WO2013137346A1 - Extrusion-molding device and method for producing molded article using same - Google Patents

Extrusion-molding device and method for producing molded article using same Download PDF

Info

Publication number
WO2013137346A1
WO2013137346A1 PCT/JP2013/057077 JP2013057077W WO2013137346A1 WO 2013137346 A1 WO2013137346 A1 WO 2013137346A1 JP 2013057077 W JP2013057077 W JP 2013057077W WO 2013137346 A1 WO2013137346 A1 WO 2013137346A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance
molded body
tube
die
material composition
Prior art date
Application number
PCT/JP2013/057077
Other languages
French (fr)
Japanese (ja)
Inventor
照夫 小森
和也 土本
朝 吉野
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2013137346A1 publication Critical patent/WO2013137346A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • B28B3/26Extrusion dies
    • B28B3/2672Means for adjusting the flow inside the die, e.g. using choke means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • B28B3/206Forcing the material through screens or slots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • B28B3/26Extrusion dies
    • B28B3/2654Means for heating or cooling the die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/11Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels comprising two or more partially or fully enclosed cavities, e.g. honeycomb-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/362Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using static mixing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/38Plasticisers, homogenisers or feeders comprising two or more stages using two or more serially arranged screws in the same barrel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/385Plasticisers, homogenisers or feeders comprising two or more stages using two or more serially arranged screws in separate barrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/67Screws having incorporated mixing devices not provided for in groups B29C48/52 - B29C48/66
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/86Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the nozzle zone
    • B29C48/865Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/86Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the nozzle zone
    • B29C48/87Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0022Combinations of extrusion moulding with other shaping operations combined with cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/695Flow dividers, e.g. breaker plates
    • B29C48/70Flow dividers, e.g. breaker plates comprising means for dividing, distributing and recombining melt flows
    • B29C48/705Flow dividers, e.g. breaker plates comprising means for dividing, distributing and recombining melt flows in the die zone, e.g. to create flow homogeneity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/76Venting, drying means; Degassing means
    • B29C48/765Venting, drying means; Degassing means in the extruder apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9115Cooling of hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating

Definitions

  • honeycomb filter structures have been widely known for use in diesel particulate filters.
  • This honeycomb filter structure has a structure in which one end side of some through holes of a honeycomb structure having a large number of through holes is sealed with a sealing material, and the other end side of the remaining through holes is sealed with a sealing material.
  • Patent Documents 1 and 2 disclose a die and an extrusion molding apparatus used for manufacturing a honeycomb structure.
  • a honeycomb filter structure for a diesel particle filter is generally used in a state of being housed in a rigid case. If the dimensional accuracy of the honeycomb filter structure is low, problems such as cracks in the honeycomb filter structure due to thermal stress or the like are likely to occur. Therefore, high dimensional accuracy is required for the green molded body before firing. In addition, some honeycomb structures have a narrow cell pitch (for example, about 1.1 to 2.8 mm), and high dimensional accuracy is required for the thickness of partition walls that define a large number of through holes.
  • the flow rate of the raw material composition reaching the upstream surface of the die is uneven and the flow rate of the raw material composition in a specific region is high compared to other regions.
  • the formed body is extruded from the die. If this is to be corrected straight afterwards, there arises a problem that the partition walls of the molded body are curved or cracks are formed on the outer surface. Further, even if a straight product is obtained at the initial stage when the production of the molded body is started, the bending of the molded body may become gradually noticeable due to die wear or the like.
  • the present invention has been made in view of the above problems, and provides an extrusion molding apparatus capable of efficiently producing a molded body with sufficiently small bending and high dimensional accuracy, and a method for producing a molded body using the same. With the goal.
  • the extrusion molding apparatus includes a flow path for transferring a paste-like raw material composition, a screw provided on the upstream side of the flow path, kneading the raw material composition and transferring it downstream, and a flow path A die provided on the downstream side from which a molded body made of the raw material composition is extruded, a rectifying plate provided between the screw and the die and having a plurality of openings penetrating in the thickness direction, and a downstream side of the rectifying plate and the die A resistance tube that communicates with the resistance tube, a plurality of resistance pins that are provided so as to penetrate through the tube wall of the resistance tube, and the lengths that protrude inside the resistance tube can be changed, respectively, and a means for adjusting the temperature of the plurality of resistance pins Is provided.
  • the plurality of resistance pins provided in the extrusion molding apparatus of the present invention is for uniformizing the flow velocity distribution of the raw material composition introduced into the die. Check the degree and direction of bending of the extruded product, and if bending exceeding the required accuracy is recognized, adjusting the protruding length of each resistance pin makes the bending sufficiently small and the dimensional accuracy is high. A molded object can be manufactured efficiently.
  • the plurality of resistance pins are configured so that the temperature can be adjusted.
  • the temperature of the resistance pin when adjusting the protruding length of the resistance pin, the friction between the resistance pin and the paste-like raw material composition can be reduced to perform the operation smoothly.
  • Specific examples of the means for adjusting the temperature of the resistance pin include a cooling medium circulation jacket, an electric cooler, an electric heater, or a combination thereof.
  • the present invention is a method for producing a molded body using the above extrusion molding apparatus, and provides a method comprising a step of changing the protruding length of a resistance pin whose temperature is adjusted.
  • the method may further comprise the step of changing the temperature of the resistance pin.
  • (A) is a perspective view which shows an example of the green molded object for honeycomb structures
  • (b) is the elements on larger scale of a green molded object.
  • a green molded body 70 shown in FIG. 1 is obtained by extruding a raw material composition.
  • the green molded body 70 is a cylindrical body in which a large number of through holes 70a are arranged substantially in parallel.
  • the cross-sectional shape of the through hole 70a is a square as shown in FIG.
  • the plurality of through holes 70a are arranged in a square arrangement in the green molded body 70, that is, such that the central axis of the through hole 70a is located at the apex of the square.
  • the square size of the cross section of the through hole 70a can be set to, for example, 0.8 to 2.5 mm on a side.
  • a honeycomb structure is manufactured by firing the green molded body 70 at a predetermined temperature.
  • the length of the green molded body 70 in the direction in which the through hole 70a extends is not particularly limited, and can be, for example, 40 to 350 mm. Further, the outer diameter of the green molded body 70 is not particularly limited, and can be, for example, 100 to 320 mm.
  • the inorganic compound source powder when producing a green molded body of aluminum titanate, includes an aluminum source powder such as ⁇ -alumina powder and a titanium source powder such as anatase type or rutile type titania powder. Furthermore, magnesium source powders such as magnesia powder and magnesia spinel powder and / or silicon source powders such as silicon oxide powder and glass frit can be included.
  • organic binder examples include celluloses such as methylcellulose, carboxymethylcellulose, hydroxyalkylmethylcellulose, and sodium carboxymethylcellulose; alcohols such as polyvinyl alcohol; and lignin sulfonate.
  • additives examples include pore formers, lubricants and plasticizers, dispersants, and solvents.
  • the solvent examples include alcohols such as methanol, ethanol, butanol, and propanol; glycols such as propylene glycol, polypropylene glycol, and ethylene glycol; and water.
  • the extrusion molding apparatus 10 shown in FIG. 2 is for producing a green molded body 70 from a powdery or pasty raw material composition.
  • the extrusion molding apparatus 10 includes a screw 2A provided at the upper stage in the housing 1 and a screw 2B provided at the lower stage.
  • the screws 2A and 2B are for kneading the raw material composition supplied from the inlet 1a and transferring it downstream through the flow path 1b.
  • a vacuum chamber 3 is provided between the screws 2A and 2B, and the raw material composition can be degassed by reducing the pressure in the vacuum chamber 3.
  • the raw material composition in the vacuum chamber 3 is introduced into the lower screw 2B by the roller 3a.
  • the extrusion molding apparatus 10 includes a rectifying plate 5 provided on the downstream side of the screw 2B, a die 8 from which a molded body 70A made of a raw material composition is extruded, a resistance tube 9 that communicates the flow path 1b and the die 8, and a resistance. It further includes 16 resistance pins P which are provided so as to penetrate the tube wall of the tube 9 and whose lengths protrude inside the resistance tube 9 can be changed (see FIGS. 3 and 5).
  • the resistance tube 9 has a tapered inner flow path, and the flow path cross-sectional area gradually decreases from the upstream side toward the downstream side.
  • the rectifying plate 5 is detachably attached to the housing 1 and is disposed between the screw 2B and the die 8.
  • 4A is a front view of the current plate 5
  • FIG. 4B is a cross-sectional view of the current plate 5.
  • the rectifying plate 5 has a plurality of openings 5a penetrating in the thickness direction.
  • the rectifying plate 5 may have a net-like resistor (not shown) in order to enhance the effect of adjusting the flow rate.
  • the net-like resistor for example, a wire net having a mesh number of 5 to 200 mesh (more preferably 50 to 150 mesh) can be used.
  • the number of meshes (mesh) of the metal mesh here means the number of meshes between 1 inch (25.4 mm).
  • the first condition is that the mesh opening W is small with respect to the die opening (slit width).
  • the rectifying plate 5 is preferably a structure that hardly causes distortion even when pressure is applied from the upstream side.
  • the material of the rectifying plate 5 is preferably carbon steel, for example.
  • suitable materials other than carbon steel include special steels containing nickel, chromium, tungsten and the like.
  • the thickness of the current plate 5 is preferably 10 to 100 mm from the viewpoint of ensuring sufficient strength.
  • the “aperture ratio” means a value calculated by dividing the total area of the openings on one surface of the current plate 5 by the area of the one surface (excluding the peripheral edge covered by the housing). .
  • the total area of the opening may vary depending on the position of the rectifying plate in the thickness direction (feeding direction of the raw material composition). This means a value calculated using the minimum value of the sum.
  • the 16 resistance pins P are provided so as to penetrate the tube wall of the resistance tube 9 as shown in FIGS. 3 and 5, and are arranged at substantially equal intervals in the circumferential direction of the resistance tube 9.
  • the length of the resistance pin P protruding inside the resistance tube 9 can be freely changed.
  • the resistance pin P has a seal mechanism that does not leak the raw material composition from between the resistance pin 9 and the resistance tube 9, and is slidable with respect to the resistance wall 9.
  • a screw rotation type mechanism using a screw provided in the resistance pin P and a screw hole provided in the resistance tube 9 may be used instead of the slide type mechanism.
  • the number of resistance pins P is not limited to 16. However, in order to obtain a sufficient flow rate adjustment effect, it is preferably 6 to 36 per pair.
  • the plurality of resistance pins P are preferably arranged at predetermined positions on the upstream side of the die 8. That is, it is preferable that the central axes of the plurality of resistance pins P are installed in the range of 10 to 100 mm (more preferably 10 to 50 mm) from the upstream surface of the die 8.
  • the protruding length of the resistance pin P can be changed. By increasing the protruding length, the flow rate of the raw material composition flowing through the region can be reduced, and the bending of the green molded body 70 can be reduced.
  • the protruding length can be 0 to 120% (see FIG. 6), preferably 0 to 100%, based on the radius of the position where the resistance pin P of the resistance tube 9 is provided (see FIG. 5). reference).
  • the extruded green molded body 70 when the extruded green molded body 70 is curved upward, it is considered that the flow rate of the raw material composition flowing in the lower region of the resistance tube 9 is higher than the other regions.
  • a plurality of resistance pins P located in the region may be projected.
  • the ratio of the protrusion length (radius reference of the resistance tube 9) is 100% for the resistance pin P1 located at the lower end, 70% for the adjacent resistance pin P2, and further for the adjacent resistance pin.
  • P3 is set to 30%.
  • the green molded body 70 having sufficiently high dimensional accuracy can be continuously manufactured by checking the degree and direction of bending of the extruded molded body and changing the protruding length of each resistance pin P.
  • the resistance pin P is hollow except for the tip portion Pa, and a tube Pc for introducing a refrigerant is inserted into the hollow portion Pb.
  • a refrigerant for example, an antifreeze liquid typified by cold water or an ethylene glycol aqueous solution
  • the resistance pin P is cooled by the refrigerant passing through the hollow portion Pb, and the refrigerant returns to the proximal end side of the resistance pin P.
  • the arrows in FIG. 7 indicate the flow of the refrigerant.
  • the tip portion Pa, the hollow portion Pb, and the pipe Pc constitute a cooling medium circulation jacket (temperature adjusting means) Ptc. It is preferable that all of the resistance pins P (16 in the present embodiment) have the cooling medium circulation jacket Ptc.
  • a plurality of resistance pins P are provided on the tube wall of the resistance tube 9 , but if the position where the plurality of resistance pins are provided is between the rectifying plate 5 and the die 8, It is not limited.
  • a plurality of resistance pins P may be provided on the resistance tube 9 or the extension tube 9a (see FIG. 8).
  • a plurality of resistance pins P may be provided on both the resistance tube 9 and the extension tube 9a.
  • the raw material composition is introduced into the flow path 1b from the inlet 1a.
  • the raw material composition is kneaded and transferred downstream.
  • the kneaded material is passed through the opening 5 a of the rectifying plate 5 to make the flow velocity distribution uniform, and then introduced into the die 8 through the resistance tube 9.
  • the linear velocity of the raw material composition on the downstream side of the die 8 can be about 10 to 150 cm / min.
  • the raw material composition with a uniform flow velocity distribution is extruded from the die 8 and the compact 70A is collected on the support base 15.
  • the green molded body 70 is obtained by cutting the molded body 70A into a predetermined length.
  • a step of changing the protruding length of the resistance pin P is performed.
  • the temperature of the resistor pin P whose protruding length is changed is adjusted to a predetermined temperature by the temperature adjusting means Ptc.
  • the temperature of the resistance pin P is controlled to be equal to or lower than the temperature of the housing 1 or the resistance tube 9, for example. Is preferred.
  • the step of changing the protruding length of the resistance pin P whose temperature has been adjusted can be performed without stopping the supply of the raw material composition to the extrusion molding apparatus 10.
  • the green molded body 70 with sufficiently high dimensional accuracy can be efficiently manufactured over a long period of time without changing or changing the setting of the die 8.
  • an extrusion molding apparatus having a mechanism for automatically controlling the protruding lengths of the plurality of resistance pins P is used, the protruding lengths of the resistance pins P can be automatically changed.
  • the extrusion molding device 20 is a computer 12 that detects the degree and direction of bending of the molded body 70 ⁇ / b> A extruded from the die 8, and a computer that calculates the length of the plurality of resistance pins P to be projected based on data from the sensor 12. 13 and a pin drive mechanism 14 that changes the protruding length of each of the plurality of resistance pins P based on the output from the computer 13.
  • a non-contact type displacement sensor using a laser beam or LED light L, a non-contact type size measuring device, or the like can be used.
  • the pin drive mechanism 14 when the resistance pin P is a slide type or a screw rotation type, a mechanism that reciprocates or rotates the resistance pin P with a gear or the like can be adopted.
  • FIG. 10 is a diagram showing a configuration of a bending detection mechanism when a non-contact type dimension measuring device LS-7000 (trade name, manufactured by Keyence Corporation) is used as the sensor 12.
  • the bending of the molded body 70A is detected by using four sets of sensors (non-contact type dimension measuring devices 12A to 12D) each including a light emitting element 12a that emits laser light or LED light L and a light receiving element 12b.
  • a circle Y consisting of a broken line in FIG. 10 indicates the cross-sectional position of the molded body when a straight molded body 70A is obtained, and a circle N consisting of a solid line indicates the cross-sectional position of the molded body where bending has occurred. is there.
  • Two sets of non-contact type displacement sensors 12A and 12B may be used.
  • FIG. 11 is a diagram showing a configuration of a bending detection mechanism when a non-contact displacement sensor LK-G (trade name, manufactured by Keyence Corporation) is used as the sensor 12.
  • Sixteen non-contact displacement sensors 12a to 12p are arranged so as to surround the molded body 70A.
  • a circle Y consisting of a broken line in FIG. 11 indicates the cross-sectional position of the molded body when a straight molded body 70A is obtained, and a circle N consisting of a solid line indicates the cross-sectional position of the molded body where bending has occurred. is there.
  • the non-contact size measuring device is arranged as shown in FIG. 11, the number thereof is not particularly correlated with the number of resistance pins P, but is preferably larger than the number of resistance pins P. Further, only one of a pair of opposing measuring devices may be used, for example, only measuring devices 12a to 12h shown in FIG.
  • the present invention is not limited to the above-mentioned embodiment.
  • the cylindrical green molded body 70 is illustrated, but the shape and structure of the molded body are not limited thereto.
  • the outer shape of the green molded body 70 may be, for example, a rectangular column such as a quadrangular column or an elliptical column.
  • the arrangement of the through holes 70a may not be a square arrangement, and may be, for example, a substantially triangular arrangement, a substantially hexagonal arrangement, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

This extrusion-molding device is provided with: a channel for conveying a starting-material composition in the form of a paste; a screw for mixing the starting-material composition and conveying the same downstream, and positioned on the upstream-side of the channel; a die from which a molded article comprising the starting-material composition is extruded, and positioned on the downstream-side of the channel; a rectifier having a plurality of openings penetrating in the thickness direction thereof, and positioned between the screw and the die; a resistance tube for connecting the downstream-side of the rectifier and the die; a plurality of resistance pins which each have individually adjustable lengths projecting into the inside of the resistance tube, and positioned so as to penetrate the tube wall of the resistance tube; and a means for adjusting the temperature of the plurality of resistance pins.

Description

押出成形装置及びこれを用いた成形体の製造方法Extrusion molding apparatus and method for producing molded body using the same
 本発明は、成形体の製造技術に関するものであり、より詳細にはセラミックス成形体を製造するための押出成形装置及びこれを用いた成形体の製造方法に関する。 The present invention relates to a manufacturing technique of a molded body, and more particularly to an extrusion molding apparatus for manufacturing a ceramic molded body and a manufacturing method of a molded body using the same.
 従来より、ハニカムフィルタ構造体が、ディーゼル粒子フィルタ(Diesel particulate filter)用等として広く知られている。このハニカムフィルタ構造体は、多数の貫通孔を有するハニカム構造体の一部の貫通孔の一端側を封口材で封じると共に、残りの貫通孔の他端側を封口材で封じた構造を有する。特許文献1,2には、ハニカム構造体の製造に使用されるダイス及び押出成形装置が開示されている。 Conventionally, honeycomb filter structures have been widely known for use in diesel particulate filters. This honeycomb filter structure has a structure in which one end side of some through holes of a honeycomb structure having a large number of through holes is sealed with a sealing material, and the other end side of the remaining through holes is sealed with a sealing material. Patent Documents 1 and 2 disclose a die and an extrusion molding apparatus used for manufacturing a honeycomb structure.
特開昭61-5915号公報Japanese Patent Laid-Open No. 61-5915 特許第4099896号公報Japanese Patent No. 4099896
 ところで、ディーゼル粒子フィルタ用のハニカムフィルタ構造体は一般に剛性を有するケースに収容された状態で使用される。ハニカムフィルタ構造体の寸法精度が低いと熱応力等によってハニカムフィルタ構造体に亀裂が入るなどの不具合が生じやすくなる。そのため、焼成前のグリーン成形体に対して高い寸法精度が要求される。また、ハニカム構造体は、狭いセルピッチ(例えば1.1~2.8mm程度)を有するものもあり、多数の貫通孔を画成する隔壁の厚さについても高い寸法精度が要求される。 Incidentally, a honeycomb filter structure for a diesel particle filter is generally used in a state of being housed in a rigid case. If the dimensional accuracy of the honeycomb filter structure is low, problems such as cracks in the honeycomb filter structure due to thermal stress or the like are likely to occur. Therefore, high dimensional accuracy is required for the green molded body before firing. In addition, some honeycomb structures have a narrow cell pitch (for example, about 1.1 to 2.8 mm), and high dimensional accuracy is required for the thickness of partition walls that define a large number of through holes.
 押出成形装置でグリーン成形体を製造する際、ダイの上流側の面に到達する原料組成物の流速が不均一で特定領域の原料組成物の流速が他の領域と比較して高いと、湾曲した成形体がダイから押し出される。これを後から真っ直ぐに矯正しようとすると、成形体の隔壁が湾曲したり外面にクラックが入ったりするといった不具合が生じる。また、成形体の製造を開始した初期の段階では真っ直ぐなものが得られていても、ダイの摩耗などによって成形体の曲がりが徐々に顕著となる場合がある。 When manufacturing a green molded body with an extrusion molding device, the flow rate of the raw material composition reaching the upstream surface of the die is uneven and the flow rate of the raw material composition in a specific region is high compared to other regions. The formed body is extruded from the die. If this is to be corrected straight afterwards, there arises a problem that the partition walls of the molded body are curved or cracks are formed on the outer surface. Further, even if a straight product is obtained at the initial stage when the production of the molded body is started, the bending of the molded body may become gradually noticeable due to die wear or the like.
 本発明は、上記課題に鑑みてなされたものであり、曲がりが十分に小さく、寸法精度が高い成形体を効率的に製造できる押出成形装置及びこれを用いた成形体の製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and provides an extrusion molding apparatus capable of efficiently producing a molded body with sufficiently small bending and high dimensional accuracy, and a method for producing a molded body using the same. With the goal.
 本発明に係る押出成形装置は、ペースト状の原料組成物を移送する流路と、流路の上流側に設けられ、原料組成物を混練すると共に下流側へと移送するスクリューと、流路の下流側に設けられ、原料組成物からなる成形体が押し出されるダイと、スクリューとダイの間に設けられ、厚さ方向に貫通する複数の開口を有する整流板と、整流板の下流側とダイを連通する抵抗管と、抵抗管の管壁を貫通するように設けられ、抵抗管の内側に突出する長さがそれぞれ変更自在の複数の抵抗ピンと、複数の抵抗ピンの温度を調整する手段とを備える。 The extrusion molding apparatus according to the present invention includes a flow path for transferring a paste-like raw material composition, a screw provided on the upstream side of the flow path, kneading the raw material composition and transferring it downstream, and a flow path A die provided on the downstream side from which a molded body made of the raw material composition is extruded, a rectifying plate provided between the screw and the die and having a plurality of openings penetrating in the thickness direction, and a downstream side of the rectifying plate and the die A resistance tube that communicates with the resistance tube, a plurality of resistance pins that are provided so as to penetrate through the tube wall of the resistance tube, and the lengths that protrude inside the resistance tube can be changed, respectively, and a means for adjusting the temperature of the plurality of resistance pins Is provided.
 本発明の押出成形装置が備える複数の抵抗ピンは、ダイに導入される原料組成物の流速分布の均一化を図るためのものである。押し出されてくる成形体の曲がりの程度及び方向をチェックし、要求精度を超える曲がりが認められる場合、複数の抵抗ピンの突出長さをそれぞれ調節することによって曲がりが十分に小さく、寸法精度が高い成形体を効率的に製造できる。 The plurality of resistance pins provided in the extrusion molding apparatus of the present invention is for uniformizing the flow velocity distribution of the raw material composition introduced into the die. Check the degree and direction of bending of the extruded product, and if bending exceeding the required accuracy is recognized, adjusting the protruding length of each resistance pin makes the bending sufficiently small and the dimensional accuracy is high. A molded object can be manufactured efficiently.
 複数の抵抗ピンは、温度を調整できるように構成されている。抵抗ピンの温度を調整することで、抵抗ピンの突出長さを調節する際に抵抗ピンとペースト状の原料組成物との間の摩擦を低減して当該操作を円滑に行うことができる。抵抗ピンの温度を調整する手段の具体例としては、冷熱媒体循環ジャケット、電気式冷却機、電気式加熱機又はこれらの組合せが挙げられる。 The plurality of resistance pins are configured so that the temperature can be adjusted. By adjusting the temperature of the resistance pin, when adjusting the protruding length of the resistance pin, the friction between the resistance pin and the paste-like raw material composition can be reduced to perform the operation smoothly. Specific examples of the means for adjusting the temperature of the resistance pin include a cooling medium circulation jacket, an electric cooler, an electric heater, or a combination thereof.
 本発明は、上記押出成形装置を用いた成形体の製造方法であり、温度調整された抵抗ピンの突出長さを変更する工程を備えた方法を提供する。当該方法は、抵抗ピンの温度を変更する工程を更に備えてもよい。本発明の方法によれば、抵抗ピンの突出長さを適宜調節することで、曲がりが十分に小さく、寸法精度が高い成形体を効率的に製造できる。抵抗ピンの温度を適した範囲に調整することにより、抵抗ピンの突出長さを調節する際に抵抗ピンとペースト状の原料組成物との間の摩擦を低減でき、当該操作を円滑に行うことができる。 The present invention is a method for producing a molded body using the above extrusion molding apparatus, and provides a method comprising a step of changing the protruding length of a resistance pin whose temperature is adjusted. The method may further comprise the step of changing the temperature of the resistance pin. According to the method of the present invention, by appropriately adjusting the protruding length of the resistance pin, it is possible to efficiently produce a molded body with sufficiently small bending and high dimensional accuracy. By adjusting the temperature of the resistance pin to a suitable range, the friction between the resistance pin and the paste-like raw material composition can be reduced when adjusting the protruding length of the resistance pin, and the operation can be performed smoothly. it can.
 本発明によれば、曲がりが十分に小さく、寸法精度が高い成形体を効率的に製造できる。 According to the present invention, it is possible to efficiently produce a molded body with sufficiently small bending and high dimensional accuracy.
(a)はハニカム構造体用グリーン成形体の一例を示す斜視図、(b)はグリーン成形体の部分拡大図である。(A) is a perspective view which shows an example of the green molded object for honeycomb structures, (b) is the elements on larger scale of a green molded object. 本発明に係る押出成形装置の実施形態を示す概略断面図である。It is a schematic sectional drawing which shows embodiment of the extrusion molding apparatus which concerns on this invention. 図1に示す抵抗管及びその管壁を貫通するように設けられた抵抗ピンの構成を示す部分断面図である。It is a fragmentary sectional view which shows the structure of the resistance pin provided so that the resistance tube shown in FIG. 1 and its tube wall might be penetrated. 整流板の構成を示す図である。It is a figure which shows the structure of a baffle plate. 抵抗管の内側に複数の抵抗ピンの先端側が突出している様子を示す断面図である。It is sectional drawing which shows a mode that the front end side of a some resistance pin has protruded inside the resistance tube. 抵抗管の内側に複数の抵抗ピンの先端側が突出している様子を示す断面図である。It is sectional drawing which shows a mode that the front end side of a some resistance pin has protruded inside the resistance tube. 抵抗ピンの内部の構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure inside a resistance pin. 本発明に係る押出成形装置の他の実施形態であって抵抗管の下流側に延長管(直管部)を備えた形態を示す部分断面図である。It is other embodiment of the extrusion molding apparatus which concerns on this invention, and is a fragmentary sectional view which shows the form provided with the extension pipe (straight pipe part) in the downstream of the resistance pipe. 本発明に係る押出成形装置の他の実施形態であって抵抗ピンの突出長さを自動制御する機構を備えた形態を示す構成図である。It is a block diagram which shows the form provided with the mechanism which is other embodiment of the extrusion molding apparatus which concerns on this invention, and automatically controls the protrusion length of a resistance pin. 非接触式寸法測定器によって成形体の曲がりを検出する機構の一例を示す模式図である。It is a schematic diagram which shows an example of the mechanism which detects the bending of a molded object with a non-contact-type dimension measuring device. 非接触式変位センサによって成形体の曲がりを検出する機構の一例を示す模式図である。It is a schematic diagram which shows an example of the mechanism which detects the bending of a molded object with a non-contact-type displacement sensor. グリーン成形体の他の例を示す図である。It is a figure which shows the other example of a green molded object.
 以下、図面を参照しながら、本発明の好適な実施形態について詳細に説明する。まず、本発明に係る押出成形装置の説明に先立ち、ハニカム構造体用のグリーン成形体について説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. First, prior to description of the extrusion molding apparatus according to the present invention, a green molded body for a honeycomb structure will be described.
<グリーン成形体>
 図1に示すグリーン成形体70は、原料組成物を押出成形することによって得られたものである。図1の(a)に示すように、グリーン成形体70は多数の貫通孔70aが略平行に配置された円柱体である。貫通孔70aの断面形状は、図1の(b)に示すように正方形である。これらの複数の貫通孔70aは、グリーン成形体70において、端面から見て、正方形配置、すなわち、貫通孔70aの中心軸が、正方形の頂点にそれぞれ位置するように配置されている。貫通孔70aの断面の正方形のサイズは、例えば、一辺0.8~2.5mmとすることができる。なお、グリーン成形体70を所定の温度で焼成することによってハニカム構造体が製造される。
<Green molded body>
A green molded body 70 shown in FIG. 1 is obtained by extruding a raw material composition. As shown in FIG. 1A, the green molded body 70 is a cylindrical body in which a large number of through holes 70a are arranged substantially in parallel. The cross-sectional shape of the through hole 70a is a square as shown in FIG. The plurality of through holes 70a are arranged in a square arrangement in the green molded body 70, that is, such that the central axis of the through hole 70a is located at the apex of the square. The square size of the cross section of the through hole 70a can be set to, for example, 0.8 to 2.5 mm on a side. A honeycomb structure is manufactured by firing the green molded body 70 at a predetermined temperature.
 グリーン成形体70の貫通孔70aが延びる方向の長さは特に限定されず、例えば、40~350mmとすることができる。また、グリーン成形体70の外径も特に限定されず、例えば、100~320mmとすることできる。 The length of the green molded body 70 in the direction in which the through hole 70a extends is not particularly limited, and can be, for example, 40 to 350 mm. Further, the outer diameter of the green molded body 70 is not particularly limited, and can be, for example, 100 to 320 mm.
 グリーン成形体70をなす原料組成物は特に限定されず、ディーゼル粒子フィルタ用のハニカム構造体を製造する場合にあっては、セラミクス原料である無機化合物源粉末、及び、メチルセルロース等の有機バインダ、及び、必要に応じて添加される添加剤を含む。ハニカム構造体の高温耐性の観点から、好適なセラミクス材料として、アルミナ、シリカ、ムライト、コーディエライト、ガラス、チタン酸アルミニウム等の酸化物、シリコンカーバイド、窒化珪素等が挙げられる。なお、チタン酸アルミニウムは、更に、マグネシウム及び/又はケイ素を含むことができる。 The raw material composition forming the green molded body 70 is not particularly limited, and in the case of manufacturing a honeycomb structure for a diesel particle filter, an inorganic compound source powder that is a ceramic raw material, an organic binder such as methyl cellulose, and Additives added as needed. From the viewpoint of high temperature resistance of the honeycomb structure, suitable ceramic materials include alumina, silica, mullite, cordierite, glass, oxides such as aluminum titanate, silicon carbide, silicon nitride and the like. The aluminum titanate can further contain magnesium and / or silicon.
 例えば、チタン酸アルミニウムのグリーン成形体を製造する場合、無機化合物源粉末は、αアルミナ粉等のアルミニウム源粉末、及び、アナターゼ型やルチル型のチタニア粉末等のチタニウム源粉末を含み、必要に応じて、更に、マグネシア粉末やマグネシアスピネル粉末等のマグネシウム源粉末及び/又は、酸化ケイ素粉末やガラスフリット等のケイ素源粉末を含むことができる。 For example, when producing a green molded body of aluminum titanate, the inorganic compound source powder includes an aluminum source powder such as α-alumina powder and a titanium source powder such as anatase type or rutile type titania powder. Furthermore, magnesium source powders such as magnesia powder and magnesia spinel powder and / or silicon source powders such as silicon oxide powder and glass frit can be included.
 有機バインダとしては、メチルセルロース、カルボキシルメチルセルロース、ヒドロキシアルキルメチルセルロース、ナトリウムカルボキシルメチルセルロースなどのセルロース類;ポリビニルアルコールなどのアルコール類;リグニンスルホン酸塩が挙げられる。 Examples of the organic binder include celluloses such as methylcellulose, carboxymethylcellulose, hydroxyalkylmethylcellulose, and sodium carboxymethylcellulose; alcohols such as polyvinyl alcohol; and lignin sulfonate.
 添加物としては、例えば、造孔剤、潤滑剤及び可塑剤、分散剤、溶媒が挙げられる。 Examples of additives include pore formers, lubricants and plasticizers, dispersants, and solvents.
 造孔剤としては、グラファイト等の炭素材;ポリエチレン、ポリプロピレン、ポリメタクリル酸メチル等の樹脂類;でんぷん、ナッツ殻、クルミ殻、コーンなどの植物材料;氷;及びドライアイス等などが挙げられる。 Examples of pore-forming agents include carbon materials such as graphite; resins such as polyethylene, polypropylene, and polymethyl methacrylate; plant materials such as starch, nut shells, walnut shells, and corn; ice; and dry ice.
 潤滑剤及び可塑剤としては、グリセリンなどのアルコール類;カプリル酸、ラウリン酸、パルミチン酸、アラキジン酸、オレイン酸、ステアリン酸などの高級脂肪酸;ステアリン酸Alなどのステアリン酸金属塩、ポリオキシアルキレンアルキルエーテル(POAAE)などが挙げられる。 Lubricants and plasticizers include alcohols such as glycerol; higher fatty acids such as caprylic acid, lauric acid, palmitic acid, arachidic acid, oleic acid and stearic acid; metal stearates such as Al stearate, polyoxyalkylene alkyl And ether (POAAE).
 分散剤としては、例えば、硝酸、塩酸、硫酸などの無機酸;シュウ酸、クエン酸、酢酸、リンゴ酸、乳酸などの有機酸;メタノール、エタノール、プロパノールなどのアルコール類;ポリカルボン酸アンモニウム、ポリオキシアルキレンアルキルエーテルなどの界面活性剤などが挙げられる。 Examples of the dispersant include inorganic acids such as nitric acid, hydrochloric acid, and sulfuric acid; organic acids such as oxalic acid, citric acid, acetic acid, malic acid, and lactic acid; alcohols such as methanol, ethanol, and propanol; ammonium polycarboxylate; Surfactants such as oxyalkylene alkyl ethers are listed.
 溶媒としては、例えば、メタノール、エタノール、ブタノール、プロパノールなどのアルコール類;プロピレングリコール、ポリプロピレングリコール、エチレングリコールなどのグリコール類;及び水などが挙げられる。 Examples of the solvent include alcohols such as methanol, ethanol, butanol, and propanol; glycols such as propylene glycol, polypropylene glycol, and ethylene glycol; and water.
<押出成形装置>
 図2~7を参照しながら、本発明に係る押出成形装置の好適な実施形態について説明する。図2に示す押出成形装置10は、粉末状又はペースト状の原料組成物からグリーン成形体70を製造するためのものである。
<Extrusion molding equipment>
A preferred embodiment of the extrusion molding apparatus according to the present invention will be described with reference to FIGS. The extrusion molding apparatus 10 shown in FIG. 2 is for producing a green molded body 70 from a powdery or pasty raw material composition.
 押出成形装置10は、ハウジング1内の上段に設けられたスクリュー2A及び下段に設けられたスクリュー2Bを備える。スクリュー2A,2Bは、入口1aから供給された原料組成物を混練すると共に流路1bを通じて下流側へと移送するためのものである。スクリュー2A,2Bの間には、真空室3が設けられており、真空室3内を減圧することによって原料組成物を脱気処理できるようになっている。真空室3内の原料組成物はローラ3aによって下段のスクリュー2Bに導入される。 The extrusion molding apparatus 10 includes a screw 2A provided at the upper stage in the housing 1 and a screw 2B provided at the lower stage. The screws 2A and 2B are for kneading the raw material composition supplied from the inlet 1a and transferring it downstream through the flow path 1b. A vacuum chamber 3 is provided between the screws 2A and 2B, and the raw material composition can be degassed by reducing the pressure in the vacuum chamber 3. The raw material composition in the vacuum chamber 3 is introduced into the lower screw 2B by the roller 3a.
 押出成形装置10は、スクリュー2Bの下流側に設けられた整流板5と、原料組成物からなる成形体70Aが押し出されるダイ8と、流路1bとダイ8を連通する抵抗管9と、抵抗管9の管壁を貫通するように設けられ、抵抗管9の内側に突出する長さがそれぞれ変更自在の16本の抵抗ピンPとを更に備える(図3,5参照)。抵抗管9は、内部の流路がテーパ状になっており、上流側から下流側に向けて流路断面積が徐々に小さくなっている。なお、スクリュー2Bの径よりも径が大きい成形体70Aを製造する場合などには、抵抗管9は上流から下流に向けて流路断面が大きくなる拡大部を有してもよい。ダイ8から押し出された成形体70Aが変形しないように、押出成形装置10の隣には成形体70Aを支持するための支持台15が設置されている。整流板5及び複数の抵抗ピンPは、ダイ8に原料組成物を導入するに先立ち、その流速分布の均一化を図るためのものである。 The extrusion molding apparatus 10 includes a rectifying plate 5 provided on the downstream side of the screw 2B, a die 8 from which a molded body 70A made of a raw material composition is extruded, a resistance tube 9 that communicates the flow path 1b and the die 8, and a resistance. It further includes 16 resistance pins P which are provided so as to penetrate the tube wall of the tube 9 and whose lengths protrude inside the resistance tube 9 can be changed (see FIGS. 3 and 5). The resistance tube 9 has a tapered inner flow path, and the flow path cross-sectional area gradually decreases from the upstream side toward the downstream side. In addition, when manufacturing the molded object 70A whose diameter is larger than the diameter of the screw 2B, the resistance tube 9 may have an enlarged portion in which the flow path cross section increases from upstream to downstream. A support base 15 for supporting the molded body 70A is installed next to the extrusion molding apparatus 10 so that the molded body 70A extruded from the die 8 is not deformed. Prior to the introduction of the raw material composition into the die 8, the rectifying plate 5 and the plurality of resistance pins P are intended to make the flow velocity distribution uniform.
 整流板5は、ハウジング1に対して着脱自在に設けられており、スクリュー2Bとダイ8の間に配置されている。図4の(a)は整流板5の正面図であり、図4の(b)は整流板5の断面図である。整流板5は厚さ方向に貫通する複数の開口5aを有する。整流板5は、流量調整の効果を高めるために網状の抵抗体(図示せず)を有していてもよい。網状の抵抗体として、例えば、網目数が5~200メッシュ(より好ましくは50~150メッシュ)の金網を使用できる。一枚又は複数枚の金網を整流板5の上流側の表面に配置することで、より高い整流効果が得られると共に、原料組成物に含まれる異物を除去できる。ここでいう金網の網目数(メッシュ)は、1インチ(25.4mm)の間にある目数を意味する。使用するメッシュを選定するに際しては、ダイの開口(スリット幅)に対してメッシュの目開きWが小さいことを第一条件とし、更に、強度的に十分な線径dを有するものを選定すればよい。メッシュ数Nは以下の式によって算出できる。
  N=25.4/(W+d)
 式中、Wはメッシュの目開き(mm)を示し、dはメッシュの線径(mm)を示す。
The rectifying plate 5 is detachably attached to the housing 1 and is disposed between the screw 2B and the die 8. 4A is a front view of the current plate 5, and FIG. 4B is a cross-sectional view of the current plate 5. The rectifying plate 5 has a plurality of openings 5a penetrating in the thickness direction. The rectifying plate 5 may have a net-like resistor (not shown) in order to enhance the effect of adjusting the flow rate. As the net-like resistor, for example, a wire net having a mesh number of 5 to 200 mesh (more preferably 50 to 150 mesh) can be used. By arranging one or a plurality of wire meshes on the upstream surface of the rectifying plate 5, a higher rectifying effect can be obtained, and foreign substances contained in the raw material composition can be removed. The number of meshes (mesh) of the metal mesh here means the number of meshes between 1 inch (25.4 mm). When selecting the mesh to be used, the first condition is that the mesh opening W is small with respect to the die opening (slit width). Good. The number of meshes N can be calculated by the following formula.
N = 25.4 / (W + d)
In the formula, W represents the mesh opening (mm), and d represents the wire diameter (mm) of the mesh.
 整流板5は、上流側から圧力を受けてもほとんど歪みを起こさない構造体であることが好ましい。かかる観点から、整流板5の材質としては、例えば、炭素鋼等が好ましい。炭素鋼以外の好適な材質として、ニッケル、クロム、タングステン等を含有する特殊鋼を例示できる。整流板5の厚さは、十分の強度を確保する観点から、10~100mmであることが好ましい。 The rectifying plate 5 is preferably a structure that hardly causes distortion even when pressure is applied from the upstream side. From this viewpoint, the material of the rectifying plate 5 is preferably carbon steel, for example. Examples of suitable materials other than carbon steel include special steels containing nickel, chromium, tungsten and the like. The thickness of the current plate 5 is preferably 10 to 100 mm from the viewpoint of ensuring sufficient strength.
 整流板5は、厚さ方向に貫通する直径1~10mmの開口5aを複数有する。整流板5の開口率は30~80%であることが好ましい。開口率が30%未満の整流板5を使用した場合、上流側の圧力を過度に高くしないと、単位時間当たり十分な量の原料組成物を通過させることができず、圧力が装置の許容圧力以上となりやすい。他方、開口率が80%を超える整流板5は強度が不十分となりやすい。整流板5の開口率は40~80%であることが好ましく、50~80%であることがより好ましい。 The rectifying plate 5 has a plurality of openings 5a having a diameter of 1 to 10 mm penetrating in the thickness direction. The opening ratio of the rectifying plate 5 is preferably 30 to 80%. When the current plate 5 having an opening ratio of less than 30% is used, a sufficient amount of the raw material composition cannot be passed per unit time unless the upstream pressure is excessively increased, and the pressure is the allowable pressure of the apparatus. It is easy to become more. On the other hand, the current plate 5 having an aperture ratio exceeding 80% tends to have insufficient strength. The opening ratio of the rectifying plate 5 is preferably 40 to 80%, and more preferably 50 to 80%.
 ここでいう「開口率」とは、整流板5の一方面における開口の面積の合計を当該一方面の面積(ハウジングによって覆われる周縁部を除く)で除すことによって算出される値を意味する。なお、開口の流路断面積が一定ではない整流板の場合、整流板の厚さ方向(原料組成物の移送方向)の位置によって開口の面積の合計は変化し得るが、「開口率」はこの合計の最小値を用いて算出される値を意味する。 Here, the “aperture ratio” means a value calculated by dividing the total area of the openings on one surface of the current plate 5 by the area of the one surface (excluding the peripheral edge covered by the housing). . In addition, in the case of a rectifying plate in which the flow passage cross-sectional area of the opening is not constant, the total area of the opening may vary depending on the position of the rectifying plate in the thickness direction (feeding direction of the raw material composition). This means a value calculated using the minimum value of the sum.
 16本の抵抗ピンPは、図3,5に示す通り、抵抗管9の管壁を貫通するように設けられており、抵抗管9の周方向にほぼ均等の間隔で配置されている。抵抗ピンPは、抵抗管9の内側に突出する長さを自在に変更することが可能となっている。より具体的には、抵抗ピンPは、抵抗管9の管壁との間から原料組成物がリークしないシール機構を有しており、抵抗管9の管壁に対してスライド自在である。なお、突出する長さを変更自在とする構成として、スライド式の機構の代わりに、抵抗ピンPに設けたネジ及び抵抗管9に設けたネジ穴によるネジ回転式の機構であってもよい。また、抵抗ピンPの本数は、16本に限定されるものではないが、十分な流速調整効果を得るには、1組につき、6~36本であることが好ましい。 The 16 resistance pins P are provided so as to penetrate the tube wall of the resistance tube 9 as shown in FIGS. 3 and 5, and are arranged at substantially equal intervals in the circumferential direction of the resistance tube 9. The length of the resistance pin P protruding inside the resistance tube 9 can be freely changed. More specifically, the resistance pin P has a seal mechanism that does not leak the raw material composition from between the resistance pin 9 and the resistance tube 9, and is slidable with respect to the resistance wall 9. Note that, as a configuration that allows the protruding length to be changed, a screw rotation type mechanism using a screw provided in the resistance pin P and a screw hole provided in the resistance tube 9 may be used instead of the slide type mechanism. Further, the number of resistance pins P is not limited to 16. However, in order to obtain a sufficient flow rate adjustment effect, it is preferably 6 to 36 per pair.
 十分な流量調整効果を得る観点から、複数の抵抗ピンPはダイ8の上流側の所定の位置に配置されていることが好ましい。すなわち、複数の抵抗ピンPの中心軸がダイ8の上流側の面から10~100mm(より好ましくは10~50mm)の範囲に設置されていることが好ましい。 From the viewpoint of obtaining a sufficient flow rate adjustment effect, the plurality of resistance pins P are preferably arranged at predetermined positions on the upstream side of the die 8. That is, it is preferable that the central axes of the plurality of resistance pins P are installed in the range of 10 to 100 mm (more preferably 10 to 50 mm) from the upstream surface of the die 8.
 抵抗ピンPの突出長さは変更自在であり、突出長さを長くすることによってその領域を流れる原料組成物の流速を低減してグリーン成形体70の曲がりを小さくすることができる。突出長さは、抵抗管9の抵抗ピンPが設けられている位置の半径を基準として、0~120%とすることができ(図6参照)、好ましくは0~100%である(図5参照)。 The protruding length of the resistance pin P can be changed. By increasing the protruding length, the flow rate of the raw material composition flowing through the region can be reduced, and the bending of the green molded body 70 can be reduced. The protruding length can be 0 to 120% (see FIG. 6), preferably 0 to 100%, based on the radius of the position where the resistance pin P of the resistance tube 9 is provided (see FIG. 5). reference).
 例えば、押し出されているグリーン成形体70が上方に湾曲している場合、抵抗管9の下方領域を流れる原料組成物の流速が他の領域と比較して高いことが原因と考えられる。この場合、図5に示すように、当該領域に位置する複数の抵抗ピンPを突出させればよい。図5において、突出長さの比率(抵抗管9の半径基準)は、下端に位置する抵抗ピンP1が100%であり、その隣の抵抗ピンP2が70%であり、更にその隣の抵抗ピンP3が30%に設定されている。押し出されてくる成形体の曲がりの程度及び方向をチェックし、抵抗ピンPのそれぞれの突出長さを変更することによって寸法精度が十分に高いグリーン成形体70を継続的に製造できる。 For example, when the extruded green molded body 70 is curved upward, it is considered that the flow rate of the raw material composition flowing in the lower region of the resistance tube 9 is higher than the other regions. In this case, as shown in FIG. 5, a plurality of resistance pins P located in the region may be projected. In FIG. 5, the ratio of the protrusion length (radius reference of the resistance tube 9) is 100% for the resistance pin P1 located at the lower end, 70% for the adjacent resistance pin P2, and further for the adjacent resistance pin. P3 is set to 30%. The green molded body 70 having sufficiently high dimensional accuracy can be continuously manufactured by checking the degree and direction of bending of the extruded molded body and changing the protruding length of each resistance pin P.
 抵抗ピンPは、先端がテーパ状になっていることが好ましい。かかる構成を採用することにより、各抵抗ピンPを抵抗管9の中心部にまで突出させた場合でも、隣接する抵抗ピンP同士が干渉することを十分に抑制できる。全ての抵抗ピンPを中心部まで突出させた場合、すなわち、全ての抵抗ピンPの突出長さの比率を100%とした場合、抵抗管9の抵抗ピンPが設けられている位置の流路断面積を100とすると、抵抗ピンPによって遮られた部分を除く流路断面積は10~50程度であることが好ましい。この流路断面積の割合を10未満とすることは装置の機構が複雑化する傾向にあり、50を超えると抵抗ピンPによる流速調整効果が不十分となりやすい。 It is preferable that the tip of the resistance pin P is tapered. By adopting such a configuration, even when each resistance pin P protrudes to the center of the resistance tube 9, it is possible to sufficiently suppress the adjacent resistance pins P from interfering with each other. When all the resistance pins P are projected to the center, that is, when the ratio of the projection lengths of all the resistance pins P is 100%, the flow path at the position where the resistance pins P of the resistance tube 9 are provided. Assuming that the cross-sectional area is 100, the cross-sectional area of the flow path excluding the portion blocked by the resistance pin P is preferably about 10 to 50. Setting the ratio of the flow path cross-sectional area to less than 10 tends to complicate the mechanism of the apparatus, and if it exceeds 50, the effect of adjusting the flow velocity by the resistance pin P tends to be insufficient.
 図3に示すように、抵抗ピンPは抵抗管9の中心軸とのなす角度が90°となるように配置してもよく、上流側もしくは下流側に傾斜するように配置してもよい。抵抗ピンPを上流側又は下流側に傾斜させる場合、抵抗ピンPの傾斜角は、抵抗管9の中心軸を法線とする面に対して30°以内であることが好ましい。 As shown in FIG. 3, the resistance pin P may be disposed so that the angle formed with the central axis of the resistance tube 9 is 90 °, or may be disposed so as to be inclined upstream or downstream. When the resistance pin P is inclined to the upstream side or the downstream side, the inclination angle of the resistance pin P is preferably within 30 ° with respect to a plane whose normal is the central axis of the resistance tube 9.
 抵抗ピンPは、図7に示すように、先端部Paを除き中空であり、中空部Pbには冷媒を導入するための管Pcが挿入されている。管Pcから冷媒(例えば、冷水、エチレングリコール水溶液に代表される不凍液)を抵抗ピンPの先端に供給できるように構成されている。冷媒が中空部Pbを通過することで抵抗ピンPが冷却され、冷媒は抵抗ピンPの基端側へと戻る。図7中の矢印は冷媒の流れを示す。なお、抵抗ピンPを加温する場合は冷媒の代わりに熱媒(例えば、熱水、シリコンオイル)を使用すればよい。本実施形態においては、先端部Pa、中空部Pb及び管Pcによって冷熱媒体循環ジャケット(温度調整手段)Ptcが構成されている。抵抗ピンPの全て(本実施形態においては16本)が冷熱媒体循環ジャケットPtcを有していることが好ましい。 As shown in FIG. 7, the resistance pin P is hollow except for the tip portion Pa, and a tube Pc for introducing a refrigerant is inserted into the hollow portion Pb. A refrigerant (for example, an antifreeze liquid typified by cold water or an ethylene glycol aqueous solution) can be supplied from the pipe Pc to the tip of the resistance pin P. The resistance pin P is cooled by the refrigerant passing through the hollow portion Pb, and the refrigerant returns to the proximal end side of the resistance pin P. The arrows in FIG. 7 indicate the flow of the refrigerant. In addition, what is necessary is just to use a heat medium (for example, hot water, silicone oil) instead of a refrigerant | coolant, when heating the resistance pin P. In the present embodiment, the tip portion Pa, the hollow portion Pb, and the pipe Pc constitute a cooling medium circulation jacket (temperature adjusting means) Ptc. It is preferable that all of the resistance pins P (16 in the present embodiment) have the cooling medium circulation jacket Ptc.
 抵抗ピンPの温度を調整する手段としては、上記のような冷熱媒体循環ジャケットが好ましいが、これの代わりに、あるいは、これと共に電気式冷却機(例えば、ペルチェ素子)、電気式加熱機又はこれらの組み合わせを採用してもよい。抵抗ピンPの温度を調整することにより、流量制御を目的として抵抗ピンPの突出長さを調節する際に抵抗ピンPとペースト状の原料組成物の間の摩擦を低減でき、当該操作を円滑に行うことができる。 As a means for adjusting the temperature of the resistance pin P, the cooling medium circulation jacket as described above is preferable, but instead of or together with this, an electric cooler (for example, a Peltier element), an electric heater, or these You may employ | adopt the combination of. By adjusting the temperature of the resistance pin P, the friction between the resistance pin P and the paste-like raw material composition can be reduced when adjusting the protruding length of the resistance pin P for the purpose of controlling the flow rate, and the operation is smoothly performed. Can be done.
 ダイ8は、原料組成物から図1に示す形状の成形体を製造するためのものであり、これに対応する格子状の流路(図示せず)を有する。グリーン成形体70のようなセル構造の成形体の製造に用いられるダイは、流路の設定を緻密に行う必要があり、また一般的に高価である。このため、ダイの交換作業の頻度はなるべく低くすることが望ましい。本実施形態においては、抵抗管9に設けた抵抗ピンPの突出長さを変更することでダイ8の設定を変更する頻度を低減できると共に、原料組成物の流量の均一化によりダイ8の長寿命化が図られ、その交換頻度を低くできる。 The die 8 is for producing a molded body having the shape shown in FIG. 1 from the raw material composition, and has a grid-like flow path (not shown) corresponding thereto. A die used for manufacturing a molded body having a cell structure such as the green molded body 70 needs to set the flow path precisely and is generally expensive. For this reason, it is desirable to reduce the frequency of die replacement work as much as possible. In this embodiment, the frequency of changing the setting of the die 8 can be reduced by changing the protruding length of the resistance pin P provided on the resistance tube 9, and the length of the die 8 can be increased by uniformizing the flow rate of the raw material composition. The service life is extended and the replacement frequency can be lowered.
 なお、上記実施形態においては、抵抗管9の管壁に複数の抵抗ピンPを設ける場合を例示したが、複数の抵抗ピンを設ける位置は整流板5とダイ8の間であれば、これに限定されない。例えば、抵抗管(テーパ部)9の下流側に延長管(直管部)9aを接続した場合、抵抗管9又は延長管9aに複数の抵抗ピンPを設けてもよいし(図8参照)、抵抗管9及び延長管9aの両方に複数の抵抗ピンPを設けてもよい。 In the above embodiment, the case where a plurality of resistance pins P are provided on the tube wall of the resistance tube 9 is exemplified, but if the position where the plurality of resistance pins are provided is between the rectifying plate 5 and the die 8, It is not limited. For example, when an extension tube (straight tube portion) 9a is connected to the downstream side of the resistance tube (tapered portion) 9, a plurality of resistance pins P may be provided on the resistance tube 9 or the extension tube 9a (see FIG. 8). A plurality of resistance pins P may be provided on both the resistance tube 9 and the extension tube 9a.
<グリーン成形体の製造方法>
 次に、押出成形装置10を用いてグリーン成形体70を製造する方法について説明する。まず、原料組成物を入口1aから流路1b内に導入する。スクリュー2A,2B及びローラ3aを作動させることによって原料組成物を混練すると共に下流側に移送する。混練物を整流板5の開口5aを通過させて流速分布を均一化させた後、抵抗管9を通じてダイ8に導入する。ダイ8の下流側における原料組成物の線速度は10~150cm/分程度とすることができる。
<Method for producing green molded body>
Next, a method for manufacturing the green molded body 70 using the extrusion molding apparatus 10 will be described. First, the raw material composition is introduced into the flow path 1b from the inlet 1a. By operating the screws 2A, 2B and the roller 3a, the raw material composition is kneaded and transferred downstream. The kneaded material is passed through the opening 5 a of the rectifying plate 5 to make the flow velocity distribution uniform, and then introduced into the die 8 through the resistance tube 9. The linear velocity of the raw material composition on the downstream side of the die 8 can be about 10 to 150 cm / min.
 流速分布の均一化が図られた原料組成物をダイ8から押し出し、支持台15上に成形体70Aを回収する。成形体70Aを所定の長さに切断することによってグリーン成形体70を得る。 The raw material composition with a uniform flow velocity distribution is extruded from the die 8 and the compact 70A is collected on the support base 15. The green molded body 70 is obtained by cutting the molded body 70A into a predetermined length.
 整流板5の整流作用のみでは流速分布の均一化が不十分でグリーン成形体70の曲がりの程度が顕著となったとき、抵抗ピンPの突出長さを変更する工程を実施する。抵抗ピンPの突出長さを変更するに先立ち、突出長さを変更する抵抗ピンPの温度を温度調整手段Ptcによって所定の温度に調整する。抵抗ピンPの突出長さを調節する操作をより円滑に行うためには、抵抗ピンPの温度を、例えばハウジング1の温度又は抵抗管9の温度と同等又はそれ以下になるように制御することが好ましい。より具体的には抵抗ピンPの温度を好ましくは5~30℃の範囲、より好ましくは10~25℃の範囲となるように調整することが好ましい。なお、抵抗ピンPの温度調整は手動で温度を設定することによって行ってもよく自動で行ってもよい。 When the flow velocity distribution is not sufficiently uniformed only by the rectifying action of the rectifying plate 5 and the degree of bending of the green molded body 70 becomes remarkable, a step of changing the protruding length of the resistance pin P is performed. Prior to changing the protruding length of the resistor pin P, the temperature of the resistor pin P whose protruding length is changed is adjusted to a predetermined temperature by the temperature adjusting means Ptc. In order to perform the operation of adjusting the protruding length of the resistance pin P more smoothly, the temperature of the resistance pin P is controlled to be equal to or lower than the temperature of the housing 1 or the resistance tube 9, for example. Is preferred. More specifically, it is preferable to adjust the temperature of the resistance pin P so that it is preferably in the range of 5 to 30 ° C., more preferably in the range of 10 to 25 ° C. The temperature adjustment of the resistance pin P may be performed by manually setting the temperature or automatically.
 温度調整された抵抗ピンPの突出長さを変更する工程は、押出成形装置10への原料組成物の供給を停止することなく実施できる。これにより、ダイ8の設定の変更や交換を実施しなくても寸法精度が十分に高いグリーン成形体70を十分に長期にわたって効率的に製造することが可能となる。特に、複数の抵抗ピンPの突出長さを自動制御する機構を備えた押出成形装置を用いれば、抵抗ピンPの突出長さを自動的に変更することができる。 The step of changing the protruding length of the resistance pin P whose temperature has been adjusted can be performed without stopping the supply of the raw material composition to the extrusion molding apparatus 10. As a result, the green molded body 70 with sufficiently high dimensional accuracy can be efficiently manufactured over a long period of time without changing or changing the setting of the die 8. In particular, if an extrusion molding apparatus having a mechanism for automatically controlling the protruding lengths of the plurality of resistance pins P is used, the protruding lengths of the resistance pins P can be automatically changed.
 図9に示す押出成形装置20は、複数の抵抗ピンPのそれぞれの突出長さを自動で制御する機構を更に具備する他は、上述の押出成形装置10と同様の構成を有する。押出成形装置20は、ダイ8から押し出される成形体70Aの曲がりの程度及び方向を検知するセンサ12と、センサ12からのデータに基づいて複数の抵抗ピンPの突出させるべき長さを算出するコンピュータ13と、コンピュータ13からの出力に基づいて複数の抵抗ピンPのそれぞれの突出長さを変更するピン駆動機構14とを更に備える。センサ12としては、レーザー光又はLED光Lを利用した非接触式変位センサや非接触式寸法測定器などを使用することができる。ピン駆動機構14としては、抵抗ピンPがスライド式又はネジ回転式のものである場合、歯車等によって抵抗ピンPを往復運動又は回転運動させるものを採用することができる。 9 has the same configuration as the above-described extrusion molding apparatus 10 except that the extrusion molding apparatus 20 further includes a mechanism that automatically controls the protruding length of each of the plurality of resistance pins P. The extrusion molding device 20 is a computer 12 that detects the degree and direction of bending of the molded body 70 </ b> A extruded from the die 8, and a computer that calculates the length of the plurality of resistance pins P to be projected based on data from the sensor 12. 13 and a pin drive mechanism 14 that changes the protruding length of each of the plurality of resistance pins P based on the output from the computer 13. As the sensor 12, a non-contact type displacement sensor using a laser beam or LED light L, a non-contact type size measuring device, or the like can be used. As the pin drive mechanism 14, when the resistance pin P is a slide type or a screw rotation type, a mechanism that reciprocates or rotates the resistance pin P with a gear or the like can be adopted.
 図10は、センサ12として非接触式寸法測定器LS-7000(商品名、株式会社キーエンス製)を使用した場合の曲がり検出機構の構成を示す図である。レーザー光又はLED光Lを発する発光素子12aと、受光素子12bとからなるセンサを4組(非接触式寸法測定器12A~12D)使用することによって、成形体70Aの曲がりを検出する。図10中の破線からなる円Yは真っ直ぐな成形体70Aが得られている場合の成形体断面位置を示し、実線からなる円Nは曲がりが発生した状態の成形体断面位置をそれぞれ示すものである。なお、非接触式変位センサ12A,12Bの2組であってもよい。 FIG. 10 is a diagram showing a configuration of a bending detection mechanism when a non-contact type dimension measuring device LS-7000 (trade name, manufactured by Keyence Corporation) is used as the sensor 12. The bending of the molded body 70A is detected by using four sets of sensors (non-contact type dimension measuring devices 12A to 12D) each including a light emitting element 12a that emits laser light or LED light L and a light receiving element 12b. A circle Y consisting of a broken line in FIG. 10 indicates the cross-sectional position of the molded body when a straight molded body 70A is obtained, and a circle N consisting of a solid line indicates the cross-sectional position of the molded body where bending has occurred. is there. Two sets of non-contact type displacement sensors 12A and 12B may be used.
 図11は、センサ12として非接触式変位センサLK-G(商品名、株式会社キーエンス製)を使用した場合の曲がり検出機構の構成を示す図である。成形体70Aの周りを取り囲むように16台の非接触式変位センサ12a~12pが配置されている。図11中の破線からなる円Yは真っ直ぐな成形体70Aが得られている場合の成形体断面位置を示し、実線からなる円Nは曲がりが発生した状態の成形体断面位置をそれぞれ示すものである。なお、図11のように非接触式寸法測定器を配置する場合、その台数は抵抗ピンPの本数と特に相関があるわけではないが、抵抗ピンPの本数よりも多いことが好ましい。また、対向する一対の測定器のどちらか一方のみでもよく、例えば、図11に示す測定器12a~12hのみでもよい。 FIG. 11 is a diagram showing a configuration of a bending detection mechanism when a non-contact displacement sensor LK-G (trade name, manufactured by Keyence Corporation) is used as the sensor 12. Sixteen non-contact displacement sensors 12a to 12p are arranged so as to surround the molded body 70A. A circle Y consisting of a broken line in FIG. 11 indicates the cross-sectional position of the molded body when a straight molded body 70A is obtained, and a circle N consisting of a solid line indicates the cross-sectional position of the molded body where bending has occurred. is there. When the non-contact size measuring device is arranged as shown in FIG. 11, the number thereof is not particularly correlated with the number of resistance pins P, but is preferably larger than the number of resistance pins P. Further, only one of a pair of opposing measuring devices may be used, for example, only measuring devices 12a to 12h shown in FIG.
 以上、本発明の好適な実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではない。例えば、上記実施形態においては、円柱体のグリーン成形体70を例示したが、成形体の形状や構造はこれに限定されない。グリーン成形体70の外形形状は、例えば、四角柱等の角柱や楕円柱でもよい。また、貫通孔70aの配置も、正方形配置でなくてもよく、例えば、略三角配置、略六角配置等でも構わない。更に、貫通孔70aの形状も、正方形でなくてもよく、例えば、略三角形、略六角形、略八角形、略円形及びこれらの組み合わせであってもよい。複数の形状の組み合わせとしては、正六角形と非対称六角形の組み合わせ(図12参照)、及び、四角形と八角形の組み合わせ(オクトスクエア)などが挙げられる。 As mentioned above, although the suitable embodiment of the present invention was described in detail, the present invention is not limited to the above-mentioned embodiment. For example, in the above-described embodiment, the cylindrical green molded body 70 is illustrated, but the shape and structure of the molded body are not limited thereto. The outer shape of the green molded body 70 may be, for example, a rectangular column such as a quadrangular column or an elliptical column. Further, the arrangement of the through holes 70a may not be a square arrangement, and may be, for example, a substantially triangular arrangement, a substantially hexagonal arrangement, or the like. Furthermore, the shape of the through hole 70a may not be square, and may be, for example, a substantially triangular shape, a substantially hexagonal shape, a substantially octagonal shape, a substantially circular shape, or a combination thereof. Examples of the combination of a plurality of shapes include a combination of a regular hexagon and an asymmetric hexagon (see FIG. 12), a combination of a square and an octagon (octosquare), and the like.
 図12に示すグリーンハニカム成形体80は、断面形状が異なる複数の貫通孔81a,81bを有する。複数の貫通孔81a,81bは、グリーンハニカム成形体80の中心軸に略平行に延びる隔壁82により仕切られている。貫通孔81aは断面形状が正六角形である。一方、貫通孔81bは断面形状が扁平六角形であり一つの貫通孔81aを囲むように配置されている。 The green honeycomb molded body 80 shown in FIG. 12 has a plurality of through holes 81a and 81b having different cross-sectional shapes. The plurality of through holes 81 a and 81 b are partitioned by a partition wall 82 extending substantially parallel to the central axis of the green honeycomb molded body 80. The through hole 81a has a regular hexagonal cross-sectional shape. On the other hand, the through-hole 81b has a flat hexagonal cross-sectional shape and is disposed so as to surround one through-hole 81a.
 本発明によれば、曲がりが十分に小さく、寸法精度が高い成形体を効率的に製造できる。 According to the present invention, it is possible to efficiently produce a molded body with sufficiently small bending and high dimensional accuracy.
1…ハウジング、1b…流路、2B…スクリュー、5…整流板、5a…開口、8…ダイ、9…抵抗管(テーパ部)、9a…延長管(直管部)、10,20…押出成形装置、12…センサ、12A,12B…非接触式変位センサ(センサ)、12a~12p…非接触式寸法測定器(センサ)、13…コンピュータ、14…ピン駆動機構、70,80…グリーン成形体、70A…成形体、P(P1,P2,P3)…抵抗ピン、Pa…先端部、Pb…中空部、Pc…管、Ptc…冷熱媒体循環ジャケット(温度調節手段)。 DESCRIPTION OF SYMBOLS 1 ... Housing, 1b ... Flow path, 2B ... Screw, 5 ... Current plate, 5a ... Opening, 8 ... Die, 9 ... Resistance pipe (taper part), 9a ... Extension pipe (straight pipe part) 10, 20 ... Extrusion Molding device, 12 ... sensor, 12A, 12B ... non-contact displacement sensor (sensor), 12a to 12p ... non-contact dimension measuring device (sensor), 13 ... computer, 14 ... pin drive mechanism, 70, 80 ... green molding Body, 70A ... molded body, P (P1, P2, P3) ... resistance pin, Pa ... tip, Pb ... hollow part, Pc ... pipe, Ptc ... cooling medium circulation jacket (temperature adjusting means).

Claims (7)

  1.  ペースト状の原料組成物を移送する流路と、
     前記流路の上流側に設けられ、前記原料組成物を混練すると共に下流側へと移送するスクリューと、
     前記流路の下流側に設けられ、前記原料組成物からなる成形体が押し出されるダイと、
     前記スクリューと前記ダイの間に設けられ、厚さ方向に貫通する複数の開口を有する整流板と、
     前記整流板の下流側と前記ダイを連通する抵抗管と、
     前記抵抗管の管壁を貫通するように設けられ、前記抵抗管の内側に突出する長さがそれぞれ変更自在の複数の抵抗ピンと、
     前記複数の抵抗ピンの温度を調整する手段と、
    を備える押出成形装置。
    A flow path for transferring a paste-like raw material composition;
    A screw provided on the upstream side of the flow path, kneading the raw material composition and transferring it downstream;
    A die provided on the downstream side of the flow path, from which a molded body made of the raw material composition is extruded;
    A rectifying plate provided between the screw and the die and having a plurality of openings penetrating in the thickness direction;
    A resistance tube communicating with the downstream side of the current plate and the die;
    A plurality of resistance pins provided so as to pass through the tube wall of the resistance tube, and the length protruding inside the resistance tube can be changed respectively;
    Means for adjusting the temperature of the plurality of resistance pins;
    An extrusion apparatus comprising:
  2.  前記温度を調整する手段は、冷熱媒体循環ジャケット、電気式冷却機、電気式加熱機又はこれらの組合せである、請求項1に記載の装置。 The apparatus according to claim 1, wherein the means for adjusting the temperature is a cooling medium circulation jacket, an electric cooler, an electric heater, or a combination thereof.
  3.  前記抵抗管は上流から下流に向けて流路断面が小さくなるテーパ部と、前記テーパ部の下流側に接続された直管部とを有し、前記複数の抵抗ピンが前記テーパ部及び前記直管部の一方又は両方に設けられている、請求項1又は2に記載の装置。 The resistance tube has a tapered portion whose flow path cross section decreases from upstream to downstream, and a straight tube portion connected to the downstream side of the tapered portion, and the plurality of resistance pins include the tapered portion and the straight portion. The apparatus of Claim 1 or 2 provided in the one or both of the pipe parts.
  4.  前記ダイから押し出される成形体の曲がりの程度及び方向を検知するセンサと、
     前記センサからのデータに基づいて前記複数の抵抗ピンの突出させるべき長さを算出するコンピュータと、
     前記コンピュータからの出力に基づいて前記複数の抵抗ピンのそれぞれの突出長さを変更するピン駆動機構と、
    を更に備える、請求項1~3のいずれか一項に記載の装置。
    A sensor for detecting the degree and direction of bending of the molded body extruded from the die;
    A computer for calculating a length to be projected of the plurality of resistance pins based on data from the sensor;
    A pin drive mechanism for changing the protruding length of each of the plurality of resistance pins based on an output from the computer;
    The apparatus according to any one of claims 1 to 3, further comprising:
  5.  請求項1~4のいずれか一項に記載の押出成形装置を用いた成形体の製造方法であり、温度調整された前記抵抗ピンの突出長さを変更する工程を備える方法。 A method for producing a molded body using the extrusion molding apparatus according to any one of claims 1 to 4, comprising a step of changing a protruding length of the resistance pin whose temperature is adjusted.
  6.  請求項4に記載の押出成形装置を用いた成形体の製造方法であり、前記抵抗ピンの突出長さを自動的に変更する工程を備える方法。 A method for producing a molded body using the extrusion molding apparatus according to claim 4, comprising a step of automatically changing the protruding length of the resistance pin.
  7.  前記抵抗ピンの温度を変更する工程を更に備える、請求項5又は6に記載の方法。 The method according to claim 5 or 6, further comprising a step of changing a temperature of the resistance pin.
PCT/JP2013/057077 2012-03-16 2013-03-13 Extrusion-molding device and method for producing molded article using same WO2013137346A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-060975 2012-03-16
JP2012060975A JP2013193278A (en) 2012-03-16 2012-03-16 Extrusion molding device and method of manufacturing molding using the same

Publications (1)

Publication Number Publication Date
WO2013137346A1 true WO2013137346A1 (en) 2013-09-19

Family

ID=49161251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057077 WO2013137346A1 (en) 2012-03-16 2013-03-13 Extrusion-molding device and method for producing molded article using same

Country Status (2)

Country Link
JP (1) JP2013193278A (en)
WO (1) WO2013137346A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015061184A1 (en) * 2013-10-23 2015-04-30 Corning Incorporated Device and method of correcting extrudate bow
CN110815754A (en) * 2019-11-24 2020-02-21 六安丰恺尼机电科技有限公司 Assembly for manufacturing plastic pipe fittings from molten polystyrene plastic
US10632662B2 (en) 2013-10-23 2020-04-28 Corning Incorporated Device and method of correcting extrudate bow
CN111231258A (en) * 2020-01-21 2020-06-05 瑞瑶环境科技有限公司 Integrally-formed plastic double-layer spiral rib hollow wall pipe, forming die and production process thereof
CN114347221A (en) * 2020-10-12 2022-04-15 日本碍子株式会社 Extrusion molding machine and method for producing molded body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2016003604A (en) * 2013-10-04 2016-07-21 Sumitomo Chemical Co Extrusion molding device and method for manufacturing green honeycomb molded body.

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6434704A (en) * 1987-07-30 1989-02-06 Asahi Chemical Ind Correction of bend of extrusion-molded item
JPH10202643A (en) * 1997-01-22 1998-08-04 Ig Tech Res Inc Device for continuously manufacturing ceramic plate
JP2001260116A (en) * 1999-02-26 2001-09-25 Denso Corp Method and apparatus for manufacturing ceramic molding
JP2004230591A (en) * 2003-01-28 2004-08-19 Yokohama Rubber Co Ltd:The Cooling device of pin type kneading continuous extruder
JP2004249513A (en) * 2003-02-19 2004-09-09 Hoden Seimitsu Kako Kenkyusho Ltd Method and apparatus for extrusion molding of ceramic sheet
JP2008137186A (en) * 2006-11-30 2008-06-19 Denso Corp Extrusion molding apparatus of ceramic molded object
WO2011158914A1 (en) * 2010-06-17 2011-12-22 住友化学株式会社 Extrusion-molding device and method for producing molded body using same
WO2012036284A1 (en) * 2010-09-17 2012-03-22 住友化学株式会社 Extrusion molding device and molded body manufacturing method using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6434704A (en) * 1987-07-30 1989-02-06 Asahi Chemical Ind Correction of bend of extrusion-molded item
JPH10202643A (en) * 1997-01-22 1998-08-04 Ig Tech Res Inc Device for continuously manufacturing ceramic plate
JP2001260116A (en) * 1999-02-26 2001-09-25 Denso Corp Method and apparatus for manufacturing ceramic molding
JP2004230591A (en) * 2003-01-28 2004-08-19 Yokohama Rubber Co Ltd:The Cooling device of pin type kneading continuous extruder
JP2004249513A (en) * 2003-02-19 2004-09-09 Hoden Seimitsu Kako Kenkyusho Ltd Method and apparatus for extrusion molding of ceramic sheet
JP2008137186A (en) * 2006-11-30 2008-06-19 Denso Corp Extrusion molding apparatus of ceramic molded object
WO2011158914A1 (en) * 2010-06-17 2011-12-22 住友化学株式会社 Extrusion-molding device and method for producing molded body using same
WO2012036284A1 (en) * 2010-09-17 2012-03-22 住友化学株式会社 Extrusion molding device and molded body manufacturing method using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015061184A1 (en) * 2013-10-23 2015-04-30 Corning Incorporated Device and method of correcting extrudate bow
CN105682875A (en) * 2013-10-23 2016-06-15 康宁股份有限公司 Device and method of correcting extrudate bow
US9393716B2 (en) 2013-10-23 2016-07-19 Corning Incorporated Device and method of correcting extrudate bow
JP2016533922A (en) * 2013-10-23 2016-11-04 コーニング インコーポレイテッド Device and method for correcting bowing of extrudates
CN105682875B (en) * 2013-10-23 2018-06-12 康宁股份有限公司 The device and method for correcting extrusion bow
US10632662B2 (en) 2013-10-23 2020-04-28 Corning Incorporated Device and method of correcting extrudate bow
CN110815754A (en) * 2019-11-24 2020-02-21 六安丰恺尼机电科技有限公司 Assembly for manufacturing plastic pipe fittings from molten polystyrene plastic
CN111231258A (en) * 2020-01-21 2020-06-05 瑞瑶环境科技有限公司 Integrally-formed plastic double-layer spiral rib hollow wall pipe, forming die and production process thereof
CN114347221A (en) * 2020-10-12 2022-04-15 日本碍子株式会社 Extrusion molding machine and method for producing molded body

Also Published As

Publication number Publication date
JP2013193278A (en) 2013-09-30

Similar Documents

Publication Publication Date Title
WO2013137346A1 (en) Extrusion-molding device and method for producing molded article using same
JP5785465B2 (en) Extrusion molding apparatus and method for producing green molded body for honeycomb structure using the same
JP5771074B2 (en) Extrusion molding apparatus and method for producing molded body using the same
JP5753005B2 (en) Method for producing green molded body for honeycomb structure
JP5753006B2 (en) Extrusion molding apparatus and method for producing molded body using the same
EP2233265A2 (en) Extrusion-forming device and method for manufacturing formed article by use of the device
WO2015050214A1 (en) Extrusion molding device and method for manufacturing green honeycomb molded body
JP5965748B2 (en) Extrusion molding apparatus and method for producing molded body using the same
JP5686709B2 (en) Extrusion molding apparatus and method for producing molded body using the same
JP5908345B2 (en) Die for forming honeycomb structure and method for manufacturing honeycomb structure using the same
JP2014014983A (en) Mold, and method for manufacturing honeycomb structure
EP2574437A2 (en) Extruder
JP2013193279A (en) Extrusion molding device and method of manufacturing molding using the same
JP6010368B2 (en) Die for forming honeycomb structure and method for manufacturing honeycomb structure using the same
JP2015058591A (en) Extrusion molding device and method for manufacturing honeycomb molding
JP2013173243A (en) Inspection method for honeycomb structure, method for manufacturing honeycomb structure, honeycomb structure, design method of sealing mask, and inspection program for honeycomb structure
JP6790313B1 (en) Manufacturing method of ceramic molded body and ceramic structure
WO2012147935A1 (en) Extrusion molding apparatus and manufacturing method for green honeycomb molded body using same
JP5711545B2 (en) Green molded body cutting method, green molded body manufacturing method, and green molded body manufacturing system
CN114347221A (en) Extrusion molding machine and method for producing molded body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13760281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13760281

Country of ref document: EP

Kind code of ref document: A1