WO2013136716A1 - Optical phase difference/optical carrier wave frequency difference compensation device and optical phase difference/optical carrier wave frequency difference compensation method - Google Patents

Optical phase difference/optical carrier wave frequency difference compensation device and optical phase difference/optical carrier wave frequency difference compensation method Download PDF

Info

Publication number
WO2013136716A1
WO2013136716A1 PCT/JP2013/001362 JP2013001362W WO2013136716A1 WO 2013136716 A1 WO2013136716 A1 WO 2013136716A1 JP 2013001362 W JP2013001362 W JP 2013001362W WO 2013136716 A1 WO2013136716 A1 WO 2013136716A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
deviation
subcarrier
compensation
carrier frequency
Prior art date
Application number
PCT/JP2013/001362
Other languages
French (fr)
Japanese (ja)
Inventor
慎介 藤澤
大作 小笠原
清 福知
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2013136716A1 publication Critical patent/WO2013136716A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2096Arrangements for directly or externally modulating an optical carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2697Multicarrier modulation systems in combination with other modulation techniques

Definitions

  • the present invention relates to an optical phase deviation / optical carrier frequency deviation compensation device and an optical phase deviation / optical carrier frequency deviation compensation method, and more particularly to an optical phase deviation / optical carrier frequency used in a division multiplexing optical communication system in which optical subcarriers are multiplexed.
  • the present invention relates to a deviation compensator and an optical phase deviation / optical carrier frequency deviation compensation method.
  • the optical phase modulation method does not perform data modulation only on the light intensity of continuous wave (Continuous Wave: CW) light on the transmission side like the light intensity modulation method conventionally used, but on the transmission side CW light.
  • This is a method for performing data modulation on the optical phase of the optical signal.
  • BPSK Binary Phase Shift Keying
  • QPSK phase shift keying: Quadrature Phase Shift Keying
  • 8PSK 8 phase shift keying: 8-Phase Shifting
  • QAM Quadrature Amplitude Modulation
  • the symbol rate can be reduced by assigning a plurality of bits to one symbol.
  • the symbol rate has the same meaning as the baud rate, and is a value obtained by dividing the transmission bit rate by the number of bits of the modulation code.
  • the optical phase modulation method is effective for increasing the number of multiplexing because the dedicated band per wave in the optical fiber can be suppressed when transmitting signal light of the same bit rate.
  • the QPSK method When the QPSK method is used, 2 bits (for example, “00”, “01”, “11”, “10” for four types of optical phases (for example, 45 degrees, 135 degrees, 225 degrees, and 315 degrees), respectively. )). At this time, since 2 bits can be allocated to one type of optical phase, the symbol rate in the QPSK method is reduced to 1 ⁇ 2 of the symbol rate (that is, the bit rate) of the binary modulation method in the light intensity modulation method. Is possible.
  • FIG. 11 is a diagram showing four symbols of the QPSK system and a bit string assigned thereto on the phase plane, which is called a QPSK constellation. Also, associating a bit string with each symbol in the optical phase modulation method is called symbol mapping.
  • QPSK method is used as the optical phase modulation method
  • the present invention can also be applied to other optical phase modulation methods.
  • An optical coherent method is used to receive optical phase-modulated signal light. That is, CW light (referred to as local light or local light) having substantially the same optical frequency as signal light and signal light are mixed by an optical element called 90-degree hybrid, and the output is received by a photodetector.
  • CW light referred to as local light or local light
  • 90-degree hybrid optical element
  • the polarization states of the signal light and the local light are the same linearly polarized light.
  • the AC component of the electrical signal output from the photodetector becomes a beat signal by mixing signal light and local light.
  • the amplitude of the beat signal is proportional to the light intensity of the signal light and the local light
  • the phase is the difference between the optical phase of the signal light and the local light if the carrier frequency of the signal light and the optical frequency of the local light are the same.
  • the optical phase does not shift in synchronization, and the phase of the beat signal does not change if the optical phase of the first received symbol is determined. Therefore, it is possible to demodulate transmission data by converting the phase of the beat signal into a bit string using symbol mapping. That is, when the first received symbol is one of the constellations shown in FIG. 11, the subsequent received symbols have the constellation shown in FIG.
  • the optical phase of the local light on the reception side and the optical phase of the CW light input to the optical modulator on the transmission side do not match due to the phase noise of the CW light source.
  • the optical phase difference between the CW light and the local light input to the optical modulator on the transmission side is called an optical phase deviation
  • the difference between the carrier frequency of the signal light and the optical frequency of the local light is called an optical carrier frequency deviation.
  • FIG. 12A and 12B show constellations in the case where there is an optical phase deviation and an optical carrier frequency deviation.
  • FIG. 12A when there is an optical phase deviation, a signal having a constellation rotated by the optical phase deviation with respect to the constellation shown in FIG. 11 is received. Since the value of the optical phase deviation cannot be known in advance, if the symbol mapping shown in FIG. 11 is used as it is and the symbol is converted into a bit string, there arises a problem that erroneous data is demodulated.
  • the phase of the beat signal described above is a value obtained by adding the optical phase deviation to the product of the optical carrier frequency deviation and the reception time. Therefore, as shown in FIG. 12B, a signal having a constellation in which the constellation shown in FIG. 11 rotates in time is received. At this time, since the phase of the beat signal changes with time, it is impossible to demodulate data from the phase of the beat signal using the symbol mapping shown in FIG. Therefore, in the optical phase modulation method, an optical phase deviation / optical carrier frequency deviation compensation function is required in order to prevent a received signal error accompanying rotation of the constellation due to the optical phase deviation and the optical carrier frequency deviation (for example, patents) Reference 1).
  • FIG. 13 shows a configuration of a related optical carrier frequency deviation compensation unit 100 of the feedforward type.
  • the input signal of the related optical carrier frequency deviation compensation unit 100 is branched into two, one of which is input to the optical carrier frequency deviation compensation amount estimation unit 110 and the other is input to the compensation execution unit 120.
  • the optical carrier frequency deviation compensation amount estimation unit 110 includes an optical carrier frequency error detection unit 111, a filter unit 112, and a phase compensation amount calculation unit 113.
  • the optical carrier frequency error detector 111 detects a change in optical phase deviation per unit time, that is, a change in optical phase deviation between two temporally adjacent symbols (modulated signals).
  • an M-multiplication algorithm M-th Power Algorithm
  • the change in the optical phase deviation between two adjacent symbols is equal to the product of the optical carrier angular frequency deviation and one symbol time (one symbol time is equal to the reciprocal of the symbol rate).
  • one symbol time is constant, it can be said that the optical carrier frequency error detector 111 is a circuit for calculating the optical carrier frequency deviation.
  • the output of the optical carrier frequency error detection unit 111 is sent to the filter unit 112, where the noise component is removed.
  • the output of the filter unit 112 is sent to the phase compensation amount calculation unit 113 to calculate the actual phase compensation amount, that is, the rotation amount of the constellation.
  • the phase compensation amount calculation unit 113 is equivalent to an integration circuit.
  • the compensation execution unit 120 is a complex number (represented by exp ( ⁇ j ⁇ ) where ⁇ is the phase compensation amount) that gives the reverse rotation by the phase compensation amount calculated by the optical carrier frequency deviation compensation amount estimation unit 110 and the input signal. Is calculated and output as a compensated signal.
  • FIG. 14 shows a configuration of a related optical phase deviation compensation unit 150 of the feedforward type.
  • the input signal of the related optical phase deviation compensation unit 150 is branched into two, one is input to the optical phase deviation compensation amount estimation unit 160 and the other is input to the compensation execution unit 170.
  • the optical phase deviation compensation amount estimation unit 160 includes a phase error detection unit 161 and a filter unit 162.
  • the phase error detector 161 is a circuit that detects the optical phase deviation of the input signal, and the above-mentioned M-multiplication algorithm is widely used.
  • the output signal of the phase error detection unit 161 is sent to the filter unit 162, where the noise component is removed.
  • the compensation execution unit 170 calculates a product of a complex number that gives reverse rotation by the amount of phase compensation based on the output signal of the filter unit 162 and the input signal, and outputs the product as a compensated signal.
  • the optical phase deviation / optical carrier frequency deviation compensation unit shown in FIGS. 13 and 14 is used to generate the rotation of the constellation. By preventing errors in received data, the transmitted data is correctly demodulated.
  • the multi-carrier transmission method which is another technique for realizing an ultra-high speed and large capacity optical communication system, will be described.
  • transmission capacity can be increased by transmitting transmission data using a plurality of optical carriers (carriers) (see, for example, Patent Document 2).
  • a wavelength division multiplexing (WDM) is widely used.
  • WDM wavelength division multiplexing
  • a plurality of optical carriers whose frequency intervals between adjacent optical carriers are ⁇ f are modulated with independent transmission data, and then combined to generate a transmission signal.
  • FIG. 15A shows a frequency spectrum of an optical signal by the WDM system.
  • the value ⁇ f is set to a value larger than one optical signal exclusive band.
  • one optical signal dedicated band can be narrowed, and as a result, the value of ⁇ f can be made smaller than twice the baud rate.
  • an optical OFDM transmission system in which an orthogonal frequency division multiplexing (OFDM) system used in wireless communication is applied to optical communication has attracted attention.
  • OFDM orthogonal frequency division multiplexing
  • a method of generating a transmission signal (optical OFDM signal) in an optical OFDM transmission system a method of generating a transmission side CW light by using an OFDM electrical signal generated by digital signal processing on the transmission side as a modulation signal is known. Yes.
  • an optical OFDM signal can be generated by combining a plurality of optical carriers whose frequency intervals between adjacent optical carriers are the same as the baud rate of the modulated signal after modulation with independent transmission signals.
  • optical OFDM method only desired optical subcarriers are separated without being affected by crosstalk from adjacent optical subcarriers (optical subcarriers) by using digital signal processing utilizing orthogonal relationships. It is possible. This is because even if the frequency spectra between adjacent optical subcarriers are partially overlapped, the frequency interval ⁇ f between adjacent optical subcarriers is the same as the baud rate value of each optical subcarrier. This is because orthogonality is established between the carriers.
  • FIG. 15B shows the frequency spectrum of the optical OFDM signal.
  • the frequency interval ⁇ f between adjacent optical subcarriers can be reduced to the signal baud rate. Therefore, according to the optical OFDM method, the bit rate (frequency utilization efficiency) per unit frequency can be improved as compared with the wavelength division multiplexing method described above.
  • JP 2009-135930 A (paragraphs “0023” to “0025”) International Publication No. 2009/104758 (paragraphs “0036” to “0067”)
  • the optical OFDM signal is composed of two optical subcarrier signals (first optical subcarrier signal and second optical subcarrier signal) having the frequency spectrum shown in FIG. 15C.
  • FIG. 16 shows the configuration of a related optical phase deviation / optical carrier frequency deviation compensator 9000 used for this purpose.
  • the related optical phase deviation / optical carrier frequency deviation compensator 9000 is of a feed-forward type, and separates optical subcarriers obtained by orthogonal frequency division multiplexing into independent optical signals (optical subcarrier separation processing), and optical carrier frequency. A process for compensating for the deviation and the optical phase deviation is performed.
  • the signal data input to the optical receiver is input to the optical subcarrier separation circuit 9010 and separated into signal data corresponding to two independent optical signals.
  • FFT fast Fourier transform
  • the optical carrier frequency deviation is generally not zero. Therefore, the signal data after separation is compensated for the rotation of the constellation due to the optical carrier frequency deviation in the optical carrier frequency deviation compensators 9100 and 9200, respectively. Further, the optical phase deviation is compensated in the optical phase deviation compensation units 9130 and 9230 for the signal data in which the optical carrier frequency deviation is compensated, respectively.
  • both the optical phase modulation method and the multicarrier transmission method are applied, and the reception side separates the optical subcarriers. Then, by compensating the optical carrier frequency deviation and the optical phase deviation for each of the two or more independent optical signals that have been separated, it is possible to realize an ultrahigh-speed optical communication system of 100 Gbps or more.
  • the number of optical phase deviation units and optical carrier frequency deviation compensation units needs to be provided as many as the number of optical subcarriers, which complicates the configuration of the device. Power consumption will increase.
  • the configuration of the apparatus becomes complicated and the power consumption increases.
  • An object of the present invention is to solve the above-mentioned problem, that is, in a multicarrier optical communication system to which both the optical phase modulation method and the multicarrier transmission method are applied, the configuration of the apparatus becomes complicated and the power consumption increases.
  • the optical phase deviation / optical carrier frequency deviation compensating apparatus of the present invention modulates and multiplexes a plurality of optical subcarriers having different frequencies including at least the first optical subcarrier and the second optical subcarrier, respectively.
  • a demultiplexing unit that receives a frequency division multiplexed signal obtained by coherent detection by mixing with local light and outputs at least a first subcarrier signal and a second subcarrier signal; and a first subcarrier signal
  • An optical subcarrier frequency interval compensation unit connected to the deviation compensation unit, and the first optical carrier frequency deviation compensation unit is a change amount of an optical phase deviation between adjacent modulation signals in the first subcarrier signal.
  • An optical phase deviation detecting unit for detecting a certain optical phase change amount, and a first compensating unit for compensating for an optical carrier frequency deviation in the first subcarrier signal using first optical phase deviation information based on the optical phase change amount
  • the optical subcarrier frequency interval compensation unit calculates a frequency interval compensation amount for compensating an optical subcarrier frequency interval that is a frequency difference between the first optical subcarrier and the second optical subcarrier
  • the carrier frequency deviation compensator compensates for the optical carrier frequency deviation in the second subcarrier signal using the second optical phase deviation information calculated from the frequency interval compensation amount and the first optical phase deviation information.
  • the compensation part is provided.
  • the optical phase deviation / optical carrier frequency deviation compensation method of the present invention is a frequency division multiplexed signal light obtained by modulating and multiplexing a plurality of optical subcarriers having different frequencies including at least the first optical subcarrier and the second optical subcarrier.
  • a frequency division multiplexed signal obtained by coherent detection output at least a first subcarrier signal and a second subcarrier signal, and are adjacent to each other in the first subcarrier signal
  • An optical phase change amount which is a change amount of the optical phase deviation between the modulation signals is detected, and the optical carrier frequency deviation in the first subcarrier signal is compensated using the first optical phase deviation information based on the optical phase change amount.
  • the optical phase deviation / optical carrier frequency deviation compensation device of the present invention even when used in a multicarrier optical communication system to which both the optical phase modulation method and the multicarrier transmission method are applied, the configuration of the device is complicated and High-speed compensation processing can be performed without causing an increase in power consumption.
  • FIG. 1 is a block diagram showing a configuration of an optical phase deviation / optical carrier frequency deviation compensating apparatus according to a first embodiment of the present invention. It is a block diagram which shows another structure of the optical phase deviation and optical carrier frequency deviation compensation apparatus which concerns on the 1st Embodiment of this invention. It is a block diagram which shows the structure of the optical phase deviation and optical carrier frequency deviation compensation apparatus which concerns on the 2nd Embodiment of this invention. It is a block diagram which shows the structure of the optical phase deviation and optical carrier frequency deviation compensation apparatus which concerns on the 3rd Embodiment of this invention. It is a block diagram which shows the structure of the optical phase deviation and optical carrier frequency deviation compensation apparatus which concerns on the 4th Embodiment of this invention.
  • FIG. 1 is a block diagram showing a configuration of an optical phase deviation / optical carrier frequency deviation compensating apparatus 1000 according to the first embodiment of the present invention.
  • the optical phase deviation / optical carrier frequency deviation compensation apparatus 1000 includes a separation unit 1010, a first optical carrier frequency deviation compensation unit 1100, a second optical carrier frequency deviation compensation unit 1200, and an optical subcarrier frequency interval compensation unit 1300. .
  • Separating section 1010 performs coherent detection by mixing frequency division multiplexed signal light, which is obtained by modulating and multiplexing a plurality of optical subcarriers having different frequencies including at least a first optical subcarrier and a second optical subcarrier, with local light.
  • the frequency division multiplexed signal obtained by doing so is received.
  • the frequency division multiplexed signal is output after being separated into at least a first subcarrier signal and a second subcarrier signal.
  • the first optical carrier frequency deviation compensating unit 1100 receives the first subcarrier signal.
  • the first optical carrier frequency deviation compensation unit includes an optical phase deviation detection unit 1110 and a first compensation unit 1120.
  • the optical phase deviation detector 1110 detects an optical phase change amount that is a change amount of an optical phase deviation between adjacent modulation signals in the first subcarrier signal.
  • the first compensation unit 1120 compensates for the optical carrier frequency deviation in the first subcarrier signal using the first optical phase deviation information based on the optical phase change amount.
  • the optical subcarrier frequency interval compensation unit 1300 is connected to the first optical carrier frequency deviation compensation unit 1100 and the second optical carrier frequency deviation compensation unit 1200.
  • the optical subcarrier frequency interval compensation unit 1300 compensates for an optical subcarrier frequency interval that is a frequency difference between the first optical subcarrier and the second optical subcarrier.
  • the second optical carrier frequency deviation compensation unit 1200 includes a second compensation unit 1220 and inputs a second subcarrier signal.
  • the second compensation unit 1220 compensates the optical carrier frequency deviation in the second subcarrier signal using the second optical phase deviation information calculated from the frequency interval compensation amount and the first optical phase deviation information.
  • a first subcarrier signal which is one of frequency division multiplexed signals obtained from a plurality of optical subcarriers (also referred to as “optical subcarriers”).
  • optical subcarriers also referred to as “optical subcarriers”.
  • the optical phase deviation detector that detects the optical phase change amount can cope with one even when receiving a plurality of optical subcarriers (optical subcarriers).
  • the optical phase deviation / optical carrier frequency deviation compensation apparatus 1000 of the present embodiment even when used in a multicarrier optical communication system, the configuration of the apparatus is not complicated and the power consumption is not increased. High-speed compensation processing can be performed.
  • the optical phase deviation / optical carrier frequency deviation compensation apparatus 1000 includes a first optical phase deviation compensation unit 1410 on the path of the first subcarrier signal and a path of the second subcarrier signal.
  • the second optical phase deviation compensation unit 1420 can be further provided.
  • the first optical phase deviation compensation unit 1410 calculates the optical phase deviation compensation amount estimation unit 1411 for calculating the optical phase deviation compensation amount, and calculates the optical phase deviation in the first subcarrier signal based on the optical phase deviation compensation amount.
  • a first phase compensation unit 1412 for compensation is provided.
  • the second optical phase deviation compensation unit 1420 includes a second phase compensation unit 1422. The second phase compensator 1422 is based on the value obtained by adding the optical phase deviation compensation amount to the phase deviation between the first optical subcarrier and the second optical subcarrier, and the optical signal in the second subcarrier signal. Compensate for phase deviation.
  • the optical phase deviation / optical carrier frequency deviation compensation apparatus 1000 uses all the optical phase deviation compensation amounts in one optical subcarrier (optical subcarrier) (2 in the case of FIG. 2). This is commonly used for optical phase deviation compensation in optical subcarriers. That is, the optical phase deviation compensation amount estimation unit 1411 is provided only in one of the plurality of optical phase deviation compensation units (the first optical phase deviation compensation unit 1410 in FIG. 2). Then, the second phase compensation unit 1422 compensates for the optical phase deviation in the second subcarrier signal based on the value obtained by adding the optical phase deviation compensation amount to the phase deviation between the two optical subcarriers.
  • the phase deviation compensation amount estimated by the optical phase deviation compensation amount estimation unit of one optical phase deviation compensation unit can be applied to the signal data of the other optical phase deviation compensation unit. Therefore, according to the present embodiment, it is possible to have a configuration including only one optical phase deviation compensation amount estimation unit.
  • second phase compensation section 1422 can compensate for the optical phase deviation in the second subcarrier signal based on a value obtained by further adding ⁇ .
  • FIG. 3 is a block diagram showing a configuration of an optical phase deviation / optical carrier frequency deviation compensating apparatus 2000 according to the second embodiment of the present invention.
  • the optical phase deviation / optical carrier frequency deviation compensation apparatus 2000 includes an optical subcarrier separation circuit 2010 as a separation unit, a first optical carrier frequency deviation compensation unit 2100, a second optical carrier frequency deviation compensation unit 2200, and an optical subcarrier.
  • An optical subcarrier frequency interval calculation unit 2300 is provided as a frequency interval compensation unit.
  • FIG. 3 shows a configuration in which the optical phase deviation compensation unit 150 is provided in the subsequent stage of the first optical carrier frequency deviation compensation unit 2100 and the second optical carrier frequency deviation compensation unit 2200. The configuration and operation have been described with reference to FIG.
  • the first optical carrier frequency deviation compensation unit 2100 includes a first optical carrier frequency deviation compensation amount estimation unit 2110 and a first compensation execution unit 2120.
  • the first optical carrier frequency deviation compensation amount estimation unit 2110 includes an optical carrier frequency error detection unit 2111, a filter unit 2112, and a first phase compensation amount calculation unit 2113.
  • the optical carrier frequency error detection unit 2111 and the filter unit 2112 constitute an optical phase deviation detection unit, and the amount of change in optical phase deviation between adjacent modulation signals in the first subcarrier signal (subcarrier 1 signal). A certain amount of optical phase change is detected.
  • the first phase compensation amount calculation unit 2113 calculates the first phase compensation amount by time-integrating the optical phase change amount as the first optical phase deviation information.
  • the first compensation execution unit 2120 as the first compensation unit compensates for the optical carrier frequency deviation in the first subcarrier signal using the first phase compensation amount.
  • the optical subcarrier frequency interval calculator 2300 as the optical subcarrier frequency interval compensator acquires the optical phase change amount as the first optical phase deviation information from the first optical carrier frequency deviation compensator 2100. Then, a value proportional to the product of the optical subcarrier frequency interval (optical subcarrier frequency interval ⁇ f) and the time interval (symbol time) between adjacent modulation signals is added to the optical phase change amount as a frequency interval compensation amount. Second optical phase deviation information is calculated. Thereafter, the second optical phase deviation information is sent to the second optical carrier frequency deviation compensator 2200.
  • the second optical carrier frequency deviation compensation unit 2200 includes a second optical carrier frequency deviation compensation amount estimation unit 2210 including a second phase compensation amount calculation unit 2213, and a second compensation execution unit 2220.
  • the second phase compensation amount calculation unit 2213 calculates the second phase compensation amount by time-integrating the second optical phase deviation information.
  • the second compensation execution unit 2220 as the second compensation unit compensates for the optical carrier frequency deviation in the second subcarrier signal (subcarrier 2 signal) using the second phase compensation amount.
  • optical subcarriers an optical OFDM signal composed of two optical subcarriers (hereinafter referred to as “optical subcarriers”) having the frequency spectrum shown in FIG. 15C is used as the frequency division multiplexed signal.
  • ⁇ f represents the frequency interval between adjacent optical subcarriers, and the value of ⁇ f is the same as the baud rate value of each subcarrier.
  • the input signal is separated into two subcarriers by processing such as FFT in an optical subcarrier separation circuit 2010.
  • One output signal of the optical subcarrier separation circuit 2010 is sent to the first optical carrier frequency deviation compensation unit 2100, and the other output signal is inputted to the second optical carrier frequency deviation compensation unit 2200.
  • the input signal of the first optical carrier frequency deviation compensation unit 2100 is branched into two, one is input to the first optical carrier frequency deviation compensation amount estimation unit 2110 and the other is input to the first compensation execution unit 2120.
  • the first optical carrier frequency deviation compensation amount estimation unit 2110 includes an optical carrier frequency error detection unit 2111, a filter unit 2112, and a first phase compensation amount calculation unit 2113.
  • the output signal of the filter unit 2112 is sent to the optical subcarrier frequency interval calculation unit 2300.
  • the input signal of the second optical carrier frequency deviation compensation unit 2200 is input to the second compensation execution unit 2220.
  • second optical carrier frequency deviation compensation amount estimation unit 2210 the output signal from optical subcarrier frequency interval calculation unit 2300 is input to second phase compensation amount calculation unit 2213.
  • the phase compensation amount calculated by the second phase compensation amount calculation unit 2213 is sent to the second compensation execution unit 2220, and the second compensation execution unit 2220 compensates for the optical carrier frequency deviation in the optical subcarrier 2 signal.
  • the optical phase deviation / optical carrier frequency deviation compensator 2000 has one of the first optical carrier frequency deviation compensation unit 2100 and the second optical carrier frequency deviation compensation unit 2200 (the first optical carrier in FIG. Only the carrier frequency deviation compensating unit 2100) includes an optical carrier frequency error detecting unit 2111 and a filter unit 2112.
  • the optical subcarrier frequency interval calculation unit 2300 then adds the value obtained by multiplying the optical subcarrier frequency interval ⁇ f by 2 ⁇ times the symbol time of the received optical signal to the output signal of the filter unit 2112, This is supplied to the phase compensation amount calculation unit 2213.
  • the optical subcarrier frequency interval of the optical OFDM signal is ⁇ f
  • the average optical carrier frequency f 0 of the optical OFDM signal hereinafter referred to as “subcarrier center optical frequency”
  • the optical frequency f LO of the local light is ⁇ f LO .
  • the optical carrier frequency deviation in subcarrier 1 is ⁇ f / 2 + ⁇ f LO
  • the optical carrier frequency deviation in subcarrier 2 is ⁇ f / 2 ⁇ f LO .
  • the optical frequency deviation ⁇ f LO in one type of subcarrier calculated in one optical carrier frequency deviation compensation amount estimation unit is used, and the light in all subcarriers is detected. It becomes possible to compensate for the frequency deviation.
  • independent signal data input to the first optical carrier frequency deviation compensation unit 2100 and the second optical carrier frequency deviation compensation unit 2200 are received at the same time.
  • a value obtained by multiplying the frequency deviation estimated by the optical carrier frequency deviation compensation amount estimation unit provided in one optical carrier frequency deviation compensation unit by the value of 2 ⁇ times the symbol time of the received optical signal by the optical subcarrier frequency interval is obtained.
  • the frequency deviation of the other optical subcarrier can be estimated.
  • the symbol time of the input signal of the optical phase deviation / optical carrier frequency deviation compensation device 2000 is generally the same value as the reciprocal of the baud rate of the optical signal, it is a predetermined value determined in advance.
  • the optical subcarrier frequency interval ⁇ f is equal to the symbol time of the received optical signal, so the added value in the optical subcarrier frequency interval calculation unit 2300 is always “2 ⁇ ”. Since the phase rotation corresponding to “2 ⁇ ” is “1”, in the case of an optical OFDM signal, the addition processing in the optical subcarrier frequency interval calculation unit 2300 can be omitted.
  • FIG. 4 is a block diagram showing a configuration of an optical phase deviation / optical carrier frequency deviation compensating apparatus 3000 according to the third embodiment of the present invention.
  • the optical phase deviation / optical carrier frequency deviation compensation device 3000 includes an optical subcarrier separation circuit 2010 as a separation unit, a first optical carrier frequency deviation compensation unit 3100, a second optical carrier frequency deviation compensation unit 3200, and an optical subcarrier.
  • An optical subcarrier frequency interval integration unit 3300 as a frequency interval compensation unit is provided.
  • the first optical carrier frequency deviation compensation unit 3100 includes an optical carrier frequency deviation compensation amount estimation unit 3110 including an optical phase deviation detection unit and a first phase compensation amount calculation unit, and a first compensation as a first compensation unit.
  • An execution unit 3120 is provided.
  • the optical carrier frequency deviation compensation amount estimation unit 3110 calculates the first phase compensation amount as the first optical phase deviation information by time-integrating the optical phase change amount.
  • the first compensation execution unit 3120 compensates for the optical carrier frequency deviation in the first subcarrier signal using the first phase compensation amount.
  • the optical subcarrier frequency interval integration unit 3300 acquires the first phase compensation amount from the first optical carrier frequency deviation compensation unit 3100. Then, a value proportional to the product of the optical subcarrier frequency interval and the time interval (symbol time) between adjacent modulation signals and the number of modulation signals (number of processed symbols) is added to the first phase compensation amount as the frequency interval compensation amount. As a result, the second phase compensation amount as the second optical phase deviation information is calculated. Thereafter, the second phase compensation amount is sent to the second optical carrier frequency deviation compensating unit 3200.
  • the second optical carrier frequency deviation compensation unit 3200 includes a second compensation execution unit 3220 as a second compensation unit. Second compensation execution unit 3220 compensates for the optical carrier frequency deviation in the second subcarrier signal using the second phase compensation amount.
  • the optical subcarrier frequency interval integration unit 3300 of this embodiment is 2 ⁇ times the product of the symbol time of the received optical signal and the number of processing symbols (hereinafter referred to as “elapsed time”) in the optical subcarrier frequency interval ⁇ f.
  • a value obtained by multiplying the values is calculated as a frequency interval compensation amount.
  • the frequency interval compensation amount is added to the first phase compensation amount output from the optical carrier frequency deviation compensation amount estimation unit 3110 and supplied to the second compensation execution unit 3220 provided in the second optical carrier frequency deviation compensation unit 3200.
  • the function of the second phase compensation amount calculation unit 2213 provided in the second optical carrier frequency deviation compensation amount estimation unit 2210 in the second embodiment is provided to the optical subcarrier frequency interval integration unit 3300 in this embodiment.
  • the optical subcarrier frequency interval of the optical OFDM signal is ⁇ f
  • the optical frequency deviation between the subcarrier center optical frequency f 0 and the local light optical frequency f LO is ⁇ f LO
  • the optical carrier frequency deviation in subcarrier 1 is ⁇ f / 2 + ⁇ f LO
  • the optical carrier frequency deviation in subcarrier 2 is ⁇ f / 2 ⁇ f LO .
  • the optical frequency deviation ⁇ f LO in one type of subcarrier calculated in one optical carrier frequency deviation compensation amount estimation unit is used, and the light in all subcarriers is detected. It becomes possible to compensate for the frequency deviation.
  • independent signal data input to the first optical carrier frequency deviation compensation unit 3100 and the second optical carrier frequency deviation compensation unit 3200 are received at the same time.
  • the value obtained by multiplying the optical subcarrier frequency interval ⁇ f by 2 ⁇ times the elapsed time is added to the frequency deviation estimated by the optical carrier frequency deviation compensation amount estimation unit provided in one of the optical carrier frequency deviation compensation units.
  • the frequency deviation of the other optical subcarrier can be estimated.
  • the phase error detection processing of the other optical subcarrier can be reduced.
  • the optical subcarrier frequency interval ⁇ f is equal to the symbol time of the received optical signal. Therefore, a value obtained by multiplying the optical subcarrier frequency interval ⁇ f by a value 2 ⁇ times the elapsed time is an integral multiple of “2 ⁇ ”. Since the phase rotation corresponding to an integral multiple of “2 ⁇ ” is “1”, in the case of an optical OFDM signal, the process of adding the frequency interval compensation amount in the optical subcarrier frequency interval integrating unit 3300 can be omitted.
  • FIG. 5 is a block diagram showing a configuration of an optical phase deviation / optical carrier frequency deviation compensating apparatus 4000 according to the fourth embodiment of the present invention.
  • the optical phase deviation / optical carrier frequency deviation compensation device 4000 includes an optical subcarrier separation circuit 2010 as a separation unit, a first optical carrier frequency deviation compensation unit 3100, and a second optical carrier frequency deviation compensation unit 3200.
  • the first optical carrier frequency deviation compensation unit 3100 includes an optical carrier frequency deviation compensation amount estimation unit 3110 including an optical phase deviation detection unit and a first phase compensation amount calculation unit, and a first compensation as a first compensation unit.
  • An execution unit 3120 is provided.
  • the optical carrier frequency deviation compensation amount estimation unit 3110 calculates the first phase compensation amount as the first optical phase deviation information by time-integrating the optical phase change amount.
  • the first compensation execution unit 3120 compensates for the optical carrier frequency deviation in the first subcarrier signal using the first phase compensation amount.
  • the configuration so far is the same as the configuration of the optical phase deviation / optical carrier frequency deviation compensation device 3000 of the third embodiment.
  • the optical phase deviation / optical carrier frequency deviation compensation device 4000 according to the present embodiment includes the operation of the second optical carrier frequency deviation compensation unit 3200 and the configuration of the optical subcarrier frequency interval compensation unit as the optical subcarrier frequency interval compensation unit. Different from the third embodiment.
  • the second optical carrier frequency deviation compensation unit 3200 includes a second compensation execution unit 3220 as a second compensation unit.
  • the second compensation execution unit 3220 compensates for the optical carrier frequency deviation in the second subcarrier signal by using the first phase compensation amount as the second optical phase deviation information.
  • the optical subcarrier frequency interval compensation unit includes a first optical subcarrier frequency interval compensation unit 4310 serving as a first optical subcarrier frequency interval compensation unit and a second optical subcarrier frequency interval compensation unit serving as a second optical subcarrier frequency interval compensation unit.
  • the first optical subcarrier frequency interval compensation unit 4310 is connected to the first optical carrier frequency deviation compensation unit 3100, and calculates the difference between the average frequency of the plurality of optical subcarriers and the frequency of the first optical subcarrier. A first frequency interval compensation amount to be compensated is given.
  • the second optical subcarrier frequency interval compensation unit 4320 is connected to the second optical carrier frequency deviation compensation unit 3200 to compensate for the difference between the average frequency of the plurality of optical subcarriers and the frequency of the second optical subcarrier. A second frequency interval compensation amount is given.
  • the first optical subcarrier frequency interval compensation unit 4310 rotates the phase of subcarrier 1 by a value obtained by multiplying “ ⁇ f / 2” by 2 ⁇ times the elapsed time. give.
  • second optical subcarrier frequency interval compensation unit 4320 gives phase rotation to subcarrier 2 by a value obtained by multiplying “ ⁇ f / 2” by 2 ⁇ times the elapsed time. This makes it possible to compensate for the optical subcarrier frequency interval.
  • the optical subcarrier frequency interval of the optical OFDM signal is ⁇ f
  • the optical frequency deviation between the subcarrier center optical frequency f 0 and the local light optical frequency f LO is ⁇ f LO
  • the first and second optical subcarrier frequency interval compensation units 4310 and 4320 each have a frequency interval ⁇ f between two optical subcarriers in advance. To compensate. As a result, the optical carrier frequency deviation between the two optical subcarriers is the same as ⁇ f LO .
  • the independent signal data respectively input to the first and second optical carrier frequency deviation compensating units 3100 and 3200 are received at the same time.
  • the first phase compensation amount estimated by the optical carrier frequency deviation compensation amount estimation unit 3110 included in the first optical carrier frequency deviation compensation unit 3100 is applied as it is, and the second optical carrier frequency deviation compensation unit 3200 performs sub- The frequency deviation in the carrier 2 can be compensated.
  • the second optical carrier frequency deviation compensation unit 3200 does not require a phase compensation amount calculation unit, and the configuration of the apparatus can be simplified.
  • an optical subcarrier frequency interval compensator must be provided for each subcarrier path.
  • the optical subcarrier frequency interval compensation unit between the optical subcarrier separation circuit 2010 and the first and second optical carrier frequency deviation compensation units 3100 and 3200.
  • the input of the optical subcarrier separation circuit 2010 is branched into two, and one of the branches is input to the first optical subcarrier frequency interval compensation unit 4310 and the other is input to the second optical subcarrier frequency interval compensation unit 4320. It is good also as a structure.
  • the two signals obtained by performing the optical subcarrier separation processing using the output signals of the first and second optical subcarrier frequency interval compensation units 4310 and 4320 as input signals are shown in FIG. It becomes the same as the output signal in the configuration shown in FIG.
  • the signal data transmitted from the first optical subcarrier frequency interval compensation unit 4310 to the optical subcarrier separation circuit 2010 is subjected to FFT calculation in the optical subcarrier separation circuit 2010. Thereafter, only one of the output signals of the optical subcarrier separation circuit 2010 is input to the first optical carrier frequency deviation compensation unit 3100.
  • the signal data transmitted from the second optical subcarrier frequency interval compensation unit 4320 to the optical subcarrier separation circuit 2010 is subjected to FFT calculation in the optical subcarrier separation circuit 2010. Then, only one of the output signals of the optical subcarrier separation circuit 2010 can be input to the second optical carrier frequency compensation unit 3200.
  • the optical carrier frequency deviation compensation unit is provided. Can be narrowed. This is because the optical carrier frequency deviation of the input signal of the optical carrier frequency deviation compensation unit is small.
  • the other optical phase deviation is compensated based on one compensation amount. can do.
  • a fifth embodiment of the present invention will be described.
  • a polarization multiplexing / demultiplexing technique is known in addition to the optical phase modulation method and the multicarrier transmission method described above.
  • the polarization multiplexing / demultiplexing technology multiplexes two kinds of independent optical signals whose carrier waves belong to the same frequency band and whose polarization states are orthogonal to each other in the optical transmitter, and receives the above two kinds from the received signal in the optical receiver. It is a technology that separates the optical signal. Thereby, a double transmission speed can be realized.
  • FIG. 17 shows an optical receiver used in an optical communication system (hereinafter referred to as “multicarrier polarization multiplexed optical communication system”) employing an optical phase modulation method, a multicarrier transmission method, and a polarization multiplexing / demultiplexing technique.
  • the configuration of a related optical phase deviation / optical carrier frequency deviation compensating apparatus 9500 is shown.
  • the signal data input to the optical receiver is separated into two subcarrier signals by the optical subcarrier separation circuit 9010 and is input to the polarization separation unit 9510 and the polarization separation unit 9520 for each subcarrier.
  • each subcarrier is further separated into signal data corresponding to two independent optical signals, and the optical phase deviation and carrier frequency deviation are compensated for a total of four independent signal data. Is done.
  • CMA Constant Modulus Algorithm
  • FIG. 6 shows the configuration of an optical phase deviation / optical carrier frequency deviation compensation device 5000 according to this embodiment.
  • the optical phase deviation / optical carrier frequency deviation compensation device 5000 is configured by applying the optical phase deviation / optical carrier frequency deviation compensation device 2000 according to the second embodiment to a multicarrier polarization multiplexed optical communication system.
  • a wave separation unit 5010 and a second polarization separation unit 5020 are provided.
  • the optical carrier frequency deviation between signal data belonging to mutually orthogonal polarization states is equal.
  • the compensation amount estimation value for the optical carrier frequency deviation of any one optical subcarrier in one polarization state is commonly used in consideration of the optical carrier frequency interval between the optical subcarriers. It can be used as a frequency compensation value.
  • optical carrier frequency deviation compensation units that is, a first optical carrier frequency deviation compensation unit 5110, a second optical carrier frequency deviation compensation unit 5120, a third optical carrier frequency deviation compensation unit 5210, and a fourth optical carrier frequency deviation compensation unit 5210
  • Only one of the optical carrier frequency deviation compensation units 5220 includes the optical carrier frequency deviation compensation amount estimation unit.
  • the configuration of the first optical carrier frequency deviation compensating unit 5110 is the same as that of the first optical carrier frequency deviation compensating unit 2100 in the second embodiment.
  • the configurations of the second to fourth optical carrier frequency deviation compensating units 5120, 5210, and 5220 are the same as those of the second optical carrier frequency deviation compensating unit 2200 in the second embodiment.
  • the first optical carrier frequency deviation compensation amount estimation unit 2110 provided in the first optical carrier frequency deviation compensation unit 5110 includes an optical carrier frequency error detection unit 2111 and a filter unit 2112, and outputs an output signal from the filter unit 2112 to the first optical carrier frequency error compensation unit 5110. This is supplied to the phase compensation amount calculation unit 2113.
  • the optical subcarrier frequency interval calculation unit 2300 adds the value obtained by multiplying the optical subcarrier frequency interval ⁇ f by 2 ⁇ times the symbol time of the received optical signal to the output signal of the filter unit 2112. The result of the addition is supplied to two phase compensation amount calculation units for the subcarrier 2, that is, the second phase compensation amount calculation unit 2213.
  • the symbol time of the input signal of the optical phase deviation / optical carrier frequency deviation compensation unit is the same value as the reciprocal of the baud rate of the optical signal, and is a predetermined value.
  • the value obtained by multiplying the optical subcarrier frequency interval ⁇ f by 2 ⁇ times the symbol time of the received optical signal is “2 ⁇ ”. Therefore, in the case of an optical OFDM signal, the addition function in the optical subcarrier frequency interval calculation unit 2300 can be omitted.
  • each optical carrier frequency deviation compensation unit Independent signal data input to each optical carrier frequency deviation compensation unit is received at the same time. Further, the optical carrier frequencies of two independent optical signals in the polarization state that are orthogonal to each other are the same. From these, in each subcarrier, the compensation amount estimated by the optical carrier frequency deviation compensation amount estimation unit of the optical carrier frequency deviation compensation unit for one polarization state is changed to the optical carrier frequency deviation compensation unit for the other polarization state. It can be applied to signal data. Therefore, by applying the frequency deviation estimated from the frequency deviation of the optical subcarrier in one polarization state to the frequency deviation compensation amount of the optical subcarrier in the other polarization state, Phase error detection processing and filter processing can be reduced.
  • FIG. 8 shows a configuration of an optical phase deviation / optical carrier frequency deviation compensating apparatus 6000 in the present embodiment.
  • the optical phase deviation / optical carrier frequency deviation compensator 6000 includes a first optical subcarrier frequency interval compensation unit 6310, a first polarization separation unit 6010, a second optical subcarrier frequency interval compensation unit 6320, and a second optical subcarrier frequency interval compensation unit 6310.
  • a polarization separation unit 6020 is included.
  • the phase rotation is given to the subcarrier 1 by a value obtained by multiplying ⁇ f / 2 by 2 ⁇ times the elapsed time.
  • second optical subcarrier frequency interval compensation section 6320 gives phase rotation to subcarrier 2 by a value obtained by multiplying ⁇ f / 2 by 2 ⁇ times the elapsed time.
  • optical carrier frequency deviation compensation units that is, a first optical carrier frequency deviation compensation unit 5110, a second optical carrier frequency deviation compensation unit 5120, a third optical carrier frequency deviation compensation unit 5210, and a fourth optical carrier
  • Only one of the frequency deviation compensation units 5220 includes an optical carrier frequency deviation compensation amount estimation unit.
  • the first optical carrier frequency deviation compensation unit 5110 is provided with the first optical carrier frequency deviation compensation amount estimation unit 2110. Then, the compensation amount estimated by the optical carrier frequency deviation compensation amount estimation unit 2110 is supplied to each compensation amount execution unit.
  • independent signal data input to the first optical carrier frequency deviation compensation unit 5110 and the second optical carrier frequency deviation compensation unit 5120 are received at the same time. From this, the optical carrier frequency deviation becomes the same after the phase rotation is given by the value obtained by multiplying ⁇ f / 2 by a value 2 ⁇ times the elapsed time. Furthermore, the optical carrier frequencies of two independent optical signals in the polarization state that are orthogonal to each other are the same. Therefore, with respect to one optical subcarrier included in any one polarization state, the compensation amount estimated by the optical carrier frequency deviation compensation amount estimation unit provided in the optical carrier frequency deviation compensation unit is used as another optical carrier. It can be applied as it is to the signal data of the frequency deviation compensator. Therefore, according to this embodiment, a total of three optical carrier frequency deviation compensation amount estimation units can be reduced.
  • one optical subcarrier frequency interval compensator is necessarily required for each subcarrier, but between the optical subcarrier separation circuit 2010, the first polarization separation unit 6010, and the second polarization separation unit 6020. There is no need to prepare for.
  • the first and second optical subcarrier frequency interval compensation units 6310 and 6320 are provided in front of the first to fourth optical carrier frequency deviation compensation units, respectively, the input signal of the optical carrier frequency deviation compensation unit is Since the optical carrier frequency deviation is small, the frequency range of the optical carrier frequency deviation compensator can be narrowed.
  • FIG. 9 shows a configuration of an optical phase deviation / optical carrier frequency deviation compensating apparatus 7000 in the present embodiment.
  • the optical phase deviation / optical carrier frequency deviation compensation device 7000 includes a first polarization separation unit 7010, a first optical phase deviation compensation unit 7410, and a second optical phase deviation compensation unit 7420 in the path of the X polarization signal.
  • the Y polarization signal path includes a second polarization separation unit 7020, a third optical phase deviation compensation unit 7430, and a fourth optical phase deviation compensation unit 7440.
  • only one of the first to fourth optical phase deviation compensation units (the first optical phase deviation compensation unit 7410 in FIG.
  • the optical phase deviation compensator includes the optical phase deviation compensation amount estimation unit. Then, in the three optical phase deviation adders 7450, the optical phase deviation compensator has three values obtained by adding the phase deviation between independent signals to the compensation amount estimated by the optical phase deviation compensation amount estimator. Each phase compensation unit is configured to be supplied.
  • the independent signal data input to the first optical phase deviation compensation unit 7410, the second optical phase deviation compensation unit 7420, the third optical phase deviation compensation unit 7430, and the fourth optical phase deviation compensation unit 7440 are the same. Received at the time. For this reason, since the phase deviation is the same, the compensation amount estimated by the optical phase deviation compensation amount estimation unit provided in the first optical phase deviation compensation unit 7410 is changed to that of the other second to fourth optical phase deviation compensation units. It can be applied to signal data. Therefore, according to the present embodiment, three optical phase deviation compensation amount estimation units can be reduced.
  • an eighth embodiment of the present invention will be described.
  • the case where an optical OFDM signal having two optical subcarriers is used has been described.
  • the present invention is not limited to this, and an optical OFDM signal having three or more optical subcarriers can be similarly compensated. That is, the output signal of each optical carrier frequency deviation compensation unit for another optical subcarrier can be obtained from the signal in the optical carrier frequency deviation compensation amount estimation unit for one optical subcarrier and the optical subcarrier interval ⁇ f. Therefore, the optical phase deviation and the optical carrier frequency deviation can be compensated for an optical OFDM signal having N optical subcarriers.
  • FIG. 10 shows a configuration of an optical phase deviation / optical carrier frequency deviation compensation device 8000 in the present embodiment.
  • the first optical carrier frequency deviation compensation unit 2100 for one optical subcarrier detects an optical carrier frequency error detection value.
  • N ⁇ 1 optical subcarrier frequency interval calculation unit 2300 a value obtained by multiplying optical subcarrier frequency interval ⁇ f by 2 ⁇ times the symbol time of the received optical signal is added to the optical carrier frequency error detection value.
  • the value after the addition is supplied to a second phase compensation amount calculation unit provided in each second optical carrier frequency deviation compensation unit 2200. Thereby, it becomes possible to compensate for the optical carrier frequency deviation of all the optical subcarriers based on one optical subcarrier optical carrier frequency deviation.
  • the optical phase deviation / optical carrier frequency deviation compensator 8000 As shown in FIG. 15B, the optical subcarrier interval ⁇ f of the optical OFDM signal is constant. Further, the first optical carrier frequency deviation compensating unit 2100 can calculate an estimated value of the optical carrier frequency deviation for one subcarrier. Therefore, a value obtained by multiplying each optical subcarrier frequency interval by the symbol time is added to this estimated value, and the value after addition can be used to compensate for the optical carrier frequency deviation for all the optical subcarriers. . That is, since the frequency deviation estimated from the frequency deviation of one optical subcarrier can be applied to the frequency deviation compensation amount of all other optical subcarriers, phase error detection processing and filter processing in other optical subcarriers are possible. Can be reduced.
  • the symbol time of the input signal of the optical phase deviation / optical carrier frequency deviation compensation unit is generally the same value as the reciprocal of the baud rate of the optical signal, and is a predetermined value determined in advance.
  • the value obtained by multiplying the optical subcarrier frequency interval ⁇ f by 2 ⁇ times the symbol time of the received optical signal is “2 ⁇ ”, so the addition in the optical subcarrier frequency interval calculation unit 2300 is performed.
  • the function can be omitted.
  • the compensation amount estimated by the optical phase deviation compensation amount estimation unit 160 included in the optical phase deviation compensation unit 150 for any one subcarrier has the same phase deviation. It can also be applied to signal data. Therefore, according to this embodiment, the optical phase deviation compensation amount estimation unit 160 can be reduced.
  • the present invention is not limited to this, and the present invention can also be applied to other multicarrier transmission systems in which the frequency interval between adjacent optical subcarriers is a constant value.
  • Optical phase deviation / optical carrier frequency deviation compensation device 1010 Separating unit 1100, 2100, 3100, 5110 First optical carrier frequency deviation compensating unit 1110 Optical phase deviation detecting unit 1120 First compensation unit 1200, 2200, 3200, 5120 Second optical carrier frequency deviation compensation unit 1220 Second compensation unit 1300 Optical subcarrier frequency interval compensation unit 1410, 7410 First optical phase deviation compensation unit 1411 Optical phase Deviation compensation amount estimation unit 1412 First phase compensation unit 1420, 7420 Second optical phase deviation compensation unit 1422 Second phase compensation unit 2010, 8010 Optical subcarrier separation circuit 2110 First optical carrier frequency deviation compensation amount estimation unit 2111 Optical carrier frequency error detection Unit 2112 filter unit 2113 first phase compensation amount calculation unit 2120, 3120 first compensation execution unit 2210 second optical carrier frequency deviation compensation amount estimation unit 2213 second phase compensation amount calculation unit 2220, 3220 second compensation Execution unit 2300 Optical subcarrier frequency interval calculation unit 3300 Optical subcarrier frequency interval calculation unit 3300 Optical subcarrier frequency interval calculation unit 3300

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

In a multicarrier optical communications system adopting both an optical phase modulation method and a multicarrier transmission method, device configuration becomes complicated and power consumption increases. Therefore, this optical phase difference/optical carrier wave frequency difference compensation device has: a separation unit; a first optical carrier wave frequency difference compensation unit; a second optical carrier wave frequency difference compensation unit; and an optical subcarrier wave frequency interval compensation unit that connects to the first optical carrier wave frequency difference compensation unit and the second optical carrier wave frequency difference compensation unit. The separation unit receives frequency division multiplexed signals obtained by mixing frequency division multiplexed signal light with local light and performing coherent detection, said frequency division multiplexed signal light modulating and multiplexing each of a plurality of optical subcarrier waves, which have different frequencies and include at least a first optical subcarrier wave and a second optical subcarrier wave; and outputs at least a first auxiliary carrier wave signal and a second subcarrier wave signal. The first optical carrier wave frequency difference compensation unit inputs the first subcarrier wave signal and comprises: an optical phase difference detection unit that detects the amount of optical phase variation, being the amount of variation in the optical phase difference between adjacent modulation signals in the first subcarrier wave signal; and a first compensation unit that compensates the optical carrier wave frequency difference in the first subcarrier wave signal, using first optical phase difference information on the basis of the amount of optical phase variation. The optical subcarrier wave frequency interval compensation unit calculates a frequency interval compensation amount that compensates the optical subcarrier wave frequency interval being the frequency difference between the first optical subcarrier wave and the second optical subcarrier wave. The second optical carrier wave frequency difference compensation unit inputs the second subcarrier wave signal and comprises a second compensation unit that compensates the optical carrier wave frequency difference in the second subcarrier wave signal, using second optical phase difference information calculated from the frequency interval compensation amount and the first optical phase difference information.

Description

光位相偏差・光搬送波周波数偏差補償装置および光位相偏差・光搬送波周波数偏差補償方法Optical phase deviation / optical carrier frequency deviation compensation apparatus and optical phase deviation / optical carrier frequency deviation compensation method
 本発明は、光位相偏差・光搬送波周波数偏差補償装置および光位相偏差・光搬送波周波数偏差補償方法に関し、特に、光副搬送波を多重した分割多重光通信システムに用いられる光位相偏差・光搬送波周波数偏差補償装置および光位相偏差・光搬送波周波数偏差補償方法に関する。 The present invention relates to an optical phase deviation / optical carrier frequency deviation compensation device and an optical phase deviation / optical carrier frequency deviation compensation method, and more particularly to an optical phase deviation / optical carrier frequency used in a division multiplexing optical communication system in which optical subcarriers are multiplexed. The present invention relates to a deviation compensator and an optical phase deviation / optical carrier frequency deviation compensation method.
 インターネットの普及により、基幹系通信システムのトラフィック量が急激に増大していることから、100Gbps(Giga bit per second)を越える超高速の光通信システムの実用化が期待されている。このような超高速大容量の光通信システムを実現する技術として、ディジタル信号処理技術を活用した光位相変調方式と、光副搬送波を多重したマルチキャリア伝送方式が注目されている。 With the spread of the Internet, the traffic volume of the backbone communication system is rapidly increasing. Therefore, the practical application of an ultra-high-speed optical communication system exceeding 100 Gbps (Giga bit per second) is expected. As technologies for realizing such an ultra-high-speed and large-capacity optical communication system, attention is paid to an optical phase modulation method using digital signal processing technology and a multi-carrier transmission method in which optical subcarriers are multiplexed.
 光位相変調方式は、従来から用いられている光強度変調方式のように送信側の連続波(Continuous Wave:CW)光の光強度に対してだけデータ変調を行うのではなく、送信側CW光の光位相に対してデータ変調を行う方式である。光位相変調方式としては、BPSK(2位相偏移変調:Binary Phase Shift Keying)方式、QPSK(4位相偏移変調:Quadrature Phase Shift Keying)方式、8PSK(8位相偏移変調:8-Phase Shift Keying)方式、およびQAM(直交振幅変調:Quadrature Amplitude Modulation)方式などが知られている。光位相変調方式によれば、1シンボルに対して複数のビットを割り当てることにより、シンボルレートを低下させることができる。それによって、電気デバイスの動作速度を低減でき、装置の製造コストの削減が可能となる。ここでシンボルレートとは、ボーレート(baud rate)と同様の意味であり、送信ビットレートを変調符号のビット数で割った値である。さらに光位相変調方式では、同一ビットレートの信号光を送信する際に、光ファイバ中の1波当たりの専有帯域を抑制することができるため、多重数の増加にとって有効である。 The optical phase modulation method does not perform data modulation only on the light intensity of continuous wave (Continuous Wave: CW) light on the transmission side like the light intensity modulation method conventionally used, but on the transmission side CW light. This is a method for performing data modulation on the optical phase of the optical signal. As the optical phase modulation method, BPSK (2 phase shift keying: Binary Phase Shift Keying) method, QPSK (4 phase shift keying: Quadrature Phase Shift Keying) method, 8PSK (8 phase shift keying: 8-Phase Shifting) ) Method, QAM (Quadrature Amplitude Modulation) method, and the like are known. According to the optical phase modulation method, the symbol rate can be reduced by assigning a plurality of bits to one symbol. Thereby, the operation speed of the electric device can be reduced, and the manufacturing cost of the apparatus can be reduced. Here, the symbol rate has the same meaning as the baud rate, and is a value obtained by dividing the transmission bit rate by the number of bits of the modulation code. Furthermore, the optical phase modulation method is effective for increasing the number of multiplexing because the dedicated band per wave in the optical fiber can be suppressed when transmitting signal light of the same bit rate.
 QPSK方式を用いる場合、4種の光位相(例えば、45度、135度、225度、315度)に対して、それぞれ2ビット(例えば、「00」、「01」、「11」、「10」)を割り当てる。このとき、1種の光位相に対して2ビットを割り当てることができるため、QPSK方式におけるシンボルレートは、光強度変調方式における2値変調方式のシンボルレート(すなわちビットレート)の1/2に低減することが可能である。 When the QPSK method is used, 2 bits (for example, “00”, “01”, “11”, “10” for four types of optical phases (for example, 45 degrees, 135 degrees, 225 degrees, and 315 degrees), respectively. )). At this time, since 2 bits can be allocated to one type of optical phase, the symbol rate in the QPSK method is reduced to ½ of the symbol rate (that is, the bit rate) of the binary modulation method in the light intensity modulation method. Is possible.
 図11は、QPSK方式の4個のシンボルとそれに割り当てられたビット列を位相平面上に示した図であり、QPSKのコンスタレーションと呼ばれる。また光位相変調方式における各シンボルにビット列を対応付けることをシンボルマッピングと呼ぶ。以下では、光位相変調方式としてQPSK方式を用いた場合について説明するが、他の光位相変調方式にも適用可能である。 FIG. 11 is a diagram showing four symbols of the QPSK system and a bit string assigned thereto on the phase plane, which is called a QPSK constellation. Also, associating a bit string with each symbol in the optical phase modulation method is called symbol mapping. Hereinafter, a case where the QPSK method is used as the optical phase modulation method will be described, but the present invention can also be applied to other optical phase modulation methods.
 光位相変調された信号光を受信するためには、光コヒーレント方式を用いる。すなわち、信号光とほぼ同一の光周波数を有するCW光(局所光又はローカル光と呼ばれる)と信号光を90度ハイブリッドと呼ばれる光学素子により混合し、その出力を光検出器により受光する。以下では簡単のため、信号光と局所光の偏波状態は同一の直線偏光であると仮定する。 An optical coherent method is used to receive optical phase-modulated signal light. That is, CW light (referred to as local light or local light) having substantially the same optical frequency as signal light and signal light are mixed by an optical element called 90-degree hybrid, and the output is received by a photodetector. In the following, for the sake of simplicity, it is assumed that the polarization states of the signal light and the local light are the same linearly polarized light.
 光コヒーレント方式を用いた場合、光検出器から出力される電気信号の交流成分は信号光と局所光の混合によるビート信号となる。ビート信号の振幅は信号光と局所光の光強度に比例し、その位相は、信号光の搬送波周波数と局所光の光周波数が同一であれば、信号光と局所光の光位相の差となる。このとき、光位相が同期してずれることがなく、最初の受信シンボルの光位相が定まれば、ビート信号の位相は変化しない。そのため、シンボルマッピングを用いてビート信号の位相をビット列に変換することにより送信データを復調することが可能である。すなわち、最初の受信シンボルが図11に示すコンスタレーションのいずれか1点である場合、その後の受信シンボルは図11に示すコンスタレーションを有することになる。 When the optical coherent method is used, the AC component of the electrical signal output from the photodetector becomes a beat signal by mixing signal light and local light. The amplitude of the beat signal is proportional to the light intensity of the signal light and the local light, and the phase is the difference between the optical phase of the signal light and the local light if the carrier frequency of the signal light and the optical frequency of the local light are the same. . At this time, the optical phase does not shift in synchronization, and the phase of the beat signal does not change if the optical phase of the first received symbol is determined. Therefore, it is possible to demodulate transmission data by converting the phase of the beat signal into a bit string using symbol mapping. That is, when the first received symbol is one of the constellations shown in FIG. 11, the subsequent received symbols have the constellation shown in FIG.
 しかしながら、信号光の搬送波周波数と局所光の光周波数の値を完全に一致させることは、CW光源の周波数揺らぎが存在するため困難である。さらに、受信側における局所光の光位相と、送信側において光変調器に入力されるCW光の光位相も、CW光源の位相雑音により一致しない。ここで、送信側において光変調器に入力されるCW光と局所光の光位相差は光位相偏差、信号光の搬送波周波数と局所光の光周波数の差は光搬送波周波数偏差と呼ばれる。 However, it is difficult to completely match the value of the carrier frequency of the signal light and the value of the optical frequency of the local light because of the frequency fluctuation of the CW light source. Furthermore, the optical phase of the local light on the reception side and the optical phase of the CW light input to the optical modulator on the transmission side do not match due to the phase noise of the CW light source. Here, the optical phase difference between the CW light and the local light input to the optical modulator on the transmission side is called an optical phase deviation, and the difference between the carrier frequency of the signal light and the optical frequency of the local light is called an optical carrier frequency deviation.
 図12A、12Bに、光位相偏差および光搬送波周波数偏差が存在する場合のコンスタレーションを示す。図12Aに示すように、光位相偏差が存在する場合、図11に示すコンスタレーションに対して光位相偏差だけ回転したコンスタレーションを有する信号が受信される。光位相偏差の値は予め知ることができないため、図11に示すシンボルマッピングをそのまま用いてシンボルをビット列に変換すると、誤ったデータが復調されてしまうという問題が生じる。 12A and 12B show constellations in the case where there is an optical phase deviation and an optical carrier frequency deviation. As shown in FIG. 12A, when there is an optical phase deviation, a signal having a constellation rotated by the optical phase deviation with respect to the constellation shown in FIG. 11 is received. Since the value of the optical phase deviation cannot be known in advance, if the symbol mapping shown in FIG. 11 is used as it is and the symbol is converted into a bit string, there arises a problem that erroneous data is demodulated.
 さらに光搬送波周波数偏差が存在すると、前述のビート信号の位相は光搬送波周波数偏差と受信時刻の積に光位相偏差を加えた値となる。そのため図12Bに示すように、図11に示すコンスタレーションが時間的に回転するコンスタレーションを有する信号が受信される。このときビート信号の位相は時間的に変化するため、図11に示すシンボルマッピングを用いてビート信号の位相からデータを復調することは不可能である。したがって、光位相変調方式においては、光位相偏差と光搬送波周波数偏差によるコンスタレーションの回転に伴う受信信号のエラーを防ぐために、光位相偏差・光搬送波周波数偏差補償機能が必要となる(例えば、特許文献1参照)。 Further, when there is an optical carrier frequency deviation, the phase of the beat signal described above is a value obtained by adding the optical phase deviation to the product of the optical carrier frequency deviation and the reception time. Therefore, as shown in FIG. 12B, a signal having a constellation in which the constellation shown in FIG. 11 rotates in time is received. At this time, since the phase of the beat signal changes with time, it is impossible to demodulate data from the phase of the beat signal using the symbol mapping shown in FIG. Therefore, in the optical phase modulation method, an optical phase deviation / optical carrier frequency deviation compensation function is required in order to prevent a received signal error accompanying rotation of the constellation due to the optical phase deviation and the optical carrier frequency deviation (for example, patents) Reference 1).
 以下では、光位相変調方式で広く用いられている光位相偏差・光搬送波周波数偏差補償処理について説明する。 Hereinafter, an optical phase deviation / optical carrier frequency deviation compensation process widely used in the optical phase modulation method will be described.
 図13に、フィードフォワード型の関連する光搬送波周波数偏差補償部100の構成を示す。関連する光搬送波周波数偏差補償部100の入力信号は2つに分岐され、一方は光搬送波周波数偏差補償量推定部110に入力され、他方は補償実行部120に入力される。 FIG. 13 shows a configuration of a related optical carrier frequency deviation compensation unit 100 of the feedforward type. The input signal of the related optical carrier frequency deviation compensation unit 100 is branched into two, one of which is input to the optical carrier frequency deviation compensation amount estimation unit 110 and the other is input to the compensation execution unit 120.
 光搬送波周波数偏差補償量推定部110は、光搬送波周波数誤差検出部111、フィルタ部112、および位相補償量算出部113とから構成される。光搬送波周波数誤差検出部111は光位相偏差の単位時間当たりの変化、すなわち時間的に隣り合う2個のシンボル(変調信号)間の光位相偏差の変化を検出する。光搬送波周波数誤差検出部111には、M乗法アルゴリズム(M-th Power Algorithm)が広く用いられている(例えば、非特許文献1参照)。ここで、隣接する2個のシンボル間の光位相偏差の変化は、光搬送波角周波数偏差と1シンボル時間(1シンボル時間はシンボルレートの逆数に等しい)の積に等しい。また、1シンボル時間は一定であるため、光搬送波周波数誤差検出部111は光搬送波周波数偏差を算出する回路であると言える。 The optical carrier frequency deviation compensation amount estimation unit 110 includes an optical carrier frequency error detection unit 111, a filter unit 112, and a phase compensation amount calculation unit 113. The optical carrier frequency error detector 111 detects a change in optical phase deviation per unit time, that is, a change in optical phase deviation between two temporally adjacent symbols (modulated signals). For the optical carrier frequency error detection unit 111, an M-multiplication algorithm (M-th Power Algorithm) is widely used (for example, see Non-Patent Document 1). Here, the change in the optical phase deviation between two adjacent symbols is equal to the product of the optical carrier angular frequency deviation and one symbol time (one symbol time is equal to the reciprocal of the symbol rate). Further, since one symbol time is constant, it can be said that the optical carrier frequency error detector 111 is a circuit for calculating the optical carrier frequency deviation.
 光搬送波周波数誤差検出部111の出力はフィルタ部112に送られ、フィルタ部112において雑音成分が除去される。フィルタ部112の出力は位相補償量算出部113に送られ、実際の位相補償量、すなわちコンスタレーションの回転量が算出される。具体的には位相補償量算出部113は積分回路と等価である。 The output of the optical carrier frequency error detection unit 111 is sent to the filter unit 112, where the noise component is removed. The output of the filter unit 112 is sent to the phase compensation amount calculation unit 113 to calculate the actual phase compensation amount, that is, the rotation amount of the constellation. Specifically, the phase compensation amount calculation unit 113 is equivalent to an integration circuit.
 補償実行部120は、光搬送波周波数偏差補償量推定部110により算出された位相補償量だけの逆回転を与える複素数(位相補償量をφとするとexp(-jφ)で表される)と入力信号との積を求め、補償後の信号として出力する。 The compensation execution unit 120 is a complex number (represented by exp (−jφ) where φ is the phase compensation amount) that gives the reverse rotation by the phase compensation amount calculated by the optical carrier frequency deviation compensation amount estimation unit 110 and the input signal. Is calculated and output as a compensated signal.
 図14に、フィードフォワード型の関連する光位相偏差補償部150の構成を示す。関連する光位相偏差補償部150の入力信号は2つに分岐され、一方は光位相偏差補償量推定部160に入力され、他方は補償実行部170に入力される。光位相偏差補償量推定部160は位相誤差検出部161とフィルタ部162から構成される。位相誤差検出部161は入力信号の光位相偏差を検出する回路であり、上述したM乗法アルゴリズムが広く用いられている。位相誤差検出部161の出力信号はフィルタ部162に送られ、フィルタ部162において雑音成分が除去される。補償実行部170は、フィルタ部162の出力信号に基づく位相補償量だけの逆回転を与える複素数と入力信号との積を求め、補償後の信号として出力する。 FIG. 14 shows a configuration of a related optical phase deviation compensation unit 150 of the feedforward type. The input signal of the related optical phase deviation compensation unit 150 is branched into two, one is input to the optical phase deviation compensation amount estimation unit 160 and the other is input to the compensation execution unit 170. The optical phase deviation compensation amount estimation unit 160 includes a phase error detection unit 161 and a filter unit 162. The phase error detector 161 is a circuit that detects the optical phase deviation of the input signal, and the above-mentioned M-multiplication algorithm is widely used. The output signal of the phase error detection unit 161 is sent to the filter unit 162, where the noise component is removed. The compensation execution unit 170 calculates a product of a complex number that gives reverse rotation by the amount of phase compensation based on the output signal of the filter unit 162 and the input signal, and outputs the product as a compensated signal.
 以上に説明したように、光位相変調方式を用いた関連する光通信システムにおいては、図13、図14に示した光位相偏差・光搬送波周波数偏差補償部を用いて、コンスタレーションの回転によって生じる受信データのエラーを防止することにより、送信データを正しく復調している。 As described above, in the related optical communication system using the optical phase modulation method, the optical phase deviation / optical carrier frequency deviation compensation unit shown in FIGS. 13 and 14 is used to generate the rotation of the constellation. By preventing errors in received data, the transmitted data is correctly demodulated.
 次に、超高速大容量の光通信システムを実現するもう一方の技術であるマルチキャリア伝送方式について説明する。マルチキャリア伝送方式は、送信データを複数の光搬送波(キャリア)を用いて伝送することにより、伝送容量を増大することが可能である(例えば、特許文献2参照)。 Next, the multi-carrier transmission method, which is another technique for realizing an ultra-high speed and large capacity optical communication system, will be described. In the multi-carrier transmission scheme, transmission capacity can be increased by transmitting transmission data using a plurality of optical carriers (carriers) (see, for example, Patent Document 2).
 マルチキャリア伝送方式の一つとして、波長分割多重方式(Wavelength Division Multiplexing:WDM)が広く用いられている。WDM方式においては、隣接する光搬送波間の周波数間隔がΔfである複数の光搬送波をそれぞれ独立な送信データにより変調し、その後に合波することによって送信信号が生成される。図15Aに、WDM方式による光信号の周波数スペクトルを示す。同図に示すように、隣接光信号からのクロストークを防ぐため、1個の光信号専有帯域よりも大きい値にΔfの値を設定する。また、狭帯域の光フィルタなどを用いることによって、1個の光信号専有帯域を狭窄化でき、その結果、Δfの値をボーレートの2倍よりも小さくすることも可能である。 As one of the multi-carrier transmission systems, a wavelength division multiplexing (WDM) is widely used. In the WDM system, a plurality of optical carriers whose frequency intervals between adjacent optical carriers are Δf are modulated with independent transmission data, and then combined to generate a transmission signal. FIG. 15A shows a frequency spectrum of an optical signal by the WDM system. As shown in the figure, in order to prevent crosstalk from adjacent optical signals, the value Δf is set to a value larger than one optical signal exclusive band. Further, by using a narrow band optical filter or the like, one optical signal dedicated band can be narrowed, and as a result, the value of Δf can be made smaller than twice the baud rate.
 マルチキャリア伝送方式の別の例として、無線通信で用いられている直交周波数分割多重(Orthogonal Frequency Division Multiplexing:OFDM)方式を光通信に適用した光OFDM伝送方式が注目されている。光OFDM伝送方式における送信信号(光OFDM信号)の生成方法として、送信側のディジタル信号処理によって生成したOFDM電気信号を変調信号として、送信側CW光を変調することによって生成する方法が知られている。また、隣接する光搬送波の周波数間隔が変調信号のボーレートと同一である複数の光搬送波を、それぞれ独立な送信信号により変調した後に合波することによって光OFDM信号を生成することもできる。 As another example of the multicarrier transmission system, an optical OFDM transmission system in which an orthogonal frequency division multiplexing (OFDM) system used in wireless communication is applied to optical communication has attracted attention. As a method of generating a transmission signal (optical OFDM signal) in an optical OFDM transmission system, a method of generating a transmission side CW light by using an OFDM electrical signal generated by digital signal processing on the transmission side as a modulation signal is known. Yes. In addition, an optical OFDM signal can be generated by combining a plurality of optical carriers whose frequency intervals between adjacent optical carriers are the same as the baud rate of the modulated signal after modulation with independent transmission signals.
 光OFDM方式によれば、直交関係を利用したディジタル信号処理を用いることによって、隣接する光副搬送波(光サブキャリア)からのクロストークの影響を受けることなく、所望の光サブキャリアのみを分離することが可能である。これは、隣接する光サブキャリア間の周波数スペクトルが部分的に重ね合わさったとしても、隣り合う光サブキャリア間の周波数間隔Δfが各光サブキャリアのボーレートの値と同一であることから、光サブキャリア間に直交性が成り立つためである。 According to the optical OFDM method, only desired optical subcarriers are separated without being affected by crosstalk from adjacent optical subcarriers (optical subcarriers) by using digital signal processing utilizing orthogonal relationships. It is possible. This is because even if the frequency spectra between adjacent optical subcarriers are partially overlapped, the frequency interval Δf between adjacent optical subcarriers is the same as the baud rate value of each optical subcarrier. This is because orthogonality is established between the carriers.
 図15Bに、光OFDM信号の周波数スペクトルを示す。同図に示すように、隣接する光サブキャリア間の周波数間隔Δfを信号のボーレートまで低減することができる。そのため、光OFDM方式によれば、上述した波長分割多重方式と比較して、単位周波数当たりのビットレート(周波数利用効率)の向上を図ることができる。 FIG. 15B shows the frequency spectrum of the optical OFDM signal. As shown in the figure, the frequency interval Δf between adjacent optical subcarriers can be reduced to the signal baud rate. Therefore, according to the optical OFDM method, the bit rate (frequency utilization efficiency) per unit frequency can be improved as compared with the wavelength division multiplexing method described above.
特開2009-135930号公報(段落「0023」~「0025」)JP 2009-135930 A (paragraphs “0023” to “0025”) 国際公開第2009/104758号(段落「0036」~「0067」)International Publication No. 2009/104758 (paragraphs “0036” to “0067”)
 上述した光位相変調方式と光OFDM伝送方式によるマルチキャリア伝送方式の両方を適用した光通信システム(以下、マルチキャリア光通信システムと言う)について説明する。以下では簡単のため、光OFDM信号は、図15Cに示す周波数スペクトルを持った2個の光副搬送波信号(第1の光副搬送波信号、第2の光副搬送波信号)から構成されているものとする。 An optical communication system (hereinafter referred to as a multicarrier optical communication system) to which both the optical phase modulation method and the multi-carrier transmission method based on the optical OFDM transmission method are applied will be described. In the following, for the sake of simplicity, the optical OFDM signal is composed of two optical subcarrier signals (first optical subcarrier signal and second optical subcarrier signal) having the frequency spectrum shown in FIG. 15C. And
 マルチキャリア光通信システムにおいても、光OFDM信号における光位相偏差・光搬送波周波数偏差を補償する必要がある。図16に、このために用いられる関連する光位相偏差・光搬送波周波数偏差補償装置9000の構成を示す。関連する光位相偏差・光搬送波周波数偏差補償装置9000はフィードフォワード型であり、直交周波数分割多重した光サブキャリアをそれぞれ独立な光信号に分離する処理(光サブキャリア分離処理)と、光搬送波周波数偏差及び光位相偏差を補償する処理を行う。 Even in a multi-carrier optical communication system, it is necessary to compensate for an optical phase deviation and an optical carrier frequency deviation in an optical OFDM signal. FIG. 16 shows the configuration of a related optical phase deviation / optical carrier frequency deviation compensator 9000 used for this purpose. The related optical phase deviation / optical carrier frequency deviation compensator 9000 is of a feed-forward type, and separates optical subcarriers obtained by orthogonal frequency division multiplexing into independent optical signals (optical subcarrier separation processing), and optical carrier frequency. A process for compensating for the deviation and the optical phase deviation is performed.
 光受信器に入力された信号データは、光サブキャリア分離回路9010に入力され、2個の独立した光信号に対応する信号データに分離される。光サブキャリア分離回路9010では、高速フーリエ変換(Fast Fourier Transform:FFT)処理が広く使用されている。上述したように、光搬送波周波数偏差は一般にゼロではない。そこで、分離後の信号データはそれぞれ光搬送波周波数偏差補償部9100、9200において、光搬送波周波数偏差によるコンスタレーションの回転が補償される。さらに光搬送波周波数偏差が補償された信号データは、それぞれ光位相偏差補償部9130、9230において光位相偏差が補償される。 The signal data input to the optical receiver is input to the optical subcarrier separation circuit 9010 and separated into signal data corresponding to two independent optical signals. In the optical subcarrier separation circuit 9010, fast Fourier transform (FFT) processing is widely used. As described above, the optical carrier frequency deviation is generally not zero. Therefore, the signal data after separation is compensated for the rotation of the constellation due to the optical carrier frequency deviation in the optical carrier frequency deviation compensators 9100 and 9200, respectively. Further, the optical phase deviation is compensated in the optical phase deviation compensation units 9130 and 9230 for the signal data in which the optical carrier frequency deviation is compensated, respectively.
 以上説明したように、光位相変調方式とマルチキャリア伝送方式を共に適用し、受信側で光サブキャリアに分離する。そして分離された2個以上の独立した光信号のそれぞれに対して光搬送波周波数偏差及び光位相偏差を補償することにより、100Gbps以上の超高速の光通信システムを実現することが可能となる。 As described above, both the optical phase modulation method and the multicarrier transmission method are applied, and the reception side separates the optical subcarriers. Then, by compensating the optical carrier frequency deviation and the optical phase deviation for each of the two or more independent optical signals that have been separated, it is possible to realize an ultrahigh-speed optical communication system of 100 Gbps or more.
 しかしながら、上述した関連する光位相偏差・光搬送波周波数偏差補償装置においては、光位相偏差部および光搬送波周波数偏差補償部を光サブキャリアの個数だけ備える必要があるため、装置の構成が複雑になり、消費電力が増大してしまう。このように、光位相変調方式とマルチキャリア伝送方式を共に適用したマルチキャリア光通信システムにおいては、装置の構成が複雑になり、消費電力が増大する、という問題があった。 However, in the related optical phase deviation / optical carrier frequency deviation compensation device described above, the number of optical phase deviation units and optical carrier frequency deviation compensation units needs to be provided as many as the number of optical subcarriers, which complicates the configuration of the device. Power consumption will increase. As described above, in the multicarrier optical communication system to which both the optical phase modulation method and the multicarrier transmission method are applied, there is a problem that the configuration of the apparatus becomes complicated and the power consumption increases.
 本発明の目的は、上述した課題である、光位相変調方式とマルチキャリア伝送方式を共に適用したマルチキャリア光通信システムにおいては、装置の構成が複雑になり、消費電力が増大する、という課題を解決する光位相偏差・光搬送波周波数偏差補償装置および光位相偏差・光搬送波周波数偏差補償方法を提供することにある。 An object of the present invention is to solve the above-mentioned problem, that is, in a multicarrier optical communication system to which both the optical phase modulation method and the multicarrier transmission method are applied, the configuration of the apparatus becomes complicated and the power consumption increases. To provide an optical phase deviation / optical carrier frequency deviation compensation device and an optical phase deviation / optical carrier frequency deviation compensation method to be solved.
 本発明の光位相偏差・光搬送波周波数偏差補償装置は、第1の光副搬送波と第2の光副搬送波を少なくとも含む周波数の異なる複数の光副搬送波をそれぞれ変調し多重した周波数分割多重信号光を、局所光と混合してコヒーレント検波することにより得られる周波数分割多重信号を受信し、少なくとも第1の副搬送波信号と第2の副搬送波信号を出力する分離部と、第1の副搬送波信号を入力する第1の光搬送波周波数偏差補償部と、第2の副搬送波信号を入力する第2の光搬送波周波数偏差補償部と、第1の光搬送波周波数偏差補償部および第2の光搬送波周波数偏差補償部と接続する光副搬送波周波数間隔補償部、とを有し、第1の光搬送波周波数偏差補償部は、第1の副搬送波信号における隣接する変調信号間の光位相偏差の変化量である光位相変化量を検出する光位相偏差検出部と、光位相変化量に基づく第1の光位相偏差情報を用いて第1の副搬送波信号における光搬送波周波数偏差を補償する第1の補償部を備え、光副搬送波周波数間隔補償部は、第1の光副搬送波と第2の光副搬送波の周波数差である光副搬送波周波数間隔を補償する周波数間隔補償量を算出し、第2の光搬送波周波数偏差補償部は、周波数間隔補償量と第1の光位相偏差情報とから算出される第2の光位相偏差情報を用いて第2の副搬送波信号における光搬送波周波数偏差を補償する第2の補償部を備える。 The optical phase deviation / optical carrier frequency deviation compensating apparatus of the present invention modulates and multiplexes a plurality of optical subcarriers having different frequencies including at least the first optical subcarrier and the second optical subcarrier, respectively. A demultiplexing unit that receives a frequency division multiplexed signal obtained by coherent detection by mixing with local light and outputs at least a first subcarrier signal and a second subcarrier signal; and a first subcarrier signal The first optical carrier frequency deviation compensation unit, the second optical carrier frequency deviation compensation unit to which the second subcarrier signal is inputted, the first optical carrier frequency deviation compensation unit, and the second optical carrier frequency An optical subcarrier frequency interval compensation unit connected to the deviation compensation unit, and the first optical carrier frequency deviation compensation unit is a change amount of an optical phase deviation between adjacent modulation signals in the first subcarrier signal. An optical phase deviation detecting unit for detecting a certain optical phase change amount, and a first compensating unit for compensating for an optical carrier frequency deviation in the first subcarrier signal using first optical phase deviation information based on the optical phase change amount The optical subcarrier frequency interval compensation unit calculates a frequency interval compensation amount for compensating an optical subcarrier frequency interval that is a frequency difference between the first optical subcarrier and the second optical subcarrier, The carrier frequency deviation compensator compensates for the optical carrier frequency deviation in the second subcarrier signal using the second optical phase deviation information calculated from the frequency interval compensation amount and the first optical phase deviation information. The compensation part is provided.
 本発明の光位相偏差・光搬送波周波数偏差補償方法は、第1の光副搬送波と第2の光副搬送波を少なくとも含む周波数の異なる複数の光副搬送波をそれぞれ変調し多重した周波数分割多重信号光を、局所光と混合してコヒーレント検波することにより得られる周波数分割多重信号を受信し、少なくとも第1の副搬送波信号と第2の副搬送波信号を出力し、第1の副搬送波信号における隣接する変調信号間の光位相偏差の変化量である光位相変化量を検出し、光位相変化量に基づく第1の光位相偏差情報を用いて第1の副搬送波信号における光搬送波周波数偏差を補償し、第1の光副搬送波と第2の光副搬送波の周波数差である光副搬送波周波数間隔を補償する周波数間隔補償量を算出し、周波数間隔補償量と第1の光位相偏差情報とから算出される第2の光位相偏差情報を用いて第2の副搬送波信号における光搬送波周波数偏差を補償する。 The optical phase deviation / optical carrier frequency deviation compensation method of the present invention is a frequency division multiplexed signal light obtained by modulating and multiplexing a plurality of optical subcarriers having different frequencies including at least the first optical subcarrier and the second optical subcarrier. Are mixed with local light to receive a frequency division multiplexed signal obtained by coherent detection, output at least a first subcarrier signal and a second subcarrier signal, and are adjacent to each other in the first subcarrier signal An optical phase change amount which is a change amount of the optical phase deviation between the modulation signals is detected, and the optical carrier frequency deviation in the first subcarrier signal is compensated using the first optical phase deviation information based on the optical phase change amount. Calculating a frequency interval compensation amount for compensating an optical subcarrier frequency interval, which is a frequency difference between the first optical subcarrier and the second optical subcarrier, and calculating from the frequency interval compensation amount and the first optical phase deviation information. To compensate for the optical carrier frequency deviation of the second sub-carrier signal using the second optical phase difference information.
 本発明の光位相偏差・光搬送波周波数偏差補償装置によれば、光位相変調方式とマルチキャリア伝送方式を共に適用したマルチキャリア光通信システムに用いる場合であっても、装置の構成の複雑化および消費電力の増大を招くことなく、高速な補償処理を行うことができる。 According to the optical phase deviation / optical carrier frequency deviation compensation device of the present invention, even when used in a multicarrier optical communication system to which both the optical phase modulation method and the multicarrier transmission method are applied, the configuration of the device is complicated and High-speed compensation processing can be performed without causing an increase in power consumption.
本発明の第1の実施形態に係る光位相偏差・光搬送波周波数偏差補償装置の構成を示すブロック図である。1 is a block diagram showing a configuration of an optical phase deviation / optical carrier frequency deviation compensating apparatus according to a first embodiment of the present invention. 本発明の第1の実施形態に係る光位相偏差・光搬送波周波数偏差補償装置の別の構成を示すブロック図である。It is a block diagram which shows another structure of the optical phase deviation and optical carrier frequency deviation compensation apparatus which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る光位相偏差・光搬送波周波数偏差補償装置の構成を示すブロック図である。It is a block diagram which shows the structure of the optical phase deviation and optical carrier frequency deviation compensation apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る光位相偏差・光搬送波周波数偏差補償装置の構成を示すブロック図である。It is a block diagram which shows the structure of the optical phase deviation and optical carrier frequency deviation compensation apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る光位相偏差・光搬送波周波数偏差補償装置の構成を示すブロック図である。It is a block diagram which shows the structure of the optical phase deviation and optical carrier frequency deviation compensation apparatus which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る光位相偏差・光搬送波周波数偏差補償装置の構成を示すブロック図である。It is a block diagram which shows the structure of the optical phase deviation and optical carrier frequency deviation compensation apparatus which concerns on the 5th Embodiment of this invention. 本発明の第5の実施形態に係る光位相偏差・光搬送波周波数偏差補償装置の構成の一部を示すブロック図である。It is a block diagram which shows a part of structure of the optical phase deviation and optical carrier frequency deviation compensation apparatus which concerns on the 5th Embodiment of this invention. 本発明の第6の実施形態に係る光位相偏差・光搬送波周波数偏差補償装置の構成を示すブロック図である。It is a block diagram which shows the structure of the optical phase deviation and optical carrier frequency deviation compensation apparatus which concerns on the 6th Embodiment of this invention. 本発明の第7の実施形態に係る光位相偏差・光搬送波周波数偏差補償装置の構成を示すブロック図である。It is a block diagram which shows the structure of the optical phase deviation and optical carrier frequency deviation compensation apparatus which concerns on the 7th Embodiment of this invention. 本発明の第8の実施形態に係る光位相偏差・光搬送波周波数偏差補償装置の構成を示すブロック図である。It is a block diagram which shows the structure of the optical phase deviation and optical carrier frequency deviation compensation apparatus which concerns on the 8th Embodiment of this invention. QPSKのコンスタレーションとシンボルマッピングの一例を示す図である。It is a figure which shows an example of the constellation of QPSK and symbol mapping. 光位相偏差が存在する場合のQPSKのコンスタレーションとシンボルマッピングの一例を示す図である。It is a figure which shows an example of the constellation of QPSK and symbol mapping in case an optical phase deviation exists. 光搬送波周波数偏差が存在する場合のQPSKのコンスタレーションとシンボルマッピングの一例を示す図である。It is a figure which shows an example of the constellation of QPSK and symbol mapping in case an optical carrier frequency deviation exists. 関連するフィードフォワード型の光搬送波周波数偏差補償部の構成を示すブロック図である。It is a block diagram which shows the structure of the related feedforward type | mold optical carrier frequency deviation compensation part. 関連するフィードフォワード型の光位相偏差補償部の構成を示すブロック図である。It is a block diagram which shows the structure of the related feedforward type optical phase deviation compensation part. マルチキャリア伝送方式におけるサブキャリアの光周波数スペクトルを示す図であり、WDM方式における場合を示す。It is a figure which shows the optical frequency spectrum of the subcarrier in a multicarrier transmission system, and shows the case in a WDM system. マルチキャリア伝送方式におけるサブキャリアの光周波数スペクトルを示す図であり、光OFDM方式による場合を示す。It is a figure which shows the optical frequency spectrum of the subcarrier in a multicarrier transmission system, and shows the case by an optical OFDM system. マルチキャリア伝送方式におけるサブキャリアの光周波数スペクトルを示す図であり、光OFDM方式による場合を示す。It is a figure which shows the optical frequency spectrum of the subcarrier in a multicarrier transmission system, and shows the case by an optical OFDM system. 関連する光位相偏差・光搬送波周波数偏差補償装置の構成を示すブロック図である。It is a block diagram which shows the structure of the related optical phase deviation and optical carrier frequency deviation compensation apparatus. 関連する光位相偏差・光搬送波周波数偏差補償装置の別の構成を示すブロック図である。It is a block diagram which shows another structure of the related optical phase deviation and optical carrier frequency deviation compensation apparatus.
 以下に、図面を参照しながら、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 〔第1の実施形態〕
 図1は、本発明の第1の実施形態に係る光位相偏差・光搬送波周波数偏差補償装置1000の構成を示すブロック図である。光位相偏差・光搬送波周波数偏差補償装置1000は、分離部1010、第1の光搬送波周波数偏差補償部1100、第2の光搬送波周波数偏差補償部1200、および光副搬送波周波数間隔補償部1300を有する。
[First Embodiment]
FIG. 1 is a block diagram showing a configuration of an optical phase deviation / optical carrier frequency deviation compensating apparatus 1000 according to the first embodiment of the present invention. The optical phase deviation / optical carrier frequency deviation compensation apparatus 1000 includes a separation unit 1010, a first optical carrier frequency deviation compensation unit 1100, a second optical carrier frequency deviation compensation unit 1200, and an optical subcarrier frequency interval compensation unit 1300. .
 分離部1010は、第1の光副搬送波と第2の光副搬送波を少なくとも含む周波数の異なる複数の光副搬送波をそれぞれ変調し多重した周波数分割多重信号光を、局所光と混合してコヒーレント検波することにより得られる周波数分割多重信号を受信する。そして、周波数分割多重信号を少なくとも第1の副搬送波信号と第2の副搬送波信号に分離して出力する。 Separating section 1010 performs coherent detection by mixing frequency division multiplexed signal light, which is obtained by modulating and multiplexing a plurality of optical subcarriers having different frequencies including at least a first optical subcarrier and a second optical subcarrier, with local light. The frequency division multiplexed signal obtained by doing so is received. The frequency division multiplexed signal is output after being separated into at least a first subcarrier signal and a second subcarrier signal.
 第1の光搬送波周波数偏差補償部1100は、第1の副搬送波信号を入力する。第1の光搬送波周波数偏差補償部は、光位相偏差検出部1110と第1の補償部1120を備える。光位相偏差検出部1110は、第1の副搬送波信号における隣接する変調信号間の光位相偏差の変化量である光位相変化量を検出する。また、第1の補償部1120は光位相変化量に基づく第1の光位相偏差情報を用いて第1の副搬送波信号における光搬送波周波数偏差を補償する。 The first optical carrier frequency deviation compensating unit 1100 receives the first subcarrier signal. The first optical carrier frequency deviation compensation unit includes an optical phase deviation detection unit 1110 and a first compensation unit 1120. The optical phase deviation detector 1110 detects an optical phase change amount that is a change amount of an optical phase deviation between adjacent modulation signals in the first subcarrier signal. The first compensation unit 1120 compensates for the optical carrier frequency deviation in the first subcarrier signal using the first optical phase deviation information based on the optical phase change amount.
 光副搬送波周波数間隔補償部1300は、第1の光搬送波周波数偏差補償部1100および第2の光搬送波周波数偏差補償部1200と接続している。光副搬送波周波数間隔補償部1300は、第1の光副搬送波と第2の光副搬送波の周波数差である光副搬送波周波数間隔を補償する。 The optical subcarrier frequency interval compensation unit 1300 is connected to the first optical carrier frequency deviation compensation unit 1100 and the second optical carrier frequency deviation compensation unit 1200. The optical subcarrier frequency interval compensation unit 1300 compensates for an optical subcarrier frequency interval that is a frequency difference between the first optical subcarrier and the second optical subcarrier.
 第2の光搬送波周波数偏差補償部1200は第2の補償部1220を備え、第2の副搬送波信号を入力する。第2の補償部1220は、周波数間隔補償量と第1の光位相偏差情報とから算出される第2の光位相偏差情報を用いて第2の副搬送波信号における光搬送波周波数偏差を補償する。 The second optical carrier frequency deviation compensation unit 1200 includes a second compensation unit 1220 and inputs a second subcarrier signal. The second compensation unit 1220 compensates the optical carrier frequency deviation in the second subcarrier signal using the second optical phase deviation information calculated from the frequency interval compensation amount and the first optical phase deviation information.
 光位相偏差・光搬送波周波数偏差補償装置では、複数の光副搬送波(「光サブキャリア」とも言う)から得られる周波数分割多重信号のうちの一つである第1の副搬送波信号(サブキャリア信号)から光位相変化量を検出する。そして、この光位相変化量と光副搬送波周波数間隔に基づいて、全ての光副搬送波(光サブキャリア)における光位相偏差および光搬送波周波数偏差を補償する。そのため、光位相変化量を検出する光位相偏差検出部は、複数の光副搬送波(光サブキャリア)を受信する場合であっても、1個で対応することが可能となる。 In the optical phase deviation / optical carrier frequency deviation compensation device, a first subcarrier signal (subcarrier signal) which is one of frequency division multiplexed signals obtained from a plurality of optical subcarriers (also referred to as “optical subcarriers”). ) To detect the optical phase change amount. Based on the optical phase change amount and the optical subcarrier frequency interval, the optical phase deviation and the optical carrier frequency deviation in all the optical subcarriers (optical subcarriers) are compensated. Therefore, the optical phase deviation detector that detects the optical phase change amount can cope with one even when receiving a plurality of optical subcarriers (optical subcarriers).
 以上より、本実施形態の光位相偏差・光搬送波周波数偏差補償装置1000によれば、マルチキャリア光通信システムに用いる場合であっても、装置の構成の複雑化および消費電力の増大を招くことなく、高速な補償処理を行うことができる。 As described above, according to the optical phase deviation / optical carrier frequency deviation compensation apparatus 1000 of the present embodiment, even when used in a multicarrier optical communication system, the configuration of the apparatus is not complicated and the power consumption is not increased. High-speed compensation processing can be performed.
 光位相偏差・光搬送波周波数偏差補償装置1000は図2に示すように、第1の副搬送波信号の経路上に第1の光位相偏差補償部1410を、第2の副搬送波信号の経路上に第2の光位相偏差補償部1420をさらに備える構成とすることができる。 As shown in FIG. 2, the optical phase deviation / optical carrier frequency deviation compensation apparatus 1000 includes a first optical phase deviation compensation unit 1410 on the path of the first subcarrier signal and a path of the second subcarrier signal. The second optical phase deviation compensation unit 1420 can be further provided.
 ここで第1の光位相偏差補償部1410は、光位相偏差補償量を算出する光位相偏差補償量推定部1411と、光位相偏差補償量に基づいて第1の副搬送波信号における光位相偏差を補償する第1の位相補償部1412を備える。また第2の光位相偏差補償部1420は、第2の位相補償部1422を備える。第2の位相補償部1422は、第1の光副搬送波と第2の光副搬送波との間の位相偏差に光位相偏差補償量を加算した値に基づいて、第2の副搬送波信号における光位相偏差を補償する。 Here, the first optical phase deviation compensation unit 1410 calculates the optical phase deviation compensation amount estimation unit 1411 for calculating the optical phase deviation compensation amount, and calculates the optical phase deviation in the first subcarrier signal based on the optical phase deviation compensation amount. A first phase compensation unit 1412 for compensation is provided. The second optical phase deviation compensation unit 1420 includes a second phase compensation unit 1422. The second phase compensator 1422 is based on the value obtained by adding the optical phase deviation compensation amount to the phase deviation between the first optical subcarrier and the second optical subcarrier, and the optical signal in the second subcarrier signal. Compensate for phase deviation.
 次に、光位相偏差の補償について、さらに詳細に説明する。図2に示すように、本実施形態による光位相偏差・光搬送波周波数偏差補償装置1000は、一つの光副搬送波(光サブキャリア)における光位相偏差補償量を、全て(図2の場合は2個)の光サブキャリアにおける光位相偏差補償に共通に用いる。すなわち、複数の光位相偏差補償部の一つ(図2では第1の光位相偏差補償部1410)にのみ光位相偏差補償量推定部1411を備えた構成である。そして第2の位相補償部1422は、2個の光サブキャリアの間の位相偏差に光位相偏差補償量を加算した値に基づいて、第2の副搬送波信号における光位相偏差を補償する。 Next, compensation for optical phase deviation will be described in more detail. As shown in FIG. 2, the optical phase deviation / optical carrier frequency deviation compensation apparatus 1000 according to the present embodiment uses all the optical phase deviation compensation amounts in one optical subcarrier (optical subcarrier) (2 in the case of FIG. 2). This is commonly used for optical phase deviation compensation in optical subcarriers. That is, the optical phase deviation compensation amount estimation unit 1411 is provided only in one of the plurality of optical phase deviation compensation units (the first optical phase deviation compensation unit 1410 in FIG. 2). Then, the second phase compensation unit 1422 compensates for the optical phase deviation in the second subcarrier signal based on the value obtained by adding the optical phase deviation compensation amount to the phase deviation between the two optical subcarriers.
 第1の光位相偏差補償部1410および第2の光位相偏差補償部1420に入力される独立した信号データは同一時刻に受信されているので、位相偏差は同一である。そのため、一方の光位相偏差補償部の光位相偏差補償量推定部により推定された光位相偏差補償量を、他方の光位相偏差補償部の信号データに適用することができる。したがって、本実施形態によれば、光位相偏差補償量推定部を1個だけ備えた構成とすることが可能となる。 Since the independent signal data input to the first optical phase deviation compensation unit 1410 and the second optical phase deviation compensation unit 1420 are received at the same time, the phase deviation is the same. Therefore, the optical phase deviation compensation amount estimated by the optical phase deviation compensation amount estimation unit of one optical phase deviation compensation unit can be applied to the signal data of the other optical phase deviation compensation unit. Therefore, according to the present embodiment, it is possible to have a configuration including only one optical phase deviation compensation amount estimation unit.
 なお、2個の独立した光信号間にスキューが生じることにより、2個の独立した信号データの光位相偏差補償量に差異が存在する場合がある。この場合であっても、光位相偏差補償量の差異Δθの時間変動は小さい。そのため、Δθが既知であれば、第2の位相補償部1422はΔθをさらに加算した値に基づいて、第2の副搬送波信号における光位相偏差を補償することができる。 Note that there may be a difference in the amount of optical phase deviation compensation between two independent signal data due to a skew between the two independent optical signals. Even in this case, the time variation of the optical phase deviation compensation amount difference Δθ is small. Therefore, if Δθ is known, second phase compensation section 1422 can compensate for the optical phase deviation in the second subcarrier signal based on a value obtained by further adding Δθ.
 〔第2の実施形態〕
 次に、本発明の第2の実施形態について説明する。図3は、本発明の第2の実施形態に係る光位相偏差・光搬送波周波数偏差補償装置2000の構成を示すブロック図である。光位相偏差・光搬送波周波数偏差補償装置2000は、分離部としての光サブキャリア分離回路2010、第1の光搬送波周波数偏差補償部2100、第2の光搬送波周波数偏差補償部2200、および光副搬送波周波数間隔補償部としての光サブキャリア周波数間隔計算部2300を有する。図3では、第1の光搬送波周波数偏差補償部2100および第2の光搬送波周波数偏差補償部2200の後段にそれぞれ光位相偏差補償部150を備えた構成を示すが、光位相偏差補償部150の構成および動作は図14を用いて説明したので、以下では省略する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. FIG. 3 is a block diagram showing a configuration of an optical phase deviation / optical carrier frequency deviation compensating apparatus 2000 according to the second embodiment of the present invention. The optical phase deviation / optical carrier frequency deviation compensation apparatus 2000 includes an optical subcarrier separation circuit 2010 as a separation unit, a first optical carrier frequency deviation compensation unit 2100, a second optical carrier frequency deviation compensation unit 2200, and an optical subcarrier. An optical subcarrier frequency interval calculation unit 2300 is provided as a frequency interval compensation unit. FIG. 3 shows a configuration in which the optical phase deviation compensation unit 150 is provided in the subsequent stage of the first optical carrier frequency deviation compensation unit 2100 and the second optical carrier frequency deviation compensation unit 2200. The configuration and operation have been described with reference to FIG.
 第1の光搬送波周波数偏差補償部2100は、第1の光搬送波周波数偏差補償量推定部2110と第1の補償実行部2120を含む。第1の光搬送波周波数偏差補償量推定部2110は、光搬送波周波数誤差検出部2111、フィルタ部2112、および第1の位相補償量算出部2113を備える。ここで、光搬送波周波数誤差検出部2111とフィルタ部2112は光位相偏差検出部を構成し、第1の副搬送波信号(サブキャリア1信号)における隣接する変調信号間の光位相偏差の変化量である光位相変化量を検出する。 The first optical carrier frequency deviation compensation unit 2100 includes a first optical carrier frequency deviation compensation amount estimation unit 2110 and a first compensation execution unit 2120. The first optical carrier frequency deviation compensation amount estimation unit 2110 includes an optical carrier frequency error detection unit 2111, a filter unit 2112, and a first phase compensation amount calculation unit 2113. Here, the optical carrier frequency error detection unit 2111 and the filter unit 2112 constitute an optical phase deviation detection unit, and the amount of change in optical phase deviation between adjacent modulation signals in the first subcarrier signal (subcarrier 1 signal). A certain amount of optical phase change is detected.
 第1の位相補償量算出部2113は、第1の光位相偏差情報としての光位相変化量を時間積分することにより第1の位相補償量を算出する。第1の補償部としての第1の補償実行部2120は、第1の位相補償量を用いて第1の副搬送波信号における光搬送波周波数偏差を補償する。 The first phase compensation amount calculation unit 2113 calculates the first phase compensation amount by time-integrating the optical phase change amount as the first optical phase deviation information. The first compensation execution unit 2120 as the first compensation unit compensates for the optical carrier frequency deviation in the first subcarrier signal using the first phase compensation amount.
 光副搬送波周波数間隔補償部としての光サブキャリア周波数間隔計算部2300は、第1の光搬送波周波数偏差補償部2100から第1の光位相偏差情報としての光位相変化量を取得する。そして、光副搬送波周波数間隔(光サブキャリア周波数間隔Δf)と隣接する変調信号間の時間間隔(シンボル時間)との積に比例する値を周波数間隔補償量として光位相変化量に加算することにより第2の光位相偏差情報を算出する。その後に、第2の光位相偏差情報を第2の光搬送波周波数偏差補償部2200に送出する。 The optical subcarrier frequency interval calculator 2300 as the optical subcarrier frequency interval compensator acquires the optical phase change amount as the first optical phase deviation information from the first optical carrier frequency deviation compensator 2100. Then, a value proportional to the product of the optical subcarrier frequency interval (optical subcarrier frequency interval Δf) and the time interval (symbol time) between adjacent modulation signals is added to the optical phase change amount as a frequency interval compensation amount. Second optical phase deviation information is calculated. Thereafter, the second optical phase deviation information is sent to the second optical carrier frequency deviation compensator 2200.
 第2の光搬送波周波数偏差補償部2200は、第2の位相補償量算出部2213を含む第2の光搬送波周波数偏差補償量推定部2210と第2の補償実行部2220を備える。第2の位相補償量算出部2213は、第2の光位相偏差情報を時間積分することにより第2の位相補償量を算出する。第2の補償部としての第2の補償実行部2220は、第2の位相補償量を用いて第2の副搬送波信号(サブキャリア2信号)における光搬送波周波数偏差を補償する。 The second optical carrier frequency deviation compensation unit 2200 includes a second optical carrier frequency deviation compensation amount estimation unit 2210 including a second phase compensation amount calculation unit 2213, and a second compensation execution unit 2220. The second phase compensation amount calculation unit 2213 calculates the second phase compensation amount by time-integrating the second optical phase deviation information. The second compensation execution unit 2220 as the second compensation unit compensates for the optical carrier frequency deviation in the second subcarrier signal (subcarrier 2 signal) using the second phase compensation amount.
 次に、本実施形態の光位相偏差・光搬送波周波数偏差補償装置2000の構成について、さらに詳細に説明する。以下の説明では簡単のため、周波数分割多重信号として、図15Cに示した周波数スペクトルを有する2個の光副搬送波(以下では、「光サブキャリア」と言う)から構成される光OFDM信号を用いる場合について説明する。なお同図中、「Δf」は隣接する光サブキャリアの周波数間隔を表し、Δfの値は各サブキャリアのボーレートの値と同一である。 Next, the configuration of the optical phase deviation / optical carrier frequency deviation compensating apparatus 2000 of this embodiment will be described in more detail. In the following description, for simplicity, an optical OFDM signal composed of two optical subcarriers (hereinafter referred to as “optical subcarriers”) having the frequency spectrum shown in FIG. 15C is used as the frequency division multiplexed signal. The case will be described. In the figure, “Δf” represents the frequency interval between adjacent optical subcarriers, and the value of Δf is the same as the baud rate value of each subcarrier.
 図3に示すように、入力信号は光サブキャリア分離回路2010において、FFTなどの処理により2個のサブキャリアに分離される。光サブキャリア分離回路2010の一方の出力信号は第1の光搬送波周波数偏差補償部2100に送られ、他方の出力信号は第2の光搬送波周波数偏差補償部2200に入力される。 As shown in FIG. 3, the input signal is separated into two subcarriers by processing such as FFT in an optical subcarrier separation circuit 2010. One output signal of the optical subcarrier separation circuit 2010 is sent to the first optical carrier frequency deviation compensation unit 2100, and the other output signal is inputted to the second optical carrier frequency deviation compensation unit 2200.
 第1の光搬送波周波数偏差補償部2100の入力信号は2つに分岐され、一方は第1の光搬送波周波数偏差補償量推定部2110に入力され、他方は第1の補償実行部2120に入力される。第1の光搬送波周波数偏差補償量推定部2110は、光搬送波周波数誤差検出部2111、フィルタ部2112、および第1の位相補償量算出部2113を備える。フィルタ部2112の出力信号は光サブキャリア周波数間隔計算部2300に送られる。 The input signal of the first optical carrier frequency deviation compensation unit 2100 is branched into two, one is input to the first optical carrier frequency deviation compensation amount estimation unit 2110 and the other is input to the first compensation execution unit 2120. The The first optical carrier frequency deviation compensation amount estimation unit 2110 includes an optical carrier frequency error detection unit 2111, a filter unit 2112, and a first phase compensation amount calculation unit 2113. The output signal of the filter unit 2112 is sent to the optical subcarrier frequency interval calculation unit 2300.
 第2の光搬送波周波数偏差補償部2200の入力信号は第2の補償実行部2220に入力される。第2の光搬送波周波数偏差補償量推定部2210において、光サブキャリア周波数間隔計算部2300からの出力信号は第2の位相補償量算出部2213に入力される。第2の位相補償量算出部2213において計算された位相補償量は第2の補償実行部2220に送られ、第2の補償実行部2220は光サブキャリア2信号における光搬送波周波数偏差を補償する。 The input signal of the second optical carrier frequency deviation compensation unit 2200 is input to the second compensation execution unit 2220. In second optical carrier frequency deviation compensation amount estimation unit 2210, the output signal from optical subcarrier frequency interval calculation unit 2300 is input to second phase compensation amount calculation unit 2213. The phase compensation amount calculated by the second phase compensation amount calculation unit 2213 is sent to the second compensation execution unit 2220, and the second compensation execution unit 2220 compensates for the optical carrier frequency deviation in the optical subcarrier 2 signal.
 本実施形態による光位相偏差・光搬送波周波数偏差補償装置2000は、第1の光搬送波周波数偏差補償部2100および第2の光搬送波周波数偏差補償部2200のいずれか一方(図3では第1の光搬送波周波数偏差補償部2100)にのみ光搬送波周波数誤差検出部2111およびフィルタ部2112を備える。そして、光サブキャリア周波数間隔計算部2300は、光サブキャリア周波数間隔Δfに受信光信号のシンボル時間の2π倍の値を乗算した値を、フィルタ部2112の出力信号に加算した後に、第2の位相補償量算出部2213に供給する。 The optical phase deviation / optical carrier frequency deviation compensator 2000 according to the present embodiment has one of the first optical carrier frequency deviation compensation unit 2100 and the second optical carrier frequency deviation compensation unit 2200 (the first optical carrier in FIG. Only the carrier frequency deviation compensating unit 2100) includes an optical carrier frequency error detecting unit 2111 and a filter unit 2112. The optical subcarrier frequency interval calculation unit 2300 then adds the value obtained by multiplying the optical subcarrier frequency interval Δf by 2π times the symbol time of the received optical signal to the output signal of the filter unit 2112, This is supplied to the phase compensation amount calculation unit 2213.
 次に、本実施形態の光位相偏差・光搬送波周波数偏差補償装置2000の動作について説明する。図15Cにおいて、光OFDM信号の光サブキャリア周波数間隔をΔf、光OFDM信号の光搬送波周波数の平均値f(以下では、「サブキャリア中心光周波数」と言う)と局所光の光周波数fLOの間の光周波数偏差をΔfLOとする。同図から、サブキャリア1における光搬送波周波数偏差はΔf/2+ΔfLOとなるのに対し、サブキャリア2における光搬送波周波数偏差はΔf/2-ΔfLOとなる。ここで、光サブキャリア周波数間隔Δfは既知であるので、1個の光搬送波周波数偏差補償量推定部において算出した1種のサブキャリアにおける光周波数偏差ΔfLOを用いて、全てのサブキャリアにおける光周波数偏差を補償することが可能となる。 Next, the operation of the optical phase deviation / optical carrier frequency deviation compensating apparatus 2000 of this embodiment will be described. In FIG. 15C, the optical subcarrier frequency interval of the optical OFDM signal is Δf, the average optical carrier frequency f 0 of the optical OFDM signal (hereinafter referred to as “subcarrier center optical frequency”), and the optical frequency f LO of the local light. The optical frequency deviation during the period is Δf LO . From the figure, the optical carrier frequency deviation in subcarrier 1 is Δf / 2 + Δf LO , whereas the optical carrier frequency deviation in subcarrier 2 is Δf / 2−Δf LO . Here, since the optical subcarrier frequency interval Δf is known, the optical frequency deviation Δf LO in one type of subcarrier calculated in one optical carrier frequency deviation compensation amount estimation unit is used, and the light in all subcarriers is detected. It becomes possible to compensate for the frequency deviation.
 また、第1の光搬送波周波数偏差補償部2100および第2の光搬送波周波数偏差補償部2200に入力される独立した信号データは同一時刻に受信されている。これより、一方の光搬送波周波数偏差補償部が備える光搬送波周波数偏差補償量推定部が推定した周波数偏差に、光サブキャリア周波数間隔に受信光信号のシンボル時間の2π倍の値を乗算した値を加算することで、他方の光サブキャリアの周波数偏差を推定することができる。 In addition, independent signal data input to the first optical carrier frequency deviation compensation unit 2100 and the second optical carrier frequency deviation compensation unit 2200 are received at the same time. Thus, a value obtained by multiplying the frequency deviation estimated by the optical carrier frequency deviation compensation amount estimation unit provided in one optical carrier frequency deviation compensation unit by the value of 2π times the symbol time of the received optical signal by the optical subcarrier frequency interval is obtained. By adding, the frequency deviation of the other optical subcarrier can be estimated.
 したがって、一方の光サブキャリアの周波数偏差から推定した周波数偏差を他方のサブキャリアの周波数偏差補償量に適用することにより、他方の光サブキャリアの位相誤差検出処理とフィルタ処理を削減することが可能となる。 Therefore, by applying the frequency deviation estimated from the frequency deviation of one optical subcarrier to the frequency deviation compensation amount of the other subcarrier, it is possible to reduce the phase error detection processing and filter processing of the other optical subcarrier. It becomes.
 光位相偏差・光搬送波周波数偏差補償装置2000の入力信号のシンボル時間は、一般に光信号のボーレートの逆数と同一の値であるため、あらかじめ定まった所定の値である。特に、光OFDM信号に対しては、光サブキャリア周波数間隔Δfは受信光信号のシンボル時間と等しくなるため、光サブキャリア周波数間隔計算部2300における加算値は常に「2π」となる。「2π」に相当する位相回転は「1」であるため、光OFDM信号の場合は光サブキャリア周波数間隔計算部2300における加算処理を省略することができる。 Since the symbol time of the input signal of the optical phase deviation / optical carrier frequency deviation compensation device 2000 is generally the same value as the reciprocal of the baud rate of the optical signal, it is a predetermined value determined in advance. In particular, for an optical OFDM signal, the optical subcarrier frequency interval Δf is equal to the symbol time of the received optical signal, so the added value in the optical subcarrier frequency interval calculation unit 2300 is always “2π”. Since the phase rotation corresponding to “2π” is “1”, in the case of an optical OFDM signal, the addition processing in the optical subcarrier frequency interval calculation unit 2300 can be omitted.
 なお、2個の独立した光信号間に時間ずれ(スキュー)が生じることにより、2個の独立した信号データの光位相偏差に対する補償量に差異が存在する場合がある。この場合であっても、光搬送波周波数偏差の時間変動は小さいため、一方の補償量に基づいて他方の光位相偏差を補償することが可能である。 It should be noted that there may be a difference in the compensation amount for the optical phase deviation between the two independent signal data due to the time lag (skew) between the two independent optical signals. Even in this case, since the time variation of the optical carrier frequency deviation is small, it is possible to compensate the other optical phase deviation based on one compensation amount.
 〔第3の実施形態〕
 次に、本発明の第3の実施形態について説明する。図4は、本発明の第3の実施形態に係る光位相偏差・光搬送波周波数偏差補償装置3000の構成を示すブロック図である。光位相偏差・光搬送波周波数偏差補償装置3000は、分離部としての光サブキャリア分離回路2010、第1の光搬送波周波数偏差補償部3100、第2の光搬送波周波数偏差補償部3200、および光副搬送波周波数間隔補償部としての光サブキャリア周波数間隔積算部3300を有する。
[Third Embodiment]
Next, a third embodiment of the present invention will be described. FIG. 4 is a block diagram showing a configuration of an optical phase deviation / optical carrier frequency deviation compensating apparatus 3000 according to the third embodiment of the present invention. The optical phase deviation / optical carrier frequency deviation compensation device 3000 includes an optical subcarrier separation circuit 2010 as a separation unit, a first optical carrier frequency deviation compensation unit 3100, a second optical carrier frequency deviation compensation unit 3200, and an optical subcarrier. An optical subcarrier frequency interval integration unit 3300 as a frequency interval compensation unit is provided.
 第1の光搬送波周波数偏差補償部3100は、光位相偏差検出部と第1の位相補償量算出部を含む光搬送波周波数偏差補償量推定部3110と、第1の補償部としての第1の補償実行部3120を備える。光搬送波周波数偏差補償量推定部3110は、光位相変化量を時間積分することにより第1の光位相偏差情報としての第1の位相補償量を算出する。第1の補償実行部3120は、第1の位相補償量を用いて第1の副搬送波信号における光搬送波周波数偏差を補償する。 The first optical carrier frequency deviation compensation unit 3100 includes an optical carrier frequency deviation compensation amount estimation unit 3110 including an optical phase deviation detection unit and a first phase compensation amount calculation unit, and a first compensation as a first compensation unit. An execution unit 3120 is provided. The optical carrier frequency deviation compensation amount estimation unit 3110 calculates the first phase compensation amount as the first optical phase deviation information by time-integrating the optical phase change amount. The first compensation execution unit 3120 compensates for the optical carrier frequency deviation in the first subcarrier signal using the first phase compensation amount.
 光サブキャリア周波数間隔積算部3300は、第1の光搬送波周波数偏差補償部3100から第1の位相補償量を取得する。そして、光副搬送波周波数間隔と隣接する変調信号間の時間間隔(シンボル時間)と変調信号個数(処理シンボル数)との積に比例する値を周波数間隔補償量として第1の位相補償量に加算することにより第2の光位相偏差情報としての第2の位相補償量を算出する。その後に、第2の位相補償量を第2の光搬送波周波数偏差補償部3200に送出する。 The optical subcarrier frequency interval integration unit 3300 acquires the first phase compensation amount from the first optical carrier frequency deviation compensation unit 3100. Then, a value proportional to the product of the optical subcarrier frequency interval and the time interval (symbol time) between adjacent modulation signals and the number of modulation signals (number of processed symbols) is added to the first phase compensation amount as the frequency interval compensation amount. As a result, the second phase compensation amount as the second optical phase deviation information is calculated. Thereafter, the second phase compensation amount is sent to the second optical carrier frequency deviation compensating unit 3200.
 第2の光搬送波周波数偏差補償部3200は、第2の補償部としての第2の補償実行部3220を備える。第2の補償実行部3220は、第2の位相補償量を用いて第2の副搬送波信号における光搬送波周波数偏差を補償する。 The second optical carrier frequency deviation compensation unit 3200 includes a second compensation execution unit 3220 as a second compensation unit. Second compensation execution unit 3220 compensates for the optical carrier frequency deviation in the second subcarrier signal using the second phase compensation amount.
 上述したように本実施形態の光サブキャリア周波数間隔積算部3300は、光サブキャリア周波数間隔Δfに受信光信号のシンボル時間と処理シンボル数の積(以下、「経過時刻」と言う)の2π倍の値を乗算した値を周波数間隔補償量として算出する。そして、光搬送波周波数偏差補償量推定部3110が出力する第1の位相補償量に周波数間隔補償量を加算し、第2の光搬送波周波数偏差補償部3200が備える第2の補償実行部3220に供給する。すなわち、第2の実施形態における第2の光搬送波周波数偏差補償量推定部2210が備える第2の位相補償量算出部2213の機能を、本実施形態における光サブキャリア周波数間隔積算部3300に持たせる構成とした。 As described above, the optical subcarrier frequency interval integration unit 3300 of this embodiment is 2π times the product of the symbol time of the received optical signal and the number of processing symbols (hereinafter referred to as “elapsed time”) in the optical subcarrier frequency interval Δf. A value obtained by multiplying the values is calculated as a frequency interval compensation amount. Then, the frequency interval compensation amount is added to the first phase compensation amount output from the optical carrier frequency deviation compensation amount estimation unit 3110 and supplied to the second compensation execution unit 3220 provided in the second optical carrier frequency deviation compensation unit 3200. To do. That is, the function of the second phase compensation amount calculation unit 2213 provided in the second optical carrier frequency deviation compensation amount estimation unit 2210 in the second embodiment is provided to the optical subcarrier frequency interval integration unit 3300 in this embodiment. The configuration.
 次に、本実施形態の光位相偏差・光搬送波周波数偏差補償装置3000の動作について説明する。図15Cにおいて、光OFDM信号の光サブキャリア周波数間隔をΔf、サブキャリア中心光周波数fと局所光の光周波数fLOの間の光周波数偏差をΔfLOとする。同図から、サブキャリア1における光搬送波周波数偏差はΔf/2+ΔfLOとなるのに対し、サブキャリア2における光搬送波周波数偏差はΔf/2-ΔfLOとなる。ここで、光サブキャリア周波数間隔Δfは既知であるので、1個の光搬送波周波数偏差補償量推定部において算出した1種のサブキャリアにおける光周波数偏差ΔfLOを用いて、全てのサブキャリアにおける光周波数偏差を補償することが可能となる。 Next, the operation of the optical phase deviation / optical carrier frequency deviation compensating apparatus 3000 according to this embodiment will be described. In FIG. 15C, the optical subcarrier frequency interval of the optical OFDM signal is Δf, and the optical frequency deviation between the subcarrier center optical frequency f 0 and the local light optical frequency f LO is Δf LO . From the figure, the optical carrier frequency deviation in subcarrier 1 is Δf / 2 + Δf LO , whereas the optical carrier frequency deviation in subcarrier 2 is Δf / 2−Δf LO . Here, since the optical subcarrier frequency interval Δf is known, the optical frequency deviation Δf LO in one type of subcarrier calculated in one optical carrier frequency deviation compensation amount estimation unit is used, and the light in all subcarriers is detected. It becomes possible to compensate for the frequency deviation.
 また、第1の光搬送波周波数偏差補償部3100および第2の光搬送波周波数偏差補償部3200に入力される独立した信号データは同一時刻に受信されている。これより、一方の光搬送波周波数偏差補償部が備える光搬送波周波数偏差補償量推定部が推定した周波数偏差に、光サブキャリア周波数間隔Δfに経過時刻の2π倍の値を乗算した値を加算することで、他方の光サブキャリアの周波数偏差を推定することができる。 Further, independent signal data input to the first optical carrier frequency deviation compensation unit 3100 and the second optical carrier frequency deviation compensation unit 3200 are received at the same time. Thus, the value obtained by multiplying the optical subcarrier frequency interval Δf by 2π times the elapsed time is added to the frequency deviation estimated by the optical carrier frequency deviation compensation amount estimation unit provided in one of the optical carrier frequency deviation compensation units. Thus, the frequency deviation of the other optical subcarrier can be estimated.
 したがって、一方の光サブキャリアの周波数偏差から推定した周波数偏差を他方のサブキャリアの周波数偏差補償量に適用することにより、他方の光サブキャリアの位相誤差検出処理を削減することが可能となる。 Therefore, by applying the frequency deviation estimated from the frequency deviation of one optical subcarrier to the frequency deviation compensation amount of the other subcarrier, the phase error detection processing of the other optical subcarrier can be reduced.
 ここで、光OFDM信号に対しては、光サブキャリア周波数間隔Δfは受信光信号のシンボル時間と等しくなる。そのため、光サブキャリア周波数間隔Δfに経過時刻の2π倍の値を乗算した値は「2π」の整数倍となる。「2π」の整数倍に相当する位相回転は「1」であるため、光OFDM信号の場合は光サブキャリア周波数間隔積算部3300における周波数間隔補償量を加算する処理を省略することができる。 Here, for an optical OFDM signal, the optical subcarrier frequency interval Δf is equal to the symbol time of the received optical signal. Therefore, a value obtained by multiplying the optical subcarrier frequency interval Δf by a value 2π times the elapsed time is an integral multiple of “2π”. Since the phase rotation corresponding to an integral multiple of “2π” is “1”, in the case of an optical OFDM signal, the process of adding the frequency interval compensation amount in the optical subcarrier frequency interval integrating unit 3300 can be omitted.
 なお、2個の独立した信号データ間にスキューが存在する場合であっても、光搬送波周波数偏差の時間変動は小さいため、一方の補償量に基づいて他方の光位相偏差を補償することが可能である。 Even when there is a skew between two independent signal data, the time variation of the optical carrier frequency deviation is small, so that it is possible to compensate the other optical phase deviation based on one compensation amount. It is.
 〔第4の実施形態〕
 次に、本発明の第4の実施形態について説明する。図5は、本発明の第4の実施形態に係る光位相偏差・光搬送波周波数偏差補償装置4000の構成を示すブロック図である。光位相偏差・光搬送波周波数偏差補償装置4000は、分離部としての光サブキャリア分離回路2010、第1の光搬送波周波数偏差補償部3100、および第2の光搬送波周波数偏差補償部3200を有する。
[Fourth Embodiment]
Next, a fourth embodiment of the present invention will be described. FIG. 5 is a block diagram showing a configuration of an optical phase deviation / optical carrier frequency deviation compensating apparatus 4000 according to the fourth embodiment of the present invention. The optical phase deviation / optical carrier frequency deviation compensation device 4000 includes an optical subcarrier separation circuit 2010 as a separation unit, a first optical carrier frequency deviation compensation unit 3100, and a second optical carrier frequency deviation compensation unit 3200.
 第1の光搬送波周波数偏差補償部3100は、光位相偏差検出部と第1の位相補償量算出部を含む光搬送波周波数偏差補償量推定部3110と、第1の補償部としての第1の補償実行部3120を備える。光搬送波周波数偏差補償量推定部3110は、光位相変化量を時間積分することにより第1の光位相偏差情報としての第1の位相補償量を算出する。第1の補償実行部3120は、第1の位相補償量を用いて第1の副搬送波信号における光搬送波周波数偏差を補償する。 The first optical carrier frequency deviation compensation unit 3100 includes an optical carrier frequency deviation compensation amount estimation unit 3110 including an optical phase deviation detection unit and a first phase compensation amount calculation unit, and a first compensation as a first compensation unit. An execution unit 3120 is provided. The optical carrier frequency deviation compensation amount estimation unit 3110 calculates the first phase compensation amount as the first optical phase deviation information by time-integrating the optical phase change amount. The first compensation execution unit 3120 compensates for the optical carrier frequency deviation in the first subcarrier signal using the first phase compensation amount.
 ここまでの構成は、第3の実施形態の光位相偏差・光搬送波周波数偏差補償装置3000の構成と同じである。本実施形態による光位相偏差・光搬送波周波数偏差補償装置4000は、第2の光搬送波周波数偏差補償部3200の動作と、光副搬送波周波数間隔補償部としての光サブキャリア周波数間隔補償部の構成が第3の実施形態と異なる。 The configuration so far is the same as the configuration of the optical phase deviation / optical carrier frequency deviation compensation device 3000 of the third embodiment. The optical phase deviation / optical carrier frequency deviation compensation device 4000 according to the present embodiment includes the operation of the second optical carrier frequency deviation compensation unit 3200 and the configuration of the optical subcarrier frequency interval compensation unit as the optical subcarrier frequency interval compensation unit. Different from the third embodiment.
 すなわち、第2の光搬送波周波数偏差補償部3200は、第2の補償部としての第2の補償実行部3220を備える。第2の補償実行部3220は、第2の光位相偏差情報として第1の位相補償量を用いて第2の副搬送波信号における光搬送波周波数偏差を補償する。 That is, the second optical carrier frequency deviation compensation unit 3200 includes a second compensation execution unit 3220 as a second compensation unit. The second compensation execution unit 3220 compensates for the optical carrier frequency deviation in the second subcarrier signal by using the first phase compensation amount as the second optical phase deviation information.
 また、光サブキャリア周波数間隔補償部は、第1の光副搬送波周波数間隔補償部としての第1の光サブキャリア周波数間隔補償部4310と、第2の光副搬送波周波数間隔補償部としての第2の光サブキャリア周波数間隔補償部4320を含む構成である。 The optical subcarrier frequency interval compensation unit includes a first optical subcarrier frequency interval compensation unit 4310 serving as a first optical subcarrier frequency interval compensation unit and a second optical subcarrier frequency interval compensation unit serving as a second optical subcarrier frequency interval compensation unit. The optical subcarrier frequency interval compensation unit 4320 of FIG.
 ここで、第1の光サブキャリア周波数間隔補償部4310は第1の光搬送波周波数偏差補償部3100と接続し、複数の光副搬送波の平均周波数と第1の光副搬送波の周波数との差を補償する第1の周波数間隔補償量を付与する。一方、第2の光サブキャリア周波数間隔補償部4320は第2の光搬送波周波数偏差補償部3200と接続し、複数の光副搬送波の平均周波数と第2の光副搬送波の周波数との差を補償する第2の周波数間隔補償量を付与する。 Here, the first optical subcarrier frequency interval compensation unit 4310 is connected to the first optical carrier frequency deviation compensation unit 3100, and calculates the difference between the average frequency of the plurality of optical subcarriers and the frequency of the first optical subcarrier. A first frequency interval compensation amount to be compensated is given. On the other hand, the second optical subcarrier frequency interval compensation unit 4320 is connected to the second optical carrier frequency deviation compensation unit 3200 to compensate for the difference between the average frequency of the plurality of optical subcarriers and the frequency of the second optical subcarrier. A second frequency interval compensation amount is given.
 具体的には図5に示したように、第1の光サブキャリア周波数間隔補償部4310は、「Δf/2」に経過時刻の2π倍の値を乗算した値だけサブキャリア1に位相回転を与える。一方、第2の光サブキャリア周波数間隔補償部4320は、「-Δf/2」に経過時刻の2π倍の値を乗算した値だけサブキャリア2に位相回転を与える。これにより、光サブキャリア周波数間隔を補償することが可能となる。 Specifically, as shown in FIG. 5, the first optical subcarrier frequency interval compensation unit 4310 rotates the phase of subcarrier 1 by a value obtained by multiplying “Δf / 2” by 2π times the elapsed time. give. On the other hand, second optical subcarrier frequency interval compensation unit 4320 gives phase rotation to subcarrier 2 by a value obtained by multiplying “−Δf / 2” by 2π times the elapsed time. This makes it possible to compensate for the optical subcarrier frequency interval.
 次に、本実施形態の光位相偏差・光搬送波周波数偏差補償装置4000の動作について説明する。図15Cにおいて、光OFDM信号の光サブキャリア周波数間隔をΔf、サブキャリア中心光周波数fと局所光の光周波数fLOの間の光周波数偏差をΔfLOとする。第1および第2の光搬送波周波数偏差補償部3100、3200の前段において、第1および第2の光サブキャリア周波数間隔補償部4310、4320がそれぞれ、予め2個の光サブキャリア間の周波数間隔Δfを補償する。これにより、2個の光サブキャリアの光搬送波周波数偏差はいずれもΔfLOと同一となる。ここで、第1および第2の光搬送波周波数偏差補償部3100、3200にそれぞれ入力される独立した信号データは同一時刻に受信されている。これより、第1の光搬送波周波数偏差補償部3100が備える光搬送波周波数偏差補償量推定部3110が推定した第1の位相補償量をそのまま適用し、第2の光搬送波周波数偏差補償部3200においてサブキャリア2における周波数偏差を補償することができる。その結果、本実施形態によれば、第2の光搬送波周波数偏差補償部3200においては位相補償量算出部が不要となり、装置の構成を簡略化することができる。 Next, the operation of the optical phase deviation / optical carrier frequency deviation compensating apparatus 4000 of this embodiment will be described. In FIG. 15C, the optical subcarrier frequency interval of the optical OFDM signal is Δf, and the optical frequency deviation between the subcarrier center optical frequency f 0 and the local light optical frequency f LO is Δf LO . Before the first and second optical carrier frequency deviation compensation units 3100 and 3200, the first and second optical subcarrier frequency interval compensation units 4310 and 4320 each have a frequency interval Δf between two optical subcarriers in advance. To compensate. As a result, the optical carrier frequency deviation between the two optical subcarriers is the same as Δf LO . Here, the independent signal data respectively input to the first and second optical carrier frequency deviation compensating units 3100 and 3200 are received at the same time. Thus, the first phase compensation amount estimated by the optical carrier frequency deviation compensation amount estimation unit 3110 included in the first optical carrier frequency deviation compensation unit 3100 is applied as it is, and the second optical carrier frequency deviation compensation unit 3200 performs sub- The frequency deviation in the carrier 2 can be compensated. As a result, according to this embodiment, the second optical carrier frequency deviation compensation unit 3200 does not require a phase compensation amount calculation unit, and the configuration of the apparatus can be simplified.
 なお、光サブキャリア周波数間隔補償部は各サブキャリアの経路にそれぞれ備える必要である。しかし、図5に示したように、光サブキャリア周波数間隔補償部を光サブキャリア分離回路2010と第1および第2の光搬送波周波数偏差補償部3100、3200の間に配置する必要はない。例えば、光サブキャリア分離回路2010の入力を2分岐し、分岐した一方を第1の光サブキャリア周波数間隔補償部4310に入力し、他方を第2の光サブキャリア周波数間隔補償部4320に入力する構成としてもよい。この場合においても、第1および第2の光サブキャリア周波数間隔補償部4310、4320の各出力信号を入力信号として用い、光サブキャリア分離処理を行うことにより得られる2個の信号は、図5に示した構成における出力信号と同一になる。 Note that an optical subcarrier frequency interval compensator must be provided for each subcarrier path. However, as shown in FIG. 5, it is not necessary to arrange the optical subcarrier frequency interval compensation unit between the optical subcarrier separation circuit 2010 and the first and second optical carrier frequency deviation compensation units 3100 and 3200. For example, the input of the optical subcarrier separation circuit 2010 is branched into two, and one of the branches is input to the first optical subcarrier frequency interval compensation unit 4310 and the other is input to the second optical subcarrier frequency interval compensation unit 4320. It is good also as a structure. Also in this case, the two signals obtained by performing the optical subcarrier separation processing using the output signals of the first and second optical subcarrier frequency interval compensation units 4310 and 4320 as input signals are shown in FIG. It becomes the same as the output signal in the configuration shown in FIG.
 具体的には、第1の光サブキャリア周波数間隔補償部4310から光サブキャリア分離回路2010に送出された信号データは、光サブキャリア分離回路2010においてFFT演算を施される。その後に、光サブキャリア分離回路2010の出力信号のいずれか一方のみを第1の光搬送波周波数偏差補償部3100に入力する。同様に、第2の光サブキャリア周波数間隔補償部4320から光サブキャリア分離回路2010に送出された信号データは、光サブキャリア分離回路2010においてFFT演算を施される。そして、光サブキャリア分離回路2010の出力信号のいずれか一方のみを第2の光搬送波周波数補償部3200に入力する構成とすることができる。 Specifically, the signal data transmitted from the first optical subcarrier frequency interval compensation unit 4310 to the optical subcarrier separation circuit 2010 is subjected to FFT calculation in the optical subcarrier separation circuit 2010. Thereafter, only one of the output signals of the optical subcarrier separation circuit 2010 is input to the first optical carrier frequency deviation compensation unit 3100. Similarly, the signal data transmitted from the second optical subcarrier frequency interval compensation unit 4320 to the optical subcarrier separation circuit 2010 is subjected to FFT calculation in the optical subcarrier separation circuit 2010. Then, only one of the output signals of the optical subcarrier separation circuit 2010 can be input to the second optical carrier frequency compensation unit 3200.
 図5に示した構成、つまり光サブキャリア周波数間隔補償部4310、4320を光サブキャリア分離回路2010と光搬送波周波数偏差補償部3100、3200との間に配置した場合は、光搬送波周波数偏差補償部の周波数範囲を狭くすることができる。これは、光搬送波周波数偏差補償部の入力信号が有する光搬送波周波数偏差が小さくなるためである。 When the configuration shown in FIG. 5, that is, when the optical subcarrier frequency interval compensation units 4310 and 4320 are arranged between the optical subcarrier separation circuit 2010 and the optical carrier frequency deviation compensation units 3100 and 3200, the optical carrier frequency deviation compensation unit is provided. Can be narrowed. This is because the optical carrier frequency deviation of the input signal of the optical carrier frequency deviation compensation unit is small.
 なお、第2の実施形態および第3の実施形態と同様に、2個の独立した信号データ間にスキューが存在する場合であっても、一方の補償量に基づいて他方の光位相偏差を補償することができる。 As in the second and third embodiments, even if there is a skew between two independent signal data, the other optical phase deviation is compensated based on one compensation amount. can do.
 〔第5の実施形態〕
 次に、本発明の第5の実施形態について説明する。本実施形態では、偏波多重分離技術を用いた場合について説明する。大容量の光通信システムを実現する技術として、上述した光位相変調方式とマルチキャリア伝送方式に加えて、偏波多重分離技術が知られている。偏波多重分離技術は、光送信器において搬送波が同一の周波数帯に属し、かつ、偏光状態が互いに直交する2種の独立した光信号を多重し、光受信器において受信信号から前述の2種の光信号を分離する技術である。これにより、2倍の伝送速度を実現することができる。
[Fifth Embodiment]
Next, a fifth embodiment of the present invention will be described. In the present embodiment, a case where a polarization multiplexing / demultiplexing technique is used will be described. As a technique for realizing a large-capacity optical communication system, a polarization multiplexing / demultiplexing technique is known in addition to the optical phase modulation method and the multicarrier transmission method described above. The polarization multiplexing / demultiplexing technology multiplexes two kinds of independent optical signals whose carrier waves belong to the same frequency band and whose polarization states are orthogonal to each other in the optical transmitter, and receives the above two kinds from the received signal in the optical receiver. It is a technology that separates the optical signal. Thereby, a double transmission speed can be realized.
 図17に、光位相変調方式、マルチキャリア伝送方式、および偏波多重分離技術を採用した光通信システム(以下では、「マルチキャリア偏波多重光通信システム」と言う)に用いられる光受信器における関連する光位相偏差・光搬送波周波数偏差補償装置9500の構成を示す。光受信器に入力された信号データは、光サブキャリア分離回路9010によって2個のサブキャリア信号に分離され、サブキャリア毎に偏波分離部9510および偏波分離部9520に入力される。偏波分離部9510、9520において、サブキャリア毎にさらに2個の独立した光信号に対応する信号データに分離され、合計4個の独立した信号データに対して光位相偏差及び搬送波周波数偏差が補償される。ここで、偏波分離部9510、9520における信号処理には、CMA(Constant Modulus Algorithm)が広く使用されている。 FIG. 17 shows an optical receiver used in an optical communication system (hereinafter referred to as “multicarrier polarization multiplexed optical communication system”) employing an optical phase modulation method, a multicarrier transmission method, and a polarization multiplexing / demultiplexing technique. The configuration of a related optical phase deviation / optical carrier frequency deviation compensating apparatus 9500 is shown. The signal data input to the optical receiver is separated into two subcarrier signals by the optical subcarrier separation circuit 9010 and is input to the polarization separation unit 9510 and the polarization separation unit 9520 for each subcarrier. In the polarization separators 9510 and 9520, each subcarrier is further separated into signal data corresponding to two independent optical signals, and the optical phase deviation and carrier frequency deviation are compensated for a total of four independent signal data. Is done. Here, CMA (Constant Modulus Algorithm) is widely used for signal processing in the polarization separation units 9510 and 9520.
 本実施形態では、上述したマルチキャリア偏波多重光通信システムに適用した光位相偏差・光搬送波周波数偏差補償装置について説明する。 In this embodiment, an optical phase deviation / optical carrier frequency deviation compensation apparatus applied to the above-described multicarrier polarization multiplexed optical communication system will be described.
 図6に、本実施形態による光位相偏差・光搬送波周波数偏差補償装置5000の構成を示す。光位相偏差・光搬送波周波数偏差補償装置5000は、第2の実施形態による光位相偏差・光搬送波周波数偏差補償装置2000をマルチキャリア偏波多重光通信システムに適用した構成であり、第1の偏波分離部5010と第2の偏波分離部5020を備える。ここで、互いに直交する偏波状態に属する信号データ間の光搬送波周波数偏差は等しい。このことから、一の偏波状態にあるいずれか1個の光サブキャリアの光搬送波周波数偏差に対する補償量推定値を、光サブキャリア間の光搬送波周波数間隔を考慮した上で、共通に光搬送波周波数補償値として用いることができる。 FIG. 6 shows the configuration of an optical phase deviation / optical carrier frequency deviation compensation device 5000 according to this embodiment. The optical phase deviation / optical carrier frequency deviation compensation device 5000 is configured by applying the optical phase deviation / optical carrier frequency deviation compensation device 2000 according to the second embodiment to a multicarrier polarization multiplexed optical communication system. A wave separation unit 5010 and a second polarization separation unit 5020 are provided. Here, the optical carrier frequency deviation between signal data belonging to mutually orthogonal polarization states is equal. From this, the compensation amount estimation value for the optical carrier frequency deviation of any one optical subcarrier in one polarization state is commonly used in consideration of the optical carrier frequency interval between the optical subcarriers. It can be used as a frequency compensation value.
 すなわち、4個の光搬送波周波数偏差補償部、すなわち第1の光搬送波周波数偏差補償部5110、第2の光搬送波周波数偏差補償部5120、第3の光搬送波周波数偏差補償部5210、および第4の光搬送波周波数偏差補償部5220のいずれか1個にのみ光搬送波周波数偏差補償量推定部を備えることとした。ここでは、図7に示すように、第1の光搬送波周波数偏差補償部5110にだけ第1の光搬送波周波数偏差補償量推定部2110を備えた場合について説明する。ここで、第1の光搬送波周波数偏差補償部5110の構成は第2の実施形態における第1の光搬送波周波数偏差補償部2100と同様である。また、第2から第4の光搬送波周波数偏差補償部5120、5210、5220の構成は、第2の実施形態における第2の光搬送波周波数偏差補償部2200と同様である。 That is, four optical carrier frequency deviation compensation units, that is, a first optical carrier frequency deviation compensation unit 5110, a second optical carrier frequency deviation compensation unit 5120, a third optical carrier frequency deviation compensation unit 5210, and a fourth optical carrier frequency deviation compensation unit 5210, Only one of the optical carrier frequency deviation compensation units 5220 includes the optical carrier frequency deviation compensation amount estimation unit. Here, as shown in FIG. 7, a case where only the first optical carrier frequency deviation compensation unit 5110 includes the first optical carrier frequency deviation compensation amount estimation unit 2110 will be described. Here, the configuration of the first optical carrier frequency deviation compensating unit 5110 is the same as that of the first optical carrier frequency deviation compensating unit 2100 in the second embodiment. The configurations of the second to fourth optical carrier frequency deviation compensating units 5120, 5210, and 5220 are the same as those of the second optical carrier frequency deviation compensating unit 2200 in the second embodiment.
 第1の光搬送波周波数偏差補償部5110が備える第1の光搬送波周波数偏差補償量推定部2110は、光搬送波周波数誤差検出部2111およびフィルタ部2112を備え、フィルタ部2112の出力信号を第1の位相補償量算出部2113に供給する。光サブキャリア周波数間隔計算部2300は、光サブキャリア周波数間隔Δfに受信光信号のシンボル時間の2π倍の値を乗算した値を、フィルタ部2112の出力信号に加算する。そして、この加算した結果をサブキャリア2に対する2個の位相補償量算出部、つまり第2の位相補償量算出部2213にそれぞれ供給する。 The first optical carrier frequency deviation compensation amount estimation unit 2110 provided in the first optical carrier frequency deviation compensation unit 5110 includes an optical carrier frequency error detection unit 2111 and a filter unit 2112, and outputs an output signal from the filter unit 2112 to the first optical carrier frequency error compensation unit 5110. This is supplied to the phase compensation amount calculation unit 2113. The optical subcarrier frequency interval calculation unit 2300 adds the value obtained by multiplying the optical subcarrier frequency interval Δf by 2π times the symbol time of the received optical signal to the output signal of the filter unit 2112. The result of the addition is supplied to two phase compensation amount calculation units for the subcarrier 2, that is, the second phase compensation amount calculation unit 2213.
 なお、一般に光位相偏差・光搬送波周波数偏差補償部の入力信号のシンボル時間は、光信号のボーレートの逆数と同一の値であるため、あらかじめ定められた所定の値である。特に、光OFDM信号に対しては、光サブキャリア周波数間隔Δfに受信光信号のシンボル時間の2π倍の値を乗算した値は「2π」となる。そのため光OFDM信号の場合には、光サブキャリア周波数間隔計算部2300における加算機能を省略することができる。 In general, the symbol time of the input signal of the optical phase deviation / optical carrier frequency deviation compensation unit is the same value as the reciprocal of the baud rate of the optical signal, and is a predetermined value. In particular, for an optical OFDM signal, the value obtained by multiplying the optical subcarrier frequency interval Δf by 2π times the symbol time of the received optical signal is “2π”. Therefore, in the case of an optical OFDM signal, the addition function in the optical subcarrier frequency interval calculation unit 2300 can be omitted.
 各光搬送波周波数偏差補償部に入力される独立した信号データは、同一時刻に受信されている。また、互いに直交関係にある偏波状態の2個の独立な光信号の光搬送波周波数は同一である。これらのことから、各サブキャリアにおいて一方の偏波状態に対する光搬送波周波数偏差補償部の光搬送波周波数偏差補償量推定部により推定された補償量を他方の偏波状態に対する光搬送波周波数偏差補償部の信号データに適用することが可能である。したがって、一方の偏波状態の光サブキャリアの周波数偏差から推定した周波数偏差を他の偏波状態の光サブキャリアの周波数偏差補償量に適用することにより、他方の偏波状態の光サブキャリアに対する位相誤差検出処理とフィルタ処理を削減することができる。 Independent signal data input to each optical carrier frequency deviation compensation unit is received at the same time. Further, the optical carrier frequencies of two independent optical signals in the polarization state that are orthogonal to each other are the same. From these, in each subcarrier, the compensation amount estimated by the optical carrier frequency deviation compensation amount estimation unit of the optical carrier frequency deviation compensation unit for one polarization state is changed to the optical carrier frequency deviation compensation unit for the other polarization state. It can be applied to signal data. Therefore, by applying the frequency deviation estimated from the frequency deviation of the optical subcarrier in one polarization state to the frequency deviation compensation amount of the optical subcarrier in the other polarization state, Phase error detection processing and filter processing can be reduced.
 すなわち、第2の実施形態で説明したように、各サブキャリアに属する信号データから推定される周波数偏差にはΔfの差異がある。そこで、光サブキャリア周波数間隔Δfに受信光信号のシンボル時間の2π倍の値を乗算した値を、他のサブキャリアの周波数偏差補償量に適用する。これにより、他の光サブキャリアに対する位相誤差検出処理とフィルタ処理を削減することが可能となる。以上説明したように、本実施形態によれば、合計3個分の光搬送波周波数誤差検出部2111とフィルタ部2112を削減することが可能となる。 That is, as described in the second embodiment, there is a difference Δf in the frequency deviation estimated from the signal data belonging to each subcarrier. Therefore, a value obtained by multiplying the optical subcarrier frequency interval Δf by a value 2π times the symbol time of the received optical signal is applied to the frequency deviation compensation amount of other subcarriers. As a result, it is possible to reduce the phase error detection process and the filter process for other optical subcarriers. As described above, according to the present embodiment, a total of three optical carrier frequency error detection units 2111 and filter units 2112 can be reduced.
 なお、4個の独立した信号データにスキューが存在する場合であっても、光搬送波周波数偏差の時間変動が小さいため、一の補償量に基づいて他の光位相偏差を補償することができる。 Note that even if there is a skew in the four independent signal data, the time variation of the optical carrier frequency deviation is small, so that other optical phase deviations can be compensated based on one compensation amount.
 〔第6の実施形態〕
 次に、本発明の第6の実施形態について説明する。図8に、本実施形態おける光位相偏差・光搬送波周波数偏差補償装置6000の構成を示す。光位相偏差・光搬送波周波数偏差補償装置6000は、第1の光サブキャリア周波数間隔補償部6310と第1の偏波分離部6010、および第2の光サブキャリア周波数間隔補償部6320と第2の偏波分離部6020を有する。
[Sixth Embodiment]
Next, a sixth embodiment of the present invention will be described. FIG. 8 shows a configuration of an optical phase deviation / optical carrier frequency deviation compensating apparatus 6000 in the present embodiment. The optical phase deviation / optical carrier frequency deviation compensator 6000 includes a first optical subcarrier frequency interval compensation unit 6310, a first polarization separation unit 6010, a second optical subcarrier frequency interval compensation unit 6320, and a second optical subcarrier frequency interval compensation unit 6310. A polarization separation unit 6020 is included.
 第1の光サブキャリア周波数間隔補償部6310において、サブキャリア1に対してΔf/2に経過時刻の2π倍の値を乗算した値だけ位相回転を与える。また、第2の光サブキャリア周波数間隔補償部6320において、サブキャリア2に対して-Δf/2に経過時刻の2π倍の値を乗算した値だけ位相回転を与える。 In the first optical subcarrier frequency interval compensation unit 6310, the phase rotation is given to the subcarrier 1 by a value obtained by multiplying Δf / 2 by 2π times the elapsed time. Further, second optical subcarrier frequency interval compensation section 6320 gives phase rotation to subcarrier 2 by a value obtained by multiplying −Δf / 2 by 2π times the elapsed time.
 4個の光搬送波周波数偏差補償部、すなわち第1の光搬送波周波数偏差補償部5110、第2の光搬送波周波数偏差補償部5120、第3の光搬送波周波数偏差補償部5210、および第4の光搬送波周波数偏差補償部5220のいずれか1個にのみ光搬送波周波数偏差補償量推定部を備える。ここでは、第1の光搬送波周波数偏差補償部5110にだけ第1の光搬送波周波数偏差補償量推定部2110を備えた構成とした。そして、光搬送波周波数偏差補償量推定部2110により推定された補償量を、それぞれの補償量実行部に供給することとした。 Four optical carrier frequency deviation compensation units, that is, a first optical carrier frequency deviation compensation unit 5110, a second optical carrier frequency deviation compensation unit 5120, a third optical carrier frequency deviation compensation unit 5210, and a fourth optical carrier Only one of the frequency deviation compensation units 5220 includes an optical carrier frequency deviation compensation amount estimation unit. Here, only the first optical carrier frequency deviation compensation unit 5110 is provided with the first optical carrier frequency deviation compensation amount estimation unit 2110. Then, the compensation amount estimated by the optical carrier frequency deviation compensation amount estimation unit 2110 is supplied to each compensation amount execution unit.
 第4の実施形態で説明したように、第1の光搬送波周波数偏差補償部5110および第2の光搬送波周波数偏差補償部5120に入力される独立した信号データは同一時刻に受信されている。このことから、±f/2に経過時刻の2π倍の値を乗算した値だけ位相回転を与えた後には、光搬送波周波数偏差が同一となる。さらに、互いに直交関係にある偏波状態の2個の独立な光信号の光搬送波周波数は同一である。そのため、いずれか一方の偏波状態に含まれる1個の光サブキャリアに対して、光搬送波周波数偏差補償部が備える光搬送波周波数偏差補償量推定部によって推定された補償量を、他の光搬送波周波数偏差補償部の信号データにそのまま適用することが可能である。したがって、本実施形態によれば、合計3個の光搬送波周波数偏差補償量推定部を削減することができる。 As described in the fourth embodiment, independent signal data input to the first optical carrier frequency deviation compensation unit 5110 and the second optical carrier frequency deviation compensation unit 5120 are received at the same time. From this, the optical carrier frequency deviation becomes the same after the phase rotation is given by the value obtained by multiplying ± f / 2 by a value 2π times the elapsed time. Furthermore, the optical carrier frequencies of two independent optical signals in the polarization state that are orthogonal to each other are the same. Therefore, with respect to one optical subcarrier included in any one polarization state, the compensation amount estimated by the optical carrier frequency deviation compensation amount estimation unit provided in the optical carrier frequency deviation compensation unit is used as another optical carrier. It can be applied as it is to the signal data of the frequency deviation compensator. Therefore, according to this embodiment, a total of three optical carrier frequency deviation compensation amount estimation units can be reduced.
 なお、光サブキャリア周波数間隔補償部は各サブキャリアに対して必ず1個必要であるが、光サブキャリア分離回路2010と第1の偏波分離部6010および第2の偏波分離部6020の間に備える必要はない。ただし、第1および第2の光サブキャリア周波数間隔補償部6310、6320をそれぞれ第1から第4の光搬送波周波数偏差補償部の前段に設けた場合は、光搬送波周波数偏差補償部の入力信号が有する光搬送波周波数偏差が小さくなるため、光搬送波周波数偏差補償部の周波数範囲を狭くすることができる。 Note that one optical subcarrier frequency interval compensator is necessarily required for each subcarrier, but between the optical subcarrier separation circuit 2010, the first polarization separation unit 6010, and the second polarization separation unit 6020. There is no need to prepare for. However, when the first and second optical subcarrier frequency interval compensation units 6310 and 6320 are provided in front of the first to fourth optical carrier frequency deviation compensation units, respectively, the input signal of the optical carrier frequency deviation compensation unit is Since the optical carrier frequency deviation is small, the frequency range of the optical carrier frequency deviation compensator can be narrowed.
 なお、4個の独立した信号データ間にスキューが存在する場合であっても、光搬送波周波数偏差の時間変動が小さいため、一の補償量に基づいて他の光位相偏差を補償することができる。 Even when there is a skew between four independent signal data, the time variation of the optical carrier frequency deviation is small, so that other optical phase deviations can be compensated based on one compensation amount. .
 〔第7の実施形態〕
 次に、本発明の第7の実施形態について説明する。図9に、本実施形態おける光位相偏差・光搬送波周波数偏差補償装置7000の構成を示す。光位相偏差・光搬送波周波数偏差補償装置7000は、X偏波信号の経路に第1の偏波分離部7010、第1の光位相偏差補償部7410、および第2の光位相偏差補償部7420を備える。また、Y偏波信号の経路に第2の偏波分離部7020、第3の光位相偏差補償部7430、および第4の光位相偏差補償部7440を備える。ここで、第1から第4の光位相偏差補償部のいずれか一つ(図9では第1の光位相偏差補償部7410)にのみ光位相偏差補償量推定部を備える。そして、3個の光位相偏差加算部7450において、光位相偏差補償量推定部によって推定された補償量に、独立な信号間の位相偏差を加算した値を、光位相偏差補償部が備える3個の位相補償部にそれぞれ供給する構成とした。
[Seventh Embodiment]
Next, a seventh embodiment of the present invention will be described. FIG. 9 shows a configuration of an optical phase deviation / optical carrier frequency deviation compensating apparatus 7000 in the present embodiment. The optical phase deviation / optical carrier frequency deviation compensation device 7000 includes a first polarization separation unit 7010, a first optical phase deviation compensation unit 7410, and a second optical phase deviation compensation unit 7420 in the path of the X polarization signal. Prepare. The Y polarization signal path includes a second polarization separation unit 7020, a third optical phase deviation compensation unit 7430, and a fourth optical phase deviation compensation unit 7440. Here, only one of the first to fourth optical phase deviation compensation units (the first optical phase deviation compensation unit 7410 in FIG. 9) includes the optical phase deviation compensation amount estimation unit. Then, in the three optical phase deviation adders 7450, the optical phase deviation compensator has three values obtained by adding the phase deviation between independent signals to the compensation amount estimated by the optical phase deviation compensation amount estimator. Each phase compensation unit is configured to be supplied.
 第1の光位相偏差補償部7410、第2の光位相偏差補償部7420、第3の光位相偏差補償部7430、および第4の光位相偏差補償部7440に入力される独立した信号データは同一時刻に受信されている。そのため、位相偏差は同一であるので、第1の光位相偏差補償部7410が備える光位相偏差補償量推定部によって推定された補償量を、他の第2から第4の光位相偏差補償部の信号データに適用することができる。したがって、本実施形態によれば、3個分の光位相偏差補償量推定部を削減することが可能となる。 The independent signal data input to the first optical phase deviation compensation unit 7410, the second optical phase deviation compensation unit 7420, the third optical phase deviation compensation unit 7430, and the fourth optical phase deviation compensation unit 7440 are the same. Received at the time. For this reason, since the phase deviation is the same, the compensation amount estimated by the optical phase deviation compensation amount estimation unit provided in the first optical phase deviation compensation unit 7410 is changed to that of the other second to fourth optical phase deviation compensation units. It can be applied to signal data. Therefore, according to the present embodiment, three optical phase deviation compensation amount estimation units can be reduced.
 なお、独立した光信号間にスキューが生じることにより、独立した信号データの光位相偏差に対する補償量に差異が存在する場合がある。この場合であっても、光位相偏差に対する補償量の差異を光位相偏差加算部7450において加算することにより、一の補償量に基づいて他の光位相偏差を補償することができる。 Note that there may be a difference in the compensation amount for the optical phase deviation of the independent signal data due to the skew between the independent optical signals. Even in this case, by adding the difference in the compensation amount with respect to the optical phase deviation in the optical phase deviation adder 7450, the other optical phase deviation can be compensated based on the one compensation amount.
 〔第8の実施形態〕
 次に、本発明の第8の実施形態について説明する。上述した実施形態においては、2個の光サブキャリアを有する光OFDM信号を用いる場合について説明した。しかし、これに限らず、3個以上の光サブキャリアを有する光OFDM信号に対しても、同様に補償することが可能である。すなわち、一の光サブキャリアに対する光搬送波周波数偏差補償量推定部における信号と、光サブキャリア間隔Δfから、他の光サブキャリアに対する各光搬送波周波数偏差補償部の出力信号を求めることができる。したがって、N個の光サブキャリアを有する光OFDM信号に対しても、光位相偏差および光搬送波周波数偏差を補償することが可能である。
[Eighth Embodiment]
Next, an eighth embodiment of the present invention will be described. In the above-described embodiment, the case where an optical OFDM signal having two optical subcarriers is used has been described. However, the present invention is not limited to this, and an optical OFDM signal having three or more optical subcarriers can be similarly compensated. That is, the output signal of each optical carrier frequency deviation compensation unit for another optical subcarrier can be obtained from the signal in the optical carrier frequency deviation compensation amount estimation unit for one optical subcarrier and the optical subcarrier interval Δf. Therefore, the optical phase deviation and the optical carrier frequency deviation can be compensated for an optical OFDM signal having N optical subcarriers.
 図10に、本実施形態おける光位相偏差・光搬送波周波数偏差補償装置8000の構成を示す。光サブキャリア分離回路8010のN個の出力信号の内、1個の光サブキャリアに対する第1の光搬送波周波数偏差補償部2100において、光搬送波周波数誤差検出値を検出する。そして、N-1個の光サブキャリア周波数間隔計算部2300において、光サブキャリア周波数間隔Δfに受信光信号のシンボル時間の2π倍の値を乗算した値を、光搬送波周波数誤差検出値に加算する。この加算した後の値を各第2の光搬送波周波数偏差補償部2200がそれぞれ備える第2の位相補償量算出部に供給する。これにより、1個の光サブキャリア光搬送波周波数偏差をもとに全ての光サブキャリアの光搬送波周波数偏差を補償することが可能となる。 FIG. 10 shows a configuration of an optical phase deviation / optical carrier frequency deviation compensation device 8000 in the present embodiment. Of the N output signals of the optical subcarrier separation circuit 8010, the first optical carrier frequency deviation compensation unit 2100 for one optical subcarrier detects an optical carrier frequency error detection value. Then, in N−1 optical subcarrier frequency interval calculation unit 2300, a value obtained by multiplying optical subcarrier frequency interval Δf by 2π times the symbol time of the received optical signal is added to the optical carrier frequency error detection value. . The value after the addition is supplied to a second phase compensation amount calculation unit provided in each second optical carrier frequency deviation compensation unit 2200. Thereby, it becomes possible to compensate for the optical carrier frequency deviation of all the optical subcarriers based on one optical subcarrier optical carrier frequency deviation.
 次に、本実施形態による光位相偏差・光搬送波周波数偏差補償装置8000の動作について説明する。図15Bに示したように、光OFDM信号の光サブキャリア間隔Δfは一定である。また、第1の光搬送波周波数偏差補償部2100において、1個のサブキャリアに対する光搬送波周波数偏差の推定値を算出することができる。よって、各光サブキャリア周波数間隔にシンボル時間を乗算した値を、この推定値に加算し、加算した後の値を用いることにより、全ての光サブキャリアに対する光搬送波周波数偏差を補償することができる。すなわち、一の光サブキャリアの周波数偏差から推定した周波数偏差を、他の全ての光サブキャリアの周波数偏差補償量に適用することができるので、他の光サブキャリアにおける位相誤差検出処理とフィルタ処理を削減することが可能となる。 Next, the operation of the optical phase deviation / optical carrier frequency deviation compensator 8000 according to this embodiment will be described. As shown in FIG. 15B, the optical subcarrier interval Δf of the optical OFDM signal is constant. Further, the first optical carrier frequency deviation compensating unit 2100 can calculate an estimated value of the optical carrier frequency deviation for one subcarrier. Therefore, a value obtained by multiplying each optical subcarrier frequency interval by the symbol time is added to this estimated value, and the value after addition can be used to compensate for the optical carrier frequency deviation for all the optical subcarriers. . That is, since the frequency deviation estimated from the frequency deviation of one optical subcarrier can be applied to the frequency deviation compensation amount of all other optical subcarriers, phase error detection processing and filter processing in other optical subcarriers are possible. Can be reduced.
 なお、光位相偏差・光搬送波周波数偏差補償部の入力信号のシンボル時間は、一般に光信号のボーレートの逆数と同一の値であるため、あらかじめ定められた所定の値である。特に、光OFDM信号に対しては、光サブキャリア周波数間隔Δfに受信光信号のシンボル時間の2π倍の値を乗算した値は「2π」となるため、光サブキャリア周波数間隔計算部2300における加算機能を省略することができる。 The symbol time of the input signal of the optical phase deviation / optical carrier frequency deviation compensation unit is generally the same value as the reciprocal of the baud rate of the optical signal, and is a predetermined value determined in advance. In particular, for an optical OFDM signal, the value obtained by multiplying the optical subcarrier frequency interval Δf by 2π times the symbol time of the received optical signal is “2π”, so the addition in the optical subcarrier frequency interval calculation unit 2300 is performed. The function can be omitted.
 なお、2個の独立した光信号間に時間ずれ(スキュー)が生じることにより、2個の独立した信号データの光位相偏差に対する補償量に差異が存在する場合がある。しかし、このような場合であっても、光搬送波周波数偏差の時間変動が小さいため、一の補償量に基づいて他の光位相偏差を補償することができる。 It should be noted that there may be a difference in the compensation amount for the optical phase deviation between the two independent signal data due to the time lag (skew) between the two independent optical signals. However, even in such a case, since the time variation of the optical carrier frequency deviation is small, other optical phase deviations can be compensated based on one compensation amount.
 また、いずれか一のサブキャリアに対する光位相偏差補償部150が備える光位相偏差補償量推定部160により推定される補償量は、位相偏差が同一であるため、他の光位相偏差補償部150の信号データにも適用することが可能である。したがって、本実施形態によれば、光位相偏差補償量推定部160を削減することが可能となる。 Further, the compensation amount estimated by the optical phase deviation compensation amount estimation unit 160 included in the optical phase deviation compensation unit 150 for any one subcarrier has the same phase deviation. It can also be applied to signal data. Therefore, according to this embodiment, the optical phase deviation compensation amount estimation unit 160 can be reduced.
 上記実施形態においては、マルチキャリア伝送方式として、光OFDM信号を用いる場合を例として説明してきた。しかし、これに限らず、隣り合う光サブキャリア間の周波数間隔が一定値であるような他のマルチキャリア伝送方式にも適用可能である。 In the above embodiment, the case where an optical OFDM signal is used as the multicarrier transmission system has been described as an example. However, the present invention is not limited to this, and the present invention can also be applied to other multicarrier transmission systems in which the frequency interval between adjacent optical subcarriers is a constant value.
 本発明は上記実施形態に限定されることなく、特許請求の範囲に記載した発明の範囲内で、種々の変形が可能であり、それらも本発明の範囲内に含まれるものであることはいうまでもない。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope of the invention described in the claims, and it is also included within the scope of the present invention. Not too long.
 この出願は、2012年3月14日に出願された日本出願特願2012-057061を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2012-056761 filed on Mar. 14, 2012, the entire disclosure of which is incorporated herein.
 1000、2000、3000、4000、5000、6000、7000、8000  光位相偏差・光搬送波周波数偏差補償装置
 1010  分離部
 1100、2100、3100、5110  第1の光搬送波周波数偏差補償部
 1110  光位相偏差検出部
 1120  第1の補償部
 1200、2200、3200、5120  第2の光搬送波周波数偏差補償部
 1220  第2の補償部
 1300  光副搬送波周波数間隔補償部
 1410、7410  第1の光位相偏差補償部
 1411  光位相偏差補償量推定部
 1412  第1の位相補償部
 1420、7420  第2の光位相偏差補償部
 1422  第2の位相補償部
 2010、8010  光サブキャリア分離回路
 2110  第1の光搬送波周波数偏差補償量推定部
 2111  光搬送波周波数誤差検出部
 2112  フィルタ部
 2113  第1の位相補償量算出部
 2120、3120  第1の補償実行部
 2210  第2の光搬送波周波数偏差補償量推定部
 2213  第2の位相補償量算出部
 2220、3220  第2の補償実行部
 2300  光サブキャリア周波数間隔計算部
 3300  光サブキャリア周波数間隔積算部
 3110  光搬送波周波数偏差補償量推定部
 4310、6310  第1の光サブキャリア周波数間隔補償部
 4320、6320  第2の光サブキャリア周波数間隔補償部
 5010、6010、7010  第1の偏波分離部
 5020、6020、7020  第2の偏波分離部
 5210  第3の光搬送波周波数偏差補償部
 5220  第4の光搬送波周波数偏差補償部
 7430  第3の光位相偏差補償部
 7440  第4の光位相偏差補償部
 7450  光位相偏差加算部
 9000、9500  関連する光位相偏差・光搬送波周波数偏差補償装置
 9010  光サブキャリア分離回路
 9100、9200  光搬送波周波数偏差補償部
 9130、9230  光位相偏差補償部
 9510、9520  偏波分離部
 100  関連する光搬送波周波数偏差補償部
 110  光搬送波周波数偏差補償量推定部
 111  光搬送波周波数誤差検出部
 112、162  フィルタ部
 113  位相補償量算出部
 120、170  補償実行部
 150  関連する光位相偏差補償部
 160  光位相偏差補償量推定部
 161  位相誤差検出部
1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000 Optical phase deviation / optical carrier frequency deviation compensation device 1010 Separating unit 1100, 2100, 3100, 5110 First optical carrier frequency deviation compensating unit 1110 Optical phase deviation detecting unit 1120 First compensation unit 1200, 2200, 3200, 5120 Second optical carrier frequency deviation compensation unit 1220 Second compensation unit 1300 Optical subcarrier frequency interval compensation unit 1410, 7410 First optical phase deviation compensation unit 1411 Optical phase Deviation compensation amount estimation unit 1412 First phase compensation unit 1420, 7420 Second optical phase deviation compensation unit 1422 Second phase compensation unit 2010, 8010 Optical subcarrier separation circuit 2110 First optical carrier frequency deviation compensation amount estimation unit 2111 Optical carrier frequency error detection Unit 2112 filter unit 2113 first phase compensation amount calculation unit 2120, 3120 first compensation execution unit 2210 second optical carrier frequency deviation compensation amount estimation unit 2213 second phase compensation amount calculation unit 2220, 3220 second compensation Execution unit 2300 Optical subcarrier frequency interval calculation unit 3300 Optical subcarrier frequency interval integration unit 3110 Optical carrier frequency deviation compensation amount estimation unit 4310, 6310 First optical subcarrier frequency interval compensation unit 4320, 6320 Second optical subcarrier frequency Interval compensation unit 5010, 6010, 7010 First polarization separation unit 5020, 6020, 7020 Second polarization separation unit 5210 Third optical carrier frequency deviation compensation unit 5220 Fourth optical carrier frequency deviation compensation unit 7430 Third Optical phase deviation compensation unit 7440 Fourth optical phase deviation Compensator 7450 Optical phase deviation adder 9000, 9500 Related optical phase deviation / optical carrier frequency deviation compensation device 9010 Optical subcarrier separation circuit 9100, 9200 Optical carrier frequency deviation compensation unit 9130, 9230 Optical phase deviation compensation unit 9510, 9520 Wave separation unit 100 Optical carrier frequency deviation compensation unit 110 Optical carrier frequency deviation compensation amount estimation unit 111 Optical carrier frequency error detection unit 112, 162 Filter unit 113 Phase compensation amount calculation unit 120, 170 Compensation execution unit 150 Related optical phase Deviation compensation unit 160 Optical phase deviation compensation amount estimation unit 161 Phase error detection unit

Claims (10)

  1. 第1の光副搬送波と第2の光副搬送波を少なくとも含む周波数の異なる複数の光副搬送波をそれぞれ変調し多重した周波数分割多重信号光を、局所光と混合してコヒーレント検波することにより得られる周波数分割多重信号を受信し、少なくとも第1の副搬送波信号と第2の副搬送波信号を出力する分離手段と、
     前記第1の副搬送波信号を入力する第1の光搬送波周波数偏差補償手段と、
     前記第2の副搬送波信号を入力する第2の光搬送波周波数偏差補償手段と、
     前記第1の光搬送波周波数偏差補償手段および前記第2の光搬送波周波数偏差補償手段と接続する光副搬送波周波数間隔補償手段、とを有し、
     前記第1の光搬送波周波数偏差補償手段は、前記第1の副搬送波信号における隣接する変調信号間の光位相偏差の変化量である光位相変化量を検出する光位相偏差検出手段と、前記光位相変化量に基づく第1の光位相偏差情報を用いて前記第1の副搬送波信号における光搬送波周波数偏差を補償する第1の補償手段を備え、
     前記光副搬送波周波数間隔補償手段は、前記第1の光副搬送波と前記第2の光副搬送波の周波数差である光副搬送波周波数間隔を補償する周波数間隔補償量を算出し、
     前記第2の光搬送波周波数偏差補償手段は、前記周波数間隔補償量と前記第1の光位相偏差情報とから算出される前記第2の光位相偏差情報を用いて前記第2の副搬送波信号における光搬送波周波数偏差を補償する第2の補償手段を備える
     光位相偏差・光搬送波周波数偏差補償装置。
    It is obtained by mixing and coherently detecting frequency division multiplexed signal light obtained by modulating and multiplexing a plurality of optical subcarriers having different frequencies including at least the first optical subcarrier and the second optical subcarrier. Separating means for receiving the frequency division multiplexed signal and outputting at least a first subcarrier signal and a second subcarrier signal;
    First optical carrier frequency deviation compensating means for inputting the first subcarrier signal;
    Second optical carrier frequency deviation compensating means for inputting the second subcarrier signal;
    Optical subcarrier frequency interval compensation means connected to the first optical carrier frequency deviation compensation means and the second optical carrier frequency deviation compensation means,
    The first optical carrier frequency deviation compensating means comprises: an optical phase deviation detecting means for detecting an optical phase change amount that is a change amount of an optical phase deviation between adjacent modulation signals in the first subcarrier signal; First compensation means for compensating for an optical carrier frequency deviation in the first subcarrier signal using first optical phase deviation information based on a phase change amount;
    The optical subcarrier frequency interval compensation means calculates a frequency interval compensation amount for compensating an optical subcarrier frequency interval, which is a frequency difference between the first optical subcarrier and the second optical subcarrier,
    The second optical carrier frequency deviation compensation means uses the second optical phase deviation information calculated from the frequency interval compensation amount and the first optical phase deviation information in the second subcarrier signal. An optical phase deviation / optical carrier frequency deviation compensator comprising second compensation means for compensating the optical carrier frequency deviation.
  2. 請求項1に記載した光位相偏差・光搬送波周波数偏差補償装置において、
     前記第1の光搬送波周波数偏差補償手段は、第1の位相補償量算出手段をさらに有し、
     前記第1の位相補償量算出手段は、前記第1の光位相偏差情報としての前記光位相変化量を時間積分することにより第1の位相補償量を算出し、
     前記第1の補償手段は、前記第1の位相補償量を用いて前記第1の副搬送波信号における光搬送波周波数偏差を補償し、
     前記光副搬送波周波数間隔補償手段は、前記第1の光搬送波周波数偏差補償手段から前記第1の光位相偏差情報としての前記光位相変化量を取得し、前記光副搬送波周波数間隔と前記隣接する変調信号間の時間間隔との積に比例する値を前記周波数間隔補償量として前記光位相変化量に加算することにより前記第2の光位相偏差情報を算出し、前記第2の光位相偏差情報を前記第2の光搬送波周波数偏差補償手段に送出し、
     前記第2の光搬送波周波数偏差補償手段は、第2の位相補償量算出手段をさらに有し、
     前記第2の位相補償量算出手段は、前記第2の光位相偏差情報を時間積分することにより第2の位相補償量を算出し、
     前記第2の補償手段は前記第2の位相補償量を用いて前記第2の副搬送波信号における光搬送波周波数偏差を補償する
     光位相偏差・光搬送波周波数偏差補償装置。
    In the optical phase deviation / optical carrier frequency deviation compensation device according to claim 1,
    The first optical carrier frequency deviation compensating means further includes a first phase compensation amount calculating means,
    The first phase compensation amount calculating means calculates a first phase compensation amount by time-integrating the optical phase change amount as the first optical phase deviation information,
    The first compensation means compensates for an optical carrier frequency deviation in the first subcarrier signal using the first phase compensation amount,
    The optical subcarrier frequency interval compensation means acquires the optical phase change amount as the first optical phase deviation information from the first optical carrier frequency deviation compensation means, and is adjacent to the optical subcarrier frequency interval. The second optical phase deviation information is calculated by adding a value proportional to the product of the time interval between the modulation signals to the optical phase change amount as the frequency interval compensation amount, and calculating the second optical phase deviation information. Is sent to the second optical carrier frequency deviation compensating means,
    The second optical carrier frequency deviation compensating means further includes second phase compensation amount calculating means,
    The second phase compensation amount calculating means calculates a second phase compensation amount by time-integrating the second optical phase deviation information;
    The second compensation means compensates for an optical carrier frequency deviation in the second subcarrier signal using the second phase compensation amount. An optical phase deviation / optical carrier frequency deviation compensation device.
  3. 請求項1に記載した光位相偏差・光搬送波周波数偏差補償装置において、
     前記第1の光搬送波周波数偏差補償手段は、第1の位相補償量算出手段をさらに有し、
     前記第1の位相補償量算出手段は、前記光位相変化量を時間積分することにより前記第1の光位相偏差情報としての第1の位相補償量を算出し、
     前記第1の補償手段は、前記第1の位相補償量を用いて前記第1の副搬送波信号における光搬送波周波数偏差を補償し、
     前記光副搬送波周波数間隔補償手段は、前記第1の光搬送波周波数偏差補償手段から前記第1の位相補償量を取得し、前記光副搬送波周波数間隔と前記隣接する変調信号間の時間間隔と変調信号個数との積に比例する値を前記周波数間隔補償量として前記第1の位相補償量に加算することにより前記第2の光位相偏差情報としての第2の位相補償量を算出し、前記第2の位相補償量を前記第2の光搬送波周波数偏差補償手段に送出し、
     前記第2の補償手段は、前記第2の位相補償量を用いて前記第2の副搬送波信号における光搬送波周波数偏差を補償する
     光位相偏差・光搬送波周波数偏差補償装置。
    In the optical phase deviation / optical carrier frequency deviation compensation device according to claim 1,
    The first optical carrier frequency deviation compensating means further includes a first phase compensation amount calculating means,
    The first phase compensation amount calculating means calculates the first phase compensation amount as the first optical phase deviation information by time-integrating the optical phase change amount,
    The first compensation means compensates for an optical carrier frequency deviation in the first subcarrier signal using the first phase compensation amount,
    The optical subcarrier frequency interval compensation unit obtains the first phase compensation amount from the first optical carrier frequency deviation compensation unit, and modulates the time interval between the optical subcarrier frequency interval and the adjacent modulation signal and the modulation. A value proportional to the product of the number of signals is added to the first phase compensation amount as the frequency interval compensation amount to calculate a second phase compensation amount as the second optical phase deviation information, and 2 phase compensation amount is sent to the second optical carrier frequency deviation compensating means,
    The second compensation means compensates for an optical carrier frequency deviation in the second subcarrier signal using the second phase compensation amount. An optical phase deviation / optical carrier frequency deviation compensation device.
  4. 請求項1に記載した光位相偏差・光搬送波周波数偏差補償装置において、
     前記光副搬送波周波数間隔補償手段は、前記第1の光搬送波周波数偏差補償手段と接続する第1の光副搬送波周波数間隔補償手段と、前記第2の光搬送波周波数偏差補償手段と接続する第2の光副搬送波周波数間隔補償手段を含み、
     前記第1の光副搬送波周波数間隔補償手段は、前記複数の光副搬送波の平均周波数と前記第1の光副搬送波の周波数との差を補償する第1の周波数間隔補償量を付与し、
     前記第2の光副搬送波周波数間隔補償手段は、前記複数の光副搬送波の平均周波数と前記第2の光副搬送波の周波数との差を補償する第2の周波数間隔補償量を付与し、
     前記第1の光搬送波周波数偏差補償手段は、第1の位相補償量算出手段をさらに有し、
     前記第1の位相補償量算出手段は、前記光位相変化量を時間積分することにより前記第1の光位相偏差情報としての第1の位相補償量を算出し、
     前記第1の補償手段は、前記第1の位相補償量を用いて前記第1の副搬送波信号における光搬送波周波数偏差を補償し、
     前記第2の補償手段は、前記第2の光位相偏差情報として前記第1の位相補償量を用いて前記第2の副搬送波信号における光搬送波周波数偏差を補償する
     光位相偏差・光搬送波周波数偏差補償装置。
    In the optical phase deviation / optical carrier frequency deviation compensation device according to claim 1,
    The optical subcarrier frequency interval compensating means is connected to the first optical carrier frequency deviation compensating means and to the second optical carrier frequency deviation compensating means connected to the first optical carrier frequency deviation compensating means. Optical subcarrier frequency interval compensation means,
    The first optical subcarrier frequency interval compensation means provides a first frequency interval compensation amount that compensates for a difference between an average frequency of the plurality of optical subcarriers and a frequency of the first optical subcarrier,
    The second optical subcarrier frequency interval compensation means provides a second frequency interval compensation amount for compensating for a difference between an average frequency of the plurality of optical subcarriers and a frequency of the second optical subcarrier,
    The first optical carrier frequency deviation compensating means further includes a first phase compensation amount calculating means,
    The first phase compensation amount calculating means calculates the first phase compensation amount as the first optical phase deviation information by time-integrating the optical phase change amount,
    The first compensation means compensates for an optical carrier frequency deviation in the first subcarrier signal using the first phase compensation amount,
    The second compensation means compensates for an optical carrier frequency deviation in the second subcarrier signal using the first phase compensation amount as the second optical phase deviation information. Optical phase deviation / optical carrier frequency deviation Compensation device.
  5. 請求項1から4のいずれか一項に記載した光位相偏差・光搬送波周波数偏差補償装置において、
     前記第1の副搬送波信号の経路上に第1の光位相偏差補償手段を備え、
     前記第2の副搬送波信号の経路上に第2の光位相偏差補償手段を備え、
     前記第1の光位相偏差補償手段は、光位相偏差補償量を算出する光位相偏差補償量推定手段と、前記光位相偏差補償量に基づいて前記第1の副搬送波信号における光位相偏差を補償する第1の位相補償手段を備え、
     前記第2の光位相偏差補償手段は、第2の位相補償手段を備え、
     前記第2の位相補償手段は、前記第1の光副搬送波と前記第2の光副搬送波との間の位相偏差に前記光位相偏差補償量を加算した値に基づいて、前記第2の副搬送波信号における光位相偏差を補償する
     光位相偏差・光搬送波周波数偏差補償装置。
    In the optical phase deviation / optical carrier frequency deviation compensation device according to any one of claims 1 to 4,
    A first optical phase deviation compensation means on the path of the first subcarrier signal;
    A second optical phase deviation compensation means on the path of the second subcarrier signal;
    The first optical phase deviation compensation means compensates for an optical phase deviation in the first subcarrier signal based on the optical phase deviation compensation quantity, and an optical phase deviation compensation quantity estimation means for calculating an optical phase deviation compensation quantity. First phase compensation means for
    The second optical phase deviation compensation means includes second phase compensation means,
    The second phase compensation means is configured to add the second sub-carrier based on a value obtained by adding the optical phase deviation compensation amount to a phase deviation between the first optical sub-carrier and the second optical sub-carrier. Optical phase deviation / optical carrier frequency deviation compensation device for compensating optical phase deviation in a carrier signal.
  6. 請求項1から5のいずれか一項に記載した光位相偏差・光搬送波周波数偏差補償装置において、
     前記複数の光副搬送波はそれぞれ、第1の偏波を有する第1偏波光副搬送波と、前記第1の偏波と直交する第2の偏波を有する第2偏波光副搬送波を含み、
     前記第1の副搬送波信号は、前記第1偏波光副搬送波によって伝送された第1偏波の第1副搬送波信号と、前記第2偏波光副搬送波によって伝送された第2偏波の第1副搬送波信号を含み、
     前記第2の副搬送波信号は、前記第1偏波光副搬送波によって伝送された第1偏波の第2副搬送波信号と、前記第2偏波光副搬送波によって伝送された第2偏波の第2副搬送波信号を含む
     光位相偏差・光搬送波周波数偏差補償装置。
    In the optical phase deviation / optical carrier frequency deviation compensating device according to any one of claims 1 to 5,
    Each of the plurality of optical subcarriers includes a first polarization optical subcarrier having a first polarization and a second polarization optical subcarrier having a second polarization orthogonal to the first polarization,
    The first subcarrier signal includes a first polarized first subcarrier signal transmitted by the first polarized optical subcarrier and a first polarized first signal transmitted by the second polarized optical subcarrier. Including a subcarrier signal,
    The second subcarrier signal includes a second polarized subcarrier signal transmitted by the first polarized optical subcarrier and a second polarized second signal transmitted by the second polarized optical subcarrier. Optical phase deviation / optical carrier frequency deviation compensation device including subcarrier signal.
  7. 請求項6に記載した光位相偏差・光搬送波周波数偏差補償装置において、
     前記第1の光搬送波周波数偏差補償手段の前段に第1の偏波分離手段を備え、前記第2の光搬送波周波数偏差補償手段の前段に第2の偏波分離手段を備え、
     前記第1の偏波分離手段は、前記第1の副搬送波信号を入力して、前記第1偏波の第1副搬送波信号と前記第2偏波の第1副搬送波信号を出力し、
     前記第2の偏波分離手段は、前記第2の副搬送波信号を入力して、前記第1偏波の第2副搬送波信号と前記第2偏波の第2副搬送波信号を出力する
     光位相偏差・光搬送波周波数偏差補償装置。
    In the optical phase deviation / optical carrier frequency deviation compensating apparatus according to claim 6,
    The first optical carrier frequency deviation compensation means includes a first polarization separation means before the first optical carrier frequency deviation compensation means, and the second optical carrier frequency deviation compensation means precedes a second polarization separation means.
    The first polarization separation means inputs the first subcarrier signal and outputs the first polarization first subcarrier signal and the second polarization first subcarrier signal;
    The second polarization separation means inputs the second subcarrier signal, and outputs the second polarization subcarrier signal of the first polarization and the second subcarrier signal of the second polarization. Deviation and optical carrier frequency deviation compensation device.
  8. 請求項1から7のいずれか一項に記載した光位相偏差・光搬送波周波数偏差補償装置において、
     前記第1の光搬送波周波数偏差補償手段を、第1の個数だけ備え、
     前記第2の光搬送波周波数偏差補償手段を、複数個である第2の個数だけ備え、
     前記光副搬送波周波数間隔補償手段を、第2の個数だけ備え、
     前記第1の個数と前記第2の個数の和が、前記複数の光副搬送波の個数に等しい
     光位相偏差・光搬送波周波数偏差補償装置。
    In the optical phase deviation / optical carrier frequency deviation compensation device according to any one of claims 1 to 7,
    A first number of the first optical carrier frequency deviation compensating means are provided,
    The second optical carrier frequency deviation compensating means includes a plurality of second numbers which are plural,
    A second number of optical subcarrier frequency interval compensation means are provided,
    An optical phase deviation / optical carrier frequency deviation compensation device in which a sum of the first number and the second number is equal to the number of the plurality of optical subcarriers.
  9. 第1の光副搬送波と第2の光副搬送波を少なくとも含む周波数の異なる複数の光副搬送波をそれぞれ変調し多重した周波数分割多重信号光を、局所光と混合してコヒーレント検波することにより得られる周波数分割多重信号を受信し、少なくとも第1の副搬送波信号と第2の副搬送波信号を出力し、
     前記第1の副搬送波信号における隣接する変調信号間の光位相偏差の変化量である光位相変化量を検出し、前記光位相変化量に基づく第1の光位相偏差情報を用いて前記第1の副搬送波信号における光搬送波周波数偏差を補償し、
     前記第1の光副搬送波と前記第2の光副搬送波の周波数差である光副搬送波周波数間隔を補償する周波数間隔補償量を算出し、
     前記周波数間隔補償量と前記第1の光位相偏差情報とから算出される前記第2の光位相偏差情報を用いて前記第2の副搬送波信号における光搬送波周波数偏差を補償する
     光位相偏差・光搬送波周波数偏差補償方法。
    It is obtained by mixing and coherently detecting frequency division multiplexed signal light obtained by modulating and multiplexing a plurality of optical subcarriers having different frequencies including at least the first optical subcarrier and the second optical subcarrier. Receiving the frequency division multiplexed signal and outputting at least a first subcarrier signal and a second subcarrier signal;
    An optical phase change amount that is a change amount of an optical phase deviation between adjacent modulation signals in the first subcarrier signal is detected, and the first optical phase deviation information based on the optical phase change amount is used to detect the first optical phase deviation amount. Compensates for the optical carrier frequency deviation in the subcarrier signal of
    Calculating a frequency interval compensation amount for compensating an optical subcarrier frequency interval, which is a frequency difference between the first optical subcarrier and the second optical subcarrier,
    Optical phase deviation / light which compensates optical carrier frequency deviation in the second subcarrier signal using the second optical phase deviation information calculated from the frequency interval compensation amount and the first optical phase deviation information Carrier frequency deviation compensation method.
  10. 請求項9に記載した光位相偏差・光搬送波周波数偏差補償方法において、
     前記第1の副搬送波信号における光位相偏差補償量を算出し、前記光位相偏差補償量に基づいて前記第1の副搬送波信号における光位相偏差を補償し、
     前記第1の光副搬送波と前記第2の光副搬送波との間の位相偏差に前記光位相偏差補償量を加算した値に基づいて、前記第2の副搬送波信号における光位相偏差を補償する
     光位相偏差・光搬送波周波数偏差補償方法。
    In the optical phase deviation / optical carrier frequency deviation compensation method according to claim 9,
    Calculating an optical phase deviation compensation amount in the first subcarrier signal, and compensating an optical phase deviation in the first subcarrier signal based on the optical phase deviation compensation amount;
    The optical phase deviation in the second subcarrier signal is compensated based on a value obtained by adding the optical phase deviation compensation amount to the phase deviation between the first optical subcarrier and the second optical subcarrier. Optical phase deviation / optical carrier frequency deviation compensation method.
PCT/JP2013/001362 2012-03-14 2013-03-05 Optical phase difference/optical carrier wave frequency difference compensation device and optical phase difference/optical carrier wave frequency difference compensation method WO2013136716A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-057061 2012-03-14
JP2012057061 2012-03-14

Publications (1)

Publication Number Publication Date
WO2013136716A1 true WO2013136716A1 (en) 2013-09-19

Family

ID=49160652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001362 WO2013136716A1 (en) 2012-03-14 2013-03-05 Optical phase difference/optical carrier wave frequency difference compensation device and optical phase difference/optical carrier wave frequency difference compensation method

Country Status (1)

Country Link
WO (1) WO2013136716A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117882317A (en) * 2021-12-24 2024-04-12 学校法人明治大学 Detection device, optical reception device, optical communication system, program, and detection method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002511711A (en) * 1998-04-14 2002-04-16 フラウンホッファー−ゲゼルシャフト ツァー フォルデルング ダー アンゲヴァンドテン フォルシュング イー.ヴイ. Method and apparatus for fine frequency synchronization in a multi-carrier demodulation system
JP2004364157A (en) * 2003-06-06 2004-12-24 Nippon Telegr & Teleph Corp <Ntt> Carrier synchronous circuit
WO2011099589A1 (en) * 2010-02-09 2011-08-18 日本電気株式会社 Phase excursion/carrier wave frequency excursion compensation device and phase excursion/carrier wave frequency excursion compensation method
WO2012132103A1 (en) * 2011-03-25 2012-10-04 日本電気株式会社 Phase-compensation receiver

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002511711A (en) * 1998-04-14 2002-04-16 フラウンホッファー−ゲゼルシャフト ツァー フォルデルング ダー アンゲヴァンドテン フォルシュング イー.ヴイ. Method and apparatus for fine frequency synchronization in a multi-carrier demodulation system
JP2004364157A (en) * 2003-06-06 2004-12-24 Nippon Telegr & Teleph Corp <Ntt> Carrier synchronous circuit
WO2011099589A1 (en) * 2010-02-09 2011-08-18 日本電気株式会社 Phase excursion/carrier wave frequency excursion compensation device and phase excursion/carrier wave frequency excursion compensation method
WO2012132103A1 (en) * 2011-03-25 2012-10-04 日本電気株式会社 Phase-compensation receiver

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WAKAKO MAEDA ET AL.: "Hardware-efficient polarization demultiplexing for QAM signals based on dual stage decision-directed algorithm, Optical Fiber Communication Conference and Exposition (OFC/NFOEC)", 2012 AND THE NATIONAL FIBER OPTIC ENGINEERS CONFERENCE, 4 March 2012 (2012-03-04), pages 1 - 3 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117882317A (en) * 2021-12-24 2024-04-12 学校法人明治大学 Detection device, optical reception device, optical communication system, program, and detection method

Similar Documents

Publication Publication Date Title
JP5327397B2 (en) Signal processing circuit, signal processing method, optical receiver, and optical communication system
JP5601205B2 (en) Optical receiver and optical communication system
US8437638B2 (en) Optical modulation circuit and optical transmission system
JP5278001B2 (en) Optical communication system and optical receiver
US8761600B2 (en) In-band supervisory data modulation
JP5712582B2 (en) Optical transmitter and optical transmitter
US8718160B2 (en) Multi-carrrier optical communication method and system based on DAPSK
JP5704077B2 (en) Phase deviation / carrier frequency deviation compensation apparatus and phase deviation / carrier frequency deviation compensation method
WO2014114332A1 (en) Coherent optical transmitter and coherent optical receiver
JP5583788B2 (en) Optical communication system, optical transmitter and transponder
US9240858B2 (en) Optical communication system, optical communication method, optical communication device, and method and program for controlling the same
US9825707B2 (en) System and method for coherent detection with digital signal procession
EP2073474A1 (en) Method and apparatus for transmitting an optical signal using orthogonal frequency division multiplexing
JP4730560B2 (en) Optical transmission system, optical transmission method, and optical transmitter
WO2013136716A1 (en) Optical phase difference/optical carrier wave frequency difference compensation device and optical phase difference/optical carrier wave frequency difference compensation method
US10256907B2 (en) System and method for coherent detection with digital signal procession
WO2013140970A1 (en) Optical communication system and optical communication method having high phase noise resistance
JP2015162723A (en) Optical transmitter, optical receiver, optical transmission method, and optical reception method
JP6363933B2 (en) Optical transmitter / receiver, optical receiver, and optical transmitter / receiver method
JP5235721B2 (en) Optical transmitter, optical receiver, and optical communication system
JP2010206473A (en) Optical communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13760937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13760937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP