WO2013136817A1 - Image capture device - Google Patents

Image capture device Download PDF

Info

Publication number
WO2013136817A1
WO2013136817A1 PCT/JP2013/001795 JP2013001795W WO2013136817A1 WO 2013136817 A1 WO2013136817 A1 WO 2013136817A1 JP 2013001795 W JP2013001795 W JP 2013001795W WO 2013136817 A1 WO2013136817 A1 WO 2013136817A1
Authority
WO
WIPO (PCT)
Prior art keywords
image signal
imaging
light receiving
sensitivity
unit
Prior art date
Application number
PCT/JP2013/001795
Other languages
French (fr)
Japanese (ja)
Inventor
慎矢 藤原
森 吉造
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2013136817A1 publication Critical patent/WO2013136817A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/58Control of the dynamic range involving two or more exposures
    • H04N25/581Control of the dynamic range involving two or more exposures acquired simultaneously
    • H04N25/585Control of the dynamic range involving two or more exposures acquired simultaneously with pixels having different sensitivities within the sensor, e.g. fast or slow pixels or pixels having different sizes

Definitions

  • the present invention relates to an imaging apparatus.
  • the signal-to-noise ratio of the image signal is reduced as the imaging sensitivity increases.
  • two types of outputs a low-sensitivity light-receiving element and a high-sensitivity light-receiving element, are switched, but the S / N ratio can be greatly increased despite increasing the imaging sensitivity before and after switching. There is a possibility, it can give the user a sense of incongruity.
  • an imaging apparatus that enables imaging in a relatively wide dynamic range and that does not give a sense of discomfort to the user when the imaging sensitivity is changed.
  • the imaging device includes an imaging unit, a generation unit, and a control unit.
  • the imaging unit includes a first light receiving element that generates a first image signal and a second light receiving element that generates a second image signal with higher sensitivity than the first image signal.
  • the generation unit generates a third image signal having an SN ratio that is larger than the first image signal and lower than the second image signal, based on the second image signal and the first image signal.
  • the control unit selects, as an output signal from the pixel, an image signal having the highest S / N ratio with the set imaging sensitivity among the first image signal, the second image signal, and the third image signal.
  • FIG. 1 is a block diagram illustrating a configuration example of an electronic camera according to an embodiment.
  • the figure which shows the example of the 1st light receiving element and 2nd light receiving element of one Embodiment The figure which shows the circuit structural example of the imaging part in one Embodiment (A), (b): The schematic diagram which shows the operation example of the estimation part in one Embodiment. Schematic diagram showing an example of a data table in one embodiment
  • FIG. 1 is a block diagram illustrating a configuration example of an electronic camera 11 according to an embodiment that is an example of an imaging apparatus.
  • the electronic camera 11 includes an imaging lens 12, an imaging unit 13, a signal processing unit 14, an image processing unit 15, a first memory 16, a second memory 17, a recording I / F 18, a CPU 19, and an operation unit. 20 and a bus 21.
  • the image processing unit 15, the first memory 16, the second memory 17, the recording I / F 18, and the CPU 19 are respectively connected via a bus 21.
  • the imaging unit 13, the signal processing unit 14, and the operation unit 20 are each connected to the CPU 19.
  • the imaging unit 13 is an imaging device that images an image formed by the imaging lens 12.
  • the imaging unit 13 according to the embodiment is a CMOS solid-state imaging device that can read an image signal of an arbitrary light receiving device by random access.
  • the output of the imaging unit 13 is connected to the signal processing unit 14.
  • a plurality of pixels are arranged in a matrix on the light receiving surface of the imaging unit 13. Further, red (R), green (Gr, Gb), and blue (B) color filters are arranged in a known Bayer array in each pixel of the imaging unit 13.
  • Each pixel of the imaging unit 13 has two light receiving elements, a first light receiving element PD1 and a second light receiving element PD2.
  • the first light receiving element PD1 generates a relatively low sensitivity image signal (first image signal)
  • the second light receiving element PD2 has a relatively high sensitivity image signal (second image signal). ) Is generated.
  • the sensitivity of the second light receiving element PD2 in one embodiment is set to about four times that of the first light receiving element PD1.
  • FIG. 2 is a diagram illustrating an example of the first light receiving element PD1 and the second light receiving element PD2 according to an embodiment. Although 2 ⁇ 2 pixels (PX) are partially shown in FIG. 2, it goes without saying that a larger number of pixels are arranged on the light receiving surface of the actual imaging unit 13.
  • the light receiving area of the second light receiving element PD2 is set larger than the light receiving area of the first light receiving element PD1. Therefore, under the same conditions, the second light receiving element PD2 has a higher light receiving amount per unit time than the first light receiving element PD1, and the second image signal is relatively more sensitive than the first image signal.
  • FIG. 3 is a diagram illustrating a circuit configuration example of the imaging unit 13 according to an embodiment.
  • the imaging unit 13 is provided for each of the plurality of pixels PX, the vertical scanning unit 13a, the horizontal scanning unit 13b, the signal storage unit 13c, the plurality of scanning lines 13d extending in the horizontal direction, and the columns of the pixels PX. And a signal readout line 13e.
  • each scanning line 13d is connected to the vertical scanning unit 13a.
  • the vertical scanning unit 13a gives a pulse (selection pulse, reset pulse, transfer pulse, etc.) for designating a row to be read from the scanning line 13d to each pixel.
  • the horizontal scanning unit 13b outputs a pulse for designating a readout target column to the signal storage unit 13c.
  • the lower end of the signal readout line 13e is connected to the signal storage unit 13c.
  • the signal storage unit 13 c reads out image signals from the respective pixels via the signal readout line 13 e and sequentially outputs the read image signals to the signal processing unit 14.
  • the floating diffusion FD, the reset transistor RES, the amplification transistor AMP, and the selection transistor SEL are shared for the two sets of light receiving elements and transfer transistors.
  • the first light receiving element PD1 and the second light receiving element PD2 each generate a signal charge according to the amount of incident light.
  • the transfer transistors TX1 and TX2 transfer the signal charges accumulated in the connected light receiving elements to the floating diffusion FD.
  • the reset transistor RES resets the floating diffusion FD to the power supply voltage.
  • the amplification transistor AMP outputs a read current to the output terminal via the selection transistor SEL according to the voltage value of the floating diffusion FD.
  • the selection transistor SEL connects the source of the amplification transistor AMP to the output terminal.
  • the imaging unit 13 of the embodiment can read out the first image signal or the second image signal as the output signal of the pixel by operating any one of the transfer transistors TX1 and TX2. In the subtraction readout mode described later, the imaging unit 13 outputs the first image signal and the second image signal separately for each pixel.
  • the imaging unit 13 can read the added image signal of the first image signal and the second image signal as the output signal of the pixel.
  • the imaging unit 13 once accumulates the signal charges of the first light receiving element PD1 and the second light receiving element PD2 in the floating diffusion FD and then outputs them. Good.
  • the signal processing unit 14 includes an AFE 14a, a subtraction unit 14b, and an estimation unit 14c.
  • the AFE 14a is an analog front-end circuit that performs analog signal processing on the output of the signal storage unit 13c.
  • the AFE 14a performs correlated double sampling, image signal gain adjustment, and image signal A / D conversion.
  • the AFE 14a adjusts the gain of the image signal in accordance with an instruction from the CPU 19, and changes the imaging sensitivity corresponding to the ISO sensitivity.
  • the subtraction unit 14b is an example of a generation unit, and subtracts the first image signal from the second image signal for each pixel in accordance with an instruction from the CPU 19 to subtract an image signal (an example of a third image signal) for each pixel.
  • an operation mode in which the first image signal is output from each pixel of the imaging unit 13 is referred to as a “first readout mode”.
  • An operation mode in which the second image signal is output from each pixel of the imaging unit 13 is referred to as a “second readout mode”.
  • An operation mode in which an added image signal is output from each pixel of the imaging unit 13 is referred to as an “addition readout mode”.
  • An operation mode in which the subtraction unit 14b is operated to generate a subtraction image signal for each pixel is referred to as a “subtraction readout mode”.
  • Each operation mode is switched according to an instruction from the CPU 19 which is an example of a control unit.
  • the estimation unit 14c is a circuit that outputs an estimated value of the subtraction image signal as an output signal when the second image signal of the pixel to be processed is at a saturation level in the subtraction readout mode.
  • the signal level of the second image signal becomes lower than the original level, and if the first image signal is subtracted from the second image signal as it is, it is excessively pulled. Therefore, when the second image signal is saturated in the subtraction readout mode, the CPU 19 outputs the estimated value obtained by the estimation unit 14c as a subtraction image signal. Thereby, the subtraction image signal can be used even in a scene where the second image signal is saturated.
  • FIG. 4 is a schematic diagram illustrating an operation example of the estimation unit according to one embodiment.
  • the estimation unit 14c may obtain an estimated value by multiplying the first image signal by a gain corresponding to the sensitivity ratio between the first image signal and the subtracted image signal (see FIG. 4a).
  • the estimation unit 14c may estimate the value of the second image signal by multiplying the first image signal by a gain corresponding to the sensitivity ratio between the first image signal and the second image signal. Thereafter, the estimation unit 14c may obtain an estimated value by subtracting the value of the first image signal from the estimated value of the second image signal (see FIG. 4b).
  • the image processing unit 15 performs various types of image processing (color interpolation processing, gradation conversion processing, white balance adjustment, etc.) on the digital image signal output from the signal processing unit 14.
  • the first memory 16 temporarily stores image data in the pre-process and post-process of image processing.
  • the first memory 16 is an SDRAM that is a volatile storage medium.
  • the second memory 17 is a non-volatile memory that stores a program executed by the CPU 19 and a data table indicating a correspondence relationship (see FIG. 4) between the SN ratio and the imaging sensitivity value in each image signal. .
  • the recording I / F 18 has a connector for connecting the nonvolatile storage medium 22.
  • the recording I / F 18 writes / reads image data to / from the storage medium 22 connected to the connector.
  • the storage medium 22 is composed of a hard disk, a memory card incorporating a semiconductor memory, or the like. In FIG. 1, a memory card is illustrated as an example of the storage medium 22.
  • the CPU 19 is a processor that comprehensively controls the operation of the electronic camera 11.
  • the CPU 19 drives the imaging unit 13 in accordance with a user's imaging instruction input in a shooting mode for shooting a subject, and executes a still image imaging process that involves recording in the nonvolatile storage medium 22. To do.
  • the CPU 19 in the shooting mode executes a known automatic exposure calculation prior to capturing a still image, and sets the imaging sensitivity that is one parameter of the imaging conditions. Further, the CPU 19 may set the above-described imaging sensitivity based on a user input. Then, the CPU 19 in the shooting mode selects the operation mode (first readout mode, second readout mode, addition readout mode, subtraction readout mode) of the imaging unit 13 and the signal processing unit 14 according to the value of the imaging sensitivity. select.
  • the operation unit 20 has a plurality of switches that accept user operations.
  • the operation unit 20 includes, for example, a release button that accepts an instruction to capture a main image, a cross-shaped cursor key, a determination button, and the like.
  • the CPU 19 in the shooting mode refers to the data table in the second memory 17 and changes the operation mode of the imaging unit 13 and the signal processing unit 14 according to the value of the imaging sensitivity. At this time, the CPU 19 selects the above operation mode so that the SN ratio of the image signal output from the pixel is the highest. And the imaging part 13 switches the image signal output in imaging
  • the noise of the light receiving element includes a component of light shot noise and a component of baseline noise (hereinafter referred to as “B”) generated in the readout circuit in the dark.
  • the light shot noise can be obtained from the square root of photons incident on the light receiving element.
  • the sensitivity of the second light receiving element PD2 is about four times that of the first light receiving element PD1.
  • the charge generation amount per lux in the first light receiving element PD1 is “A [e / lx ⁇ s]”
  • the charge generation amount per lux in the second light receiving element PD2 is “4A [e / lx ⁇ s]. ]
  • the baseline noise B is assumed to be sufficiently small to be considered zero.
  • the SN ratio (S 1 / N 1 ) of the first image signal can be obtained by the following equation (1).
  • the SN ratio (S 2 / N 2 ) of the second image signal can be obtained by the following equation (2).
  • S 2 / N 2 has a larger value than S 1 / N 1 . Therefore, it can be seen that, under the same conditions, the image signal acquired from the relatively high sensitivity light receiving element is superior in the SN ratio.
  • the amount of charge generated per unit time in the added image signal becomes larger than that of the first image signal and the second image signal. Therefore, the SN ratio of the added image signal is higher than that of the second image signal under the same conditions. Further, when the first image signal is subtracted from the second image signal under the conditions of the embodiment, the amount of charge generated per unit time in the subtracted image signal is larger than that of the first image signal, but smaller than that of the second image signal. Become.
  • FIG. 5 is a schematic diagram showing an example of a data table in one embodiment.
  • the data table of FIG. 5 shows each image signal (first image signal) when the signal value of the same brightness (for example, 100LSB in a 12-bit gradation range) is acquired while changing the value of the imaging sensitivity (ISO sensitivity). , The second image signal, and the added image signal).
  • imaging sensitivity values are indicated by symbols A to I in ascending order.
  • the higher the imaging sensitivity value the shorter the charge accumulation time during imaging. Further, when the imaging sensitivity is increased with the same type of image signal, the charge accumulation time is shortened, the signal component is reduced, and the influence of the baseline noise is relatively increased. As a result, in FIG. 5, the SN ratio decreases as the imaging sensitivity is increased even for the same type of image signal.
  • the CPU 19 in the shooting mode refers to the data table of FIG. 5 and selects the first readout mode as the operation mode of the imaging unit 13 and the signal processing unit 14 when the ISO sensitivity is the lowest. Then, the CPU 19 changes the operation mode stepwise in the order of the subtraction readout mode, the second readout mode, and the addition readout mode in accordance with the increase in ISO sensitivity.
  • the CPU 19 selects the first readout mode corresponding to the first image signal as the operation mode of the imaging unit 13 and the signal processing unit 14.
  • the CPU 19 selects the subtraction readout mode corresponding to the subtraction image signal having the highest SN ratio from the two types of image signals as the operation mode of the imaging unit 13 and the signal processing unit 14.
  • both the first image signal and the second image signal are required.
  • the selection of the second readout mode is disabled.
  • the estimated value of the estimation unit 14c is used to reduce the ISO sensitivity. Even in the case of C, it is possible to output a subtraction image signal.
  • the CPU 19 selects the second readout mode corresponding to the second image signal having the highest SN ratio from among the three types of image signals as the operation modes of the imaging unit 13 and the signal processing unit 14.
  • the first image signal, the subtraction image signal, the second image signal, and the addition image signal can be selected as output signals in the data table.
  • the CPU 19 selects an addition readout mode corresponding to the addition image signal having the highest SN ratio from the four types of image signals as the operation modes of the imaging unit 13 and the signal processing unit 14.
  • an image can be acquired with low imaging sensitivity by performing imaging using the relatively light-sensitive first light receiving element PD1.
  • the electronic camera 11 according to an embodiment can perform imaging using the relatively high-sensitivity second light receiving element PD2 according to the setting of the imaging sensitivity. Then, the electronic camera 11 according to the embodiment selects an image signal having the highest SN ratio with the current imaging sensitivity among the first image signal, the second image signal, the added image signal, and the subtracted image signal, Images with good S / N ratios can be acquired in a wide range of imaging sensitivity.
  • the output image signal is selected from four types of image signals
  • the image signal is switched compared to the case where only the first image signal and the second image signal are selectively used.
  • the change width of the SN ratio becomes small. Therefore, the discontinuity between the change in the imaging sensitivity and the change in the SN ratio is alleviated, so that the user's uncomfortable feeling can be reduced.
  • the difference in sensitivity is caused by the difference in the light receiving area between the first light receiving element PD1 and the second light receiving element PD2.
  • the first light receiving element and the second light receiving element of the present invention are the above-described ones. The configuration is not limited.
  • microlenses having different light collection rates may be arranged on the first light receiving element and the second light receiving element, respectively, to cause a difference in sensitivity between the two light receiving elements.
  • the same effect as that of the embodiment can be obtained, and the first light receiving element and the second light receiving element can be manufactured by the same semiconductor process.
  • the same color filters having different light transmittances may be arranged on the first light receiving element and the second light receiving element, respectively, to cause a difference in sensitivity between the two light receiving elements.
  • the same effect as that of the embodiment can be obtained, and the first light receiving element and the second light receiving element can be manufactured by the same semiconductor process.
  • two light receiving elements having different photoelectric conversion efficiencies may be arranged in one pixel to serve as the first light receiving element and the second light receiving element. In this case, the same effect as that of the embodiment can be obtained.
  • the configurations of the first light receiving element and the second light receiving element of the present invention may be realized by a combination of two or more of the techniques disclosed in the above-described one embodiment and the modified example of the one embodiment.
  • the control unit selects the subtracted image signal as the output signal when the imaging sensitivity is the lowest, and the imaging sensitivity
  • the output signal may be changed stepwise in the order of the first image signal, the second image signal, and the added image signal.
  • the subtraction image signal may be generated inside the solid-state imaging device 14.
  • the first image signal and the second image signal may be subtracted using a CDS circuit of the image sensor.
  • the imaging device of the present invention integrates an imaging unit, an addition unit, a subtraction unit, a sensitivity change unit, a control unit, and an estimation unit.
  • the solid-state imaging device may be used.
  • the estimation unit 14c may obtain an image signal (estimated value) having an SN ratio larger than that of the first image signal and lower than that of the second image signal as follows. For example, the estimation unit 14c calculates a difference value between the second image signal and the first image signal, and multiplies the calculated difference value by a predetermined coefficient. Then, the estimation unit 14c may obtain an estimated value by adding a value obtained by multiplying the difference value by a predetermined coefficient to the first image signal.
  • DESCRIPTION OF SYMBOLS 11 Electronic camera, 13 ... Imaging part, 13a ... Vertical scanning part, 13b ... Horizontal scanning part, 14 ... Signal processing part, 14a ... AFE, 14b ... Subtraction part, 14c ... Estimation part, 17 ... 2nd memory, 19 ... CPU, PD1 ... first light receiving element, PD2 ... second light receiving element, TX1 ... transfer transistor, TX2 ... transfer transistor, FD ... floating diffusion, RES ... reset transistor, AMP ... amplification transistor, SEL ... selection transistor

Abstract

[Solution] An image capture device comprises an image capture unit, a generator unit, and a control unit. The image capture unit further comprises a first photoreceptor element which generates a first image signal, and a second photoreceptor element which generates a second image signal with a higher sensitivity than the first image signal. On the basis of the second image signal and the first image signal, the generator unit generates a third image signal with an SNR which is higher than the first image signal and lower than the second image signal. The control unit selects as an output signal from a pixel an image signal among the first image signal, the second image signal, and the third image signal with the highest SNR with a set image capture sensitivity.

Description

撮像装置Imaging device
 本発明は、撮像装置に関する。 The present invention relates to an imaging apparatus.
 従来から、1画素につき1組の受光素子で異なる感度の画像信号を生成する撮像素子を適用し、広いダイナミックレンジで撮像を行う電子カメラが公知である。 2. Description of the Related Art Conventionally, an electronic camera that captures an image with a wide dynamic range by applying an image sensor that generates image signals having different sensitivities with one set of light receiving elements per pixel is known.
特開2005-72965号公報JP 2005-72965 A
 一般的な電子カメラでは、画像信号のSN比は撮像感度の増加に応じて低下する関係にある。一方、上記の電子カメラでは、低感度の受光素子と高感度の受光素子との2種類の出力を切り替えるが、切り替えの前後で撮像感度を増加させたにも拘わらずSN比が大きく上昇する可能性があり、ユーザに違和感を与えうる。 In a general electronic camera, the signal-to-noise ratio of the image signal is reduced as the imaging sensitivity increases. On the other hand, in the above electronic camera, two types of outputs, a low-sensitivity light-receiving element and a high-sensitivity light-receiving element, are switched, but the S / N ratio can be greatly increased despite increasing the imaging sensitivity before and after switching. There is a possibility, it can give the user a sense of incongruity.
 上記事情に鑑み、比較的広いダイナミックレンジでの撮像を可能とするとともに、撮像感度を変化させたときにユーザへ違和感を与えにくい撮像装置を提供する。 In view of the above circumstances, there is provided an imaging apparatus that enables imaging in a relatively wide dynamic range and that does not give a sense of discomfort to the user when the imaging sensitivity is changed.
 一の態様の撮像装置は、撮像部と、生成部と、制御部とを備える。撮像部は、第1画像信号を生成する第1受光素子と、第1画像信号よりも高感度の第2画像信号を生成する第2受光素子とを含む。生成部は、第2画像信号と第1画像信号とに基づいて、SN比が第1画像信号よりも大きく第2画像信号よりも低い第3画像信号を生成する。制御部は、第1画像信号、第2画像信号および第3画像信号のうち、設定された撮像感度でSN比が最も高くなる画像信号を画素からの出力信号として選択する。 The imaging device according to one aspect includes an imaging unit, a generation unit, and a control unit. The imaging unit includes a first light receiving element that generates a first image signal and a second light receiving element that generates a second image signal with higher sensitivity than the first image signal. The generation unit generates a third image signal having an SN ratio that is larger than the first image signal and lower than the second image signal, based on the second image signal and the first image signal. The control unit selects, as an output signal from the pixel, an image signal having the highest S / N ratio with the set imaging sensitivity among the first image signal, the second image signal, and the third image signal.
一実施形態の電子カメラの構成例を示すブロック図1 is a block diagram illustrating a configuration example of an electronic camera according to an embodiment. 一実施形態の第1受光素子および第2受光素子の例を示す図The figure which shows the example of the 1st light receiving element and 2nd light receiving element of one Embodiment 一実施形態での撮像部の回路構成例を示す図The figure which shows the circuit structural example of the imaging part in one Embodiment (a),(b):一実施形態での推定部の動作例を示す模式図(A), (b): The schematic diagram which shows the operation example of the estimation part in one Embodiment. 一実施形態でのデータテーブルの例を示す模式図Schematic diagram showing an example of a data table in one embodiment
 <一実施形態の説明>
 図1は、撮像装置の一例である一実施形態の電子カメラ11の構成例を示すブロック図である。電子カメラ11は、撮像レンズ12と、撮像部13と、信号処理部14と、画像処理部15と、第1メモリ16と、第2メモリ17と、記録I/F18と、CPU19と、操作部20と、バス21とを備えている。ここで、画像処理部15、第1メモリ16、第2メモリ17、記録I/F18、CPU19は、バス21を介してそれぞれ接続されている。また、撮像部13、信号処理部14、操作部20は、それぞれCPU19と接続されている。
<Description of Embodiment>
FIG. 1 is a block diagram illustrating a configuration example of an electronic camera 11 according to an embodiment that is an example of an imaging apparatus. The electronic camera 11 includes an imaging lens 12, an imaging unit 13, a signal processing unit 14, an image processing unit 15, a first memory 16, a second memory 17, a recording I / F 18, a CPU 19, and an operation unit. 20 and a bus 21. Here, the image processing unit 15, the first memory 16, the second memory 17, the recording I / F 18, and the CPU 19 are respectively connected via a bus 21. Further, the imaging unit 13, the signal processing unit 14, and the operation unit 20 are each connected to the CPU 19.
 撮像部13は、撮像レンズ12による結像を撮像する撮像デバイスである。一実施形態での撮像部13は、任意の受光素子の画像信号をランダムアクセスで読み出し可能なCMOS型の固体撮像素子である。なお、撮像部13の出力は信号処理部14に接続されている。 The imaging unit 13 is an imaging device that images an image formed by the imaging lens 12. The imaging unit 13 according to the embodiment is a CMOS solid-state imaging device that can read an image signal of an arbitrary light receiving device by random access. The output of the imaging unit 13 is connected to the signal processing unit 14.
 この撮像部13の受光面上には、複数の画素がマトリクス状に配列されている。また、撮像部13の各画素には、赤色(R)、緑色(Gr,Gb)、青色(B)のカラーフィルタが公知のベイヤ配列で配置されている。 A plurality of pixels are arranged in a matrix on the light receiving surface of the imaging unit 13. Further, red (R), green (Gr, Gb), and blue (B) color filters are arranged in a known Bayer array in each pixel of the imaging unit 13.
 また、撮像部13の各画素は、第1受光素子PD1と第2受光素子PD2との2つの受光素子をそれぞれ有している。なお、同一条件下において、第1受光素子PD1は相対的に低感度の画像信号(第1画像信号)を生成し、第2受光素子PD2は相対的に高感度の画像信号(第2画像信号)を生成する。一例として、一の実施形態での第2受光素子PD2の感度は、第1受光素子PD1の約4倍に設定されるものとする。 Each pixel of the imaging unit 13 has two light receiving elements, a first light receiving element PD1 and a second light receiving element PD2. Note that, under the same conditions, the first light receiving element PD1 generates a relatively low sensitivity image signal (first image signal), and the second light receiving element PD2 has a relatively high sensitivity image signal (second image signal). ) Is generated. As an example, the sensitivity of the second light receiving element PD2 in one embodiment is set to about four times that of the first light receiving element PD1.
 図2は、一実施形態の第1受光素子PD1および第2受光素子PD2の例を示す図である。図2では、2×2個分の画素(PX)を部分的に示すが、実際の撮像部13の受光面にはさらに多数の画素が配列されることはいうまでもない。 FIG. 2 is a diagram illustrating an example of the first light receiving element PD1 and the second light receiving element PD2 according to an embodiment. Although 2 × 2 pixels (PX) are partially shown in FIG. 2, it goes without saying that a larger number of pixels are arranged on the light receiving surface of the actual imaging unit 13.
 一実施形態の各画素において、第2受光素子PD2の受光面積は第1受光素子PD1の受光面積よりも大きく設定されている。したがって、同一条件下では第2受光素子PD2の方が第1受光素子PD1よりも単位時間当たりの受光量が多くなり、第2画像信号は相対的に第1画像信号よりも高感度となる。 In each pixel of one embodiment, the light receiving area of the second light receiving element PD2 is set larger than the light receiving area of the first light receiving element PD1. Therefore, under the same conditions, the second light receiving element PD2 has a higher light receiving amount per unit time than the first light receiving element PD1, and the second image signal is relatively more sensitive than the first image signal.
 また、図3は、一実施形態での撮像部13の回路構成例を示す図である。撮像部13は、複数の画素PXと、垂直走査部13aと、水平走査部13bと、信号蓄積部13cと、横方向に延長する複数の走査線13dと、画素PXの列ごとにそれぞれ設けられた信号読み出し線13eと、を有している。 FIG. 3 is a diagram illustrating a circuit configuration example of the imaging unit 13 according to an embodiment. The imaging unit 13 is provided for each of the plurality of pixels PX, the vertical scanning unit 13a, the horizontal scanning unit 13b, the signal storage unit 13c, the plurality of scanning lines 13d extending in the horizontal direction, and the columns of the pixels PX. And a signal readout line 13e.
 垂直走査部13aには、各走査線13dの一端がそれぞれ接続されている。垂直走査部13aは、読み出し対象の行を指定するパルス(選択パルス、リセットパルス、転送パルスなど)を走査線13dから各画素に与える。水平走査部13bは、信号蓄積部13cに対して、読み出し対象の列を指定するパルスを出力する。信号蓄積部13cには、信号読み出し線13eの下端が接続されている。この信号蓄積部13cは、信号読み出し線13eを介して各画素から画像信号を読み出すとともに、読み出した画像信号を信号処理部14に順次出力する。 One end of each scanning line 13d is connected to the vertical scanning unit 13a. The vertical scanning unit 13a gives a pulse (selection pulse, reset pulse, transfer pulse, etc.) for designating a row to be read from the scanning line 13d to each pixel. The horizontal scanning unit 13b outputs a pulse for designating a readout target column to the signal storage unit 13c. The lower end of the signal readout line 13e is connected to the signal storage unit 13c. The signal storage unit 13 c reads out image signals from the respective pixels via the signal readout line 13 e and sequentially outputs the read image signals to the signal processing unit 14.
 また、図3に示す画素PXは、第1受光素子PD1と、第1受光素子PD1に接続された転送トランジスタTX1と、第2受光素子PD2と、第2受光素子PD2に接続された転送トランジスタTX2と、フローティングディフュージョンFDと、リセットトランジスタRESと、増幅トランジスタAMPと、選択トランジスタSELとを有している。なお、図3の例では、2組分の受光素子および転送トランジスタについて、フローティングディフュージョンFD、リセットトランジスタRES、増幅トランジスタAMP、選択トランジスタSELがそれぞれ共有化されている。 3 includes a first light receiving element PD1, a transfer transistor TX1 connected to the first light receiving element PD1, a second light receiving element PD2, and a transfer transistor TX2 connected to the second light receiving element PD2. A floating diffusion FD, a reset transistor RES, an amplification transistor AMP, and a selection transistor SEL. In the example of FIG. 3, the floating diffusion FD, the reset transistor RES, the amplification transistor AMP, and the selection transistor SEL are shared for the two sets of light receiving elements and transfer transistors.
 第1受光素子PD1および第2受光素子PD2は、それぞれ入射光の光量に応じて信号電荷を生成する。転送トランジスタTX1、TX2は、それぞれ接続されている受光素子に蓄積された信号電荷をフローティングディフュージョンFDに転送する。 The first light receiving element PD1 and the second light receiving element PD2 each generate a signal charge according to the amount of incident light. The transfer transistors TX1 and TX2 transfer the signal charges accumulated in the connected light receiving elements to the floating diffusion FD.
 リセットトランジスタRESは、フローティングディフュージョンFDを電源電圧にリセットする。増幅トランジスタAMPは、フローティングディフュージョンFDの電圧値に応じて、選択トランジスタSELを介して出力端子に読み出し電流を出力する。選択トランジスタSELは、増幅トランジスタAMPのソースを出力端子に接続する。 The reset transistor RES resets the floating diffusion FD to the power supply voltage. The amplification transistor AMP outputs a read current to the output terminal via the selection transistor SEL according to the voltage value of the floating diffusion FD. The selection transistor SEL connects the source of the amplification transistor AMP to the output terminal.
 ここで、一実施形態の撮像部13は、転送トランジスタTX1、TX2のいずれか一方を動作させることで、画素の出力信号として第1画像信号または第2画像信号を読み出すことができる。なお、後述の減算読み出しモードでは、撮像部13は、各画素につき第1画像信号および第2画像信号をそれぞれ別個に出力する。 Here, the imaging unit 13 of the embodiment can read out the first image signal or the second image signal as the output signal of the pixel by operating any one of the transfer transistors TX1 and TX2. In the subtraction readout mode described later, the imaging unit 13 outputs the first image signal and the second image signal separately for each pixel.
 また、一実施形態の撮像部13は、画素の出力信号として第1画像信号および第2画像信号の加算画像信号を読み出すこともできる。なお、第1画像信号および第2画像信号を加算して読み出す場合、撮像部13は、第1受光素子PD1および第2受光素子PD2の信号電荷をフローティングディフュージョンFDに一旦蓄積してから出力すればよい。 In addition, the imaging unit 13 according to an embodiment can read the added image signal of the first image signal and the second image signal as the output signal of the pixel. When the first image signal and the second image signal are added and read out, the imaging unit 13 once accumulates the signal charges of the first light receiving element PD1 and the second light receiving element PD2 in the floating diffusion FD and then outputs them. Good.
 図1に戻って、信号処理部14は、AFE14aと、減算部14bと、推定部14cとを含む。AFE14aは、信号蓄積部13cの出力に対してアナログ信号処理を施すアナログフロントエンド回路である。このAFE14aは、相関二重サンプリングや、画像信号のゲインの調整や、画像信号のA/D変換を行う。なお、AFE14aは、感度変更部の一例として、CPU19の指示に応じて画像信号のゲインを調整し、ISO感度に相当する撮像感度の変更を行う。 Referring back to FIG. 1, the signal processing unit 14 includes an AFE 14a, a subtraction unit 14b, and an estimation unit 14c. The AFE 14a is an analog front-end circuit that performs analog signal processing on the output of the signal storage unit 13c. The AFE 14a performs correlated double sampling, image signal gain adjustment, and image signal A / D conversion. As an example of the sensitivity changing unit, the AFE 14a adjusts the gain of the image signal in accordance with an instruction from the CPU 19, and changes the imaging sensitivity corresponding to the ISO sensitivity.
 減算部14bは、生成部の一例であって、CPU19の指示に応じて、画素ごとに第2画像信号から第1画像信号を減算して各画素の減算画像信号(第3画像信号の一例)を生成する回路である。 The subtraction unit 14b is an example of a generation unit, and subtracts the first image signal from the second image signal for each pixel in accordance with an instruction from the CPU 19 to subtract an image signal (an example of a third image signal) for each pixel. Is a circuit that generates
 ここで、以下の説明において、撮像部13の各画素から第1画像信号を出力させる動作モードを「第1読み出しモード」と称する。また、撮像部13の各画素から第2画像信号を出力させる動作モードを「第2読み出しモード」と称する。また、撮像部13の各画素から加算画像信号を出力させる動作モードを「加算読み出しモード」と称する。また、減算部14bを動作させて、各画素の減算画像信号を生成する動作モードを「減算読み出しモード」と称する。なお、各動作モードの切り替えは、制御部の一例であるCPU19の指示に応じて行われる。 Here, in the following description, an operation mode in which the first image signal is output from each pixel of the imaging unit 13 is referred to as a “first readout mode”. An operation mode in which the second image signal is output from each pixel of the imaging unit 13 is referred to as a “second readout mode”. An operation mode in which an added image signal is output from each pixel of the imaging unit 13 is referred to as an “addition readout mode”. An operation mode in which the subtraction unit 14b is operated to generate a subtraction image signal for each pixel is referred to as a “subtraction readout mode”. Each operation mode is switched according to an instruction from the CPU 19 which is an example of a control unit.
 推定部14cは、上記の減算読み出しモードにおいて、処理対象の画素の第2画像信号が飽和レベルのときに、減算画像信号の推定値を出力信号として出力する回路である。第2画像信号が飽和している場合には第2画像信号の信号レベルが本来よりも低くなり、第2画像信号から第1画像信号をそのまま減算すると引きすぎとなる。そのため、減算読み出しモードにおいて第2画像信号が飽和している場合、CPU19は、推定部14cの求めた推定値を減算画像信号として出力する。これにより、第2画像信号が飽和するシーンにおいても、減算画像信号を用いることが可能となる。 The estimation unit 14c is a circuit that outputs an estimated value of the subtraction image signal as an output signal when the second image signal of the pixel to be processed is at a saturation level in the subtraction readout mode. When the second image signal is saturated, the signal level of the second image signal becomes lower than the original level, and if the first image signal is subtracted from the second image signal as it is, it is excessively pulled. Therefore, when the second image signal is saturated in the subtraction readout mode, the CPU 19 outputs the estimated value obtained by the estimation unit 14c as a subtraction image signal. Thereby, the subtraction image signal can be used even in a scene where the second image signal is saturated.
 図4は、一の実施形態における推定部の動作例を示す模式図である。一例として、推定部14cは、第1画像信号と減算画像信号との感度比分のゲインを第1画像信号に乗じて推定値を求めればよい(図4a参照)。また、他の例として、推定部14cは、第1画像信号と第2画像信号との感度比分のゲインを第1画像信号に乗じて第2画像信号の値を推定してもよい。その後、推定部14cは、推定された第2画像信号の値から第1画像信号の値を減算して推定値を求めればよい(図4b参照)。 FIG. 4 is a schematic diagram illustrating an operation example of the estimation unit according to one embodiment. As an example, the estimation unit 14c may obtain an estimated value by multiplying the first image signal by a gain corresponding to the sensitivity ratio between the first image signal and the subtracted image signal (see FIG. 4a). As another example, the estimation unit 14c may estimate the value of the second image signal by multiplying the first image signal by a gain corresponding to the sensitivity ratio between the first image signal and the second image signal. Thereafter, the estimation unit 14c may obtain an estimated value by subtracting the value of the first image signal from the estimated value of the second image signal (see FIG. 4b).
 画像処理部15は、信号処理部14から出力されたデジタルの画像信号に対して各種の画像処理(色補間処理、階調変換処理、ホワイトバランス調整など)を施す。 The image processing unit 15 performs various types of image processing (color interpolation processing, gradation conversion processing, white balance adjustment, etc.) on the digital image signal output from the signal processing unit 14.
 第1メモリ16は、画像処理の前工程や後工程で画像のデータを一時的に記憶する。例えば、第1メモリ16は、揮発性の記憶媒体であるSDRAMである。また、第2メモリ17は、CPU19によって実行されるプログラムや、各画像信号でのSN比と撮像感度の値との対応関係(図4参照)を示すデータテーブルを記憶する不揮発性のメモリである。 The first memory 16 temporarily stores image data in the pre-process and post-process of image processing. For example, the first memory 16 is an SDRAM that is a volatile storage medium. The second memory 17 is a non-volatile memory that stores a program executed by the CPU 19 and a data table indicating a correspondence relationship (see FIG. 4) between the SN ratio and the imaging sensitivity value in each image signal. .
 記録I/F18は、不揮発性の記憶媒体22を接続するためのコネクタを有している。そして、記録I/F18は、コネクタに接続された記憶媒体22に対して画像のデータの書き込み/読み込みを実行する。上記の記憶媒体22は、ハードディスクや、半導体メモリを内蔵したメモリカードなどで構成される。なお、図1では記憶媒体22の一例としてメモリカードを図示する。 The recording I / F 18 has a connector for connecting the nonvolatile storage medium 22. The recording I / F 18 writes / reads image data to / from the storage medium 22 connected to the connector. The storage medium 22 is composed of a hard disk, a memory card incorporating a semiconductor memory, or the like. In FIG. 1, a memory card is illustrated as an example of the storage medium 22.
 CPU19は、電子カメラ11の動作を統括的に制御するプロセッサである。例えば、CPU19は、被写体の撮影を行うための撮影モードにおいて、ユーザの撮像指示入力に応じて撮像部13を駆動させて、不揮発性の記憶媒体22への記録を伴う静止画像の撮像処理を実行する。 The CPU 19 is a processor that comprehensively controls the operation of the electronic camera 11. For example, the CPU 19 drives the imaging unit 13 in accordance with a user's imaging instruction input in a shooting mode for shooting a subject, and executes a still image imaging process that involves recording in the nonvolatile storage medium 22. To do.
 また、撮影モードでのCPU19は、静止画像の撮像に先立って公知の自動露出演算を実行し、撮像条件の1パラメータである撮像感度を設定する。また、CPU19は、ユーザの入力に基づいて上記の撮像感度を設定してもよい。そして、撮影モードでのCPU19は、上記の撮像感度の値に応じて、撮像部13および信号処理部14の動作モード(第1読み出しモード、第2読み出しモード、加算読み出しモード、減算読み出しモード)を選択する。 In addition, the CPU 19 in the shooting mode executes a known automatic exposure calculation prior to capturing a still image, and sets the imaging sensitivity that is one parameter of the imaging conditions. Further, the CPU 19 may set the above-described imaging sensitivity based on a user input. Then, the CPU 19 in the shooting mode selects the operation mode (first readout mode, second readout mode, addition readout mode, subtraction readout mode) of the imaging unit 13 and the signal processing unit 14 according to the value of the imaging sensitivity. select.
 操作部20は、ユーザの操作を受け付ける複数のスイッチを有している。この操作部20は、例えば、本画像の撮像指示を受け付けるレリーズ釦や、十字状のカーソルキーや、決定釦などを含む。 The operation unit 20 has a plurality of switches that accept user operations. The operation unit 20 includes, for example, a release button that accepts an instruction to capture a main image, a cross-shaped cursor key, a determination button, and the like.
 次に、一実施形態での電子カメラ11の動作例を説明する。撮影モードでのCPU19は、第2メモリ17のデータテーブルを参照し、撮像感度の値に応じて撮像部13および信号処理部14の動作モードを変更する。このとき、CPU19は、画素から出力される画像信号のSN比が最も高くなるように、上記の動作モードを選択する。そして、撮像部13は、CPU19が選択した動作モードに応じて、撮影モードで出力する画像信号を切り替える。 Next, an operation example of the electronic camera 11 in one embodiment will be described. The CPU 19 in the shooting mode refers to the data table in the second memory 17 and changes the operation mode of the imaging unit 13 and the signal processing unit 14 according to the value of the imaging sensitivity. At this time, the CPU 19 selects the above operation mode so that the SN ratio of the image signal output from the pixel is the highest. And the imaging part 13 switches the image signal output in imaging | photography mode according to the operation mode which CPU19 selected.
 ここで、一実施形態での各画像信号のSN比について説明する。受光素子のノイズには、光ショットノイズの成分と、暗黒時の読み出し回路で発生するベースラインノイズ(以下「B」と表記する)の成分とが含まれる。なお、光ショットノイズは、受光素子に入射する光子の平方根で求めることができる。 Here, the SN ratio of each image signal in one embodiment will be described. The noise of the light receiving element includes a component of light shot noise and a component of baseline noise (hereinafter referred to as “B”) generated in the readout circuit in the dark. The light shot noise can be obtained from the square root of photons incident on the light receiving element.
 例えば、第2受光素子PD2の感度が、第1受光素子PD1の約4倍である場合を考える。第1受光素子PD1での1ルクス当たりの電荷発生量を「A[e/lx・s]」とし、第2受光素子PD2での1ルクス当たりの電荷発生量を「4A[e/lx・s]」とし、かつベースラインノイズBがゼロとみなせるほど十分に小さいと仮定する。かかる条件下では、第1画像信号のSN比(S/N)は以下の式(1)で求めることができる。同様に、第2画像信号のSN比(S/N)は以下の式(2)で求めることができる。 For example, consider a case where the sensitivity of the second light receiving element PD2 is about four times that of the first light receiving element PD1. The charge generation amount per lux in the first light receiving element PD1 is “A [e / lx · s]”, and the charge generation amount per lux in the second light receiving element PD2 is “4A [e / lx · s]. ] "And the baseline noise B is assumed to be sufficiently small to be considered zero. Under such conditions, the SN ratio (S 1 / N 1 ) of the first image signal can be obtained by the following equation (1). Similarly, the SN ratio (S 2 / N 2 ) of the second image signal can be obtained by the following equation (2).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上記の式(1)、(2)を比べると、S/Nの方がS/Nよりも値が大きくなる。したがって、同一条件下では、相対的に高感度の受光素子から取得した画像信号の方がSN比に優れることが分かる。 Comparing the above formulas (1) and (2), S 2 / N 2 has a larger value than S 1 / N 1 . Therefore, it can be seen that, under the same conditions, the image signal acquired from the relatively high sensitivity light receiving element is superior in the SN ratio.
 なお、第1画像信号および第2画像信号を加算すると、加算画像信号における単位時間当たりの電荷発生量は第1画像信号および第2画像信号よりも大きくなる。よって、同一条件下では加算画像信号の方が第2画像信号よりもSN比が高くなる。また、一実施形態の条件において第2画像信号から第1画像信号を減算すると、減算画像信号における単位時間当たりの電荷発生量は第1画像信号より大きくなる一方で、第2画像信号よりは小さくなる。 When the first image signal and the second image signal are added, the amount of charge generated per unit time in the added image signal becomes larger than that of the first image signal and the second image signal. Therefore, the SN ratio of the added image signal is higher than that of the second image signal under the same conditions. Further, when the first image signal is subtracted from the second image signal under the conditions of the embodiment, the amount of charge generated per unit time in the subtracted image signal is larger than that of the first image signal, but smaller than that of the second image signal. Become.
 また、図5は、一実施形態でのデータテーブルの例を示す模式図である。図5のデータテーブルは、撮像感度(ISO感度)の値を変化させながら、それぞれ同じ明るさの信号値(例えば12bitの階調範囲で100LSB)を取得したときの各画像信号(第1画像信号、第2画像信号、加算画像信号)でのSN比を示している。便宜上、図5において、撮像感度の値は低い順にA~Iの符号で示している。 FIG. 5 is a schematic diagram showing an example of a data table in one embodiment. The data table of FIG. 5 shows each image signal (first image signal) when the signal value of the same brightness (for example, 100LSB in a 12-bit gradation range) is acquired while changing the value of the imaging sensitivity (ISO sensitivity). , The second image signal, and the added image signal). For convenience, in FIG. 5, imaging sensitivity values are indicated by symbols A to I in ascending order.
 図5において、撮像感度の値が高くなるほど撮影時の電荷蓄積時間は短くなる。また、同一種類の画像信号で撮像感度を高くすると、電荷蓄積時間が短くなって信号成分が少なくなり、また相対的にベースラインノイズの影響も大きくなる。その結果、図5では、同一種類の画像信号でも撮像感度を高くするとSN比は低下してゆくこととなる。 In FIG. 5, the higher the imaging sensitivity value, the shorter the charge accumulation time during imaging. Further, when the imaging sensitivity is increased with the same type of image signal, the charge accumulation time is shortened, the signal component is reduced, and the influence of the baseline noise is relatively increased. As a result, in FIG. 5, the SN ratio decreases as the imaging sensitivity is increased even for the same type of image signal.
 また、撮像感度の値が低くなると撮影時の電荷蓄積時間は長くなるので、撮像部13の受光素子は高感度になるほど低い撮像感度で飽和して白トビを起こしやすくなる。よって、図5において、ISO感度がC未満となる範囲では減算画像信号の値がなく、かかる範囲(A~B)での減算読み出しモードの選択が不能化されている。また、ISO感度がD未満となる範囲では第2画像信号の値がなく、かかる範囲(A~C)での第2読み出しモードの選択が不能化されている。さらに、図5において、ISO感度がE未満となる範囲では加算画像信号の値がなく、かかる範囲(A~D)での加算読み出しモードの選択が不能化されている。 In addition, since the charge accumulation time at the time of photographing becomes longer when the value of the imaging sensitivity is lowered, the light receiving element of the imaging unit 13 becomes saturated with a lower imaging sensitivity as the sensitivity becomes higher, and white spots are likely to occur. Therefore, in FIG. 5, there is no value of the subtraction image signal in the range where the ISO sensitivity is less than C, and the selection of the subtraction readout mode in this range (A to B) is disabled. Further, there is no value of the second image signal in a range where the ISO sensitivity is less than D, and selection of the second readout mode in the range (A to C) is disabled. Further, in FIG. 5, there is no value of the added image signal in the range where the ISO sensitivity is less than E, and the selection of the addition reading mode in the range (A to D) is disabled.
 撮影モードでのCPU19は、図5のデータテーブルを参照し、ISO感度が最も低いときは撮像部13および信号処理部14の動作モードとして第1読み出しモードを選択する。そして、CPU19は、ISO感度の増加に応じて、上記の動作モードを、減算読み出しモード、第2読み出しモード、加算読み出しモードの順で段階的に変更する。 The CPU 19 in the shooting mode refers to the data table of FIG. 5 and selects the first readout mode as the operation mode of the imaging unit 13 and the signal processing unit 14 when the ISO sensitivity is the lowest. Then, the CPU 19 changes the operation mode stepwise in the order of the subtraction readout mode, the second readout mode, and the addition readout mode in accordance with the increase in ISO sensitivity.
 すなわち、撮像感度の値がA~Bである場合、データテーブルにおいて第1画像信号のみが出力信号として選択可能である。このとき、CPU19は、撮像部13および信号処理部14の動作モードとして、第1画像信号に対応する第1読み出しモードを選択する。 That is, when the value of the imaging sensitivity is A to B, only the first image signal can be selected as the output signal in the data table. At this time, the CPU 19 selects the first readout mode corresponding to the first image signal as the operation mode of the imaging unit 13 and the signal processing unit 14.
 撮像感度の値がCである場合、データテーブルにおいて第1画像信号、減算画像信号が出力信号として選択可能である。このとき、CPU19は、撮像部13および信号処理部14の動作モードとして、2種類の画像信号のうちからSN比が最も高い減算画像信号に対応する減算読み出しモードを選択する。 When the value of the imaging sensitivity is C, the first image signal and the subtracted image signal can be selected as output signals in the data table. At this time, the CPU 19 selects the subtraction readout mode corresponding to the subtraction image signal having the highest SN ratio from the two types of image signals as the operation mode of the imaging unit 13 and the signal processing unit 14.
 なお、減算読み出しモードでは第1画像信号と第2画像信号の両方が必要となる。上記の例では、ISO感度がCの場合に第2読み出しモードの選択は不能化されているが、第2画像信号に飽和が生じる場合に推定部14cの推定値を用いることで、ISO感度がCの場合にも減算画像信号を出力することは可能である。 In the subtraction readout mode, both the first image signal and the second image signal are required. In the above example, when the ISO sensitivity is C, the selection of the second readout mode is disabled. However, when the second image signal is saturated, the estimated value of the estimation unit 14c is used to reduce the ISO sensitivity. Even in the case of C, it is possible to output a subtraction image signal.
 撮像感度の値がDである場合、データテーブルにおいて第1画像信号、減算画像信号および第2画像信号が出力信号として選択可能である。このとき、CPU19は、撮像部13および信号処理部14の動作モードとして、3種類の画像信号のうちからSN比が最も高い第2画像信号に対応する第2読み出しモードを選択する。 When the value of the imaging sensitivity is D, the first image signal, the subtraction image signal, and the second image signal can be selected as output signals in the data table. At this time, the CPU 19 selects the second readout mode corresponding to the second image signal having the highest SN ratio from among the three types of image signals as the operation modes of the imaging unit 13 and the signal processing unit 14.
 撮像感度の値がE以上である場合、データテーブルにおいて第1画像信号、減算画像信号、第2画像信号、加算画像信号が出力信号として選択可能である。このとき、CPU19は、撮像部13および信号処理部14の動作モードとして、4種類の画像信号のうちからSN比が最も高い加算画像信号に対応する加算読み出しモードを選択する。 When the value of the imaging sensitivity is E or more, the first image signal, the subtraction image signal, the second image signal, and the addition image signal can be selected as output signals in the data table. At this time, the CPU 19 selects an addition readout mode corresponding to the addition image signal having the highest SN ratio from the four types of image signals as the operation modes of the imaging unit 13 and the signal processing unit 14.
 以下、一実施形態の電子カメラの作用効果を述べる。一実施形態の電子カメラ11によれば、相対的に低感度の第1受光素子PD1を用いて撮影を行うことで、低い撮像感度でも画像を取得できる。また、一実施形態の電子カメラ11は、撮像感度の設定に応じて、相対的に高感度の第2受光素子PD2を用いて撮影を行うこともできる。そして、一実施形態の電子カメラ11は、第1画像信号、第2画像信号、加算画像信号および減算画像信号のうち、現在の撮像感度でSN比が最も高くなる画像信号を選択することで、広い撮像感度の範囲においてそれぞれSN比の良好な画像を取得できる。 Hereinafter, the operational effects of the electronic camera of one embodiment will be described. According to the electronic camera 11 of one embodiment, an image can be acquired with low imaging sensitivity by performing imaging using the relatively light-sensitive first light receiving element PD1. In addition, the electronic camera 11 according to an embodiment can perform imaging using the relatively high-sensitivity second light receiving element PD2 according to the setting of the imaging sensitivity. Then, the electronic camera 11 according to the embodiment selects an image signal having the highest SN ratio with the current imaging sensitivity among the first image signal, the second image signal, the added image signal, and the subtracted image signal, Images with good S / N ratios can be acquired in a wide range of imaging sensitivity.
 また、一の実施形態の電子カメラでは、4種類の画像信号から出力画像信号を選択するので、第1画像信号、第2画像信号だけを選択的に用いる場合と比べて、画像信号を切り替えたときのSN比の変化幅は小さくなる。そのため、撮像感度の変化とSN比の変化との不連続性が緩和されるので、ユーザの違和感を少なくすることができる。 In the electronic camera of one embodiment, since the output image signal is selected from four types of image signals, the image signal is switched compared to the case where only the first image signal and the second image signal are selectively used. The change width of the SN ratio becomes small. Therefore, the discontinuity between the change in the imaging sensitivity and the change in the SN ratio is alleviated, so that the user's uncomfortable feeling can be reduced.
 <実施形態の変形例>
 (1)上記の一実施形態では、第1受光素子PD1と第2受光素子PD2との受光面積の差によって感度差を生じさせたが、本発明の第1受光素子および第2受光素子は上記構成に限定されるものではない。
<Modification of Embodiment>
(1) In the above embodiment, the difference in sensitivity is caused by the difference in the light receiving area between the first light receiving element PD1 and the second light receiving element PD2. However, the first light receiving element and the second light receiving element of the present invention are the above-described ones. The configuration is not limited.
 例えば、第1受光素子と第2受光素子の上にそれぞれ集光率の異なるマイクロレンズを配置して、2つの受光素子間で感度差を生じさせてもよい。この場合には、一実施形態と同様の効果を奏するとともに、第1受光素子と第2受光素子とを同じ半導体プロセスで製造することも可能となる。 For example, microlenses having different light collection rates may be arranged on the first light receiving element and the second light receiving element, respectively, to cause a difference in sensitivity between the two light receiving elements. In this case, the same effect as that of the embodiment can be obtained, and the first light receiving element and the second light receiving element can be manufactured by the same semiconductor process.
 また、第1受光素子と第2受光素子の上にそれぞれ光の透過率の異なる同色のカラーフィルタを配置して、2つの受光素子間で感度差を生じさせてもよい。この場合も、一実施形態と同様の効果を奏するとともに、第1受光素子と第2受光素子とを同じ半導体プロセスで製造することも可能となる。 Alternatively, the same color filters having different light transmittances may be arranged on the first light receiving element and the second light receiving element, respectively, to cause a difference in sensitivity between the two light receiving elements. In this case, the same effect as that of the embodiment can be obtained, and the first light receiving element and the second light receiving element can be manufactured by the same semiconductor process.
 さらに、1画素に光電変換の効率が異なる2つの受光素子を配置して、第1受光素子および第2受光素子としてもよい。この場合も、一実施形態と同様の効果を奏することができる。 Furthermore, two light receiving elements having different photoelectric conversion efficiencies may be arranged in one pixel to serve as the first light receiving element and the second light receiving element. In this case, the same effect as that of the embodiment can be obtained.
 なお、本発明の第1受光素子および第2受光素子の構成は、上記の一実施形態および一実施形態の変形例で開示した技術の2以上の組み合わせによって実現されても勿論かまわない。 It should be noted that the configurations of the first light receiving element and the second light receiving element of the present invention may be realized by a combination of two or more of the techniques disclosed in the above-described one embodiment and the modified example of the one embodiment.
 (2)上記実施形態において、第1受光素子PD1と第2受光素子PD2との感度差が小さい場合、制御部は、撮像感度が最も低いときは減算画像信号を出力信号に選択し、撮像感度の増加に応じて、第1画像信号、第2画像信号、加算画像信号の順で出力信号を段階的に変更してもよい。 (2) In the above embodiment, when the sensitivity difference between the first light receiving element PD1 and the second light receiving element PD2 is small, the control unit selects the subtracted image signal as the output signal when the imaging sensitivity is the lowest, and the imaging sensitivity The output signal may be changed stepwise in the order of the first image signal, the second image signal, and the added image signal.
 (3)上記実施形態において、固体撮像素子14の内部で減算画像信号を生成するようにしてもよい。例えば、撮像素子のCDS回路を用いて第1画像信号と第2画像信号の減算を行うようにしてもよい。 (3) In the above embodiment, the subtraction image signal may be generated inside the solid-state imaging device 14. For example, the first image signal and the second image signal may be subtracted using a CDS circuit of the image sensor.
 (4)上記実施形態では撮像装置が電子カメラである例を説明したが、本発明の撮像装置は、撮像部、加算部、減算部、感度変更部、制御部および推定部を1つに集積した固体撮像素子であってもよい。 (4) In the above embodiment, the example in which the imaging device is an electronic camera has been described. However, the imaging device of the present invention integrates an imaging unit, an addition unit, a subtraction unit, a sensitivity change unit, a control unit, and an estimation unit. The solid-state imaging device may be used.
 (5)上記実施形態において、推定部14cは、SN比が前記第1画像信号よりも大きく、第2画像信号よりも低い画像信号(推定値)を以下のようにして求めてもよい。例えば、推定部14cは、第2画像信号と第1画像信号との差分値を算出し、算出した差分値に所定の係数をかける。そして、推定部14cは、差分値に所定の係数をかけた値を第1画像信号に加算して推定値を求めてもよい。 (5) In the above embodiment, the estimation unit 14c may obtain an image signal (estimated value) having an SN ratio larger than that of the first image signal and lower than that of the second image signal as follows. For example, the estimation unit 14c calculates a difference value between the second image signal and the first image signal, and multiplies the calculated difference value by a predetermined coefficient. Then, the estimation unit 14c may obtain an estimated value by adding a value obtained by multiplying the difference value by a predetermined coefficient to the first image signal.
 以上の詳細な説明により、実施形態の特徴点および利点は明らかになるであろう。これは、特許請求の範囲が、その精神および権利範囲を逸脱しない範囲で前述のような実施形態の特徴点および利点にまで及ぶことを意図する。また、当該技術分野において通常の知識を有する者であれば、あらゆる改良および変更に容易に想到できるはずであり、発明性を有する実施形態の範囲を前述したものに限定する意図はなく、実施形態に開示された範囲に含まれる適当な改良物および均等物によることも可能である。 From the above detailed description, the features and advantages of the embodiment will become apparent. It is intended that the scope of the claims extend to the features and advantages of the embodiments as described above without departing from the spirit and scope of the right. Further, any person having ordinary knowledge in the technical field should be able to easily come up with any improvements and modifications, and there is no intention to limit the scope of the embodiments having the invention to those described above. It is also possible to use appropriate improvements and equivalents within the scope disclosed in.
11…電子カメラ、13…撮像部、13a…垂直走査部、13b…水平走査部、14…信号処理部、14a…AFE、14b…減算部、14c…推定部、17…第2メモリ、19…CPU、PD1…第1受光素子、PD2…第2受光素子、TX1…転送トランジスタ、TX2…転送トランジスタ、FD…フローティングディフュージョン、RES…リセットトランジスタ、AMP…増幅トランジスタ、SEL…選択トランジスタ DESCRIPTION OF SYMBOLS 11 ... Electronic camera, 13 ... Imaging part, 13a ... Vertical scanning part, 13b ... Horizontal scanning part, 14 ... Signal processing part, 14a ... AFE, 14b ... Subtraction part, 14c ... Estimation part, 17 ... 2nd memory, 19 ... CPU, PD1 ... first light receiving element, PD2 ... second light receiving element, TX1 ... transfer transistor, TX2 ... transfer transistor, FD ... floating diffusion, RES ... reset transistor, AMP ... amplification transistor, SEL ... selection transistor

Claims (5)

  1.  第1画像信号を生成する第1受光素子と、前記第1画像信号よりも高感度の第2画像信号を生成する第2受光素子とを含む撮像部と、
     前記第2画像信号と前記第1画像信号とに基づいて、SN比が前記第1画像信号よりも大きく前記第2画像信号よりも低い第3画像信号を生成する生成部と、
     前記第1画像信号、前記第2画像信号および前記第3画像信号のうち、設定された撮像感度でSN比が最も高くなる画像信号を画素からの出力信号として選択する制御部と、
     を備える撮像装置。
    An imaging unit including a first light receiving element that generates a first image signal and a second light receiving element that generates a second image signal with higher sensitivity than the first image signal;
    Based on the second image signal and the first image signal, a generation unit that generates a third image signal having an SN ratio that is larger than the first image signal and lower than the second image signal;
    A control unit that selects, as an output signal from a pixel, an image signal having the highest S / N ratio at a set imaging sensitivity among the first image signal, the second image signal, and the third image signal;
    An imaging apparatus comprising:
  2.  請求項1に記載の撮像装置において、
     前記制御部は、前記撮像感度が最も低いときは前記第1画像信号を前記出力信号に選択し、前記撮像感度の増加に応じて、前記第3画像信号、前記第2画像信号の順で前記出力信号を段階的に変更する撮像装置。
    The imaging device according to claim 1,
    The control unit selects the first image signal as the output signal when the imaging sensitivity is the lowest, and the third image signal and the second image signal in this order in accordance with an increase in the imaging sensitivity. An imaging device that changes output signals in stages.
  3.  請求項1または請求項2に記載の撮像装置において、
     前記第2画像信号が飽和レベルのときに、前記第3画像信号の推定値を前記出力信号として出力する推定部をさらに備える撮像装置。
    In the imaging device according to claim 1 or 2,
    An imaging apparatus further comprising: an estimation unit that outputs an estimated value of the third image signal as the output signal when the second image signal is at a saturation level.
  4.  請求項3に記載の撮像装置において、
     前記推定部は、前記第1画像信号にゲインを乗じて前記推定値を求める撮像装置。
    The imaging device according to claim 3.
    The estimation apparatus is an imaging apparatus that obtains the estimated value by multiplying the first image signal by a gain.
  5.  請求項3に記載の撮像装置において、
     前記推定部は、前記第1画像信号および前記第2画像信号との感度比と、前記第1画像信号の値とから前記第2画像信号の値を推定し、推定された第2画像信号の値から前記第1画像信号の値を減算して前記推定値を求める撮像装置。
    The imaging device according to claim 3.
    The estimation unit estimates a value of the second image signal from a sensitivity ratio between the first image signal and the second image signal and a value of the first image signal, and the estimated second image signal An imaging apparatus that obtains the estimated value by subtracting the value of the first image signal from the value.
PCT/JP2013/001795 2012-03-15 2013-03-15 Image capture device WO2013136817A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012059190 2012-03-15
JP2012-059190 2012-03-15

Publications (1)

Publication Number Publication Date
WO2013136817A1 true WO2013136817A1 (en) 2013-09-19

Family

ID=49160739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001795 WO2013136817A1 (en) 2012-03-15 2013-03-15 Image capture device

Country Status (1)

Country Link
WO (1) WO2013136817A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017147034A1 (en) 2016-02-23 2017-08-31 BAE Systems Imaging Solutions Inc. Improved ultra-high dynamic range pixel architecture

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004222184A (en) * 2003-01-17 2004-08-05 Fuji Photo Film Co Ltd Digital camera
JP2004312374A (en) * 2003-04-07 2004-11-04 Fuji Photo Film Co Ltd Image pickup method
JP2005286819A (en) * 2004-03-30 2005-10-13 Casio Comput Co Ltd Imaging apparatus and program
JP2010283573A (en) * 2009-06-04 2010-12-16 Nikon Corp Electronic camera

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004222184A (en) * 2003-01-17 2004-08-05 Fuji Photo Film Co Ltd Digital camera
JP2004312374A (en) * 2003-04-07 2004-11-04 Fuji Photo Film Co Ltd Image pickup method
JP2005286819A (en) * 2004-03-30 2005-10-13 Casio Comput Co Ltd Imaging apparatus and program
JP2010283573A (en) * 2009-06-04 2010-12-16 Nikon Corp Electronic camera

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017147034A1 (en) 2016-02-23 2017-08-31 BAE Systems Imaging Solutions Inc. Improved ultra-high dynamic range pixel architecture
CN109075180A (en) * 2016-02-23 2018-12-21 Bae系统成像解决方案有限公司 Improved extreme dynamic range pixel structure
EP3420592A4 (en) * 2016-02-23 2019-07-31 BAE Systems Imaging Solutions Inc. Improved ultra-high dynamic range pixel architecture
CN109075180B (en) * 2016-02-23 2023-06-27 Bae系统成像解决方案有限公司 Ultra-high dynamic range dual photodiode pixel architecture

Similar Documents

Publication Publication Date Title
JP5040960B2 (en) Electronic camera
JP6952256B2 (en) Imaging device
US8068153B2 (en) Producing full-color image using CFA image
JP4691930B2 (en) PHYSICAL INFORMATION ACQUISITION METHOD, PHYSICAL INFORMATION ACQUISITION DEVICE, PHYSICAL QUANTITY DISTRIBUTION SENSING SEMICONDUCTOR DEVICE, PROGRAM, AND IMAGING MODULE
JP4821921B2 (en) Solid-state imaging device and electronic apparatus
US20080106625A1 (en) Multi image storage on sensor
US8890986B2 (en) Method and apparatus for capturing high dynamic range images using multi-frame interlaced exposure images
WO2010114594A1 (en) Exposing pixel groups in producing digital images
JP2008078922A (en) Solid-state imaging device
JP2004222154A (en) Image pickup device
JP2014154982A (en) Image pickup device and control method therefor
JP6166562B2 (en) IMAGING ELEMENT, ITS DRIVING METHOD, AND IMAGING DEVICE
JP6070301B2 (en) Solid-state imaging device and imaging apparatus using the same
JP2011055351A (en) Photographing device and control method thereof
JP2019161577A (en) Imaging device, pixel correction processing circuit, and pixel correction processing method
JP5966357B2 (en) Imaging device and imaging apparatus
WO2016175036A1 (en) Solid-state imaging element and drive method for same, and electronic device
KR102117858B1 (en) Solid-state image pickup element and image pickup apparatus
JP2014232988A (en) Imaging apparatus
WO2013136817A1 (en) Image capture device
JP2020115604A (en) Imaging apparatus and control method of the same
JP6733159B2 (en) Imaging device and imaging device
JP7313829B2 (en) Imaging element and imaging device
JP2012094983A (en) Imaging apparatus and electronic camera
JP2013197609A (en) Imaging apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13761011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13761011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP