WO2013136638A1 - Arc-welding method and arc-welding device - Google Patents

Arc-welding method and arc-welding device Download PDF

Info

Publication number
WO2013136638A1
WO2013136638A1 PCT/JP2013/000073 JP2013000073W WO2013136638A1 WO 2013136638 A1 WO2013136638 A1 WO 2013136638A1 JP 2013000073 W JP2013000073 W JP 2013000073W WO 2013136638 A1 WO2013136638 A1 WO 2013136638A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
setting unit
feeding
arc
filler material
Prior art date
Application number
PCT/JP2013/000073
Other languages
French (fr)
Japanese (ja)
Inventor
嵩宙 小松
健二 久保
木村 賢治
池田 達也
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2014504645A priority Critical patent/JP5990784B2/en
Priority to CN201380014326.3A priority patent/CN104169032B/en
Publication of WO2013136638A1 publication Critical patent/WO2013136638A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/167Arc welding or cutting making use of shielding gas and of a non-consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode

Definitions

  • the present invention relates to an arc welding method and an arc welding apparatus that perform welding by switching two conditions at a predetermined cycle using a non-consumable electrode or a consumable electrode.
  • TIG Transmission Inert Gas
  • MIG Metal Inert Gas
  • low pulse welding in TIG welding, welding conditions such as welding current and welding voltage are periodically changed between a peak condition and a base condition lower than the peak condition at a cycle of about several Hz, and welding is performed with that heat.
  • the object is welded (see, for example, Patent Document 1).
  • the amount of metal to be welded by inserting a filler material, which is substantially the same material as the welding member, into the weld during welding and adjusting the feed amount of this filler material Is often adjusted.
  • a welding method is often used in which the feeding speed of the filler material is switched in accordance with the change in the welding current.
  • FIG. 23 is a schematic configuration diagram showing an example of low pulse welding of a conventional TIG welding system.
  • the welding system shown in FIG. 23 includes a welding torch 901 including a non-consumable electrode, a filler material 902, a welding power source device 903, and a filler material feeding device 904.
  • FIG. 24 is a time chart showing the time variation of the moving distance of the welding torch 901, the current value of the welding current, and the filler material feeding speed in the conventional TIG welding system.
  • the current and the filler material feeding speed are switched at a constant cycle while the welding torch 901 is continuously operated at a constant speed. Details will be described below.
  • step 11 the control of the surplus forming part 910 will be described.
  • welding is performed with the peak current value Ip, which is a high condition among the welding conditions to be switched, and the high peak filler material feed speed Wfp.
  • the surplus formation part 910 is formed by welding a filler material to a welding target object.
  • step 12 welding is performed with a base current value Ib that is a low current condition and a low base filler material feed speed Wfb among welding conditions that are periodically switched.
  • the base current is set to a low current value at which the arc is maintained, and the filler material feed speed is often set to a low value Wfb or 0 as shown in FIG.
  • step 11 and step 12 described above are repeated until welding is completed. Thereby, a scale-like weld bead can be obtained.
  • the welding conditions are switched while operating the welding torch 901 at a constant speed. Therefore, in the surplus formation part 910, in order to obtain the welding amount per unit area and the height of the surplus bead to be formed, it is necessary to increase the filler material feeding speed. However, just increasing the feed rate of the filler material will cause insufficient melting of the filler material, so it is necessary to increase the current value. As a result, it was necessary to apply more heat input than necessary. . Also in this case, since feeding is performed while the welding torch 901 is operated, the resulting weld bead could not be made into a clean scale shape.
  • the first step is a step in which the welding torch is stopped with respect to the welding progress direction and welding is performed under the peak condition in the stopped state.
  • the second step is a step of performing welding under the base condition while moving the welding torch pitch in the welding progress direction.
  • the peak current is supplied in a state where the welding torch is stopped in the welding progress direction, the amount of welding per unit area can be increased without increasing the welding current. Further, since the welding amount is increased in a state where the welding torch is stopped, a more clear scale-like bead appearance can be obtained.
  • the current and the filler material feeding speed are switched at the same timing.
  • the switching of the welding material feeding speed is delayed due to the delay of the reaction of the motor constituting the feeding device, etc. with respect to the switching of the welding conditions. Therefore, when the welding current is switched from the peak current to the base current, if the filler material feed speed is switched at the same timing, the filler material feed speed switching is delayed, resulting in insufficient penetration of the filler material. It had the problem of end.
  • the lower limit of the base feed rate that can be input to the arc continuation part (at the base condition) in the low pulse welding of the conventional TIG welding method was a feed rate of 0, which means a feed stop.
  • the filler metal 902 exists in the arc 911 of the base current or in the vicinity of the arc 911 as shown in FIG. There is a possibility that.
  • the melt material 902 that is not supplied at the base condition starts to melt, and the tip of the melt material 902 becomes a ball shape. And if it becomes such a shape, when the filler metal 902 will be fed on the next peak conditions, it will become impossible to weld to a welding target well.
  • JP-A-62-279087 Japanese Patent Laid-Open No. 11-267839
  • the present invention solves the above problems and provides an arc welding method and an arc welding apparatus for obtaining a more beautiful scale-like bead appearance.
  • the arc welding method of the present invention is an arc welding method in which welding is performed by generating an arc between a welding electrode and a welding object.
  • the arc welding method of the present invention includes a first step of moving the welding electrode in a direction away from the welding object in a state where the arc is generated, and a state where the arc is generated. And a second step of moving the welding electrode in a direction approaching the welding object and in a welding line direction.
  • the arc welding method of the present invention comprises a method of performing welding by repeatedly repeating the first step and the second step.
  • An arc welding apparatus includes a welding power supply device that supplies electric power between a non-consumable electrode and an object to be welded, a manipulator including a welding torch that holds the non-consumable electrode, and the manipulator and the welding power source.
  • An arc welding apparatus including a control device for controlling the apparatus and a filler material feeding guide attached to a welding torch for feeding the filler material.
  • the arc welding apparatus according to the present invention includes a filler material feeding unit, a peak current setting unit, a base current setting unit, a filler material peak feeding rate setting unit, and a filler material base feeding rate setting unit. And an evacuation condition setting unit and a movement condition setting unit.
  • the filler material feeding unit feeds the filler material.
  • the peak current setting unit sets the current value and time of the peak current supplied between the non-consumable electrode and the welding object.
  • the base current setting unit sets a current value and time of a base current that is smaller than the peak current.
  • the filler material peak feeding speed setting unit sets the peak feeding speed of the filler material and the time to be applied.
  • the filler material base feed rate setting unit sets a base feed rate that is smaller than the peak feed rate of the filler material and a time during which the base feed rate is applied.
  • the evacuation condition setting unit sets conditions for leaving the welding object.
  • the movement condition setting unit sets a movement condition for moving in the welding progress direction.
  • the arc welding apparatus of the present invention is in a state in which the arc is generated in the first step of moving the non-consumable electrode in a direction away from the welding object, in a state where the arc is generated,
  • the second step of moving the non-consumable electrode in the direction approaching the object to be welded and in the welding progress direction is configured to perform welding by repeating alternately.
  • This configuration makes it possible to obtain a desired beautiful bead shape.
  • the arc welding apparatus of the present invention includes a welding power supply device that supplies electric power between the consumable electrode and the welding object, a manipulator including a welding torch, a control device that controls the manipulator and the welding power supply device, Is an arc welding apparatus.
  • the arc welding apparatus of the present invention comprises a consumable electrode feeding unit, a first setting unit, a second setting unit, a peak voltage setting unit, a base voltage setting unit, a retreat condition setting unit, A movement condition setting unit.
  • the consumable electrode feeding unit feeds the consumable electrode.
  • the first setting unit sets a current value and time of a peak current supplied between the consumable electrode and the welding object, or a peak feeding speed of the consumable electrode and a time to apply.
  • the second setting unit sets the current value and time of the base current smaller than the peak current, or the base feeding speed slower than the peak feeding speed and the application time.
  • a peak voltage setting part sets the voltage value of the peak voltage applied between a consumable electrode and a welding target object.
  • the base voltage setting unit sets a voltage value of the base voltage that is smaller than the peak voltage.
  • the evacuation condition setting unit sets conditions for leaving the welding object.
  • the movement condition setting unit sets a movement condition for moving in the welding progress direction.
  • the arc welding apparatus includes a first step of moving the consumable electrode in a direction away from the welding object in a state where the arc is generated, and welding in a state where the arc is generated.
  • the second step of moving the consumable electrode in the direction approaching the object and in the welding progress direction is configured to perform welding by repeating alternately.
  • This configuration makes it possible to obtain a desired beautiful bead shape.
  • FIG. 1 is a diagram showing a schematic configuration of a TIG welding system in Embodiment 1 of the present invention.
  • FIG. 2 is a front view showing an outline of the welding torch in the first embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of an operation parameter setting screen according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram showing an example of a welding parameter setting screen according to the first embodiment of the present invention.
  • FIG. 5A is a front view for explaining a retracting direction of the welding torch in the first embodiment of the present invention.
  • FIG. 5B is a front view for explaining a retracting direction of the welding torch in the first embodiment of the present invention.
  • FIG. 5C is a front view for explaining a retracting direction of the welding torch in the first embodiment of the present invention.
  • FIG. 6 is a flowchart of the arc welding method according to Embodiment 1 of the present invention.
  • FIG. 7 is a time chart of the movement distance in the pitch direction, the movement distance in the retraction direction, the current value of the welding current, and the filler material feeding speed in the first embodiment of the present invention.
  • FIG. 8 is a flowchart of processing at the end of welding in the first embodiment of the present invention.
  • FIG. 9A is a diagram for describing a welding end method according to Embodiment 1 of the present invention.
  • FIG. 9B is a diagram for describing a welding end method according to Embodiment 1 of the present invention.
  • FIG. 9A is a diagram for describing a welding end method according to Embodiment 1 of the present invention.
  • FIG. 9C is a diagram for describing a method of ending the welding method according to Embodiment 1 of the present invention at a welding intermediate teaching point.
  • FIG. 10 is a time chart of the movement distance in the pitch direction, the movement distance in the retraction direction, the current value of the welding current, and the filler material feeding speed in the first embodiment of the present invention.
  • FIG. 11 is a time chart of the movement distance in the pitch direction, the movement distance in the retraction direction, the current value of the welding current, and the filler material feeding speed in the first embodiment of the present invention.
  • FIG. 12 is a time chart of the movement distance in the pitch direction, the movement distance in the retraction direction, the current value of the welding current, and the filler material feeding speed in the first embodiment of the present invention.
  • FIG. 10 is a time chart of the movement distance in the pitch direction, the movement distance in the retraction direction, the current value of the welding current, and the filler material feeding speed in the first embodiment of the present invention.
  • FIG. 13 is a time chart of the movement distance in the pitch direction, the movement distance in the retraction direction, the current value of the welding current, and the filler material feed speed in the first embodiment of the present invention.
  • FIG. 14A is a flowchart relating to the arc welding method according to Embodiment 2 of the present invention.
  • FIG. 14B is a flowchart relating to the arc welding method according to Embodiment 2 of the present invention.
  • FIG. 15 is a time chart of the movement distance in the pitch direction, the movement distance in the retraction direction, the current value of the welding current, and the filler material feeding speed in the second embodiment of the present invention.
  • FIG. 16 is a diagram showing a schematic configuration of the MIG welding system in the third embodiment of the present invention.
  • FIG. 16 is a diagram showing a schematic configuration of the MIG welding system in the third embodiment of the present invention.
  • FIG. 17 is a front view showing an outline of a welding torch in the third embodiment of the present invention.
  • FIG. 18 is a diagram illustrating an example of an operation parameter setting screen according to the third embodiment of the present invention.
  • FIG. 19 is a diagram showing an example of a welding parameter setting screen according to the third embodiment of the present invention.
  • FIG. 20 is a flowchart of the arc welding method in the third embodiment of the present invention.
  • FIG. 21 is a flowchart of the arc welding method in the third embodiment of the present invention.
  • FIG. 22 is a time chart of the movement distance in the pitch direction, the movement distance in the retraction direction, the current value of the welding current, and the filler material feeding speed in the third embodiment of the present invention.
  • FIG. 23 is a schematic configuration diagram of a conventional TIG welding system.
  • FIG. 24 is a time chart of the welding torch moving distance, the current value of the welding current, and the filler material feeding speed in the conventional TIG welding system.
  • FIG. 25 is a front view for explaining a problem in the conventional TIG welding system.
  • FIG. 1 is a diagram showing a schematic configuration of a TIG welding system in Embodiment 1 of the present invention.
  • FIG. 2 is a front view showing an outline of welding torch 112 in the first embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of an operation parameter setting screen according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram showing an example of a welding parameter setting screen according to the first embodiment of the present invention.
  • 5A, FIG. 5B, and FIG. 5C are front views for explaining the retracting direction of the welding torch in the first embodiment of the present invention.
  • FIG. 1 is a diagram illustrating an example of a configuration of an arc welding apparatus that is an automatic welding system that automatically performs arc welding using a non-consumable electrode using a robot system.
  • the arc welding apparatus controls the manipulator 111, the welding power supply apparatus 121, the filler material feeding apparatus 131, the manipulator 111, the welding power supply apparatus 121, the filler material feeding apparatus 131, and the like.
  • the control apparatus 141 to perform and the teach pendant 151 connected to the control apparatus 141 are provided.
  • a welding torch 112 is attached to the manipulator 111.
  • a gas nozzle 211 for supplying a shielding gas such as argon, a non-consumable electrode 212, and a filler material feed guide 213 are attached to the welding torch 112.
  • a shield gas supplied from a gas cylinder (not shown) can be supplied to the welding location in accordance with a command from the welding power supply device 121.
  • the filler material 113 is fed by the filler material feeding device 131.
  • electric power is applied between the non-consumable electrode 212 and the welding object W by the welding power source device 121 to generate an arc.
  • the purpose is to melt the welding object W and the filler material 113 by this arc and to weld the filler material 113 to the welding object W.
  • the welding power supply device 121 includes an output unit (not shown) for applying a welding voltage to flow a welding current, and a voltage detection unit (not shown) for detecting an actual welding voltage with respect to the output. It is a device equipped.
  • the output unit is connected to the welding torch 112 and the welding object W, applies a welding voltage between the non-consumable electrode 212 and the welding object W through the welding torch 112 according to a command from the control device 141, and welds. It is possible to pass an electric current.
  • the filler material feeding device 131 detects a feed motor angle by a feed speed control unit 132, a feed motor 133 with a guide roller (not shown), and an angle sensor such as an encoder (not shown). It is an apparatus provided with the angle detection part (not shown).
  • the filler material feeding device 131 is operated by a command from the control device 141 and can feed the filler material 113 by a guide roller.
  • the melt material 113 fed by the melt material feeding device 131 is fed between the non-consumable electrode 212 and the welding object W through the melt material feed guide 213.
  • the supplied filler material 113 is melted together with the welding object W by an arc generated by the output of the welding power supply device 121, and aims to weld the filler material 113 to the welding object W.
  • the filler material feeding device 131 includes a feeding speed control unit 132 and feeds the filler material 113.
  • the control device 141 includes a communication unit 142, a calculation unit 143, a teaching data storage unit 144, a manipulator control unit 145, a welding condition command unit 146, and a feed speed command unit 147.
  • the communication unit 142 communicates with the teach pendant 151.
  • the calculation unit 143 includes a CPU, a memory, and the like that perform various internal calculations.
  • the teaching data storage unit 144 stores data taught for performing a playback operation during automatic driving.
  • the manipulator control unit 145 controls the manipulator 111 from the result calculated by the calculation unit 143.
  • the welding condition command unit 146 commands the welding power source device 121 for welding conditions such as a welding current.
  • the feeding speed command unit 147 commands the feeding speed of the filler material 113 to the filler material feeding device 131.
  • the welding power supply device 121 and the feeding speed control unit 132 may be provided in the control device 141. With this configuration, the arc welding apparatus of the first embodiment can be further downsized.
  • the teach pendant 151 includes a communication unit 152 for communicating with the control device 141, a data display unit 153 for displaying various information, and a data setting unit 154.
  • the teach pendant 151 can perform operation of the manipulator 111, setting of operation parameters of the arc welding method performed in the first embodiment, and the like.
  • the teach pendant 151 includes a data display unit 153 and a data setting unit 154 as shown in FIGS.
  • the data setting unit 154 displays the operation parameter setting unit 301 shown in FIG. 3 and the welding condition parameter setting unit 401 shown in FIG. 4 as necessary.
  • the operation parameter setting unit 301 sets operation parameters such as a pitch movement distance Lp, a retraction distance Lh, a retraction direction D, a retraction time Th, a welding speed V, and an upper end stop timer Thd.
  • the operation parameter setting unit 301 includes a retreat condition setting unit 310 and a movement condition setting unit 320.
  • the retreat condition setting unit 310 includes a retreat movement distance setting unit 311, a retreat direction setting unit 312, and a retreat time setting unit 313.
  • the retreat movement distance setting unit 311 sets a retreat movement distance Lh that is a movement distance away from the welding object W.
  • the retraction direction setting unit 312 sets a retraction direction D that is a direction away from the welding object W.
  • the evacuation time setting unit 313 sets an evacuation time Th that is a time for moving the distance set by the evacuation movement distance setting unit 311 in the direction set by the evacuation direction setting unit 312.
  • the movement condition setting unit 320 includes a welding speed setting unit 321 and a pitch movement distance setting unit 322.
  • the welding speed setting unit 321 sets a welding speed V that is a speed that moves in the welding progress direction.
  • the pitch movement distance setting unit 322 sets a pitch movement distance Lp that is a distance to move in the welding progress
  • the welding condition parameter setting unit 401 includes a peak current value Ip, a base current value Ib, a peak filler material feed speed Wfp, a base filler material feed speed Wfb, and a peak filler material feed time Twfp.
  • the welding condition parameters such as the feeding timing adjustment time Tadj are set.
  • the welding condition parameter setting unit 401 includes a peak current setting unit 410, a base current setting unit 411, a first setting unit 420, a second setting unit 421, a peak voltage setting unit 422, and a base voltage setting unit 423. At least one is provided.
  • the peak current setting unit 410 sets the current value Ip and the time of the peak current supplied between the non-consumable electrode 212 and the welding object W.
  • the base current setting unit 411 sets the current value Ib and time of the base current smaller than the peak current.
  • the first setting unit 420 sets the current value Ip and time of the peak current supplied between the consumable electrode and the welding object W, or the peak feeding speed of the consumable electrode and the time to apply.
  • the second setting unit 421 sets the current value Ib and time of the base current smaller than the peak current, or the base feeding speed slower than the peak feeding speed and the time to apply.
  • the peak voltage setting unit 422 sets the voltage value of the peak voltage applied between the consumable electrode and the welding object W.
  • the base voltage setting unit 423 sets a voltage value of the base voltage that is smaller than the peak voltage.
  • the peak current setting unit 410 in FIG. 4 also has a filler material peak feed rate setting unit 136 and a filler material base feed rate setting unit 137.
  • the filler material peak feed speed setting unit 136 sets the peak feed speed of the filler material 113 and the time to be applied.
  • the filler material base feed speed setting unit 137 sets a base feed speed smaller than the peak feed speed of the filler material 113 and a time for applying the base feed speed.
  • a playback instruction A (not shown) at the time of automatic operation that also has the meaning of starting the arc welding method of the first embodiment, and an automatic operation at the time of ending the welding method of the first embodiment.
  • a playback instruction B (not shown) is provided. Note that the instruction A and the instruction B are stored in the teaching data storage unit 144.
  • the above calculation parameters are basically set to values of 0 or more or greater than 0, but negative values are set for the base filler material feed speed Wfb and the feed timing adjustment time Tadj. It is also possible.
  • retreat direction D it is set from two choices of “torch direction” and “vertically upward direction” prepared in advance.
  • the data display unit 153 of the teach pendant 151 is a schematic diagram showing the relationship between the calculation parameters and the actual operation ( 3 and 4) is displayed, which makes it easy for the instructor to imagine changes in behavior at the time of calculation parameters.
  • the communication unit 152 of the teach pendant 151 and the control device 141 are used as one of the instructions in the teaching data to be played back during the automatic operation taught by the teacher.
  • the data is stored in the teaching data storage unit 144 of the control device 141 through the communication unit 142.
  • a teaching position where the arc welding method according to the first embodiment is to be started that is, a teaching position in the robot operation program, in a section where welding work is performed.
  • Register instruction A When using the arc welding method according to the first embodiment to be described later, a teaching position where the arc welding method according to the first embodiment is to be started, that is, a teaching position in the robot operation program, in a section where welding work is performed.
  • the instruction B is registered at the teaching position where the arc welding method of the first embodiment is to be finished. However, even if the command B is not registered, the arc welding method of the first embodiment is automatically terminated at the end of the welding section. Although the detailed operation will be described later, the operation at the end of the arc welding method of the first embodiment differs depending on whether or not the command B is registered, and the teacher selects the command registration depending on the teaching content. Can do.
  • FIG. 6 shows a flowchart of processing when the arc welding method of Embodiment 1 of the present invention is used.
  • FIG. 7 shows a time chart of the movement distance in the pitch direction, the movement distance in the retraction direction, the current value of the welding current, and the filler material feeding speed when the arc welding method according to the first embodiment of the present invention is used. Yes.
  • the tool direction is set as the retreat direction D, which is considered to be most effective in the arc welding method of the first embodiment, and the base filler material feed speed Wfb is negative. It is assumed that a value (reverse feed) is set and a positive value is set as the feed timing adjustment time Tadj.
  • the “torch direction” in the retracting direction D is a direction indicated by a solid line upward in FIG. 5A to FIG. 5C with respect to the welding progress direction, and is always independent of the welding progress direction and the welding torch and electrode directions. Point to. Therefore, when teaching is performed with a forward angle or a backward angle as shown in FIG. 5B or FIG. 5C, the instruction is retracted in the angular direction.
  • the “vertical upward direction” is a dotted line that always indicates a direction perpendicular to the welding progress direction in the plane formed by the welding progress direction and the torch direction in FIGS. 5A to 5C regardless of the angle of the welding torch. It is the direction shown.
  • the “torch direction” allows the teacher to freely select the retreat direction according to the teaching, so that it is possible to perform teaching with higher expandability.
  • the torch angle cannot be kept constant depending on the shape of the welding object W and the welding location. In some cases, it can be considered. However, even in that case, the retreat direction can always be kept constant, and the effect of keeping the surplus bead constant can be expected.
  • the control device 141 reads the instruction A for starting the arc welding method of the first embodiment from the teaching data storage unit 144, first, a general welding start process is performed. Generally, an arc is generated between the non-consumable electrode 212 and the welding target W using a high-frequency spark.
  • any method such as a direct current high voltage application method or a lift start method may be used as the arc generation method, in addition to the above-described high frequency.
  • heat input heat processing is made
  • the feeding speed is switched by shifting the switching timing of the filler material feeding speed with respect to the timing of switching the current. Welding is performed by repeating these controls.
  • each step of the welding torch and the row written on the top represents a step relating to the operation of the welding torch 112, and each step of the welding torch command and the row written on the top represents the welding condition command. Show. Each step of the feed speed condition and the column written at the top indicates the feed speed condition.
  • step 0 After completion of the welding start process (step 0), the retracting operation is started so that the welding torch 112 operates in the welding torch direction with the retracting distance Lh for the retracting time Th (STEP 1-1: Step 1-1). Then, at the same time as evacuation, the welding power supply device 121 is instructed to flow the peak current value Ip (STEP 1-2: Step 1-2).
  • the filler material feeding device 131 is supplied.
  • the peak filler feed speed Wfp (STEP 1-5: Step 1-5).
  • the state of STEP 1 (step 1) is the state described in “A” in the lower part of FIG. 7, and an extra portion (not shown) is formed by feeding the filler material 113 while retracting the welding torch 112. To do.
  • Step 3 when the retraction operation is completed at the retraction completion point (STEP 1-3: Yes determination in Step 1-3), the welding torch 112 is stopped for the time of the upper end stop timer Thd on the spot where the retraction is completed. (STEP 3-1: Step 3-1), the surplus bead formation is completed.
  • step 1-5) the system waits for the peak filler feed time Twfp to elapse and confirms the progress (STEP 3-2: step). 3-2, Yes), the feed speed is switched to the base filler material feed speed Wfb (STEP3-3: Step 3-3).
  • the rotation direction of the feed motor of the melt material feed device 131 is set to the correct value when the feed speed is switched. Performs internal processing to switch from rotation to reverse rotation.
  • the peak filler feed is performed immediately before the completion of the upper end stop timer Thd (STEP 3-4: Yes determination in step 3-4).
  • a feeding time Twfp is set in advance.
  • the figure showing the state of STEP 3 (step 3) is the state indicated by “B” in the lower part of FIG. 7, and only a feed speed is determined when a certain time has passed while the welding torch 112 is stopped at the retracted position. It has been switched to.
  • Step 3-4) the welding torch 112 is then moved by pitch movement (STEP 2-1: Step 2-1). Command the current value Ib to flow (STEP 2-2: Step 2-2). Normally, the base current value Ib is set to a value lower than the peak current value Ip, and a current value that can maintain the arc.
  • the pitch operation is performed from the position where the pitch movement distance Lp is moved in the welding direction from the position where the retreat operation is started in STEP 1 (Step 1), and the target is the position where the retreat is completed in STEP 3 (Step 3).
  • Pitch movement is started so as to operate at a time determined by (pitch movement distance Lp) / (welding speed V). This indicates a state of “C” shown in the lower part of FIG.
  • Step 2-3 the welding end determination is performed.
  • the distance from the current position where the pitch movement is completed to the welding section end point is calculated (STEP 4-1: Step 4-1), and if the remaining distance is shorter than the pitch movement distance Lp, it is regarded as the end of the welding section. Perform welding end processing. Details of the welding end process will be described later. Thereafter, the operations of STEP 1 (step 1) to STEP 4 (step 4) are repeated until the determination of YES is made in the welding end determination of STEP 4-2 (step 4-2).
  • FIG. 8 is a flowchart of processing at the end of welding in the first embodiment of the present invention.
  • 9A, 9B, and 9C are diagrams for explaining the welding end method according to Embodiment 1 of the present invention.
  • 10 to 13 are time charts of the movement distance in the pitch direction, the movement distance in the retraction direction, the current value of the welding current, and the filler material feeding speed in the first embodiment of the present invention.
  • the welding torch 112 ends welding when the final pitch movement is completed.
  • the arc welding method according to the first embodiment no extra build is formed by pitch movement, and therefore no extra build is formed at the final pitch move section.
  • the instructor operates the welding torch 112 in accordance with the subsequent teachings, thereby forming an extra scale different from the normal welding section or crater welding. This is an end method that assumes the case of performing.
  • the command B is registered at the welding end point, but the command B may exist at a teaching point in the middle of the welding section.
  • the arc welding method of the first embodiment is completed at the point where the pitch movement is completed, as in the end process of the first embodiment, and thereafter, the normal welding section It is also possible to perform welding.
  • Step 1 when the command B is not registered at the end point of the welding section (STEP 5-1: No in Step 5-1), STEP 1 of the normal welding section (Step 1) from the point after the final pitch movement is completed. In the same manner as in STEP 3 (step 3), a retreat operation and a peak current command are performed. At the welding end point, the same overlay as the welding section is formed, and the welding method ends (STEP 1-1: Step 1-1 to STEP 1-5: Step 1-5, STEP 3-1: Step 3-1 to STEP 3- 4: Up to step 3-4).
  • the teacher can perform crater welding as necessary at the point where the evacuation is completed.
  • this method as shown in FIG. 9B, a surplus similar to that in a normal welding section is formed and the welding is completed, so that the bead interval and the surplus height are not disturbed.
  • this termination method is a termination method that assumes that a bead similar to that in the normal section is formed and fine adjustment of the bead appearance is performed by crater welding as necessary.
  • the arc welding method according to the first embodiment is an arc welding method in which an arc is generated between a welding electrode and a welding object to perform welding, and includes a first step (step 1) and a second step. A step (step 2), and welding is performed by alternately repeating the first step and the second step.
  • the first step is a step of moving the welding electrode in a direction away from the welding object in a state where the arc is generated.
  • the second step is a step of moving the welding electrode in the direction approaching the welding object and in the welding line direction while the arc is still generated.
  • step 1 step 1) shown in FIG. 6, extra welding is performed using the peak current value Ip and the peak filler material feed speed Wfp while retracting the welding torch 112 in the torch direction.
  • the scale-like beautiful extra bead can be formed without being aware of the movement in the welding line direction.
  • the extra bead formed by the fed filler material 113 and the non-consumable electrode 212 is shortened, and in some cases, the non-consumable electrode 212 is short-circuited to the welding object W.
  • an optimum welding result cannot be obtained unless the distance between the electrode and the welding object W is properly maintained. Therefore, in the arc welding method of the first embodiment, since the extra welding is performed while the welding torch 112 is retracted, it is possible to perform welding while maintaining an appropriate distance between the electrode and the welding object W.
  • step 3 the welding torch 112 is kept constant for a certain period of time and welding is performed under peak current conditions, so that an effect of keeping the height of the scale-shaped surplus bead constant is expected.
  • step 3 the feeding speed of the filler metal 113 is switched to the base feeding speed earlier than the switching of the welding current.
  • the base feed speed is a negative value.
  • the switching of the feeding speed of the filler material 113 is delayed due to problems such as a delay in the reaction of the feeding motor constituting the filler material feeding device 131.
  • problems such as a delay in the reaction of the feeding motor constituting the filler material feeding device 131.
  • by switching the feeding speed at a different timing from the switching of the current it is possible to prevent the filler material 113 from being fed at the peak filler material feeding speed under the base current condition. Can be expected.
  • the arc welding method of the first embodiment is a third method in which the position of the welding electrode is maintained for a predetermined time while the arc is generated at the position at the end of the first step (step 1).
  • This step (Step 3) may be a method provided between the first step (Step 1) and the second step (Step 2). By this method, a desired beautiful bead shape can be obtained.
  • step 2 the welding current is switched to the base current value to move the pitch.
  • the welding torch 112 can be moved as a base current value that does not extinguish the arc between the non-consumable electrode 212 and the welding object W. Since the next switching to the peak current can be made smoothly, there is an effect of shortening the tact time and an effect of obtaining a clean bead appearance.
  • the retreat direction D is set to the “torch direction”
  • the retreat direction is different.
  • the processing is the same as in the first embodiment.
  • the first embodiment an example in which direct current welding is performed using a direct current power source has been described in order to simplify the description.
  • the first embodiment can be applied not only to direct current welding but also to a welding system using alternating current welding.
  • the feeding of the filler material 113 is controlled to be reversely fed, and the first predetermined time. You may make it stop feeding of the filler material 113 after progress of T1.
  • the feeding of the filler material 113 is performed.
  • the feeding may be controlled to be reverse feeding, and the feeding of the filler material 113 may be stopped after the second predetermined time T2.
  • the feeding of the filler material 113 is reversed during a third predetermined time T3 from a certain time before the start of STEP2 (Step 2) to the start of STEP2 (Step 2).
  • the feeding may be controlled so that the feeding of the filler metal 113 may be stopped after the elapse of the third predetermined time T3.
  • the welding torch 112 is moved by the retracting distance Lh in the retracting direction, and the arc is generated during the upper end stop timer Thd.
  • the value of the upper end stop timer Thd may be set to zero, and the process may be shifted from STEP 1 (step 1) to STEP 2 (step 2).
  • the welding electrode may be moved in a direction away from the welding object without changing the position of the welding electrode on the welding line.
  • the welding electrode may be moved in a direction away from the welding object while moving in a direction returning to the welding progress direction.
  • the welding electrode may be moved in a direction away from the welding object while moving in the welding progress direction.
  • a peak current is supplied between the welding electrode and the welding object
  • the welding electrode and the welding object are supplied between the two.
  • a base current lower than the peak current may be supplied between the two.
  • a method may be used in which a peak current is supplied between the welding electrode and the welding object. By this method, a desired beautiful bead shape can be obtained.
  • the arc welding apparatus of the first embodiment includes a welding power supply device 121 that supplies electric power between the non-consumable electrode 212 and the welding object W, and a welding torch 112 that holds the non-consumable electrode 212.
  • An arc provided with a manipulator 111, a control device 141 for controlling the manipulator 111 and the welding power source device 121, and a filler material feeding guide 213 attached to the welding torch 112 for feeding the filler material 113. It is a welding device.
  • the arc welding apparatus according to the first embodiment includes a filler material feeding device 131, a peak current setting unit 410, a base current setting unit 411, a filler material peak feeding speed setting unit 136, and a filler.
  • a material base feed speed setting unit 137, a retreat condition setting unit 310, and a movement condition setting unit 320 are provided.
  • the filler material feeding device 131 feeds the filler material 113.
  • the peak current setting unit 410 sets the current value Ip and the time of the peak current supplied between the non-consumable electrode 212 and the welding object W.
  • the base current setting unit 411 sets the current value Ib and time of the base current smaller than the peak current.
  • the filler material peak feed speed setting unit 136 sets the peak feed speed of the filler material 113 and the time to be applied.
  • the filler material base feed speed setting unit 137 sets a base feed speed smaller than the peak feed speed of the filler material 113 and a time for applying the base feed speed.
  • the retreat condition setting unit 310 sets a condition for leaving the welding object W.
  • the movement condition setting unit 320 sets a movement condition for moving in the welding progress direction.
  • the arc welding apparatus includes a first step (step 1) for moving the non-consumable electrode 212 in a direction away from the welding object W in a state where the arc is generated, and an arc.
  • the second step (step 2) in which the non-consumable electrode 212 is moved in the direction approaching the welding object W and in the welding progress direction in a state in which the welding is generated, and welding is performed alternately. . *
  • This configuration makes it possible to obtain a desired beautiful bead shape.
  • the retreat condition setting unit 310 may include a retreat movement distance setting unit 311, a retreat direction setting unit 312, and a retreat time setting unit 313.
  • the retreat movement distance setting unit 311 sets a retreat movement distance Lh that is a movement distance away from the welding object W.
  • the retraction direction setting unit 312 sets a retraction direction D that is a direction away from the welding object W.
  • the evacuation time setting unit 313 sets an evacuation time Th that is a time for moving the distance set by the evacuation movement distance setting unit 311 in the direction set by the evacuation direction setting unit 312.
  • the movement condition setting unit 320 may include a welding speed setting unit 321 and a pitch movement distance setting unit 322.
  • the welding speed setting unit 321 sets a welding speed V that is a speed that moves in the welding progress direction.
  • the pitch movement distance setting unit 322 sets a pitch movement distance Lp that is a distance to move in the welding progress direction.
  • the distance Lh set by the retreat movement distance setting unit 311 is set in the direction set by the retreat direction setting unit 312 to set the retreat time.
  • the non-consumable electrode 212 is moved in a direction away from the welding object W at the time Th set in the part 313.
  • the pitch is shifted from the position where the non-consumable electrode 212 is moved by the completion of the first step from the position of the non-consumable electrode 212 at the start of the first step in the welding direction.
  • the position advanced by the distance Lp set by the distance setting unit 322 is set as the movement target position of the non-consumable electrode 212, and the distance Lp set by the pitch movement distance setting unit 322 is divided by the welding speed V set by the welding speed setting unit 321. And move it for the required time.
  • the arc welding apparatus of the first embodiment may be configured to move the non-consumable electrode 212 in a direction approaching the welding object W and in a welding progress direction.
  • This configuration makes it possible to obtain a desired beautiful bead shape.
  • a third step (step 3) for maintaining the position of the non-consumable electrode 212 for a predetermined time while the arc is generated at the position at the end of the first step (step 1) It is good also as a structure performed between 1 step (step 1) and 2nd step (step 2). With this configuration, a desired beautiful bead shape can be obtained.
  • a peak current is supplied between the non-consumable electrode 212 and the workpiece W
  • the non-consumable electrode is supplied.
  • a base current lower than the peak current may be supplied between 212 and the welding object W.
  • a peak current may be supplied between the non-consumable electrode 212 and the welding object W.
  • a desired bead shape can be obtained by alternately repeating the first step and the second step.
  • a 1st step is a step which forms a surplus bead by the peak conditions comprised by a peak current etc., moving the electrode for welding to the direction away from the welding target object W.
  • FIG. The second step is a step of moving the welding electrode in the direction approaching the welding object and in the direction of the welding line while the arc is generated under the base condition constituted by a base current smaller than the peak condition.
  • the base feed speed is negative, that is, the filler material can be reversely fed and pulled up, the melt material exists in the arc, and the tip of the melt material becomes rounded. The phenomenon can be prevented.
  • FIG. 15 is a time chart showing changes over time in parameters (movement distance in the pitch direction, movement distance in the retraction direction, current value of welding current, filler material feed speed, etc.) in the second embodiment of the present invention. Show.
  • a negative value is set for the feeding timing adjustment time Tadj. Setting a negative value for the feeding timing adjustment time Tadj means that the switching to the peak filler material feeding speed Wfp is performed earlier than the switching to the peak current.
  • step 1 the first retraction operation after starting welding will be described.
  • Step 1-1 Step 1-1
  • Step 1 Step 1-1
  • the peak current value Ip is commanded to the welding power source device 121 (STEP 1-2: Step 1-2).
  • the peak filler material feed speed Wfp value is commanded to the filler material feeder 131 after the feed timing adjustment time Tadj has elapsed.
  • the peak filler feed speed Wfp value is commanded at the same timing when the peak current is commanded. (STEP 1-3: Step 1-3).
  • step 1 as in the first embodiment, the filler material 113 is fed while the welding torch 112 is retracted, thereby forming an extra portion.
  • step 3 the stop operation at the point of completion of evacuation will be described.
  • Step 1-4 When the evacuation operation is completed (STEP 1-4: Yes in Step 1-4), the welding torch 112 is stopped for the time of the upper end stop timer Thd on the spot where the evacuation is completed (STEP 3-1: Step 3-1). Complete the formation of prime beads.
  • step 1-3 after switching to the peak filler feed speed Wfp, the time calculated from the peak filler feed time Twfp and the feed timing adjustment time Tadj (Twfp-Tadj) ) Will wait.
  • the feeding speed of the filler material 113 is switched to the base filler material feeding speed Wfb (STEP 3-3: Step 3-3).
  • the internal processing when the negative value is set for the base filler material feed speed Wfb is the same as that of the first embodiment, the description thereof is omitted.
  • Step 3-4 when the stop operation at the retreat completion point is completed, next, the welding torch 112 is moved in the same manner as in the first embodiment (STEP 2-1: Step 2-1). At the same time, the base current value Ib is commanded to the welding power source device 121 (STEP 2-2: Step 2-2).
  • the filler material feeding device 131 is commanded to the peak filler material feeding speed Wfp (STEP 2-4: Step 2-4).
  • the pitch movement operation is performed at a time of (pitch movement distance Lp / welding speed V)
  • the passage of ((pitch movement distance Lp / welding speed V) ⁇ feeding timing adjustment time Tadj) after commanding the base current is performed.
  • the feed speed can be switched to the peak filler feed speed Wfp before the feed timing adjustment time Tadj time for instructing the welding power source device 121 to the peak current value Ip.
  • the feeding speed is switched to the peak filler material feeding speed Wfp, after the elapse of the peak filler material feeding time Twfp is completed, the feeding speed is switched to the base filler material feeding speed Wfb (STEP3-3: Step 3-3).
  • the peak filler feed time Twfp is set so as to switch to the base filler feed rate Wfb immediately before the end of STEP 3 (step 3) in which the retracting operation is completed and the welding torch 112 is stopped at the upper end.
  • the welding end determination is performed. Since the method for determining the end of welding and the method for ending the welding when the end determination is made (STEP 4-2: Yes at step 4-2) are the same as those in Embodiment 1, they are omitted.
  • step 5 the second and subsequent retraction operations after the start of welding will be described.
  • Step 5-1 Step 5-1).
  • the difference from the evacuation operation in STEP 1 (step 1) is that in STEP 1 (step 1), the command for the peak current value Ip and the command for the peak filler feed speed Wfp are performed at the same timing as the start of the evacuation operation.
  • the feed speed has been switched in the processing of STEP 2 (step 2), only the command for the peak current value Ip is performed (STEP 5-2: step 5-2), and the feed speed switching command is not performed. Is a point.
  • the filler material 113 is pulled up during pitch movement (base current condition). It is possible. However, when the pitch movement distance Lp is long or when the welding speed V is low, the filler material 113 is pulled up more than necessary in the pitch movement section. Then, even if the filler material feeding speed is switched to the peak filler material feeding speed simultaneously with the switching to the next peak current condition, it takes time until the filler material 113 is welded to the welding object W. In some cases, the welding object W may be overmelted and melted away.
  • the welding object W is not overmelted when switching the peak current.
  • the filler material 113 can be fed.
  • the welding electrode is the non-consumable electrode 212 and the arc welding is performed while supplying the filler material 113.
  • the feeding of the filler material 113 is performed by alternately repeating a peak feeding speed and a base feeding speed slower than the peak feeding speed. Feeding at the peak feed speed may be started at a timing different from the start timing of the peak current, and feeding at the base feed speed may be started at a timing different from the start timing of the base current. .
  • the feeding of the filler material 113 may be controlled so that the feeding of the filler material 113 is reversed in the second step (step 2).
  • this method it is possible to feed the filler material 113 without overmelting the welding object W when switching the peak current.
  • step 2 the feeding of the filler material 113 is controlled to be reverse, and after the first predetermined time has elapsed, A method of stopping the feeding of the filler material 113 may be adopted. By this method, it is possible to feed the filler material 113 without overmelting the welding object W when switching the peak current.
  • step 2 the feeding of the filler material 113 is reversely fed. It is good also as a method of stopping supply of the melt material 113 after progress of 2nd predetermined time. By this method, it is possible to feed the filler material 113 without overmelting the welding object W when switching the peak current.
  • the feeding of the filler material 113 is controlled to be reversely fed for a third predetermined time from a certain time before the start of the second step (step 2) to the start of the second step. Then, after the elapse of the third predetermined time, the feeding of the filler material 113 may be stopped.
  • this method it is possible to feed the filler material 113 without overmelting the welding object W when switching the peak current.
  • the filler material 113 is fed by alternately repeating a peak feeding speed and a base feeding speed slower than the peak feeding speed. Feeding at the peak feed speed may be started at a timing different from the start timing of the peak current, and feeding at the base feed speed may be started at a timing different from the start timing of the base current. . With this configuration, it is possible to feed the filler material 113 without overmelting the welding target W when switching the peak current.
  • the feeding of the filler material 113 may be controlled so that the feeding of the filler material 113 is reversely fed during the second step (step 2). With this configuration, it is possible to feed the filler material 113 without overmelting the welding target W when switching the peak current.
  • step 2 the feeding of the filler material is controlled to be reverse, and after the first predetermined time has elapsed, The feeding of the filler material 113 may be stopped. With this configuration, it is possible to feed the filler material 113 without overmelting the welding target W when switching the peak current.
  • step 2 the feeding of the filler material is reversely fed.
  • the feeding of the filler metal may be stopped after the second predetermined time has elapsed.
  • the feeding of the filler material 113 is controlled to be reversely fed for a third predetermined time from a certain time before the start of the second step (step 2) to the start of the second step. And it is good also as a structure which stops supply of a filler material after progress of 3rd predetermined time. With this configuration, it is possible to feed the filler material 113 without overmelting the welding target W when switching the peak current.
  • Embodiment 3 In the first embodiment and the second embodiment, the arc welding apparatus that performs welding using a non-consumable electrode has been described. In Embodiment 3 of the present invention, an arc welding apparatus that performs welding using a consumable electrode will be described.
  • FIG. 16 is a diagram showing a schematic configuration of the MIG welding system in the third embodiment of the present invention.
  • FIG. 17 is a front view showing an outline of welding torch 504 in the third embodiment of the present invention.
  • FIG. 18 is a diagram illustrating an example of an operation parameter setting screen according to the third embodiment of the present invention.
  • FIG. 19 is a diagram showing an example of a welding parameter setting screen according to the third embodiment of the present invention.
  • FIG. 16 shows a schematic configuration of an arc welding apparatus that is an example of an MIG welding system that is an automatic welding system that automatically performs arc welding using a consumable electrode using a robot system in the third embodiment. Yes.
  • the arc welding apparatus shown in FIG. 16 has the manipulator 111, the control apparatus 141, and the teach pendant 151 shown in the first embodiment, and in addition to this, the welding power supply apparatus 501 and the welding wire feeding apparatus 502 It has.
  • the manipulator 111 is provided with a welding torch 504 for a consumable electrode.
  • a gas nozzle 601 for supplying a shielding gas such as argon is attached to the welding torch 504. From the gas nozzle 601, a shield gas supplied from a gas cylinder (not shown) can be supplied to the welding location of the welding object W in accordance with a command from the welding power supply device 501.
  • a contact tip 602 is attached to the tip of the welding torch 504, and the welding wire 503 is fed by the welding wire feeding device 502, and fed and fed to the welding object W through the contact tip 602. .
  • the welding power source device 501 includes an output unit (not shown) for applying a welding voltage to flow a welding current, and a voltage detection unit (not shown) for detecting a voltage actually applied to the output. And a welding wire control unit (not shown).
  • the output unit is connected to the welding torch 504 and the welding object W, and a welding voltage is applied between the welding wire 503 that is a consumable electrode and the welding object W through the welding torch 504 according to a command from the control device 141. Applied.
  • the welding wire feeding device 502 is usually attached to the upper portion of the manipulator 111, and detects the angle of the feeding motor by a feeding motor (not shown) with a guide roller and an angle sensor such as an encoder (not shown). It is an apparatus provided with the angle detection part.
  • the welding wire feeder 502 is a device that operates according to a command from the welding power source device 501 and feeds the welding wire 503 that is a consumable electrode.
  • the welding power supply device 501 When welding is started according to the command of the control device 141, the welding power supply device 501 performs drive control of the welding wire feeding device 502 at a feeding speed determined according to the application of the welding voltage and the command current. An arc is generated between the fed welding wire 503 and the welding object W, and the welding wire 503 transfers droplets to the welding object W.
  • the welding condition command unit 146 that commands the welding conditions and the feed speed command unit 147 that commands the feed speed are provided independently.
  • the feeding speed is controlled by the welding power source device 501 according to the welding conditions.
  • the feed speed command unit 147 of the arc welding apparatus of the first embodiment is not provided.
  • the command value of the welding condition command unit 146 is commanded as a welding condition to the welding power source device 501.
  • the welding electrode is a consumable electrode, and the supply of the consumable electrode is repeated alternately between a peak feed speed and a base feed speed that is slower than the peak feed speed. Do it.
  • the peak feeding speed may be controlled to be synchronized with the peak current, and the base feeding speed may be controlled to be synchronized with the base current.
  • This method can realize a welding method capable of obtaining a desired beautiful bead shape.
  • the data setting unit 154 of the teach pendant 151 includes an operation parameter setting unit 701 shown in FIG. 18 and a welding condition parameter setting unit 801 shown in FIG.
  • the operation parameter setting unit 701 includes a save condition setting unit 310 and a movement condition setting unit 320.
  • the retreat condition setting unit 310 includes a retreat movement distance setting unit 311, a retreat direction setting unit 312, and a retreat time setting unit 313.
  • the welding condition parameter setting unit 801 includes at least one of a peak current setting unit 410, a base current setting unit 411, a first setting unit 420, a second setting unit 421, a peak voltage setting unit 422, and a base voltage setting unit 423. It is equipped with. Since the functions and roles of these components are the same as the contents specifically described in FIGS. 3 and 4, their descriptions are omitted.
  • the operation parameter setting unit 701 sets operation parameters such as a pitch movement distance Lp, a retraction distance Lh, a retraction direction D, a retraction time Th, a welding speed V, and an upper end stop timer Thd.
  • the parameter is displayed on the data display unit 153.
  • a welding condition parameter setting unit 801 shown in FIG. 19 sets welding condition parameters such as a peak current value Ip, a peak voltage value Vp, a base current value Ib, and a base voltage value Vb, and these operation parameters are displayed on the data display unit 153. Is displayed.
  • the welding condition parameter setting unit 801 has a command C for playback during automatic operation (not shown) that also includes the meaning of starting the arc welding method according to the third embodiment, and automatic completion of the arc welding method. And a playback instruction E (not shown) during operation. Note that the instruction C and the instruction E are stored in the teaching data storage unit 144.
  • the retraction direction setting unit 312 of the operation parameter setting unit 701 is set from two choices of “torch direction” and “vertically upward direction” prepared in advance as in the first embodiment.
  • the data display unit 153 of the teach pendant 151 displays a schematic diagram showing the relationship between the calculation parameters and the actual operation (FIG. 18, FIG. 19) makes it easy for an instructor to imagine changes in behavior at the time of calculation parameters.
  • the setting contents of the data setting unit 154 are transmitted through the communication unit 152 of the teach pendant 151 and the communication unit 142 of the control device 141 as one of the instructions in the teaching data to be played back during the automatic driving taught by the teacher. , Stored in the teaching data storage unit 144 of the control device 141.
  • the command C is registered at the teaching position where the arc welding method of the third embodiment is to be started in the section where the welding operation is performed.
  • the instruction E is registered at the teaching position where the arc welding method of the third embodiment is to be finished. However, even if the instruction E is not registered, the arc welding method according to the third embodiment is automatically terminated at the end of the welding section. Although the detailed operation will be described later, the operation at the end of the arc welding method of the third embodiment differs depending on whether or not the command E is registered, and the teacher selects the command registration according to the teaching content. can do.
  • FIG. 20 and 21 show flowcharts of the arc welding method according to the third embodiment of the present invention.
  • FIG. 22 is a time chart of the movement distance in the pitch direction, the movement distance in the retreat direction, the current value of the welding current, and the wire feed speed in the third embodiment of the present invention.
  • FIG. 22 shows the time change of the moving distance in the pitch direction of the welding torch 504 and the time change of the retracting distance in the direction set by the retracting direction D setting unit different from the welding line direction of the welding torch 504. .
  • FIG. 22 shows the change over time of the command current value commanded to the welding power supply apparatus 501 and the change over time of the command wire feed speed value commanded to the welding power supply apparatus 501.
  • the control device 141 reads the instruction C for starting the arc welding method of the third embodiment from the teaching data storage unit 144, first, a general welding start process is performed.
  • the control device 141 starts application of a welding voltage between the welding torch 504 and the welding object W and feeding of the welding wire 503 to generate an arc.
  • welding is performed from a surplus welding portion (not shown) through which the peak current value Ip flows while the welding torch 504 is retracted in a predetermined retracting direction D, and from the point at which the retracting operation is completed.
  • a surplus welding portion (not shown) through which the peak current value Ip flows while the welding torch 504 is retracted in a predetermined retracting direction D, and from the point at which the retracting operation is completed.
  • step 1 the evacuation operation will be described.
  • the retracting operation is started so that the welding torch 504 operates in the direction set by the retracting direction D with the retracting distance Lh for the retracting time Th (STEP 1-1: Step 1-1).
  • the welding power supply device 501 is commanded with the peak current value Ip and the peak voltage Vp (STEP 1-2: Step 1-2).
  • the wire necessary for flowing the peak current value Ip from the relationship between the current and the wire feed speed determined in advance by the material and diameter of the welding wire 503, the protruding length from the welding torch 504, and the like.
  • the feeding speed Wfp1 is calculated, and the welding wire feeding device 502 is driven (STEP 1-3: Step 1-3). Thereby, the welding wire 503 performs droplet transfer to the welding object W.
  • the diagram showing the state of STEP 1 (step 1) is the state of A in FIG.
  • Step 3 the stop operation at the point of completion of evacuation will be described.
  • the evacuation operation is completed (STEP 1-4: Yes in Step 1-4)
  • the welding torch 504 is stopped for the time of the upper end stop timer Thd on the spot where the evacuation is completed (STEP 3-1: Step 3-1).
  • Step 3-1 Step 3-1).
  • the welding torch 504 is then moved by pitch movement (STEP 2-1: Step 2-1), and the welding power source 501 has a base current.
  • Command value Ib and base voltage value Vb (STEP 2-2: Step 2-2).
  • the base current value Ib is set to a value lower than the peak current, and a current value that can maintain the arc.
  • the wire feeding speed Wfb1 necessary for flowing the base current value Ib is calculated, and the welding wire feeding device 502 is driven (STEP 2-3: Step 2-3) ). By setting the current value so that the arc can be maintained, the arc can be maintained with almost no droplet transfer.
  • the pitch operation is a point where the pitch movement distance Lp is moved in the welding progress direction from the position where the retreat operation is started in STEP 1: Step 1, and the retreat is completed in (STEP 3: Step 3).
  • the pitch movement is started so as to operate in the time determined from the pitch movement distance Lp / welding speed V toward the target point. This indicates the state C in FIG.
  • step 2-4 When the pitch operation (STEP 2-4: Yes in step 2-4) is completed, the welding end determination is performed. Since the same processing as that of the first embodiment is performed for the welding end determination, detailed description thereof is omitted. Thereafter, the operations of STEP 1 (step 1) to STEP 4 (step 4) are repeated until the determination of YES is made in the welding end determination of STEP 4-2: step 4-2.
  • the command E is registered at the welding end point, but the command E may exist at a teaching point in the middle of the welding section.
  • the arc welding method of the third embodiment is completed at the point where the pitch movement is completed, as in the embodiment of the present end process, and thereafter welding is performed as a normal welding section.
  • step 1 extra welding is performed using the peak current value Ip while retracting the welding torch 504 in the torch direction. Thereby, the scale-shaped beautiful surplus bead can be formed without being aware of the movement in the welding line direction.
  • Step 3 the welding torch 504 is kept constant for a certain period of time and welding is performed under peak current conditions, so that an effect of keeping the height of the scale-shaped surplus bead constant is expected.
  • step 2 the welding current is switched to the base current value to perform pitch movement.
  • the welding torch 504 can be moved with a base current value that does not cause the arc between the welding wire 503 and the welding object W to disappear, and the switching to the next peak current can be smoothly shifted. This has the effect of shortening the tact time and obtaining a clean bead appearance.
  • the arc welding apparatus includes a welding power supply device 501 that supplies power between the consumable electrode 505 and the welding object W, a manipulator 111 that includes a welding torch 504, the manipulator 111, and welding.
  • An arc welding apparatus including a control device 141 that controls a power supply device 501.
  • the arc welding apparatus of the present invention includes a consumable electrode feeding unit 138, a first setting unit 420, a second setting unit 421, a peak voltage setting unit 422, a base voltage setting unit 423, and a retraction.
  • a condition setting unit 310 and a movement condition setting unit 320 are provided.
  • the consumable electrode feeding unit 508 feeds the consumable electrode.
  • the first setting unit 420 sets the current value and time of the peak current supplied between the consumable electrode and the welding object W, or the peak feeding speed of the consumable electrode and the time to apply.
  • the second setting unit 421 sets the current value and time of the base current smaller than the peak current, or the base feeding speed slower than the peak feeding speed and the time to apply.
  • the peak voltage setting unit 422 sets the voltage value of the peak voltage applied between the consumable electrode and the welding object W.
  • the base voltage setting unit 423 sets a voltage value of the base voltage that is smaller than the peak voltage.
  • the retreat condition setting unit 310 sets a condition for leaving the welding object W.
  • the movement condition setting unit 320 sets a movement condition for moving in the welding progress direction.
  • the arc welding apparatus of the present invention is in a state where the arc is generated in the first step of moving the consumable electrode in a direction away from the welding object W while the arc is generated,
  • the second step (step 2) in which the consumable electrode is moved in the direction approaching the welding object W and in the welding progress direction, and welding is performed by alternately repeating.
  • the retreat condition setting unit 310 of the arc welding apparatus includes a retreat movement distance setting unit 311, a retreat direction setting unit 312, and a retreat time setting unit 313, and the movement condition setting unit 320.
  • the retreat movement distance setting unit 311 sets a retreat movement distance Lh that is a movement distance away from the welding object W.
  • the retraction direction setting unit 312 sets a retraction direction D that is a direction away from the welding object W.
  • the evacuation time setting unit 313 sets an evacuation time Th that is a time for moving the distance set by the evacuation movement distance setting unit 311 in the direction set by the evacuation direction setting unit 312.
  • the welding speed setting unit 321 sets a welding speed V that is a speed that moves in the welding progress direction.
  • the pitch movement distance setting unit 322 sets a pitch movement distance Lp that is a distance to move in the welding progress direction.
  • the consumable electrode is placed in the direction set by the retreat direction setting unit 312 by using the distance set by the retreat movement distance setting unit 311 for the time set by the retreat time setting unit 313. It moves in the direction away from the welding object W.
  • the welding speed setting unit 321 sets the distance set by the pitch movement distance setting unit 322 with respect to the movement target position from the position where the consumable electrode has moved by the completion of the first step.
  • the consumable electrode is moved during a time determined by dividing by the set welding speed V.
  • the movement target position is a position where the consumable electrode is advanced from the position of the consumable electrode at the start of the first step by the distance set by the pitch movement distance setting unit 322 in the welding progress direction.
  • the arc welding apparatus of the third embodiment may be configured to move the consumable electrode in the direction approaching the welding object W and in the welding progress direction. . With this configuration, a desired beautiful bead shape can be obtained.
  • the supply of consumable electrodes is performed by alternately repeating the peak feed rate and the base feed rate slower than the peak feed rate, and the feed at the peak feed rate is synchronized with the supply of the peak current.
  • the feeding at the base feeding speed may be controlled to synchronize with the supply of the base current.
  • the upper end stop timer Thd is set and the welding torch 504 is stopped at the upper end.
  • the current condition to be used and the weld bead to be formed. It is also possible to set the upper end stop timer Thd to 0 and not stop the welding torch 504.
  • 3 shows an example in which the retreat direction D is set to the “torch direction”.
  • the retreat direction is set to “vertically upward direction”.
  • the retreat direction is different from that of the third embodiment. The process is the same.
  • the peak current value Ip and the base current value Ib are commanded, and the peak filler material feed speed Wfp and the base filler material feed speed Wfb are controlled in synchronization with the current.
  • An example is shown.
  • the peak filler material feed speed Wfp and the base filler material feed speed Wfb may be commanded to control the current in synchronization with the feed speed.
  • a desired bead shape can be obtained, which can be applied as an arc welding method and an arc welding apparatus used for, for example, the formation of a scaly bead, and is industrially useful.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)
  • Arc Welding Control (AREA)

Abstract

The present invention has the following three steps, and involves welding at a peak current value (Ip) between a welding electrode and an object to be welded, while withdrawing a welding torch for holding the welding electrode by only a withdrawing distance (Lh) in a withdrawing direction (D) which is different from a pre-set welding-advancing direction. The present invention forms a desired weld bead by repeating the following: a step (1) for forming an excess bead; a step (3) for completing the excess bead by welding at the peak current value (Ip) while stopping the welding torch at the completion position of the step (1); and a step (2) for, from the completion position of the step (1), welding at a base current value (Ib) which is a level capable of continuing to maintain an arc between the welding electrode and the object to be welded, while moving a pitch-movement distance (Lp) in the welding-advancing direction from the start position of the step (1).

Description

アーク溶接方法およびアーク溶接装置Arc welding method and arc welding apparatus
 本発明は、非消耗性電極や消耗性電極を用いて、所定の周期で2つの条件を切り替えて溶接を行うアーク溶接方法およびアーク溶接装置に関する。 The present invention relates to an arc welding method and an arc welding apparatus that perform welding by switching two conditions at a predetermined cycle using a non-consumable electrode or a consumable electrode.
 非消耗性電極を用いて溶接を行うTIG(Tungsten Inert Gas)溶接や、消耗性電極を用いて溶接を行うMIG(Metal Inert Gas)溶接では、電極やアークの発生方法に関しての違いはある。しかしながら、これらのTIG溶接およびMIG溶接は、共に、不活性ガス雰囲気中において電極と溶接部材との間にアークを発生させて溶接を行う溶接法である。 In TIG (Tungsten Inert Gas) welding in which welding is performed using a non-consumable electrode, and in MIG (Metal Inert Gas) welding in which welding is performed using a consumable electrode, there are differences in the generation method of electrodes and arcs. However, both TIG welding and MIG welding are welding methods in which an arc is generated between an electrode and a welding member in an inert gas atmosphere to perform welding.
 従来から、TIG溶接やMIG溶接における溶接方法の1つとして、ローパルス溶接という溶接方法が用いられることが多い。ローパルス溶接とは、TIG溶接の場合は、溶接電流や溶接電圧などの溶接条件を数Hz程度の周期でピーク条件とピーク条件よりも低いベース条件とを周期的に変化させながら、その熱で溶接対象物の溶接を行なうようにしたものである(例えば、特許文献1参照)。 Conventionally, a welding method called low pulse welding is often used as one of welding methods in TIG welding and MIG welding. In low pulse welding, in TIG welding, welding conditions such as welding current and welding voltage are periodically changed between a peak condition and a base condition lower than the peak condition at a cycle of about several Hz, and welding is performed with that heat. The object is welded (see, for example, Patent Document 1).
 このようなローパルス溶接を用いる理由は、アルミニウムのような低融点を有する材料を溶接する場合や、板厚が異なる溶接対象物を溶接する場合に、次のような利点があるからである。すなわち、上述の材料や溶接対象物を溶接する場合に、溶接対象物が溶け落ちてしまうことを防ぐ利点や、ギャップのある材質に対応できるなどの利点や、比較的容易にウロコ状のきれいなビード外観が得られるといった利点があるからである。 The reason why such low pulse welding is used is that there are the following advantages when welding a material having a low melting point such as aluminum or when welding objects to be welded having different plate thicknesses. In other words, when welding the above-mentioned materials and welding objects, there are advantages such as preventing the welding objects from melting away, advantages such as being able to cope with materials with gaps, and a clean bead that is relatively easy to scale. This is because there is an advantage that an appearance can be obtained.
 また、非消耗性電極を用いたTIG溶接では、溶接中に溶接部材とほぼ同材質の溶加材を溶接部に挿入し、この溶加材の送給量を調整することで溶着させる金属量を調整することが多い。しかし、TIG溶接におけるローパルス溶接では、溶接電流の変化に合わせて溶加材の送給速度も切り替える溶接方法が用いられることが多い。 Also, in TIG welding using non-consumable electrodes, the amount of metal to be welded by inserting a filler material, which is substantially the same material as the welding member, into the weld during welding and adjusting the feed amount of this filler material Is often adjusted. However, in low pulse welding in TIG welding, a welding method is often used in which the feeding speed of the filler material is switched in accordance with the change in the welding current.
 図23は、従来のTIG溶接システムのローパルス溶接の一例を示す概略構成図である。図23に示す溶接システムは、非消耗性電極を備えた溶接トーチ901と、溶加材902と、溶接電源装置903と、溶加材送給装置904と、で構成される。 FIG. 23 is a schematic configuration diagram showing an example of low pulse welding of a conventional TIG welding system. The welding system shown in FIG. 23 includes a welding torch 901 including a non-consumable electrode, a filler material 902, a welding power source device 903, and a filler material feeding device 904.
 次に、従来のTIG溶接システムのローパルス溶接における溶接制御方法について、図24に示すタイムチャートを用いて説明する。 Next, a welding control method in low pulse welding of the conventional TIG welding system will be described with reference to a time chart shown in FIG.
 図24は、従来のTIG溶接システムにおける溶接トーチ901の移動距離、溶接電流の電流値および溶加材送給速度の時間変化を示したタイムチャートである。図24からもわかるように、従来のTIG溶接システムのローパルス溶接では、溶接トーチ901を一定の速度で動作させ続けながら、電流と溶加材送給速度を一定の周期で切り替えていた。以下に詳細を説明する。 FIG. 24 is a time chart showing the time variation of the moving distance of the welding torch 901, the current value of the welding current, and the filler material feeding speed in the conventional TIG welding system. As can be seen from FIG. 24, in the low pulse welding of the conventional TIG welding system, the current and the filler material feeding speed are switched at a constant cycle while the welding torch 901 is continuously operated at a constant speed. Details will be described below.
 先ず、STEP11(以下、「ステップ11」とする。)として、余盛形成部910の制御について説明する。図24における期間T1では、切り替える溶接条件のうち、高い条件であるピーク電流値Ipと高いピーク溶加材送給速度Wfpにより溶接が行われる。そして、溶加材を溶接対象物に溶着させることで、余盛形成部910を形成する。 First, as STEP 11 (hereinafter referred to as “step 11”), the control of the surplus forming part 910 will be described. In the period T1 in FIG. 24, welding is performed with the peak current value Ip, which is a high condition among the welding conditions to be switched, and the high peak filler material feed speed Wfp. And the surplus formation part 910 is formed by welding a filler material to a welding target object.
 次に、STEP12(以下、「ステップ12」とする。)として、アーク継続部の制御について説明する。図24における期間T2では、周期的に切り替える溶接条件のうち、低い電流条件であるベース電流値Ibと低いベース溶加材送給速度Wfbにより溶接が行われる。通常、ここでは、ベース電流は、アークが維持継続される程度の低い電流値とし、溶加材送給速度は、図24に示すように低い値Wfbもしくは0とすることが多い。このように設定することで、溶接対象物Wに対して入熱を抑えることができ、溶接対象物Wの溶け落ちの防止や、溶接ひずみを低減することが可能である。 Next, the control of the arc continuation unit will be described as STEP 12 (hereinafter referred to as “step 12”). In period T2 in FIG. 24, welding is performed with a base current value Ib that is a low current condition and a low base filler material feed speed Wfb among welding conditions that are periodically switched. Normally, here, the base current is set to a low current value at which the arc is maintained, and the filler material feed speed is often set to a low value Wfb or 0 as shown in FIG. By setting in this way, it is possible to suppress heat input to the welding object W, and it is possible to prevent the welding object W from being burned out and to reduce welding distortion.
 その後は、溶接が終了するまで、上述のステップ11とステップ12とを繰り返し行う。これにより、ウロコ状の溶接ビードを得ることができる。 Thereafter, step 11 and step 12 described above are repeated until welding is completed. Thereby, a scale-like weld bead can be obtained.
 しかし、このローパルス溶接方法では、溶接トーチ901を一定速度で動作させながら溶接条件を切り替える。そのため、余盛形成部910において、単位面積辺りの溶着量や形成する余盛ビードの高さを得るためには、溶加材送給速度を速くする必要があった。しかし、溶加材送給速度のみを速くしただけでは、溶加材の溶け不足が発生してしまうため、電流値も上げる必要があり、結果として必要以上の入熱を加えなければならなかった。また、この場合でも、溶接トーチ901を動作させながら送給を行うため、得られる溶接ビードもきれいなウロコ状にはすることができなかった。 However, in this low pulse welding method, the welding conditions are switched while operating the welding torch 901 at a constant speed. Therefore, in the surplus formation part 910, in order to obtain the welding amount per unit area and the height of the surplus bead to be formed, it is necessary to increase the filler material feeding speed. However, just increasing the feed rate of the filler material will cause insufficient melting of the filler material, so it is necessary to increase the current value. As a result, it was necessary to apply more heat input than necessary. . Also in this case, since feeding is performed while the welding torch 901 is operated, the resulting weld bead could not be made into a clean scale shape.
 この問題を解決するための方法の1つとして、消耗性電極を用いた溶接において、次の第1工程と、第2工程とを繰り返して溶接を行う方法が提案されている(例えば、特許文献2参照)。ここで、第1工程は、溶接トーチを溶接進行方向に対して停止させ、停止させた状態でピーク条件により溶接を行う工程である。第2工程は、溶接トーチを溶接進行方向にピッチ移動させながらベース条件により溶接を行う工程である。 As one of the methods for solving this problem, there has been proposed a method of performing welding by repeating the following first step and second step in welding using a consumable electrode (for example, Patent Documents). 2). Here, the first step is a step in which the welding torch is stopped with respect to the welding progress direction and welding is performed under the peak condition in the stopped state. The second step is a step of performing welding under the base condition while moving the welding torch pitch in the welding progress direction.
 この溶接方法では、溶接トーチを溶接進行方向に停止した状態でピーク電流を供給するため、単位面積あたりの溶着量を、溶接電流を上げることなく高めることが可能となる。また、溶接トーチを停止した状態で溶着量を高めるので、さらには、よりはっきりとしたウロコ状のビード外観を得ることができる。 In this welding method, since the peak current is supplied in a state where the welding torch is stopped in the welding progress direction, the amount of welding per unit area can be increased without increasing the welding current. Further, since the welding amount is increased in a state where the welding torch is stopped, a more clear scale-like bead appearance can be obtained.
 しかし、特許文献2に記載されている消耗性電極による溶接方法をTIG溶接システムに適用したとすると、溶接トーチを停止させたまま余盛部を形成するため、時間の経過とともに非消耗性電極と形成される余盛部との距離が短くなる。そして、場合によっては、非消耗性電極と溶接対象物とが短絡してしまう恐れがあった。 However, if the welding method using the consumable electrode described in Patent Document 2 is applied to the TIG welding system, the surplus portion is formed while the welding torch is stopped. The distance from the formed extra portion is shortened. In some cases, the non-consumable electrode and the welding object may be short-circuited.
 また、このような現象を回避するために、予め電極と溶接対象物との距離を離したとすると、アーク継続部においては、電極と溶接対象物との距離が大きくなってしまい、適正な溶接を得ることができないという課題を有している。 Further, in order to avoid such a phenomenon, if the distance between the electrode and the welding object is previously separated, the distance between the electrode and the welding object becomes large in the arc continuation part, and appropriate welding is performed. Has a problem that cannot be obtained.
 また、特許文献2に記載されている消耗性電極を用いた場合であっても、ピーク時の溶接時間などによっては、溶接トーチからの突出長が余盛形成部910とアーク継続部とで異なってしまう。そのため、TIG溶接と同様に、適正な溶接結果を得ることができないという課題を有していた。 Further, even when the consumable electrode described in Patent Document 2 is used, the protrusion length from the welding torch differs between the overfill forming portion 910 and the arc continuation portion depending on the welding time at the peak. End up. Therefore, similarly to TIG welding, there is a problem that an appropriate welding result cannot be obtained.
 また、従来のTIG溶接システムのローパルス溶接では、電流と溶加材送給速度を同じタイミングで切り替えている。しかし、一般的に、溶接条件の切り替えに対して、溶加材送給速度の切り替えは、送給装置を構成するモータの反応の遅れなどから遅れてしまう。そのため、溶接電流をピーク電流からベース電流に切り替えるとき、同じタイミングで溶加材送給速度を切り替えた場合、溶加材送給速度の切り替えが遅れるため、溶加材の溶け込み不足が発生してしまうという課題を有していた。 Also, in the low pulse welding of the conventional TIG welding system, the current and the filler material feeding speed are switched at the same timing. However, in general, the switching of the welding material feeding speed is delayed due to the delay of the reaction of the motor constituting the feeding device, etc. with respect to the switching of the welding conditions. Therefore, when the welding current is switched from the peak current to the base current, if the filler material feed speed is switched at the same timing, the filler material feed speed switching is delayed, resulting in insufficient penetration of the filler material. It had the problem of end.
 また、溶加材の送給は、溶接対象物に溶融池を形成してから送給を開始するのが好ましい。しかし、ベース電流からピーク電流に切り替えたときに、同じタイミングで溶加材送給速度を切り替えてしまうと、材質などによっては十分な溶融池が形成されていない可能性があり、この場合も適正な溶接を行うことができないという課題を有していた。 In addition, it is preferable to start feeding the filler material after forming a molten pool in the welding object. However, if the filler material feeding speed is switched at the same timing when switching from the base current to the peak current, there is a possibility that a sufficient molten pool may not be formed depending on the material, etc. The problem was that it was impossible to perform proper welding.
 また、従来のTIG溶接方法のローパルス溶接におけるアーク継続部(ベース条件時)の入力可能なベース送給速度の下限としては、送給停止を意味する送給速度0であった。しかし、ピーク条件で送給をしている状態からベース条件で送給を停止した場合、図25に示すように、ベース電流のアーク911の中、または、アーク911付近に溶加材902が存在してしまう可能性がある。このような条件を満たしてしまうと、ベース条件時に送給されていない溶加材902が溶融を開始してしまい、溶加材902の先端が玉状の形状となってしまう。そして、このような形状となると、次回のピーク条件にて溶加材902を送給した時に、うまく溶接対象物に溶着することができなくなってしまう。 Also, the lower limit of the base feed rate that can be input to the arc continuation part (at the base condition) in the low pulse welding of the conventional TIG welding method was a feed rate of 0, which means a feed stop. However, when the supply is stopped under the base condition from the state where the supply is performed under the peak condition, the filler metal 902 exists in the arc 911 of the base current or in the vicinity of the arc 911 as shown in FIG. There is a possibility that. When such a condition is satisfied, the melt material 902 that is not supplied at the base condition starts to melt, and the tip of the melt material 902 becomes a ball shape. And if it becomes such a shape, when the filler metal 902 will be fed on the next peak conditions, it will become impossible to weld to a welding target well.
 以上のような多数の課題を有するので、美しいウロコ状のビード外観を始めとする適正な溶接結果が得られないという問題があった。 Since there are many problems as described above, there has been a problem that proper welding results such as a beautiful scale-like bead appearance cannot be obtained.
特開昭62-279087号公報JP-A-62-279087 特開平11-267839号公報Japanese Patent Laid-Open No. 11-267839
 本発明は上記課題を解決し、より美しいウロコ状のビード外観を得るアーク溶接方法およびアーク溶接装置を提供する。 The present invention solves the above problems and provides an arc welding method and an arc welding apparatus for obtaining a more beautiful scale-like bead appearance.
 本発明のアーク溶接方法は、溶接用電極と溶接対象物との間にアークを発生させて溶接を行うアーク溶接方法である。そして、本発明のアーク溶接方法は、上記アークを発生させたままの状態で、上記溶接対象物から離れる方向に上記溶接用電極を移動させる第1のステップと、上記アークを発生させたままの状態で、上記溶接対象物に近づく方向かつ溶接線方向に上記溶接用電極を移動させる第2のステップと、を備えている。そして、本発明のアーク溶接方法は、前記第1のステップと前記第2のステップとを交互に繰り返して溶接を行う方法からなる。 The arc welding method of the present invention is an arc welding method in which welding is performed by generating an arc between a welding electrode and a welding object. The arc welding method of the present invention includes a first step of moving the welding electrode in a direction away from the welding object in a state where the arc is generated, and a state where the arc is generated. And a second step of moving the welding electrode in a direction approaching the welding object and in a welding line direction. The arc welding method of the present invention comprises a method of performing welding by repeatedly repeating the first step and the second step.
 この方法により、所望の美しいビード形状を得ることができる。 By this method, a desired beautiful bead shape can be obtained.
 また、本発明のアーク溶接装置は、非消耗性電極と溶接対象物との間に電力を供給する溶接電源装置と、非消耗性電極を保持する溶接トーチを備えたマニピュレータと、マニピュレータと溶接電源装置を制御する制御装置と、溶加材を送給するために溶接トーチに取り付けられた溶加材送給ガイドと、を備えたアーク溶接装置である。そして、本発明のアーク溶接装置は、溶加材送給部と、ピーク電流設定部と、ベース電流設定部と、溶加材ピーク送給速度設定部と、溶加材ベース送給速度設定部と、退避条件設定部と、移動条件設定部と、を備えている。ここで、溶加材送給部は、溶加材を送給する。ピーク電流設定部は、非消耗性電極と溶接対象物との間に供給するピーク電流の電流値と時間を設定する。ベース電流設定部は、ピーク電流よりも小さいベース電流の電流値と時間とを設定する。溶加材ピーク送給速度設定部は、溶加材のピーク送給速度と適用する時間を設定する。溶加材ベース送給速度設定部は、溶加材のピーク送給速度よりも小さいベース送給速度とベース送給速度を適用する時間を設定する。退避条件設定部は、溶接対象物から離れる条件を設定する。移動条件設定部は、溶接進行方向に移動する移動条件を設定する。そして、本発明のアーク溶接装置は、アークを発生させたままの状態で、溶接対象物から離れる方向に非消耗性電極を移動させる第1のステップと、アークを発生させたままの状態で、溶接対象物に近づく方向かつ溶接進行方向に非消耗性電極を移動させる第2のステップと、を交互に繰り返して溶接を行う構成からなる。 An arc welding apparatus according to the present invention includes a welding power supply device that supplies electric power between a non-consumable electrode and an object to be welded, a manipulator including a welding torch that holds the non-consumable electrode, and the manipulator and the welding power source. An arc welding apparatus including a control device for controlling the apparatus and a filler material feeding guide attached to a welding torch for feeding the filler material. The arc welding apparatus according to the present invention includes a filler material feeding unit, a peak current setting unit, a base current setting unit, a filler material peak feeding rate setting unit, and a filler material base feeding rate setting unit. And an evacuation condition setting unit and a movement condition setting unit. Here, the filler material feeding unit feeds the filler material. The peak current setting unit sets the current value and time of the peak current supplied between the non-consumable electrode and the welding object. The base current setting unit sets a current value and time of a base current that is smaller than the peak current. The filler material peak feeding speed setting unit sets the peak feeding speed of the filler material and the time to be applied. The filler material base feed rate setting unit sets a base feed rate that is smaller than the peak feed rate of the filler material and a time during which the base feed rate is applied. The evacuation condition setting unit sets conditions for leaving the welding object. The movement condition setting unit sets a movement condition for moving in the welding progress direction. And the arc welding apparatus of the present invention is in a state in which the arc is generated in the first step of moving the non-consumable electrode in a direction away from the welding object, in a state where the arc is generated, The second step of moving the non-consumable electrode in the direction approaching the object to be welded and in the welding progress direction is configured to perform welding by repeating alternately.
 この構成により、所望の美しいビード形状を得ることができる。 This configuration makes it possible to obtain a desired beautiful bead shape.
 また、本発明のアーク溶接装置は、消耗性電極と溶接対象物との間に電力を供給する溶接電源装置と、溶接トーチを備えたマニピュレータと、マニピュレータと溶接電源装置を制御する制御装置と、を備えたアーク溶接装置である。そして、本発明のアーク溶接装置は、消耗性電極送給部と、第1の設定部と、第2の設定部と、ピーク電圧設定部と、ベース電圧設定部と、退避条件設定部と、移動条件設定部と、を備えている。ここで、消耗性電極送給部は、消耗性電極を送給する。第1の設定部は、消耗性電極と溶接対象物との間に供給するピーク電流の電流値と時間、または、消耗性電極のピーク送給速度と適用する時間を設定する。第2の設定部は、ピーク電流よりも小さいベース電流の電流値と時間、または、ピーク送給速度より遅いベース送給速度と適用する時間を設定する。ピーク電圧設定部は、消耗性電極と溶接対象物との間に印加するピーク電圧の電圧値を設定する。ベース電圧設定部は、ピーク電圧よりも小さいベース電圧の電圧値を設定する。退避条件設定部は、溶接対象物から離れる条件を設定する。移動条件設定部は、溶接進行方向に移動する移動条件を設定する。そして、本発明のアーク溶接装置は、アークを発生させたままの状態で、溶接対象物から離れる方向に消耗性電極を移動させる第1のステップと、アークを発生させたままの状態で、溶接対象物に近づく方向かつ溶接進行方向に消耗性電極を移動させる第2のステップと、を交互に繰り返して溶接を行う構成からなる。 Further, the arc welding apparatus of the present invention includes a welding power supply device that supplies electric power between the consumable electrode and the welding object, a manipulator including a welding torch, a control device that controls the manipulator and the welding power supply device, Is an arc welding apparatus. And the arc welding apparatus of the present invention comprises a consumable electrode feeding unit, a first setting unit, a second setting unit, a peak voltage setting unit, a base voltage setting unit, a retreat condition setting unit, A movement condition setting unit. Here, the consumable electrode feeding unit feeds the consumable electrode. The first setting unit sets a current value and time of a peak current supplied between the consumable electrode and the welding object, or a peak feeding speed of the consumable electrode and a time to apply. The second setting unit sets the current value and time of the base current smaller than the peak current, or the base feeding speed slower than the peak feeding speed and the application time. A peak voltage setting part sets the voltage value of the peak voltage applied between a consumable electrode and a welding target object. The base voltage setting unit sets a voltage value of the base voltage that is smaller than the peak voltage. The evacuation condition setting unit sets conditions for leaving the welding object. The movement condition setting unit sets a movement condition for moving in the welding progress direction. The arc welding apparatus according to the present invention includes a first step of moving the consumable electrode in a direction away from the welding object in a state where the arc is generated, and welding in a state where the arc is generated. The second step of moving the consumable electrode in the direction approaching the object and in the welding progress direction is configured to perform welding by repeating alternately.
 この構成により、所望の美しいビード形状を得ることができる。 This configuration makes it possible to obtain a desired beautiful bead shape.
図1は、本発明の実施の形態1におけるTIG溶接システムの概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a TIG welding system in Embodiment 1 of the present invention. 図2は、本発明の実施の形態1における溶接トーチの概要を示す正面図である。FIG. 2 is a front view showing an outline of the welding torch in the first embodiment of the present invention. 図3は、本発明の実施の形態1における動作パラメータの設定画面の例を示す図である。FIG. 3 is a diagram showing an example of an operation parameter setting screen according to Embodiment 1 of the present invention. 図4は、本発明の実施の形態1における溶接パラメータの設定画面の例を示す図である。FIG. 4 is a diagram showing an example of a welding parameter setting screen according to the first embodiment of the present invention. 図5Aは、本発明の実施の形態1における溶接トーチの退避方向を説明するための正面図である。FIG. 5A is a front view for explaining a retracting direction of the welding torch in the first embodiment of the present invention. 図5Bは、本発明の実施の形態1における溶接トーチの退避方向を説明するための正面図である。FIG. 5B is a front view for explaining a retracting direction of the welding torch in the first embodiment of the present invention. 図5Cは、本発明の実施の形態1における溶接トーチの退避方向を説明するための正面図である。FIG. 5C is a front view for explaining a retracting direction of the welding torch in the first embodiment of the present invention. 図6は、本発明の実施の形態1におけるアーク溶接方法のフローチャートである。FIG. 6 is a flowchart of the arc welding method according to Embodiment 1 of the present invention. 図7は、本発明の実施の形態1におけるピッチ方向の移動距離、退避方向の移動距離、溶接電流の電流値および溶加材送給速度のタイムチャートである。FIG. 7 is a time chart of the movement distance in the pitch direction, the movement distance in the retraction direction, the current value of the welding current, and the filler material feeding speed in the first embodiment of the present invention. 図8は、本発明の実施の形態1における溶接終了時の処理のフローチャートである。FIG. 8 is a flowchart of processing at the end of welding in the first embodiment of the present invention. 図9Aは、本発明の実施の形態1における溶接終了方法を説明するための図である。FIG. 9A is a diagram for describing a welding end method according to Embodiment 1 of the present invention. 図9Bは、本発明の実施の形態1における溶接終了方法を説明するための図である。FIG. 9B is a diagram for describing a welding end method according to Embodiment 1 of the present invention. 図9Cは、本発明の実施の形態1における溶接方法を溶接中間教示点にて終了する方法を説明するための図である。FIG. 9C is a diagram for describing a method of ending the welding method according to Embodiment 1 of the present invention at a welding intermediate teaching point. 図10は、本発明の実施の形態1におけるピッチ方向の移動距離、退避方向の移動距離、溶接電流の電流値および溶加材送給速度のタイムチャートである。FIG. 10 is a time chart of the movement distance in the pitch direction, the movement distance in the retraction direction, the current value of the welding current, and the filler material feeding speed in the first embodiment of the present invention. 図11は、本発明の実施の形態1におけるピッチ方向の移動距離、退避方向の移動距離、溶接電流の電流値および溶加材送給速度のタイムチャートである。FIG. 11 is a time chart of the movement distance in the pitch direction, the movement distance in the retraction direction, the current value of the welding current, and the filler material feeding speed in the first embodiment of the present invention. 図12は、本発明の実施の形態1におけるピッチ方向の移動距離、退避方向の移動距離、溶接電流の電流値および溶加材送給速度のタイムチャートである。FIG. 12 is a time chart of the movement distance in the pitch direction, the movement distance in the retraction direction, the current value of the welding current, and the filler material feeding speed in the first embodiment of the present invention. 図13は、本発明の実施の形態1におけるピッチ方向の移動距離、退避方向の移動距離、溶接電流の電流値および溶加材送給速度のタイムチャートである。FIG. 13 is a time chart of the movement distance in the pitch direction, the movement distance in the retraction direction, the current value of the welding current, and the filler material feed speed in the first embodiment of the present invention. 図14Aは、本発明の実施の形態2におけるアーク溶接方法に関するフローチャートである。FIG. 14A is a flowchart relating to the arc welding method according to Embodiment 2 of the present invention. 図14Bは、本発明の実施の形態2におけるアーク溶接方法に関するフローチャートである。FIG. 14B is a flowchart relating to the arc welding method according to Embodiment 2 of the present invention. 図15は、本発明の実施の形態2におけるピッチ方向の移動距離、退避方向の移動距離、溶接電流の電流値および溶加材送給速度のタイムチャートである。FIG. 15 is a time chart of the movement distance in the pitch direction, the movement distance in the retraction direction, the current value of the welding current, and the filler material feeding speed in the second embodiment of the present invention. 図16は、本発明の実施の形態3におけるMIG溶接システムの概略構成を示す図である。FIG. 16 is a diagram showing a schematic configuration of the MIG welding system in the third embodiment of the present invention. 図17は、本発明の実施の形態3における溶接トーチの概要を示す正面図である。FIG. 17 is a front view showing an outline of a welding torch in the third embodiment of the present invention. 図18は、本発明の実施の形態3における動作パラメータの設定画面の例を示す図である。FIG. 18 is a diagram illustrating an example of an operation parameter setting screen according to the third embodiment of the present invention. 図19は、本発明の実施の形態3における溶接パラメータの設定画面の例を示す図である。FIG. 19 is a diagram showing an example of a welding parameter setting screen according to the third embodiment of the present invention. 図20は、本発明の実施の形態3におけるアーク溶接方法のフローチャートである。FIG. 20 is a flowchart of the arc welding method in the third embodiment of the present invention. 図21は、本発明の実施の形態3におけるアーク溶接方法のフローチャートである。FIG. 21 is a flowchart of the arc welding method in the third embodiment of the present invention. 図22は、本発明の実施の形態3におけるピッチ方向の移動距離、退避方向の移動距離、溶接電流の電流値および溶加材送給速度のタイムチャートである。FIG. 22 is a time chart of the movement distance in the pitch direction, the movement distance in the retraction direction, the current value of the welding current, and the filler material feeding speed in the third embodiment of the present invention. 図23は、従来のTIG溶接システムの概略構成図である。FIG. 23 is a schematic configuration diagram of a conventional TIG welding system. 図24は、従来のTIG溶接システムにおける溶接トーチ移動距離、溶接電流の電流値および溶加材送給速度のタイムチャートである。FIG. 24 is a time chart of the welding torch moving distance, the current value of the welding current, and the filler material feeding speed in the conventional TIG welding system. 図25は、従来のTIG溶接システムにおける課題を説明するための正面図である。FIG. 25 is a front view for explaining a problem in the conventional TIG welding system.
 以下、本発明の一実施の形態について、図面を参照しながら説明する。以下の図面においては、同じ構成要素については同じ符号を付しているので説明を省略する場合がある。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the following drawings, the same components are denoted by the same reference numerals, and the description thereof may be omitted.
 (実施の形態1)
 図1は、本発明の実施の形態1におけるTIG溶接システムの概略構成を示す図である。図2は、本発明の実施の形態1における溶接トーチ112の概要を示す正面図である。図3は、本発明の実施の形態1における動作パラメータの設定画面の例を示す図である。図4は、本発明の実施の形態1における溶接パラメータの設定画面の例を示す図である。図5A、図5B、図5Cは、本発明の実施の形態1における溶接トーチの退避方向を説明するための正面図である。
(Embodiment 1)
FIG. 1 is a diagram showing a schematic configuration of a TIG welding system in Embodiment 1 of the present invention. FIG. 2 is a front view showing an outline of welding torch 112 in the first embodiment of the present invention. FIG. 3 is a diagram showing an example of an operation parameter setting screen according to Embodiment 1 of the present invention. FIG. 4 is a diagram showing an example of a welding parameter setting screen according to the first embodiment of the present invention. 5A, FIG. 5B, and FIG. 5C are front views for explaining the retracting direction of the welding torch in the first embodiment of the present invention.
 図1は、非消耗性電極を用いたアーク溶接を、ロボットシステムを用いて自動で行う自動溶接システムであるアーク溶接装置の構成の一例を示す図である。 FIG. 1 is a diagram illustrating an example of a configuration of an arc welding apparatus that is an automatic welding system that automatically performs arc welding using a non-consumable electrode using a robot system.
 図1に示すように、アーク溶接装置は、マニピュレータ111と、溶接電源装置121と、溶加材送給装置131と、マニピュレータ111、溶接電源装置121および溶加材送給装置131等の制御を行う制御装置141と、制御装置141に接続されたティーチペンダント151とを備えている。 As shown in FIG. 1, the arc welding apparatus controls the manipulator 111, the welding power supply apparatus 121, the filler material feeding apparatus 131, the manipulator 111, the welding power supply apparatus 121, the filler material feeding apparatus 131, and the like. The control apparatus 141 to perform and the teach pendant 151 connected to the control apparatus 141 are provided.
 マニピュレータ111には、溶接トーチ112が取り付けられている。溶接トーチ112には、図2に示すように、アルゴンなどのシールドガスを供給するためのガスノズル211、非消耗性電極212および溶加材送給ガイド213が取り付けられている。ガスノズル211からは、溶接電源装置121からの指令に応じて図示しないガスボンベから供給されたシールドガスを、溶接箇所に供給することができる。溶加材送給ガイド213からは、溶加材送給装置131によって溶加材113が送給される。そして、溶接電源装置121によって非消耗性電極212と溶接対象物Wとの間に電力を印加してアークを発生させる。このアークにより溶接対象物Wや溶加材113を溶融させ、溶接対象物Wに溶加材113を溶着させることを目的としている。 A welding torch 112 is attached to the manipulator 111. As shown in FIG. 2, a gas nozzle 211 for supplying a shielding gas such as argon, a non-consumable electrode 212, and a filler material feed guide 213 are attached to the welding torch 112. From the gas nozzle 211, a shield gas supplied from a gas cylinder (not shown) can be supplied to the welding location in accordance with a command from the welding power supply device 121. From the filler material feeding guide 213, the filler material 113 is fed by the filler material feeding device 131. Then, electric power is applied between the non-consumable electrode 212 and the welding object W by the welding power source device 121 to generate an arc. The purpose is to melt the welding object W and the filler material 113 by this arc and to weld the filler material 113 to the welding object W.
 溶接電源装置121は、溶接電圧を印加して溶接電流を流すための出力部(図示せず)と、出力に対して実際の溶接電圧を検出するための電圧検出部(図示せず)とを備えた装置である。出力部は、溶接トーチ112と溶接対象物Wとに接続されており、制御装置141の指令によって溶接トーチ112を通じて非消耗性電極212と溶接対象物Wとの間に溶接電圧を印加し、溶接電流を流すことが可能である。 The welding power supply device 121 includes an output unit (not shown) for applying a welding voltage to flow a welding current, and a voltage detection unit (not shown) for detecting an actual welding voltage with respect to the output. It is a device equipped. The output unit is connected to the welding torch 112 and the welding object W, applies a welding voltage between the non-consumable electrode 212 and the welding object W through the welding torch 112 according to a command from the control device 141, and welds. It is possible to pass an electric current.
 溶加材送給装置131は、送給速度制御部132と、ガイドローラ(図示せず)付きの送給モータ133と、図示しないエンコーダなどの角度センサで送給モータの角度を検出するための角度検出部(図示せず)とを備えた装置である。溶加材送給装置131は、制御装置141の指令によって作動し、ガイドローラにより溶加材113を送給することが可能である。 The filler material feeding device 131 detects a feed motor angle by a feed speed control unit 132, a feed motor 133 with a guide roller (not shown), and an angle sensor such as an encoder (not shown). It is an apparatus provided with the angle detection part (not shown). The filler material feeding device 131 is operated by a command from the control device 141 and can feed the filler material 113 by a guide roller.
 溶加材送給装置131によって送給される溶加材113は、溶加材送給ガイド213を通じて非消耗性電極212と溶接対象物Wとの間に送給される。送給された溶加材113は、溶接電源装置121の出力により発生するアークによって溶接対象物Wとともに溶融され、溶接対象物Wに溶加材113を溶着させることを目的としている。 The melt material 113 fed by the melt material feeding device 131 is fed between the non-consumable electrode 212 and the welding object W through the melt material feed guide 213. The supplied filler material 113 is melted together with the welding object W by an arc generated by the output of the welding power supply device 121, and aims to weld the filler material 113 to the welding object W.
 溶加材送給装置131は、送給速度制御部132を備えており、溶加材113を送給する。 The filler material feeding device 131 includes a feeding speed control unit 132 and feeds the filler material 113.
 制御装置141は、通信部142と、演算部143と、教示データ記憶部144と、マニピュレータ制御部145と、溶接条件指令部146と、送給速度指令部147とを備えている。ここで、通信部142は、ティーチペンダント151と通信を行う。演算部143は、様々な内部演算を行うCPUやメモリなどで構成される。教示データ記憶部144は、自動運転時にプレイバック動作させるために教示されたデータを記憶する。マニピュレータ制御部145は、演算部143で演算された結果からマニピュレータ111を制御する。溶接条件指令部146は、溶接電源装置121に溶接電流などの溶接条件を指令する。送給速度指令部147は、溶加材送給装置131に対して溶加材113の送給速度を指令する。 The control device 141 includes a communication unit 142, a calculation unit 143, a teaching data storage unit 144, a manipulator control unit 145, a welding condition command unit 146, and a feed speed command unit 147. Here, the communication unit 142 communicates with the teach pendant 151. The calculation unit 143 includes a CPU, a memory, and the like that perform various internal calculations. The teaching data storage unit 144 stores data taught for performing a playback operation during automatic driving. The manipulator control unit 145 controls the manipulator 111 from the result calculated by the calculation unit 143. The welding condition command unit 146 commands the welding power source device 121 for welding conditions such as a welding current. The feeding speed command unit 147 commands the feeding speed of the filler material 113 to the filler material feeding device 131.
 なお、溶接電源装置121と送給速度制御部132は、制御装置141内に備えるようにしてもよい。この構成により、本実施の形態1のアーク溶接装置は、さらに小型化ができる。 Note that the welding power supply device 121 and the feeding speed control unit 132 may be provided in the control device 141. With this configuration, the arc welding apparatus of the first embodiment can be further downsized.
 また、ティーチペンダント151は、制御装置141と通信を行うための通信部152と、各種の情報を表示するためのデータ表示部153と、データ設定部154とを備えている。ティーチペンダント151は、マニピュレータ111の操作や、本実施の形態1で行うアーク溶接方法の演算パラメータの設定などを行うことができる。 Further, the teach pendant 151 includes a communication unit 152 for communicating with the control device 141, a data display unit 153 for displaying various information, and a data setting unit 154. The teach pendant 151 can perform operation of the manipulator 111, setting of operation parameters of the arc welding method performed in the first embodiment, and the like.
 ティーチペンダント151は、具体的には図3および図4に示すようにデータ表示部153およびデータ設定部154を含んで表示する。データ設定部154は、必要に応じて図3に示す動作パラメータ設定部301や図4に示す溶接条件パラメータ設定部401を表示する。動作パラメータ設定部301は、図3に示すようにピッチ移動距離Lp、退避距離Lh、退避方向D、退避時間Th、溶接速度Vおよび上端停止タイマThd等の動作パラメータを設定する。 Specifically, the teach pendant 151 includes a data display unit 153 and a data setting unit 154 as shown in FIGS. The data setting unit 154 displays the operation parameter setting unit 301 shown in FIG. 3 and the welding condition parameter setting unit 401 shown in FIG. 4 as necessary. As shown in FIG. 3, the operation parameter setting unit 301 sets operation parameters such as a pitch movement distance Lp, a retraction distance Lh, a retraction direction D, a retraction time Th, a welding speed V, and an upper end stop timer Thd.
 すなわち、動作パラメータ設定部301は、退避条件設定部310と移動条件設定部320とを備えている。退避条件設定部310は、退避移動距離設定部311と、退避方向設定部312と、退避時間設定部313と、を有している。ここで、退避移動距離設定部311は、溶接対象物Wから離れる移動距離である退避移動距離Lhを設定する。退避方向設定部312は、溶接対象物Wから離れる方向である退避方向Dを設定する。退避時間設定部313は、退避方向設定部312で設定された方向に退避移動距離設定部311で設定された距離を移動する時間である退避時間Thを設定する。移動条件設定部320は、溶接速度設定部321と、ピッチ移動距離設定部322と、を有している。溶接速度設定部321は、溶接進行方向に移動する速度である溶接速度Vを設定する。ピッチ移動距離設定部322は、溶接進行方向に移動する距離であるピッチ移動距離Lpを設定する。 That is, the operation parameter setting unit 301 includes a retreat condition setting unit 310 and a movement condition setting unit 320. The retreat condition setting unit 310 includes a retreat movement distance setting unit 311, a retreat direction setting unit 312, and a retreat time setting unit 313. Here, the retreat movement distance setting unit 311 sets a retreat movement distance Lh that is a movement distance away from the welding object W. The retraction direction setting unit 312 sets a retraction direction D that is a direction away from the welding object W. The evacuation time setting unit 313 sets an evacuation time Th that is a time for moving the distance set by the evacuation movement distance setting unit 311 in the direction set by the evacuation direction setting unit 312. The movement condition setting unit 320 includes a welding speed setting unit 321 and a pitch movement distance setting unit 322. The welding speed setting unit 321 sets a welding speed V that is a speed that moves in the welding progress direction. The pitch movement distance setting unit 322 sets a pitch movement distance Lp that is a distance to move in the welding progress direction.
 溶接条件パラメータ設定部401は、図4に示すようにピーク電流値Ip、ベース電流値Ib、ピーク溶加材送給速度Wfp、ベース溶加材送給速度Wfb、ピーク溶加材送給時間Twfpおよび送給タイミング調整時間Tadj等の溶接条件パラメータを設定する。 As shown in FIG. 4, the welding condition parameter setting unit 401 includes a peak current value Ip, a base current value Ib, a peak filler material feed speed Wfp, a base filler material feed speed Wfb, and a peak filler material feed time Twfp. In addition, the welding condition parameters such as the feeding timing adjustment time Tadj are set.
 すなわち、溶接条件パラメータ設定部401は、ピーク電流設定部410、ベース電流設定部411、第1の設定部420、第2の設定部421、ピーク電圧設定部422およびベース電圧設定部423のうちの少なくともいずれかを備えている。ピーク電流設定部410は、非消耗性電極212と溶接対象物Wとの間に供給するピーク電流の電流値Ipと時間を設定する。ベース電流設定部411は、ピーク電流よりも小さいベース電流の電流値Ibと時間とを設定する。第1の設定部420は、消耗性電極と溶接対象物Wとの間に供給するピーク電流の電流値Ipと時間、または、消耗性電極のピーク送給速度と適用する時間を設定する。第2の設定部421は、ピーク電流よりも小さいベース電流の電流値Ibと時間、または、ピーク送給速度より遅いベース送給速度と適用する時間を設定する。ピーク電圧設定部422は、消耗性電極と溶接対象物Wとの間に印加するピーク電圧の電圧値を設定する。ベース電圧設定部423は、ピーク電圧よりも小さいベース電圧の電圧値を設定する。 That is, the welding condition parameter setting unit 401 includes a peak current setting unit 410, a base current setting unit 411, a first setting unit 420, a second setting unit 421, a peak voltage setting unit 422, and a base voltage setting unit 423. At least one is provided. The peak current setting unit 410 sets the current value Ip and the time of the peak current supplied between the non-consumable electrode 212 and the welding object W. The base current setting unit 411 sets the current value Ib and time of the base current smaller than the peak current. The first setting unit 420 sets the current value Ip and time of the peak current supplied between the consumable electrode and the welding object W, or the peak feeding speed of the consumable electrode and the time to apply. The second setting unit 421 sets the current value Ib and time of the base current smaller than the peak current, or the base feeding speed slower than the peak feeding speed and the time to apply. The peak voltage setting unit 422 sets the voltage value of the peak voltage applied between the consumable electrode and the welding object W. The base voltage setting unit 423 sets a voltage value of the base voltage that is smaller than the peak voltage.
 図4のピーク電流設定部410は、溶加材ピーク送給速度設定部136と溶加材ベース送給速度設定部137も有している。溶加材ピーク送給速度設定部136は、溶加材113のピーク送給速度と適用する時間を設定する。溶加材ベース送給速度設定部137は、溶加材113のピーク送給速度よりも小さいベース送給速度とベース送給速度を適用する時間を設定する。 The peak current setting unit 410 in FIG. 4 also has a filler material peak feed rate setting unit 136 and a filler material base feed rate setting unit 137. The filler material peak feed speed setting unit 136 sets the peak feed speed of the filler material 113 and the time to be applied. The filler material base feed speed setting unit 137 sets a base feed speed smaller than the peak feed speed of the filler material 113 and a time for applying the base feed speed.
 そして、本実施の形態1のアーク溶接方法を開始する意味も備えている自動運転時のプレイバック用命令A(図示せず)と、本実施の形態1の溶接方法を終了する自動運転時のプレイバック用命令B(図示せず)を備えている。なお、命令Aや命令Bは、教示データ記憶部144に記憶される。 Then, a playback instruction A (not shown) at the time of automatic operation that also has the meaning of starting the arc welding method of the first embodiment, and an automatic operation at the time of ending the welding method of the first embodiment. A playback instruction B (not shown) is provided. Note that the instruction A and the instruction B are stored in the teaching data storage unit 144.
 ここで、上述の演算パラメータは、0以上もしくは0より大きい値を設定することを基本とするが、ベース溶加材送給速度Wfbと、送給タイミング調整時間Tadjに関しては、負値を設定することも可能としている。 Here, the above calculation parameters are basically set to values of 0 or more or greater than 0, but negative values are set for the base filler material feed speed Wfb and the feed timing adjustment time Tadj. It is also possible.
 また、退避方向Dの設定では、予め用意されている「トーチ方向」および、「鉛直上向き方向」の2つの選択肢から設定される。 Also, in the setting of the retreat direction D, it is set from two choices of “torch direction” and “vertically upward direction” prepared in advance.
 また、図3や図4に示すピッチ移動距離Lpやピーク電流値Ipなどの演算パラメータの設定時に、ティーチペンダント151のデータ表示部153には、演算パラメータと実際の動作の関係を示した略図(図3、図4参照)が表示され、教示者が演算パラメータ時の挙動の変化をイメージし易くしている。 In addition, when setting calculation parameters such as the pitch movement distance Lp and the peak current value Ip shown in FIGS. 3 and 4, the data display unit 153 of the teach pendant 151 is a schematic diagram showing the relationship between the calculation parameters and the actual operation ( 3 and 4) is displayed, which makes it easy for the instructor to imagine changes in behavior at the time of calculation parameters.
 以上、ティーチペンダント151のデータ設定部154の設定内容については、教示者が教示した自動運転時にプレイバック動作させる教示データ内の命令の1つとして、ティーチペンダント151の通信部152と制御装置141の通信部142を通じて、制御装置141の教示データ記憶部144に記憶される。 As described above, regarding the setting contents of the data setting unit 154 of the teach pendant 151, the communication unit 152 of the teach pendant 151 and the control device 141 are used as one of the instructions in the teaching data to be played back during the automatic operation taught by the teacher. The data is stored in the teaching data storage unit 144 of the control device 141 through the communication unit 142.
 後述する本実施の形態1のアーク溶接方法を使用する場合、溶接作業を行う区間の中で、本実施の形態1のアーク溶接方法を開始したい教示位置、すなわち、ロボットの動作プログラム中の教示位置に命令Aを登録する。 When using the arc welding method according to the first embodiment to be described later, a teaching position where the arc welding method according to the first embodiment is to be started, that is, a teaching position in the robot operation program, in a section where welding work is performed. Register instruction A.
 また、本実施の形態1のアーク溶接方法を終了したい教示位置には、命令Bを登録しておく。但し、命令Bを登録しなくても、本実施の形態1のアーク溶接方法は、溶接区間の終了で自動的に終了される。詳細な動作については後述するが、命令Bを登録しているか否かによって本実施の形態1のアーク溶接方法終了時の動作が異なっており、教示内容によって教示者が命令の登録を選択することができる。 Also, the instruction B is registered at the teaching position where the arc welding method of the first embodiment is to be finished. However, even if the command B is not registered, the arc welding method of the first embodiment is automatically terminated at the end of the welding section. Although the detailed operation will be described later, the operation at the end of the arc welding method of the first embodiment differs depending on whether or not the command B is registered, and the teacher selects the command registration depending on the teaching content. Can do.
 以下、演算パラメータを用いたマニピュレータ111の動作制御、溶接条件の制御および送給速度の制御の詳細について、図面を参照して説明する。 Hereinafter, details of operation control of the manipulator 111 using the calculation parameters, control of the welding conditions, and control of the feeding speed will be described with reference to the drawings.
 図6は、本発明の実施の形態1のアーク溶接方法を用いたときの処理のフローチャートを示している。図7は、本発明の実施の形態1のアーク溶接方法を用いたときのピッチ方向の移動距離、退避方向の移動距離、溶接電流の電流値および溶加材送給速度のタイムチャートを示している。 FIG. 6 shows a flowchart of processing when the arc welding method of Embodiment 1 of the present invention is used. FIG. 7 shows a time chart of the movement distance in the pitch direction, the movement distance in the retraction direction, the current value of the welding current, and the filler material feeding speed when the arc welding method according to the first embodiment of the present invention is used. Yes.
 なお、本実施の形態1では、本実施の形態1のアーク溶接方法による効果が最も期待されると考えられる退避方向Dとしてツール方向が設定されており、ベース溶加材送給速度Wfbとして負値(逆送)が設定されており、送給タイミング調整時間Tadjとしては正値が設定されているものとする。 In the first embodiment, the tool direction is set as the retreat direction D, which is considered to be most effective in the arc welding method of the first embodiment, and the base filler material feed speed Wfb is negative. It is assumed that a value (reverse feed) is set and a positive value is set as the feed timing adjustment time Tadj.
 ここで退避方向Dの「トーチ方向」とは、図5Aから図5Cにおいて溶接進行方向に対して上向きの実線で示している方向であり、溶接進行方向とは関係なく、常に溶接トーチおよび電極方向を指す。そのため、図5Bや図5Cのように教示を、前進角や後退角を持って行った場合には、その角度方向に退避することになる。 Here, the “torch direction” in the retracting direction D is a direction indicated by a solid line upward in FIG. 5A to FIG. 5C with respect to the welding progress direction, and is always independent of the welding progress direction and the welding torch and electrode directions. Point to. Therefore, when teaching is performed with a forward angle or a backward angle as shown in FIG. 5B or FIG. 5C, the instruction is retracted in the angular direction.
 一方、「鉛直上向き方向」とは、図5Aから図5Cにおいて、溶接トーチの角度とは関係なく、溶接進行方向とトーチ方向の成す平面において、常に溶接進行方向に対して垂直方向を指す点線で示している方向である。 On the other hand, the “vertical upward direction” is a dotted line that always indicates a direction perpendicular to the welding progress direction in the plane formed by the welding progress direction and the torch direction in FIGS. 5A to 5C regardless of the angle of the welding torch. It is the direction shown.
 用途としては、「トーチ方向」は、教示者が教示に応じて自由に退避方向を選択することが可能となるため、より拡張性の高い教示を行うことが可能となる。 As the application, the “torch direction” allows the teacher to freely select the retreat direction according to the teaching, so that it is possible to perform teaching with higher expandability.
 一方、「鉛直上向き方向」は、トーチ角度とは関係なく、常に一定の方向に退避させることが可能であるため、溶接対象物Wの形状や溶接場所によってはトーチ角度を一定に保てないような場合も考えられる。しかし、その場合であっても、常に退避方向を一定に保つことができ、余盛ビードを一定に保つ効果が期待できる。 On the other hand, since the “vertical upward direction” can always be retracted in a constant direction regardless of the torch angle, the torch angle cannot be kept constant depending on the shape of the welding object W and the welding location. In some cases, it can be considered. However, even in that case, the retreat direction can always be kept constant, and the effect of keeping the surplus bead constant can be expected.
 プレイバック動作において、制御装置141は、教示データ記憶部144から本実施の形態1のアーク溶接方法を開始する命令Aを読み出すと、先ずは、一般的な溶接開始処理を行う。一般的には、高周波火花を使用して非消耗性電極212と溶接対象物Wとの間にアークを発生させる。 In the playback operation, when the control device 141 reads the instruction A for starting the arc welding method of the first embodiment from the teaching data storage unit 144, first, a general welding start process is performed. Generally, an arc is generated between the non-consumable electrode 212 and the welding target W using a high-frequency spark.
 なお、本実施の形態1のアーク溶接方法について、アークの発生方法については、上述の高周波を用いる以外に、直流高電圧印加方式やリフトスタート方式など、いずれの方式を用いてもかまわない。そして、アークの発生後は、溶接開始時も用いられる条件によって入熱処理がなされる。これら一般的な溶接開始処理(STEP0:ステップ0)が終了すると、本実施の形態1のアーク溶接方法が開始される。 In addition, as for the arc welding method of the first embodiment, any method such as a direct current high voltage application method or a lift start method may be used as the arc generation method, in addition to the above-described high frequency. And after generation | occurrence | production of an arc, heat input heat processing is made | formed by the conditions used also at the time of a welding start. When these general welding start processes (STEP 0: step 0) are completed, the arc welding method of the first embodiment is started.
 本実施の形態1のアーク溶接方法では、予め定められた退避方向Dに溶接トーチ112を退避動作させながらピーク電流値Ipを流す余盛溶接をする部分と、退避動作完了点から溶接線方向にピッチ移動動作させながらベース電流値Ibを流すアーク継続をする部分とがある。そして、電流の切り替えのタイミングに対して溶加材送給速度の切り替えタイミングをずらして送給速度の切り替えを行う。これらの制御を繰り返すことにより溶接を行う。 In the arc welding method of the first embodiment, the portion for performing the extra welding in which the peak current value Ip flows while the welding torch 112 is retracted in a predetermined retracting direction D, and the retracting operation is completed in the direction of the weld line. There is a portion for continuing the arc through which the base current value Ib flows while performing the pitch movement operation. Then, the feeding speed is switched by shifting the switching timing of the filler material feeding speed with respect to the timing of switching the current. Welding is performed by repeating these controls.
 先ず、図6を用いて、STEP1(ステップ1)として、退避動作について説明する。図6に示すように、溶接トーチと上部に書かれた列の各ステップは、溶接トーチ112の動作に関するステップを表し、溶接条件指令と上部に書かれた列の各ステップは、溶接条件指令を示す。また、送給速度条件と上部に書かれた列の各ステップは、送給速度条件を示す。 First, the evacuation operation will be described as STEP 1 (step 1) with reference to FIG. As shown in FIG. 6, each step of the welding torch and the row written on the top represents a step relating to the operation of the welding torch 112, and each step of the welding torch command and the row written on the top represents the welding condition command. Show. Each step of the feed speed condition and the column written at the top indicates the feed speed condition.
 溶接開始処理(ステップ0)終了の後、溶接トーチ112を溶接トーチ方向に退避距離Lhの距離を退避時間Thにて動作するように退避動作を開始する(STEP1-1:ステップ1-1)。そして、退避させると同時に溶接電源装置121にピーク電流値Ipを流すことを指令する(STEP1-2:ステップ1-2)。 After completion of the welding start process (step 0), the retracting operation is started so that the welding torch 112 operates in the welding torch direction with the retracting distance Lh for the retracting time Th (STEP 1-1: Step 1-1). Then, at the same time as evacuation, the welding power supply device 121 is instructed to flow the peak current value Ip (STEP 1-2: Step 1-2).
 また、溶接電源装置121にピーク電流値Ipを流すことを指令してから送給タイミング調整時間Tadj経過のタイミング(STEP1-4:ステップ1-4でYes判定)で、溶加材送給装置131に対してピーク溶加材送給速度Wfp値を指令する(STEP1-5:ステップ1-5)。 Further, at the timing when the feed timing adjustment time Tadj has elapsed after instructing the welding power source device 121 to flow the peak current value Ip (STEP 1-4: Yes determination in step 1-4), the filler material feeding device 131 is supplied. Command the peak filler feed speed Wfp (STEP 1-5: Step 1-5).
 STEP1(ステップ1)の状態は図7の下部の「A」に記載の状態であり、溶接トーチ112を退避させながら溶加材113を送給することで余盛部(図示せず)を形成する。 The state of STEP 1 (step 1) is the state described in “A” in the lower part of FIG. 7, and an extra portion (not shown) is formed by feeding the filler material 113 while retracting the welding torch 112. To do.
 STEP3(ステップ3)として、退避完了点において退避動作が完了(STEP1-3:ステップ1-3でYes判定)すると、退避を完了したその場で溶接トーチ112を上端停止タイマThdの時間だけ停止させ(STEP3-1:ステップ3-1)、余盛ビード形成を完成させる。 In STEP 3 (Step 3), when the retraction operation is completed at the retraction completion point (STEP 1-3: Yes determination in Step 1-3), the welding torch 112 is stopped for the time of the upper end stop timer Thd on the spot where the retraction is completed. (STEP 3-1: Step 3-1), the surplus bead formation is completed.
 また、STEP1-5(ステップ1-5)においてピーク溶加材送給速度に切り替えた後、ピーク溶加材送給時間Twfpが経過するのを待ち、経過を確認したところで(STEP3-2:ステップ3-2でYes判定)、送給速度をベース溶加材送給速度Wfbに切り替える(STEP3-3:ステップ3-3)。 Also, after switching to the peak filler feed rate in STEP 1-5 (step 1-5), the system waits for the peak filler feed time Twfp to elapse and confirms the progress (STEP 3-2: step). 3-2, Yes), the feed speed is switched to the base filler material feed speed Wfb (STEP3-3: Step 3-3).
 また、本実施の形態1では、ベース溶加材送給速度Wfbに負値を設定しているため、送給速度の切り替え時に、溶加材送給装置131の送給モータの回転方向を正回転から逆回転に切り替える内部処理を行う。本実施の形態1のアーク溶接方法の効果を発揮するためには、上端停止タイマThdの経過完了(STEP3-4:ステップ3-4でYes判定)となる直前となるようにピーク溶加材送給時間Twfpを設定しておく。STEP3(ステップ3)の状態を示した図が図7の下部の「B」で示す状態であり、溶接トーチ112を退避した位置で停止させながらある時間が経過したところで送給速度のみをベース条件に切り替えている。 In Embodiment 1, since the base melt material feed speed Wfb is set to a negative value, the rotation direction of the feed motor of the melt material feed device 131 is set to the correct value when the feed speed is switched. Performs internal processing to switch from rotation to reverse rotation. In order to exert the effect of the arc welding method according to the first embodiment, the peak filler feed is performed immediately before the completion of the upper end stop timer Thd (STEP 3-4: Yes determination in step 3-4). A feeding time Twfp is set in advance. The figure showing the state of STEP 3 (step 3) is the state indicated by “B” in the lower part of FIG. 7, and only a feed speed is determined when a certain time has passed while the welding torch 112 is stopped at the retracted position. It has been switched to.
 次に、STEP2(ステップ2)として、ピッチ移動動作について説明する。 Next, as STEP 2 (step 2), the pitch movement operation will be described.
 STEP3-4(ステップ3-4)において退避完了時点での停止動作が完了すると、次に、溶接トーチ112をピッチ移動動作させる(STEP2-1:ステップ2-1)とともに、溶接電源装置121にベース電流値Ibを流すように指令する(STEP2-2:ステップ2-2)。通常、ベース電流値Ibは、ピーク電流値Ipより低い値を設定し、アークを維持継続できる程度の電流値を設定する。 When the stop operation at the time when the retraction is completed is completed in STEP 3-4 (Step 3-4), the welding torch 112 is then moved by pitch movement (STEP 2-1: Step 2-1). Command the current value Ib to flow (STEP 2-2: Step 2-2). Normally, the base current value Ib is set to a value lower than the peak current value Ip, and a current value that can maintain the arc.
 ここで、ピッチ動作は、STEP1(ステップ1)で退避動作を開始した位置から溶接進行方向にピッチ移動距離Lpを移動させた点を目標点とし、STEP3(ステップ3)で退避完了した位置から目標の点に向かって(ピッチ移動距離Lp)/(溶接速度V)で求められる時間で動作するようにピッチ移動を開始する。これは、図7の下部に示す「C」の状態であることを示している。 Here, the pitch operation is performed from the position where the pitch movement distance Lp is moved in the welding direction from the position where the retreat operation is started in STEP 1 (Step 1), and the target is the position where the retreat is completed in STEP 3 (Step 3). Pitch movement is started so as to operate at a time determined by (pitch movement distance Lp) / (welding speed V). This indicates a state of “C” shown in the lower part of FIG.
 次に、STEP4(ステップ4)として、溶接終了判定について説明する。 Next, as STEP 4 (step 4), the welding end determination will be described.
 ピッチ動作(STEP2-3:ステップ2-3でYes判定)が完了すると、溶接終了判定が行われる。溶接終了判定では、ピッチ移動が完了した現在位置から溶接区間終了点までの距離を算出し(STEP4-1:ステップ4-1)、残り距離がピッチ移動距離Lpより短ければ溶接区間終了とみなして溶接終了処理を行う。なお、溶接終了処理の詳細については後述する。以降はSTEP4-2(ステップ4-2)の溶接終了判定においてYesの判定が行われるまで、STEP1(ステップ1)からSTEP4(ステップ4)の動作を繰り返し行う。 When the pitch operation (STEP 2-3: Yes in Step 2-3) is completed, the welding end determination is performed. In the welding end determination, the distance from the current position where the pitch movement is completed to the welding section end point is calculated (STEP 4-1: Step 4-1), and if the remaining distance is shorter than the pitch movement distance Lp, it is regarded as the end of the welding section. Perform welding end processing. Details of the welding end process will be described later. Thereafter, the operations of STEP 1 (step 1) to STEP 4 (step 4) are repeated until the determination of YES is made in the welding end determination of STEP 4-2 (step 4-2).
 次に、本実施の形態1のアーク溶接方法を終了する処理について、図8のフローチャートと図9A、図9B、図9Cを用いて説明する。図8は、本発明の実施の形態1における溶接終了時の処理のフローチャートである。図9A、図9B、図9Cは、本発明の実施の形態1における溶接終了方法を説明するための図である。図10から図13は、本発明の実施の形態1におけるピッチ方向の移動距離、退避方向の移動距離、溶接電流の電流値および溶加材送給速度のタイムチャートである。 Next, processing for ending the arc welding method of the first embodiment will be described with reference to the flowchart of FIG. 8 and FIGS. 9A, 9B, and 9C. FIG. 8 is a flowchart of processing at the end of welding in the first embodiment of the present invention. 9A, 9B, and 9C are diagrams for explaining the welding end method according to Embodiment 1 of the present invention. 10 to 13 are time charts of the movement distance in the pitch direction, the movement distance in the retraction direction, the current value of the welding current, and the filler material feeding speed in the first embodiment of the present invention.
 図8に示す終了処理では、溶接区間の終了点、すなわち、動作プログラム内の溶接区間の終了点に、本実施の形態1のアーク溶接方法を終了させる命令である命令Bが登録されているか否かの判定から行う(STEP5-1:ステップ5-1)。溶接区間の終了点に命令Bが登録されている場合(STEP5-1:ステップ5-1でYes判定)は、ピッチ移動が完了した位置で本実施の形態1のアーク溶接方法の処理は完了となる。これ以降は、教示者が以降の処理として教示しているクレータ溶接などが実行される。 In the end process shown in FIG. 8, whether or not a command B that is a command to end the arc welding method of the first embodiment is registered at the end of the welding section, that is, the end of the welding section in the operation program. (STEP 5-1: Step 5-1). When the command B is registered at the end point of the welding section (STEP 5-1: Yes at step 5-1), the arc welding method of the first embodiment is completed at the position where the pitch movement is completed. Become. Thereafter, crater welding taught by the instructor as subsequent processing is executed.
 この溶接終了方法では、図9Aで示すように、溶接トーチ112は、最終ピッチ移動が完了した時点で溶接終了となる。本実施の形態1のアーク溶接方法では、ピッチ移動では余盛を形成しないため、このままでは最終ピッチ移動部で余盛は形成されない。この溶接終了方法では、最終ピッチ移動での余盛が不要な場合や、溶接終了後に教示者が以降の教示によって溶接トーチ112を動作させ、通常の溶接区間とは異なる余盛の形成やクレータ溶接を行う場合などを想定した終了方法である。 In this welding end method, as shown in FIG. 9A, the welding torch 112 ends welding when the final pitch movement is completed. In the arc welding method according to the first embodiment, no extra build is formed by pitch movement, and therefore no extra build is formed at the final pitch move section. In this welding end method, when no extra pitch is required at the final pitch movement, or after the end of welding, the instructor operates the welding torch 112 in accordance with the subsequent teachings, thereby forming an extra scale different from the normal welding section or crater welding. This is an end method that assumes the case of performing.
 なお、本実施の形態1では、溶接終了点において命令Bが登録されていることを想定したが、命令Bは、溶接区間の途中の教示点に存在していてもよい。その場合は、図9Cに示すように、本実施の形態1の終了処理と同様に、ピッチ移動が完了した点で本実施の形態1のアーク溶接方法が終了となり、以降は、通常の溶接区間として溶接を行うことも可能である。 In the first embodiment, it is assumed that the command B is registered at the welding end point, but the command B may exist at a teaching point in the middle of the welding section. In that case, as shown in FIG. 9C, the arc welding method of the first embodiment is completed at the point where the pitch movement is completed, as in the end process of the first embodiment, and thereafter, the normal welding section It is also possible to perform welding.
 一方、溶接区間の終了点に命令Bが登録されていない場合(STEP5-1:ステップ5-1でNo判定)は、最終ピッチ移動完了後の点から、通常の溶接区間のSTEP1(ステップ1)とSTEP3(ステップ3)と同様に退避動作とピーク電流の指令を行う。溶接終了点において溶接区間と同じ余盛を形成して溶接方法終了となる(STEP1-1:ステップ1-1からSTEP1-5:ステップ1-5まで、STEP3-1:ステップ3-1からSTEP3-4:ステップ3-4まで)。 On the other hand, when the command B is not registered at the end point of the welding section (STEP 5-1: No in Step 5-1), STEP 1 of the normal welding section (Step 1) from the point after the final pitch movement is completed. In the same manner as in STEP 3 (step 3), a retreat operation and a peak current command are performed. At the welding end point, the same overlay as the welding section is formed, and the welding method ends (STEP 1-1: Step 1-1 to STEP 1-5: Step 1-5, STEP 3-1: Step 3-1 to STEP 3- 4: Up to step 3-4).
 その後は、退避が完了した点において教示者が必要に応じてクレータ溶接を実行することが可能である。この方法では、図9Bに示すように、通常の溶接区間と同様の余盛を形成して溶接が終了となるので、ビード間隔や余盛高さなどを乱すことない。 After that, the teacher can perform crater welding as necessary at the point where the evacuation is completed. In this method, as shown in FIG. 9B, a surplus similar to that in a normal welding section is formed and the welding is completed, so that the bead interval and the surplus height are not disturbed.
 また、必要に応じて、溶接トーチ112が退避した点においてクレータ溶接を行うことが可能である。そのため、本終了方法は、通常区間と同様のビードを形成し、必要に応じてクレータ溶接でビード外観の微調整を行うことを想定した終了方法である。 Also, if necessary, crater welding can be performed at the point where the welding torch 112 is retracted. Therefore, this termination method is a termination method that assumes that a bead similar to that in the normal section is formed and fine adjustment of the bead appearance is performed by crater welding as necessary.
 次に、本実施の形態1のアーク溶接方法の作用および効果について説明する。 Next, the operation and effect of the arc welding method of the first embodiment will be described.
 本実施の形態1のアーク溶接方法は、溶接用電極と溶接対象物との間にアークを発生させて溶接を行うアーク溶接方法であって、第1のステップ(ステップ1)と、第2のステップ(ステップ2)と、を備え、第1のステップと第2のステップとを交互に繰り返して溶接を行う方法としている。ここで、第1のステップは、アークを発生させたままの状態で、溶接対象物から離れる方向に溶接用電極を移動させるステップである。第2のステップは、アークを発生させたままの状態で、溶接対象物に近づく方向かつ溶接線方向に溶接用電極を移動させるステップである。この方法により、所望の美しいビード形状を得ることができる。 The arc welding method according to the first embodiment is an arc welding method in which an arc is generated between a welding electrode and a welding object to perform welding, and includes a first step (step 1) and a second step. A step (step 2), and welding is performed by alternately repeating the first step and the second step. Here, the first step is a step of moving the welding electrode in a direction away from the welding object in a state where the arc is generated. The second step is a step of moving the welding electrode in the direction approaching the welding object and in the welding line direction while the arc is still generated. By this method, a desired beautiful bead shape can be obtained.
 すなわち、図6に示すSTEP1(ステップ1)において、溶接トーチ112をトーチ方向に退避させながら、ピーク電流値Ipおよびピーク溶加材送給速度Wfpを用いて余盛溶接を行っている。これにより、溶接線方向への移動を意識せずウロコ状のきれいな余盛ビードを形成することができる。 That is, in STEP 1 (step 1) shown in FIG. 6, extra welding is performed using the peak current value Ip and the peak filler material feed speed Wfp while retracting the welding torch 112 in the torch direction. Thereby, the scale-like beautiful extra bead can be formed without being aware of the movement in the welding line direction.
 また、溶接トーチ112を退避させず、溶接トーチ112を停止させた状態のみで余盛溶接を行った場合は、送給した溶加材113によって形成された余盛ビードと非消耗性電極212と間の距離が短くなってしまい、場合によっては、非消耗性電極212が溶接対象物Wに短絡してしまう。アーク溶接において、電極と溶接対象物Wの距離を適正に保たなければ、最適な溶接結果を得ることができない。そこで、本実施の形態1のアーク溶接方法では、溶接トーチ112を退避させながら余盛溶接を行うため、電極と溶接対象物Wの適正距離を保ったまま溶接を行うことが可能である。 Further, when extra welding is performed only with the welding torch 112 stopped without retracting the welding torch 112, the extra bead formed by the fed filler material 113 and the non-consumable electrode 212 The distance between them is shortened, and in some cases, the non-consumable electrode 212 is short-circuited to the welding object W. In arc welding, an optimum welding result cannot be obtained unless the distance between the electrode and the welding object W is properly maintained. Therefore, in the arc welding method of the first embodiment, since the extra welding is performed while the welding torch 112 is retracted, it is possible to perform welding while maintaining an appropriate distance between the electrode and the welding object W.
 STEP3(ステップ3)において、溶接トーチ112を一定時間一定に保ってピーク電流条件により溶接を行うことで、ウロコ状の余盛ビードの高さを一定に保つ効果が期待される。 In STEP 3 (step 3), the welding torch 112 is kept constant for a certain period of time and welding is performed under peak current conditions, so that an effect of keeping the height of the scale-shaped surplus bead constant is expected.
 また、STEP3(ステップ3)において、溶接電流の切り替えよりも早く溶加材113の送給速度をベース送給速度に切り替えている。また、ベース送給速度は負値である。 In STEP 3 (step 3), the feeding speed of the filler metal 113 is switched to the base feeding speed earlier than the switching of the welding current. The base feed speed is a negative value.
 溶接の条件の切り替えに対して、溶加材113の送給速度の切り替えは、溶加材送給装置131を構成する送給モータの反応の遅れなどの問題から遅れる。しかしながら、送給速度の切り替えを電流の切り替えに対してタイミングをずらして行うことで、ベース電流条件でピーク溶加材送給速度となって溶加材113が送給されてしまうことを防ぐことが期待できる。 In contrast to the switching of welding conditions, the switching of the feeding speed of the filler material 113 is delayed due to problems such as a delay in the reaction of the feeding motor constituting the filler material feeding device 131. However, by switching the feeding speed at a different timing from the switching of the current, it is possible to prevent the filler material 113 from being fed at the peak filler material feeding speed under the base current condition. Can be expected.
 また、ベース送給速度を負値にして溶加材113を引き上げることで、ベース条件時のアークの中に溶加材113が存在し、溶融してしまうことを防ぐ効果がある。 Also, by raising the filler material 113 with the base feed speed set to a negative value, there is an effect of preventing the melt material 113 from being present in the arc at the base condition and melting.
 また、本実施の形態1のアーク溶接方法は、第1のステップ(ステップ1)の終了時の位置でアークを発生させたままの状態で、溶接用電極の位置を所定時間だけ維持する第3のステップ(ステップ3)を、第1のステップ(ステップ1)と第2のステップ(ステップ2)との間に備えた方法としてもよい。この方法により、所望の美しいビード形状を得ることができる。 The arc welding method of the first embodiment is a third method in which the position of the welding electrode is maintained for a predetermined time while the arc is generated at the position at the end of the first step (step 1). This step (Step 3) may be a method provided between the first step (Step 1) and the second step (Step 2). By this method, a desired beautiful bead shape can be obtained.
 すなわち、STEP2(ステップ2)において、溶接電流をベース電流値に切り替えてピッチ移動を行っている。これにより、非消耗性電極212と溶接対象物Wとの間のアークを消滅させない程度のベース電流値として溶接トーチ112を移動することができる。そして、次回のピーク電流への切り替えをスムーズに移行できるため、タクトタイム短縮への効果ときれいなビード外観を得る効果がある。 That is, in STEP 2 (step 2), the welding current is switched to the base current value to move the pitch. Thereby, the welding torch 112 can be moved as a base current value that does not extinguish the arc between the non-consumable electrode 212 and the welding object W. Since the next switching to the peak current can be made smoothly, there is an effect of shortening the tact time and an effect of obtaining a clean bead appearance.
 なお、本実施の形態1では、退避方向Dを「トーチ方向」に設定した例を示したが、溶接対象物Wに対して「鉛直上向き方向」に設定した場合でも、退避方向が異なる以外は、本実施の形態1と処理は同じである。 In the first embodiment, an example in which the retreat direction D is set to the “torch direction” has been described. However, even if the retreat direction is different from the welding target W, the retreat direction is different. The processing is the same as in the first embodiment.
 なお、本実施の形態1では、説明を簡易化するため、直流電源を用いて直流溶接を実施した例について説明した。しかし、本実施の形態1は、直流溶接だけでなく、交流溶接を用いた溶接システムにも適用することが可能である。 In the first embodiment, an example in which direct current welding is performed using a direct current power source has been described in order to simplify the description. However, the first embodiment can be applied not only to direct current welding but also to a welding system using alternating current welding.
 なお、本実施の形態1では、図7の溶加材送給速度Wfのタイムチャートに示すように、溶加材送給速度Wfを正送と逆送とに繰り返す例を示した。しかし、図10に示すように、STEP2(ステップ2)の開始時から第1の所定時間T1の間は、溶加材113の送給が逆送となるように制御し、第1の所定時間T1の経過後は、溶加材113の送給を停止するようにしてもよい。あるいは、図11に示すように、STEP2(ステップ2)の開始前のある時点からSTEP2(ステップ2)の開始後のある時点までの第2の所定時間T2の間は、溶加材113の送給が逆送となるように制御し、第2の所定時間T2の経過後は、溶加材113の送給を停止するようにしてもよい。あるいは、図12に示すように、STEP2(ステップ2)の開始前のある時点からSTEP2(ステップ2)の開始時までの第3の所定時間T3の間は、溶加材113の送給が逆送となるように制御し、第3の所定時間T3の経過後は、溶加材113の送給を停止するようにしてもよい。 In the first embodiment, as shown in the time chart of the filler material feed speed Wf in FIG. 7, an example in which the filler material feed speed Wf is repeated in the forward feed and the reverse feed is shown. However, as shown in FIG. 10, during the first predetermined time T1 from the start of STEP 2 (step 2), the feeding of the filler material 113 is controlled to be reversely fed, and the first predetermined time. You may make it stop feeding of the filler material 113 after progress of T1. Alternatively, as shown in FIG. 11, during a second predetermined time T2 from a certain time before the start of STEP2 (Step 2) to a certain time after the start of STEP2 (Step 2), the feeding of the filler material 113 is performed. The feeding may be controlled to be reverse feeding, and the feeding of the filler material 113 may be stopped after the second predetermined time T2. Alternatively, as shown in FIG. 12, the feeding of the filler material 113 is reversed during a third predetermined time T3 from a certain time before the start of STEP2 (Step 2) to the start of STEP2 (Step 2). The feeding may be controlled so that the feeding of the filler metal 113 may be stopped after the elapse of the third predetermined time T3.
 また、本実施の形態1では、図7の退避方向のタイムチャートに示すように、溶接トーチ112を退避方向に退避距離Lhだけ移動し、上端停止タイマThdの間、アークを発生したまま溶接トーチ112の位置を維持する例を示した。しかし、図13に示すように、上端停止タイマThdの値をゼロとし、STEP1(ステップ1)から直ぐにSTEP2(ステップ2)に移行するようにしてもよい。 In the first embodiment, as shown in the time chart of the retracting direction in FIG. 7, the welding torch 112 is moved by the retracting distance Lh in the retracting direction, and the arc is generated during the upper end stop timer Thd. The example which maintains the position of 112 was shown. However, as shown in FIG. 13, the value of the upper end stop timer Thd may be set to zero, and the process may be shifted from STEP 1 (step 1) to STEP 2 (step 2).
 また、第1のステップ(ステップ1)において、溶接用電極を、溶接用電極の溶接線上の位置は変化させずに溶接対象物から離れる方向に移動させる方法としてもよい。あるいは、第1のステップにおいて、溶接用電極を、溶接進行方向に対して戻る方向に移動させながら溶接対象物から離れる方向に移動させる方法としてもよい。あるいは、第1のステップにおいて、溶接用電極を、溶接進行方向に移動させながら溶接対象物から離れる方向に移動させる方法としてもよい。この方法により、所望の美しいビード形状を得ることができる。 Further, in the first step (step 1), the welding electrode may be moved in a direction away from the welding object without changing the position of the welding electrode on the welding line. Alternatively, in the first step, the welding electrode may be moved in a direction away from the welding object while moving in a direction returning to the welding progress direction. Alternatively, in the first step, the welding electrode may be moved in a direction away from the welding object while moving in the welding progress direction. By this method, a desired beautiful bead shape can be obtained.
 また、第1のステップ(ステップ1)の間は、溶接用電極と溶接対象物との間にピーク電流を供給し、第2のステップ(ステップ2)の間は、溶接用電極と溶接対象物との間にピーク電流よりも低いベース電流を供給する方法としてもよい。この方法により、所望の美しいビード形状を得ることができる。 Further, during the first step (step 1), a peak current is supplied between the welding electrode and the welding object, and during the second step (step 2), the welding electrode and the welding object. A base current lower than the peak current may be supplied between the two. By this method, a desired beautiful bead shape can be obtained.
 また、第3のステップ(ステップ3)の間は、溶接用電極と溶接対象物との間にピーク電流を供給する方法としてもよい。この方法により、所望の美しいビード形状を得ることができる。 Further, during the third step (step 3), a method may be used in which a peak current is supplied between the welding electrode and the welding object. By this method, a desired beautiful bead shape can be obtained.
 また、本実施の形態1のアーク溶接装置は、非消耗性電極212と溶接対象物Wとの間に電力を供給する溶接電源装置121と、非消耗性電極212を保持する溶接トーチ112を備えたマニピュレータ111と、マニピュレータ111と溶接電源装置121を制御する制御装置141と、溶加材113を送給するために溶接トーチ112に取り付けられた溶加材送給ガイド213と、を備えたアーク溶接装置である。そして、本実施の形態1のアーク溶接装置は、溶加材送給装置131と、ピーク電流設定部410と、ベース電流設定部411と、溶加材ピーク送給速度設定部136と、溶加材ベース送給速度設定部137と、退避条件設定部310と、移動条件設定部320と、を備えている。ここで、溶加材送給装置131は、溶加材113を送給する。ピーク電流設定部410は、非消耗性電極212と溶接対象物Wとの間に供給するピーク電流の電流値Ipと時間を設定する。ベース電流設定部411は、ピーク電流よりも小さいベース電流の電流値Ibと時間とを設定する。溶加材ピーク送給速度設定部136は、溶加材113のピーク送給速度と適用する時間を設定する。溶加材ベース送給速度設定部137は、溶加材113のピーク送給速度よりも小さいベース送給速度とベース送給速度を適用する時間を設定する。退避条件設定部310は、溶接対象物Wから離れる条件を設定する。移動条件設定部320は、溶接進行方向に移動する移動条件を設定する。そして、本実施の形態1のアーク溶接装置は、アークを発生させたままの状態で、溶接対象物Wから離れる方向に非消耗性電極212を移動させる第1のステップ(ステップ1)と、アークを発生させたままの状態で、溶接対象物Wに近づく方向かつ溶接進行方向に非消耗性電極212を移動させる第2のステップ(ステップ2)と、を交互に繰り返して溶接を行う構成からなる。  Further, the arc welding apparatus of the first embodiment includes a welding power supply device 121 that supplies electric power between the non-consumable electrode 212 and the welding object W, and a welding torch 112 that holds the non-consumable electrode 212. An arc provided with a manipulator 111, a control device 141 for controlling the manipulator 111 and the welding power source device 121, and a filler material feeding guide 213 attached to the welding torch 112 for feeding the filler material 113. It is a welding device. The arc welding apparatus according to the first embodiment includes a filler material feeding device 131, a peak current setting unit 410, a base current setting unit 411, a filler material peak feeding speed setting unit 136, and a filler. A material base feed speed setting unit 137, a retreat condition setting unit 310, and a movement condition setting unit 320 are provided. Here, the filler material feeding device 131 feeds the filler material 113. The peak current setting unit 410 sets the current value Ip and the time of the peak current supplied between the non-consumable electrode 212 and the welding object W. The base current setting unit 411 sets the current value Ib and time of the base current smaller than the peak current. The filler material peak feed speed setting unit 136 sets the peak feed speed of the filler material 113 and the time to be applied. The filler material base feed speed setting unit 137 sets a base feed speed smaller than the peak feed speed of the filler material 113 and a time for applying the base feed speed. The retreat condition setting unit 310 sets a condition for leaving the welding object W. The movement condition setting unit 320 sets a movement condition for moving in the welding progress direction. The arc welding apparatus according to the first embodiment includes a first step (step 1) for moving the non-consumable electrode 212 in a direction away from the welding object W in a state where the arc is generated, and an arc. The second step (step 2) in which the non-consumable electrode 212 is moved in the direction approaching the welding object W and in the welding progress direction in a state in which the welding is generated, and welding is performed alternately. . *
 この構成により、所望の美しいビード形状を得ることができる。 This configuration makes it possible to obtain a desired beautiful bead shape.
 また、退避条件設定部310は、退避移動距離設定部311と、退避方向設定部312と、退避時間設定部313と、を有する構成としてもよい。ここで、退避移動距離設定部311は、溶接対象物Wから離れる移動距離である退避移動距離Lhを設定する。退避方向設定部312は、溶接対象物Wから離れる方向である退避方向Dを設定する。退避時間設定部313は、退避方向設定部312で設定された方向に退避移動距離設定部311で設定された距離を移動する時間である退避時間Thを設定する。また、移動条件設定部320は、溶接速度設定部321と、ピッチ移動距離設定部322と、を有する構成としてもよい。溶接速度設定部321は、溶接進行方向に移動する速度である溶接速度Vを設定する。ピッチ移動距離設定部322は、溶接進行方向に移動する距離であるピッチ移動距離Lpを設定する。そして、本実施の形態1のアーク溶接装置において、第1のステップ(ステップ1)では、退避方向設定部312で設定した方向に、退避移動距離設定部311で設定した距離Lhを、退避時間設定部313で設定した時間Thで、非消耗性電極212を溶接対象物Wから離れる方向に移動させる。第2のステップ(ステップ2)では、第1のステップの完了により非消耗性電極212が移動した位置から、第1のステップの開始時の非消耗性電極212の位置から溶接進行方向にピッチ移動距離設定部322で設定した距離Lpだけ進んだ位置を非消耗性電極212の移動目標位置として、ピッチ移動距離設定部322で設定した距離Lpを溶接速度設定部321で設定した溶接速度Vで除して求められる時間の間に移動させる。これらの移動を行うことにより、本実施の形態1のアーク溶接装置は、溶接対象物Wに近づく方向かつ溶接進行方向に非消耗性電極212を移動させる構成としてもよい。 Further, the retreat condition setting unit 310 may include a retreat movement distance setting unit 311, a retreat direction setting unit 312, and a retreat time setting unit 313. Here, the retreat movement distance setting unit 311 sets a retreat movement distance Lh that is a movement distance away from the welding object W. The retraction direction setting unit 312 sets a retraction direction D that is a direction away from the welding object W. The evacuation time setting unit 313 sets an evacuation time Th that is a time for moving the distance set by the evacuation movement distance setting unit 311 in the direction set by the evacuation direction setting unit 312. Further, the movement condition setting unit 320 may include a welding speed setting unit 321 and a pitch movement distance setting unit 322. The welding speed setting unit 321 sets a welding speed V that is a speed that moves in the welding progress direction. The pitch movement distance setting unit 322 sets a pitch movement distance Lp that is a distance to move in the welding progress direction. In the arc welding apparatus of the first embodiment, in the first step (step 1), the distance Lh set by the retreat movement distance setting unit 311 is set in the direction set by the retreat direction setting unit 312 to set the retreat time. The non-consumable electrode 212 is moved in a direction away from the welding object W at the time Th set in the part 313. In the second step (step 2), the pitch is shifted from the position where the non-consumable electrode 212 is moved by the completion of the first step from the position of the non-consumable electrode 212 at the start of the first step in the welding direction. The position advanced by the distance Lp set by the distance setting unit 322 is set as the movement target position of the non-consumable electrode 212, and the distance Lp set by the pitch movement distance setting unit 322 is divided by the welding speed V set by the welding speed setting unit 321. And move it for the required time. By performing these movements, the arc welding apparatus of the first embodiment may be configured to move the non-consumable electrode 212 in a direction approaching the welding object W and in a welding progress direction.
 この構成により、所望の美しいビード形状を得ることができる。 This configuration makes it possible to obtain a desired beautiful bead shape.
 また、第1のステップ(ステップ1)の終了時の位置でアークを発生させたままの状態で、非消耗性電極212の位置を所定時間だけ維持する第3のステップ(ステップ3)を、第1のステップ(ステップ1)と第2のステップ(ステップ2)との間に行う構成としてもよい。この構成により、所望の美しいビード形状を得ることができる。 Further, a third step (step 3) for maintaining the position of the non-consumable electrode 212 for a predetermined time while the arc is generated at the position at the end of the first step (step 1), It is good also as a structure performed between 1 step (step 1) and 2nd step (step 2). With this configuration, a desired beautiful bead shape can be obtained.
 また、第1のステップ(ステップ1)の間は、非消耗性電極212と溶接対象物Wとの間にピーク電流を供給し、第2のステップ(ステップ2)の間は、非消耗性電極212と溶接対象物Wとの間にピーク電流よりも低いベース電流を供給する構成としてもよい。この構成により、所望の美しいビード形状を得ることができる。 Further, during the first step (step 1), a peak current is supplied between the non-consumable electrode 212 and the workpiece W, and during the second step (step 2), the non-consumable electrode is supplied. A base current lower than the peak current may be supplied between 212 and the welding object W. With this configuration, a desired beautiful bead shape can be obtained.
 また、第3のステップ(ステップ3)の間は、非消耗性電極212と溶接対象物Wとの間にピーク電流を供給する構成としてもよい。この構成により、所望の美しいビード形状を得ることができる。 Further, during the third step (step 3), a peak current may be supplied between the non-consumable electrode 212 and the welding object W. With this configuration, a desired beautiful bead shape can be obtained.
 以上のように、本発明によれば、第1のステップと、第2のステップとを、交互に繰り返すことで、所望のビード形状を得ることができる。ここで、第1のステップは、溶接対象物Wから離れる方向に溶接用電極を移動させながらピーク電流などで構成されるピーク条件により余盛ビードを形成するステップである。第2のステップは、ピーク条件よりも小さいベース電流などで構成されるベース条件によりアークを発生したまま溶接対象物に近づく方向かつ溶接線方向に溶接用電極を移動させるステップである。 As described above, according to the present invention, a desired bead shape can be obtained by alternately repeating the first step and the second step. Here, a 1st step is a step which forms a surplus bead by the peak conditions comprised by a peak current etc., moving the electrode for welding to the direction away from the welding target object W. FIG. The second step is a step of moving the welding electrode in the direction approaching the welding object and in the direction of the welding line while the arc is generated under the base condition constituted by a base current smaller than the peak condition.
 また、電流の切り替えに対して、送給速度の切り替えのタイミングを調整することで、溶融池を形成してから溶加材を送給する場合や、モータの遅れを考慮して送給する場合など、電流と送給速度の切り替えタイミングを調整することが可能となる。その結果、より美しい溶接ビードを得ることができる。 Also, when feeding the filler material after forming the molten pool by adjusting the timing of switching the feeding speed with respect to the switching of the current, or when feeding considering the delay of the motor For example, it is possible to adjust the switching timing of the current and the feeding speed. As a result, a more beautiful weld bead can be obtained.
 また、ベース送給速度には、負値、つまり溶加材を逆送して引き上げることができ、アークの中に溶加材が存在してしまい、溶加材の先端が丸くなってしまうといった現象を防ぐことができる。 Further, the base feed speed is negative, that is, the filler material can be reversely fed and pulled up, the melt material exists in the arc, and the tip of the melt material becomes rounded. The phenomenon can be prevented.
 (実施の形態2)
 図14A、図14Bは、本発明の実施の形態2におけるアーク溶接方法に関するフローチャートを示している。図15は、本発明の実施の形態2における各パラメータ(ピッチ方向の移動距離、退避方向の移動距離、溶接電流の電流値および溶加材送給速度など)の時間変化を示したタイムチャートを示している。
(Embodiment 2)
14A and 14B show flowcharts relating to the arc welding method in Embodiment 2 of the present invention. FIG. 15 is a time chart showing changes over time in parameters (movement distance in the pitch direction, movement distance in the retraction direction, current value of welding current, filler material feed speed, etc.) in the second embodiment of the present invention. Show.
 実施の形態1と異なる主な点は、送給タイミング調整時間Tadjに負値を設定している点である。送給タイミング調整時間Tadjに負値を設定するということは、ピーク溶加材送給速度Wfpへの切り替えを、ピーク電流への切り替えに対して早く行うことを意味している。 The main difference from the first embodiment is that a negative value is set for the feeding timing adjustment time Tadj. Setting a negative value for the feeding timing adjustment time Tadj means that the switching to the peak filler material feeding speed Wfp is performed earlier than the switching to the peak current.
 以下、本実施の形態について、図面を参照して詳細に説明する。なお、実施の形態1とさらに異なる主な点は、溶接開始の1回目の退避動作時の条件と、2回目以降の退避動作時とで、条件を変更している点である。そして、本実施の形態2においても、実施の形態1と同様の溶接開始処理が行われる(STEP0:ステップ0)。 Hereinafter, the present embodiment will be described in detail with reference to the drawings. The main point different from the first embodiment is that the conditions are changed between the first retreat operation condition at the start of welding and the second and subsequent retreat operations. And also in this Embodiment 2, the welding start process similar to Embodiment 1 is performed (STEP0: Step 0).
 先ず、STEP1(ステップ1)として、溶接開始後初回の退避動作について説明する。 First, as STEP 1 (step 1), the first retraction operation after starting welding will be described.
 溶接開始処理終了後、実施の形態1のSTEP1(ステップ1)と同様に、溶接トーチ112の退避動作を開始する(STEP1-1:ステップ1-1)。そして、退避させると同時に溶接電源装置121にピーク電流値Ipを指令する(STEP1-2:ステップ1-2)。 After the welding start process is completed, the retracting operation of the welding torch 112 is started (STEP 1-1: Step 1-1), as in STEP 1 (Step 1) of the first embodiment. Then, at the same time as evacuation, the peak current value Ip is commanded to the welding power source device 121 (STEP 1-2: Step 1-2).
 なお、実施の形態1では、ピーク電流値Ipを指令してから送給タイミング調整時間Tadjの経過を待って溶加材送給装置131へピーク溶加材送給速度Wfp値を指令していた。しかし、本実施の形態2では、ピーク電流を指令するのと同じタイミングでピーク溶加材送給速度Wfp値を指令する。(STEP1-3:ステップ1-3)。 In the first embodiment, after the peak current value Ip is commanded, the peak filler material feed speed Wfp value is commanded to the filler material feeder 131 after the feed timing adjustment time Tadj has elapsed. . However, in the second embodiment, the peak filler feed speed Wfp value is commanded at the same timing when the peak current is commanded. (STEP 1-3: Step 1-3).
 STEP1(ステップ1)では、実施の形態1と同様、溶接トーチ112を退避しながら溶加材113を送給することで、余盛部を形成する。 In STEP 1 (step 1), as in the first embodiment, the filler material 113 is fed while the welding torch 112 is retracted, thereby forming an extra portion.
 次に、STEP3(ステップ3)として、退避完了点での停止動作について説明する。 Next, as STEP 3 (step 3), the stop operation at the point of completion of evacuation will be described.
 退避動作が完了(STEP1-4:ステップ1-4でYes判定)すると、退避を完了したその場で溶接トーチ112を上端停止タイマThdの時間停止させ(STEP3-1:ステップ3-1)、余盛ビードの形成を完成させる。 When the evacuation operation is completed (STEP 1-4: Yes in Step 1-4), the welding torch 112 is stopped for the time of the upper end stop timer Thd on the spot where the evacuation is completed (STEP 3-1: Step 3-1). Complete the formation of prime beads.
 また、STEP1-3(ステップ1-3)において、ピーク溶加材送給速度Wfpに切り替えた後、ピーク溶加材送給時間Twfpと送給タイミング調整時間Tadjから算出される時間(Twfp-Tadj)が経過するのを待つ。そして、経過を確認したところで(STEP3-2:ステップ3-2でYes判定)、溶加材113の送給速度をベース溶加材送給速度Wfbに切り替える(STEP3-3:ステップ3-3)。ベース溶加材送給速度Wfbに負値を設定しているときの内部処理に関しては、実施の形態1と同じであるため省略する。 In STEP 1-3 (step 1-3), after switching to the peak filler feed speed Wfp, the time calculated from the peak filler feed time Twfp and the feed timing adjustment time Tadj (Twfp-Tadj) ) Will wait. When the progress is confirmed (STEP 3-2: Yes in step 3-2), the feeding speed of the filler material 113 is switched to the base filler material feeding speed Wfb (STEP 3-3: Step 3-3). . Since the internal processing when the negative value is set for the base filler material feed speed Wfb is the same as that of the first embodiment, the description thereof is omitted.
 次に、STEP2(ステップ2)として、ピッチ移動動作について説明する。 Next, as STEP 2 (step 2), the pitch movement operation will be described.
 STEP3-4(ステップ3-4)において、退避完了点での停止動作が完了すると、次に、溶接トーチ112を実施の形態1と同様にピッチ移動動作させる(STEP2-1:ステップ2-1)とともに、溶接電源装置121にベース電流値Ibを指令する(STEP2-2:ステップ2-2)。 In STEP 3-4 (Step 3-4), when the stop operation at the retreat completion point is completed, next, the welding torch 112 is moved in the same manner as in the first embodiment (STEP 2-1: Step 2-1). At the same time, the base current value Ib is commanded to the welding power source device 121 (STEP 2-2: Step 2-2).
 また、ベース電流値Ibを溶接電源装置121に指令した後、ピッチ移動距離Lpと溶接速度Vと送給タイミング調整時間Tadjから算出される時間((Lp/V)-Tadj)の経過の完了(STEP2-3:ステップ2-3でYes判定)を待って、溶加材送給装置131にピーク溶加材送給速度Wfpを指令する(STEP2-4:ステップ2-4)。 Further, after commanding the base current value Ib to the welding power source device 121, the completion of the time ((Lp / V) −Tadj) calculated from the pitch movement distance Lp, the welding speed V, and the feed timing adjustment time Tadj ( After waiting for STEP 2-3: Yes in Step 2-3), the filler material feeding device 131 is commanded to the peak filler material feeding speed Wfp (STEP 2-4: Step 2-4).
 ピッチ移動動作は、(ピッチ移動距離Lp/溶接速度V)の時間で行うため、ベース電流を指令してから((ピッチ移動距離Lp/溶接速度V)-送給タイミング調整時間Tadj)の経過の完了後に送給速度を切り替える。これにより、結果的に、ピーク電流値Ipを溶接電源装置121に指令する送給タイミング調整時間Tadj時間前に送給速度をピーク溶加材送給速度Wfpに切り替えることが可能となる。 Since the pitch movement operation is performed at a time of (pitch movement distance Lp / welding speed V), the passage of ((pitch movement distance Lp / welding speed V) −feeding timing adjustment time Tadj) after commanding the base current is performed. Switch the feeding speed after completion. As a result, the feed speed can be switched to the peak filler feed speed Wfp before the feed timing adjustment time Tadj time for instructing the welding power source device 121 to the peak current value Ip.
 送給速度をピーク溶加材送給速度Wfpに切り替えた後、ピーク溶加材送給時間Twfpの経過完了を待ってベース溶加材送給速度Wfbに切り替える(STEP3-3:ステップ3-3)。通常は、退避動作が完了して上端で溶接トーチ112を停止させているSTEP3(ステップ3)の終了直前に、ベース溶加材送給速度Wfbに切り替わるようにピーク溶加材送給時間Twfpを設定する。 After the feeding speed is switched to the peak filler material feeding speed Wfp, after the elapse of the peak filler material feeding time Twfp is completed, the feeding speed is switched to the base filler material feeding speed Wfb (STEP3-3: Step 3-3). ). Usually, the peak filler feed time Twfp is set so as to switch to the base filler feed rate Wfb immediately before the end of STEP 3 (step 3) in which the retracting operation is completed and the welding torch 112 is stopped at the upper end. Set.
 次に、STEP4(ステップ4)として、溶接終了判定について説明する。 Next, as STEP 4 (step 4), the welding end determination will be described.
 ピッチ移動が完了すると、溶接終了判定を行う。溶接終了判定の実施方法や終了判断がされたとき(STEP4-2:ステップ4-2でYes判定)の溶接終了方法については、実施の形態1と同じであるので省略する。 When the pitch movement is completed, the welding end determination is performed. Since the method for determining the end of welding and the method for ending the welding when the end determination is made (STEP 4-2: Yes at step 4-2) are the same as those in Embodiment 1, they are omitted.
 次に、STEP5(ステップ5)として、溶接開始後2回目以降の退避動作について説明する。 Next, as STEP 5 (step 5), the second and subsequent retraction operations after the start of welding will be described.
 ピッチ移動が完了すると、再度退避動作を開始する(STEP5-1:ステップ5-1)。STEP1(ステップ1)での退避動作と異なる点は、STEP1(ステップ1)では退避動作の開始と同じタイミングでピーク電流値Ipの指令とピーク溶加材送給速度Wfpの指令を行っていた。しかしながら、STEP2(ステップ2)の処理で送給速度の切り替えを実施済みのため、ピーク電流値Ipの指令のみを行い(STEP5-2:ステップ5-2)、送給速度の切替指令は行わない点である。 When the pitch movement is completed, the evacuation operation is started again (STEP 5-1: Step 5-1). The difference from the evacuation operation in STEP 1 (step 1) is that in STEP 1 (step 1), the command for the peak current value Ip and the command for the peak filler feed speed Wfp are performed at the same timing as the start of the evacuation operation. However, since the feed speed has been switched in the processing of STEP 2 (step 2), only the command for the peak current value Ip is performed (STEP 5-2: step 5-2), and the feed speed switching command is not performed. Is a point.
 以降は、STEP4-2(ステップ4-2)の溶接終了判定でYesの判定が行われるまで、STEP2(ステップ2)からSTEP5(ステップ5)の動作を繰り返し行う。 Thereafter, the operations from STEP 2 (Step 2) to STEP 5 (Step 5) are repeated until the determination of YES is made in the welding end determination of STEP 4-2 (Step 4-2).
 次に、本実施の形態2のアーク溶接方法の作用および効果について説明する。 Next, the operation and effect of the arc welding method of the second embodiment will be described.
 通常、溶加材113を送給するタイミングとしては、溶接電流をピーク条件にし、溶加材113が溶融する条件で送給することが望ましい。ここで、本実施の形態2の溶接方法では、ベース溶加材送給速度Wfpに負値を設定することが可能であるので、ピッチ移動時(ベース電流条件時)に溶加材113を引き上げることが可能である。しかし、ピッチ移動距離Lpが長い場合や、溶接速度Vが小さい場合などは、ピッチ移動区間で必要以上に溶加材113が引き上げられてしまう。そうすると、次のピーク電流条件への切り替えと同時に溶加材送給速度をピーク溶加材送給速度に切り替えたとしても、溶加材113が溶接対象物Wに対して溶着するまでに時間がかかってしまい、その間に溶接対象物Wが過溶融して溶け落ちてしまうことがある。 Normally, it is desirable to feed the filler material 113 under conditions where the welding current is at a peak condition and the filler material 113 is melted. Here, in the welding method of the present second embodiment, since it is possible to set a negative value for the base filler material feed speed Wfp, the filler material 113 is pulled up during pitch movement (base current condition). It is possible. However, when the pitch movement distance Lp is long or when the welding speed V is low, the filler material 113 is pulled up more than necessary in the pitch movement section. Then, even if the filler material feeding speed is switched to the peak filler material feeding speed simultaneously with the switching to the next peak current condition, it takes time until the filler material 113 is welded to the welding object W. In some cases, the welding object W may be overmelted and melted away.
 そこで、本実施の形態2のように、ピーク電流に切り替える前から送給速度をピーク溶加材送給速度Wfpに切り替えることで、ピーク電流の切り替え時に溶接対象物Wを過溶融させることがなく、溶加材113を送給することが可能となる。 Therefore, as in the second embodiment, by switching the feeding speed to the peak filler feeding speed Wfp before switching to the peak current, the welding object W is not overmelted when switching the peak current. The filler material 113 can be fed.
 すなわち、本実施の形態2のアーク溶接方法は、溶接用電極は非消耗性電極212であり、溶加材113を供給しながらアーク溶接を行う。溶加材113の送給は、ピーク送給速度とピーク送給速度よりも遅いベース送給速度とを交互に繰り返して行う。ピーク送給速度での送給は、ピーク電流の開始タイミングとは異なるタイミングで開始され、ベース送給速度での送給は、ベース電流の開始タイミングとは異なるタイミングで開始される方法としてもよい。この方法により、ピーク電流の切り替え時に溶接対象物Wを過溶融させることがなく、溶加材113を送給することが可能となる。 That is, in the arc welding method of the second embodiment, the welding electrode is the non-consumable electrode 212 and the arc welding is performed while supplying the filler material 113. The feeding of the filler material 113 is performed by alternately repeating a peak feeding speed and a base feeding speed slower than the peak feeding speed. Feeding at the peak feed speed may be started at a timing different from the start timing of the peak current, and feeding at the base feed speed may be started at a timing different from the start timing of the base current. . By this method, it is possible to feed the filler material 113 without overmelting the welding target W when switching the peak current.
 また、第2のステップ(ステップ2)の時に溶加材113の送給が逆送となるように溶加材113の送給を制御する方法としてもよい。この方法により、さらにピーク電流の切り替え時に溶接対象物Wを過溶融させることがなく、溶加材113を送給することが可能となる。 Further, the feeding of the filler material 113 may be controlled so that the feeding of the filler material 113 is reversed in the second step (step 2). By this method, it is possible to feed the filler material 113 without overmelting the welding object W when switching the peak current.
 また、第2のステップ(ステップ2)の開始時から第1の所定時間の間は、溶加材113の送給が逆送となるように制御し、第1の所定時間の経過後は、溶加材113の送給を停止する方法としてもよい。この方法により、さらにピーク電流の切り替え時に溶接対象物Wを過溶融させることがなく、溶加材113を送給することが可能となる。 Further, during the first predetermined time from the start of the second step (step 2), the feeding of the filler material 113 is controlled to be reverse, and after the first predetermined time has elapsed, A method of stopping the feeding of the filler material 113 may be adopted. By this method, it is possible to feed the filler material 113 without overmelting the welding object W when switching the peak current.
 また、第2のステップ(ステップ2)の開始前のある時点から第2のステップの開始後のある時点までの第2の所定時間の間は、溶加材113の送給が逆送となるように制御し、第2の所定時間の経過後は、溶加材113の送給を停止する方法としてもよい。この方法により、さらにピーク電流の切り替え時に溶接対象物Wを過溶融させることがなく、溶加材113を送給することが可能となる。 Further, during a second predetermined time period from a certain time before the start of the second step (step 2) to a certain time after the start of the second step, the feeding of the filler material 113 is reversely fed. It is good also as a method of stopping supply of the melt material 113 after progress of 2nd predetermined time. By this method, it is possible to feed the filler material 113 without overmelting the welding object W when switching the peak current.
 また、第2のステップ(ステップ2)の開始前のある時点から第2のステップの開始時までの第3の所定時間の間は、溶加材113の送給が逆送となるように制御し、第3の所定時間の経過後は、溶加材113の送給を停止する方法としてもよい。この方法により、さらにピーク電流の切り替え時に溶接対象物Wを過溶融させることがなく、溶加材113を送給することが可能となる。 In addition, the feeding of the filler material 113 is controlled to be reversely fed for a third predetermined time from a certain time before the start of the second step (step 2) to the start of the second step. Then, after the elapse of the third predetermined time, the feeding of the filler material 113 may be stopped. By this method, it is possible to feed the filler material 113 without overmelting the welding object W when switching the peak current.
 また、本実施の形態2のアーク溶接装置において、溶加材113の送給は、ピーク送給速度とピーク送給速度よりも遅いベース送給速度とを交互に繰り返して行う。ピーク送給速度での送給は、ピーク電流の開始タイミングとは異なるタイミングで開始され、ベース送給速度での送給は、ベース電流の開始タイミングとは異なるタイミングで開始される構成としてもよい。この構成により、ピーク電流の切り替え時に溶接対象物Wを過溶融させることがなく、溶加材113を送給することが可能となる。 Further, in the arc welding apparatus of the second embodiment, the filler material 113 is fed by alternately repeating a peak feeding speed and a base feeding speed slower than the peak feeding speed. Feeding at the peak feed speed may be started at a timing different from the start timing of the peak current, and feeding at the base feed speed may be started at a timing different from the start timing of the base current. . With this configuration, it is possible to feed the filler material 113 without overmelting the welding target W when switching the peak current.
 また、第2のステップ(ステップ2)の時に溶加材113の送給が逆送となるように溶加材113の送給を制御する構成としてもよい。この構成により、さらにピーク電流の切り替え時に溶接対象物Wを過溶融させることがなく、溶加材113を送給することが可能となる。 Further, the feeding of the filler material 113 may be controlled so that the feeding of the filler material 113 is reversely fed during the second step (step 2). With this configuration, it is possible to feed the filler material 113 without overmelting the welding target W when switching the peak current.
 また、第2のステップ(ステップ2)の開始時から第1の所定時間の間は、溶加材の送給が逆送となるように制御し、第1の1所定時間の経過後は、溶加材113の送給を停止する構成としてもよい。この構成により、さらにピーク電流の切り替え時に溶接対象物Wを過溶融させることがなく、溶加材113を送給することが可能となる。 In addition, during the first predetermined time from the start of the second step (step 2), the feeding of the filler material is controlled to be reverse, and after the first predetermined time has elapsed, The feeding of the filler material 113 may be stopped. With this configuration, it is possible to feed the filler material 113 without overmelting the welding target W when switching the peak current.
 また、第2のステップ(ステップ2)の開始前のある時点から第2のステップの開始後のある時点までの第2の所定時間の間は、溶加材の送給が逆送となるように制御し、第2の所定時間の経過後は、溶加材の送給を停止する構成としてもよい。この構成により、さらにピーク電流の切り替え時に溶接対象物Wを過溶融させることがなく、溶加材113を送給することが可能となる。 In addition, during a second predetermined time from a certain time before the start of the second step (step 2) to a certain time after the start of the second step, the feeding of the filler material is reversely fed. The feeding of the filler metal may be stopped after the second predetermined time has elapsed. With this configuration, it is possible to feed the filler material 113 without overmelting the welding target W when switching the peak current.
 また、第2のステップ(ステップ2)の開始前のある時点から第2のステップの開始時までの第3の所定時間の間は、溶加材113の送給が逆送となるように制御し、第3の所定時間の経過後は、溶加材の送給を停止する構成としてもよい。この構成により、さらにピーク電流の切り替え時に溶接対象物Wを過溶融させることがなく、溶加材113を送給することが可能となる。 In addition, the feeding of the filler material 113 is controlled to be reversely fed for a third predetermined time from a certain time before the start of the second step (step 2) to the start of the second step. And it is good also as a structure which stops supply of a filler material after progress of 3rd predetermined time. With this configuration, it is possible to feed the filler material 113 without overmelting the welding target W when switching the peak current.
 (実施の形態3)
 実施の形態1と実施の形態2では、非消耗性電極を用いて溶接を行うアーク溶接装置について説明した。本発明の実施の形態3では、消耗性電極を用いて溶接を行うアーク溶接装置について説明する。
(Embodiment 3)
In the first embodiment and the second embodiment, the arc welding apparatus that performs welding using a non-consumable electrode has been described. In Embodiment 3 of the present invention, an arc welding apparatus that performs welding using a consumable electrode will be described.
 図16は、本発明の実施の形態3におけるMIG溶接システムの概略構成を示す図である。図17は、本発明の実施の形態3における溶接トーチ504の概要を示す正面図である。図18は、本発明の実施の形態3における動作パラメータの設定画面の例を示す図である。図19は、本発明の実施の形態3における溶接パラメータの設定画面の例を示す図である。 FIG. 16 is a diagram showing a schematic configuration of the MIG welding system in the third embodiment of the present invention. FIG. 17 is a front view showing an outline of welding torch 504 in the third embodiment of the present invention. FIG. 18 is a diagram illustrating an example of an operation parameter setting screen according to the third embodiment of the present invention. FIG. 19 is a diagram showing an example of a welding parameter setting screen according to the third embodiment of the present invention.
 図16は、本実施の形態3における、消耗性電極を用いたアーク溶接を、ロボットシステムを用いて自動で行う自動溶接システムであるMIG溶接システムの一例であるアーク溶接装置の概略構成を示している。 FIG. 16 shows a schematic configuration of an arc welding apparatus that is an example of an MIG welding system that is an automatic welding system that automatically performs arc welding using a consumable electrode using a robot system in the third embodiment. Yes.
 図16で示すアーク溶接装置は、実施の形態1でも示したマニピュレータ111と、制御装置141と、ティーチペンダント151と、を有し、これに加えて溶接電源装置501と溶接ワイヤ送給装置502とを備えている。 The arc welding apparatus shown in FIG. 16 has the manipulator 111, the control apparatus 141, and the teach pendant 151 shown in the first embodiment, and in addition to this, the welding power supply apparatus 501 and the welding wire feeding apparatus 502 It has.
 マニピュレータ111には、消耗性電極用の溶接トーチ504が取り付けられている。溶接トーチ504には、図17に示すように、アルゴンなどのシールドガスを供給するためのガスノズル601が取り付けられている。ガスノズル601からは、溶接電源装置501からの指令に応じて図示しないガスボンベから供給されたシールドガスを、溶接対象物Wの溶接箇所に供給することができる。 The manipulator 111 is provided with a welding torch 504 for a consumable electrode. As shown in FIG. 17, a gas nozzle 601 for supplying a shielding gas such as argon is attached to the welding torch 504. From the gas nozzle 601, a shield gas supplied from a gas cylinder (not shown) can be supplied to the welding location of the welding object W in accordance with a command from the welding power supply device 501.
 また、溶接トーチ504の先端には、コンタクトチップ602が取り付けられており、溶接ワイヤ503は、溶接ワイヤ送給装置502によって送給され、コンタクトチップ602を通じて溶接対象物Wに送給および給電される。 A contact tip 602 is attached to the tip of the welding torch 504, and the welding wire 503 is fed by the welding wire feeding device 502, and fed and fed to the welding object W through the contact tip 602. .
 溶接電源装置501は、溶接電圧を印加して溶接電流を流すための出力部(図示せず)と、出力に対して実際に印加する電圧を検出するための電圧検出部(図示せず)と、溶接ワイヤ制御部(図示せず)とを備えた装置である。出力部は、溶接トーチ504と溶接対象物Wとに接続されており、制御装置141の指令によって、溶接トーチ504を通じて消耗性電極である溶接ワイヤ503と溶接対象物Wとの間に溶接電圧が印加される。 The welding power source device 501 includes an output unit (not shown) for applying a welding voltage to flow a welding current, and a voltage detection unit (not shown) for detecting a voltage actually applied to the output. And a welding wire control unit (not shown). The output unit is connected to the welding torch 504 and the welding object W, and a welding voltage is applied between the welding wire 503 that is a consumable electrode and the welding object W through the welding torch 504 according to a command from the control device 141. Applied.
 溶接ワイヤ送給装置502は、通常、マニピュレータ111の上部に取り付けられており、ガイドローラ付きの送給モータ(図示せず)と図示しないエンコーダなどの角度センサで送給モータの角度を検出するための角度検出部を備えた装置である。そして、溶接ワイヤ送給装置502は、溶接電源装置501の指令によって作動し、消耗性電極である溶接ワイヤ503を送給するための装置である。 The welding wire feeding device 502 is usually attached to the upper portion of the manipulator 111, and detects the angle of the feeding motor by a feeding motor (not shown) with a guide roller and an angle sensor such as an encoder (not shown). It is an apparatus provided with the angle detection part. The welding wire feeder 502 is a device that operates according to a command from the welding power source device 501 and feeds the welding wire 503 that is a consumable electrode.
 制御装置141の指令に応じて溶接が開始されると、溶接電源装置501では、溶接電圧の印加と指令電流に応じて定まる送給速度で溶接ワイヤ送給装置502の駆動制御が行わる。送給された溶接ワイヤ503と溶接対象物Wとの間でアークが発生し、溶接ワイヤ503が溶接対象物Wに溶滴移行を行う。 When welding is started according to the command of the control device 141, the welding power supply device 501 performs drive control of the welding wire feeding device 502 at a feeding speed determined according to the application of the welding voltage and the command current. An arc is generated between the fed welding wire 503 and the welding object W, and the welding wire 503 transfers droplets to the welding object W.
 本実施の形態3のアーク溶接装置の制御装置141およびティーチペンダント151の構成は、実施の形態1と同様であるので、詳細な説明は省略する。実施の形態1では、溶接条件を指令する溶接条件指令部146と、送給速度を指令する送給速度指令部147とをそれぞれ独立して備えていた。しかし、本実施の形態3の消耗性電極を用いたアーク溶接装置では、実施の形態1と異なる点として、送給速度は、溶接条件に応じて溶接電源装置501が駆動制御を行うため、実施の形態1のアーク溶接装置の送給速度指令部147を備えていない。溶接条件指令部146の指令値を、溶接電源装置501に対して、溶接条件として指令する。 Since the configurations of the control device 141 and the teach pendant 151 of the arc welding apparatus of the third embodiment are the same as those of the first embodiment, detailed description thereof will be omitted. In the first embodiment, the welding condition command unit 146 that commands the welding conditions and the feed speed command unit 147 that commands the feed speed are provided independently. However, in the arc welding apparatus using the consumable electrode according to the third embodiment, as a difference from the first embodiment, the feeding speed is controlled by the welding power source device 501 according to the welding conditions. The feed speed command unit 147 of the arc welding apparatus of the first embodiment is not provided. The command value of the welding condition command unit 146 is commanded as a welding condition to the welding power source device 501.
 本実施の形態3のアーク溶接方法は、溶接用電極は消耗性電極であり、消耗性電極の送給は、ピーク送給速度とピーク送給速度よりも遅いベース送給速度とを交互に繰り返して行う。そして、ピーク送給速度は、ピーク電流と同期するように制御され、ベース送給速度は、ベース電流に同期するように制御される方法としてもよい。 In the arc welding method of the third embodiment, the welding electrode is a consumable electrode, and the supply of the consumable electrode is repeated alternately between a peak feed speed and a base feed speed that is slower than the peak feed speed. Do it. The peak feeding speed may be controlled to be synchronized with the peak current, and the base feeding speed may be controlled to be synchronized with the base current.
 この方法により、所望の美しいビード形状を得ることができる溶接方法を実現できる。 This method can realize a welding method capable of obtaining a desired beautiful bead shape.
 本実施の形態3のティーチペンダント151のデータ設定部154では、図18に示す動作パラメータ設定部701と、図19に示す溶接条件パラメータ設定部801とを備えている。動作パラメータ設定部701は、退避条件設定部310と移動条件設定部320とを備えている。退避条件設定部310は、退避移動距離設定部311と、退避方向設定部312と、退避時間設定部313と、を有している。溶接条件パラメータ設定部801は、ピーク電流設定部410、ベース電流設定部411、第1の設定部420、第2の設定部421、ピーク電圧設定部422およびベース電圧設定部423のうちの少なくともいずれかを備えている。これらの構成要素の機能と役割については、図3および図4で具体的に説明した内容と同様なので、個々での説明は省略する。 The data setting unit 154 of the teach pendant 151 according to the third embodiment includes an operation parameter setting unit 701 shown in FIG. 18 and a welding condition parameter setting unit 801 shown in FIG. The operation parameter setting unit 701 includes a save condition setting unit 310 and a movement condition setting unit 320. The retreat condition setting unit 310 includes a retreat movement distance setting unit 311, a retreat direction setting unit 312, and a retreat time setting unit 313. The welding condition parameter setting unit 801 includes at least one of a peak current setting unit 410, a base current setting unit 411, a first setting unit 420, a second setting unit 421, a peak voltage setting unit 422, and a base voltage setting unit 423. It is equipped with. Since the functions and roles of these components are the same as the contents specifically described in FIGS. 3 and 4, their descriptions are omitted.
 図18に示すように、動作パラメータ設定部701は、ピッチ移動距離Lp、退避距離Lh、退避方向D、退避時間Th、溶接速度Vおよび上端停止タイマThd等の動作パラメータを設定し、これらの動作パラメータはデータ表示部153に表示される。図19に示す溶接条件パラメータ設定部801は、ピーク電流値Ip、ピーク電圧値Vp、ベース電流値Ibおよびベース電圧値Vb等の溶接条件パラメータを設定し、これらの動作パラメータはデータ表示部153に表示される。そして、溶接条件パラメータ設定部801は、本実施の形態3のアーク溶接方法を開始する意味も備えている自動運転時のプレイバック用命令C(図示せず)と、アーク溶接方法を終了する自動運転時のプレイバック用命令E(図示せず)とを備えている。なお、命令Cや命令Eは、教示データ記憶部144に記憶される。 As shown in FIG. 18, the operation parameter setting unit 701 sets operation parameters such as a pitch movement distance Lp, a retraction distance Lh, a retraction direction D, a retraction time Th, a welding speed V, and an upper end stop timer Thd. The parameter is displayed on the data display unit 153. A welding condition parameter setting unit 801 shown in FIG. 19 sets welding condition parameters such as a peak current value Ip, a peak voltage value Vp, a base current value Ib, and a base voltage value Vb, and these operation parameters are displayed on the data display unit 153. Is displayed. Then, the welding condition parameter setting unit 801 has a command C for playback during automatic operation (not shown) that also includes the meaning of starting the arc welding method according to the third embodiment, and automatic completion of the arc welding method. And a playback instruction E (not shown) during operation. Note that the instruction C and the instruction E are stored in the teaching data storage unit 144.
 動作パラメータ設定部701の退避方向設定部312では、実施の形態1と同様に、予め用意されている「トーチ方向」および「鉛直上向き方向」の2つの選択肢から設定される。 The retraction direction setting unit 312 of the operation parameter setting unit 701 is set from two choices of “torch direction” and “vertically upward direction” prepared in advance as in the first embodiment.
 また、図18と図19に示すように、演算パラメータの設定時、ティーチペンダント151のデータ表示部153には、演算パラメータと実際の動作の関係を示した略図が表示されており(図18、図19参照)、教示者が演算パラメータ時の挙動の変化をイメージし易くしている。 As shown in FIGS. 18 and 19, when setting the calculation parameters, the data display unit 153 of the teach pendant 151 displays a schematic diagram showing the relationship between the calculation parameters and the actual operation (FIG. 18, FIG. 19) makes it easy for an instructor to imagine changes in behavior at the time of calculation parameters.
 以上、データ設定部154の設定内容については、教示者が教示した自動運転時にプレイバック動作させる教示データ内の命令の1つとして、ティーチペンダント151の通信部152と制御装置141の通信部142を通じて、制御装置141の教示データ記憶部144に記憶される。 As described above, the setting contents of the data setting unit 154 are transmitted through the communication unit 152 of the teach pendant 151 and the communication unit 142 of the control device 141 as one of the instructions in the teaching data to be played back during the automatic driving taught by the teacher. , Stored in the teaching data storage unit 144 of the control device 141.
 本実施の形態3のアーク溶接方法を使用する場合、溶接作業を行う区間の中で、本実施の形態3のアーク溶接方法を開始したい教示位置に命令Cを登録する。 When using the arc welding method of the third embodiment, the command C is registered at the teaching position where the arc welding method of the third embodiment is to be started in the section where the welding operation is performed.
 また、本実施の形態3のアーク溶接方法を終了したい教示位置には、命令Eを登録しておく。但し、命令Eを登録しなくても、本実施の形態3のアーク溶接方法は、溶接区間の終了で自動的に終了される。詳細な動作については後述するが、命令Eを登録しているか否かによって、本実施の形態3のアーク溶接方法の終了時の動作が異なっており、教示内容によって教示者が命令の登録を選択することができる。 Also, the instruction E is registered at the teaching position where the arc welding method of the third embodiment is to be finished. However, even if the instruction E is not registered, the arc welding method according to the third embodiment is automatically terminated at the end of the welding section. Although the detailed operation will be described later, the operation at the end of the arc welding method of the third embodiment differs depending on whether or not the command E is registered, and the teacher selects the command registration according to the teaching content. can do.
 次に、演算パラメータを用いたマニピュレータ111の動作制御と溶接条件の制御との詳細について図20から図22までの図面を参照して説明する。 Next, details of the operation control of the manipulator 111 using the calculation parameters and the control of the welding conditions will be described with reference to the drawings from FIG. 20 to FIG.
 図20および図21は、本発明の実施の形態3のアーク溶接方法のフローチャートを示している。図22は、本発明の実施の形態3におけるピッチ方向の移動距離、退避方向の移動距離、溶接電流の電流値およびワイヤ送給速度のタイムチャートである。 20 and 21 show flowcharts of the arc welding method according to the third embodiment of the present invention. FIG. 22 is a time chart of the movement distance in the pitch direction, the movement distance in the retreat direction, the current value of the welding current, and the wire feed speed in the third embodiment of the present invention.
 図22は、溶接トーチ504のピッチ方向への移動距離の時間変化および溶接トーチ504の溶接線方向とは異なる退避方向D設定部で設定した方向への退避距離の時間変化を示したものである。また、図22は、溶接電源装置501に指令する指令電流値の時間変化および溶接電源装置501に指令する指令ワイヤ送給速度値の時間変化を示したものである。 FIG. 22 shows the time change of the moving distance in the pitch direction of the welding torch 504 and the time change of the retracting distance in the direction set by the retracting direction D setting unit different from the welding line direction of the welding torch 504. . FIG. 22 shows the change over time of the command current value commanded to the welding power supply apparatus 501 and the change over time of the command wire feed speed value commanded to the welding power supply apparatus 501.
 プレイバック動作において、制御装置141は、教示データ記憶部144から本実施の形態3のアーク溶接方法を開始する命令Cを読み出すと、まず、一般的な溶接開始処理を行う。溶接開始処理において、制御装置141は、溶接トーチ504と溶接対象物Wとの間への溶接電圧の印加と、溶接ワイヤ503の送給を開始し、アークを発生させる。 In the playback operation, when the control device 141 reads the instruction C for starting the arc welding method of the third embodiment from the teaching data storage unit 144, first, a general welding start process is performed. In the welding start process, the control device 141 starts application of a welding voltage between the welding torch 504 and the welding object W and feeding of the welding wire 503 to generate an arc.
 アーク発生後は、溶接開始時用の条件にて入熱処理がなされる。これら一般的な溶接開始処理(STEP0:ステップ0)の終了後に、本実施の形態3のアーク溶接方法が開始される。 After the arc is generated, heat treatment is performed under the conditions for starting welding. After completion of these general welding start processes (STEP 0: step 0), the arc welding method of the third embodiment is started.
 本実施の形態3のアーク溶接方法では、予め定められた退避方向Dに溶接トーチ504を退避動作させながらピーク電流値Ipを流す余盛溶接部(図示せず)と、退避動作完了点から溶接線方向にピッチ移動動作させながらベース電流値Ibを流すアーク継続部(図示せず)とがある。そして、これらを繰り返すことにより溶接を行う。 In the arc welding method according to the third embodiment, welding is performed from a surplus welding portion (not shown) through which the peak current value Ip flows while the welding torch 504 is retracted in a predetermined retracting direction D, and from the point at which the retracting operation is completed. There is an arc continuation section (not shown) that allows the base current value Ib to flow while performing a pitch movement operation in the linear direction. And welding is performed by repeating these.
 先ず、STEP1(ステップ1)として、退避動作について説明する。 First, as STEP 1 (step 1), the evacuation operation will be described.
 溶接開始処理終了後、溶接トーチ504を退避方向Dで設定された方向に退避距離Lhの距離を退避時間Thにて動作するように退避動作を開始する(STEP1-1:ステップ1-1)。そして、退避させると同時に、溶接電源装置501にピーク電流値Ipとピーク電圧Vpを指令する(STEP1-2:ステップ1-2)。溶接電源装置501では、溶接ワイヤ503の材質や直径、溶接トーチ504からの突き出し長さなどによって予め定められている電流とワイヤ送給速度の関係から、ピーク電流値Ipを流すために必要なワイヤ送給速度Wfp1を算出し、溶接ワイヤ送給装置502を駆動する(STEP1-3:ステップ1-3)。これにより、溶接ワイヤ503は、溶接対象物Wに対して溶滴移行を行う。STEP1(ステップ1)の状態を示した図は図22におけるAの状態である。 After completion of the welding start process, the retracting operation is started so that the welding torch 504 operates in the direction set by the retracting direction D with the retracting distance Lh for the retracting time Th (STEP 1-1: Step 1-1). At the same time, the welding power supply device 501 is commanded with the peak current value Ip and the peak voltage Vp (STEP 1-2: Step 1-2). In the welding power source device 501, the wire necessary for flowing the peak current value Ip from the relationship between the current and the wire feed speed determined in advance by the material and diameter of the welding wire 503, the protruding length from the welding torch 504, and the like. The feeding speed Wfp1 is calculated, and the welding wire feeding device 502 is driven (STEP 1-3: Step 1-3). Thereby, the welding wire 503 performs droplet transfer to the welding object W. The diagram showing the state of STEP 1 (step 1) is the state of A in FIG.
 次に、STEP3(ステップ3)として、退避完了点での停止動作について説明する。退避動作が完了(STEP1-4:ステップ1-4でYes判定)すると、退避を完了したその場で溶接トーチ504を上端停止タイマThdの時間停止させ(STEP3-1:ステップ3-1)、余盛ビードの形成を完成させる。これは、図22におけるBの状態であることを示している。 Next, as STEP 3 (step 3), the stop operation at the point of completion of evacuation will be described. When the evacuation operation is completed (STEP 1-4: Yes in Step 1-4), the welding torch 504 is stopped for the time of the upper end stop timer Thd on the spot where the evacuation is completed (STEP 3-1: Step 3-1). Complete the formation of prime beads. This indicates the state of B in FIG.
 次に、STEP2(ステップ2)として、ピッチ移動動作について説明する。 Next, as STEP 2 (step 2), the pitch movement operation will be described.
 STEP3-2(ステップ3-2)において退避完了点での停止動作が完了すると、次に溶接トーチ504をピッチ移動動作させる(STEP2-1:ステップ2-1)とともに、溶接電源装置501にベース電流値Ibとベース電圧値Vbを指令する(STEP2-2:ステップ2-2)。通常、ベース電流値Ibは、ピーク電流より低い値を設定し、アークを維持継続できる程度の電流値を設定する。溶接電源装置501では、ピーク電流時と同様に、ベース電流値Ibを流すために必要なワイヤ送給速度Wfb1を算出し、溶接ワイヤ送給装置502を駆動する(STEP2-3:ステップ2-3)。アークを維持継続できる程度の電流値を設定することで、ほとんど溶滴移行を行わせることなくアークを維持することが可能である。 When the stop operation at the retreat completion point is completed in STEP 3-2 (Step 3-2), the welding torch 504 is then moved by pitch movement (STEP 2-1: Step 2-1), and the welding power source 501 has a base current. Command value Ib and base voltage value Vb (STEP 2-2: Step 2-2). Usually, the base current value Ib is set to a value lower than the peak current, and a current value that can maintain the arc. In the welding power source device 501, similarly to the case of the peak current, the wire feeding speed Wfb1 necessary for flowing the base current value Ib is calculated, and the welding wire feeding device 502 is driven (STEP 2-3: Step 2-3) ). By setting the current value so that the arc can be maintained, the arc can be maintained with almost no droplet transfer.
 ここで、ピッチ動作は、STEP1:ステップ1において退避動作を開始した位置から、溶接進行方向にピッチ移動距離Lpを移動させた点を目標点とし、(STEP3:ステップ3)において退避が完了した点から目標の点に向かってピッチ移動距離Lp/溶接速度Vで求められる時間で動作するようにピッチ移動を開始する。これは、図22におけるCの状態であることを示している。 Here, the pitch operation is a point where the pitch movement distance Lp is moved in the welding progress direction from the position where the retreat operation is started in STEP 1: Step 1, and the retreat is completed in (STEP 3: Step 3). The pitch movement is started so as to operate in the time determined from the pitch movement distance Lp / welding speed V toward the target point. This indicates the state C in FIG.
 次に、STEP4(ステップ4)として、溶接終了判定について説明する。 Next, as STEP 4 (step 4), the welding end determination will be described.
 ピッチ動作(STEP2-4:ステップ2-4でYes判定)が完了すると、溶接終了判定が行われる。溶接終了判定については実施の形態1と同じ処理を行うため、詳細な説明を省略する。以降はSTEP4-2:ステップ4-2の溶接終了判定にてYesの判定が行われるまでSTEP1(ステップ1)からSTEP4(ステップ4)の動作を繰り返し行う。 When the pitch operation (STEP 2-4: Yes in step 2-4) is completed, the welding end determination is performed. Since the same processing as that of the first embodiment is performed for the welding end determination, detailed description thereof is omitted. Thereafter, the operations of STEP 1 (step 1) to STEP 4 (step 4) are repeated until the determination of YES is made in the welding end determination of STEP 4-2: step 4-2.
 次に、本実施の形態3のアーク溶接方法を終了する処理について、図21のフローチャートを用いて説明する。 Next, processing for ending the arc welding method of the third embodiment will be described with reference to the flowchart of FIG.
 終了処理では、溶接区間の終了点に、本実施の形態3のアーク溶接方法を終了させる命令である命令Eが登録されているか否かの判定から行う(STEP5-1:ステップ5-1)。溶接区間の終了点に命令Eが登録されている場合(STEP5-1:ステップ5-1でYes判定)は、ピッチ移動が完了した点において本実施の形態3のアーク溶接方法の処理は完了となる。 In the end process, it is determined whether or not a command E that is a command to end the arc welding method of the third embodiment is registered at the end of the welding section (STEP 5-1: step 5-1). When the instruction E is registered at the end point of the welding section (STEP 5-1: Yes in step 5-1), the arc welding method of the third embodiment is completed at the point where the pitch movement is completed. Become.
 なお、本実施の形態3では、溶接終了点において命令Eが登録されていることを想定したが、命令Eは溶接区間の途中の教示点に存在していてもよい。その場合は本終了処理の実施の形態と同様に、ピッチ移動が完了した点で本実施の形態3のアーク溶接方法が終了となり、以降は通常の溶接区間として溶接が行われる。 In the third embodiment, it is assumed that the command E is registered at the welding end point, but the command E may exist at a teaching point in the middle of the welding section. In that case, the arc welding method of the third embodiment is completed at the point where the pitch movement is completed, as in the embodiment of the present end process, and thereafter welding is performed as a normal welding section.
 一方、溶接区間の終了点に命令Eが登録されていない場合(STEP5-1:ステップ5-1でNo判定)は、ピッチ移動完了後の点から、通常の溶接区間のSTEP1(ステップ1)とSTEP2(ステップ2)と同様に、退避動作とピーク電流の指令を行い、溶接終了点において溶接区間と同じ余盛を形成して溶接方法終了となる(STEP1-1:ステップ1-1~STEP1-4:ステップ1-4、STEP3-1:ステップ3-1~STEP3-2:ステップ3-2)。 On the other hand, when the command E is not registered at the end point of the welding section (STEP 5-1: No determination in step 5-1), from the point after the pitch movement is completed, STEP 1 (step 1) of the normal welding section As in STEP 2 (Step 2), a retracting operation and a peak current command are performed, and the welding process is completed after forming the same surplus as the welding section at the welding end point (STEP 1-1: Step 1-1 to STEP 1-). 4: Step 1-4, STEP3-1: Step 3-1 to STEP3-2: Step 3-2).
 なお、使用用途などは実施の形態1と同じである。 The usage and the like are the same as in the first embodiment.
 次に、本実施の形態3を実施した場合の作用について説明する。 Next, the operation when the third embodiment is implemented will be described.
 STEP1(ステップ1)において、溶接トーチ504をトーチ方向に退避させながらピーク電流値Ipを用いて余盛溶接を行っている。これにより、溶接線方向への移動を意識せずにウロコ状のきれいな余盛ビードを形成することができる。 In STEP 1 (step 1), extra welding is performed using the peak current value Ip while retracting the welding torch 504 in the torch direction. Thereby, the scale-shaped beautiful surplus bead can be formed without being aware of the movement in the welding line direction.
 また、溶接トーチ504を退避させず、溶接トーチ504を停止させた状態のみで余盛溶接を行った場合は、余盛ビードと溶接トーチ504からのアーク発生ポイントまでの突き出し長さが短くなってしまい、溶接が悪化し、きれいなビードを形成することができない。しかし、本実施の形態3のアーク溶接方法では、溶接トーチ504を退避させながら余盛溶接を行うため、溶接ワイヤ503と溶接対象物Wとの間の適正距離を保ったまま溶接を行うことが可能である。 Further, when extra welding is performed only in a state where the welding torch 504 is stopped without retracting the welding torch 504, the protruding length from the extra bead and the arc generation point to the arc generation point from the welding torch 504 is shortened. As a result, welding deteriorates and a clean bead cannot be formed. However, in the arc welding method according to the third embodiment, since extra welding is performed while the welding torch 504 is retracted, welding can be performed while maintaining an appropriate distance between the welding wire 503 and the welding object W. Is possible.
 STEP3(ステップ3)において、溶接トーチ504を一定時間の間だけ一定に保ってピーク電流条件にて溶接を行うことで、ウロコ状の余盛ビードの高さを一定に保つ効果が期待される。 In STEP 3 (Step 3), the welding torch 504 is kept constant for a certain period of time and welding is performed under peak current conditions, so that an effect of keeping the height of the scale-shaped surplus bead constant is expected.
 STEP2(ステップ2)において、溶接電流をベース電流値に切り替えてピッチ移動を行っている。これにより、溶接ワイヤ503と溶接対象物Wとの間のアークを消滅させない程度のベース電流値で溶接トーチ504を移動することができ、次回のピーク電流への切り替えをスムーズに移行できる。これにより、タクトタイム短縮の効果ときれいなビード外観を得る効果がある。 In STEP 2 (step 2), the welding current is switched to the base current value to perform pitch movement. As a result, the welding torch 504 can be moved with a base current value that does not cause the arc between the welding wire 503 and the welding object W to disappear, and the switching to the next peak current can be smoothly shifted. This has the effect of shortening the tact time and obtaining a clean bead appearance.
 すなわち、本実施の形態3のアーク溶接装置は、消耗性電極505と溶接対象物Wとの間に電力を供給する溶接電源装置501と、溶接トーチ504を備えたマニピュレータ111と、マニピュレータ111と溶接電源装置501を制御する制御装置141と、を備えたアーク溶接装置である。そして、本発明のアーク溶接装置は、消耗性電極送給部138と、第1の設定部420と、第2の設定部421と、ピーク電圧設定部422と、ベース電圧設定部423と、退避条件設定部310と、移動条件設定部320と、を備えている。ここで、消耗性電極送給部508は、消耗性電極を送給する。第1の設定部420は、消耗性電極と溶接対象物Wとの間に供給するピーク電流の電流値と時間、または、消耗性電極のピーク送給速度と適用する時間を設定する。第2の設定部421は、ピーク電流よりも小さいベース電流の電流値と時間、または、ピーク送給速度より遅いベース送給速度と適用する時間を設定する。ピーク電圧設定部422は、消耗性電極と溶接対象物Wとの間に印加するピーク電圧の電圧値を設定する。ベース電圧設定部423は、ピーク電圧よりも小さいベース電圧の電圧値を設定する。退避条件設定部310は、溶接対象物Wから離れる条件を設定する。移動条件設定部320は、溶接進行方向に移動する移動条件を設定する。そして、本発明のアーク溶接装置は、アークを発生させたままの状態で、溶接対象物Wから離れる方向に消耗性電極を移動させる第1のステップと、アークを発生させたままの状態で、溶接対象物Wに近づく方向かつ溶接進行方向に消耗性電極を移動させる第2のステップ(ステップ2)と、を交互に繰り返して溶接を行う構成からなる。この構成により、所望の美しいビード形状を得ることができる。 That is, the arc welding apparatus according to the third embodiment includes a welding power supply device 501 that supplies power between the consumable electrode 505 and the welding object W, a manipulator 111 that includes a welding torch 504, the manipulator 111, and welding. An arc welding apparatus including a control device 141 that controls a power supply device 501. The arc welding apparatus of the present invention includes a consumable electrode feeding unit 138, a first setting unit 420, a second setting unit 421, a peak voltage setting unit 422, a base voltage setting unit 423, and a retraction. A condition setting unit 310 and a movement condition setting unit 320 are provided. Here, the consumable electrode feeding unit 508 feeds the consumable electrode. The first setting unit 420 sets the current value and time of the peak current supplied between the consumable electrode and the welding object W, or the peak feeding speed of the consumable electrode and the time to apply. The second setting unit 421 sets the current value and time of the base current smaller than the peak current, or the base feeding speed slower than the peak feeding speed and the time to apply. The peak voltage setting unit 422 sets the voltage value of the peak voltage applied between the consumable electrode and the welding object W. The base voltage setting unit 423 sets a voltage value of the base voltage that is smaller than the peak voltage. The retreat condition setting unit 310 sets a condition for leaving the welding object W. The movement condition setting unit 320 sets a movement condition for moving in the welding progress direction. And the arc welding apparatus of the present invention is in a state where the arc is generated in the first step of moving the consumable electrode in a direction away from the welding object W while the arc is generated, The second step (step 2) in which the consumable electrode is moved in the direction approaching the welding object W and in the welding progress direction, and welding is performed by alternately repeating. With this configuration, a desired beautiful bead shape can be obtained.
 また、本実施の形態3のアーク溶接装置の退避条件設定部310は、退避移動距離設定部311と、退避方向設定部312と、退避時間設定部313と、を有し、移動条件設定部320は、溶接速度設定部321と、ピッチ移動距離設定部322と、を有している。ここで、退避移動距離設定部311は、溶接対象物Wから離れる移動距離である退避移動距離Lhを設定する。退避方向設定部312は、溶接対象物Wから離れる方向である退避方向Dを設定する。退避時間設定部313は、退避方向設定部312で設定された方向に退避移動距離設定部311で設定された距離を移動する時間である退避時間Thを設定する。溶接速度設定部321は、溶接進行方向に移動する速度である溶接速度Vを設定する。ピッチ移動距離設定部322は、溶接進行方向に移動する距離であるピッチ移動距離Lpを設定する。 Further, the retreat condition setting unit 310 of the arc welding apparatus according to the third embodiment includes a retreat movement distance setting unit 311, a retreat direction setting unit 312, and a retreat time setting unit 313, and the movement condition setting unit 320. Has a welding speed setting unit 321 and a pitch movement distance setting unit 322. Here, the retreat movement distance setting unit 311 sets a retreat movement distance Lh that is a movement distance away from the welding object W. The retraction direction setting unit 312 sets a retraction direction D that is a direction away from the welding object W. The evacuation time setting unit 313 sets an evacuation time Th that is a time for moving the distance set by the evacuation movement distance setting unit 311 in the direction set by the evacuation direction setting unit 312. The welding speed setting unit 321 sets a welding speed V that is a speed that moves in the welding progress direction. The pitch movement distance setting unit 322 sets a pitch movement distance Lp that is a distance to move in the welding progress direction.
 そして、第1のステップ(ステップ1)では、退避方向設定部312で設定した方向に、退避移動距離設定部311で設定した距離を、退避時間設定部313で設定した時間で、消耗性電極を溶接対象物Wから離れる方向に移動させる。第2のステップ(ステップ2)では、第1のステップの完了により消耗性電極が移動した位置から、移動目標位置に対して、ピッチ移動距離設定部322で設定した距離を溶接速度設定部321で設定した溶接速度Vで除して求められる時間の間に消耗性電極を移動させる。ここで、移動目標位置は、消耗性電極が第1のステップの開始時の消耗性電極の位置から溶接進行方向にピッチ移動距離設定部322で設定した距離だけ進んだ位置である。そして、第1のステップと第2のステップとを行うことにより、本実施の形態3のアーク溶接装置は、溶接対象物Wに近づく方向かつ溶接進行方向に消耗性電極を移動させる構成としてもよい。この構成により、所望の美しいビード形状を得ることができる。 In the first step (step 1), the consumable electrode is placed in the direction set by the retreat direction setting unit 312 by using the distance set by the retreat movement distance setting unit 311 for the time set by the retreat time setting unit 313. It moves in the direction away from the welding object W. In the second step (step 2), the welding speed setting unit 321 sets the distance set by the pitch movement distance setting unit 322 with respect to the movement target position from the position where the consumable electrode has moved by the completion of the first step. The consumable electrode is moved during a time determined by dividing by the set welding speed V. Here, the movement target position is a position where the consumable electrode is advanced from the position of the consumable electrode at the start of the first step by the distance set by the pitch movement distance setting unit 322 in the welding progress direction. Then, by performing the first step and the second step, the arc welding apparatus of the third embodiment may be configured to move the consumable electrode in the direction approaching the welding object W and in the welding progress direction. . With this configuration, a desired beautiful bead shape can be obtained.
 また、消耗性電極の送給は、ピーク送給速度とピーク送給速度よりも遅いベース送給速度とを交互に繰り返して行い、ピーク送給速度での送給は、ピーク電流の供給と同期するように制御され、ベース送給速度での送給は、ベース電流の供給と同期するように制御される構成としてもよい。この構成により、所望の美しいビード形状を得ることができる。 In addition, the supply of consumable electrodes is performed by alternately repeating the peak feed rate and the base feed rate slower than the peak feed rate, and the feed at the peak feed rate is synchronized with the supply of the peak current. The feeding at the base feeding speed may be controlled to synchronize with the supply of the base current. With this configuration, a desired beautiful bead shape can be obtained.
 なお、本実施の形態3では、上端停止タイマThdを設定し、上端において溶接トーチ504の停止を行う例を示したが、溶接対象物Wの形状や使用する電流条件や形成したい溶接ビードに応じて上端停止タイマThdを0とし、溶接トーチ504を停止させないことも可能である。 In the third embodiment, an example is shown in which the upper end stop timer Thd is set and the welding torch 504 is stopped at the upper end. However, depending on the shape of the welding object W, the current condition to be used, and the weld bead to be formed. It is also possible to set the upper end stop timer Thd to 0 and not stop the welding torch 504.
 なお、本実施の形態で3は、退避方向Dを「トーチ方向」に設定した例を示したが、「鉛直上向き方向」に設定した場合でも退避方向が異なる以外は、本実施の形態3と処理は同じである。 In the present embodiment, 3 shows an example in which the retreat direction D is set to the “torch direction”. However, even when the retreat direction is set to “vertically upward direction”, the retreat direction is different from that of the third embodiment. The process is the same.
 なお、本実施の形態3では、ピーク電流値Ipとベース電流値Ibとを指令し、電流に同期させて、ピーク溶加材送給速度Wfpとベース溶加材送給速度Wfbの制御を行う例を示した。しかし、ピーク溶加材送給速度Wfpとベース溶加材送給速度Wfbを指令し、送給速度に同期させて電流を制御してもよい。 In the third embodiment, the peak current value Ip and the base current value Ib are commanded, and the peak filler material feed speed Wfp and the base filler material feed speed Wfb are controlled in synchronization with the current. An example is shown. However, the peak filler material feed speed Wfp and the base filler material feed speed Wfb may be commanded to control the current in synchronization with the feed speed.
 本発明によれば、所望のビード形状を得ることができ、例えばうろこ状のビードの形成等に用いるアーク溶接方法およびアーク溶接装置として適用が可能で産業上有用である。 According to the present invention, a desired bead shape can be obtained, which can be applied as an arc welding method and an arc welding apparatus used for, for example, the formation of a scaly bead, and is industrially useful.
 111  マニピュレータ
 112,504  溶接トーチ
 113  溶加材
 121,501  溶接電源装置
 131  溶加材送給装置
 132  送給速度制御部
 133  送給モータ
 136  溶加材ピーク送給速度設定部
 137  溶加材ベース送給速度設定部
 138  消耗性電極送給部
 141  制御装置
 142  通信部
 143  演算部
 144  教示データ記憶部
 145  マニピュレータ制御部
 146  溶接条件指令部
 147  送給速度指令部
 151  ティーチペンダント
 152  通信部
 153  データ表示部
 154  データ設定部
 211,601  ガスノズル
 212  非消耗性電極
 213  溶加材送給ガイド
 301,701  動作パラメータ設定部
 310  退避条件設定部
 311  退避移動距離設定部
 312  退避方向設定部
 313  退避時間設定部
 320  移動条件設定部
 321  溶接速度設定部
 322  ピッチ移動距離設定部
 401,801  溶接条件パラメータ設定部
 410  ピーク電流設定部
 411  ベース電流設定部
 420  第1の設定部
 421  第2の設定部
 422  ピーク電圧設定部
 423  ベース電圧設定部
 502  溶接ワイヤ送給装置
 503  溶接ワイヤ
 508  消耗性電極送給部
 602  コンタクトチップ
DESCRIPTION OF SYMBOLS 111 Manipulator 112,504 Welding torch 113 Filler material 121,501 Welding power supply device 131 Filler material feeding device 132 Feed speed control part 133 Feed motor 136 Filler material peak feed speed setting part 137 Filler base feed Feed rate setting unit 138 Consumable electrode feeding unit 141 Control device 142 Communication unit 143 Calculation unit 144 Teaching data storage unit 145 Manipulator control unit 146 Welding condition command unit 147 Feed rate command unit 151 Teach pendant 152 Communication unit 153 Data display unit 154 Data setting unit 211,601 Gas nozzle 212 Non-consumable electrode 213 Filler material feed guide 301,701 Operation parameter setting unit 310 Retraction condition setting unit 311 Retraction movement distance setting unit 312 Retraction direction setting unit 313 Retraction time setting unit 32 Movement condition setting unit 321 Welding speed setting unit 322 Pitch movement distance setting unit 401, 801 Welding condition parameter setting unit 410 Peak current setting unit 411 Base current setting unit 420 First setting unit 421 Second setting unit 422 Peak voltage setting unit 423 Base voltage setting unit 502 Welding wire feeding device 503 Welding wire 508 Consumable electrode feeding unit 602 Contact tip

Claims (25)

  1. 溶接用電極と溶接対象物との間にアークを発生させて溶接を行うアーク溶接方法であって、
    前記アークを発生させたままの状態で、前記溶接対象物から離れる方向に前記溶接用電極を移動させる第1のステップと、
    前記アークを発生させたままの状態で、前記溶接対象物に近づく方向かつ溶接線方向に前記溶接用電極を移動させる第2のステップと、を備え、
    前記第1のステップと前記第2のステップとを交互に繰り返して溶接を行うアーク溶接方法。
    An arc welding method for performing welding by generating an arc between a welding electrode and a welding object,
    A first step of moving the welding electrode in a direction away from the welding object in a state where the arc is generated;
    A second step of moving the welding electrode in the direction approaching the welding object and in the direction of the welding line in a state in which the arc is generated, and
    An arc welding method in which welding is performed by alternately repeating the first step and the second step.
  2. 前記第1のステップの終了時の位置で前記アークを発生させたままの状態で、前記溶接用電極の位置を所定時間だけ維持する第3のステップを、前記第1のステップと前記第2のステップとの間に備えた請求項1記載のアーク溶接方法。 A third step of maintaining the position of the welding electrode for a predetermined time while the arc is generated at the position at the end of the first step is the first step and the second step. The arc welding method according to claim 1 provided between the steps.
  3. 前記第1のステップにおいて、前記溶接用電極を、前記溶接用電極の前記溶接線上の位置は変化させずに溶接対象物から離れる方向に移動させる、前記溶接用電極を、溶接進行方向に対して戻る方向に移動させながら前記溶接対象物から離れる方向に移動させる、または、前記溶接用電極を、前記溶接進行方向に移動させながら前記溶接対象物から離れる方向に移動させる請求項1または2のいずれか1項に記載のアーク溶接方法。 In the first step, the welding electrode is moved in a direction away from an object to be welded without changing the position of the welding electrode on the welding line. Either of the above-mentioned 1 or 2 is moved in the direction away from the welding object while moving in the direction of return, or moving in the direction away from the welding object while moving the welding electrode in the welding progress direction. The arc welding method according to claim 1.
  4. 前記第1のステップの間は、前記溶接用電極と前記溶接対象物との間にピーク電流を供給し、前記第2のステップの間は、前記溶接用電極と前記溶接対象物との間に前記ピーク電流よりも低いベース電流を供給する請求項1から3のいずれか1項に記載のアーク溶接方法。 A peak current is supplied between the welding electrode and the welding object during the first step, and between the welding electrode and the welding object during the second step. The arc welding method according to claim 1, wherein a base current lower than the peak current is supplied.
  5. 前記第3のステップの間は、前記溶接用電極と前記溶接対象物との間にピーク電流を供給する請求項2記載のアーク溶接方法。 The arc welding method according to claim 2, wherein a peak current is supplied between the welding electrode and the welding object during the third step.
  6. 前記溶接用電極は非消耗性電極であり、溶加材を供給しながらアーク溶接を行い、前記溶加材の送給は、ピーク送給速度と前記ピーク送給速度よりも遅いベース送給速度とを交互に繰り返して行い、前記ピーク送給速度での送給は、前記ピーク電流の開始タイミングとは異なるタイミングで開始され、前記ベース送給速度での送給は、前記ベース電流の開始タイミングとは異なるタイミングで開始される請求項1から5のいずれか1項に記載のアーク溶接方法。 The welding electrode is a non-consumable electrode, and arc welding is performed while supplying a filler material. The supply of the filler material is a peak feeding speed and a base feeding speed that is slower than the peak feeding speed. Are alternately repeated, and the feed at the peak feed speed is started at a timing different from the start timing of the peak current, and the feed at the base feed speed is started at the start timing of the base current. The arc welding method according to claim 1, wherein the arc welding method is started at a different timing.
  7. 前記溶接用電極は非消耗性電極であり、溶加材を供給しながらアーク溶接を行い、前記第2のステップの時に前記溶加材の送給が逆送となるように前記溶加材の送給を制御する請求項1から6のいずれか1項に記載のアーク溶接方法。 The welding electrode is a non-consumable electrode, and arc welding is performed while supplying the filler material, and the filler material is fed in reverse so that feeding of the filler material is reversed during the second step. The arc welding method according to claim 1, wherein the feeding is controlled.
  8. 前記溶接用電極は非消耗性電極であり、溶加材を供給しながらアーク溶接を行い、前記第2のステップの開始時から第1の所定時間の間は、前記溶加材の送給が逆送となるように制御し、前記第1の所定時間の経過後は、前記溶加材の送給を停止する請求項1から6のいずれか1項に記載のアーク溶接方法。 The welding electrode is a non-consumable electrode, and arc welding is performed while supplying a filler material. During the first predetermined time from the start of the second step, the filler material is fed. The arc welding method according to any one of claims 1 to 6, wherein the feeding is controlled so as to be reverse feeding, and the feeding of the filler metal is stopped after the first predetermined time has elapsed.
  9. 前記溶接用電極は非消耗性電極であり、溶加材を供給しながらアーク溶接を行い、前記第2のステップの開始前のある時点から前記第2のステップの開始後のある時点までの第2の所定時間の間は、前記溶加材の送給が逆送となるように制御し、前記第2の所定時間の経過後は、前記溶加材の送給を停止する請求項1から6のいずれか1項に記載のアーク溶接方法。 The welding electrode is a non-consumable electrode, and arc welding is performed while supplying a filler metal, and a first time from the start of the second step to a predetermined time after the start of the second step. The feeding of the filler material is controlled to be reverse feeding during a predetermined time of 2, and the feeding of the filler material is stopped after elapse of the second predetermined time. The arc welding method according to claim 1.
  10. 前記溶接用電極は非消耗性電極であり、溶加材を供給しながらアーク溶接を行い、前記第2のステップの開始前のある時点から前記第2のステップの開始時までの第3の所定時間の間は、前記溶加材の送給が逆送となるように制御し、前記第3の所定時間の経過後は、前記溶加材の送給を停止する請求項1から6のいずれか1項に記載のアーク溶接方法。 The welding electrode is a non-consumable electrode, arc welding is performed while supplying a filler metal, and a third predetermined period from a certain time before the start of the second step to the start of the second step. The feeding of the filler material is controlled so as to be reversed during the time, and feeding of the filler material is stopped after the third predetermined time has elapsed. The arc welding method according to claim 1.
  11. 前記溶接用電極は消耗性電極であり、前記消耗性電極の送給は、ピーク送給速度と前記ピーク送給速度よりも遅いベース送給速度とを交互に繰り返して行い、前記ピーク送給速度は、前記ピーク電流と同期するように制御され、前記ベース送給速度は、ベース電流に同期するように制御される請求項1から4のいずれか1項に記載のアーク溶接方法。 The welding electrode is a consumable electrode, and the supply of the consumable electrode is performed by alternately repeating a peak feed speed and a base feed speed slower than the peak feed speed, and the peak feed speed 5. The arc welding method according to claim 1, wherein the base welding speed is controlled so as to be synchronized with the base current, and the base feed speed is controlled so as to be synchronized with the base current.
  12. 非消耗性電極と溶接対象物との間に電力を供給する溶接電源装置と、
    前記非消耗性電極を保持する溶接トーチを備えたマニピュレータと、
    前記マニピュレータと前記溶接電源装置を制御する制御装置と、
    溶加材を送給するために前記溶接トーチに取り付けられた溶加材送給ガイドと、を備えたアーク溶接装置であって、
    前記溶加材を送給する溶加材送給部と、
    前記非消耗性電極と前記溶接対象物との間に供給するピーク電流の電流値と時間を設定するためのピーク電流設定部と、
    前記ピーク電流よりも小さいベース電流の電流値と時間とを設定するためのベース電流設定部と、
    前記溶加材のピーク送給速度と適用する時間を設定するための溶加材ピーク送給速度設定部と、
    前記溶加材の前記ピーク送給速度よりも小さいベース送給速度と前記ベース送給速度を適用する時間を設定するための溶加材ベース送給速度設定部と、
    前記溶接対象物から離れる条件を設定する退避条件設定部と、
    溶接進行方向に移動する移動条件を設定する移動条件設定部と、
    を備え、
    前記アークを発生させたままの状態で、前記溶接対象物から離れる方向に前記非消耗性電極を移動させる第1のステップと、前記アークを発生させたままの状態で、前記溶接対象物に近づく方向かつ前記溶接進行方向に前記非消耗性電極を移動させる第2のステップと、を交互に繰り返して溶接を行うアーク溶接装置。
    A welding power supply for supplying power between the non-consumable electrode and the welding object;
    A manipulator with a welding torch holding the non-consumable electrode;
    A control device for controlling the manipulator and the welding power source device;
    An arc welding apparatus comprising: a filler material feeding guide attached to the welding torch for feeding a filler material;
    A filler material feeding section for feeding the filler material;
    A peak current setting unit for setting a current value and time of a peak current supplied between the non-consumable electrode and the welding object;
    A base current setting unit for setting a current value and time of a base current smaller than the peak current;
    The filler material peak feed rate setting unit for setting the peak feed rate of the filler material and the time to apply,
    A filler material feed rate setting unit for setting a base feed rate smaller than the peak feed rate of the filler material and a time for applying the base feed rate;
    An evacuation condition setting unit for setting conditions for leaving the welding object;
    A moving condition setting unit for setting a moving condition for moving in the welding progress direction;
    With
    A first step of moving the non-consumable electrode in a direction away from the welding object in a state where the arc is generated; and approaching the welding object in a state where the arc is generated An arc welding apparatus that performs welding by alternately repeating the second step of moving the non-consumable electrode in the direction and the welding progress direction.
  13. 前記退避条件設定部は、
    前記溶接対象物から離れる移動距離である退避移動距離を設定するための退避移動距離設定部と、
    前記溶接対象物から離れる方向である退避方向を設定するための退避方向設定部と、
    前記退避方向設定部で設定された方向に前記退避移動距離設定部で設定された距離を移動する時間である退避時間を設定するための退避時間設定部と、を有し、
    前記移動条件設定部は、
    前記溶接進行方向に移動する速度である溶接速度を設定するための溶接速度設定部と、
    前記溶接進行方向に移動する距離であるピッチ移動距離を設定するためのピッチ移動距離設定部と、を有し、
    前記第1のステップでは、前記退避方向設定部で設定した方向に、前記退避移動距離設定部で設定した距離を、前記退避時間設定部で設定した時間で、前記非消耗性電極を前記溶接対象物から離れる方向に移動させ、前記第2のステップでは、前記第1のステップの完了により前記非消耗性電極が移動した位置から、前記第1のステップの開始時の前記非消耗性電極の位置から前記溶接進行方向に前記ピッチ移動距離設定部で設定した距離だけ進んだ位置を前記非消耗性電極の移動目標位置として、前記ピッチ移動距離設定部で設定した距離を前記溶接速度設定部で設定した溶接速度で除して求められる時間の間に移動させることにより、前記溶接対象物に近づく方向かつ前記溶接進行方向に前記非消耗性電極を移動させる請求項12記載のアーク溶接装置。
    The evacuation condition setting unit
    A retreat movement distance setting unit for setting a retreat movement distance that is a movement distance away from the welding object;
    A retraction direction setting unit for setting a retraction direction that is a direction away from the welding object;
    A retreat time setting unit for setting a retreat time that is a time for moving the distance set by the retreat movement distance setting unit in the direction set by the retreat direction setting unit;
    The movement condition setting unit
    A welding speed setting unit for setting a welding speed that is a speed of movement in the welding progress direction;
    A pitch movement distance setting unit for setting a pitch movement distance that is a distance to move in the welding direction,
    In the first step, the distance set by the retract movement distance setting unit in the direction set by the retract direction setting unit is the time set by the retract time setting unit, and the non-consumable electrode is attached to the welding target. In the second step, the position of the non-consumable electrode at the start of the first step is changed from the position where the non-consumable electrode is moved upon completion of the first step. The position set by the pitch moving distance setting unit is set by the welding speed setting unit, with the position advanced by the distance set by the pitch moving distance setting unit from the welding progress direction as the movement target position of the non-consumable electrode. The non-consumable electrode according to claim 12, wherein the non-consumable electrode is moved in a direction approaching the welding object and in a direction in which the welding progresses by moving during a time obtained by dividing by the welding speed. Over click welding equipment.
  14. 前記第1のステップの終了時の位置で前記アークを発生させたままの状態で、前記非消耗性電極の位置を所定時間だけ維持する第3のステップを、第1のステップと第2のステップとの間に行う請求項12または13のいずれか1項に記載のアーク溶接装置。 A third step of maintaining the position of the non-consumable electrode for a predetermined time while the arc is generated at a position at the end of the first step is a first step and a second step. The arc welding apparatus according to claim 12, which is performed between
  15. 前記第1のステップの間は、非消耗性電極と溶接対象物との間にピーク電流を供給し、前記第2のステップの間は、前記非消耗性電極と前記溶接対象物との間に前記ピーク電流よりも低いベース電流を供給する請求項12から14のいずれか1項に記載のアーク溶接装置。 During the first step, a peak current is supplied between the non-consumable electrode and the welding object, and between the non-consumable electrode and the welding object during the second step. The arc welding apparatus according to claim 12, wherein a base current lower than the peak current is supplied.
  16. 前記第3のステップの間は、前記非消耗性電極と溶接対象物との間にピーク電流を供給する請求項14記載のアーク溶接装置。 The arc welding apparatus according to claim 14, wherein a peak current is supplied between the non-consumable electrode and an object to be welded during the third step.
  17. 前記溶加材の送給は、ピーク送給速度と前記ピーク送給速度よりも遅いベース送給速度とを交互に繰り返して行い、前記ピーク送給速度での送給は、前記ピーク電流の開始タイミングとは異なるタイミングで開始され、前記ベース送給速度での送給は、前記ベース電流の開始タイミングとは異なるタイミングで開始される請求項12から16のいずれか1項に記載のアーク溶接装置。 The feeding of the filler material is performed by alternately repeating a peak feeding speed and a base feeding speed slower than the peak feeding speed, and feeding at the peak feeding speed starts the peak current. The arc welding apparatus according to any one of claims 12 to 16, wherein the arc welding apparatus is started at a timing different from a timing, and the feeding at the base feeding speed is started at a timing different from a timing at which the base current is started. .
  18. 前記第2のステップの時に前記溶加材の送給が逆送となるように前記溶加材の送給を制御する請求項12から17のいずれか1項に記載のアーク溶接装置。 The arc welding apparatus according to any one of claims 12 to 17, wherein feeding of the filler material is controlled so that feeding of the filler material is reversely fed during the second step.
  19. 前記第2のステップの開始時から第1の所定時間の間は、前記溶加材の送給が逆送となるように制御し、前記第1の所定時間の経過後は、前記溶加材の送給を停止する請求項12から17のいずれか1項に記載のアーク溶接装置。 During the first predetermined time from the start of the second step, the feeding of the filler material is controlled to be reverse, and after the first predetermined time has elapsed, the filler material is controlled. The arc welding apparatus according to any one of claims 12 to 17, wherein the feeding of is stopped.
  20. 前記第2のステップの開始前のある時点から前記第2のステップの開始後のある時点までの第2の所定時間の間は、前記溶加材の送給が逆送となるように制御し、前記第2の所定時間の経過後は、前記溶加材の送給を停止する請求項12から17のいずれか1項に記載のアーク溶接装置。 During a second predetermined time from a certain time before the start of the second step to a certain time after the start of the second step, the feeding of the filler material is controlled to be reverse. The arc welding apparatus according to any one of claims 12 to 17, wherein the feeding of the filler material is stopped after elapse of the second predetermined time.
  21. 前記第2のステップの開始前のある時点から前記第2のステップの開始時までの第3の所定時間の間は、前記溶加材の送給が逆送となるように制御し、前記第3の所定時間の経過後は、前記溶加材の送給を停止する請求項12から17のいずれか1項に記載のアーク溶接装置。 During a third predetermined time from a certain time before the start of the second step to the start of the second step, the feeding of the filler material is controlled to be reverse feed, The arc welding apparatus according to any one of claims 12 to 17, wherein the feeding of the filler metal is stopped after the elapse of a predetermined time of 3.
  22. 消耗性電極と溶接対象物との間に電力を供給する溶接電源装置と、
    溶接トーチを備えたマニピュレータと、
    前記マニピュレータと前記溶接電源装置を制御する制御装置と、
    を備えたアーク溶接装置であって、
    前記消耗性電極を送給する消耗性電極送給部と、
    前記消耗性電極と前記溶接対象物との間に供給するピーク電流の電流値と時間、または、前記消耗性電極のピーク送給速度と適用する時間を設定するための第1の設定部と、
    前記ピーク電流よりも小さいベース電流の電流値と時間、または、前記ピーク送給速度より遅いベース送給速度と適用する時間を設定するための第2の設定部と、
    前記消耗性電極と前記溶接対象物との間に印加するピーク電圧の電圧値を設定するためのピーク電圧設定部と、
    前記ピーク電圧よりも小さいベース電圧の電圧値を設定するためのベース電圧設定部と、
    前記溶接対象物から離れる条件を設定する退避条件設定部と、
    溶接進行方向に移動する移動条件を設定する移動条件設定部と、
    を備え、
    前記アークを発生させたままの状態で、前記溶接対象物から離れる方向に前記消耗性電極を移動させる第1のステップと、前記アークを発生させたままの状態で、前記溶接対象物に近づく方向かつ前記溶接進行方向に前記消耗性電極を移動させる第2のステップと、を交互に繰り返して溶接を行うアーク溶接装置。
    A welding power supply for supplying power between the consumable electrode and the welding object;
    A manipulator with a welding torch;
    A control device for controlling the manipulator and the welding power source device;
    An arc welding apparatus comprising:
    A consumable electrode feeding section for feeding the consumable electrode;
    A first setting unit for setting a current value and time of a peak current supplied between the consumable electrode and the welding object, or a peak feeding speed of the consumable electrode and a time to apply;
    A second setting unit for setting a current value and time of a base current smaller than the peak current, or a base feeding speed slower than the peak feeding speed and an application time;
    A peak voltage setting unit for setting a voltage value of a peak voltage applied between the consumable electrode and the welding object;
    A base voltage setting unit for setting a voltage value of a base voltage smaller than the peak voltage;
    An evacuation condition setting unit for setting conditions for leaving the welding object;
    A moving condition setting unit for setting a moving condition for moving in the welding progress direction;
    With
    A first step of moving the consumable electrode in a direction away from the welding object in a state where the arc is generated; and a direction approaching the welding object in a state where the arc is generated An arc welding apparatus that performs welding by alternately repeating the second step of moving the consumable electrode in the welding progress direction.
  23. 前記退避条件設定部は、
    前記溶接対象物から離れる移動距離である退避移動距離を設定するための退避移動距離設定部と、
    前記溶接対象物から離れる方向である退避方向を設定するための退避方向設定部と、
    前記退避方向設定部で設定された方向に前記退避移動距離設定部で設定された距離を移動する時間である退避時間を設定するための退避時間設定部と、を有し、
    前記移動条件設定部は、
    前記溶接進行方向に移動する速度である溶接速度を設定するための溶接速度設定部と、
    前記溶接進行方向に移動する距離であるピッチ移動距離を設定するためのピッチ移動距離設定部と、を有し、
    前記第1のステップでは、前記退避方向設定部で設定した方向に、前記退避移動距離設定部で設定した距離を、前記退避時間設定部で設定した時間で、前記消耗性電極を前記溶接対象物から離れる方向に移動させ、前記第2のステップでは、前記第1のステップの完了により前記消耗性電極が移動した位置から、前記第1のステップの開始時の前記消耗性電極の位置から前記溶接進行方向に前記ピッチ移動距離設定部で設定した距離だけ進んだ位置を前記消耗性電極の移動目標位置として、前記ピッチ移動距離設定部で設定した距離を前記溶接速度設定部で設定した溶接速度で除して求められる時間の間に移動させることにより、前記溶接対象物に近づく方向かつ前記溶接進行方向に前記消耗性電極を移動させる請求項22記載のアーク溶接装置。
    The evacuation condition setting unit
    A retreat movement distance setting unit for setting a retreat movement distance that is a movement distance away from the welding object;
    A retraction direction setting unit for setting a retraction direction that is a direction away from the welding object;
    A retreat time setting unit for setting a retreat time that is a time for moving the distance set by the retreat movement distance setting unit in the direction set by the retreat direction setting unit;
    The movement condition setting unit
    A welding speed setting unit for setting a welding speed that is a speed of movement in the welding progress direction;
    A pitch movement distance setting unit for setting a pitch movement distance that is a distance to move in the welding direction,
    In the first step, the consumable electrode is attached to the welding object in the direction set by the retracting direction setting unit, with the distance set by the retracting movement distance setting unit being the time set by the retracting time setting unit. In the second step, the welding is performed from the position of the consumable electrode at the start of the first step from the position where the consumable electrode is moved by the completion of the first step. The position advanced by the distance set by the pitch moving distance setting unit in the traveling direction is set as the moving target position of the consumable electrode, and the distance set by the pitch moving distance setting unit is the welding speed set by the welding speed setting unit. 23. The arc welding according to claim 22, wherein the consumable electrode is moved in a direction approaching the welding object and in a direction in which the welding progresses by moving during a time determined by dividing the welding target. Location.
  24. 前記消耗性電極の送給は、ピーク送給速度と前記ピーク送給速度よりも遅いベース送給速度とを交互に繰り返して行い、前記ピーク送給速度での送給は、前記ピーク電流の供給と同期するように制御され、前記ベース送給速度での送給は、前記ベース電流の供給と同期するように制御される請求項22または23のいずれか1項に記載のアーク溶接装置。 The supply of the consumable electrode is performed by alternately repeating a peak feed speed and a base feed speed that is slower than the peak feed speed, and the feed at the peak feed speed is the supply of the peak current. The arc welding apparatus according to any one of claims 22 and 23, wherein the arc welding apparatus is controlled to synchronize with the base current, and the feeding at the base feeding speed is controlled to synchronize with the supply of the base current.
  25. 前記溶接電源装置を前記制御装置内に設けた請求項12から24のいずれか1項に記載のアーク溶接装置。 The arc welding device according to any one of claims 12 to 24, wherein the welding power source device is provided in the control device.
PCT/JP2013/000073 2012-03-15 2013-01-11 Arc-welding method and arc-welding device WO2013136638A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014504645A JP5990784B2 (en) 2012-03-15 2013-01-11 Arc welding method and arc welding apparatus
CN201380014326.3A CN104169032B (en) 2012-03-15 2013-01-11 Arc-welding method and arc-welding apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-058292 2012-03-15
JP2012058292 2012-03-15

Publications (1)

Publication Number Publication Date
WO2013136638A1 true WO2013136638A1 (en) 2013-09-19

Family

ID=49160591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000073 WO2013136638A1 (en) 2012-03-15 2013-01-11 Arc-welding method and arc-welding device

Country Status (3)

Country Link
JP (1) JP5990784B2 (en)
CN (1) CN104169032B (en)
WO (1) WO2013136638A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016044993A1 (en) * 2014-09-23 2016-03-31 华为技术有限公司 Radio frequency power assembly and transceiver device
EP3297786A4 (en) * 2015-05-18 2019-05-15 ABB Schweiz AG Robotically controlled gas tungsten arc welder and method for operating the same
CN111736536A (en) * 2020-06-23 2020-10-02 石家庄坚持科技有限公司 Control method and system of mesh welding machine and terminal equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10213878B2 (en) * 2015-01-23 2019-02-26 GM Global Technology Operations LLC Arc welding/brazing process for low-heat input copper joining
JP6663617B2 (en) * 2015-11-09 2020-03-13 株式会社ダイヘン Arc welding control method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06190561A (en) * 1992-10-26 1994-07-12 Daihen Corp Method and equipment for pulse mag arc welding
JP2005349405A (en) * 2004-06-08 2005-12-22 Daihen Corp Pulsed current synchronizing filler wire-feeding non-consumable electrode arc welding method
JP2011073039A (en) * 2009-09-30 2011-04-14 Daihen Corp Arc welding method and arc welding system
JP2011152545A (en) * 2009-12-17 2011-08-11 Daihen Corp Arc welding method
JP2011161453A (en) * 2010-02-05 2011-08-25 Daihen Corp Arc welding method
JP2011212707A (en) * 2010-03-31 2011-10-27 Daihen Corp Arc welding method
JP2012139692A (en) * 2010-12-28 2012-07-26 Daihen Corp Arc welding method and arc welding system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1299737A (en) * 1969-06-10 1972-12-13 Jenkins & Co Ltd Robert An improvement in or relating to electric arc welding
JPS6045034B2 (en) * 1978-10-27 1985-10-07 株式会社神戸製鋼所 DC TIG weaving welding method
JPS5674377A (en) * 1979-11-24 1981-06-19 Kobe Steel Ltd Direct current tig weaving welding method
JP3946570B2 (en) * 2002-05-13 2007-07-18 本田技研工業株式会社 TIG welding apparatus and TIG welding method
JP2005028380A (en) * 2003-07-09 2005-02-03 Daihen Corp Retract arc start control method for consumable electrode arc welding
US8723080B2 (en) * 2009-07-10 2014-05-13 Panasonic Corporation Arc welding control method and arc welding apparatus
CN102361722B (en) * 2009-07-29 2015-03-25 松下电器产业株式会社 Arc welding method and arc welding device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06190561A (en) * 1992-10-26 1994-07-12 Daihen Corp Method and equipment for pulse mag arc welding
JP2005349405A (en) * 2004-06-08 2005-12-22 Daihen Corp Pulsed current synchronizing filler wire-feeding non-consumable electrode arc welding method
JP2011073039A (en) * 2009-09-30 2011-04-14 Daihen Corp Arc welding method and arc welding system
JP2011152545A (en) * 2009-12-17 2011-08-11 Daihen Corp Arc welding method
JP2011161453A (en) * 2010-02-05 2011-08-25 Daihen Corp Arc welding method
JP2011212707A (en) * 2010-03-31 2011-10-27 Daihen Corp Arc welding method
JP2012139692A (en) * 2010-12-28 2012-07-26 Daihen Corp Arc welding method and arc welding system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016044993A1 (en) * 2014-09-23 2016-03-31 华为技术有限公司 Radio frequency power assembly and transceiver device
US10347596B2 (en) 2014-09-23 2019-07-09 Huawei Technologies Co., Ltd. Radio frequency power component and radio frequency signal transceiving device
EP3297786A4 (en) * 2015-05-18 2019-05-15 ABB Schweiz AG Robotically controlled gas tungsten arc welder and method for operating the same
CN111736536A (en) * 2020-06-23 2020-10-02 石家庄坚持科技有限公司 Control method and system of mesh welding machine and terminal equipment

Also Published As

Publication number Publication date
CN104169032B (en) 2016-03-16
JP5990784B2 (en) 2016-09-14
JPWO2013136638A1 (en) 2015-08-03
CN104169032A (en) 2014-11-26

Similar Documents

Publication Publication Date Title
US11759879B2 (en) Synchronized rotating arc welding method and system
JP4844564B2 (en) Arc welding control method
JP5990784B2 (en) Arc welding method and arc welding apparatus
CN104093517A (en) Dc electrode negative rotating arc welding method and system
JP2015523217A (en) Adjustable rotary arc welding method and system
JP5502414B2 (en) Arc welding method and arc welding system
EP3056308A1 (en) Method and system to increase heat input to a weld during a short-circuit arc welding process
JP7373774B2 (en) Arc welding control method
TWI516331B (en) Arc welding method and arc welding system
JP5483555B2 (en) Arc welding method
EP3705219A1 (en) Systems for controlled arc and short phase time adjustment
JP2019155418A (en) Arc-welding control method
CN102101208B (en) Arc welding method, arc welding robot control device and arc welding system
JP5468841B2 (en) Arc welding method and arc welding system
JP6859471B1 (en) Manufacturing method of laminated model
JP2004330227A (en) Bead patching method for circumferential multilayer welding, and automatic welding equipment
JP7162178B2 (en) ARC WELDING METHOD, ARC WELDING SYSTEM AND WELDING POWER SUPPLY CONTROL DEVICE
JP2011110604A (en) Pulse arc welding method and welding apparatus
JPH091340A (en) Automatic pulse mode setting method of automatic tube circumference welding equipment
JP2023162631A (en) Plasma arc hybrid welding device
JP4861101B2 (en) Arc welding method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380014326.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13761616

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014504645

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13761616

Country of ref document: EP

Kind code of ref document: A1