic body (EB) of human embryonic stem cells, incubates the embryonic body in a culture medium containing 20% FBS for 12 days, and isolates CD34 positive cells using a flow cytometer. In order to differentiate into vascular endothelial cells, CD31 positive vascular endothelial cells were obtained by incubating for another 10 to 15 days in EGM-2 (endothelial growth medium-2) to which 5% FBS was added (Vascular Progenitor cells isolated from human embryonic stem cells give rise to endothelial and smooth muscle-like cells and form vascular networks in vivo.Ferreira LS, Gerecht S, Shieh HF, Watson N, Rupnick MA, Dallabrida SM, Vunjak-Novakovic G, Langer R. Circulation Research 2007 101: 286-94).
이에 더하여, 2007년 Scadden 연구팀은 3차원적인 배상체 대신 인간 배아줄기세포를 2차원적 단일층(monolayer)으로 배양하여 혈관내피세포로 분화하는 방법을 보고하였다. 상기 방법 역시 15% FBS를 이용하여 CD34 양성 세포로 분화한 뒤 5% FBS가 첨가된 EGM-2에서 7-10일 배양함으로써 CD31 양성 혈관내피세포의 분화를 유도하였다(endothelial cells derived from human embryonic stem cells form durable blood vessels in vivo. Wang ZZ, Au P, Chen T, Shao Y, Daheron LM, Bai H, Arzigian M, Fukumura D, Jain RK, Scadden DT. Nature Biotechnology 2007;25:317-8).In addition, in 2007, Scadden's team reported a method of culturing human embryonic stem cells in a two-dimensional monolayer instead of three-dimensional embryoid bodies to differentiate into vascular endothelial cells. The method also induced differentiation of CD31 positive vascular endothelial cells by differentiating CD34 positive cells using 15% FBS and culturing for 7-10 days in EGM-2 added with 5% FBS (endothelial cells derived from human embryonic stem). cells form durable blood vessels in vivo.Wang ZZ, Au P, Chen T, Shao Y, Daheron LM, Bai H, Arzigian M, Fukumura D, Jain RK, Scadden DT.Nature Biotechnology 2007; 25: 317-8).
상기에서 살펴본 바와 같이, 인간 배아줄기세포를 혈관세포로 분화시키는 종래의 방법은 소혈청 혹은 동물유래 세포와의 공배양을 이용하고 있어 인간 배아줄기세포에서 분화된 혈관내피세포를 임상 적용함에 있어 동물 유래 병원균체(pathogen)에 의한 오염(예를 들어, 세균 및 바이러스 감염 가능성) 및 그로 인한 환자의 면역반응 등을 초래할 수 있는 문제점이 존재한다. As described above, the conventional method of differentiating human embryonic stem cells into vascular cells uses co-culture with bovine serum or animal-derived cells, and thus in the clinical application of vascular endothelial cells differentiated from human embryonic stem cells. There are problems that can result in contamination by the source pathogen (eg, possible bacterial and viral infections) and thereby the patient's immune response.
상기 문제점을 극복하기 위해 최근에는 혈청 및 동물 유래원이 포함되지 않는 새로운 분화방법의 연구가 활발히 진행되고 있다. 구체적으로, 혈관세포로의 분화에 필요한 인간 재조합 성장인자/사이토카인, 특히 인간 재조합 VEGF-A( human recombinant vascular endothelial growth factor A), 인간 재조합 BMP-4 (human recombinant bone morphogenic protein-4), 인간 재조합 bFGF (human recombinant basic fibroblast growth factor), 또는 인간 재조합 악티빈 A (human recombinant Activin A)를 포함하는 무-혈청(serum free) 및 무-이종(異種)물질(xeno-free) 배지를 이용하여 임상적용시의 안전성을 확보하고자 하였다.In order to overcome the above problems, researches on new differentiation methods that do not include serum and animal sources have been actively conducted in recent years. Specifically, human recombinant growth factor / cytokines required for differentiation into vascular cells, in particular human recombinant vascular endothelial growth factor A, human recombinant bone morphogenic protein-4, human Using serum-free and xeno-free media containing recombinant recombinant fibroblast growth factor (bFGF), or human recombinant Activin A We tried to secure the safety of clinical application.
그러나 인간 만능줄기세포에서 분화된 혈관세포를 심혈관계 질환 세포치료제로 실용화하기 위해서는 현재까지 개발된 분화법을 개선함으로써 분화효율을 높여 환자이식에 필요한 충분한 수의 분화된 세포를 확보하는 것이 가장 중요하다.However, in order to use vascular cells differentiated from human pluripotent stem cells as a cardiovascular cell therapy, it is most important to improve the differentiation methods developed to date to increase the differentiation efficiency and secure sufficient number of differentiated cells for transplantation. .
상기 종래기술의 문제점을 해결하기 위하여, 본 발명자들은 혈청 및 동물 유래 물질 또는 동물 유래 세포를 사용하지 않는 혈관내피세포 분화방법의 효율을 개선하는 기술을 개발하고자 다양한 연구를 수행하였으며, 그 결과 selenium을 포함하는 인간 재조합 성장인자/사이토카인 배지를 사용하여 인간 만능줄기세포를 높은 효율의 혈액전구, 혈관전구, 혈관내피 및 혈관평활근 세포로 분화시킬 수 있음을 발견하고 본 발명을 완성하기에 이르렀다.In order to solve the problems of the prior art, the present inventors conducted various studies to develop a technique for improving the efficiency of vascular endothelial cell differentiation method that does not use serum and animal-derived materials or animal-derived cells, and as a result selenium Using human recombinant growth factor / cytokine medium comprising the human pluripotent stem cells were found to be able to differentiate into high efficiency blood progenitors, vascular progenitors, vascular endothelial and vascular smooth muscle cells and came to complete the present invention.
따라서, 본 발명은 selenium이 첨가된 인간 재조합 성장인자/사이토카인 분화배지를 이용하여 인간 만능줄기세포를 선택적으로 중배엽으로 분화하여 혈액 및 혈관전구세포 혹은 혈관내피 및 평활근세포로의 분화효율을 증가시키는 방법을 제공하는 것을 목적으로 한다.Accordingly, the present invention selectively differentiates human pluripotent stem cells into mesoderm using selenium-added human recombinant growth factor / cytokine differentiation medium to increase the differentiation efficiency into blood and vascular progenitor cells or vascular endothelial and smooth muscle cells. It is an object to provide a method.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be achieved by the present invention is not limited to the above-mentioned problem, another task that is not mentioned will be clearly understood by those skilled in the art from the following description.
본 발명은 selenium (셀레늄)을 포함하는 배지를 사용하여 인간 만능줄기세포를 중배엽 줄기세포로 분화시키는 방법을 제공한다. 본 발명에서 사용되는 인간만능줄기세포는 인간 배아줄기세포, 인간 유도만능줄기세포, 배아생식세포, 및 배아종양세포를 포함한다.The present invention provides a method for differentiating human pluripotent stem cells into mesodermal stem cells using a medium containing selenium (selenium). Human pluripotent stem cells used in the present invention include human embryonic stem cells, human induced pluripotent stem cells, embryonic germ cells, and embryonic tumor cells.
본 발명의 일 구현예로 상기 중배엽 줄기세포는 혈액전구세포, 혈관전구세포, 혈관내피세포 및 혈관평활근 세포 등으로 분화될 수 있다.In an embodiment of the present invention, the mesoderm stem cells may be differentiated into blood progenitor cells, vascular progenitor cells, vascular endothelial cells, and vascular smooth muscle cells.
본 발명의 다른 구현예로 상기 배지는 인간 재조합 성장인자 또는 사이토카인을 추가적으로 함유할 수 있다. 본 발명에서 사용되는 인간 재조합 성장인자 또는 사이토카인에는 제한이 없으나, 인간 재조합 BMP-4, 인간 재조합 bFGF 및/또는 인간 재조합 VEGF를 포함할 수 있다.In another embodiment of the present invention, the medium may further contain human recombinant growth factor or cytokine. The human recombinant growth factor or cytokine used in the present invention is not limited, but may include human recombinant BMP-4, human recombinant bFGF, and / or human recombinant VEGF.
본 발명의 방법에 따른 selenium을 포함하는 분화 배지를 사용할 경우, 인간 만능줄기세포를 선택적으로 중배엽 줄기세포로 분화시킬 수 있는 효과가 있으며, 궁극적으로 높은 효율로 혈액전구세포, 혈관전구세포, 혈관내피세포, 및 혈관평활근세포 등으로 분화시킬 수 있다.When using the differentiation medium containing selenium according to the method of the present invention, there is an effect that can selectively differentiate human pluripotent stem cells into mesodermal stem cells, ultimately blood precursor cells, vascular precursor cells, vascular endothelial cells with high efficiency Cells, vascular smooth muscle cells and the like.
도 1은 인간 배아줄기세포의 분화 과정 중 selenium 처리하지 않은 군(흰색)과 처리한 군(검은색: selenium 20 ng/ml, 회색: selenium 50 ng/ml)에서 세포의 유전자 발현 양상을 분석한 결과로서, 분화 전(H9), 분화 후 각각 8일, 15일 경과한 세포의 유전자 발현을 실시간 RT-PCR한 결과를 나타낸 것이다(A: 미분화 인간 배아줄기세포 마커 유전자, B: 중배엽 특이 마커 유전자, C: 내배엽 특이 마커 유전자, D: 외배엽 특이 마커 유전자).1 is a graph illustrating the gene expression patterns of cells in the selenium-treated group (white) and the treated group (black: selenium 20 ng / ml, gray: selenium 50 ng / ml) during differentiation of human embryonic stem cells. As a result, real-time RT-PCR of the gene expression of cells before and after differentiation (H9) and 8 and 15 days after differentiation was shown in real time (A: undifferentiated human embryonic stem cell marker gene, B: mesoderm specific marker gene). , C: endoderm specific marker gene, D: ectoderm specific marker gene).
도 2는 인간 배아줄기세포의 분화 과정 중 selenium 처리하지 않은 군과 처리한 군(50 ng/ml)에서의 세포 분화를 면역형광염색법으로 분석한 결과로서, 분화 후 각각 9일 및 15일 경과한 세포의 중배엽, 내배엽, 외배엽으로의 분화 결과를 나타낸 것이다(CD34: 중배엽 마커, AFP(a-fetoprotein): 내배엽 마커, b III-tubulin: 외배엽 마커). Figure 2 shows the results of immunofluorescence staining of the cell differentiation of the selenium-treated group and the treated group (50 ng / ml) during the differentiation of human embryonic stem cells, 9 and 15 days after differentiation, respectively. Cell differentiation into mesoderm, endoderm, and ectoderm are shown (CD34: mesoderm marker, AFP (a-fetoprotein): endoderm marker, b III-tubulin: ectoderm marker).
도 3은 인간 배아줄기세포의 분화 과정 중 selenium 처리하지 않은 군(흰색)과 처리한 군(검은색: selenium 20 ng/ml, 회색: selenium 50 ng/ml)에서 세포의 유전자 발현 양상을 분석한 결과로서, 분화 전(H9), 분화 후 각각 8일, 15일 경과한 세포의 유전자 발현을 실시간 RT-PCR로 확인한 결과를 나타낸 것이다. EC(endothelial cell)와 SMC(smooth muscle cell)은 각각 혈관내피세포와 혈관평활근세포 특이 유전자 발현 확인을 위한 양성 대조군으로 사용하였다(A: 혈관내피세포 특이 마커 유전자, B: 혈관평활근세포 특이 마커 유전자). Figure 3 shows the gene expression patterns of cells in the selenium-free group (white) and the treated group (black: selenium 20 ng / ml, gray: selenium 50 ng / ml) during the differentiation of human embryonic stem cells As a result, gene expression of cells 8 and 15 days after differentiation (H9) and after differentiation was confirmed by real-time RT-PCR. EC (endothelial cell) and SMC (smooth muscle cell) were used as positive controls for the expression of vascular endothelial cells and vascular smooth muscle cell specific genes respectively (A: vascular endothelial cell specific marker gene, B: vascular smooth muscle cell specific marker gene) ).
도 4는 인간 배아줄기세포의 분화 과정 중 selenium 처리하지 않은 군과 처리한 군(50 ng/ml)에서 혈관내피세포 및 혈관평활근세포로의 분화를 보여주는 면역형광염색 결과이다(혈관내피세포 특이 마커: CD31, VE-cad, 혈관평활근세포 특이 마커: SMA).Figure 4 is an immunofluorescence staining showing the differentiation of vascular endothelial cells and vascular smooth muscle cells in the group treated with selenium (50 ng / ml) during the differentiation process of human embryonic stem cells (vascular endothelial cell specific markers : CD31, VE-cad, vascular smooth muscle cell specific marker: SMA).
도 5는 인간 배아줄기세포의 분화 과정 중 selenium 처리하지 않은 군과 처리한 군(20 or 50 ng/ml)에서 인간 배아줄기세포의 혈관전구 및 혈관내피세포로의 분화 양상을 유세포 분석방법으로 분석한 결과를 나타낸 것이다. 인간 배아줄기세포에서 분화 15일 경과 후 회수한 세포를 CD31(혈관내피세포 특이 마커) 및 CD34(혈관전구세포 특이 마커) 항체와 반응시켜 유세포 분석을 실시하였다.5 is a flow cytometry analysis of the differentiation of human embryonic stem cells into vascular precursors and vascular endothelial cells in the selenium-treated group and the treated group (20 or 50 ng / ml) during the differentiation of human embryonic stem cells. One result is shown. Cells recovered after 15 days of differentiation from human embryonic stem cells were reacted with CD31 (vascular endothelial cell specific marker) and CD34 (vascular progenitor cell specific marker) antibodies for flow cytometry.
본 발명에서 사용된 용어 '줄기세포'는 조직 및 기관의 특수화된 세포를 형성하도록 비제한적으로 재생할 수 있는 마스터 세포를 지칭한다. 줄기세포는 발달 가능한 만능성 또는 다능성 세포이다. 줄기세포는 2개의 딸줄기세포, 또는 하나의 딸줄기세포와 하나의 유래('전이(transit)') 세포로 분열될 수 있으며, 이후에 조직의 성숙하고 완전한 형태의 세포로 증식된다. 본 발명에서 사용된 용어 '만능줄기세포'는 생체를 구성하는 3가지 배엽(germ layer), 즉 내배엽(endoderm), 중배엽(mesoderm), 외배엽(ectoderm) 모두로 분화할 수 있는 만능성을 지닌 줄기세포를 지칭하며, 일반적으로 배아줄기세포와 유도만능줄기세포, 배아생식세포, 배아종양세포가 이에 해당된다. As used herein, the term 'stem cells' refers to master cells that can be regenerated without limitation to form specialized cells of tissues and organs. Stem cells are developable pluripotent or pluripotent cells. Stem cells can divide into two daughter cells, or one daughter cell and one derived ('transit') cell, and then proliferate into mature, fully formed cells of the tissue. As used herein, the term 'pluripotent stem cell' refers to a stem having pluripotency capable of differentiating into three germ layers constituting a living body, that is, endoderm, mesoderm, and ectoderm. It refers to cells, and generally corresponds to embryonic stem cells, induced pluripotent stem cells, embryonic germ cells, embryonic tumor cells.
본 발명에서 사용된 용어 '배아줄기세포'는 수정 후 발생 초기인 배반포기(blastocyst)의 내부세포덩어리(세포내괴, inner cell mass)에서 분리하여 배양한 세포로 만능성(pluripotency)을 지니는 세포를 지칭한다. 본 발명에서 사용된 용어 '성체세포'는 배아세포와 반대되는 용어로, 태어나서 생존하는 성체로부터 유래한 세포를 지칭한다. 본 발명에서 사용된 용어 ‘유도만능줄기세포(iPSC)’는 이미 분화가 완성된 성체세포들에 대하여 인위적으로 역분화과정 (재프로그램화)을 수행하여 유도된 세포들로 만능분화능(pluripotency)을 가진다. 본 발명에서 사용된 용어 ‘배아생식세포’는 태아의 생식융기(gonadal ridge) 부위에서 발생하는 원시생식세포(primordial germ cell)로부터 유도된 세포를 지칭하며 배아줄기세포와 유사한 특징을 갖으나 배아줄기세포보다는 약한 분화능력과 분열능력을 지닌다. 본 발명에서 사용된 용어 ‘배아종양세포’는 원시생식세포(primordial germ cell)의 종양화에 의하여 형성된 악성종양(teratocarcinomas)으로부터 확립된 미분화 줄기세포로서 배아줄기세포가 확립되기 전에 다분화능 연구의 주재료로 사용되었다. 배아종양세포는 비록 염색체 이상 등의 문제점을 지니고 있지만 전분화능을 지니고 있다. As used herein, the term 'embryonic stem cell' is a cell cultured by separating and cultured from an inner cell mass (inner cell mass) of the blastocyst, which is an early development after fertilization. Refers to. As used herein, the term 'adult cell' refers to a cell derived from an adult that is born and alive as opposed to an embryonic cell. As used herein, the term 'induced pluripotent stem cell (iPSC)' is a cell induced by artificially dedifferentiating (reprogramming) the already differentiated adult cells to the pluripotency (pluripotency) Have The term 'embryonic germ cell' used in the present invention refers to a cell derived from primordial germ cells occurring in the gonadal ridge region of the fetus and has characteristics similar to embryonic stem cells but embryonic stem. It has weaker differentiation and division ability than cells. The term 'embryonic tumor cell' used in the present invention is an undifferentiated stem cell established from teratocarcinomas formed by the tumorization of primordial germ cells, and the main material for multipotent research before embryonic stem cells are established. Was used. Embryonic tumor cells, although having problems such as chromosomal abnormalities, have pluripotency.
본 발명에서 사용된 용어 "분화(differentiation)"는 세포가 분열 증식하여 성장하는 동안에 서로 구조나 기능이 특수화되는 현상, 즉 생물의 세포, 조직 등이 각각에게 주어진 일을 수행하기 위하여 형태나 기능이 변해가는 것을 말한다. 일반적으로 비교적 단순한 계(系)가 둘 이상의 질적으로 다른 부분계(部分系)로 분리되는 현상이다. 예를 들면, 개체발생에서 처음에 동질적이었던 알 부분 사이에 머리나 몸통 등의 구별이 생기거나 세포에도 근세포라든가 신경세포 등의 구별이 생기는 것과 같이 처음에 거의 동질이었던 어떤 생물계의 부분 사이에 질적인 차이가 생기는 것, 또는 그 결과로서 질적으로 구별할 수 있는 부역 또는 부분계로 나누어져 있는 상태를 분화라고 한다.As used herein, the term "differentiation" refers to a phenomenon in which structures or functions are specialized to each other during cell division and proliferation. It means to change. Generally, a relatively simple system is divided into two or more qualitatively different sub systems. For example, qualitatively between parts of a living organism that were almost homogeneous in the first place, such as head or torso distinctions between eggs that were initially homogenous in the development, or cells such as muscle cells or neurons. Phosphorus difference, or as a result, is a state divided into subclasses or subclasses that can be distinguished qualitatively.
본 발명에서 사용된 용어 ‘세포 치료제’는 사람으로부터 분리, 배양 및 특수한 조작을 통해 제조된 세포 및 조직으로 치료, 진단 및 예방의 목적으로 사용되는 의약품으로서, 세포 혹은 조직의 기능을 복원시키기 위하여 동종, 또는 이종세포를 체외에서 증식, 선별하거나 다른 방법으로 세포의 생물학적 특성을 변화시키는 등의 일련의 행위를 통하여 치료, 진단 및 예방의 목적으로 사용되는 의약품을 지칭한다. 세포 치료제는 세포의 분화정도에 따라 크게 체세포 치료제 및 줄기세포 치료제로 분류된다. As used herein, the term 'cell therapeutic agent' is a cell and tissue prepared by separating, culturing and special manipulation from a human being and used as a medicine used for the purpose of treatment, diagnosis, and prevention, and to restore the function of the cell or tissue. Or a medicine used for the purpose of treatment, diagnosis, and prevention through a series of actions such as proliferating, selecting, or otherwise altering a cell's biological properties in vitro. Cell therapy agents are classified into somatic cell therapy and stem cell therapy according to the degree of differentiation of cells.
이하, 실시예를 통하여 본 발명을 상세히 설명하고자 한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail through examples. However, the following examples are merely provided to more easily understand the present invention, and the contents of the present invention are not limited by the following examples.
[실시예]EXAMPLE
실시예 1. selenium 포함 배지를 이용한 인간 만능줄기세포의 분화Example 1. Differentiation of human pluripotent stem cells using selenium-containing medium
<단계 Ⅰ><Step Ⅰ>
미분화 상태의 인간 배아줄기세포(H9, WiCell, USA)를 세포 박리액(ReproCell, Japan)을 이용하여 공지의 방법(Takahashi K et al. Cell (2007) 131, 861-872)에 따라 배상체를 형성시켰다.Human embryonic stem cells (H9, WiCell, USA) in undifferentiated state were removed using a cell detachment solution (ReproCell, Japan) according to a known method (Takahashi K et al. Cell (2007) 131 , 861-872). Formed.
상기로부터 얻은 배상체를 인간 재조합 BMP-4(10 ng/ml, Prospec), 인간 재조합 bFGF(5 ng/ml, Prospec), 인간 재조합 VEGF(10 ng/ml, R&D), sodium selenite(20-50 ng/ml, Sigma), 및 10% 혈청 대체물(Knockout™ Serum Replacement xenofree, Gibco)로 보충된 DMEM/F12 (Gibco, 조성: http://www.atcc.org/Portals/1/Pdf/30-2006.pdf)에 8일 동안 저 산소 분압 상태(3% 산소농도) 조건에서 부유 배양하였다. 대조군의 경우 sodium selenite를 배지에 첨가하지 않은 동일한 조건에서 분화시켰다.The embryoid body obtained from the above was human recombinant BMP-4 (10 ng / ml, Prospec), human recombinant bFGF (5 ng / ml, Prospec), human recombinant VEGF (10 ng / ml, R & D), sodium selenite (20-50). ng / ml, Sigma), and DMEM / F12 (Gibco, composition: http://www.atcc.org/Portals/1/Pdf/30-) supplemented with 10% serum replacement (Knockout ™ Serum Replacement xenofree, Gibco) 2006.pdf) was suspended in the low oxygen partial pressure (3% oxygen concentration) conditions for 8 days. In the control group, sodium selenite was differentiated under the same conditions without addition to the medium.
<단계 Ⅱ><Step II>
상기 단계 Ⅰ에서 분화시킨 배상체를 파이펫(pipet)을 사용하여 배양접시로 옮기고, 접시바닥에 붙인 후, 인간 재조합 BMP-4(20 ng/ml, Prospec), 인간 재조합 bFGF(5 ng/ml, Prospec), 인간 재조합 VEGF(50 ng/ml, R&D), sodium selenite(20-50 ng/ml, Sigma)로 보충된 EBM-2(endothelial cell Basal Medium-2, Lonza)에 정상 산소 분압 상태(즉, 20% 산소농도)에서 추가로 7일 동안 배양시켰다. 대조군의 경우 sodium selenite를 배지에 첨가하지 않은 동일한 조건에서 분화시켰다.The embryonic body differentiated in step I was transferred to a culture plate using a pipette, attached to a plate bottom, and then human recombinant BMP-4 (20 ng / ml, Prospec) and human recombinant bFGF (5 ng / ml , Prospec), endothelial cell Basal Medium-2 (Lonza) supplemented with human recombinant VEGF (50 ng / ml, R & D), sodium selenite (20-50 ng / ml, Sigma) Ie, 20% oxygen concentration) for an additional 7 days. In the control group, sodium selenite was differentiated under the same conditions without addition to the medium.
실시예 2. selenium 처리에 의한 중배엽 관련 유전자 발현 증가 확인Example 2. Confirmation of mesoderm-related gene expression increase by selenium treatment
상기 실시예 1로부터 각각 분화 8일, 15일 경과 후 세포를 회수하여, 실시간 RT-PCR을 통하여 외배엽, 내배엽, 중배엽으로의 분화 양상을 조사하였다.Cells were harvested after 8 and 15 days of differentiation from Example 1, and the differentiation patterns into ectoderm, endoderm, and mesoderm were examined by real-time RT-PCR.
구체적으로, Trizol(Invitrogen)을 이용하여 상기 세포의 RNA를 추출하고, 유전자들의 발현을 실시간(Real-time) PCR 법을 이용하여 관찰하였다. 이를 위해 우선 1 ㎍의 RNA를 Superscript first-strand synthesis system(Invitrogen)를 통해 cDNA로 합성하고, 각 유전자의 프라이머 및 Real time PCR SYBR-Green PCR master mix (Applied Biosystems)를 이용하여 증폭된 유전자 발현을 Step One PlusTM Real-time PCR system(Applied Biosystems)으로 측정하였으며, 그 결과를 도 1에 나타내었다.Specifically, RNA of the cell was extracted using Trizol (Invitrogen), and expression of genes was observed using Real-time PCR. To this end, 1 μg of RNA was first synthesized into cDNA using a Superscript first-strand synthesis system (Invitrogen), and the amplified gene expression was amplified using the primers and real time PCR SYBR-Green PCR master mix (Applied Biosystems) of each gene. Measured by Step One PlusTM Real-time PCR system (Applied Biosystems), the results are shown in FIG.
이때, 사용된 프라이머는 하기 표 1과 같다.At this time, the primers used are shown in Table 1 below.
표 1
Table 1
표지인자 | 서열 | 서열번호 | |
Oct4 | forward | 5'-gacagggggaggggaggagctagg-3' | 1 |
reverse | 5'-cttccctccaaccagttgccccaaac-3' | 2 | |
Nanog | forward | 5'-tttggaagctgctggggaag-3 | 3 |
reverse | 5'-gatgggaggaggggagagga-3' | 4 | |
Brachyury | forward | 5'-acccagttcatagcggtgac-3' | 5 |
reverse | 5'-ccattgggagtacccaggtt-3' | 6 | |
Mesp1 | forward | 5'-ctcgtctcgtccccagactc-3' | 7 |
reverse | 5'-gcagtttctcccgctcactg-3' | 8 | |
CD34 | forward | 5'-tggaccgcgctttgct-3' | 9 |
reverse | 5'-ccctgggtaggtaactctggg-3' | 10 | |
Sox17 | forward | 5'-cgctttcatggtgtgggctaaggacg-3' | 11 |
reverse | 5'-tagttggggtggtcctgcatgtgctg-3' | 12 | |
Gata6 | forward | 5'-taattccattcccatgactc-3' | 13 |
reverse | 5'-cctatgtagagcccatcttg-3' | 14 | |
Pax6 | forward | 5'-tgtccaacggatgtgtgagt-3' | 15 |
reverse | 5'-tttcccaagcaagagtggac-3' | 16 | |
Nestin | forward | 5'-cctgtcagaagaatttgagg-3' | 17 |
reverse | 5'-actttcttcctcatctgcaa-3' | 18 | |
CD31 | forward | 5'-aggtgttggtggaaggagtg-3' | 19 |
reverse | 5'-cgtgtagttgccactgtgct-3' | 20 | |
VEcadherin | forward | 5'-cggtcaaactgcccatactt-3' | 21 |
reverse | 5'-cagcccaaagtgtgtgagaa-3' | 22 | |
SMA | forward | 5'-agaacatggcatcatcacca-3' | 23 |
reverse | 5'-tacatggctgggacattgaa-3' | 24 | |
Myocardin | forward | 5'-ctgctgtaaagtccaaatcc-3' | 25 |
reverse | 5'-taggtagctgaatcggtgtt-3' | 26 | |
GAPDH | forward | 5'-aagggtcatcatctctgccc-3' | 27 |
reverse | 5'-gtgatggcatggactgtggt-3' | 28 |
Cover factor | order | SEQ ID NO: | |
Oct4 | forward | 5'-gacagggggaggggaggagctagg-3 ' | One |
reverse | 5'-cttccctccaaccagttgccccaaac-3 ' | 2 | |
Nanog | forward | 5'-tttggaagctgctggggaag-3 | 3 |
reverse | 5'-gatgggaggaggggagagga-3 ' | 4 | |
Brachyury | forward | 5'-acccagttcatagcggtgac-3 ' | 5 |
reverse | 5'-ccattgggagtacccaggtt-3 ' | 6 | |
Mesp1 | forward | 5'-ctcgtctcgtccccagactc-3 ' | 7 |
reverse | 5'-gcagtttctcccgctcactg-3 ' | 8 | |
CD34 | forward | 5'-tggaccgcgctttgct-3 ' | 9 |
reverse | 5'-ccctgggtaggtaactctggg-3 ' | 10 | |
Sox17 | forward | 5'-cgctttcatggtgtgggctaaggacg-3 ' | 11 |
reverse | 5'-tagttggggtggtcctgcatgtgctg-3 ' | 12 | |
Gata6 | forward | 5'-taattccattcccatgactc-3 ' | 13 |
reverse | 5'-cctatgtagagcccatcttg-3 ' | 14 | |
Pax6 | forward | 5'-tgtccaacggatgtgtgagt-3 ' | 15 |
reverse | 5'-tttcccaagcaagagtggac-3 ' | 16 | |
Nestin | forward | 5'-cctgtcagaagaatttgagg-3 ' | 17 |
reverse | 5'-actttcttcctcatctgcaa-3 ' | 18 | |
CD31 | forward | 5'-aggtgttggtggaaggagtg-3 ' | 19 |
reverse | 5'-cgtgtagttgccactgtgct-3 ' | 20 | |
VEcadherin | forward | 5'-cggtcaaactgcccatactt-3 ' | 21 |
reverse | 5'-cagcccaaagtgtgtgagaa-3 ' | 22 | |
SMA | forward | 5'-agaacatggcatcatcacca-3 ' | 23 |
reverse | 5'-tacatggctgggacattgaa-3 ' | 24 | |
Myocardin | forward | 5'-ctgctgtaaagtccaaatcc-3 ' | 25 |
reverse | 5'-taggtagctgaatcggtgtt-3 ' | 26 | |
GAPDH | forward | 5'-aagggtcatcatctctgccc-3 ' | 27 |
reverse | 5'-gtgatggcatggactgtggt-3 ' | 28 |
그 결과, 도 1에 나타난 바와 같이, 미분화 인간 배아줄기세포(H9)와 비교시 분화 과정 중에 미분화 줄기세포의 마커인 Oct4 및 Nanog 유전자의 발현이 현저히 감소하였고, 반면에 외배엽(Pax6, Nestin), 중배엽(Brachyury, Mesp1, CD34), 내배엽(Sox17, Gata6) 마커인 다양한 유전자의 발현이 증가됨을 확인할 수 있다. 특히, 분화 중 selenium을 포함하는 배지를 사용한 경우 외배엽 및 내배엽에 비하여 중배엽 마커 유전자의 발현이 현저히 증가함을 알 수 있다.As a result, as shown in FIG. 1, the expression of Oct4 and Nanog genes, which are markers of undifferentiated stem cells, was significantly reduced during differentiation compared to undifferentiated human embryonic stem cells (H9), whereas ectoderm (Pax6, Nestin), Mesoderm (Brachyury, Mesp1, CD34), endoderm (Sox17, Gata6) It can be seen that the expression of various genes are increased. In particular, it can be seen that the expression of mesoderm marker genes is significantly increased when using a medium containing selenium during differentiation compared to ectoderm and endoderm.
실시예 3. selenium 처리에 의한 인간 만능줄기세포의 중배엽 전구세포로의 선택적 분화확인 Example 3 Selective Differentiation of Human Pluripotent Stem Cells into Mesodermal Progenitor Cells by Selenium Treatment
Selenium이 인간 만능줄기세포의 중배엽 분화를 선택적으로 증가시킨다는 것을 검증하기 위하여, 분화 9일째 및 15일째 세포에 CD34, alpha-fetoprotein(AFP), 혹은 bIII-tubulin 항체를 이용한 면역형광염색을 실시하였다.To verify that Selenium selectively increases mesodermal differentiation of human pluripotent stem cells, immunofluorescence staining using CD34, alpha-fetoprotein (AFP), or bIII-tubulin antibody was performed on 9 and 15 days of differentiation.
구체적으로, 상기 실시예 1로부터 얻은 분화된 세포를 4% 파라포름알데히드에 10분간 고정하고, 0.5% Triton X-100에서 10분 동안 반응시켰다. 10% 염소 혈청(goat serum)이 들어있는 인산완충생리식염수(phosphate buffered saline, PBS)에 30분 동안 블로킹(blocking)하고, CD31, VE-cadherin, SMA, CD34, AFP, 혹은 bIII-tubulin 1차 항체를 4 ℃에서 24시간 동안 반응시켰다. 반응이 끝난 후 PBS로 세척하고 형광이 표지된 2차 항체와 상온에서 약 2시간 동안 반응시킨 후 PBS로 세척하였다. 마지막으로 4,6-디아미노-2-페닐인돌 (DAPI)로 핵을 염색한 후 Nikon ECLIPSE Ti-U inverted microscope(Nikon Instruments Inc.)을 이용하여 관찰하였다.Specifically, the differentiated cells obtained from Example 1 were fixed in 4% paraformaldehyde for 10 minutes and reacted for 10 minutes at 0.5% Triton X-100. Block in phosphate buffered saline (PBS) containing 10% goat serum for 30 minutes and block CD31, VE-cadherin, SMA, CD34, AFP, or bIII-tubulin primary The antibody was reacted at 4 ° C. for 24 hours. After the reaction, the resultant was washed with PBS, and reacted with fluorescent labeled secondary antibody at room temperature for about 2 hours, followed by washing with PBS. Finally, the nuclei were stained with 4,6-diamino-2-phenylindole (DAPI) and observed using a Nikon ECLIPSE Ti-U inverted microscope (Nikon Instruments Inc.).
그 결과 도 2에 나타난 바와 같이, selenium 처리에 의해서 CD34(혈액 및 혈관전구세포 특이 마커) 양성 세포의 수가 현저히 증가함을 관찰할 수 있었으며, 반면, selenium 처리에 의해서 AFP(내배엽 세포 마커) 양성 혹은 bIII-tubulin(외배엽 세포 마커) 양성 세포의 수는 증가하지 않는다는 것을 알 수 있다.As a result, as shown in Figure 2, the number of CD34 (blood and vascular precursor cell-specific marker) positive cells was significantly increased by selenium treatment, while selenium treatment was positive for AFP (endodermal cell marker) or It can be seen that the number of bIII-tubulin (ectoderm cell marker) positive cells does not increase.
상기 결과는 인간 만능줄기세포가 CD34 양성 세포가 포함된 중배엽 세포로 선택적으로 분화하는 것이 selenium에 의하여 촉진됨을 의미한다.The results indicate that the selective differentiation of human pluripotent stem cells into mesodermal cells containing CD34 positive cells is promoted by selenium.
실시예 4. selenium 처리에 의한 인간 만능줄기세포의 혈관내피 및 혈관평활 근세포로의 유전자 발현 촉진 확인 Example 4. Confirmation of gene expression promotion of pluripotent endothelial and vascular smooth muscle cells of human pluripotent stem cells by selenium treatment
상기 실시예 1로 부터 얻은 분화 8일 및 15일 경과 후의 세포를 회수하여, 실시간 RT-PCR을 통하여 혈관내피세포 및 혈관평활근세포로의 분화 양상을 조사하였다. RT-PCR 방법은 상기 실시예 2의 방법과 동일하게 수행하였다.Cells after 8 and 15 days of differentiation obtained from Example 1 were collected and examined for differentiation into vascular endothelial cells and vascular smooth muscle cells through real-time RT-PCR. RT-PCR method was performed in the same manner as in Example 2.
그 결과, 도 3에 나타난 바와 같이, 미분화 인간 배아줄기세포(H9)와 비교시 분화 과정 중에 혈관내피세포 특이 마커인 PECAM(CD31) 및 VE-cadherin 유전자 발현뿐만 아니라, 혈관평활근세포의 특이 마커인 SMA 및 Myocardin 유전자의 발현도 증가함을 확인할 수 있다. As a result, as shown in FIG. 3, the expression of PECAM (CD31) and VE-cadherin genes, which are vascular endothelial cell-specific markers, as well as specific markers of vascular smooth muscle cells during differentiation compared to undifferentiated human embryonic stem cells (H9) It can be seen that the expression of SMA and Myocardin genes are also increased.
특히, 분화 중 selenium을 포함하는 배지를 사용한 경우 분화 15일 경과 후에 PECAM, VE-cadherin, SMA, 및 Myocardin 유전자의 발현이 selenium이 처리되지 않은 대조군과 비교하여 현저히 증가함을 알 수 있다.In particular, in the case of using a medium containing selenium during differentiation, the expression of PECAM, VE-cadherin, SMA, and Myocardin genes was significantly increased after 15 days of differentiation compared with the control group not treated with selenium.
실시예 5. selenium 처리에 의한 인간 만능줄기세포의 혈관내피 및 혈관평활 근세포로의 선택적 분화 촉진 확인 Example 5. Confirmation of the selective differentiation of human pluripotent stem cells into vascular endothelial and vascular smooth muscle cells by selenium treatment
Selenium이 인간 만능줄기세포의 혈관내피 및 혈관평활근세포로의 분화를 선택적으로 증가시킨다는 것을 검증하기 위하여, 분화 9일째 및 15일째 세포에 CD31, VE-cadherin, 혹은 SMA 항체를 이용한 면역형광염색을 실시하고, 그 결과를 도 4 에 나타내었다. To verify that Selenium selectively increases the differentiation of human pluripotent stem cells into vascular endothelial and vascular smooth muscle cells, immunofluorescence staining with CD31, VE-cadherin, or SMA antibodies was performed on cells 9 and 15 of differentiation. And the result is shown in FIG.
그 결과, selenium (50 ng/ml) 처리에 의해서 CD31 및 VE-cadherin(혈관내피세포 특이 마커) 양성 세포의 수가 현저히 증가하였으며, selenium(50 ng/ml) 처리에 의해서 SMA(혈관평활근세포 특이 마커) 양성 세포의 수도 현저히 증가하였다. As a result, the number of CD31 and VE-cadherin (vascular endothelial specific marker) positive cells was significantly increased by selenium (50 ng / ml) treatment, and SMA (vascular smooth muscle cell specific marker) by selenium (50 ng / ml) treatment. ) The number of positive cells also increased significantly.
상기 결과로부터, selenium에 의하여 인간 만능줄기세포가 혈관내피 및 혈관평활근세포로 선택적으로 분화되는 것을 촉진시킴을 알 수 있다. From the above results, it can be seen that selenium promotes the selective differentiation of human pluripotent stem cells into vascular endothelial and vascular smooth muscle cells.
이에 더하여, 상기 면역형광염색 결과를 정량적으로 확인하기 위하여, 인간 배아줄기세포에서 분화 15일째 세포를 회수하여 유세포 분석(Fluorescence activated cell sorting: FACS, Aria flow cytometry, BD Bioscience)을 실시하고 그 결과를 도 5에 나타내었다.In addition, in order to quantitatively confirm the immunofluorescent staining results, cells were harvested at 15 days of differentiation from human embryonic stem cells and subjected to flow cytometry (FACS, Aria flow cytometry, BD Bioscience). 5 is shown.
구체적으로, 상기 세포를 Accutase(Innovative cell technologies Inc.)로 15분간 처리하여 분리한 후 형광물질이 복합화 되어 있는 항체(anti-human CD31, CD34 항체)와 4 ℃에서 1시간 반응시키고 PBS (phosphate buffered saline)로 세척하였다.Specifically, the cells were separated by treatment with Accutase (Innovative cell technologies, Inc.) for 15 minutes, and then reacted with an antibody (anti-human CD31, CD34 antibody) having a complex of fluorescent materials (anti-human CD31, CD34 antibody) at 4 ° C. for 1 hour, followed by PBS (phosphate buffered). saline).
그 결과, 도 5에 나타난 바와 같이, 분화 15일 째 세포 중 혈액 및 혈관전구세포 특이 마커인 CD34 양성 세포의 수가 전체의 3.6%인 것이 selenium 처리에 의해 약 5%로 증가되는 것을 알 수 있다. 또한 혈관내피세포 특이 마커인 CD31 양성 세포의 수가 전체의 15.9%인 것이 selenium 처리에 의해 19-20%로 증가됨을 알 수 있다. As a result, as shown in Figure 5, the number of CD34 positive cells, blood and vascular progenitor cell-specific markers in the cells on the 15th day of differentiation of 3.6% of the total increases by about 5% by selenium treatment. In addition, it can be seen that the number of CD31 positive cells, vascular endothelial cell specific markers, increased to 19-20% by selenium treatment.
상기 결과는 selenium이 인간 만능줄기세포의 혈액전구, 혈관전구, 혈관내피 및 혈관평활근세포로의 분화를 선택적으로 증가시킨다는 것을 의미한다. The results indicate that selenium selectively increases the differentiation of human pluripotent stem cells into blood progenitors, vascular progenitors, vascular endothelial and vascular smooth muscle cells.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.The foregoing description of the present invention is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.
본 발명의 우수한 효율적 분화 유도 기술은 인간 만능줄기세포를 심혈관계 질환 세포치료제로 실용화하는데 필수적인 기술로 본 발명은 심혈관계 질환 세포치료제의 실용화에 크게 기여할 수 있을 것으로 기대된다. 또한 selenium에 의해 CD34 양성 세포인 조혈모세포(hematopoietic progenitor cells)로의 분화도 촉진되어 조혈모세포 이식으로 치료할 수 있는 면역결핍질환, 재생불량성빈혈, 혈색소병, 골수성 백혈병 및 악성 림프종 등과 같은 악성질환 세포치료의 실용화에 크게 기여할 것으로 기대된다.The excellent efficient differentiation induction technology of the present invention is essential for practical application of human pluripotent stem cells as a cardiovascular disease cell therapy, and the present invention is expected to contribute greatly to the practical use of cardiovascular cell therapy. In addition, selenium promotes the differentiation of hematopoietic progenitor cells, CD34-positive cells, into the treatment of malignant diseases such as immunodeficiency diseases, aplastic anemia, hemoglobin disease, myeloid leukemia, and malignant lymphoma that can be treated by hematopoietic stem cell transplantation. It is expected to contribute greatly.
<110> AJOU UNIVERSITY INDUSTRY-ACADEMIC COOPERATION FOUNDATION<110> AJOU UNIVERSITY INDUSTRY-ACADEMIC COOPERATION FOUNDATION
<120> Selenium-based differentiation method of human pluripotent stem<120> Selenium-based differentiation method of human pluripotent stem
cells into hematopoietic progenitor, vascular progenitor, cells into hematopoietic progenitor, vascular progenitor,
endothelial and smooth muscle cells endothelial and smooth muscle cells
<130> PCT01689<130> PCT01689
<150> KR 10-2012-0027285<150> KR 10-2012-0027285
<151> 2012-03-16<151> 2012-03-16
<160> 28<160> 28
<170> KopatentIn 2.0<170> KopatentIn 2.0
<210> 1<210> 1
<211> 24<211> 24
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> Oct4 forward primer<223> Oct4 forward primer
<400> 1<400> 1
gacaggggga ggggaggagc tagg 24gacaggggga ggggaggagc tagg 24
<210> 2<210> 2
<211> 26<211> 26
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> Oct4 reverse primer<223> Oct4 reverse primer
<400> 2<400> 2
cttccctcca accagttgcc ccaaac 26cttccctcca accagttgcc ccaaac 26
<210> 3<210> 3
<211> 20<211> 20
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> Nanog forward primer<223> Nanog forward primer
<400> 3<400> 3
tttggaagct gctggggaag 20 tttggaagct gctggggaag 20
<210> 4<210> 4
<211> 20<211> 20
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> Nanog reverse primer<223> Nanog reverse primer
<400> 4<400> 4
gatgggagga ggggagagga 20 gatgggagga ggggagagga 20
<210> 5<210> 5
<211> 20<211> 20
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> Brachyury forward primer<223> Brachyury forward primer
<400> 5<400> 5
acccagttca tagcggtgac 20 acccagttca tagcggtgac 20
<210> 6<210> 6
<211> 20<211> 20
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> Brachyury reverse primer<223> Brachyury reverse primer
<400> 6<400> 6
ccattgggag tacccaggtt 20 ccattgggag tacccaggtt 20
<210> 7<210> 7
<211> 20<211> 20
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> Mesp1 forward primer<223> Mesp1 forward primer
<400> 7<400> 7
ctcgtctcgt ccccagactc 20ctcgtctcgt ccccagactc 20
<210> 8<210> 8
<211> 20<211> 20
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> Mesp1 reverse primer<223> Mesp1 reverse primer
<400> 8<400> 8
gcagtttctc ccgctcactg 20gcagtttctc ccgctcactg 20
<210> 9<210> 9
<211> 16<211> 16
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> CD34 forward primer<223> CD34 forward primer
<400> 9<400> 9
tggaccgcgc tttgct 16tggaccgcgc tttgct 16
<210> 10<210> 10
<211> 21<211> 21
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> CD34 reverse primer<223> CD34 reverse primer
<400> 10<400> 10
ccctgggtag gtaactctgg g 21ccctgggtag gtaactctgg g 21
<210> 11<210> 11
<211> 26<211> 26
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> Sox17 forward primer<223> Sox17 forward primer
<400> 11<400> 11
cgctttcatg gtgtgggcta aggacg 26cgctttcatg gtgtgggcta aggacg 26
<210> 12<210> 12
<211> 26<211> 26
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> Sox17 reverse primer<223> Sox17 reverse primer
<400> 12<400> 12
tagttggggt ggtcctgcat gtgctg 26tagttggggt ggtcctgcat gtgctg 26
<210> 13<210> 13
<211> 20<211> 20
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> Gata6 forward primer<223> Gata6 forward primer
<400> 13<400> 13
taattccatt cccatgactc 20taattccatt cccatgactc 20
<210> 14<210> 14
<211> 20<211> 20
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> Gata6 reverse primer<223> Gata6 reverse primer
<400> 14<400> 14
cctatgtaga gcccatcttg 20 cctatgtaga gcccatcttg 20
<210> 15<210> 15
<211> 20<211> 20
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> Pax6 forward primer<223> Pax6 forward primer
<400> 15<400> 15
tgtccaacgg atgtgtgagt 20 tgtccaacgg atgtgtgagt 20
<210> 16<210> 16
<211> 20<211> 20
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> Pax6 reverse primer<223> Pax6 reverse primer
<400> 16<400> 16
tttcccaagc aagagtggac 20 tttcccaagc aagagtggac 20
<210> 17<210> 17
<211> 20<211> 20
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> Nestin forward primer<223> Nestin forward primer
<400> 17<400> 17
cctgtcagaa gaatttgagg 20 cctgtcagaa gaatttgagg 20
<210> 18<210> 18
<211> 20<211> 20
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> Nestin reverse primer<223> Nestin reverse primer
<400> 18<400> 18
actttcttcc tcatctgcaa 20 actttcttcc tcatctgcaa 20
<210> 19<210> 19
<211> 20<211> 20
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> CD31 forward primer<223> CD31 forward primer
<400> 19<400> 19
aggtgttggt ggaaggagtg 20 aggtgttggt ggaaggagtg 20
<210> 20<210> 20
<211> 20<211> 20
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> CD31 reverse primer<223> CD31 reverse primer
<400> 20<400> 20
cgtgtagttg ccactgtgct 20 cgtgtagttg ccactgtgct 20
<210> 21<210> 21
<211> 20<211> 20
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> VEcadherin forward primer223 VEcadherin forward primer
<400> 21<400> 21
cggtcaaact gcccatactt 20 cggtcaaact gcccatactt 20
<210> 22<210> 22
<211> 20<211> 20
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> VEcadherin reverse primer<223> VEcadherin reverse primer
<400> 22<400> 22
cagcccaaag tgtgtgagaa 20 cagcccaaag tgtgtgagaa 20
<210> 23<210> 23
<211> 20<211> 20
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> SMA forward primer<223> SMA forward primer
<400> 23<400> 23
agaacatggc atcatcacca 20 agaacatggc atcatcacca 20
<210> 24<210> 24
<211> 20<211> 20
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> SMA reverse primer<223> SMA reverse primer
<400> 24<400> 24
tacatggctg ggacattgaa 20 tacatggctg ggacattgaa 20
<210> 25<210> 25
<211> 20<211> 20
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> Myocardin forward primer<223> Myocardin forward primer
<400> 25<400> 25
ctgctgtaaa gtccaaatcc 20 ctgctgtaaa gtccaaatcc 20
<210> 26<210> 26
<211> 20<211> 20
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> Myocardin reverse primer<223> Myocardin reverse primer
<400> 26<400> 26
taggtagctg aatcggtgtt 20 taggtagctg aatcggtgtt 20
<210> 27<210> 27
<211> 20<211> 20
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> GAPDH forward primer<223> GAPDH forward primer
<400> 27<400> 27
aagggtcatc atctctgccc 20aagggtcatc atctctgccc 20
<210> 28<210> 28
<211> 20<211> 20
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> GAPDH reverse primer<223> GAPDH reverse primer
<400> 28<400> 28
gtgatggcat ggactgtggt 20 gtgatggcat ggactgtggt 20
Claims (6)
- 셀레늄(selenium)을 포함하는 배지를 사용하여 인간 만능줄기세포를 중배엽 줄기세포로 분화시키는 방법.Method of differentiating human pluripotent stem cells into mesodermal stem cells using a medium containing selenium.
- 제 1항에 있어서,The method of claim 1,상기 인간 만능줄기세포는 외배엽, 중배엽, 및 내배엽으로 분화되는 세포인 것을 특징으로 하는, 방법.The human pluripotent stem cells are characterized in that the cells are differentiated into ectoderm, mesoderm, and endoderm.
- 제 1항에 있어서,The method of claim 1,상기 인간 만능줄기세포는 인간 배아줄기세포, 인간 유도만능줄기세포, 배아생식세포, 및 배아종양세포로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 방법.Wherein said human pluripotent stem cells are selected from the group consisting of human embryonic stem cells, human induced pluripotent stem cells, embryonic germ cells, and embryonic tumor cells.
- 제 1항에 있어서,The method of claim 1,상기 중배엽 줄기세포는 혈액전구세포, 혈관전구세포, 혈관내피세포, 및 혈관평활근 세포로 이루어진 군으로부터 선택된 하나 이상의 세포로 분화되는 것을 특징으로 하는, 방법.The mesoderm stem cells are characterized in that differentiation into one or more cells selected from the group consisting of blood progenitor cells, vascular progenitor cells, vascular endothelial cells, and vascular smooth muscle cells.
- 제 1항에 있어서,The method of claim 1,상기 배지는 인간 재조합 성장인자, 사이토카인, 또는 혈청을 추가적으로 함유하는 것을 특징으로 하는, 방법.The medium is characterized in that it further contains a human recombinant growth factor, cytokine, or serum.
- 제 5항에 있어서,The method of claim 5,상기 인간 재조합 성장인자 또는 사이토카인은 인간 재조합 BMP-4, 인간 재조합 bFGF, 및 인간 재조합 VEGF로 이루어진 군으로부터 선택된 하나 이상인 것을 특징으로 하는, 방법.Wherein said human recombinant growth factor or cytokine is at least one selected from the group consisting of human recombinant BMP-4, human recombinant bFGF, and human recombinant VEGF.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2012-0027285 | 2012-03-16 | ||
KR1020120027285A KR101390613B1 (en) | 2012-03-16 | 2012-03-16 | Selenium-based differentiation method of human pluripotent stem cells into hematopoietic progenitor, vascular progenitor, endothelial and smooth muscle cells |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013137567A1 true WO2013137567A1 (en) | 2013-09-19 |
Family
ID=49161420
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2013/001403 WO2013137567A1 (en) | 2012-03-16 | 2013-02-21 | Method for differentiating human pluripotent stem cells into blood progenitor cells, vascular endothelial progenitor cells, endothelial cells, and smooth muscle cells using selenium |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101390613B1 (en) |
WO (1) | WO2013137567A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014200340A1 (en) * | 2013-06-10 | 2014-12-18 | Academisch Ziekenhuis Leiden | Differentiation and expansion of endothelial cells from pluripotent stem cells and the in vitro formation of vasculature like structures |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101656396B1 (en) * | 2014-04-21 | 2016-09-09 | 한국생명공학연구원 | A method for reprogramming of human dental pulp cell using Oct4 and Sox2 and use thereof |
KR102676444B1 (en) | 2022-01-28 | 2024-06-18 | 중앙대학교 산학협력단 | Technology for enhancing efficiency of embryonic stem cell differentiation through ectopic expression of REC8 gene |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130136721A1 (en) | 2010-02-09 | 2013-05-30 | The Johns Hopkins University | Compositions and Methods of Generating a Differentiated Mesodermal Cell |
-
2012
- 2012-03-16 KR KR1020120027285A patent/KR101390613B1/en active IP Right Grant
-
2013
- 2013-02-21 WO PCT/KR2013/001403 patent/WO2013137567A1/en active Application Filing
Non-Patent Citations (4)
Title |
---|
CONLEY, B.J. ET AL.: "Derivation propagation and differentiation of human embryonic stem cells", THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, vol. 36, 2004, pages 555 - 567 * |
GUAN, K. ET AL.: "Embryonic stem cell differentiation models: cardiogenesis, myogenesis, neurogenesis, epithelial and vascular smooth muscle cell differentiation in vitro", CYTOTECHNOLOGY, vol. 30, 1999, pages 211 - 226, XP019236607, DOI: doi:10.1023/A:1008041420166 * |
PEIFFER, 1. ET AL.: "Simultaneous differentiation of endothelial and trophoblastic cells derived from human embryonic stem cells", STEM CELLS AND DEVELOPMENT, vol. 16, 2007, pages 393 - 401 * |
ZAMBIDIS, E.T. ET AL.: "Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematoendothelial, primitive, and definitive stages resembling human yolk sac development", BLOOD, vol. 106, 1 August 2005 (2005-08-01), pages 860 - 870 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014200340A1 (en) * | 2013-06-10 | 2014-12-18 | Academisch Ziekenhuis Leiden | Differentiation and expansion of endothelial cells from pluripotent stem cells and the in vitro formation of vasculature like structures |
US10119122B2 (en) | 2013-06-10 | 2018-11-06 | Academisch Ziekenhuis Leiden | Differentiation and expansion of endothelial cells from pluripotent stem cells and the in vitro formation of vasculature like structures |
Also Published As
Publication number | Publication date |
---|---|
KR101390613B1 (en) | 2014-04-29 |
KR20130105124A (en) | 2013-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017179767A1 (en) | Method for inducing differentiation of adipose stem cells into neural stem cells, neurons and gamma-aminobutyric acid neurons, and method for inducing differentiation of human stem cells that secrete large amounts of growth factors from human bone marrow derived mesenchymal stem cells | |
WO2011043592A2 (en) | Compositions for inducing differentiation into retinal cells from retinal progenitor cells or inducing proliferation of retinal cells comprising wnt signaling pathway activators | |
WO2018135902A1 (en) | Method for producing cartilage cells induced to be differentiated from stem cells | |
WO2011043591A2 (en) | Method for differentiation into retinal cells from stem cells | |
WO2010107192A2 (en) | Isolating method for umbilical cord blood-derived pluripotent stem cells expressing znf281 | |
WO2018190656A1 (en) | Method for manufacturing in vitro-matured human intestinal organoids, and use thereof | |
WO2010147395A2 (en) | Medium composition comprising neuropeptide y for the generation, maintenance, prologned undifferentiated growth of pluripotent stem cells and method of culturing pluripotent stem cell using the same | |
WO2016032263A1 (en) | Method for differentiation into retinal ganglion cells from stem cells | |
WO2013180395A1 (en) | Metabolite for promoting pluripotent stem cell generation, maintenance, and proliferation, and composition and culturing method containing same | |
WO2014163425A1 (en) | Method for producing reprogrammed derivative neuronal stem cell from non-neuronal cell by using hmga2 | |
WO2022025559A1 (en) | Composition including stem cell-derived exosome, and method for producing same | |
WO2016159721A1 (en) | Method for mass producing proteins in mesenchymal stem cells | |
WO2013137567A1 (en) | Method for differentiating human pluripotent stem cells into blood progenitor cells, vascular endothelial progenitor cells, endothelial cells, and smooth muscle cells using selenium | |
WO2020251181A1 (en) | Composition for promoting production of stem cell-derived exosomes and increasing stemness | |
WO2019083281A2 (en) | Novel musculoskeletal stem cell | |
WO2011118954A9 (en) | Method for differentiating cartilage cells, bone cells, nerve cells or fat cells from human inferior turbinate mesenchymal stromal cells | |
WO2018135907A1 (en) | Schwann cell precursor and method for preparing schwann cell differentiated therefrom | |
WO2017155166A1 (en) | Cell reprogramming method using imposition of physical stimulation-mediated environmental transition | |
WO2021045374A1 (en) | Medium composition for differentiation of proliferative liver organoid and method for preparing liver organoid using same | |
WO2024063533A1 (en) | High-performance mature intestinal organoid regenerative therapeutic agent derived from pluripotent stem cells | |
WO2023106513A1 (en) | Bio-patch-type cell therapy product for skin regeneration, comprising placenta-derived stem cells | |
WO2022005023A1 (en) | Midbrain organoid, method for rapidly producing same in large quantities, and method for screening neurotoxins and drug screening method for dopaminergic neuron-associated disease using same | |
WO2020218845A1 (en) | Method for regulation of selective differentiation of musculoskeletal stem cells | |
WO2023191597A1 (en) | Natural killer cells produced from induced pluripotent stem cells, method for producing same, and use thereof | |
WO2022181880A1 (en) | Method for constructing human pluripotent stem cell-derived liver organoid having enhanced drug metabolic potential and liver organoid constructed by same method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13760535 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13760535 Country of ref document: EP Kind code of ref document: A1 |