WO2013136487A1 - Method for humidifying starting tobacco material - Google Patents

Method for humidifying starting tobacco material Download PDF

Info

Publication number
WO2013136487A1
WO2013136487A1 PCT/JP2012/056716 JP2012056716W WO2013136487A1 WO 2013136487 A1 WO2013136487 A1 WO 2013136487A1 JP 2012056716 W JP2012056716 W JP 2012056716W WO 2013136487 A1 WO2013136487 A1 WO 2013136487A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
deviation
control
negative
positive
Prior art date
Application number
PCT/JP2012/056716
Other languages
French (fr)
Japanese (ja)
Inventor
晃 更屋
忍 宮守
隆司 岩井
伊藤 直樹
弘明 高野
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to PL12871593T priority Critical patent/PL2798965T3/en
Priority to PCT/JP2012/056716 priority patent/WO2013136487A1/en
Priority to EP12871593.5A priority patent/EP2798965B1/en
Priority to JP2014504570A priority patent/JP5709289B2/en
Priority to CN201280071421.2A priority patent/CN104168782B/en
Publication of WO2013136487A1 publication Critical patent/WO2013136487A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B3/00Preparing tobacco in the factory
    • A24B3/02Humidifying packed raw tobacco
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B3/00Preparing tobacco in the factory
    • A24B3/12Steaming, curing, or flavouring tobacco

Definitions

  • the present invention relates to a humidity control method suitable for tobacco materials such as leaf tobacco.
  • the processing of leaf tobacco as a tobacco raw material includes a humidity control step for increasing its moisture content.
  • a humidity control step is an important step for imparting flexibility to the leaf tobacco when removing the petiole from the leaf tobacco.
  • a humidity control method for executing the humidity control process described above is disclosed in, for example, Patent Document 1 below.
  • the humidity control method of Patent Document 1 measures the initial moisture content, initial temperature and supply amount of tobacco at the inlet of the humidity controller, and the moisture content and temperature of tobacco after conditioning at the outlet of the humidity controller. Based on the measurement result, the amount of moisture and the amount of steam to be supplied to the tobacco are controlled, and the moisture content and temperature of the tobacco after humidity adjustment are adjusted to target values.
  • An object of the present invention is to provide a humidity control method that can easily increase the amount of moisture in a tobacco material so as to impart the necessary flexibility to the tobacco material.
  • the above object is achieved by the humidity control method for tobacco raw material of the present invention, and the humidity control method of the present invention focuses on the outlet product temperature of the conditioned tobacco raw material and maintains the outlet product temperature at the target temperature. Control steam supply.
  • the present invention provides a humidity control method for supplying tobacco raw material and steam into the rotor and conditioning the tobacco raw material in a process in which the tobacco raw material passes through the rotor.
  • the main control process is Select a control area corresponding to the first deviation from a plurality of control areas divided according to the magnitude and positive / negative of the first deviation,
  • the steam supply flow rate is controlled according to the control procedure in the selected control area.
  • the outlet product temperature of the tobacco material is detected during the humidity control of the tobacco material, and the supply flow rate of steam into the rotor is set to the reference flow rate so that the outlet product temperature matches the target temperature. Controlled based on. Thus, if the outlet product temperature of the tobacco raw material after humidity adjustment is adjusted to the target temperature, the moisture content of the tobacco raw material is easily increased.
  • the main control process is A dead band that is selected when the first deviation is between a positive first threshold value and a negative second threshold value to maintain the supply flow rate at a reference flow rate;
  • the supply flow rate is selected according to a corrected flow rate that is selected when the first deviation exceeds the first threshold value and is within a positive third threshold value that is greater than the first threshold value and is calculated based on the cubic function of the first deviation.
  • a positive-order cubic function control range that decreases from the reference flow rate; Supply flow rate according to a corrected flow rate that is selected when the first deviation exceeds the negative two threshold value and is within a negative fourth threshold value that is greater than the second threshold value and calculated based on the cubic function of the first deviation.
  • a negative-order cubic function control region that increases the flow rate from the reference flow rate.
  • the main control step is Selected when the first deviation exceeds the positive third threshold and is within the positive fifth threshold greater than the third threshold, and supplied according to the corrected flow rate calculated based on the linear function of the first deviation A positive-side linear function control area for reducing the flow rate from the reference flow rate; According to the corrected flow rate selected when the first deviation exceeds the negative fourth threshold and is within the negative sixth threshold greater than the fourth threshold, and is calculated based on the linear function of the first deviation, And a negative-side linear function control region for increasing the supply flow rate from the reference flow rate.
  • control area of the main control process further includes positive and negative linear function control areas
  • these linear function control areas increase and decrease the supply flow rate according to the correction flow rate proportional to the first deviation, and supply The outlet product temperature can be quickly returned to the target temperature without changing the flow rate rapidly.
  • the main control step is A positive fixed control range that is selected when the first deviation exceeds a positive fifth threshold and limits the supply flow rate to a certain lower limit flow rate; A negative fixed control region that is selected when the first deviation exceeds the negative sixth threshold and limits the supply flow rate to a certain upper limit flow rate, Such positive and negative fixed control areas prevent excessive increase or decrease in the supply flow rate.
  • the humidity control method of the present invention can further include a sub-control step executed in parallel with the above-described main control step.
  • This sub-control step includes a reference flow rate reset control area that is periodically repeated, and the reset control area resets the reference flow rate based on the average value of the first deviation over a certain period.
  • the humidity control method of the present invention can further include a start-up control step that is executed prior to the main control step.
  • a start-up control step that is executed prior to the main control step.
  • steam is supplied into the rotor with a start-up flow rate higher than the reference flow rate as a supply flow rate.
  • Execution of such a start-up control process is performed when the first deviation reaches within the seventh threshold, or the second deviation between the target temperature and the temperature of the steam at the outlet of the rotor reaches within the eighth threshold, Alternatively, it is stopped when a predetermined startup period has elapsed since the start of startup control.
  • the humidity control method of the present invention can further include a switching control process executed between the start-up control process and the main control process.
  • This switching control step selects a switching control area corresponding to the first deviation from a plurality of switching control areas divided according to the magnitude and positive / negative of the first deviation, and in the selected switching control area
  • the supply flow rate is controlled according to a control procedure.
  • the humidity control method of the present invention described above is suitable for humidity control of leaf tobacco as a tobacco raw material.
  • the humidity control method for tobacco material according to the present invention only controls the supply flow rate of the steam based on the first deviation between the outlet product temperature of the tobacco material and the target temperature, the target product temperature of the tobacco material is targeted. Can easily adjust to temperature. As a result, the tobacco material after conditioning can contain a sufficient amount of water.
  • FIG. 2 is a functional block diagram illustrating functions of the humidity controller in FIG. 1. It is a graph which shows the change of the outlet product temperature and outlet steam temperature of tobacco raw material during start-up control. 5 is a graph showing a plurality of control areas included in switching control. It is a graph for demonstrating the end time of switching control. 5 is a graph showing a plurality of control areas included in FF control. It is a graph for demonstrating FB control performed in parallel with FF control. It is a figure for demonstrating the sampling of the deviation between target temperature and outlet product temperature for FB control, and calculation of an average deviation.
  • the humidity controller includes a cylindrical hollow rotor 10, which has a raw material inlet 12 that receives leaf tobacco (hereinafter simply referred to as a raw material) as a tobacco raw material and a raw material outlet 14 that discharges the humidity-controlled raw material.
  • a raw material is a mixture of a plurality of types of leaf tobacco, and this mixture is used for producing a specific brand of cigarette.
  • the rotor 10 is rotatable in one direction, and the raw material supplied into the rotor 10 through the raw material inlet 12 is transferred through the rotor 10 from the raw material inlet 12 toward the raw material outlet 14 as the rotor 10 rotates.
  • the raw material is conditioned by steam supplied into the rotor 10, specifically, steam.
  • the moisture-conditioned material is discharged from the material outlet 14 to the conveyance path, and is conveyed on the conveyance path toward a subsequent processing station (not shown).
  • the humidity controller further includes a steam supply path 16, and the supply path 16 includes an internal space of the rotor 10 in a part thereof.
  • the supply path 16 has a steam inlet 18 and a steam outlet 20 each opened in the rotor 10, and is positioned on the steam inlet 18 on the raw material inlet 12 side, and the steam outlet 20 is positioned on the raw material outlet 14 side. .
  • the supply path 16 has a steam supply source, specifically, an upstream portion extending from the boiler chamber to the steam inlet 18 of the rotor 10 and a downstream portion extending from the steam outlet 20 of the rotor 10.
  • a diaphragm-type steam flow controller 22 and a steam flow meter 24 are respectively arranged in the upstream portion of the supply path 16, and the downstream portion of the supply path 16 is open to the atmosphere at the end thereof.
  • the steam flow controller 22 and the steam flow meter 24 are electrically connected to the calculator 26, respectively.
  • the calculator 26 is supplied with the target value Qo of the steam flow to be supplied into the rotor 10 and the actual steam flow Qa measured by the steam flow meter 24, and the calculator 26 sets the actual steam flow Qa to the target value.
  • the operation of the steam flow regulator 22 is controlled to match Qo.
  • a temperature sensor 28 is disposed at the raw material outlet 14, and this temperature sensor 28 measures the outlet product temperature Ta of the raw material discharged from the rotor 10.
  • a temperature sensor 30 is disposed in the downstream portion of the supply path 16, and this temperature sensor 30 measures the exhaust temperature Ts of the steam discharged from the rotor 10.
  • the outlet product temperature Ta and the exhaust gas temperature Ts are supplied as electric signals to the computing unit 32, and the steam flow target value Qo is calculated based on the computing unit 32, the outlet product temperature Ta, the exhaust gas temperature Ts and various set values.
  • the target value Qo is supplied to the calculator 26.
  • the set value includes the brand of the raw material and the capacity of the rotor 10.
  • the computing unit 32 cooperates with the computing unit 26 to execute the start-up control process, the switching control process, and the cascade control process, and details of these control processes will be described in detail below.
  • Start-up control process When the humidity controller described above is operated, that is, when the raw material is supplied into the rotor 10, the computing unit 32 sets the target value Qo of the steam flow rate (the supply flow rate of steam to the rotor 10).
  • the startup flow rate Qst (kg / h) is set, and this startup flow rate Qst is supplied to the calculator 22.
  • the startup flow rate Qst is a unique value determined on the basis of the aforementioned set value. Therefore, during the start-up control process, the actual steam flow rate Qa is adjusted to the start-up flow rate Qst.
  • Transition condition 3 The elapsed time from the start of the start-up control process has reached T1.
  • the target temperature To described above is a unique value set according to the brand of the raw material, and the threshold values Th_a and Th_b are 2 ° C. and 5 ° C., for example.
  • the exhaust temperature Ts normally tends to rise faster than the outlet product temperature Ta. Therefore, in addition to the transition condition 2 described above, the transition condition 1 is added, so that the startup control is performed. The process can be completed promptly. Further, the transition condition 3 prevents the period of the start-up control process from becoming undesirably long.
  • the computing unit 32 ends the start-up control process and executes the following switching control process.
  • the calculator 32 changes the target value Qo of the steam flow rate from the startup flow rate Qst to the reference flow rate Qb.
  • This reference flow rate Qb is smaller than the startup flow rate Qst, and is a unique value determined based on the above-described set value, similarly to the startup flow rate Qst.
  • the computing unit 32 includes a control map for switching control as shown in FIG.
  • This control map is a plurality of control areas divided by the magnitude of the deviation ⁇ t and positive and negative, more specifically, the dead band R1, and positive and negative cubic function controls defined on both sides of the dead band R1, respectively.
  • the regions R2 and R3 have positive and negative fixed control regions R4 and R5 defined outside the cubic function control regions R2 and R3, respectively.
  • the dead band R1 is selected.
  • the threshold values Th_c, -Th_d are small positive or negative values of 1 ° C. or less.
  • may be the same. Since the deviation ⁇ t is small when the dead zone R1 is selected, the calculator 32 maintains the target value Qo of the steam flow rate at the reference flow rate Qb. Therefore, in the dead zone R1, the actual supply flow rate Qa is adjusted to the reference flow rate Qb.
  • the positive-side cubic function control region R2 is selected. Th_c ⁇ t ⁇ Th_e
  • the threshold value Th_e is a positive value (for example, 4 ° C.) larger than the threshold value Th_c.
  • the calculator 32 calculates a positive correction flow rate C1 based on the cubic function F1 [(a1 x ⁇ t) 3 ] of the deviation ⁇ t.
  • a1 is a coefficient.
  • the corrected flow rate C1 is calculated based on the cubic function F1 of the deviation ⁇ t, it increases according to the cubic curve as the deviation ⁇ t increases. Therefore, the supply flow rate Qc1 does not decrease much from the reference flow rate Qb if the deviation ⁇ t is small, but decreases more rapidly than the reference flow rate Qb as the deviation ⁇ t is large. As a result, the outlet product temperature Ta of the raw material effectively decreases toward the target temperature To according to the magnitude of the deviation ⁇ t.
  • the negative-side cubic function control region R3 is selected.
  • -Th_f ⁇ ⁇ t ⁇ -Th_d
  • the threshold value -Th_f is a negative value larger than the threshold value -Th_d (for example, about -3.2 ° C.).
  • the calculator 32 calculates the corrected flow rate C2 based on the cubic function F2 [(a2 ⁇ ⁇ t) 3 ] of the deviation ⁇ t.
  • a2 is a coefficient.
  • the corrected flow rate C2 calculated based on the cubic function F2 of the deviation ⁇ t is also a negative value. Therefore, in the cubic function control region R3, the supply flow rate Qc2, that is, the actual steam flow rate Qa effectively increases according to the magnitude of the deviation ⁇ t, and as a result, the raw material outlet product temperature Ta becomes the target temperature To. Ascend quickly.
  • the adoption of the above-mentioned cubic function is not only useful for effectively changing the outlet product temperature Ta of the raw material toward the target temperature To, but also regarding the calculation of the correction flow rates C1 and C2 at the deviation ⁇ t. Facilitates positive or negative handling.
  • the calculator 32 calculates the supply flow rate Qc3 as the steam flow target value Qo based on the following equation.
  • the calculator 32 calculates the supply flow rate Qc4 as the steam flow target value Qo based on the following equation.
  • the correction flow rate C4 is a negative value
  • the supply flow rate Qc4 is limited to a certain maximum value. Therefore, in the fixed control region R5, the actual steam flow rate Qa is adjusted to the supply flow rate Qc4. As a result, the raw material outlet product temperature Ta is quickly raised toward the target temperature To.
  • Transition condition 4 The deviation ⁇ t is within the threshold value Th_g (see FIG. 5).
  • Transition condition 5 The elapsed time has reached T2 from the start of the switching control.
  • the threshold value Th_g satisfies the relationship of the following equation. Th_g ⁇ Th_a
  • This cascade control process includes a feed forward (FF) control process as a main control process and a feedback (FB) control process as a sub control process.
  • FF feed forward
  • FB feedback
  • the FF control process The computing unit 32 further includes a control map for the FF control process as shown in FIG. 6, and this control map includes a plurality of control areas divided by the magnitude of the deviation ⁇ t and the positive and negative.
  • Primary function control areas R9, R10, and positive and negative fixed control areas R11, R12 respectively defined outside the linear function control areas R9, R10.
  • the dead band R6 is selected.
  • Th_h and -Th_i are small positive or negative values of 1 ° C. or less. Note that the threshold values Th_h and
  • the calculator 32 maintains the target value Qo of the steam flow rate at the reference flow rate Qb. That is, in the dead zone R6, the actual steam flow rate Qa is adjusted to the reference flow rate Qb.
  • the positive-side cubic function control region R7 is selected. Th_h ⁇ t ⁇ Th_j
  • the threshold value Th_j is a positive value (for example, 3 ° C.) larger than the threshold value Th_h.
  • the negative-side cubic function control region R8 is selected.
  • -Th_k ⁇ ⁇ t ⁇ -Th_i
  • the threshold value -Th_k is a negative value larger than the threshold value -Th_i (for example, about -2.5 ° C.).
  • the calculator 32 calculates the negative correction flow rate C6 based on the cubic function F4 [(a2 x ⁇ t) 3 ] of the deviation ⁇ t, and the correction flow rate C6 is calculated as the reference flow rate Qb.
  • the correction flow rates C5 and C6 are calculated based on the cubic functions F3 and F4 of the deviation ⁇ t, respectively, and therefore the supply flow rates Qc5 and Qc6 are the reference flow rates. Compared with Qb, it is decreased or increased according to the magnitude of the deviation ⁇ t, and as a result, the outlet product temperature Ta of the raw material is effectively changed toward the target temperature To. Again, it goes without saying that positive or negative handling of the deviation ⁇ t is facilitated for the calculation of the correction flow rates C5 and C6.
  • the positive-side linear function control region R9 is selected. Th_j ⁇ t ⁇ Th_l Th_l is larger than Th_j (for example, 5.5 ° C.).
  • the negative-side linear function control region R10 is selected.
  • -Th_m ⁇ ⁇ t ⁇ -Th_k -Th_m is a negative value larger than -Th_k (for example, -4.3 ° C).
  • the calculator 32 calculates the negative correction flow rate C8 based on the linear function F6 (b2 x ⁇ t) of the deviation ⁇ t.
  • b2 is a coefficient.
  • the corrected flow rates C7 and C8 are calculated based on the linear functions F5 and F6 of the deviation ⁇ t, respectively, and thus become values proportional to the magnitude of the deviation ⁇ t. Accordingly, the supply flow rates Qc7 and Qc8 are decreased or increased according to the deviation ⁇ t. As a result, the raw material outlet product temperature Ta is quickly changed toward the target temperature To.
  • the calculator 32 calculates the supply flow rate Qc9 based on the following equation, and sets this supply flow rate Qc9 to the target value Qo of the steam flow rate.
  • the correction flow rate C9 is a positive value
  • the supply flow rate Qc9 is limited to a certain minimum value, and the outlet product temperature Ta of the raw material is lowered toward the target temperature To.
  • the calculator 32 calculates the supply flow rate Qc10 based on the following equation, and sets the supply flow rate Qc10 to the target value Qo of the steam flow rate.
  • the correction flow rate C10 is a negative value
  • the supply flow rate Qc10 is limited to a certain maximum value
  • the outlet product temperature Ta of the raw material is raised toward the target temperature To.
  • humidity control of the raw material is executed by making the outlet product temperature Ta of the raw material coincide with the target temperature To, so that it is possible to easily give the moisture content necessary for the raw material after humidity control.
  • the combination of the above-described cubic function control areas R7, R8 and linear function control areas R9, R10 quickly eliminates the instantaneous change in the outlet product temperature Ta, and the raw material outlet product temperature Ta is set to the target temperature To. To maintain stable. Further, since the positive and negative fixed control regions R11 and R12 are included in the control region in the FF control step, the steam supply flow rate to the rotor 10 increases excessively even if the deviation ⁇ t is large. Will never be done.
  • the raw material outlet product temperature Ta is the target temperature. Adjusted to To.
  • the above-mentioned FF control process is performed at a predetermined transition waiting time when shifting from the cubic function control area R7 to the linear function control area R9 or when shifting from the cubic function control area R8 to the linear function control area R10. Can include time.
  • the FB control process is executed in parallel with the above-described FF control process. Specifically, the computing unit 32 starts the FB control process after a predetermined waiting time T3 has elapsed from the start of the cascade control process.
  • the calculator 32 repeats sampling of the deviation ⁇ t at a predetermined period in a predetermined calculation period T4, and calculates an average deviation ⁇ t_av of the deviation ⁇ t within the calculation period T4.
  • the deviation ⁇ t is changed during the calculation period T4 as shown in (a), (b), and (c) of FIG.
  • the average deviation ⁇ t_av is 0, but in the cases of (b) and (c) in FIG. 8, the average deviation ⁇ t_av has values of + d and ⁇ d, respectively.
  • the calculator 32 calculates a positive or negative correction flow rate C11 with respect to the reference flow rate Qb based on the average deviation ⁇ t_av, and uses the correction flow rate C11 to calculate the reference flow rate Qb. Is reset to the new reference flow rate Qb '.
  • the reference flow rate Qb ′ is obtained based on the following substitution formula.
  • Qb ' ⁇ Qb-C11 Such a reference flow rate Qb ′ becomes effective when the next FB execution period (reset control area) T5 starts from the end of the calculation period T4, and is used in the FF control process described above. Thereafter, the calculation of the correction flow rate C11 in the calculation period T4 and the resetting of the reference flow rate Qb ′ in the FB execution period T5 are repeatedly executed.
  • the above-mentioned FB control step resets the reference flow rate Qb to the reference flow rate Qb ′ in accordance with the continuous slight change in the raw material outlet product temperature Ta. Therefore, by using the reference flow rate Qb 'in the FF control step, the raw material outlet product temperature Ta can be maintained at the target temperature To with higher accuracy and stability. That is, the combination of the FB control process and the FF control process, that is, the cascade control process, is excellent in the humidity control of the raw material focusing on the raw material outlet product temperature Ta.
  • the present invention is not limited to the humidity control method of the embodiment described above, and various modifications can be made.
  • various temperatures are shown, but these temperatures are merely examples and can be changed.
  • the brand of the raw material supplied to the rotor 10 is changed during the humidity conditioning of the raw material, that is, when the target temperature To is changed, as shown by the broken line in FIG. Is started from the switching control step.
  • the raw material is not limited to leaf tobacco, and the humidity control method of the present invention can be applied to various raw materials.

Abstract

Provided is a humidification method which comprises supplying a starting tobacco material and steam into a rotor and humidifying the starting tobacco material during the passage of the starting tobacco material through the rotor. The humidification method involves: a main control step for determining a deviation between the outlet material temperature of the starting tobacco material at the outlet of the rotor and a target temperature and then cascade-controlling the flow rate of the steam to be supplied into the rotor so as to eliminate the deviation, wherein multiple control areas exist in the cascade-control and the supply flow rate is controlled on the basis of a standard flow rate in each of the control areas; and a side control step, said side control step being performed in parallel to the main control step, for changing the standard flow rate on the basis of the average deviation during a definite period.

Description

タバコ原料の調湿方法Humidity control method for tobacco materials
 本発明は、葉タバコ等のタバコ原料に好適した調湿方法に関する。 The present invention relates to a humidity control method suitable for tobacco materials such as leaf tobacco.
 タバコ原料として葉タバコの処理には、その水分量を増加させる調湿工程が含まれている。このような調湿工程は葉タバコから葉柄を除去するにあたり、葉タバコに柔軟性を付与するための重要な工程である。
 上述の調湿工程を実行する調湿方法は例えば、以下の特許文献1に開示されている。この特許文献1の調湿方法は、調湿機の入口での葉タバコの初期水分量、初期温度及び供給量、調湿機出口での調湿後の葉タバコの水分量及び温度をそれぞれ測定し、この測定結果に基づき、葉タバコに供給すべき水分量及び蒸気量を制御し、調湿後の葉タバコの水分量及び温度のそれぞれを目標値に調整する。
The processing of leaf tobacco as a tobacco raw material includes a humidity control step for increasing its moisture content. Such a humidity control step is an important step for imparting flexibility to the leaf tobacco when removing the petiole from the leaf tobacco.
A humidity control method for executing the humidity control process described above is disclosed in, for example, Patent Document 1 below. The humidity control method of Patent Document 1 measures the initial moisture content, initial temperature and supply amount of tobacco at the inlet of the humidity controller, and the moisture content and temperature of tobacco after conditioning at the outlet of the humidity controller. Based on the measurement result, the amount of moisture and the amount of steam to be supplied to the tobacco are controlled, and the moisture content and temperature of the tobacco after humidity adjustment are adjusted to target values.
特公昭63-62185(JP 1988-62185 B2)JP-B 63-62185 (JP 1988-62185 B2)
 上述した特許文献1の調湿方法では、調湿後の葉タバコの水分量を目標値に調整できるものの、調湿機の入口及び出口のそれぞれにて葉タバコの水分量を測定する必要がある。このため、特許文献1の調湿方法は、葉タバコに柔軟性を付与する目的を考慮したとき、必要以上に蒸気量の制御が複雑になる。 In the humidity control method of Patent Document 1 described above, although the moisture content of the tobacco leaf after humidity control can be adjusted to the target value, it is necessary to measure the moisture content of the tobacco leaf at each of the inlet and outlet of the humidity controller. . For this reason, when the humidity control method of patent document 1 considers the objective which provides a softness | flexibility to leaf tobacco, control of a vapor | steam amount becomes more complicated than necessary.
 本発明の目的は、タバコ原料に必要な柔軟性を付与すべくタバコ原料の水分量を簡単に増加させることができる調湿方法を提供する。 An object of the present invention is to provide a humidity control method that can easily increase the amount of moisture in a tobacco material so as to impart the necessary flexibility to the tobacco material.
 上記の目的は本発明のタバコ原料の調湿方法によって達成され、本発明の調湿方法は、調湿済みのタバコ原料の出口品温に着目し、この出口品温を目標温度に維持すべく蒸気の供給量を制御する。 The above object is achieved by the humidity control method for tobacco raw material of the present invention, and the humidity control method of the present invention focuses on the outlet product temperature of the conditioned tobacco raw material and maintains the outlet product temperature at the target temperature. Control steam supply.
 詳しくは、本発明は、ロータ内にタバコ原料及び蒸気を供給し、タバコ原料がロータ内を通過する過程にてタバコ原料を調湿する調湿方法を提供し、この調湿方法は、
 ロータ内に蒸気が供給流量にて供給されているとき、ロータの出口から排出された直後のタバコ原料の出口品温を検出する工程と、
 出口でのタバコ原料の目標温度と出口品温との間の第1偏差を求める工程と、
 第1偏差に基づき、蒸気の供給流量を蒸気の基準流量に基づいて制御する主制御工程と
を備え、
 主制御工程は、
 第1偏差の大きさ及び正負に応じて区分された複数の制御域の中から、第1偏差に対応した制御域を選択し、
 選択された制御域での制御手順に従って蒸気の供給流量を制御する。
Specifically, the present invention provides a humidity control method for supplying tobacco raw material and steam into the rotor and conditioning the tobacco raw material in a process in which the tobacco raw material passes through the rotor.
A step of detecting the outlet product temperature of the tobacco raw material immediately after being discharged from the rotor outlet when steam is supplied into the rotor at a supply flow rate;
Determining a first deviation between the target temperature of the tobacco raw material at the outlet and the outlet product temperature;
A main control step of controlling the supply flow rate of the steam based on the reference flow rate of the steam based on the first deviation,
The main control process is
Select a control area corresponding to the first deviation from a plurality of control areas divided according to the magnitude and positive / negative of the first deviation,
The steam supply flow rate is controlled according to the control procedure in the selected control area.
 上述の調湿方法によれば、タバコ原料の調湿中、タバコ原料の出口品温が検出され、この出口品温を目標温度に一致させるべく、ロータ内への蒸気の供給流量が基準流量に基づいて制御される。このように調湿後のタバコ原料の出口品温が目標温度に調整されれば、タバコ原料の水分量は容易に増加される。 According to the humidity control method described above, the outlet product temperature of the tobacco material is detected during the humidity control of the tobacco material, and the supply flow rate of steam into the rotor is set to the reference flow rate so that the outlet product temperature matches the target temperature. Controlled based on. Thus, if the outlet product temperature of the tobacco raw material after humidity adjustment is adjusted to the target temperature, the moisture content of the tobacco raw material is easily increased.
 具体的には、主制御工程は、
 第1偏差が正の第1閾値と負の第2閾値との間にあるときに選択され、供給流量を基準流量に維持する不感帯域と、
 第1偏差が第1閾値を超え且つ第1閾値よりも大きな正の第3閾値以内にあるときに選択され、その第1偏差の3次関数に基づいて演算された補正流量に従い、供給流量を基準流量から減少させる正側の3次関数制御域と、
 第1偏差が負の2閾値を超え且つ第2閾値よりも大きな負の第4閾値以内にあるときに選択され、その第1偏差の3次関数に基づいて演算された補正流量に従い、供給流量を基準流量から増加させる負側の3次関数制御域と
を含む。
Specifically, the main control process is
A dead band that is selected when the first deviation is between a positive first threshold value and a negative second threshold value to maintain the supply flow rate at a reference flow rate;
The supply flow rate is selected according to a corrected flow rate that is selected when the first deviation exceeds the first threshold value and is within a positive third threshold value that is greater than the first threshold value and is calculated based on the cubic function of the first deviation. A positive-order cubic function control range that decreases from the reference flow rate;
Supply flow rate according to a corrected flow rate that is selected when the first deviation exceeds the negative two threshold value and is within a negative fourth threshold value that is greater than the second threshold value and calculated based on the cubic function of the first deviation. And a negative-order cubic function control region that increases the flow rate from the reference flow rate.
 上述した主制御工程の制御域に正側及び負側の3次関数制御域が含まれていれば、これら3次関数制御域は、出口品温の瞬間的な変化に対して、この変化を迅速に補償するうえで有効に機能する。 If the positive and negative cubic function control areas are included in the control range of the main control process described above, these cubic function control areas will change this against the instantaneous change in outlet product temperature. It works effectively to compensate quickly.
 好ましくは、主制御工程は、
 第1偏差が正の第3閾値を超え且つ第3閾値よりも大きな正の第5閾値以内にあるときに選択され、その第1偏差の1次関数に基づいて演算された補正流量に従い、供給流量を基準流量から減少させる正側の1次関数制御域と、
 前記第1偏差が負の第4閾値を超え且つ第4閾値よりも大きな負の第6閾値以内にあるときに選択され、その第1偏差の1次関数に基づいて演算された補正流量に従い、供給流量を基準流量から増加させる負側の1次関数制御域と
を更に含む。
Preferably, the main control step is
Selected when the first deviation exceeds the positive third threshold and is within the positive fifth threshold greater than the third threshold, and supplied according to the corrected flow rate calculated based on the linear function of the first deviation A positive-side linear function control area for reducing the flow rate from the reference flow rate;
According to the corrected flow rate selected when the first deviation exceeds the negative fourth threshold and is within the negative sixth threshold greater than the fourth threshold, and is calculated based on the linear function of the first deviation, And a negative-side linear function control region for increasing the supply flow rate from the reference flow rate.
 主制御工程の制御域に正側及び負側の1次関数制御域が更に含まれていれば、これら1次関数制御域は、供給流量を第1偏差に比例した補正流量に従って増減させ、供給流量を急減に変化させることなく、出口品温を目標温度に速やかに戻すことができる。 If the control area of the main control process further includes positive and negative linear function control areas, these linear function control areas increase and decrease the supply flow rate according to the correction flow rate proportional to the first deviation, and supply The outlet product temperature can be quickly returned to the target temperature without changing the flow rate rapidly.
 更に好ましくは、主制御工程は、
 第1偏差が正の第5閾値を超えたときに選択され、供給流量を一定の下限流量に制限する正側の固定制御域と、
 第1偏差が前記負の第6閾値を超えたときに選択され、供給流量を一定の上限流量に制限する負側の固定制御域と
を含み、
 このような正側及び負側の固定制御域は、供給流量の過度の増減を阻止する。
More preferably, the main control step is
A positive fixed control range that is selected when the first deviation exceeds a positive fifth threshold and limits the supply flow rate to a certain lower limit flow rate;
A negative fixed control region that is selected when the first deviation exceeds the negative sixth threshold and limits the supply flow rate to a certain upper limit flow rate,
Such positive and negative fixed control areas prevent excessive increase or decrease in the supply flow rate.
 更に、本発明の調湿方法は、上述の主制御工程と並行して実行される副制御工程を更に備えることができる。この副制御工程は、周期的に繰り返される基準流量の再設定制御域を含み、この再設定制御域は一定の期間中での第1偏差の平均値に基づいて基準流量を設定し直す。
 このようなフィードバック制御は、出口品温の継続的な変化がもたらす主制御工程への悪影響を低減し、主制御工程による出口品温の制御をより安定させる。
Furthermore, the humidity control method of the present invention can further include a sub-control step executed in parallel with the above-described main control step. This sub-control step includes a reference flow rate reset control area that is periodically repeated, and the reset control area resets the reference flow rate based on the average value of the first deviation over a certain period.
Such feedback control reduces adverse effects on the main control process caused by continuous changes in the outlet product temperature, and makes the control of the outlet product temperature by the main control process more stable.
 好ましくは、本発明の調湿方法は、主制御工程に先立って実行される立上げ制御工程を更に含むことができる。この立上げ制御は、基準流量よりも多い立上げ流量を供給流量としてロータ内に蒸気を供給する。 Preferably, the humidity control method of the present invention can further include a start-up control step that is executed prior to the main control step. In this start-up control, steam is supplied into the rotor with a start-up flow rate higher than the reference flow rate as a supply flow rate.
 このような立上げ制御工程の実行は、第1偏差が第7閾値以内に達するか、目標温度とロータの出口での蒸気の温度との間の第2偏差が第8閾値以内に達するか、又は、立上げ制御の開始から所定の立上げ期間が経過したときに停止される。 Execution of such a start-up control process is performed when the first deviation reaches within the seventh threshold, or the second deviation between the target temperature and the temperature of the steam at the outlet of the rotor reaches within the eighth threshold, Alternatively, it is stopped when a predetermined startup period has elapsed since the start of startup control.
 更に、本発明の調湿方法は、立上げ制御工程と主制御工程との間にて実行される切替制御工程を更に含むことができる。この切替制御工程は、第1偏差の大きさ及び正負に応じて区分された複数の切替制御域の中から、第1偏差に対応した切替制御域を選択し、選択された切替制御域での制御手順に従って前記供給流量を制御する。
 上述した本発明の調湿方法は、タバコ原料としての葉タバコの調湿に好適する。
Furthermore, the humidity control method of the present invention can further include a switching control process executed between the start-up control process and the main control process. This switching control step selects a switching control area corresponding to the first deviation from a plurality of switching control areas divided according to the magnitude and positive / negative of the first deviation, and in the selected switching control area The supply flow rate is controlled according to a control procedure.
The humidity control method of the present invention described above is suitable for humidity control of leaf tobacco as a tobacco raw material.
 本発明のタバコ原料の調湿方法は、タバコ原料の出口品温と目標温度との間の第1偏差に基づき、蒸気の供給流量を制御するだけであるので、タバコ原料の出口品温を目標温度に容易に調整できる。この結果、調湿後のタバコ原料は十分な水分量を含むことができる。 Since the humidity control method for tobacco material according to the present invention only controls the supply flow rate of the steam based on the first deviation between the outlet product temperature of the tobacco material and the target temperature, the target product temperature of the tobacco material is targeted. Can easily adjust to temperature. As a result, the tobacco material after conditioning can contain a sufficient amount of water.
本発明の調湿方法を実行する調湿機の概略図である。It is the schematic of the humidity controller which performs the humidity control method of this invention. 図1の調湿コントローラの機能を示した機能ブロック図である。FIG. 2 is a functional block diagram illustrating functions of the humidity controller in FIG. 1. 立上げ制御中、タバコ原料の出口品温及び出口蒸気温度の変化を示すグラフである。It is a graph which shows the change of the outlet product temperature and outlet steam temperature of tobacco raw material during start-up control. 切替制御に含まれる複数の制御域を示したグラフである。5 is a graph showing a plurality of control areas included in switching control. 切替制御の終了時期を説明するためのグラフである。It is a graph for demonstrating the end time of switching control. FF制御に含まれる複数の制御域を示したグラフである。5 is a graph showing a plurality of control areas included in FF control. FF制御と並行にして実行されるFB制御を説明するためのグラフである。It is a graph for demonstrating FB control performed in parallel with FF control. FB制御のための目標温度と出口品温との間の偏差のサンプリング及び平均偏差の算出を説明するための図である。It is a figure for demonstrating the sampling of the deviation between target temperature and outlet product temperature for FB control, and calculation of an average deviation.
 本発明に係るタバコ原料の調湿方法を説明する前に、図1を参照しながら調湿方法を実行する調湿機の概略を以下に説明する。
 調湿機は円筒形状の中空ロータ10を備え、このロータ10はタバコ原料としての葉タバコ(以下、単に原料と称する)を受け取る原料入口12及び調湿後の原料を排出する原料出口14を有する。ここで、原料は、複数種の葉タバコの混合物であり、この混合物は特定銘柄のシガレットを製造するために使用される。
Before describing the humidity control method for tobacco raw materials according to the present invention, an outline of a humidity controller that executes the humidity control method will be described below with reference to FIG.
The humidity controller includes a cylindrical hollow rotor 10, which has a raw material inlet 12 that receives leaf tobacco (hereinafter simply referred to as a raw material) as a tobacco raw material and a raw material outlet 14 that discharges the humidity-controlled raw material. . Here, the raw material is a mixture of a plurality of types of leaf tobacco, and this mixture is used for producing a specific brand of cigarette.
 ロータ10は一方向に回転可能であり、原料入口12を通じてロータ10内に供給された原料は、ロータ10の回転に連れて原料入口12から原料出口14に向けてロータ10内を移送され、この移送過程にて、原料はロータ10内に供給された蒸気、具体的には水蒸気により調湿される。調湿後の原料は原料出口14から搬送経路に排出され、搬送経路上を後段の処理ステーション(図示しない)に向けて搬送される。 The rotor 10 is rotatable in one direction, and the raw material supplied into the rotor 10 through the raw material inlet 12 is transferred through the rotor 10 from the raw material inlet 12 toward the raw material outlet 14 as the rotor 10 rotates. In the transfer process, the raw material is conditioned by steam supplied into the rotor 10, specifically, steam. The moisture-conditioned material is discharged from the material outlet 14 to the conveyance path, and is conveyed on the conveyance path toward a subsequent processing station (not shown).
 ロータ10に蒸気を供給するため、調湿機は蒸気の供給経路16を更に備えており、この供給経路16はその一部にロータ10の内部空間を含む。詳しくは、供給経路16はロータ10内にそれぞれ開口した蒸気入口18および蒸気出口20を有し、蒸気入口18原料入口12側にて位置付けられ、蒸気出口20は原料出口14側に位置付けられている。 In order to supply steam to the rotor 10, the humidity controller further includes a steam supply path 16, and the supply path 16 includes an internal space of the rotor 10 in a part thereof. Specifically, the supply path 16 has a steam inlet 18 and a steam outlet 20 each opened in the rotor 10, and is positioned on the steam inlet 18 on the raw material inlet 12 side, and the steam outlet 20 is positioned on the raw material outlet 14 side. .
 供給経路16は蒸気供給源、具体的にはボイラ室からロータ10の蒸気入口18まで延びる上流部分と、ロータ10の蒸気出口20から延びる下流部分を有する。供給経路16の上流部分にはダイヤフラム型の蒸気流量調節器22及び蒸気流量計24がそれぞれ配置されており、供給経路16の下流部分はその終端にて大気に開放されている。 The supply path 16 has a steam supply source, specifically, an upstream portion extending from the boiler chamber to the steam inlet 18 of the rotor 10 and a downstream portion extending from the steam outlet 20 of the rotor 10. A diaphragm-type steam flow controller 22 and a steam flow meter 24 are respectively arranged in the upstream portion of the supply path 16, and the downstream portion of the supply path 16 is open to the atmosphere at the end thereof.
 蒸気流量調節器22及び蒸気流量計24は演算器26にそれぞれ電気的に接続されている。この演算器26にはロータ10内に供給されるべき蒸気流量の目標値Qo及び蒸気流量計24にて測定された実蒸気流量Qaがそれぞれ供給され、演算器26は実蒸気流量Qaを目標値Qoに一致させるべく、蒸気流量調節器22の作動を制御する。 The steam flow controller 22 and the steam flow meter 24 are electrically connected to the calculator 26, respectively. The calculator 26 is supplied with the target value Qo of the steam flow to be supplied into the rotor 10 and the actual steam flow Qa measured by the steam flow meter 24, and the calculator 26 sets the actual steam flow Qa to the target value. The operation of the steam flow regulator 22 is controlled to match Qo.
 原料出口14には温度センサ28が配置され、この温度センサ28は、ロータ10から排出された原料の出口品温Taを測定する。一方、供給経路16の下流部分には温度センサ30が配置されており、この温度センサ30はロータ10から排出された蒸気の排気温度Tsを測定する。
 出口品温Ta及び排気温度Tsは演算器32に電気信号として供給され、演算器32、出口品温Ta、排気温度Ts及び各種の設定値に基づき、蒸気流量の目標値Qoを演算し、この目標値Qoを演算器26に供給する。なお、設定値には原料の銘柄やロータ10の容量等が含まれる。
A temperature sensor 28 is disposed at the raw material outlet 14, and this temperature sensor 28 measures the outlet product temperature Ta of the raw material discharged from the rotor 10. On the other hand, a temperature sensor 30 is disposed in the downstream portion of the supply path 16, and this temperature sensor 30 measures the exhaust temperature Ts of the steam discharged from the rotor 10.
The outlet product temperature Ta and the exhaust gas temperature Ts are supplied as electric signals to the computing unit 32, and the steam flow target value Qo is calculated based on the computing unit 32, the outlet product temperature Ta, the exhaust gas temperature Ts and various set values. The target value Qo is supplied to the calculator 26. The set value includes the brand of the raw material and the capacity of the rotor 10.
 図2から明らかなように、演算器32は演算器26と協働して、立上げ制御工程、切替制御工程及びカスケード制御工程を実行し、これら制御工程の詳細を以下に詳述する。
 立上げ制御工程
 前述した調湿機が稼働されたとき、即ち、ロータ10内に原料が供給されたとき、演算器32は、蒸気流量の目標値Qo(ロータ10への蒸気の供給流量)を立上げ流量Qst(kg/h)に設定し、この立上げ流量Qstを演算器22に供給する。ここで、立上げ流量Qstは前述の設定値に基づいて決定される一義的な値である。それ故、立上げ制御工程の実行中、実蒸気流量Qaは立上げ流量Qstに調整される。
As apparent from FIG. 2, the computing unit 32 cooperates with the computing unit 26 to execute the start-up control process, the switching control process, and the cascade control process, and details of these control processes will be described in detail below.
Start-up control process When the humidity controller described above is operated, that is, when the raw material is supplied into the rotor 10, the computing unit 32 sets the target value Qo of the steam flow rate (the supply flow rate of steam to the rotor 10). The startup flow rate Qst (kg / h) is set, and this startup flow rate Qst is supplied to the calculator 22. Here, the startup flow rate Qst is a unique value determined on the basis of the aforementioned set value. Therefore, during the start-up control process, the actual steam flow rate Qa is adjusted to the start-up flow rate Qst.
 上述の立上げ制御工程は以下の3つの移行条件1-3の何れかが成立したとき、終了する。
 移行条件1:原料出口14での原料の目標温度Toと排気温度Tsとの間の偏差Δt’(=To-Ts)が閾値Th_a以内にある。
 移行条件2:原料の目標温度Toと出口品温Taとの間の偏差Δt(=To-Ta)が閾値Th_b以内にある。
 移行条件3:立上げ制御工程の開始からの経過時間がT1に達した。
The start-up control process described above ends when any of the following three transition conditions 1-3 is satisfied.
Transition condition 1: Deviation Δt ′ (= To−Ts) between the target temperature To of the raw material at the raw material outlet 14 and the exhaust temperature Ts is within the threshold value Th_a.
Transition condition 2: The deviation Δt (= To−Ta) between the target temperature To of the raw material and the outlet product temperature Ta is within the threshold Th_b.
Transition condition 3: The elapsed time from the start of the start-up control process has reached T1.
 上述の目標温度Toは原料の銘柄に応じて設定される一義的な値であり、そして、閾値Th_a,Th_bのそれぞれは、例えば2℃,5℃である。
 図3から明らかなように、通常、排気温度Tsは出口品温Taよりも速く上昇する傾向にあるため、前述した移行条件2に加えて、移行条件1が付加されることで、立上げ制御工程を速やかに終了させることができる。また、移行条件3は、立上げ制御工程の期間が不所望に長くなるのを阻止する。
The target temperature To described above is a unique value set according to the brand of the raw material, and the threshold values Th_a and Th_b are 2 ° C. and 5 ° C., for example.
As is apparent from FIG. 3, the exhaust temperature Ts normally tends to rise faster than the outlet product temperature Ta. Therefore, in addition to the transition condition 2 described above, the transition condition 1 is added, so that the startup control is performed. The process can be completed promptly. Further, the transition condition 3 prevents the period of the start-up control process from becoming undesirably long.
 上述の移行条件1-3の何れが成立したとき、演算器32は立上げ制御工程を終了させ、そして、以下の切替制御工程を実行する。
 切替制御工程
 ここでは、先ず、演算器32は蒸気流量の目標値Qoを立上げ流量Qstから基準流量Qbに変更する。この基準流量Qbは立上げ流量Qstよりも少なく、立上げ流量Qstと同様に前述の設定値に基づいて決定される一義的な値である。
When any of the above-described transition conditions 1-3 is satisfied, the computing unit 32 ends the start-up control process and executes the following switching control process.
Here, first, the calculator 32 changes the target value Qo of the steam flow rate from the startup flow rate Qst to the reference flow rate Qb. This reference flow rate Qb is smaller than the startup flow rate Qst, and is a unique value determined based on the above-described set value, similarly to the startup flow rate Qst.
 演算器32は、図4に示されるような切替制御のための制御マップを含む。この制御マップは前述の偏差Δtの大きさ及び正負によって区分された複数の制御域、詳しくは、不感帯域R1、この不感帯域R1の両側にそれぞれ規定された正側及び負側の3次関数制御域R2,R3、これら3次関数制御域R2,R3の外側にそれぞれ規定された正側及び負側の固定制御域R4,R5を有する。 The computing unit 32 includes a control map for switching control as shown in FIG. This control map is a plurality of control areas divided by the magnitude of the deviation Δt and positive and negative, more specifically, the dead band R1, and positive and negative cubic function controls defined on both sides of the dead band R1, respectively. The regions R2 and R3 have positive and negative fixed control regions R4 and R5 defined outside the cubic function control regions R2 and R3, respectively.
 偏差Δtが次の式を満たすとき、不感帯域R1が選択される。
 -Th_d≦Δt≦Th_c
 ここで、図4から明らかなように閾値Th_c,-Th_dは1℃以下の小さな正又は負の値である。なお、閾値Th_c,|-Th_d|は同一であってもよい。
 不感帯域R1が選択されたとき、偏差Δtは小さいことから、演算器32は、蒸気流量の目標値Qoを基準流量Qbに維持する。それ故、不感帯域R1では、実供給流量Qaは基準流量Qbに調整される。
When the deviation Δt satisfies the following expression, the dead band R1 is selected.
-Th_d ≦ Δt ≦ Th_c
Here, as is apparent from FIG. 4, the threshold values Th_c, -Th_d are small positive or negative values of 1 ° C. or less. The threshold values Th_c, | -Th_d | may be the same.
Since the deviation Δt is small when the dead zone R1 is selected, the calculator 32 maintains the target value Qo of the steam flow rate at the reference flow rate Qb. Therefore, in the dead zone R1, the actual supply flow rate Qa is adjusted to the reference flow rate Qb.
 偏差Δtが次の式を満たすとき、正側の3次関数制御域R2が選択される。
 Th_c<Δt≦Th_e
 ここで、閾値Th_eは閾値Th_cよりも大きな正の値(例えば4℃)である。
 3次関数制御域R2が選択されたとき、演算器32は偏差Δtの3次関数F1[(a1 x Δt)3]に基づいて正の補正流量C1を演算する。ここで、a1は係数である。そして、演算器32は蒸気流量の目標値Qoを基準流量Qbに補正流量C1が反映された供給流量Qc1(=Qb-C1)に変更する。それ故、3次関数制御域R2では、実供給流量Qaは供給流量Qc1に調整される。
When the deviation Δt satisfies the following equation, the positive-side cubic function control region R2 is selected.
Th_c <Δt ≦ Th_e
Here, the threshold value Th_e is a positive value (for example, 4 ° C.) larger than the threshold value Th_c.
When the cubic function control region R2 is selected, the calculator 32 calculates a positive correction flow rate C1 based on the cubic function F1 [(a1 x Δt) 3 ] of the deviation Δt. Here, a1 is a coefficient. Then, the calculator 32 changes the target value Qo of the steam flow rate to the supply flow rate Qc1 (= Qb−C1) in which the correction flow rate C1 is reflected in the reference flow rate Qb. Therefore, in the cubic function control region R2, the actual supply flow rate Qa is adjusted to the supply flow rate Qc1.
 ここで、補正流量C1は偏差Δtの3次関数F1に基づいて算出されることから、偏差Δtの増加に連れ、3次曲線に従って増加する。それ故、供給流量Qc1は偏差Δtが小さければ、基準流量Qbから余り減少されないものの、偏差Δtが大きければ大きい程、基準流量Qbに比べて急激に減少される。この結果、原料の出口品温Taは偏差Δtの大きさに応じ、目標温度Toに向けて効果的に低下する。 Here, since the corrected flow rate C1 is calculated based on the cubic function F1 of the deviation Δt, it increases according to the cubic curve as the deviation Δt increases. Therefore, the supply flow rate Qc1 does not decrease much from the reference flow rate Qb if the deviation Δt is small, but decreases more rapidly than the reference flow rate Qb as the deviation Δt is large. As a result, the outlet product temperature Ta of the raw material effectively decreases toward the target temperature To according to the magnitude of the deviation Δt.
 一方、偏差Δtが次の式を満たすとき、負側の3次関数制御域R3が選択される。
 -Th_f≦Δt<-Th_d
 ここで、閾値-Th_fは閾値-Th_dよりも大きな負の値(例えば-3.2℃程度)である。
 3次関数制御域R3が選択されたとき、演算器32は偏差Δtの3次関数F2[(a2 x Δt)3]に基づいて補正流量C2を演算する。ここで、a2は係数である。
On the other hand, when the deviation Δt satisfies the following equation, the negative-side cubic function control region R3 is selected.
-Th_f ≦ Δt <-Th_d
Here, the threshold value -Th_f is a negative value larger than the threshold value -Th_d (for example, about -3.2 ° C.).
When the cubic function control region R3 is selected, the calculator 32 calculates the corrected flow rate C2 based on the cubic function F2 [(a2 × Δt) 3 ] of the deviation Δt. Here, a2 is a coefficient.
 この場合、演算器32は、蒸気流量の目標値Qoを基準流量Qbに補正流量C2を反映した供給流量Qc2(=Qb-C2)に変更する。ここで、偏差Δtは負の値であるから、偏差Δtの3次関数F2に基づいて演算される補正流量C2もまた負の値となる。それ故、3次関数制御域R3では、供給流量Qc2、即ち、実蒸気流量Qaは偏差Δtの大きさに応じて効果的に増加し、この結果、原料の出口品温Taは目標温度Toに向けて速やかに上昇する。
 このように上述の3次関数の採用は目標温度Toに向けて原料の出口品温Taを効果的に変化させるうえで有用であるばかりでなく、補正流量C1,C2の演算に関し、偏差Δtにおける正又は負の取り扱いを容易にする。
In this case, the computing unit 32 changes the target value Qo of the steam flow rate to the supply flow rate Qc2 (= Qb−C2) in which the corrected flow rate C2 is reflected in the reference flow rate Qb. Here, since the deviation Δt is a negative value, the corrected flow rate C2 calculated based on the cubic function F2 of the deviation Δt is also a negative value. Therefore, in the cubic function control region R3, the supply flow rate Qc2, that is, the actual steam flow rate Qa effectively increases according to the magnitude of the deviation Δt, and as a result, the raw material outlet product temperature Ta becomes the target temperature To. Ascend quickly.
Thus, the adoption of the above-mentioned cubic function is not only useful for effectively changing the outlet product temperature Ta of the raw material toward the target temperature To, but also regarding the calculation of the correction flow rates C1 and C2 at the deviation Δt. Facilitates positive or negative handling.
 更に、偏差Δtが次式を満たすとき、固定制御域R4が選択される。
 Th_e<Δt
 この場合、演算器32は次式に基づき、蒸気流量の目標値Qoとしての供給流量Qc3を演算する。
 Qc3=Qb-C3(=F1[(a1
x Th_e)3])
 それ故、固定制御域R4では、実蒸気流量Qaは供給流量Qc3に調整される。
Further, when the deviation Δt satisfies the following equation, the fixed control region R4 is selected.
Th_e <Δt
In this case, the calculator 32 calculates the supply flow rate Qc3 as the steam flow target value Qo based on the following equation.
Qc3 = Qb-C3 (= F1 [(a1
x Th_e) 3 ])
Therefore, in the fixed control region R4, the actual steam flow rate Qa is adjusted to the supply flow rate Qc3.
 ここで、補正流量C3は正の値であるから、供給流量Qc3は一定の最小値に制限され、この状態にて、出口品温Taは目標温度Toに向けて低下される。
 一方、偏差Δtが次式を満たすとき、正側の固定制御域R5が選択される。
 Δt<-Th_f
 この場合、演算器32は蒸気流量の目標値Qoとして、次式に基づき供給流量Qc4を演算する。
 Qc4=Qb-C4(=F2[a2
x (-Th_f)3])
 ここで、補正流量C4は負の値であるから、供給流量Qc4は一定の最大値に制限される。それ故、固定制御域R5では、実蒸気流量Qaが供給流量Qc4に調整される結果、原料の出口品温Taは目標温度Toに向けて速やかに上昇される。
Here, since the correction flow rate C3 is a positive value, the supply flow rate Qc3 is limited to a certain minimum value, and in this state, the outlet product temperature Ta is lowered toward the target temperature To.
On the other hand, when the deviation Δt satisfies the following expression, the positive fixed control region R5 is selected.
Δt <-Th_f
In this case, the calculator 32 calculates the supply flow rate Qc4 as the steam flow target value Qo based on the following equation.
Qc4 = Qb-C4 (= F2 [a2
x (-Th_f) 3 ])
Here, since the correction flow rate C4 is a negative value, the supply flow rate Qc4 is limited to a certain maximum value. Therefore, in the fixed control region R5, the actual steam flow rate Qa is adjusted to the supply flow rate Qc4. As a result, the raw material outlet product temperature Ta is quickly raised toward the target temperature To.
 上述した切替制御は、以下の移行条件4,5が何れかが成立したときに終了する。
 移行条件4:偏差Δtは閾値Th_g(図5参照)以内にある。
 移行条件5:切替制御の開始から経過時間がT2に達した。
 ここで、閾値Th_gは、次式の関係を満たす。 
 Th_g<Th_a
The switching control described above ends when any of the following transition conditions 4 and 5 is satisfied.
Transition condition 4: The deviation Δt is within the threshold value Th_g (see FIG. 5).
Transition condition 5: The elapsed time has reached T2 from the start of the switching control.
Here, the threshold value Th_g satisfies the relationship of the following equation.
Th_g <Th_a
 移行条件3又は4が成立したとき、演算器32は切替制御工程を終了し、以下のカスケード制御工程を実行する。
 カスケード制御工程
 このカスケード制御工程は、主制御工程としてのフィードフォワード(FF)制御工程及び副制御工程としてのフィードバック(FB)制御工程を含み、以下、FF制御工程及びFB制御工程について、以下に説明する。
When the transition condition 3 or 4 is satisfied, the computing unit 32 ends the switching control process and executes the following cascade control process.
Cascade control process This cascade control process includes a feed forward (FF) control process as a main control process and a feedback (FB) control process as a sub control process. Hereinafter, the FF control process and the FB control process will be described below. To do.
 FF制御工程
 演算器32は図6に示されるようなFF制御工程のための制御マップを更に含み、この制御マップは偏差Δtの大きさ及び正負によって区分された複数の制御域、詳しくは、不感帯域R6、この不感帯域R6の両側にそれぞれ規定された正側及び負側の3次関数制御域R7,R8、これら3次関数制御域R7,R8外側にそれぞれ規定された正側及び負側の一次関数制御域R9,R10、そして、これら一次関数制御域R9,R10の外側にそれぞれ規定された正側及び負側の固定制御域R11,R12を有する。
The FF control process The computing unit 32 further includes a control map for the FF control process as shown in FIG. 6, and this control map includes a plurality of control areas divided by the magnitude of the deviation Δt and the positive and negative. Band R6, positive and negative cubic function control areas R7 and R8 respectively defined on both sides of the dead band R6, positive and negative sides defined outside the cubic function control areas R7 and R8, respectively. Primary function control areas R9, R10, and positive and negative fixed control areas R11, R12 respectively defined outside the linear function control areas R9, R10.
 偏差Δtが次の式を満たすとき、不感帯域R6が選択される。
 -Th_i≦Δt≦Th_h
 ここで、図6から明らかなように閾値Th_h,-Th_iは1℃以下の小さな正又は負の値である。なお、閾値Th_h,|-Th_i|は同一であってもよい。
When the deviation Δt satisfies the following expression, the dead band R6 is selected.
-Th_i ≦ Δt ≦ Th_h
Here, as is apparent from FIG. 6, the threshold values Th_h and -Th_i are small positive or negative values of 1 ° C. or less. Note that the threshold values Th_h and | -Th_i | may be the same.
 不感帯域R6が選択されたとき、偏差Δtは小さいことから、演算器32は、蒸気流量の目標値Qoを基準流量Qbに維持する。即ち、不感帯域R6では、実蒸気流量Qaは基準流量Qbに調整される。
 偏差Δtが次の式を満たすとき、正側の3次関数制御域R7が選択される。
 Th_h<Δt≦Th_j
 ここで、閾値Th_jは閾値Th_hよりも大きな正の値(例えば3℃)である。
 3次関数制御域R7が選択されたとき、演算器32は偏差Δtの3次関数F3[(a1 x Δt)3]に基づいて正の補正流量C5を演算し、蒸気流量の目標値Qoを基準流量Qbに補正流量C5を反映した供給流量Qc5(=Qb-C5)に変更する。それ故、3次関数制御域R7では、実蒸気流量Qaは供給流量Qc5に調整される。
When the dead zone R6 is selected, since the deviation Δt is small, the calculator 32 maintains the target value Qo of the steam flow rate at the reference flow rate Qb. That is, in the dead zone R6, the actual steam flow rate Qa is adjusted to the reference flow rate Qb.
When the deviation Δt satisfies the following equation, the positive-side cubic function control region R7 is selected.
Th_h <Δt ≦ Th_j
Here, the threshold value Th_j is a positive value (for example, 3 ° C.) larger than the threshold value Th_h.
When the cubic function control region R7 is selected, the computing unit 32 computes a positive correction flow rate C5 based on the cubic function F3 [(a1 x Δt) 3 ] of the deviation Δt, and obtains the steam flow target value Qo. Change the supply flow rate Qc5 (= Qb-C5) to reflect the correction flow rate C5 in the reference flow rate Qb. Therefore, in the cubic function control region R7, the actual steam flow rate Qa is adjusted to the supply flow rate Qc5.
 一方、偏差Δtが次の式を満たすとき、負側の3次関数制御域R8が選択される。
 -Th_k≦Δt<-Th_i
 ここで、閾値-Th_kは閾値-Th_iよりも大きな負の値(例えば-2.5℃程度)である。
 3次関数制御域R8が選択されたとき、演算器32は偏差Δtの3次関数F4[(a2 x Δt)3]に基づいて負の補正流量C6を演算し、基準流量Qbに補正流量C6が反映された供給流量Qc6(=Qb-C6)を蒸気流量の目標値Qoとして設定する。それ故、3次関数制御域R8では、実蒸気流量Qaは供給流量Qc6に調整される。
On the other hand, when the deviation Δt satisfies the following equation, the negative-side cubic function control region R8 is selected.
-Th_k ≦ Δt <-Th_i
Here, the threshold value -Th_k is a negative value larger than the threshold value -Th_i (for example, about -2.5 ° C.).
When the cubic function control region R8 is selected, the calculator 32 calculates the negative correction flow rate C6 based on the cubic function F4 [(a2 x Δt) 3 ] of the deviation Δt, and the correction flow rate C6 is calculated as the reference flow rate Qb. The supply flow rate Qc6 (= Qb-C6) reflecting the above is set as the target value Qo of the steam flow rate. Therefore, in the cubic function control region R8, the actual steam flow rate Qa is adjusted to the supply flow rate Qc6.
 ここで、前述の切替制御での説明から既に明らかなように、補正流量C5,C6は偏差Δtの3次関数F3,F4に基づいてそれぞれ算出されることから、供給流量Qc5,Qc6は基準流量Qbに比べ、偏差Δtの大きさに応じて減少又は増加され、この結果、原料の出口品温Taは目標温度Toに向けて効果的に変化される。
 ここでも、補正流量C5,C6の演算に関し、偏差Δtにおける正又は負の取り扱いが容易になることは言うまでもない。
Here, as is apparent from the description of the switching control described above, the correction flow rates C5 and C6 are calculated based on the cubic functions F3 and F4 of the deviation Δt, respectively, and therefore the supply flow rates Qc5 and Qc6 are the reference flow rates. Compared with Qb, it is decreased or increased according to the magnitude of the deviation Δt, and as a result, the outlet product temperature Ta of the raw material is effectively changed toward the target temperature To.
Again, it goes without saying that positive or negative handling of the deviation Δt is facilitated for the calculation of the correction flow rates C5 and C6.
 偏差Δtが次式を満たすとき、正側の1次関数制御域R9が選択される。
 Th_j<Δt≦Th_l
 Th_lはTh_jよりも大きな値(例えば5.5℃)である。
 1次関数制御域R9が選択されたき、演算器32は偏差Δtの1次関数F5(b1 x Δt)に基づいて正の補正流量C7を演算する。b1は係数である。そして、演算器32は、基準流量Qbに補正流量C7が反映された供給流量Qc7(=Qb-C7)を蒸気流量の目標値Qoとして設定する。それ故、1次関数制御域R9では、実蒸気流量Qaは供給流量Qc7に調整される。
When the deviation Δt satisfies the following expression, the positive-side linear function control region R9 is selected.
Th_j <Δt ≦ Th_l
Th_l is larger than Th_j (for example, 5.5 ° C.).
When the primary function control region R9 is selected, the calculator 32 calculates the positive correction flow rate C7 based on the linear function F5 (b1 x Δt) of the deviation Δt. b1 is a coefficient. Then, the calculator 32 sets the supply flow rate Qc7 (= Qb−C7) in which the correction flow rate C7 is reflected in the reference flow rate Qb as the target value Qo of the steam flow rate. Therefore, in the linear function control region R9, the actual steam flow rate Qa is adjusted to the supply flow rate Qc7.
 一方、偏差Δtが次式を満たすとき、負側の1次関数制御域R10が選択される。
 -Th_m≦Δt<-Th_k
 -Th_mは-Th_kよりも大きな負の値(例えば-4.3℃)である。
 1次関数制御域R10が選択されたとき、演算器32は偏差Δtの1次関数F6(b2 x Δt)に基づいて負の補正流量C8を演算する。b2は係数である。そして、演算器32は、基準流量Qbに補正流量C8が反映された供給流量Qc8(=Qb-C8)を蒸気流量の目標値Qoとして設定する。それ故、1次関数制御域R10では、実蒸気流量Qaは供給流量Qc8に調整される。
On the other hand, when the deviation Δt satisfies the following equation, the negative-side linear function control region R10 is selected.
-Th_m ≦ Δt <-Th_k
-Th_m is a negative value larger than -Th_k (for example, -4.3 ° C).
When the linear function control region R10 is selected, the calculator 32 calculates the negative correction flow rate C8 based on the linear function F6 (b2 x Δt) of the deviation Δt. b2 is a coefficient. Then, the computing unit 32 sets the supply flow rate Qc8 (= Qb−C8) in which the correction flow rate C8 is reflected in the reference flow rate Qb as the target value Qo of the steam flow rate. Therefore, in the linear function control region R10, the actual steam flow rate Qa is adjusted to the supply flow rate Qc8.
 ここでの補正流量C7,C8は、偏差Δtの1次関数F5,F6に基づいてそれぞれ演算されることから、偏差Δtの大きさに比例した値となる。従って、供給流量Qc7,Qc8は偏差Δtに応じて減少又は増加される。この結果、原料の出口品温Taは目標温度Toに向けて速やかに変化される。 Here, the corrected flow rates C7 and C8 are calculated based on the linear functions F5 and F6 of the deviation Δt, respectively, and thus become values proportional to the magnitude of the deviation Δt. Accordingly, the supply flow rates Qc7 and Qc8 are decreased or increased according to the deviation Δt. As a result, the raw material outlet product temperature Ta is quickly changed toward the target temperature To.
 更に、偏差Δtが次式を満たすとき、正側の固定制御域R11が選択される。
 Th_l<Δt
 この場合、演算器32は次式に基づいて供給流量Qc9を演算し、この供給流量Qc9を蒸気流量の目標値Qoに設定する。
 Qc9=Qb-C9(=F5(b1
x Th_l))
 ここで、補正流量C9は正の値であるから、供給流量Qc9は一定の最小値に制限され、原料の出口品温Taは目標温度Toに向けて低下される。
Further, when the deviation Δt satisfies the following equation, the positive fixed control region R11 is selected.
Th_l <Δt
In this case, the calculator 32 calculates the supply flow rate Qc9 based on the following equation, and sets this supply flow rate Qc9 to the target value Qo of the steam flow rate.
Qc9 = Qb-C9 (= F5 (b1
x Th_l))
Here, since the correction flow rate C9 is a positive value, the supply flow rate Qc9 is limited to a certain minimum value, and the outlet product temperature Ta of the raw material is lowered toward the target temperature To.
 一方、偏差Δtが次式を満たすとき、負側の固定制御域R12が選択される。
 Δt<-Th_m
 この場合、演算器32は次式に基づき、供給流量Qc10を演算し、この供給流量Qc10を蒸気流量の目標値Qoに設定する。
 Qc10=Qb-C10(=F6(b2
x -Th_m))
On the other hand, when the deviation Δt satisfies the following equation, the negative fixed control region R12 is selected.
Δt <-Th_m
In this case, the calculator 32 calculates the supply flow rate Qc10 based on the following equation, and sets the supply flow rate Qc10 to the target value Qo of the steam flow rate.
Qc10 = Qb-C10 (= F6 (b2
x -Th_m))
 ここで、補正流量C10は負の値であるから、供給流量Qc10は一定の最大値に制限され、原料の出口品温Taは目標温度Toに向けて上昇される。
 上述のFF制御工程は、原料の出口品温Taを目標温度Toに一致させることで原料の調湿を実行するので、調湿後の原料に必要な水分量を容易に付与することができる。
Here, since the correction flow rate C10 is a negative value, the supply flow rate Qc10 is limited to a certain maximum value, and the outlet product temperature Ta of the raw material is raised toward the target temperature To.
In the above-described FF control process, humidity control of the raw material is executed by making the outlet product temperature Ta of the raw material coincide with the target temperature To, so that it is possible to easily give the moisture content necessary for the raw material after humidity control.
 また、上述の3次関数制御域R7,R8及び1次関数制御域R9,R10の組み合わせは、出口品温Taの瞬間的な変化を速やかに解消し、原料の出口品温Taを目標温度Toに安定して維持する。
 更に、FF制御工程での制御域には、正側及び負側の固定制御領域R11,R12が含まれているので、偏差Δtが大きくても、ロータ10への蒸気の供給流量が過度に増加されることはない。
Further, the combination of the above-described cubic function control areas R7, R8 and linear function control areas R9, R10 quickly eliminates the instantaneous change in the outlet product temperature Ta, and the raw material outlet product temperature Ta is set to the target temperature To. To maintain stable.
Further, since the positive and negative fixed control regions R11 and R12 are included in the control region in the FF control step, the steam supply flow rate to the rotor 10 increases excessively even if the deviation Δt is large. Will never be done.
 更にまた、ロータ10の原料入口12に供給される原料の初期水分量又は供給量が変更されても、この変更はFF制御工程の実行に何ら影響せず、原料の出口品温Taは目標温度Toに調整される。
 なお、上述のFF制御工程は、3次関数制御域R7から1次関数制御域R9への移行時や、3次関数制御域R8から1次関数制御域R10への移行時、所定の移行待機時間を含むことができる。
Furthermore, even if the initial moisture amount or supply amount of the raw material supplied to the raw material inlet 12 of the rotor 10 is changed, this change does not affect the execution of the FF control process, and the raw material outlet product temperature Ta is the target temperature. Adjusted to To.
The above-mentioned FF control process is performed at a predetermined transition waiting time when shifting from the cubic function control area R7 to the linear function control area R9 or when shifting from the cubic function control area R8 to the linear function control area R10. Can include time.
 FB制御工程
 図7に示されているように、FB制御工程は上述のFF制御工程と並行して実行される。
 詳しくは、演算器32は、前述のカスケード制御工程の開始から所定の待機時間T3が経過した後、FB制御工程を開始する。
FB Control Process As shown in FIG. 7, the FB control process is executed in parallel with the above-described FF control process.
Specifically, the computing unit 32 starts the FB control process after a predetermined waiting time T3 has elapsed from the start of the cascade control process.
 FB制御工程の開始後、演算器32は、所定の演算期間T4にて、偏差Δtのサンプリングを一定の周期にて繰り返し、演算期間T4内での偏差Δtの平均偏差Δt_avを演算する。
 ここで、演算期間T4中、偏差Δtが図8の(a),(b),(c)に示されようにそれぞれ変化されたと仮定する。図8の(a)の場合、平均偏差Δt_avは0であるが、図8の(b),(c)の場合、平均偏差Δt_avはそれぞれ+d、-dの値を有する。
After the start of the FB control process, the calculator 32 repeats sampling of the deviation Δt at a predetermined period in a predetermined calculation period T4, and calculates an average deviation Δt_av of the deviation Δt within the calculation period T4.
Here, it is assumed that the deviation Δt is changed during the calculation period T4 as shown in (a), (b), and (c) of FIG. In the case of (a) in FIG. 8, the average deviation Δt_av is 0, but in the cases of (b) and (c) in FIG. 8, the average deviation Δt_av has values of + d and −d, respectively.
 このようにして平均偏差Δt_avが求められたとき、演算器32は、平均偏差Δt_avに基づき、基準流量Qbに対する正又は負の補正流量C11を演算し、この補正流量C11を使用して基準流量Qbを新たな基準流量Qb’に設定し直す。 When the average deviation Δt_av is thus obtained, the calculator 32 calculates a positive or negative correction flow rate C11 with respect to the reference flow rate Qb based on the average deviation Δt_av, and uses the correction flow rate C11 to calculate the reference flow rate Qb. Is reset to the new reference flow rate Qb '.
 具体的には、基準流量Qb’は次の代入式に基づいて求められる。
 Qb’←Qb-C11
 このような基準流量Qb’は、演算期間T4の終わりから次のFB実行期間(再設定制御域)T5が開始される時点にて有効になり、前述のFF制御工程にて使用される。この後、前述した演算期間T4での補正流量C11の演算及びFB実行期間T5での基準流量Qb’の再設定は繰り返して実行される。
Specifically, the reference flow rate Qb ′ is obtained based on the following substitution formula.
Qb '← Qb-C11
Such a reference flow rate Qb ′ becomes effective when the next FB execution period (reset control area) T5 starts from the end of the calculation period T4, and is used in the FF control process described above. Thereafter, the calculation of the correction flow rate C11 in the calculation period T4 and the resetting of the reference flow rate Qb ′ in the FB execution period T5 are repeatedly executed.
 図7から明らかなように上述のFB制御工程は、原料の出口品温Taの継続的な僅かな変化に応じて基準流量Qbを基準流量Qb’に再設定する。それ故、FF制御工程は基準流量Qb’を使用することで、原料の出口品温Taをより高精度且つ安定して目標温度Toに維持することができる。即ち、FB制御工程及びFF制御工程の組み合わせ、即ち、カスケード制御工程は、原料の出口品温Taに着目した原料の調湿に優れる。 As is apparent from FIG. 7, the above-mentioned FB control step resets the reference flow rate Qb to the reference flow rate Qb ′ in accordance with the continuous slight change in the raw material outlet product temperature Ta. Therefore, by using the reference flow rate Qb 'in the FF control step, the raw material outlet product temperature Ta can be maintained at the target temperature To with higher accuracy and stability. That is, the combination of the FB control process and the FF control process, that is, the cascade control process, is excellent in the humidity control of the raw material focusing on the raw material outlet product temperature Ta.
 本発明は上述した一実施例の調湿方法に制約されるものではなく、種々の変更が可能である。
 例えば、前述した立上げ制御工程、切替制御工程及びカスケード制御工程の説明中、種々の温度が示されているが、これら温度は単なる一例であって、変更可能である。
 また、原料の調湿中、ロータ10に供給される原料の銘柄が変更された場合、つまり、目標温度Toが変更された場合、図2中の破線で示すように、本発明の調湿方法は切替制御工程から開始される。
 更に、原料は葉タバコに限らず、本発明の調湿方法は種々の原料に適用可能である。
The present invention is not limited to the humidity control method of the embodiment described above, and various modifications can be made.
For example, in the description of the start-up control process, the switching control process, and the cascade control process described above, various temperatures are shown, but these temperatures are merely examples and can be changed.
Further, when the brand of the raw material supplied to the rotor 10 is changed during the humidity conditioning of the raw material, that is, when the target temperature To is changed, as shown by the broken line in FIG. Is started from the switching control step.
Furthermore, the raw material is not limited to leaf tobacco, and the humidity control method of the present invention can be applied to various raw materials.
10:ロータ、12:原料入口、14:原料出口、16:蒸気の供給経路、18:蒸気入口、20:蒸気出口、22:蒸気流量調整器、24:蒸気流量、26:演算器、28:温度センサ、30:温度センサ、32:演算器、R6:不感帯域、R7,R8:3次関数制御域、R9,R10:1次関数制御域、R11,R12:固定制御域、T4:演算期間、T5:FB実行期間 10: Rotor, 12: Raw material inlet, 14: Raw material outlet, 16: Steam supply path, 18: Steam inlet, 20: Steam outlet, 22: Steam flow regulator, 24: Steam flow rate, 26: Calculator, 28: Temperature sensor, 30: Temperature sensor, 32: Calculator, R6: Dead band, R7, R8: Cubic function control area, R9, R10: Linear function control area, R11, R12: Fixed control area, T4: Calculation period , T5: FB execution period

Claims (9)

  1.  ロータ内にタバコ原料及び蒸気を供給し、前記タバコ原料が前記ロータ内を通過する過程にて前記タバコ原料を調湿するタバコ原料の調湿方法であって、
     前記ロータ内に前記蒸気が供給流量にて供給されているとき、前記ロータの出口から排出された直後の前記タバコ原料の出口品温を検出する工程と、
     前記出口でのタバコ原料の目標温度と前記出口品温との間の第1偏差を求める工程と、
     前記第1偏差に基づき、前記供給流量を蒸気の基準流量に基づいて制御する主制御工程と
    を備え、
     前記主制御工程は、
     前記第1偏差の大きさ及び正負に応じて区分された複数の制御域の中から、前記第1偏差に対応した制御域を選択し、
     選択された制御域での制御手順に従って前記蒸気の前記供給流量を制御する
    ことを特徴とするタバコ原料の調湿方法。
    Tobacco material and steam is supplied into a rotor, and the tobacco material is conditioned in the process of passing the tobacco material through the rotor.
    Detecting the outlet product temperature of the tobacco raw material immediately after being discharged from the outlet of the rotor when the steam is supplied into the rotor at a supply flow rate;
    Obtaining a first deviation between the target temperature of the tobacco raw material at the outlet and the outlet product temperature;
    A main control step of controlling the supply flow rate based on a reference flow rate of steam based on the first deviation;
    The main control step includes
    Selecting a control area corresponding to the first deviation from a plurality of control areas divided according to the magnitude and positive / negative of the first deviation;
    A method for conditioning humidity of a tobacco material, wherein the supply flow rate of the steam is controlled according to a control procedure in a selected control region.
  2.  前記制御域は、
     前記第1偏差が正の第1閾値と負の第2閾値との間にあるときに選択され、前記供給流量が前記基準流量に維持される不感帯域と、
     前記第1偏差が前記第1閾値を超え且つ前記第1閾値よりも大きな正の第3閾値以内にあるときに選択され、その第1偏差の3次関数に基づいて演算された補正流量従い、前記供給流量を前記基準流量から減少させる正側の3次関数制御域と、
     前記第1偏差が前記負の2閾値を超え且つ前記第2閾値よりも大きな負の第4閾値以内にあるときに選択され、その第1偏差の3次関数に基づいて演算された補正流量に従い、前記供給流量を前記基準流量から増加させる負側の3次関数制御域と
    を含む、ことを特徴とする請求項1に記載のタバコ原料の調湿方法。
    The control area is
    A dead band selected when the first deviation is between a positive first threshold value and a negative second threshold value, wherein the supply flow rate is maintained at the reference flow rate;
    According to a corrected flow rate selected when the first deviation exceeds the first threshold and is within a positive third threshold greater than the first threshold, and is calculated based on a cubic function of the first deviation, A positive-side cubic function control range for reducing the supply flow rate from the reference flow rate;
    According to the corrected flow rate selected when the first deviation exceeds the negative two threshold values and is within a negative fourth threshold value that is larger than the second threshold value, and is calculated based on a cubic function of the first deviation. The method of claim 1, further comprising: a negative third-order function control region that increases the supply flow rate from the reference flow rate.
  3.  前記制御域は、
     前記第1偏差が前記正の第3閾値を超え且つ前記第3閾値よりも大きな正の第5閾値以内にあるときに選択され、その第1偏差の1次関数に基づいて演算された補正流量に従い、前記供給流量を前記基準流量から減少させる正側の1次関数制御域と、
     前記第1偏差が前記負の第4閾値を超え且つ前記第4閾値よりも大きな負の第6閾値以内にあるときに選択され、その第1偏差の1次関数に基づいて演算された補正流量に従い、供給流量を前記基準流量から増加させる負側の1次関数制御域と、
    を更に含む、ことを特徴とする請求項2に記載のタバコ原料の調湿方法。
    The control area is
    A corrected flow rate that is selected when the first deviation exceeds the positive third threshold value and is within a positive fifth threshold value that is greater than the third threshold value and is calculated based on a linear function of the first deviation. And a positive-side linear function control region for reducing the supply flow rate from the reference flow rate,
    A corrected flow rate that is selected when the first deviation exceeds the negative fourth threshold value and is within a negative sixth threshold value that is greater than the fourth threshold value and is calculated based on a linear function of the first deviation. In accordance with the negative linear function control range to increase the supply flow rate from the reference flow rate,
    The method for conditioning humidity of a tobacco material according to claim 2, further comprising:
  4.  前記制御域は、
     前記第1偏差が前記正の第5閾値を超えたときに選択され、前記供給流量を一定の下限流量に制限する正側の固定制御域と、
     前記第1偏差が前記負の第6閾値を超えたときに選択され、前記供給流量を一定の上限流量に制限する負側の固定制御域と
    を更に含む、
    ことを特徴とする請求項1に記載のタバコ原料の調湿方法。
    The control area is
    A positive fixed control region that is selected when the first deviation exceeds the positive fifth threshold and limits the supply flow rate to a certain lower limit flow rate;
    A negative fixed control range that is selected when the first deviation exceeds the negative sixth threshold and limits the supply flow rate to a certain upper limit flow rate;
    The method for conditioning a tobacco material according to claim 1.
  5.  前記主制御工程に並行して実行される副制御工程を更に備え、
     前記副制御工程は、
     周期的に繰り返される基準流量の再設定制御域を含み、
     前記再設定制御域は、一定の期間中での前記第1偏差の平均値に基づいて前記基準流量を設定し直すことを特徴とする請求項1に記載のタバコ原料の調湿方法。
    Further comprising a sub-control step executed in parallel with the main control step,
    The sub-control step includes
    Includes a reset control area for the reference flow that is repeated periodically,
    2. The method of claim 1, wherein the reset control area resets the reference flow rate based on an average value of the first deviations during a certain period.
  6.  前記主制御工程に先立って実行される立上げ制御工程を更に含み、
     前記立上げ制御工程は、前記基準流量よりも多い立上げ流量を前記供給流量として前記ロータ内に蒸気を供給することを特徴とする請求項1に記載のタバコ原料の調湿方法。
    It further includes a start-up control step executed prior to the main control step,
    2. The humidity control method for tobacco material according to claim 1, wherein in the start-up control step, steam is supplied into the rotor with a start-up flow rate larger than the reference flow rate as the supply flow rate.
  7.  前記立上げ制御工程の実行は、前記第1偏差が第7閾値以内に到達するか、前記目標温度と前記ロータの出口での前記蒸気の温度との間の第2偏差が第8閾値以内に到達するか又は前記立上げ制御の開始から所定の立上げ期間が経過したとき、停止されることを特徴とする請求項6に記載のタバコ原料の調湿方法。 The start-up control step is executed when the first deviation reaches within the seventh threshold or the second deviation between the target temperature and the temperature of the steam at the rotor outlet falls within the eighth threshold. The humidity control method for tobacco material according to claim 6, wherein the humidity control method is stopped when reaching or when a predetermined start-up period has elapsed from the start of the start-up control.
  8.  前記立上げ制御工程と前記主制御工程との間にて実行される切替制御工程を更に含み、
     前記切替制御工程は、前記第1偏差の大きさ及び正負に応じて区分された複数の切替制御域の中から、前記第1偏差に対応した切替制御域を選択し、
     選択された切替制御域での制御手順に従って前記供給流量を制御する、
    ことを特徴とする請求項1に記載のタバコ原料の調湿方法。
    A switching control step executed between the start-up control step and the main control step;
    The switching control step selects a switching control area corresponding to the first deviation from a plurality of switching control areas divided according to the magnitude and positive / negative of the first deviation,
    Controlling the supply flow rate according to a control procedure in the selected switching control area;
    The method for conditioning a tobacco material according to claim 1.
  9.  前記タバコ原料は葉タバコであることを特徴とする請求項1に記載のタバコ原料の調湿方法。
     
    The method for conditioning a tobacco material according to claim 1, wherein the tobacco material is leaf tobacco.
PCT/JP2012/056716 2012-03-15 2012-03-15 Method for humidifying starting tobacco material WO2013136487A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PL12871593T PL2798965T3 (en) 2012-03-15 2012-03-15 Method for humidifying starting tobacco material
PCT/JP2012/056716 WO2013136487A1 (en) 2012-03-15 2012-03-15 Method for humidifying starting tobacco material
EP12871593.5A EP2798965B1 (en) 2012-03-15 2012-03-15 Method for humidifying starting tobacco material
JP2014504570A JP5709289B2 (en) 2012-03-15 2012-03-15 Humidity control method for tobacco materials
CN201280071421.2A CN104168782B (en) 2012-03-15 2012-03-15 The moisture control method of tobacco material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/056716 WO2013136487A1 (en) 2012-03-15 2012-03-15 Method for humidifying starting tobacco material

Publications (1)

Publication Number Publication Date
WO2013136487A1 true WO2013136487A1 (en) 2013-09-19

Family

ID=49160453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056716 WO2013136487A1 (en) 2012-03-15 2012-03-15 Method for humidifying starting tobacco material

Country Status (5)

Country Link
EP (1) EP2798965B1 (en)
JP (1) JP5709289B2 (en)
CN (1) CN104168782B (en)
PL (1) PL2798965T3 (en)
WO (1) WO2013136487A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105595390B (en) * 2015-12-30 2017-03-22 山东中烟工业有限责任公司 Method for improving stability of outlet moisture of stem moistening machine in stub bar stage
CN108378406B (en) * 2018-04-11 2021-02-19 红塔烟草(集团)有限责任公司 Temperature and humidity control method and system for moisture regain area of tobacco flake redrying machine
CN109471404A (en) * 2018-11-21 2019-03-15 河南中烟工业有限责任公司 A kind of one bonded state detection method of charging system and system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6219149B2 (en) * 1984-10-04 1987-04-27 Nippon Tabako Sangyo Kk
JPS6362185B2 (en) 1983-07-21 1988-12-01
EP1273240A2 (en) * 2001-07-02 2003-01-08 GARBUIO S.p.A. Tobacco processing machine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2864381A (en) * 1956-02-01 1958-12-16 Imp Tobacco Co Ltd Method for conditioning tobacco
DE2240682C2 (en) * 1972-08-18 1983-09-01 Hauni-Werke Körber & Co KG, 2050 Hamburg Method and device for moistening tobacco
US4572218A (en) * 1983-10-27 1986-02-25 Proctor & Schwartz, Inc. Remoistening of tobacco
CN100393249C (en) * 2006-07-19 2008-06-11 山东中烟工业公司 Two stage control method for wetting leaf moisture regain temperature
CN201094273Y (en) * 2007-10-22 2008-08-06 厦门卷烟厂 Smoked sheet loosening moisture-regaining device
CN101380136B (en) * 2008-10-21 2011-06-15 龙岩烟草工业有限责任公司 Cigarette machining, loosening, steam conditioner and hot blast control method thereof
CN201336924Y (en) * 2009-02-13 2009-11-04 湖南中烟工业有限责任公司 Accuracy control device for moist heat air in tobacco flake loosening and conditioning cylinder
CN101502337B (en) * 2009-02-26 2012-05-02 孟科峰 Method for controlling model building in leaf moisture-regaining process of tobacco shred production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362185B2 (en) 1983-07-21 1988-12-01
JPS6219149B2 (en) * 1984-10-04 1987-04-27 Nippon Tabako Sangyo Kk
EP1273240A2 (en) * 2001-07-02 2003-01-08 GARBUIO S.p.A. Tobacco processing machine

Also Published As

Publication number Publication date
JP5709289B2 (en) 2015-04-30
PL2798965T3 (en) 2019-12-31
EP2798965A4 (en) 2015-11-11
CN104168782A (en) 2014-11-26
CN104168782B (en) 2017-10-13
JPWO2013136487A1 (en) 2015-08-03
EP2798965A1 (en) 2014-11-05
EP2798965B1 (en) 2019-07-24

Similar Documents

Publication Publication Date Title
CN103202528B (en) Cut lamina drying control method and cut lamina drying system based on feedforward and feedback of HT moisture compensation
CN104296386B (en) Control method, control system and the gas heater of gas heater
CN104903563B (en) Control to the method and apparatus of the fuel supply of gas turbine
JP5709289B2 (en) Humidity control method for tobacco materials
RU2553783C2 (en) Method and device of pressure control in continuous annealing furnace
CN109237798B (en) Control method of gas combustion device and gas combustion device
JP2013502911A (en) Tobacco processing apparatus and method
JP2011021758A (en) Method of correcting fuel charging amount for boiler
JP5431382B2 (en) Evaporative load control system for dryer
CN111831029A (en) Tobacco redrying temperature control method and device and medium
CN108208902B (en) Process gas temperature control method for airflow type cut tobacco dryer
JP5846831B2 (en) Humidified gas supply device and method for fuel cell
JP6684453B2 (en) Extraction control method and control device for steam turbine generator
CN108669616B (en) Moisture balance-based control method for cut tobacco moisture content of drum-type cut tobacco dryer
CN100998441A (en) Method for controlling hot air temperature of drum type equipment used for tobacco sheet processing
CN110260431B (en) Control method of air conditioning system of textile workshop
JP2015512483A (en) Method for determining at least one combustion temperature for controlling a gas turbine, and gas turbine for performing the method
JP2013123734A5 (en) Hot finishing temperature control method, hot finishing temperature control device, and hot rolled metal sheet manufacturing method
RU2575817C1 (en) Method of conditioning humidity of tobacco material
JP6528500B2 (en) Boiler system
KR101319149B1 (en) Vapor producing apparatus and operating method thereof
ITMI20120427A1 (en) PERFECTED METHOD FOR THE ELECTRONIC ADJUSTMENT OF A FUEL MIXTURE, FOR EXAMPLE GAS, SENT TO A BURNER
CN111893793B (en) Method and apparatus for controlling energy consumption in a fiber web manufacturing process
CN115542721A (en) Cut tobacco dryer outlet moisture feedback control method and control system
JP6209980B2 (en) Boiler and boiler system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871593

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014504570

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012871593

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014141375

Country of ref document: RU

Kind code of ref document: A