WO2013136475A1 - Power supply device and power-on controlling method - Google Patents

Power supply device and power-on controlling method Download PDF

Info

Publication number
WO2013136475A1
WO2013136475A1 PCT/JP2012/056597 JP2012056597W WO2013136475A1 WO 2013136475 A1 WO2013136475 A1 WO 2013136475A1 JP 2012056597 W JP2012056597 W JP 2012056597W WO 2013136475 A1 WO2013136475 A1 WO 2013136475A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power supply
factor correction
power factor
correction circuit
Prior art date
Application number
PCT/JP2012/056597
Other languages
French (fr)
Japanese (ja)
Inventor
弘進 影山
荒木 達男
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2012/056597 priority Critical patent/WO2013136475A1/en
Publication of WO2013136475A1 publication Critical patent/WO2013136475A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/23Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only arranged for operation in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a power supply device and a power-on control method.
  • AC-DC conversion power supplies In an electronic device equipped with a plurality of AC-DC conversion power supplies (hereinafter referred to as “AC-DC conversion power supplies”), if all AC-DC conversion power supplies are turned on at the same time, the start-up currents overlap and an excessive current Flows. For this reason, the uninterruptible power supply connected to the front stage of the electronic device (hereinafter referred to as “UPS (Uninterruptible Power Supply)”) detects an overcurrent abnormality and stops the output.
  • UPS Uninterruptible Power Supply
  • FIG. 22 is a diagram illustrating an information processing apparatus including a plurality of AC-DC conversion power supplies.
  • the information processing apparatus 90 includes three AC-DC conversion power supplies 91 to 93 and a service processor 94.
  • AC-DC conversion power supplies 91 to 93 are each connected to UPS 1 and supply power to information processing apparatus 90.
  • the service processor 94 instructs the AC-DC conversion power supplies 91 to 93 to be turned on and stopped.
  • a current I indicates a current flowing through the UPS 1.
  • FIG. 23 is a diagram showing the starting current of the information processing apparatus 90.
  • the vertical axis represents current I
  • the horizontal axis represents time t.
  • FIG. 24 is a diagram illustrating a start-up current of the information processing apparatus 90 when the AC-DC power supply is sequenced. As shown in FIG. 24, the service processor 94 instructs the AC-DC conversion power supplies 91 to 93 to turn on in order so that the starting currents do not overlap. For this reason, the current I flowing through the UPS 1 does not exceed the UPS overcurrent detection point, and the UPS 1 operates normally.
  • FIG. 23 and FIG. 24 are diagrams schematically showing the starting current, and actually an AC starting current flows instead of a direct current. Further, the AC-DC conversion power supply includes a current that flows after the power factor correction circuit is activated, but these currents are omitted in the figure.
  • a power supply control system divides a plurality of devices constituting a computer system into partial parts and connects them to ports, and the time-series power load characteristics are the maximum power capacity in units of ports.
  • there is a technology for turning on the power so that the allowable additional fluctuation range is not exceeded.
  • the service processor 94 sequentially turns on the AC-DC conversion power supplies 91 to 93, there is a problem that the power-on completion time becomes longer due to the number of installed power supplies. For example, when the turn-on time of one AC-DC conversion power supply is 1 second, the time required to turn on the three AC-DC conversion power supplies is 3 seconds, which is three times that when the power is turned on simultaneously.
  • An object of one aspect of the present invention is to shorten the completion time of turning on an AC-DC conversion power supply of an electronic device.
  • the power supply device disclosed in the present application converts an AC voltage into a DC voltage and converts a DC voltage output from the power factor improvement circuit that reduces harmonic current and the DC voltage output from the power factor improvement circuit into a different DC voltage.
  • a plurality of power supply units including a converter; Further, in the power supply device disclosed in the present application, the current flowing through the device when the power is turned on may exceed a predetermined overcurrent threshold due to the start-up currents of the power factor correction circuit and the converter overlapping between the plurality of power supply units.
  • a control unit for controlling the turning on of a plurality of power supply units Further, the control unit controls the turning on of the plurality of power supply units so that the turning-on time is shorter than the turning-on time required when turning on the plurality of power supply units in order.
  • the completion time of turning on the AC-DC conversion power of the electronic device can be shortened.
  • FIG. 1 is a diagram illustrating a configuration of a power supply device included in the information processing apparatus according to the first embodiment.
  • FIG. 2 is a diagram illustrating a configuration of an AC-DC conversion power supply.
  • FIG. 3 is a diagram illustrating a configuration of the power factor correction circuit.
  • FIG. 4 is a diagram showing voltage waveforms at (A) to (C) of the power factor correction circuit.
  • FIG. 5 is a diagram showing the timing at which the service processor sends a turn-on instruction to each AC-DC conversion power supply.
  • FIG. 6 is a diagram illustrating the startup current of the information processing apparatus according to the first embodiment.
  • FIG. 7 is a flowchart showing a procedure of power-on processing by the service processor.
  • FIG. 1 is a diagram illustrating a configuration of a power supply device included in the information processing apparatus according to the first embodiment.
  • FIG. 2 is a diagram illustrating a configuration of an AC-DC conversion power supply.
  • FIG. 3 is a diagram illustrating
  • FIG. 8 is a diagram showing a specific example of timing at which the service processor sends a turn-on instruction to each AC-DC conversion power supply.
  • FIG. 9 is a diagram illustrating the startup current of the information processing apparatus according to the second embodiment.
  • FIG. 10 is a flowchart illustrating a procedure of power-on processing by the service processor according to the second embodiment.
  • FIG. 11 is a diagram illustrating the configuration of the power supply device included in the information processing apparatus according to the third embodiment.
  • FIG. 12 is a diagram illustrating a configuration of an AC-DC conversion power supply.
  • FIG. 13 is a diagram illustrating an example of the insertion timing information stored in the insertion timing information storage unit.
  • FIG. 14 is a diagram illustrating an example of the input instruction command.
  • FIG. 15 is a flowchart showing a procedure of power-on processing by the service processor.
  • FIG. 16 is a diagram illustrating the configuration of the power supply device included in the information processing apparatus according to the fourth embodiment.
  • FIG. 17 is a diagram illustrating a configuration of an AC-DC conversion power supply.
  • FIG. 18 is a flowchart illustrating a procedure of power-on processing by the service processor according to the fourth embodiment.
  • FIG. 19 is a diagram illustrating an example of timing at which the service processor sends a turn-on instruction to each AC-DC conversion power source.
  • FIG. 20 is a diagram illustrating the startup current of the information processing apparatus according to the fifth embodiment.
  • FIG. 21 is a flowchart illustrating a procedure of power-on processing by the service processor according to the fifth embodiment.
  • FIG. 22 is a diagram illustrating an information processing apparatus including a plurality of AC-DC conversion power supplies.
  • FIG. 23 is a diagram illustrating a startup current of the information processing apparatus.
  • FIG. 24 is a diagram illustrating a start-up current of the information processing apparatus when the AC-DC power supply is sequenced.
  • FIG. 1 is a diagram illustrating a configuration of a power supply device included in the information processing apparatus according to the first embodiment.
  • the power supply device 10 a included in the information processing apparatus 10 includes three AC-DC conversion power supplies 11 to 13 and a service processor 14.
  • AC-DC conversion power supplies 11 to 13 are each connected to the UPS 1, convert an AC voltage supplied from the UPS 1 into a DC voltage, and supply it to the information processing apparatus 10.
  • the service processor 14 performs control such as turning on and off the AC-DC conversion power supplies 11 to 13.
  • FIG. 2 is a diagram showing the configuration of the AC-DC conversion power supply 11. Since the AC-DC conversion power supplies 11 to 13 all have the same configuration, the AC-DC conversion power supply 11 will be described as an example here. As shown in FIG. 2, the AC-DC conversion power supply 11 includes a power factor correction circuit 11a and a converter 11b.
  • the power factor correction circuit 11a is a circuit that converts an alternating voltage into a direct current voltage and reduces harmonic current
  • the converter 11b is a circuit that converts the direct current voltage output from the power factor improvement circuit 11a into a different direct current voltage.
  • FIG. 3 is a diagram showing a configuration of the power factor correction circuit 11a
  • FIG. 4 is a diagram showing voltage waveforms at (A) to (C) of the power factor improvement circuit 11a.
  • the power factor correction circuit 11a includes an EMI (Electro Magnetic Interference) filter 3, a full-wave rectifier circuit 4, a coil 5, a diode 6, an N-channel MOSFET (hereinafter referred to as “NMOS”) 7, a capacitor. 8 has.
  • EMI Electro Magnetic Interference
  • NMOS N-channel MOSFET
  • the EMI filter 3 is a circuit that removes noise from the AC voltage supplied from the AC power supply 2
  • the full-wave rectifier circuit 4 is a circuit that full-wave rectifies the AC voltage from which noise has been removed by the EMI filter 3. If the input voltage to the EMI filter 3 is an AC voltage shown in FIG. 4A, the output voltage of the full-wave rectifier circuit 4 becomes a pulsating voltage shown in FIG. 4B.
  • FIG. 4C shows the DC voltage output from the power factor correction circuit 11a.
  • the portion excluding the EMI filter 3 and the full-wave rectifier circuit 4 may be referred to as a “power factor correction circuit”. It will be called a “rate improvement circuit”.
  • the service processor 14 does not issue a turn-on instruction to each AC-DC conversion power source, but separately turns on a power factor correction circuit and a converter. I do. Specifically, the service processor 14 instructs the power factor correction circuit of each AC-DC conversion power supply so as not to overlap the starting current, and then issues the input instruction to all the converters collectively.
  • FIG. 5 is a diagram showing the timing at which the service processor 14 sends a turn-on instruction to each AC-DC conversion power source.
  • the service processor 14 first sends an input instruction to the power factor correction circuit of the AC-DC conversion power supply 11 (1), and then the AC-DC conversion power supply 12 so that the starting currents do not overlap. (2) is sent to the power factor correction circuit. Then, the service processor 14 sends an input instruction to the power factor correction circuit of the AC-DC conversion power source 13 so that the starting currents do not overlap (3), and then simultaneously inputs to the converters of the AC-DC conversion power sources 11-13. Send instructions.
  • FIG. 6 is a diagram illustrating the starting current of the information processing apparatus 10 according to the first embodiment. As shown in FIG. 6, first, a starting current flows when the power factor correction circuit of the AC-DC conversion power supply 11 is turned on. Thereafter, a starting current flows when the power factor correction circuit of the AC-DC conversion power supply 12 is turned on, and then a starting current flows when the power factor improvement circuit of the AC-DC conversion power supply 13 is turned on. Then, a starting current flows when the converters of the AC-DC conversion power supplies 11 to 13 are turned on.
  • the service processor 14 shifts the power factor correction circuit input instructions of the respective AC-DC conversion power supplies and simultaneously performs the converter input instructions. Therefore, the service processor 14 can prevent the generation of an excessive current due to the overlap of the startup currents, and can shorten the completion time of turning on all the AC-DC conversion power supplies as compared with the conventional case.
  • FIG. 7 is a flowchart showing a procedure of power-on processing by the service processor 14. As shown in FIG. 7, when receiving the power-on instruction, the service processor 14 sends the power-on instruction to the power factor correction circuit of the AC-DC conversion power supply 11 (step S11).
  • the service processor 14 determines whether or not the power factor correction circuit of the AC-DC conversion power source 11 has been turned on (step S12). (Step S13).
  • the service processor 14 determines whether or not the power factor correction circuit of the AC-DC conversion power source 12 has been turned on (step S14). A sending instruction is sent to (step S15).
  • the service processor 14 determines whether or not the power factor correction circuit of the AC-DC conversion power supply 13 has been turned on (step S16). An input instruction is sent (step S17). Then, the service processor 14 determines whether or not the conversion of the converters of the AC-DC conversion power supplies 11 to 13 is completed (step S18), and when the input is completed, the process ends.
  • the service processor 14 shifts the input instructions to the power factor correction circuits of the three AC-DC conversion power supplies 11 to 13 so that the start-up currents do not overlap, and all the power factors After the improvement circuit has been turned on, all the converters are instructed simultaneously. Therefore, the service processor 14 can prevent the generation of an excessive current due to the overlap of the startup currents, and can shorten the completion time of turning on the AC-DC conversion power of the information processing apparatus 10.
  • FIG. 8 is a diagram showing a specific example of timing at which the service processor 14 sends a turn-on instruction to each AC-DC conversion power source.
  • the service processor 14 first sends an input instruction to the power factor correction circuit of the AC-DC conversion power supply 11 (1), and 0.4 seconds later, the power factor of the AC-DC conversion power supply 12 is sent. Sending the input instruction to the improvement circuit (2).
  • 0.4 seconds is the time required from the start to completion of each AC-DC conversion power supply.
  • the service processor 14 then sends an input instruction to the power factor correction circuit of the AC-DC conversion power supply 13 after another 0.4 seconds (3), and further 0.4 seconds later, the AC-DC conversion power supplies 11 to 13 Simultaneously send input instructions to the converters.
  • FIG. 9 is a diagram illustrating the starting current of the information processing apparatus 10 according to the second embodiment.
  • a starting current flows by turning on the power factor correction circuit of the AC-DC conversion power supply 11.
  • a starting current flows due to turning on the power factor correction circuit of the AC-DC conversion power supply 12, and after 0.4 seconds, the starting current due to turning on the power factor improvement circuit of the AC-DC conversion power supply 13 Flows.
  • 0.4 seconds later a starting current flows when the converters of the AC-DC conversion power supplies 11 to 13 are turned on.
  • FIG. 10 is a flowchart illustrating a procedure of power-on processing by the service processor 14 according to the second embodiment.
  • the service processor 14 when receiving the power-on instruction, the service processor 14 sends a power-on instruction to the power factor correction circuit of the AC-DC conversion power supply 11 (step S21).
  • the service processor 14 determines whether or not 0.4 seconds have elapsed from the instruction to turn on the AC-DC conversion power supply 11 to the power factor correction circuit (step S22). An input instruction is sent to the power factor correction circuit of the conversion power supply 12 (step S23).
  • the service processor 14 determines whether or not 0.4 seconds have elapsed from the instruction to turn on the AC-DC conversion power supply 12 to the power factor correction circuit (step S24). An input instruction is sent to the power factor correction circuit of the conversion power supply 13 (step S25).
  • the service processor 14 determines whether or not 0.4 seconds have elapsed from the instruction to turn on the AC-DC conversion power supply 13 to the power factor correction circuit (step S26).
  • An input instruction is sent to the converters of the conversion power supplies 11 to 13 (step S27).
  • the service processor 14 determines whether or not 0.6 seconds have elapsed from the instruction to turn on the converters of the AC-DC conversion power supplies 11 to 13 (step S28), and ends processing when 0.6 seconds have elapsed.
  • 0.6 seconds is the time required from the start of charging to completion of the converter.
  • the service processor 14 shifts the input instruction to the power factor correction circuit of each AC-DC conversion power supply by 0.4 seconds to improve the power factor of the AC-DC conversion power supply 13.
  • a converter input instruction is simultaneously issued 0.4 seconds after an instruction to input to the circuit. Therefore, the service processor 14 can prevent the generation of an excessive current due to the overlap of the start-up currents, and can shorten the turn-on of all AC-DC conversion power supplies to 1.8 seconds.
  • the service processor sends the input instruction to the power factor correction circuit and the converter.
  • the service processor receives information specifying the input timing of the power factor improvement circuit and the converter as an AC-DC conversion power supply. It can also be sent to. Therefore, a case where the service processor sends information specifying the power factor correction circuit and the input timing of the converter to the AC-DC conversion power supply will be described.
  • FIG. 11 is a diagram illustrating the configuration of the power supply device included in the information processing apparatus according to the third embodiment.
  • the power supply device 30 a included in the information processing apparatus 30 includes three AC-DC conversion power supplies 31 to 33 and a service processor 34.
  • AC-DC conversion power supplies 31 to 33 are each connected to the UPS 1, convert the AC voltage supplied from the UPS 1 into a DC voltage, and supply the DC voltage to the information processing apparatus 30.
  • the service processor 34 performs control such as turning on / off the AC-DC conversion power supplies 31 to 33.
  • FIG. 12 is a diagram showing the configuration of the AC-DC conversion power supply 31. Note that the AC-DC conversion power supplies 31 to 33 all have the same configuration, and therefore the AC-DC conversion power supply 31 will be described as an example here. As shown in FIG. 12, the AC-DC conversion power supply 31 includes a power factor correction circuit 31a, a converter 31b, and a control unit 31c.
  • the power factor improvement circuit 31a is a circuit that converts an AC voltage into a DC voltage and reduces harmonic current
  • the converter 31b is a circuit that converts the DC voltage output from the power factor improvement circuit 31a into a different DC voltage.
  • the control unit 31c instructs the power factor correction circuit 31a and the converter 31b to input.
  • the service processor 34 has an input timing information storage unit 34a.
  • the turning-on timing information storage unit 34a stores turning-on timing information of the AC-DC conversion power supply.
  • FIG. 13 is a diagram illustrating an example of the insertion timing information stored in the insertion timing information storage unit 34a. As shown in FIG. 13, the turn-on timing information storage unit 34 a stores the turn-on waiting time of each power factor correction circuit, the turn-on wait time of the converter, and the power-on completion time for each number of installed AC-DC conversion power supplies.
  • “Skip” indicates that there is no waiting time, that is, there is no need to wait because there is no corresponding power factor correction circuit. For example, when the number of AC-DC conversion power supplies mounted is “2”, the waiting time for turning on the power factor correction circuits # 0 and # 1 is “0.4 seconds”, but the power factor correction circuit # 2 Because there is no, the input waiting time is “skip”.
  • the service processor 34 creates a turn-on instruction command based on the turn-on timing information stored in the turn-on timing information storage unit 34a and the number of AC-DC conversion power supplies mounted on the power supply device, and transmits the command to each AC-DC conversion power supply. To do.
  • FIG. 14 is a diagram illustrating an example of the input instruction command.
  • the turn-on instruction command includes the number of AC-DC conversion power supplies mounted, the turn-on start time of each power factor correction circuit, the turn-on waiting time of the converter, and the turn-on completion time.
  • the number of AC-DC conversion power supplies mounted is “3”, and the power factor correction circuit # 0 is turned on after “0 seconds” after receiving the input instruction command, that is, after receiving the input instruction command.
  • the power factor correction circuit # 1 is turned on “0.4 seconds” after the receiving instruction command is received.
  • the power factor correction circuit # 2 is turned on after “0.8 seconds” after receiving the input instruction command, and the converter is input after “1.2 seconds” after receiving the input instruction command.
  • control unit of each AC-DC conversion power supply receives the input instruction command from the service processor 34, it analyzes the input instruction command and controls the input of the power factor correction circuit and the converter according to the input instruction command.
  • control unit of the AC-DC conversion power supply 31 receives the input instruction command
  • the control unit of the power factor correction circuit # 0 is input
  • the control unit of the AC-DC conversion power supply 32 receives the input instruction command
  • 0 is input.
  • Power factor correction circuit # 1 is turned on after 4 seconds.
  • the control unit of the AC-DC conversion power supply 33 turns on the power factor correction circuit # 2 0.8 seconds after receiving the turn-on instruction command, and the control unit of each AC-DC conversion power supply receives the turn-on instruction command. After 1.2 seconds, turn on the converter.
  • each AC-DC conversion power supply inputs the power factor correction circuit and the converter based on the input instruction command received from the service processor 34. Therefore, the service processor 34 can turn on each AC-DC conversion power supply only by transmitting a turn-on instruction command to each AC-DC conversion power supply.
  • FIG. 15 is a flowchart showing a procedure of power-on processing by the service processor 34.
  • the service processor 34 when the service processor 34 receives a power-on instruction, the service processor 34 sends a power-on instruction command to the AC-DC converted power supplies 31-33, thereby instructing the AC-DC converted power supplies 31-33 to turn on. (Step S31).
  • 1.8 seconds is a time until completion of turning on when each control unit turns on the power factor correction circuits and converters of the AC-DC conversion power supplies 31 to 33 based on the turning instruction command.
  • the service processor 34 creates the input instruction command based on the input timing information storage unit 34a and transmits it to each AC-DC conversion power source. Then, the control unit of each AC-DC conversion power supply turns on the power factor correction circuit and the converter based on the turn-on instruction command. Therefore, the service processor 34 can turn on the AC-DC conversion power supply only by transmitting the turn-on instruction command.
  • the service processor sends an input instruction to the next power factor correction circuit or converter when a predetermined time has elapsed.
  • the service processor can also send a closing instruction to the next power factor improving circuit or converter by receiving a notification of closing completion from the power factor improving circuit. Therefore, a case will be described in which when the service processor receives a notification of completion of input from the power factor correction circuit, a input instruction is sent to the next power factor correction circuit or converter.
  • FIG. 16 is a diagram illustrating the configuration of the power supply device included in the information processing apparatus according to the fourth embodiment.
  • the power supply device 40 a included in the information processing apparatus 40 includes three AC-DC conversion power supplies 41 to 43 and a service processor 44.
  • AC-DC conversion power supplies 41 to 43 are connected to the UPS 1, respectively, and convert an AC voltage supplied from the UPS 1 into a DC voltage and supply it to the information processing apparatus 40.
  • the service processor 44 performs control such as turning on and off the AC-DC conversion power supplies 41 to 43.
  • FIG. 17 is a diagram showing the configuration of the AC-DC conversion power supply 41. Note that the AC-DC conversion power supplies 41 to 43 all have the same configuration, and therefore the AC-DC conversion power supply 41 will be described as an example here. As shown in FIG. 17, the AC-DC conversion power supply 41 includes a power factor correction circuit 41a and a converter 41b.
  • the power factor correction circuit 41a and the converter 41b receive the input instruction from the service processor 44, and transmit a completion notification to the service processor 44 when the input is completed. That is, as shown in FIG. 16, the service processor 44 transmits a closing instruction to the power factor correction circuit and the converter of each AC-DC conversion power supply, and a completion notification indicating that the charging is completed from the power factor correction circuit and the converter. Receive.
  • the service processor 44 can know that the input based on the instruction is completed by receiving the completion notification from the power factor correction circuit and the converter of each AC-DC conversion power supply.
  • FIG. 18 is a flowchart illustrating a procedure of power-on processing by the service processor 44 according to the fourth embodiment.
  • the service processor 44 when receiving the power-on instruction, the service processor 44 sends a power-on instruction to the power factor correction circuit of the AC-DC conversion power supply 41 (step S41).
  • the service processor 44 determines whether or not a completion notification has been received from the power factor correction circuit of the AC-DC conversion power supply 41 (step S42). An input instruction is sent (step S43).
  • the service processor 44 determines whether or not a completion notification has been received from the power factor correction circuit of the AC-DC conversion power source 42 (step S44). An input instruction is sent (step S45).
  • the service processor 44 determines whether or not a completion notification has been received from the power factor correction circuit of the AC-DC conversion power supply 43 (step S46), and when received, inputs it to the converters of the AC-DC conversion power supplies 41 to 43. An instruction is sent (step S47). Then, the service processor 44 determines whether or not a completion notification has been received from the converters of the AC-DC conversion power supplies 41 to 43 (step S48).
  • the service processor 44 transmits an input instruction to the power factor correction circuit of each AC-DC conversion power supply, and receives the completion notification from the power factor improvement circuit when the input is completed. Therefore, the service processor 44 can transmit the input instruction to the next power factor correction circuit or converter based on the completion notification.
  • the service processor separately gives input instructions to the power factor correction circuit and the converter has been described.
  • the service processor even when the service processor collectively issues an input instruction to the AC-DC conversion power supply, it is possible to prevent the startup currents of the power factor correction circuits from overlapping.
  • a power supply apparatus will be described in which the service processor performs a turn-on instruction collectively for the AC-DC conversion power supply and the start-up currents of the power factor correction circuits do not overlap.
  • FIG. 19 is a diagram showing an example of the timing of the turn-on instruction sent from the service processor to each AC-DC conversion power source.
  • the service processor first sends a turn-on instruction to the AC-DC conversion power supply # 0 (1), and the AC-DC conversion power supply # 0 completes the turn-on after 1.8 seconds. Further, the service processor sends a turn-on instruction to the AC-DC conversion power supply # 1 0.4 seconds after sending the turn-on instruction to the AC-DC conversion power supply # 0 (2). Complete the loading after 8 seconds. Also, the service processor sends a turn-on instruction to the AC-DC conversion power supply # 2 0.4 seconds after sending the turn-on instruction to the AC-DC conversion power supply # 1 (3). Complete the loading after 8 seconds. Therefore, the service processor can complete the application of the AC-DC conversion power supplies # 0 to # 2 in 2.6 seconds.
  • FIG. 20 is a diagram illustrating the starting current of the information processing apparatus according to the fifth embodiment.
  • a starting current flows through the power factor correction circuit of the AC-DC conversion power source # 0.
  • a startup current by the power factor improvement circuit of the AC-DC conversion power source # 1 flows, and after 0.4 seconds, a startup current by the power factor improvement circuit of the AC-DC conversion power source # 2 flows.
  • a starting current by the converter of the AC-DC conversion power source # 0 flows, and further 0.4 seconds later, a starting current by the converter of the AC-DC conversion power source # 1 flows.
  • a starting current flows through the converter of the AC-DC conversion power supply # 2.
  • the service processor shifts the instruction to turn on each AC-DC conversion power by 0.4 seconds. Then, the designer designs the power supply apparatus so that the start-up current of the converter of AC-DC conversion power supply # 0 flows after the start-up current of the power factor correction circuit of all AC-DC conversion power supplies has finished flowing. Then, the service processor can prevent the generation of an excessive current due to the overlap of the startup currents, and can shorten the completion time of turning on all the AC-DC conversion power supplies to 2.6 seconds.
  • FIG. 21 is a flowchart illustrating a procedure of power-on processing by the service processor according to the fifth embodiment. As shown in FIG. 21, when the service processor receives the power-on instruction, the service processor sends the power-on instruction to the AC-DC conversion power source # 0 (step S51).
  • the service processor determines whether or not 0.4 seconds have elapsed from the instruction to turn on the AC-DC conversion power supply # 0 (step S52).
  • a charging instruction is sent (step S53).
  • the service processor determines whether or not 0.4 seconds have elapsed from the instruction to turn on the AC-DC conversion power source # 1 (step S54). An input instruction is sent (step S55).
  • the service processor determines whether or not 1.8 seconds have elapsed from the instruction to turn on the AC-DC conversion power source # 2 (step S56), and ends the processing when 1.8 seconds have elapsed.
  • 1.8 seconds is the time required from the start to completion of the AC-DC conversion power supply # 2.
  • the service processor shifts the input instruction to each AC-DC conversion power supply by 0.4 seconds.
  • the designer designs the power supply device so that the start-up current of the converter of AC-DC power supply # 0 flows after the start-up current of the power factor correction circuit of all AC-DC conversion power supplies flows. Therefore, the service processor can prevent the generation of an excessive current due to the overlap of the start-up currents, and can shorten the turn-on of all AC-DC conversion power supplies to 2.6 seconds.
  • the present invention is not limited to this, and the power supply apparatus controls the power-on so that the current flowing through the power supply apparatus does not exceed the UPS overcurrent detection point due to the introduction of a plurality of power factor correction circuits. The same can be applied to the case.
  • the power supply device needs to be controlled so that the turn-on time is shorter than when the AC-DC conversion power supplies are turned on in turn.
  • the power supply device can control the power-on so that the startup current flowing through the power supply device does not exceed the UPS overcurrent detection point.
  • the power supply device may control the power-on so that the start-up current flowing through the power supply device does not exceed the UPS overcurrent detection point. it can.
  • the present invention is not limited to this, and a plurality of power supply apparatuses other than the three power supply apparatuses can be used. The same can be applied to the case of having it.
  • the power supply device included in the information processing apparatus has been described.
  • the present invention is not limited to this, and the same applies to a power supply device included in an electronic device that requires a DC power supply. Can be applied to.

Abstract

A power supply device (10a) comprises three AC-DC conversion power supplies (11 to 13) and a service processor (14). The service processor (14) does not send a power-on instruction to each of the AC-DC conversion power supplies, but sends power-on instructions to a power factor improving circuit and a converter both possessed by each of the AC-DC conversion power supplies. The service processor (14) shifts the power-on instructions sent to the power factor improving circuits in the three AC-DC conversion power supplies so that start-up currents are not overlapped, and, after all the power factor improving circuits have been powered on, simultaneously gives power-on instructions to all the converters.

Description

電源装置及び電源投入制御方法Power supply device and power-on control method
 本発明は、電源装置及び電源投入制御方法に関する。 The present invention relates to a power supply device and a power-on control method.
 複数台の交流-直流変換電源(以下、「AC-DC変換電源」という)が搭載された電子装置では、全てのAC-DC変換電源が同時に投入されると、起動電流が重なって過大な電流が流れる。このため、電子装置の前段に接続された無停電電源装置(以下、「UPS(Uninterruptible Power Supply)」という)は過電流異常を検出し、出力を停止する。 In an electronic device equipped with a plurality of AC-DC conversion power supplies (hereinafter referred to as “AC-DC conversion power supplies”), if all AC-DC conversion power supplies are turned on at the same time, the start-up currents overlap and an excessive current Flows. For this reason, the uninterruptible power supply connected to the front stage of the electronic device (hereinafter referred to as “UPS (Uninterruptible Power Supply)”) detects an overcurrent abnormality and stops the output.
 図22は、複数のAC-DC変換電源を備える情報処理装置を示す図である。図22に示すように、情報処理装置90は、3つのAC-DC変換電源91~93、サービスプロセッサ94を有する。AC-DC変換電源91~93は、それぞれUPS1に接続され、情報処理装置90に電力を供給する。サービスプロセッサ94は、AC-DC変換電源91~93の投入及び停止を指示する。なお、図22において、電流IはUPS1を流れる電流を示す。 FIG. 22 is a diagram illustrating an information processing apparatus including a plurality of AC-DC conversion power supplies. As shown in FIG. 22, the information processing apparatus 90 includes three AC-DC conversion power supplies 91 to 93 and a service processor 94. AC-DC conversion power supplies 91 to 93 are each connected to UPS 1 and supply power to information processing apparatus 90. The service processor 94 instructs the AC-DC conversion power supplies 91 to 93 to be turned on and stopped. In FIG. 22, a current I indicates a current flowing through the UPS 1.
 図23は、情報処理装置90の起動電流を示す図である。図23において、縦軸は電流Iを示し、横軸は時間tを示す。図23に示すように、AC-DC変換電源91~93が同時投入されると、(1)各AC-DC変換電源に含まれる力率改善回路に同時に起動電流が流れ、その後、(2)各AC-DC変換電源に含まれるコンバータに同時に起動電流が流れる。ここで、3つの力率改善回路に同時に起動電流が流れると、UPS1を流れる電流IはUPS過電流検出点を越え、UPS1は出力を停止する。 FIG. 23 is a diagram showing the starting current of the information processing apparatus 90. In FIG. 23, the vertical axis represents current I, and the horizontal axis represents time t. As shown in FIG. 23, when the AC-DC conversion power supplies 91 to 93 are simultaneously turned on, (1) a starting current flows simultaneously in the power factor correction circuit included in each AC-DC conversion power supply, and then (2) A starting current flows simultaneously in the converter included in each AC-DC conversion power supply. Here, when a starting current flows through the three power factor correction circuits simultaneously, the current I flowing through the UPS 1 exceeds the UPS overcurrent detection point, and the UPS 1 stops outputting.
 そこで、サービスプロセッサ94は、AC-DC変換電源91~93の投入タイミングをずらし、起動電流が重ならないようにシーケンス投入を行っている。図24は、AC-DC電源をシーケンス投入した場合の情報処理装置90の起動電流を示す図である。図24に示すように、サービスプロセッサ94は、AC-DC変換電源91~93に対して起動電流が重ならないよう順番に投入を指示する。このため、UPS1を流れる電流IはUPS過電流検出点を越えることなく、UPS1は正常に動作する。 Therefore, the service processor 94 shifts the application timings of the AC-DC conversion power supplies 91 to 93 and performs the sequence input so that the start-up currents do not overlap. FIG. 24 is a diagram illustrating a start-up current of the information processing apparatus 90 when the AC-DC power supply is sequenced. As shown in FIG. 24, the service processor 94 instructs the AC-DC conversion power supplies 91 to 93 to turn on in order so that the starting currents do not overlap. For this reason, the current I flowing through the UPS 1 does not exceed the UPS overcurrent detection point, and the UPS 1 operates normally.
 なお、図23及び図24は、起動電流を模式的に表した図であり、実際には直流ではなく交流の起動電流が流れる。また、AC-DC変換電源には力率改善回路の起動後に流れる電流などがあるが、図ではこれらの電流は省略している。 FIG. 23 and FIG. 24 are diagrams schematically showing the starting current, and actually an AC starting current flows instead of a direct current. Further, the AC-DC conversion power supply includes a current that flows after the power factor correction circuit is activated, but these currents are omitted in the figure.
 また、従来技術として、電源制御システムが、電算機システムを構成している複数個の装置を部分個に分割してポートに接続し、ポートを単位として、時系列の電力負荷特性が最大電力容量及び許容付加変動幅を超えないように、電源投入する技術がある。 In addition, as a conventional technology, a power supply control system divides a plurality of devices constituting a computer system into partial parts and connects them to ports, and the time-series power load characteristics are the maximum power capacity in units of ports. In addition, there is a technology for turning on the power so that the allowable additional fluctuation range is not exceeded.
特公平6-100949号公報Japanese Examined Patent Publication No. 6-100949 特開2008-79376号公報JP 2008-79376 A 国際公開第2004/059822号International Publication No. 2004/059822
 しかしながら、サービスプロセッサ94がAC-DC変換電源91~93をシーケンス投入すると、電源の投入完了時間が電源の搭載台数分となって長くなるという問題がある。例えば、AC-DC変換電源1台の投入時間が1秒である場合、3台のAC-DC変換電源の投入に必要な時間は3秒となり、同時に投入した場合の3倍となる。 However, when the service processor 94 sequentially turns on the AC-DC conversion power supplies 91 to 93, there is a problem that the power-on completion time becomes longer due to the number of installed power supplies. For example, when the turn-on time of one AC-DC conversion power supply is 1 second, the time required to turn on the three AC-DC conversion power supplies is 3 seconds, which is three times that when the power is turned on simultaneously.
 本発明は、1つの側面では、電子装置のAC-DC変換電源の投入完了時間を短くすることを目的とする。 An object of one aspect of the present invention is to shorten the completion time of turning on an AC-DC conversion power supply of an electronic device.
 本願の開示する電源装置は、1つの態様において、交流電圧を直流電圧に変換するとともに高調波電流低減を行う力率改善回路と該力率改善回路が出力する直流電圧を異なる直流電圧に変換するコンバータとを備えた複数の電源部を有する。また、本願の開示する電源装置は、力率改善回路及びコンバータの起動電流が複数の電源部間で重なることに起因して電源投入時に装置に流れる電流が所定の過電流閾値以上になることがないように複数の電源部の投入を制御する制御部を有する。また、制御部は、複数の電源部を順番に投入する場合に要する投入時間よりも投入時間が短くなるように複数の電源部の投入を制御する。 In one aspect, the power supply device disclosed in the present application converts an AC voltage into a DC voltage and converts a DC voltage output from the power factor improvement circuit that reduces harmonic current and the DC voltage output from the power factor improvement circuit into a different DC voltage. A plurality of power supply units including a converter; Further, in the power supply device disclosed in the present application, the current flowing through the device when the power is turned on may exceed a predetermined overcurrent threshold due to the start-up currents of the power factor correction circuit and the converter overlapping between the plurality of power supply units. A control unit for controlling the turning on of a plurality of power supply units. Further, the control unit controls the turning on of the plurality of power supply units so that the turning-on time is shorter than the turning-on time required when turning on the plurality of power supply units in order.
 1実施態様によれば、電子装置のAC-DC変換電源の投入完了時間を短くすることができる。 According to one embodiment, the completion time of turning on the AC-DC conversion power of the electronic device can be shortened.
図1は、実施例1に係る情報処理装置が有する電源装置の構成を示す図である。FIG. 1 is a diagram illustrating a configuration of a power supply device included in the information processing apparatus according to the first embodiment. 図2は、AC-DC変換電源の構成を示す図である。FIG. 2 is a diagram illustrating a configuration of an AC-DC conversion power supply. 図3は、力率改善回路の構成を示す図である。FIG. 3 is a diagram illustrating a configuration of the power factor correction circuit. 図4は、力率改善回路の(A)~(C)における電圧波形を示す図である。FIG. 4 is a diagram showing voltage waveforms at (A) to (C) of the power factor correction circuit. 図5は、サービスプロセッサが各AC-DC変換電源へ投入指示を送るタイミングを示す図である。FIG. 5 is a diagram showing the timing at which the service processor sends a turn-on instruction to each AC-DC conversion power supply. 図6は、実施例1に係る情報処理装置の起動電流を示す図である。FIG. 6 is a diagram illustrating the startup current of the information processing apparatus according to the first embodiment. 図7は、サービスプロセッサによる電源投入処理の手順を示すフローチャートである。FIG. 7 is a flowchart showing a procedure of power-on processing by the service processor. 図8は、サービスプロセッサが各AC-DC変換電源へ投入指示を送るタイミングの具体例を示す図である。FIG. 8 is a diagram showing a specific example of timing at which the service processor sends a turn-on instruction to each AC-DC conversion power supply. 図9は、実施例2に係る情報処理装置の起動電流を示す図である。FIG. 9 is a diagram illustrating the startup current of the information processing apparatus according to the second embodiment. 図10は、実施例2に係るサービスプロセッサによる電源投入処理の手順を示すフローチャートである。FIG. 10 is a flowchart illustrating a procedure of power-on processing by the service processor according to the second embodiment. 図11は、実施例3に係る情報処理装置が有する電源装置の構成を示す図である。FIG. 11 is a diagram illustrating the configuration of the power supply device included in the information processing apparatus according to the third embodiment. 図12は、AC-DC変換電源の構成を示す図である。FIG. 12 is a diagram illustrating a configuration of an AC-DC conversion power supply. 図13は、投入タイミング情報記憶部が記憶する投入タイミング情報の一例を示す図である。FIG. 13 is a diagram illustrating an example of the insertion timing information stored in the insertion timing information storage unit. 図14は、投入指示コマンドの一例を示す図である。FIG. 14 is a diagram illustrating an example of the input instruction command. 図15は、サービスプロセッサによる電源投入処理の手順を示すフローチャートである。FIG. 15 is a flowchart showing a procedure of power-on processing by the service processor. 図16は、実施例4に係る情報処理装置が有する電源装置の構成を示す図である。FIG. 16 is a diagram illustrating the configuration of the power supply device included in the information processing apparatus according to the fourth embodiment. 図17は、AC-DC変換電源の構成を示す図である。FIG. 17 is a diagram illustrating a configuration of an AC-DC conversion power supply. 図18は、実施例4に係るサービスプロセッサによる電源投入処理の手順を示すフローチャートである。FIG. 18 is a flowchart illustrating a procedure of power-on processing by the service processor according to the fourth embodiment. 図19は、サービスプロセッサが各AC-DC変換電源へ投入指示を送るタイミングの一例を示す図である。FIG. 19 is a diagram illustrating an example of timing at which the service processor sends a turn-on instruction to each AC-DC conversion power source. 図20は、実施例5に係る情報処理装置の起動電流を示す図である。FIG. 20 is a diagram illustrating the startup current of the information processing apparatus according to the fifth embodiment. 図21は、実施例5に係るサービスプロセッサによる電源投入処理の手順を示すフローチャートである。FIG. 21 is a flowchart illustrating a procedure of power-on processing by the service processor according to the fifth embodiment. 図22は、複数のAC-DC変換電源を備える情報処理装置を示す図である。FIG. 22 is a diagram illustrating an information processing apparatus including a plurality of AC-DC conversion power supplies. 図23は、情報処理装置の起動電流を示す図である。FIG. 23 is a diagram illustrating a startup current of the information processing apparatus. 図24は、AC-DC電源をシーケンス投入した場合の情報処理装置の起動電流を示す図である。FIG. 24 is a diagram illustrating a start-up current of the information processing apparatus when the AC-DC power supply is sequenced.
 以下に、本願の開示する電源装置及び電源投入制御方法の実施例を図面に基づいて詳細に説明する。なお、この実施例は開示の技術を限定するものではない。 Hereinafter, embodiments of a power supply device and a power-on control method disclosed in the present application will be described in detail with reference to the drawings. Note that this embodiment does not limit the disclosed technology.
 まず、実施例1に係る情報処理装置が有する電源装置の構成について説明する。図1は、実施例1に係る情報処理装置が有する電源装置の構成を示す図である。図1に示すように、情報処理装置10が有する電源装置10aは、3台のAC-DC変換電源11~13、サービスプロセッサ14を有する。 First, the configuration of the power supply device included in the information processing apparatus according to the first embodiment will be described. FIG. 1 is a diagram illustrating a configuration of a power supply device included in the information processing apparatus according to the first embodiment. As shown in FIG. 1, the power supply device 10 a included in the information processing apparatus 10 includes three AC-DC conversion power supplies 11 to 13 and a service processor 14.
 AC-DC変換電源11~13は、それぞれUPS1に接続され、UPS1から供給される交流電圧を直流電圧に変換して情報処理装置10に供給する。サービスプロセッサ14は、AC-DC変換電源11~13の投入、停止の制御などを行う。 AC-DC conversion power supplies 11 to 13 are each connected to the UPS 1, convert an AC voltage supplied from the UPS 1 into a DC voltage, and supply it to the information processing apparatus 10. The service processor 14 performs control such as turning on and off the AC-DC conversion power supplies 11 to 13.
 図2は、AC-DC変換電源11の構成を示す図である。なお、AC-DC変換電源11~13はいずれも同様の構成を有するので、ここではAC-DC変換電源11を例にとって説明する。図2に示すように、AC-DC変換電源11は、力率改善回路11a、コンバータ11bを有する。 FIG. 2 is a diagram showing the configuration of the AC-DC conversion power supply 11. Since the AC-DC conversion power supplies 11 to 13 all have the same configuration, the AC-DC conversion power supply 11 will be described as an example here. As shown in FIG. 2, the AC-DC conversion power supply 11 includes a power factor correction circuit 11a and a converter 11b.
 力率改善回路11aは、交流電圧を直流電圧に変換するとともに高調波電流低減を行う回路であり、コンバータ11bは、力率改善回路11aが出力する直流電圧を異なる直流電圧に変換する回路である。 The power factor correction circuit 11a is a circuit that converts an alternating voltage into a direct current voltage and reduces harmonic current, and the converter 11b is a circuit that converts the direct current voltage output from the power factor improvement circuit 11a into a different direct current voltage. .
 図3は、力率改善回路11aの構成を示す図であり、図4は、力率改善回路11aの(A)~(C)における電圧波形を示す図である。図3に示すように、力率改善回路11aは、EMI(Electro Magnetic Interference)フィルタ3、全波整流回路4、コイル5、ダイオード6、Nチャネル型MOSFET(以下、「NMOS」という)7、コンデンサ8を有する。 FIG. 3 is a diagram showing a configuration of the power factor correction circuit 11a, and FIG. 4 is a diagram showing voltage waveforms at (A) to (C) of the power factor improvement circuit 11a. As shown in FIG. 3, the power factor correction circuit 11a includes an EMI (Electro Magnetic Interference) filter 3, a full-wave rectifier circuit 4, a coil 5, a diode 6, an N-channel MOSFET (hereinafter referred to as “NMOS”) 7, a capacitor. 8 has.
 EMIフィルタ3は、交流電源2から供給される交流電圧からノイズを除去する回路であり、全波整流回路4は、EMIフィルタ3によりノイズが除去された交流電圧を全波整流する回路である。EMIフィルタ3への入力電圧が図4(A)に示す交流電圧であるとすると、全波整流回路4の出力電圧は図4(B)に示す脈動電圧となる。 The EMI filter 3 is a circuit that removes noise from the AC voltage supplied from the AC power supply 2, and the full-wave rectifier circuit 4 is a circuit that full-wave rectifies the AC voltage from which noise has been removed by the EMI filter 3. If the input voltage to the EMI filter 3 is an AC voltage shown in FIG. 4A, the output voltage of the full-wave rectifier circuit 4 becomes a pulsating voltage shown in FIG. 4B.
 NMOS7がオン、オフすることによって、コイル5にスイッチング電流が繰り返し流れ、コイル5にエネルギーが蓄えられる。そして、蓄えられたエネルギーが直流電圧化されてコンデンサ8に充電される。図4(C)は、力率改善回路11aが出力する直流電圧を示す。なお、図3において、EMIフィルタ3、全波整流回路4を除いた部分を「力率改善回路」と呼ぶ場合もあるが、ここでは、EMIフィルタ3、全波整流回路4を含めて「力率改善回路」と呼ぶこととする。 When the NMOS 7 is turned on / off, a switching current repeatedly flows through the coil 5 and energy is stored in the coil 5. Then, the stored energy is converted into a DC voltage, and the capacitor 8 is charged. FIG. 4C shows the DC voltage output from the power factor correction circuit 11a. In FIG. 3, the portion excluding the EMI filter 3 and the full-wave rectifier circuit 4 may be referred to as a “power factor correction circuit”. It will be called a “rate improvement circuit”.
 図1に戻って、サービスプロセッサ14は、サービスプロセッサ94とは異なり、各AC-DC変換電源に対してまとめて投入指示を行うのではなく、力率改善回路、コンバータに対して別々に投入指示を行う。具体的には、サービスプロセッサ14は、各AC-DC変換電源の力率改善回路に起動電流が重ならないようにずらして投入指示を行い、その後、全てのコンバータにまとめて投入指示を行う。 Returning to FIG. 1, unlike the service processor 94, the service processor 14 does not issue a turn-on instruction to each AC-DC conversion power source, but separately turns on a power factor correction circuit and a converter. I do. Specifically, the service processor 14 instructs the power factor correction circuit of each AC-DC conversion power supply so as not to overlap the starting current, and then issues the input instruction to all the converters collectively.
 図5は、サービスプロセッサ14が各AC-DC変換電源へ投入指示を送るタイミングを示す図である。図5に示すように、サービスプロセッサ14は、まず、AC-DC変換電源11の力率改善回路に投入指示を送り(1)、その後、起動電流が重ならないように、AC-DC変換電源12の力率改善回路に投入指示を送る(2)。そして、サービスプロセッサ14は、起動電流が重ならないように、AC-DC変換電源13の力率改善回路に投入指示を送り(3)、その後、AC-DC変換電源11~13のコンバータに同時に投入指示を送る。 FIG. 5 is a diagram showing the timing at which the service processor 14 sends a turn-on instruction to each AC-DC conversion power source. As shown in FIG. 5, the service processor 14 first sends an input instruction to the power factor correction circuit of the AC-DC conversion power supply 11 (1), and then the AC-DC conversion power supply 12 so that the starting currents do not overlap. (2) is sent to the power factor correction circuit. Then, the service processor 14 sends an input instruction to the power factor correction circuit of the AC-DC conversion power source 13 so that the starting currents do not overlap (3), and then simultaneously inputs to the converters of the AC-DC conversion power sources 11-13. Send instructions.
 図6は、実施例1に係る情報処理装置10の起動電流を示す図である。図6に示すように、まずAC-DC変換電源11の力率改善回路の投入による起動電流が流れる。その後、AC-DC変換電源12の力率改善回路の投入による起動電流が流れ、その後でAC-DC変換電源13の力率改善回路の投入による起動電流が流れる。そして、AC-DC変換電源11~13のコンバータの投入による起動電流が流れる。 FIG. 6 is a diagram illustrating the starting current of the information processing apparatus 10 according to the first embodiment. As shown in FIG. 6, first, a starting current flows when the power factor correction circuit of the AC-DC conversion power supply 11 is turned on. Thereafter, a starting current flows when the power factor correction circuit of the AC-DC conversion power supply 12 is turned on, and then a starting current flows when the power factor improvement circuit of the AC-DC conversion power supply 13 is turned on. Then, a starting current flows when the converters of the AC-DC conversion power supplies 11 to 13 are turned on.
 このように、サービスプロセッサ14は、各々のAC-DC変換電源の力率改善回路投入指示をずらし、コンバータ投入指示を同時に行う。したがって、サービスプロセッサ14は、起動電流の重なりによる過大な電流の発生を防ぐとともに、全てのAC-DC変換電源の投入完了時間を従来と比較して短縮することができる。 Thus, the service processor 14 shifts the power factor correction circuit input instructions of the respective AC-DC conversion power supplies and simultaneously performs the converter input instructions. Therefore, the service processor 14 can prevent the generation of an excessive current due to the overlap of the startup currents, and can shorten the completion time of turning on all the AC-DC conversion power supplies as compared with the conventional case.
 次に、サービスプロセッサ14による電源投入処理の手順について説明する。図7は、サービスプロセッサ14による電源投入処理の手順を示すフローチャートである。図7に示すように、サービスプロセッサ14は、電源投入指示を受けると、AC-DC変換電源11の力率改善回路に投入指示を送る(ステップS11)。 Next, the procedure of power-on processing by the service processor 14 will be described. FIG. 7 is a flowchart showing a procedure of power-on processing by the service processor 14. As shown in FIG. 7, when receiving the power-on instruction, the service processor 14 sends the power-on instruction to the power factor correction circuit of the AC-DC conversion power supply 11 (step S11).
 そして、サービスプロセッサ14は、AC-DC変換電源11の力率改善回路の投入が完了したか否かを判定し(ステップS12)、投入が完了すると、AC-DC変換電源12の力率改善回路に投入指示を送る(ステップS13)。 Then, the service processor 14 determines whether or not the power factor correction circuit of the AC-DC conversion power source 11 has been turned on (step S12). (Step S13).
 そして、サービスプロセッサ14は、AC-DC変換電源12の力率改善回路の投入が完了したか否かを判定し(ステップS14)、投入が完了すると、AC-DC変換電源13の力率改善回路に投入指示を送る(ステップS15)。 Then, the service processor 14 determines whether or not the power factor correction circuit of the AC-DC conversion power source 12 has been turned on (step S14). A sending instruction is sent to (step S15).
 そして、サービスプロセッサ14は、AC-DC変換電源13の力率改善回路の投入が完了したか否かを判定し(ステップS16)、投入が完了すると、AC-DC変換電源11~13のコンバータに投入指示を送る(ステップS17)。そして、サービスプロセッサ14は、AC-DC変換電源11~13のコンバータの投入が完了したか否かを判定し(ステップS18)、投入が完了すると、処理を終了する。 Then, the service processor 14 determines whether or not the power factor correction circuit of the AC-DC conversion power supply 13 has been turned on (step S16). An input instruction is sent (step S17). Then, the service processor 14 determines whether or not the conversion of the converters of the AC-DC conversion power supplies 11 to 13 is completed (step S18), and when the input is completed, the process ends.
 上述してきたように、実施例1では、サービスプロセッサ14が、3つのAC-DC変換電源11~13の各力率改善回路への投入指示を起動電流が重ならないようにずらし、全ての力率改善回路の投入完了後に全コンバータへの投入指示を同時に行う。したがって、サービスプロセッサ14は、起動電流の重なりによる過大な電流の発生を防ぐとともに、情報処理装置10のAC-DC変換電源の投入完了時間を短縮することができる。 As described above, in the first embodiment, the service processor 14 shifts the input instructions to the power factor correction circuits of the three AC-DC conversion power supplies 11 to 13 so that the start-up currents do not overlap, and all the power factors After the improvement circuit has been turned on, all the converters are instructed simultaneously. Therefore, the service processor 14 can prevent the generation of an excessive current due to the overlap of the startup currents, and can shorten the completion time of turning on the AC-DC conversion power of the information processing apparatus 10.
 ところで、上記実施例1では、AC-DC変換電源11~13の力率改善回路への投入指示をどのようにずらすかについては説明を行わなかった。そこで、実施例2では、AC-DC変換電源11~13の力率改善回路への投入指示を所定の時間間隔で行うことによって、投入指示をずらす場合について説明する。 By the way, in the first embodiment, how to shift the input instruction to the power factor correction circuit of the AC-DC conversion power supplies 11 to 13 was not described. Therefore, in the second embodiment, a case will be described in which the input instruction is shifted by giving an input instruction to the power factor correction circuits of the AC-DC conversion power supplies 11 to 13 at predetermined time intervals.
 図8は、サービスプロセッサ14が各AC-DC変換電源へ投入指示を送るタイミングの具体例を示す図である。図8に示すように、サービスプロセッサ14は、まず、AC-DC変換電源11の力率改善回路に投入指示を送り(1)、その0.4秒後に、AC-DC変換電源12の力率改善回路に投入指示を送る(2)。ここで、0.4秒は、各AC-DC変換電源の投入開始から完了までに要する時間である。そして、サービスプロセッサ14は、さらに0.4秒後に、AC-DC変換電源13の力率改善回路に投入指示を送り(3)、そのさらに0.4秒後に、AC-DC変換電源11~13のコンバータに同時に投入指示を送る。 FIG. 8 is a diagram showing a specific example of timing at which the service processor 14 sends a turn-on instruction to each AC-DC conversion power source. As shown in FIG. 8, the service processor 14 first sends an input instruction to the power factor correction circuit of the AC-DC conversion power supply 11 (1), and 0.4 seconds later, the power factor of the AC-DC conversion power supply 12 is sent. Sending the input instruction to the improvement circuit (2). Here, 0.4 seconds is the time required from the start to completion of each AC-DC conversion power supply. The service processor 14 then sends an input instruction to the power factor correction circuit of the AC-DC conversion power supply 13 after another 0.4 seconds (3), and further 0.4 seconds later, the AC-DC conversion power supplies 11 to 13 Simultaneously send input instructions to the converters.
 図9は、実施例2に係る情報処理装置10の起動電流を示す図である。図9に示すように、まずAC-DC変換電源11の力率改善回路の投入による起動電流が流れる。そして、0.4秒後に、AC-DC変換電源12の力率改善回路の投入による起動電流が流れ、その0.4秒後に、AC-DC変換電源13の力率改善回路の投入による起動電流が流れる。そして、さらにその0.4秒後に、AC-DC変換電源11~13のコンバータの投入による起動電流が流れる。 FIG. 9 is a diagram illustrating the starting current of the information processing apparatus 10 according to the second embodiment. As shown in FIG. 9, first, a starting current flows by turning on the power factor correction circuit of the AC-DC conversion power supply 11. Then, after 0.4 seconds, a starting current flows due to turning on the power factor correction circuit of the AC-DC conversion power supply 12, and after 0.4 seconds, the starting current due to turning on the power factor improvement circuit of the AC-DC conversion power supply 13 Flows. Further, 0.4 seconds later, a starting current flows when the converters of the AC-DC conversion power supplies 11 to 13 are turned on.
 このように、サービスプロセッサ14は、各AC-DC変換電源の力率改善回路投入指示を0.4秒ずつずらし、AC-DC変換電源13の力率改善回路の投入から0.4秒後にコンバータ投入指示を同時に行う。したがって、サービスプロセッサ14は、起動電流の重なりによる過大な電流の発生を防ぐとともに、全てのAC-DC変換電源の投入完了時間を0.4+0.4+0.4+0.6=1.8秒に短縮することができる。 In this manner, the service processor 14 shifts the power factor correction circuit input instruction of each AC-DC conversion power supply by 0.4 seconds, and after 0.4 second from the input of the power factor correction circuit of the AC-DC conversion power supply 13 Injecting instructions at the same time. Therefore, the service processor 14 prevents an excessive current from being generated due to the overlap of the startup currents, and shortens the completion time of turning on all the AC-DC conversion power supplies to 0.4 + 0.4 + 0.4 + 0.6 = 1.8 seconds. be able to.
 次に、実施例2に係るサービスプロセッサ14による電源投入処理の手順について説明する。図10は、実施例2に係るサービスプロセッサ14による電源投入処理の手順を示すフローチャートである。図10に示すように、サービスプロセッサ14は、電源投入指示を受けると、AC-DC変換電源11の力率改善回路に投入指示を送る(ステップS21)。 Next, the procedure of power-on processing by the service processor 14 according to the second embodiment will be described. FIG. 10 is a flowchart illustrating a procedure of power-on processing by the service processor 14 according to the second embodiment. As shown in FIG. 10, when receiving the power-on instruction, the service processor 14 sends a power-on instruction to the power factor correction circuit of the AC-DC conversion power supply 11 (step S21).
 そして、サービスプロセッサ14は、AC-DC変換電源11の力率改善回路への投入指示から0.4秒経過したか否かを判定し(ステップS22)、0.4秒経過すると、AC-DC変換電源12の力率改善回路に投入指示を送る(ステップS23)。 Then, the service processor 14 determines whether or not 0.4 seconds have elapsed from the instruction to turn on the AC-DC conversion power supply 11 to the power factor correction circuit (step S22). An input instruction is sent to the power factor correction circuit of the conversion power supply 12 (step S23).
 そして、サービスプロセッサ14は、AC-DC変換電源12の力率改善回路への投入指示から0.4秒経過したか否かを判定し(ステップS24)、0.4秒経過すると、AC-DC変換電源13の力率改善回路に投入指示を送る(ステップS25)。 Then, the service processor 14 determines whether or not 0.4 seconds have elapsed from the instruction to turn on the AC-DC conversion power supply 12 to the power factor correction circuit (step S24). An input instruction is sent to the power factor correction circuit of the conversion power supply 13 (step S25).
 そして、サービスプロセッサ14は、AC-DC変換電源13の力率改善回路への投入指示から0.4秒経過したか否かを判定し(ステップS26)、0.4秒経過すると、AC-DC変換電源11~13のコンバータに投入指示を送る(ステップS27)。そして、サービスプロセッサ14は、AC-DC変換電源11~13のコンバータへの投入指示から0.6秒経過したか否かを判定し(ステップS28)、0.6秒経過すると、処理を終了する。ここで、0.6秒は、コンバータの投入開始から完了までに要する時間である。 Then, the service processor 14 determines whether or not 0.4 seconds have elapsed from the instruction to turn on the AC-DC conversion power supply 13 to the power factor correction circuit (step S26). An input instruction is sent to the converters of the conversion power supplies 11 to 13 (step S27). Then, the service processor 14 determines whether or not 0.6 seconds have elapsed from the instruction to turn on the converters of the AC-DC conversion power supplies 11 to 13 (step S28), and ends processing when 0.6 seconds have elapsed. . Here, 0.6 seconds is the time required from the start of charging to completion of the converter.
 上述してきたように、実施例2では、サービスプロセッサ14が、各々のAC-DC変換電源の力率改善回路への投入指示を0.4秒ずつずらし、AC-DC変換電源13の力率改善回路への投入指示から0.4秒後にコンバータ投入指示を同時に行う。したがって、サービスプロセッサ14は、起動電流の重なりによる過大な電流の発生を防ぐとともに、全てのAC-DC変換電源の投入を1.8秒に短縮することができる。 As described above, in the second embodiment, the service processor 14 shifts the input instruction to the power factor correction circuit of each AC-DC conversion power supply by 0.4 seconds to improve the power factor of the AC-DC conversion power supply 13. A converter input instruction is simultaneously issued 0.4 seconds after an instruction to input to the circuit. Therefore, the service processor 14 can prevent the generation of an excessive current due to the overlap of the start-up currents, and can shorten the turn-on of all AC-DC conversion power supplies to 1.8 seconds.
 上記実施例1及び2では、サービスプロセッサが力率改善回路及びコンバータに投入指示を送る場合について説明したが、サービスプロセッサは力率改善回路及びコンバータの投入タイミングを指定する情報をAC-DC変換電源に送るようにすることもできる。そこで、サービスプロセッサが力率改善回路及びコンバータの投入タイミングを指定する情報をAC-DC変換電源に送る場合について説明する。 In the first and second embodiments, the case where the service processor sends the input instruction to the power factor correction circuit and the converter has been described. However, the service processor receives information specifying the input timing of the power factor improvement circuit and the converter as an AC-DC conversion power supply. It can also be sent to. Therefore, a case where the service processor sends information specifying the power factor correction circuit and the input timing of the converter to the AC-DC conversion power supply will be described.
 まず、実施例3に係る情報処理装置が有する電源装置の構成について説明する。図11は、実施例3に係る情報処理装置が有する電源装置の構成を示す図である。図11に示すように、情報処理装置30が有する電源装置30aは、3台のAC-DC変換電源31~33、サービスプロセッサ34を有する。 First, the configuration of the power supply device included in the information processing apparatus according to the third embodiment will be described. FIG. 11 is a diagram illustrating the configuration of the power supply device included in the information processing apparatus according to the third embodiment. As shown in FIG. 11, the power supply device 30 a included in the information processing apparatus 30 includes three AC-DC conversion power supplies 31 to 33 and a service processor 34.
 AC-DC変換電源31~33は、それぞれUPS1に接続され、UPS1から供給される交流電圧を直流電圧に変換して情報処理装置30に供給する。サービスプロセッサ34は、AC-DC変換電源31~33の投入、停止の制御などを行う。 AC-DC conversion power supplies 31 to 33 are each connected to the UPS 1, convert the AC voltage supplied from the UPS 1 into a DC voltage, and supply the DC voltage to the information processing apparatus 30. The service processor 34 performs control such as turning on / off the AC-DC conversion power supplies 31 to 33.
 図12は、AC-DC変換電源31の構成を示す図である。なお、AC-DC変換電源31~33はいずれも同様の構成を有するので、ここではAC-DC変換電源31を例にとって説明する。図12に示すように、AC-DC変換電源31は、力率改善回路31a、コンバータ31b、制御部31cを有する。 FIG. 12 is a diagram showing the configuration of the AC-DC conversion power supply 31. Note that the AC-DC conversion power supplies 31 to 33 all have the same configuration, and therefore the AC-DC conversion power supply 31 will be described as an example here. As shown in FIG. 12, the AC-DC conversion power supply 31 includes a power factor correction circuit 31a, a converter 31b, and a control unit 31c.
 力率改善回路31aは、交流電圧を直流電圧に変換するとともに高調波電流低減を行う回路であり、コンバータ31bは、力率改善回路31aが出力する直流電圧を異なる直流電圧に変換する回路である。制御部31cは、サービスプロセッサ34からの指示を受けて、力率改善回路31a及びコンバータ31bに投入指示を行う。 The power factor improvement circuit 31a is a circuit that converts an AC voltage into a DC voltage and reduces harmonic current, and the converter 31b is a circuit that converts the DC voltage output from the power factor improvement circuit 31a into a different DC voltage. . Upon receiving an instruction from the service processor 34, the control unit 31c instructs the power factor correction circuit 31a and the converter 31b to input.
 サービスプロセッサ34は、投入タイミング情報記憶部34aを有する。投入タイミング情報記憶部34aは、AC-DC変換電源の投入タイミング情報を記憶する。図13は、投入タイミング情報記憶部34aが記憶する投入タイミング情報の一例を示す図である。図13に示すように、投入タイミング情報記憶部34aは、各力率改善回路の投入待ち時間、コンバータの投入待ち時間及び電源投入の完了時間をAC-DC変換電源の搭載数ごとに記憶する。 The service processor 34 has an input timing information storage unit 34a. The turning-on timing information storage unit 34a stores turning-on timing information of the AC-DC conversion power supply. FIG. 13 is a diagram illustrating an example of the insertion timing information stored in the insertion timing information storage unit 34a. As shown in FIG. 13, the turn-on timing information storage unit 34 a stores the turn-on waiting time of each power factor correction circuit, the turn-on wait time of the converter, and the power-on completion time for each number of installed AC-DC conversion power supplies.
 図13において、「スキップ」は、対応する力率改善回路がないため、待ち時間がないこと、すなわち待つ必要がないことを示す。例えば、AC-DC変換電源搭載数が「2台」である場合には、力率改善回路#0及び#1の投入待ち時間は「0.4秒」であるが、力率改善回路#2はないため、投入待ち時間は「スキップ」である。 In FIG. 13, “Skip” indicates that there is no waiting time, that is, there is no need to wait because there is no corresponding power factor correction circuit. For example, when the number of AC-DC conversion power supplies mounted is “2”, the waiting time for turning on the power factor correction circuits # 0 and # 1 is “0.4 seconds”, but the power factor correction circuit # 2 Because there is no, the input waiting time is “skip”.
 サービスプロセッサ34は、投入タイミング情報記憶部34aが記憶する投入タイミング情報と電源装置に搭載されたAC-DC変換電源の数とに基づいて投入指示コマンドを作成し、各AC-DC変換電源に送信する。 The service processor 34 creates a turn-on instruction command based on the turn-on timing information stored in the turn-on timing information storage unit 34a and the number of AC-DC conversion power supplies mounted on the power supply device, and transmits the command to each AC-DC conversion power supply. To do.
 図14は、投入指示コマンドの一例を示す図である。図14に示すように、投入指示コマンドは、AC-DC変換電源の搭載数、各力率改善回路の投入開始時間、コンバータの投入待ち時間及び電源投入の完了時間を有する。 FIG. 14 is a diagram illustrating an example of the input instruction command. As shown in FIG. 14, the turn-on instruction command includes the number of AC-DC conversion power supplies mounted, the turn-on start time of each power factor correction circuit, the turn-on waiting time of the converter, and the turn-on completion time.
 図14に示す例では、AC-DC変換電源の搭載数は「3台」であり、力率改善回路#0の投入は、投入指示コマンド受信後「0秒」後、すなわち投入指示コマンド受信後直ちにであり、力率改善回路#1の投入は、投入指示コマンド受信後「0.4秒」後である。また、力率改善回路#2の投入は、投入指示コマンド受信後「0.8秒」後であり、コンバータ投入は、投入指示コマンド受信後「1.2秒」後である。 In the example shown in FIG. 14, the number of AC-DC conversion power supplies mounted is “3”, and the power factor correction circuit # 0 is turned on after “0 seconds” after receiving the input instruction command, that is, after receiving the input instruction command. Immediately, the power factor correction circuit # 1 is turned on “0.4 seconds” after the receiving instruction command is received. The power factor correction circuit # 2 is turned on after “0.8 seconds” after receiving the input instruction command, and the converter is input after “1.2 seconds” after receiving the input instruction command.
 各AC-DC変換電源の制御部は、サービスプロセッサ34から投入指示コマンドを受信すると、投入指示コマンドを解析し、投入指示コマンドに応じて力率改善回路及びコンバータの投入を制御する。 When the control unit of each AC-DC conversion power supply receives the input instruction command from the service processor 34, it analyzes the input instruction command and controls the input of the power factor correction circuit and the converter according to the input instruction command.
 具体的には、AC-DC変換電源31の制御部は、投入指示コマンドを受信すると力率改善回路#0を投入し、AC-DC変換電源32の制御部は、投入指示コマンドを受信すると0.4秒後に力率改善回路#1を投入する。また、AC-DC変換電源33の制御部は、投入指示コマンドを受信する0.8秒後に力率改善回路#2を投入し、各AC-DC変換電源の制御部は、投入指示コマンドを受信する1.2秒後にコンバータを投入する。 Specifically, when the control unit of the AC-DC conversion power supply 31 receives the input instruction command, the control unit of the power factor correction circuit # 0 is input, and when the control unit of the AC-DC conversion power supply 32 receives the input instruction command, 0 is input. 4. Power factor correction circuit # 1 is turned on after 4 seconds. The control unit of the AC-DC conversion power supply 33 turns on the power factor correction circuit # 2 0.8 seconds after receiving the turn-on instruction command, and the control unit of each AC-DC conversion power supply receives the turn-on instruction command. After 1.2 seconds, turn on the converter.
 このように、各AC-DC変換電源の制御部は、サービスプロセッサ34から受信した投入指示コマンドに基づいて力率改善回路及びコンバータを投入する。したがって、サービスプロセッサ34は、投入指示コマンドを各AC-DC変換電源に送信するだけで各AC-DC変換電源を投入することができる。 As described above, the control unit of each AC-DC conversion power supply inputs the power factor correction circuit and the converter based on the input instruction command received from the service processor 34. Therefore, the service processor 34 can turn on each AC-DC conversion power supply only by transmitting a turn-on instruction command to each AC-DC conversion power supply.
 次に、サービスプロセッサ34による電源投入処理の手順について説明する。図15は、サービスプロセッサ34による電源投入処理の手順を示すフローチャートである。図15に示すように、サービスプロセッサ34は、電源投入指示を受けると、AC-DC変換電源31~33に投入指示コマンドを送信することによって、AC-DC変換電源31~33に投入を指示する(ステップS31)。 Next, the procedure of power-on processing by the service processor 34 will be described. FIG. 15 is a flowchart showing a procedure of power-on processing by the service processor 34. As shown in FIG. 15, when the service processor 34 receives a power-on instruction, the service processor 34 sends a power-on instruction command to the AC-DC converted power supplies 31-33, thereby instructing the AC-DC converted power supplies 31-33 to turn on. (Step S31).
 そして、サービスプロセッサ34は、1.8秒経過したか否かを判定し(ステップS32)、1.8秒が経過すると、処理を終了する。ここで、1.8秒は、AC-DC変換電源31~33の力率改善回路及びコンバータを投入指示コマンドに基づいて各制御部が投入した場合の投入完了までの時間である。 Then, the service processor 34 determines whether or not 1.8 seconds have passed (step S32), and when 1.8 seconds have passed, the process is terminated. Here, 1.8 seconds is a time until completion of turning on when each control unit turns on the power factor correction circuits and converters of the AC-DC conversion power supplies 31 to 33 based on the turning instruction command.
 上述してきたように、実施例3では、サービスプロセッサ34が、投入タイミング情報記憶部34aに基づいて投入指示コマンドを作成し、各AC-DC変換電源に送信する。そして、各AC-DC変換電源の制御部が投入指示コマンドに基づいて力率改善回路及びコンバータを投入する。したがって、サービスプロセッサ34は、投入指示コマンドを送信するだけで、AC-DC変換電源を投入することができる。 As described above, in the third embodiment, the service processor 34 creates the input instruction command based on the input timing information storage unit 34a and transmits it to each AC-DC conversion power source. Then, the control unit of each AC-DC conversion power supply turns on the power factor correction circuit and the converter based on the turn-on instruction command. Therefore, the service processor 34 can turn on the AC-DC conversion power supply only by transmitting the turn-on instruction command.
 上記実施例2では、所定の時間が経過するとサービスプロセッサが次の力率改善回路又はコンバータに投入指示を送る場合について説明した。しかしながら、サービスプロセッサは、力率改善回路から投入完了の通知を受け取ることによって、次の力率改善回路又はコンバータに投入指示を送ることもできる。そこで、サービスプロセッサが力率改善回路から投入完了の通知を受け取ると、次の力率改善回路又はコンバータに投入指示を送る場合について説明する。 In the second embodiment, the case where the service processor sends an input instruction to the next power factor correction circuit or converter when a predetermined time has elapsed has been described. However, the service processor can also send a closing instruction to the next power factor improving circuit or converter by receiving a notification of closing completion from the power factor improving circuit. Therefore, a case will be described in which when the service processor receives a notification of completion of input from the power factor correction circuit, a input instruction is sent to the next power factor correction circuit or converter.
 まず、実施例4に係る情報処理装置が有する電源装置の構成について説明する。図16は、実施例4に係る情報処理装置が有する電源装置の構成を示す図である。図16に示すように、情報処理装置40が有する電源装置40aは、3台のAC-DC変換電源41~43、サービスプロセッサ44を有する。 First, the configuration of the power supply device included in the information processing apparatus according to the fourth embodiment will be described. FIG. 16 is a diagram illustrating the configuration of the power supply device included in the information processing apparatus according to the fourth embodiment. As shown in FIG. 16, the power supply device 40 a included in the information processing apparatus 40 includes three AC-DC conversion power supplies 41 to 43 and a service processor 44.
 AC-DC変換電源41~43は、それぞれUPS1に接続され、UPS1から供給される交流電圧を直流電圧に変換して情報処理装置40に供給する。サービスプロセッサ44は、AC-DC変換電源41~43の投入、停止の制御などを行う。 AC-DC conversion power supplies 41 to 43 are connected to the UPS 1, respectively, and convert an AC voltage supplied from the UPS 1 into a DC voltage and supply it to the information processing apparatus 40. The service processor 44 performs control such as turning on and off the AC-DC conversion power supplies 41 to 43.
 図17は、AC-DC変換電源41の構成を示す図である。なお、AC-DC変換電源41~43はいずれも同様の構成を有するので、ここではAC-DC変換電源41を例にとって説明する。図17に示すように、AC-DC変換電源41は、力率改善回路41a、コンバータ41bを有する。 FIG. 17 is a diagram showing the configuration of the AC-DC conversion power supply 41. Note that the AC-DC conversion power supplies 41 to 43 all have the same configuration, and therefore the AC-DC conversion power supply 41 will be described as an example here. As shown in FIG. 17, the AC-DC conversion power supply 41 includes a power factor correction circuit 41a and a converter 41b.
 力率改善回路41a及びコンバータ41bは、サービスプロセッサ44から投入指示を受信し、投入が完了するとサービスプロセッサ44へ完了通知を送信する。すなわち、図16に示すように、サービスプロセッサ44は、各AC-DC変換電源の力率改善回路及びコンバータに投入指示を送信し、力率改善回路及びコンバータから投入が完了したことを示す完了通知を受信する。 The power factor correction circuit 41a and the converter 41b receive the input instruction from the service processor 44, and transmit a completion notification to the service processor 44 when the input is completed. That is, as shown in FIG. 16, the service processor 44 transmits a closing instruction to the power factor correction circuit and the converter of each AC-DC conversion power supply, and a completion notification indicating that the charging is completed from the power factor correction circuit and the converter. Receive.
 このように、サービスプロセッサ44は、各AC-DC変換電源の力率改善回路及びコンバータから完了通知を受信することによって、指示に基づく投入が完了したことを知ることができる。 As described above, the service processor 44 can know that the input based on the instruction is completed by receiving the completion notification from the power factor correction circuit and the converter of each AC-DC conversion power supply.
 次に、実施例4に係るサービスプロセッサ44による電源投入処理の手順について説明する。図18は、実施例4に係るサービスプロセッサ44による電源投入処理の手順を示すフローチャートである。図18に示すように、サービスプロセッサ44は、電源投入指示を受けると、AC-DC変換電源41の力率改善回路に投入指示を送る(ステップS41)。 Next, the procedure of power-on processing by the service processor 44 according to the fourth embodiment will be described. FIG. 18 is a flowchart illustrating a procedure of power-on processing by the service processor 44 according to the fourth embodiment. As shown in FIG. 18, when receiving the power-on instruction, the service processor 44 sends a power-on instruction to the power factor correction circuit of the AC-DC conversion power supply 41 (step S41).
 そして、サービスプロセッサ44は、AC-DC変換電源41の力率改善回路から完了通知を受信したか否かを判定し(ステップS42)、受信すると、AC-DC変換電源42の力率改善回路に投入指示を送る(ステップS43)。 Then, the service processor 44 determines whether or not a completion notification has been received from the power factor correction circuit of the AC-DC conversion power supply 41 (step S42). An input instruction is sent (step S43).
 そして、サービスプロセッサ44は、AC-DC変換電源42の力率改善回路から完了通知を受信したか否かを判定し(ステップS44)、受信すると、AC-DC変換電源43の力率改善回路に投入指示を送る(ステップS45)。 Then, the service processor 44 determines whether or not a completion notification has been received from the power factor correction circuit of the AC-DC conversion power source 42 (step S44). An input instruction is sent (step S45).
 そして、サービスプロセッサ44は、AC-DC変換電源43の力率改善回路から完了通知を受信したか否かを判定し(ステップS46)、受信すると、AC-DC変換電源41~43のコンバータに投入指示を送る(ステップS47)。そして、サービスプロセッサ44は、AC-DC変換電源41~43のコンバータから完了通知を受信したか否かを判定し(ステップS48)、受信すると、処理を終了する。 Then, the service processor 44 determines whether or not a completion notification has been received from the power factor correction circuit of the AC-DC conversion power supply 43 (step S46), and when received, inputs it to the converters of the AC-DC conversion power supplies 41 to 43. An instruction is sent (step S47). Then, the service processor 44 determines whether or not a completion notification has been received from the converters of the AC-DC conversion power supplies 41 to 43 (step S48).
 上述してきたように、実施例4では、サービスプロセッサ44が、各AC-DC変換電源の力率改善回路に投入指示を送信し、投入が完了すると力率改善回路から完了通知を受信する。したがって、サービスプロセッサ44は、完了通知に基づいて次の力率改善回路又はコンバータに投入指示を送信することができる。 As described above, in the fourth embodiment, the service processor 44 transmits an input instruction to the power factor correction circuit of each AC-DC conversion power supply, and receives the completion notification from the power factor improvement circuit when the input is completed. Therefore, the service processor 44 can transmit the input instruction to the next power factor correction circuit or converter based on the completion notification.
 ところで、上記実施例1~4では、サービスプロセッサが力率改善回路及びコンバータに別々に投入指示を行う場合について説明した。しかしながら、サービスプロセッサがAC-DC変換電源にまとめて投入指示を行う場合でも、力率改善回路の起動電流が重ならないようにすることができる。そこで、実施例5では、サービスプロセッサがAC-DC変換電源にまとめて投入指示を行う場合で、力率改善回路の起動電流が重ならない電源装置について説明する。 By the way, in the first to fourth embodiments described above, the case where the service processor separately gives input instructions to the power factor correction circuit and the converter has been described. However, even when the service processor collectively issues an input instruction to the AC-DC conversion power supply, it is possible to prevent the startup currents of the power factor correction circuits from overlapping. Thus, in a fifth embodiment, a power supply apparatus will be described in which the service processor performs a turn-on instruction collectively for the AC-DC conversion power supply and the start-up currents of the power factor correction circuits do not overlap.
 図19は、サービスプロセッサが各AC-DC変換電源へ送る投入指示のタイミングの一例を示す図である。図19に示すように、サービスプロセッサは、まず、AC-DC変換電源#0に投入指示を送り(1)、AC-DC変換電源#0は1.8秒後に投入を完了する。また、サービスプロセッサは、AC-DC変換電源#0に投入指示を送った0.4秒後に、AC-DC変換電源#1に投入指示を送り(2)、AC-DC変換電源#1は1.8秒後に投入を完了する。また、サービスプロセッサは、AC-DC変換電源#1に投入指示を送った0.4秒後に、AC-DC変換電源#2に投入指示を送り(3)、AC-DC変換電源#2は1.8秒後に投入を完了する。したがって、サービスプロセッサは、2.6秒でAC-DC変換電源#0~2の投入を完了することができる。 FIG. 19 is a diagram showing an example of the timing of the turn-on instruction sent from the service processor to each AC-DC conversion power source. As shown in FIG. 19, the service processor first sends a turn-on instruction to the AC-DC conversion power supply # 0 (1), and the AC-DC conversion power supply # 0 completes the turn-on after 1.8 seconds. Further, the service processor sends a turn-on instruction to the AC-DC conversion power supply # 1 0.4 seconds after sending the turn-on instruction to the AC-DC conversion power supply # 0 (2). Complete the loading after 8 seconds. Also, the service processor sends a turn-on instruction to the AC-DC conversion power supply # 2 0.4 seconds after sending the turn-on instruction to the AC-DC conversion power supply # 1 (3). Complete the loading after 8 seconds. Therefore, the service processor can complete the application of the AC-DC conversion power supplies # 0 to # 2 in 2.6 seconds.
 図20は、実施例5に係る情報処理装置の起動電流を示す図である。図20に示すように、まずAC-DC変換電源#0の力率改善回路による起動電流が流れる。そして、0.4秒後に、AC-DC変換電源#1の力率改善回路による起動電流が流れ、その0.4秒後にAC-DC変換電源#2の力率改善回路による起動電流が流れる。そして、さらにその0.4秒後に、AC-DC変換電源#0のコンバータによる起動電流が流れ、さらにその0.4秒後に、AC-DC変換電源#1のコンバータによる起動電流が流れる。そして、さらにその0.4秒後に、AC-DC変換電源#2のコンバータによる起動電流が流れる。 FIG. 20 is a diagram illustrating the starting current of the information processing apparatus according to the fifth embodiment. As shown in FIG. 20, first, a starting current flows through the power factor correction circuit of the AC-DC conversion power source # 0. Then, after 0.4 seconds, a startup current by the power factor improvement circuit of the AC-DC conversion power source # 1 flows, and after 0.4 seconds, a startup current by the power factor improvement circuit of the AC-DC conversion power source # 2 flows. Further, 0.4 seconds later, a starting current by the converter of the AC-DC conversion power source # 0 flows, and further 0.4 seconds later, a starting current by the converter of the AC-DC conversion power source # 1 flows. Further, 0.4 seconds later, a starting current flows through the converter of the AC-DC conversion power supply # 2.
 このように、サービスプロセッサは、各AC-DC変換電源の投入指示を0.4秒ずつずらす。そして、設計者は、全てのAC-DC変換電源の力率改善回路の起動電流が流れ終わった後にAC-DC変換電源#0のコンバータの起動電流が流れるように電源装置を設計する。すると、サービスプロセッサは、起動電流の重なりによる過大な電流の発生を防ぐとともに、全てのAC-DC変換電源の投入完了時間を2.6秒に短縮することができる。 In this way, the service processor shifts the instruction to turn on each AC-DC conversion power by 0.4 seconds. Then, the designer designs the power supply apparatus so that the start-up current of the converter of AC-DC conversion power supply # 0 flows after the start-up current of the power factor correction circuit of all AC-DC conversion power supplies has finished flowing. Then, the service processor can prevent the generation of an excessive current due to the overlap of the startup currents, and can shorten the completion time of turning on all the AC-DC conversion power supplies to 2.6 seconds.
 次に、実施例5に係るサービスプロセッサによる電源投入処理の手順について説明する。図21は、実施例5に係るサービスプロセッサによる電源投入処理の手順を示すフローチャートである。図21に示すように、サービスプロセッサは、電源投入指示を受けると、AC-DC変換電源#0に投入指示を送る(ステップS51)。 Next, the procedure of power-on processing by the service processor according to the fifth embodiment will be described. FIG. 21 is a flowchart illustrating a procedure of power-on processing by the service processor according to the fifth embodiment. As shown in FIG. 21, when the service processor receives the power-on instruction, the service processor sends the power-on instruction to the AC-DC conversion power source # 0 (step S51).
 そして、サービスプロセッサは、AC-DC変換電源#0への投入指示から0.4秒経過したか否かを判定し(ステップS52)、0.4秒経過すると、AC-DC変換電源#1に投入指示を送る(ステップS53)。 Then, the service processor determines whether or not 0.4 seconds have elapsed from the instruction to turn on the AC-DC conversion power supply # 0 (step S52). A charging instruction is sent (step S53).
 そして、サービスプロセッサは、AC-DC変換電源#1への投入指示から0.4秒経過したか否かを判定し(ステップS54)、0.4秒経過すると、AC-DC変換電源#2に投入指示を送る(ステップS55)。 Then, the service processor determines whether or not 0.4 seconds have elapsed from the instruction to turn on the AC-DC conversion power source # 1 (step S54). An input instruction is sent (step S55).
 そして、サービスプロセッサは、AC-DC変換電源#2への投入指示から1.8秒経過したか否かを判定し(ステップS56)、1.8秒経過すると、処理を終了する。ここで、1.8秒は、AC-DC変換電源#2の投入開始から完了までに要する時間である。 Then, the service processor determines whether or not 1.8 seconds have elapsed from the instruction to turn on the AC-DC conversion power source # 2 (step S56), and ends the processing when 1.8 seconds have elapsed. Here, 1.8 seconds is the time required from the start to completion of the AC-DC conversion power supply # 2.
 上述してきたように、実施例5では、サービスプロセッサが、各AC-DC変換電源への投入指示を0.4秒ずつずらす。また、全てのAC-DC変換電源の力率改善回路の起動電流が流れた後にAC-DC電源#0のコンバータの起動電流が流れるように設計者は電源装置を設計する。したがって、サービスプロセッサは、起動電流の重なりによる過大な電流の発生を防ぐとともに、全てのAC-DC変換電源の投入を2.6秒に短縮することができる。 As described above, in the fifth embodiment, the service processor shifts the input instruction to each AC-DC conversion power supply by 0.4 seconds. In addition, the designer designs the power supply device so that the start-up current of the converter of AC-DC power supply # 0 flows after the start-up current of the power factor correction circuit of all AC-DC conversion power supplies flows. Therefore, the service processor can prevent the generation of an excessive current due to the overlap of the start-up currents, and can shorten the turn-on of all AC-DC conversion power supplies to 2.6 seconds.
 なお、実施例1~5では、力率改善回路を順番に投入し、全ての力率改善回路の投入が完了した後でコンバータを投入する場合について説明した。しかしながら、本発明はこれに限定されるものではなく、複数の力率改善回路の投入に起因して電源装置に流れる電流がUPS過電流検出点以上にならないように電源装置が電源の投入を制御する場合にも同様に適用することができる。ただし、電源装置は、各AC-DC変換電源を順番に投入した場合よりも投入時間が短くなるように制御する必要はある。 In the first to fifth embodiments, the case where the power factor correction circuits are sequentially turned on and the converters are turned on after all the power factor correction circuits are turned on has been described. However, the present invention is not limited to this, and the power supply apparatus controls the power-on so that the current flowing through the power supply apparatus does not exceed the UPS overcurrent detection point due to the introduction of a plurality of power factor correction circuits. The same can be applied to the case. However, the power supply device needs to be controlled so that the turn-on time is shorter than when the AC-DC conversion power supplies are turned on in turn.
 例えば、2つの力率改善回路の起動電流が重なる場合でも、電源装置に流れる起動電流がUPS過電流検出点以上にならないように電源装置が電源の投入を制御するようにすることもできる。また、力率改善回路の起動電流とコンバータの起動電流が重なる場合でも、電源装置に流れる起動電流がUPS過電流検出点以上にならないように電源装置が電源の投入を制御するようにすることもできる。 For example, even when the startup currents of the two power factor correction circuits overlap, the power supply device can control the power-on so that the startup current flowing through the power supply device does not exceed the UPS overcurrent detection point. In addition, even when the power factor correction circuit start-up current and the converter start-up current overlap, the power supply device may control the power-on so that the start-up current flowing through the power supply device does not exceed the UPS overcurrent detection point. it can.
 また、実施例1~5では、電源装置がAC-DC変換電源を3台有する場合について説明したが、本発明はこれに限定されるものではなく、電源装置が3台以外の複数の台数を有する場合にも同様に適用することができる。 In the first to fifth embodiments, the case where the power supply apparatus has three AC-DC conversion power supplies has been described. However, the present invention is not limited to this, and a plurality of power supply apparatuses other than the three power supply apparatuses can be used. The same can be applied to the case of having it.
 また、実施例1~5では、情報処理装置が有する電源装置について説明したが、本発明はこれに限定されるものではなく、直流電源を必要とする電子装置が有する電源装置に対しても同様に適用することができる。 In the first to fifth embodiments, the power supply device included in the information processing apparatus has been described. However, the present invention is not limited to this, and the same applies to a power supply device included in an electronic device that requires a DC power supply. Can be applied to.
  1  UPS
  2  交流電源
  3  EMIフィルタ
  4  全波整流回路
  5  コイル
  6  ダイオード
  7  NMOS
  8  コンデンサ
 10,30,40,90  情報処理装置
 10a,30a,40a  電源装置
 11~13,31~33,41~43,91~93  AC-DC変換電源
 11a,31a,41a  力率改善回路
 11b,31b,41b  コンバータ
 31c  制御部
 14,34,44,94  サービスプロセッサ
1 UPS
2 AC power supply 3 EMI filter 4 Full-wave rectifier circuit 5 Coil 6 Diode 7 NMOS
8 Capacitors 10, 30, 40, 90 Information processing devices 10a, 30a, 40a Power supply devices 11-13, 31-33, 41-43, 91-93 AC-DC conversion power supplies 11a, 31a, 41a Power factor improving circuit 11b, 31b, 41b converter 31c control unit 14, 34, 44, 94 service processor

Claims (8)

  1.  交流電圧を直流電圧に変換するとともに高調波電流低減を行う力率改善回路と該力率改善回路が出力する直流電圧を異なる直流電圧に変換するコンバータとを備えた複数の電源部と、
     前記力率改善回路及びコンバータの起動電流が複数の電源部間で重なることに起因して電源投入時に装置に流れる電流が所定の過電流閾値以上になることがなく、かつ、複数の電源部を順番に投入する場合に要する投入時間よりも投入時間が短くなるように複数の電源部の投入を制御する制御部と
     を有することを特徴とする電源装置。
    A plurality of power supply units comprising a power factor correction circuit that converts alternating current voltage into direct current voltage and reduces harmonic current and a converter that converts direct current voltage output from the power factor improvement circuit into different direct current voltage;
    The power factor improving circuit and the starting current of the converter are overlapped between a plurality of power supply units, so that the current flowing to the device when the power is turned on does not exceed a predetermined overcurrent threshold, and the plurality of power supply units And a control unit that controls the turning-on of the plurality of power supply units so that the turning-on time is shorter than the turning-on time required for turn-on in turn.
  2.  前記制御部は、各電源部に対して、力率改善回路の投入とコンバータの投入とを別々に指定することを特徴とする請求項1に記載の電源装置。 2. The power supply apparatus according to claim 1, wherein the control unit separately designates turning on of the power factor correction circuit and turning on of the converter for each power supply unit.
  3.  前記制御部は、各電源部の力率改善回路に対して、各力率改善回路の起動電流が重ならないようにずらして投入を指示した後、各電源部のコンバータに対して投入を指示することを特徴とする請求項2に記載の電源装置。 The control unit instructs the power factor correction circuit of each power supply unit to shift so that the starting currents of the power factor correction circuits do not overlap, and then instructs the converter of each power supply unit to input The power supply device according to claim 2.
  4.  前記制御部は、力率改善回路に投入指示を行った後、所定の時間経過すると他の力率改善回路に投入指示を行うことを前記複数の電源部を対象として行うことにより、各力率改善回路の起動電流が重ならないようにずらして投入を指示することを特徴とする請求項3に記載の電源装置。 The control unit, after giving a power-in instruction to the power factor correction circuit, performs a power-in instruction to another power factor improvement circuit when a predetermined time elapses by targeting the plurality of power supply units. 4. The power supply device according to claim 3, wherein the power-on device is instructed to be shifted so that the start-up currents of the improvement circuits do not overlap.
  5.  前記制御部は、各電源部の力率改善回路及びコンバータに対する投入開始時間を指定して各電源部に対して投入を指示することを特徴とする請求項2に記載の電源装置。 3. The power supply apparatus according to claim 2, wherein the control unit designates a power-on improvement start time for each power supply unit and a turn-on start time for the converter, and instructs each power supply unit to turn on.
  6.  前記制御部は、力率改善回路に投入指示を行った後、該力率改善回路からの完了通知を受け取って他の力率改善回路に投入指示を行うことを前記複数の電源部を対象として行うことにより、各力率改善回路の起動電流が重ならないようにずらして投入を指示することを特徴とする請求項3に記載の電源装置。 For the plurality of power supply units, the control unit is configured to receive a completion notification from the power factor correction circuit and instruct the other power factor correction circuit to input after inputting the input command to the power factor correction circuit. 4. The power supply device according to claim 3, wherein the power-on device is instructed to be shifted so as not to overlap the start-up currents of the power factor correction circuits.
  7.  前記制御部は、各電源部に対して、各力率改善回路の起動電流が重ならないようにずらして電源投入を指示し、
     各電源部は、力率改善回路の起動後、電源部の個数分の力率改善回路の投入が完了した後でコンバータを投入することを特徴とする請求項1に記載の電源装置。
    The control unit instructs each power supply unit to turn on the power by shifting so that the starting currents of the power factor correction circuits do not overlap,
    2. The power supply device according to claim 1, wherein each power supply unit turns on the converter after the activation of the power factor improvement circuits for the number of power supply units is completed after the power factor improvement circuit is activated.
  8.  交流電圧を直流電圧に変換するとともに高調波電流低減を行う力率改善回路と該力率改善回路が出力する直流電圧を異なる直流電圧に変換するコンバータとを備えた複数の電源部を有する電源装置の電源投入制御方法において、
     前記力率改善回路及びコンバータの起動電流が複数の電源部間で重なることに起因して電源投入時に装置に流れる電流が所定の過電流閾値以上になることがなく、かつ、複数の電源部を順番に投入する場合に要する投入時間よりも投入時間が短くなるように複数の電源部の投入を制御する
     ことを特徴とする電源投入制御方法。
    A power supply device having a plurality of power supply units including a power factor correction circuit that converts an AC voltage into a DC voltage and reduces harmonic current and a converter that converts a DC voltage output from the power factor improvement circuit into a different DC voltage In the power-on control method of
    The power factor improving circuit and the starting current of the converter are overlapped between a plurality of power supply units, so that the current flowing to the device when the power is turned on does not exceed a predetermined overcurrent threshold, and the plurality of power supply units A power-on control method characterized by controlling the power-on of a plurality of power supply units so that the power-on time is shorter than the power-on time required for sequential power-on.
PCT/JP2012/056597 2012-03-14 2012-03-14 Power supply device and power-on controlling method WO2013136475A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/056597 WO2013136475A1 (en) 2012-03-14 2012-03-14 Power supply device and power-on controlling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/056597 WO2013136475A1 (en) 2012-03-14 2012-03-14 Power supply device and power-on controlling method

Publications (1)

Publication Number Publication Date
WO2013136475A1 true WO2013136475A1 (en) 2013-09-19

Family

ID=49160443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056597 WO2013136475A1 (en) 2012-03-14 2012-03-14 Power supply device and power-on controlling method

Country Status (1)

Country Link
WO (1) WO2013136475A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019075931A (en) * 2017-10-18 2019-05-16 新電元工業株式会社 Power supply device
JP7033244B1 (en) * 2021-01-27 2022-03-10 株式会社三社電機製作所 Power system and power supply unit
JP7033245B1 (en) * 2021-01-27 2022-03-10 株式会社三社電機製作所 Power system and power supply unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002281741A (en) * 2001-03-22 2002-09-27 Synclayer Inc Constant voltage power supply device and repeater of transmission system using the device
JP2011167019A (en) * 2010-02-12 2011-08-25 Fujitsu Ltd Power supply system and power supply control circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002281741A (en) * 2001-03-22 2002-09-27 Synclayer Inc Constant voltage power supply device and repeater of transmission system using the device
JP2011167019A (en) * 2010-02-12 2011-08-25 Fujitsu Ltd Power supply system and power supply control circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019075931A (en) * 2017-10-18 2019-05-16 新電元工業株式会社 Power supply device
JP7018736B2 (en) 2017-10-18 2022-02-14 新電元工業株式会社 Power supply
JP7033244B1 (en) * 2021-01-27 2022-03-10 株式会社三社電機製作所 Power system and power supply unit
JP7033245B1 (en) * 2021-01-27 2022-03-10 株式会社三社電機製作所 Power system and power supply unit
WO2022162764A1 (en) * 2021-01-27 2022-08-04 株式会社三社電機製作所 Power supply system and power supply unit

Similar Documents

Publication Publication Date Title
JP5783490B2 (en) Power inverter with multiple supply on-board power supply
JP4620151B2 (en) Non-contact power transmission circuit
US8314513B2 (en) Power transmission control device, power transmission device, power reception control device, power reception device, electronic apparatus, and contactless power transmission system
CN102843037B (en) Paralleled power converters with auto-stagger start-up
US20130043727A1 (en) Power supply apparatus
US9484838B2 (en) Inverter and power supplying method thereof and application using the same
JP6573502B2 (en) DC-DC converter
JP2009232587A (en) Power supply device and control method thereof
US8897042B2 (en) Power source system and control circuit
CN102801328A (en) Power supply apparatus
TW201037937A (en) Current balancing apparatus, current balancing method, and power supply apparatus
US10992170B2 (en) Power supply apparatus and power supplying method thereof
US9515563B2 (en) Power module and distributed power supply apparatus having the same
JP2007159200A (en) Switching power supply unit
WO2013136475A1 (en) Power supply device and power-on controlling method
JP2006350900A (en) Power converter
JP5683932B2 (en) X-ray diagnostic equipment
JP2017063526A (en) Non-contact power transmission device
KR101276983B1 (en) a DC-DC converter and a method for operating it
JP6533016B2 (en) Power converter and power conversion system
JP6269375B2 (en) Non-contact power supply device and non-contact power supply system
JP2007236034A (en) Power supply system
JPWO2013136475A1 (en) Power supply device and power-on control method
JP2013009463A (en) Switching method of uninterruptible power supply device
JP2007043770A (en) Serial electric double layer capacitor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871567

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014504560

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12871567

Country of ref document: EP

Kind code of ref document: A1