WO2013136419A1 - 運転計画作成方法、運転計画作成プログラムおよび運転計画作成装置 - Google Patents

運転計画作成方法、運転計画作成プログラムおよび運転計画作成装置 Download PDF

Info

Publication number
WO2013136419A1
WO2013136419A1 PCT/JP2012/056309 JP2012056309W WO2013136419A1 WO 2013136419 A1 WO2013136419 A1 WO 2013136419A1 JP 2012056309 W JP2012056309 W JP 2012056309W WO 2013136419 A1 WO2013136419 A1 WO 2013136419A1
Authority
WO
WIPO (PCT)
Prior art keywords
scenario
operation plan
countermeasure
demand
corrected
Prior art date
Application number
PCT/JP2012/056309
Other languages
English (en)
French (fr)
Inventor
谷口 剛
由雄 仲尾
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2014504493A priority Critical patent/JP5842994B2/ja
Priority to PCT/JP2012/056309 priority patent/WO2013136419A1/ja
Priority to DE112012006017.2T priority patent/DE112012006017T5/de
Publication of WO2013136419A1 publication Critical patent/WO2013136419A1/ja
Priority to US14/463,186 priority patent/US9727036B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/16Regulation of the charging current or voltage by variation of field
    • H02J7/28Regulation of the charging current or voltage by variation of field using magnetic devices with controllable degree of saturation in combination with controlled discharge tube or controlled semiconductor device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/20Systems characterised by their energy storage means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/50Energy storage in industry with an added climate change mitigation effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/20Information technology specific aspects, e.g. CAD, simulation, modelling, system security

Definitions

  • the present invention relates to an operation plan creation method, an operation plan creation program, and an operation plan creation device.
  • This operation plan is, for example, a control parameter for appropriately controlling discharge from a storage battery having a limited capacity. For example, when a peak cut method for discharging the storage battery when the power demand exceeds a predetermined power value is used as the storage battery control method, this power value becomes the operation plan.
  • a simulation is performed when the storage battery is operated, and power supply and demand is as expected.
  • An operation plan for operating the storage battery for a day is created so that the evaluation value, which is the simulation result, becomes the best when the change occurs.
  • the prediction after confirming the weather condition on that day is more accurate than the prediction of the weather on the previous day. For this reason, when the prediction on the previous day of the weather change has been missed, the operation status of the storage battery is improved by correcting the operation plan in operation based on the weather status confirmed on that day.
  • a predicted deviation pattern in which the predicted value of power supply and demand deviates by a predetermined value or more and its occurrence probability are collected in advance.
  • an evaluation value considering the correction of the operation plan at the time of the predicted deviation is obtained by simulation.
  • the operation plan is generally corrected by re-estimating at a predetermined time or a predetermined time interval. Therefore, there is a problem that it is not possible to cope with a situation in which it is more effective to correct the operation plan before the predetermined correction time.
  • the current prediction accuracy for predicting the output of power generated by natural energy is highly dependent on the accuracy of the weather forecast, and the prediction accuracy cannot be significantly improved by data that can be acquired at short time intervals during operation. For this reason, it is reasonable to revise the operation plan around noon according to the timing when the weather forecast is updated, but in this case, it is not possible to cope with output fluctuations due to sudden changes in weather conditions before noon. Become.
  • the timing of weather forecasts should be used so that the remaining capacity of the storage batteries does not run out. It is desirable to correct the operation plan earlier than the combined operation plan correction.
  • the present invention has an object of creating a corrected operation plan that can be detected before an influence is exerted in a situation where the effect is affected when the correction time of the operation plan is delayed.
  • an operation of a power generation system including a power generation device that generates power according to an external environmental condition, and a storage battery that is charged with power from the power generation device and discharges according to power supply and demand.
  • a plan creation method, an operation plan creation program, and an operation plan creation device the amount of discharge from the storage battery for a plurality of supply and demand power scenarios stored in the storage unit and indicating the transition of power supply and demand according to the external environmental conditions
  • a first corrected operation plan that obtains the best amount of discharge when the operation plan is corrected at a predetermined periodic correction time, and the initial operation plan of the power storage location is corrected at a countermeasure time that has changed the periodic correction time
  • the first modified operation plan is modified to the second modified operation plan at the countermeasure time.
  • a scenario requiring countermeasures that need to be corrected to the plan is extracted, and the countermeasures required at the countermeasure time are extracted from the extracted scenario requiring countermeasures based on the initial operation plan and the second modified operation plan corresponding to the scenario requiring countermeasures.
  • a change countermeasure scenario for correcting the initial operation plan for the scenario is classified, and an identification condition for identifying the classified change countermeasure scenario is generated and generated for the classified change countermeasure scenario based on the external environmental condition.
  • An operation plan creation method and a creation program for outputting the change countermeasure scenario classified under the identified identification condition in association with each other Preliminary creating apparatus is proposed.
  • FIG. 1 is an explanatory diagram illustrating an example of an operation mode based on an operation plan of a storage battery.
  • FIG. 2 is an explanatory diagram showing an example of the peak cut control method.
  • FIG. 3 is an explanatory diagram showing a modified operation plan to which application conditions are assigned.
  • FIG. 4 is an explanatory diagram showing an example of correction of the operation plan by the operation plan creation system 103.
  • FIG. 5 is a diagram illustrating a hardware configuration example of a computer constituting the operation plan creation system 103.
  • FIG. 6 is a block diagram illustrating a functional configuration example of the creation apparatus.
  • FIG. 7 is an explanatory diagram showing an example of the contents stored in the scenario DB 700.
  • FIG. 8 is an explanatory diagram of an example (No. 1) of required measure degree calculation.
  • FIG. 1 is an explanatory diagram illustrating an example of an operation mode based on an operation plan of a storage battery.
  • FIG. 2 is an explanatory diagram showing an example of the peak cut control
  • FIG. 9 is an explanatory diagram showing a comparative example of (A) and (B) of FIG.
  • FIG. 10 is an explanatory diagram of a countermeasure required degree calculation example (part 2).
  • FIG. 11 is an explanatory diagram showing a comparative example of (A) and (B) of FIG.
  • FIG. 12 is an explanatory diagram illustrating a classification example of a scenario requiring countermeasures.
  • FIG. 13 is an explanatory diagram illustrating an example of creating an identification condition by the identification condition creating unit 614.
  • FIG. 14 is an explanatory diagram showing an example of the contents of a scenario DB used by the output information creation unit 602.
  • FIG. 15 is an explanatory diagram illustrating an output example by the output information creation unit 602.
  • FIG. 16 is a flowchart illustrating an example of a processing procedure performed by the creation apparatus 600.
  • FIG. 17 is a flowchart showing a detailed processing procedure example of the early countermeasure target scenario extraction process (step S1601) shown in FIG.
  • FIG. 18 is a flowchart illustrating a detailed processing procedure example of the countermeasure level calculation processing (step S1702) illustrated in FIG.
  • FIG. 19 is a flowchart showing a detailed processing procedure example of the countermeasure scenario classification processing (step S1704) shown in FIG.
  • FIG. 20 is a flowchart showing a detailed processing procedure example of the identification condition creation processing (step S1705) shown in FIG.
  • FIG. 21 is a flowchart showing a detailed processing procedure example of the output information creation processing (step S1602) shown in FIG.
  • FIG. 22 is an explanatory diagram illustrating a classification example of countermeasure required scenarios based on a regression tree.
  • FIG. 23 is an explanatory diagram showing an example of the identification condition creation table 2300 created by the regression tree 2200.
  • FIG. 24 is a flowchart illustrating an example of a countermeasure scenario classification processing procedure performed by the countermeasure scenario classification unit 613 according to the second embodiment.
  • FIG. 25 is a flowchart showing a detailed processing procedure example of the division processing (step S2405) shown in FIG.
  • FIG. 26 is a flowchart of a detailed processing procedure example of identification condition creation processing by the identification condition creation unit 614 according to the second embodiment.
  • FIG. 27 is a flowchart of a detailed processing procedure example of output information creation processing by the output information creation unit 602 according to the second embodiment.
  • FIG. 28 is a block diagram of a functional configuration example of the creating apparatus 600 according to the third embodiment.
  • FIG. 29 is a diagram showing an example of the sunshine duration fluctuation probability table 2813.
  • FIG. 30 is a diagram for explaining a weather variation model.
  • FIG. 31 is a diagram illustrating an example of the solar radiation amount fluctuation scenario.
  • FIG. 32 is a diagram illustrating an example of a demand fluctuation scenario.
  • FIG. 33 is a diagram illustrating an example of a supply and demand scenario.
  • FIG. 34 is a diagram illustrating an example of the optimum operation evaluation table.
  • FIG. 35 is a diagram for explaining a search range of control parameters.
  • FIG. 36 is a diagram illustrating an example of the initial operation plan table.
  • FIG. 30 is a diagram showing an example of the sunshine duration fluctuation probability table 2813.
  • FIG. 30 is a diagram for explaining a weather variation model.
  • FIG. 31 is a diagram illustrating an example of the solar radiation amount fluctuation scenario.
  • FIG. 37 is a diagram illustrating an example of a corrected operation evaluation table.
  • FIG. 38 is a flowchart of an example of an output information creation processing procedure performed by the creation device 600 according to the third embodiment.
  • FIG. 39 is a flowchart showing a processing procedure of supply / demand scenario generation processing (step S3801) by the supply / demand scenario generation unit 2802.
  • FIG. 1 is an explanatory diagram illustrating an example of an operation mode based on an operation plan of a storage battery.
  • a power system 101 is installed in a building such as a house, a condominium, a building, a store, or a facility, and supplies power to these buildings.
  • the power system 101 is configured by connecting a power generation device 111, a storage battery 112, a power conditioning system (hereinafter “PCS”) 113, and a wattmeter 114.
  • the power system 101 is a power generation system including a storage battery 112 that is charged with power from the power generation device 111 and discharges according to power supply and demand.
  • the power generation device 111 is a device that generates power in accordance with external environmental conditions. Specifically, the power generation device 111 is a device that converts natural energy such as sunlight into electricity. In this embodiment, a solar power generation device will be described as an example, but a wind power generation device may be used.
  • the storage battery 112 is a device that accumulates or discharges electricity generated by the power generation device 111.
  • the PCS is a device that performs DC / AC conversion of electricity generated by the power generation device 111, charge / discharge control for the storage battery 112, power generation amount control of the power generation device 111, and the like.
  • the wattmeter 114 is a meter that measures power consumption in a building. The electricity generated by the power generation device 111 is stored in the storage battery 112 and supplied to the power supply destination 115.
  • the operation system 102 acquires the integrated power value and the power generation amount from the power system 101 and monitors the power system 101. Further, the operation system 102 controls the PCS based on the operation plan with application conditions given from the operation plan creation system 103 to charge / discharge the storage battery 112.
  • the operation plan is a control parameter that regulates the operation of a device to be controlled such as the storage battery 112 in the power system 101.
  • a peak cut control method in which discharging is performed when the power demand exceeds a predetermined power value.
  • the power value (referred to as “discharge reference value”) becomes a control parameter, that is, an operation plan.
  • FIG. 2 is an explanatory diagram showing an example of the peak cut control method.
  • the horizontal axis represents the time of one day, and the vertical axis represents the power value.
  • the waveform in FIG. 2 is a supply and demand scenario, and the storage battery 112 is discharged when the power value exceeds the discharge reference value.
  • the demand-and-supply scenario is time-series data whose element is the difference between the power demand in the power network that uses the power from the storage battery 112 and the output from solar power generation.
  • the application condition is a condition for specifying the situation to which the operation plan should be applied.
  • the early countermeasure time for determining whether or not to apply another operation plan (operation plan correction) and the relevant time
  • an identification condition for identifying necessity of application. Details of the early countermeasure time and identification conditions will be described later.
  • the operation system 102 obtains weather data representing the current weather state and weather forecast data for predicting the future weather state from the outside, and generates power from the power generation device 111 and charge of the storage battery 112 in the power system 101. Control the discharge. Specifically, for example, the operation system 102 acquires the latest weather forecast data at that time at the beginning of the day, selects an operation plan to which an application condition matching the data is given, and sets the operation plan as the operation plan. Along with this, the operation of the power system 101 is started. Then, the operation system 102 monitors the state of the electric power system 101 at each time point, the weather condition, and the like. When the operation system 102 detects a situation that matches the application condition given by the operation plan creation system 103, the operation system 102 is related to the application condition. Switching to the operation plan, the operation of the power system 101 is continued.
  • FIG. 3 is an explanatory diagram showing a modified operation plan to which application conditions are assigned.
  • the horizontal axis is time, and the vertical axis is power value.
  • FIG. 3 is an example in which the corrected operation plan is applied when the monitoring target data such as the accumulated amount of solar radiation for the latest n hours satisfies the application condition.
  • the operation plan creation system 103 acquires past data such as a weather / forecast log, an integrated power log, and a power generation log from the operation system 102, and sends the corrected operation plan to which the application condition is given to the operation system 102. Output. Specifically, the operation plan creation system 103 acquires a supply and demand scenario that comprehensively represents a possible supply and demand situation transition from an external device. In addition, the operation plan creation system 103 may generate a supply and demand scenario. Then, the operation plan creation system 103 creates an operation plan based on the generated supply and demand scenario.
  • the operation plan creation system 103 automatically creates application conditions for the operation system 102 to detect a situation in which the created operation plan is to be corrected at the time of operation by simulation that comprehensively assumes possible situations. Specifically, the operation plan creation system 103 executes the following (1) to (3) as shown in FIG.
  • FIG. 4 is an explanatory diagram showing an example of correction of the operation plan by the operation plan creation system 103.
  • (1) the operation plan creation system 103 extracts a scenario whose effect is enhanced by correcting the operation plan at each time point in the daily operation by simulation based on the supply and demand scenario.
  • the extracted scenario is referred to as a “required scenario”.
  • the operation plan creation system 103 classifies the scenario requiring countermeasures by the similarity of countermeasures.
  • a countermeasure is an operation plan after that point that is optimal for the scenario requiring countermeasures.
  • the operation plan creation system 103 determines a countermeasure required scenario group having similar countermeasures and a time to be corrected.
  • a scenario group requiring countermeasures with similar countermeasures is referred to as an “early countermeasure target scenario group”.
  • the time to be corrected is referred to as “measure time”, and is referred to as “early time” as an example.
  • the operation plan creation system 103 determines whether the early countermeasure target scenario group can be identified by data available at the early countermeasure time of the day. Then, the operation plan creation system 103 creates an identification condition for the early countermeasure target scenario group and an optimum operation plan for the scenario group that matches the identification condition when the identification is possible.
  • the operation plan creation system 103 creates a modified operation plan to which an application plan having an operation plan modification rule, that is, an early countermeasure time and an identification condition, is assigned according to the procedures (1) to (3).
  • an application plan having an operation plan modification rule that is, an early countermeasure time and an identification condition
  • supply and demand scenarios that require countermeasures up to a certain point in time that is, supply and demand scenarios that do not have a high effect unless the operation plan is corrected up to that point
  • supply and demand scenarios that do not have a high effect unless the operation plan is corrected up to that point can be implemented with appropriate timing. be able to.
  • a high effect cannot be obtained unless the operation plan is corrected by that time.
  • FIG. 5 is a diagram illustrating a hardware configuration example of a computer constituting the operation plan creation system 103.
  • the computer 500 includes a CPU 501 that executes various arithmetic processes, an input device 502 that receives data input from a user, and a monitor 503.
  • the computer 500 also includes a medium reading device 504 that reads a program and the like from a storage medium, and a network interface device 505 that exchanges data with other devices.
  • the computer 500 also includes a RAM (Random Access Memory) 506 that temporarily stores various information and a hard disk device 507.
  • Each device 501 to 507 is connected to a bus 508.
  • the hard disk device 507 stores an operation plan creation program.
  • the hard disk device 507 stores various data for realizing the operation plan creation program.
  • the CPU 501 reads out the operation plan creation program from the hard disk device 507, develops it in the RAM 506, and executes it, so that the operation plan creation program functions as an operation plan creation process.
  • the computer 500 may read and execute a program stored in a computer-readable recording medium.
  • Computer-readable recording media include, for example, portable recording media such as CD-ROM (Compact Disc Only Memory), DVD (Digital Versatile Disc) disk, USB (Universal Serial Bus) memory, and semiconductor memory such as flash memory. , Hard disk drive etc. correspond.
  • this program may be stored in a device connected to a public line, the Internet, a LAN (Local Area Network), a WAN (Wide Area Network), etc., and the computer 500 may read and execute the program therefrom. good.
  • the creation device is a computer that realizes an operation plan creation function included in the operation plan creation system 103 shown in FIG.
  • the creation device is a computer that creates an operation plan correction rule for implementing an early measure for the operation of the storage battery 112 aiming at peak cut of demand by combined use with solar power generation.
  • the regular correction time is about noon, for example, 13:00.
  • the initial operation plan a value created by a general plan creation method for obtaining an optimum plan for one supply-demand scenario that is predicted to occur most easily at the time of the operation plan creation can be used.
  • a correction rule can be created in the same procedure for an operation plan created based on a weather forecast at a regular correction time.
  • FIG. 6 is a block diagram illustrating a functional configuration example of the creation apparatus.
  • the creation device 600 includes a scenario DB (Data Base) 700, an early countermeasure target scenario extraction unit 601, and an output information creation unit 602.
  • the scenario DB 700 realizes its function by, for example, the hard disk device 507 shown in FIG.
  • the early countermeasure target scenario extraction unit 601 and the output information creation unit 602 realize their functions by causing the CPU 501 to execute, for example, a program stored in the RAM 506 or the hard disk device 507 illustrated in FIG. To do.
  • the scenario DB 700 will be described with reference to FIG.
  • FIG. 7 is an explanatory diagram showing an example of the contents stored in the scenario DB 700.
  • the scenario DB 700 is a database that the operation plan creation system 103 has, and stores a supply and demand scenario.
  • the scenario DB 700 has a supply and demand scenario ID item, a time series data item, an initial plan item, a periodic correction item, and an early countermeasure item.
  • n supply / demand scenario IDs (s1 to sn) for uniquely specifying each supply / demand scenario are stored for n supply / demand scenarios (n ⁇ 1).
  • the i-th supply-demand scenario (1 ⁇ i ⁇ n) is assumed to be “demand-supply scenario si”.
  • the time series data is data di (tj) specified by the supply and demand scenario si and time tj (1 ⁇ j ⁇ m), and the observable data and weather forecast data related to the transition of the supply and demand data and the supply and demand data.
  • the supply and demand data is a power value, and includes a power supply demand, a power generation output, and a supply / demand difference that is a difference between them, and each of them is di (tj). d, di (tj). s, di (tj). Indicated as p.
  • the observable data is, for example, solar radiation di (tj). i, temperature di (tj). t.
  • the weather forecast data includes, for example, the weather category di (tj). w.
  • an initial operation plan pai applied when the scenario is expected to be realized is stored.
  • the same initial plan is stored for scenarios corresponding to the same weather category.
  • the initial operation plan pai is, for example, an initial discharge reference value.
  • the periodic correction items and the early countermeasure items are areas for storing main processing results of the plan creation processing of the present invention.
  • Periodic correction items consist of plan items and evaluation value items.
  • a periodic correction plan pbi is stored in the plan item.
  • the regular correction plan pbi is an optimum operation plan (for example, a discharge reference value) after a predetermined periodic correction time.
  • the evaluation value item the evaluation value ebi of the periodic correction plan is stored.
  • the evaluation value ebi of the periodic correction plan is operated in the initial operation plan until the correction time, and after the correction time, the effect when operating in the optimum operation plan that maximizes the effect due to the limitation of the remaining battery capacity at the correction time is estimated. It is the simulation result obtained by simulation.
  • the early countermeasure items include a time item, a plan item, an evaluation value item, and a group ID item. In the time item, an early countermeasure time tci for each supply and demand scenario si is stored.
  • the plan item stores an early countermeasure operation plan pci for each supply and demand scenario si, and the evaluation item stores an evaluation value eci of the early countermeasure operation plan pci.
  • the early countermeasure operation plan pci is an optimum operation plan (for example, a discharge reference value) after the early countermeasure time tci.
  • an identifier gci of an early countermeasure target scenario group corresponding to the scenario is stored.
  • the early countermeasure target scenario extraction unit 601 receives the supply and demand scenario group and the early countermeasure time, and extracts a scenario that requires countermeasures at the early countermeasure time.
  • the early countermeasure target scenario extraction unit 601 includes a countermeasure requirement calculation unit 611, a countermeasure scenario extraction unit 612, a countermeasure scenario classification unit 613, and an identification condition creation unit 614.
  • a countermeasure requirement calculation unit 611 calculates the number of countermeasure target scenario extraction unit 601
  • a countermeasure scenario extraction unit 612 extracts a scenario that requires countermeasures at the early countermeasure time.
  • a countermeasure requirement calculation unit 611 a countermeasure scenario extraction unit 612
  • a countermeasure scenario classification unit 613 a countermeasure scenario classification unit 613
  • an identification condition creation unit 614 an identification condition creation unit
  • the countermeasure required degree calculation unit 611 calculates a countermeasure required degree that becomes an evaluation value indicating whether a countermeasure is necessary at the early countermeasure time for each supply and demand scenario. Specifically, for example, the countermeasure requirement calculation unit 611 performs two types of simulations to determine whether or not an early countermeasure is necessary for each supply and demand scenario. One is a simulation when countermeasures are taken early, and the other is a simulation when the initial operation plan is corrected at a regular correction time assumed in normal operation. The countermeasure required degree calculation unit 611 calculates a countermeasure required degree indicating whether countermeasures are required at an early stage by comparing the two types of simulation results.
  • the required countermeasure scenario extraction unit 612 extracts a scenario that requires early countermeasures from the supply and demand scenario group based on the degree of required countermeasures. For example, when the required threshold level is set and the required level of the supply and demand scenario si at a certain early countermeasure time tj is greater than or equal to the extracted threshold value, the required scenario extracting unit 612 The supply and demand scenario si is extracted as a scenario requiring countermeasures.
  • the countermeasure scenario classification unit 613 classifies the countermeasure scenario extracted by the countermeasure scenario extraction unit 612 according to the similarity of the countermeasures (the optimum operation plan for each scenario). Then, the countermeasure required scenario classification unit 613 outputs the classified countermeasure required scenario as an early countermeasure target scenario group corresponding to the early countermeasure time.
  • the countermeasure scenario group extracted by the countermeasure scenario extraction unit 612 may include countermeasure scenarios that require different countermeasures. Even if such a scenario requiring countermeasures can be identified, it is not possible to determine an appropriate operation plan, that is, an effective operation plan for all scenarios identified under a certain identification condition. For this reason, the countermeasure required scenario classification unit 613 performs classification according to countermeasures in advance.
  • the required action scenario group classified by the required action scenario classification unit 613 is referred to as “early action target scenario group”.
  • the early countermeasure scenario is a change countermeasure scenario.
  • the identification condition creating unit 614 receives the early countermeasure target scenario group as an input, and selects the early countermeasure target scenario group that can be identified by the data available at the early countermeasure time. Then, the identification condition creating unit 614 creates an identification condition for the selected scenario group. The processing by the countermeasure required degree calculation unit 611 to the identification condition creation unit 614 is executed at each early countermeasure time.
  • the identification condition creation unit 614 is an example of a generation unit.
  • the output information creation unit 602 creates a corrected operation plan with the identification condition created by the identification condition creation unit 614 as an input. Then, the output information creation unit 602 outputs the early countermeasure time, the identification condition, and the corrected operation plan to the operation system 102.
  • the output information creation unit 602 is an example of an output unit.
  • the measure level calculation unit 611 evaluates whether it is necessary to correct the initial operation plan in a time zone earlier than the periodic correction time, so that two types with different correction times for the same supply and demand scenario are used. Run the simulation.
  • This simulation is a simulation for estimating an effect (for example, peak cut effect, environmental load reduction effect, cost reduction effect) obtained at a given supply and demand scenario and correction time.
  • the correction time is an early countermeasure time or a periodic correction time.
  • the simulation is a simulation that estimates the effect when operating in the initial operation plan until the correction time, and after the correction time, when the operation is performed with the optimal operation plan that maximizes the effect due to restrictions on the remaining battery capacity at the correction time. is there.
  • the optimum operation plan is obtained by performing a simulation when the storage battery 112 is operated with various control parameters for the supply and demand scenario, and selecting an operation plan with the best evaluation value obtained as a simulation result.
  • the correction time is the periodic correction time
  • the optimum operation plan and its evaluation value are recorded in the periodic correction items pbi and ebi of the supply and demand scenario DB 700.
  • the correction time is the early countermeasure time
  • the early countermeasure time, the optimum operation plan, and its evaluation value are recorded in the early countermeasure items tci, pci, eci of the scenario DB 700, respectively.
  • the optimal control parameter indicates a control parameter of the storage battery 112 from which an evaluation value based on the optimal operation plan is obtained.
  • the discharge reference value is used as the control parameter when the storage battery 112 is operated by the peak cut method.
  • the evaluation value is not limited to the peak cut effect.
  • an environmental load reduction effect, a cost reduction effect, or a combination of these values may be used as the evaluation value.
  • the control parameter is not limited to the discharge reference value.
  • a combination of a time zone to be discharged and a discharge amount is a control parameter.
  • the initial power amount of the storage battery 112 is a control parameter.
  • FIG. 8 is an explanatory diagram showing an example (No. 1) of required countermeasure level calculation.
  • FIG. 8 is an example of calculating the countermeasure level when the discharge reference value becomes higher due to the correction.
  • 8A is a graph showing a simulation for correcting an operation plan at an early countermeasure time
  • FIG. 8B is a graph showing a simulation for correcting an operation plan at a periodic correction time.
  • the horizontal axis represents time
  • the vertical axis represents the electric energy [kWh]. This electric energy shows the electric energy used for 30 minutes as an example.
  • the demand value [kW] is used. Since the demand value is the average power consumption [kW] for 30 minutes, the power consumption [kWh] for 30 minutes (0.5 [h]) is doubled (value divided by 0.5 [h]) )
  • the maximum power consumption for 30 minutes in the original supply and demand scenario is 157.9 [kWh]. Therefore, the maximum demand value in this case is 315.8 [kW].
  • Measure level is calculated by the following formula (3).
  • the countermeasure required degree calculation unit 611 is effective because the countermeasure is delayed when the result when the initial operation plan is corrected at the early countermeasure candidate time and the result when the correction is made at the regular correction time is bad.
  • the degree of countermeasures is calculated based on the assumption that it has decreased.
  • FIG. 9 is an explanatory view showing a comparative example of (A) and (B) of FIG.
  • FIG. 9 is a graph in which a scenario in which an early countermeasure is taken against the supply and demand scenario in FIG. 8A and a scenario in which periodic correction is made to the supply and demand scenario in FIG. 8B. is there.
  • FIG. 10 is an explanatory diagram showing a countermeasure required degree calculation example (part 2).
  • FIG. 10 is an example of calculating the countermeasure level when the discharge reference value is lowered by the correction.
  • (A) is a graph showing a simulation for planning an operation at an early countermeasure time
  • (B) is a graph showing a simulation for correcting an operation plan at a regular correction time.
  • the horizontal axis represents time
  • the vertical axis represents the electric energy [kWh]. This electric energy shows the electric energy used for 30 minutes as an example.
  • FIG. 11 is an explanatory diagram showing a comparative example of (A) and (B) of FIG.
  • FIG. 11 is a graph in which a scenario in which an early measure is taken against the supply and demand scenario in FIG. 10 (A) and a scenario in which periodic correction is made to the supply and demand scenario in FIG. 10 (B). is there.
  • the hatched area indicates the amount of power that could not be peak cut because the correction was delayed in FIG. 10B. That is, since the discharge is performed at a value higher than the demand in the peak cut that can be realized by the demand before the periodic correction, the maximum demand value is obtained unless an early measure is taken.
  • the required measure level calculation unit 611 calculates the required measure level for each supply / demand scenario as described above, and when the required required measure level is equal to or greater than the threshold value, the required measure scenario extraction unit 612 Are extracted as a scenario requiring countermeasures.
  • Scenarios requiring countermeasures may include scenarios that require significantly different countermeasures. For example, in the case of a measure that raises the discharge reference value relative to the discharge reference value in the initial operation plan, it is meaningful to suppress discharge, and in the case of a measure that lowers the discharge reference value, discharge is likely to occur. There is a meaning. In this case, even if the countermeasure scenario group can be identified based on the identification condition using the amount of solar radiation, temperature, demand, etc., if the countermeasure for suppressing the discharge and the countermeasure for facilitating the above are mixed, the countermeasure is 1 Cannot be determined.
  • the necessary countermeasure scenario classification unit 613 classifies the necessary countermeasure scenarios by the similarity of the countermeasures.
  • the scenario requiring countermeasures is classified according to the correction direction of the initial plan and the initial operation plan.
  • Each group classified by this process is an early countermeasure target scenario group, and a group ID for uniquely identifying each group is assigned.
  • the group ID of the early countermeasure target scenario group to which the scenario belongs is stored in the early countermeasure item of the scenario DB 700.
  • FIG. 12 is an explanatory diagram showing an example of classification of countermeasure required scenarios.
  • FIG. 12 shows an example of classifying the countermeasure required scenario of FIG. 8 and the countermeasure required scenario of FIG.
  • the initial operation plan is 240 [kW] (120 [kWh] for 30 minutes of power consumption).
  • (A) is a countermeasure scenario group extracted by the countermeasure scenario extraction unit 612.
  • the necessary countermeasure scenario group includes the necessary countermeasure scenario sx of FIG. 8 and the quick countermeasure scenario sy of FIG.
  • the necessary scenario is grouped so that the control parameter values that make up the operation plan have only the same tendency (correction direction of the operation plan) as to whether it is larger or smaller than the initial operation plan, It is stored in the memory as a scenario group targeted for early countermeasures.
  • a scenario group targeted for early countermeasures For example, as described above, when the control parameter constituting the operation plan is composed only of the discharge reference value, the control parameter is made lower with the group corresponding to the optimum operation plan that makes the discharge reference value higher than the initial operation plan.
  • the countermeasure scenario group is divided into two groups corresponding to the operation plan. Each divided group becomes a scenario group targeted for early measures.
  • the “class” corresponding to the two classification categories corresponding to the increase / decrease in the value of the control parameter of each continuous value and the type of the value of the control parameter of each discrete value The scenario group requiring countermeasures is classified into a group based on a combination of “number-1” classification categories. For example, in addition to the discharge reference value, set the target value (SOC target value) of the remaining battery charge (SOC: State of Charge), and if the remaining battery charge is less than the SOC target value, the discharge reference value is not exceeded.
  • the countermeasure required scenario group is classified by four classification categories corresponding to the two control parameters of the discharge reference value and the SOC target value.
  • the scenario group requiring countermeasures is classified.
  • the classification categories corresponding to the difference in the operating state of the device in the time zone that is the unit of the schedule setting are further combined. It will be. For example, when starting / stopping a manufacturing device that requires continuous operation for a predetermined time once a day, when the schedule control is performed in units of one hour, the classification corresponding to when the device is started is set. Combine and classify scenarios that require countermeasures. Then, a group into which any scenario is classified is stored in the memory as an early countermeasure target scenario group.
  • the identification condition creating unit 614 creates an identification condition for each of the early countermeasure target scenario groups of the plurality of early countermeasure target scenario groups classified by the countermeasure scenario classification unit 613. Specifically, the identification condition creating unit 614 creates a discrimination model for discriminating whether or not the scenario should belong to the early countermeasure target scenario group to be processed.
  • the discriminant model is the data that can be used at the time of early countermeasures on the current day to determine whether the supply and demand scenario that is being realized at the time of operation belongs to the scenario group targeted for early countermeasures or the other scenario groups.
  • This is a model for discriminating based on.
  • the discriminant model is created using a general discriminant analysis method.
  • the identification condition creation unit 614 obtains a discrimination function as a discrimination criterion based on the relationship between the explanation attribute and the objective attribute obtained by the simulation, and determines whether or not it belongs to the early countermeasure target scenario group based on the criterion. You can build a model to do.
  • the identification condition creating unit 614 evaluates whether the created discrimination model can discriminate the early countermeasure target scenario group from the supply and demand scenario with higher accuracy than the threshold value. And when it can discriminate
  • This discriminant model determines that a measure is necessary if the cumulative amount of solar radiation on the day of operation is close to the standard cumulative amount of solar radiation for the scenario group requiring countermeasures, and the standard cumulative amount of solar radiation for scenarios that do not require countermeasures. It is a discriminant model in which it is determined that no countermeasure is required if close to.
  • FIG. 13 is an explanatory diagram showing an example of creating an identification condition by the identification condition creating unit 614.
  • the supply and demand scenario is s0 to s9, and a certain early countermeasure target scenario group is described by taking s1, s4, s5, s7, and s9 as examples.
  • an identification condition creation table 1300 is used as an example.
  • the identification condition creation table 1300 has a supply and demand scenario ID item, a purpose attribute item, and an explanation attribute item, and is a table in which a supply and demand scenario ID, a purpose attribute, and an explanation attribute are set for each supply and demand scenario.
  • the explanation attribute is data that serves as a clue to estimate the purpose attribute (measures necessity / non-necessity), and observation data that can be used at the early countermeasure time on the operation day, the aggregate value of the observation data, and the like are adopted.
  • observation values such as weather, temperature, solar radiation intensity, and power consumption at the early countermeasure time, and aggregate values such as integrated solar radiation amount and cumulative power up to the early countermeasure time are employed.
  • the description attribute is “integrated solar radiation amount until 9 o'clock [MJ / m 2 ]”.
  • the value set in the explanation attribute when the explanation attribute is a continuous value, the value may be set, and when the explanation attribute is a discrete value, an integer value corresponding to each discrete value may be set. For example, in the case of weather, discrete values such as 1, 2, and 3 may be set corresponding to sunny, cloudy, rainy, and the like.
  • the identification condition creation unit 614 first initializes the identification condition creation table 1300. Specifically, for example, the identification condition creating unit 614 sets the necessity of countermeasures for all supply and demand scenarios to “unnecessary”. Then, the identification condition creation unit 614 sets the value of the explanation attribute for each supply and demand scenario.
  • the value of the explanation attribute is calculated from, for example, time series data of the scenario DB 700 set based on past data acquired from the operation system 102.
  • the identification condition creating unit 614 changes the necessity of countermeasure for each early countermeasure target scenario s1, s4, s5, s7, s9 of a certain early countermeasure target scenario group to “necessary”.
  • the identification condition creating unit 614 obtains an average solar radiation amount of the scenario for demand countermeasures s1, s4, s5, s7, and s9 that indicates whether the countermeasure is necessary or not, that is, the necessity for countermeasure. In this example, it is 1.60 [MJ / m 2 ]. Similarly, the identification condition creating unit 614 obtains the average solar radiation amount of the supply and demand scenarios s0, s2, s3, s6, and s8 that indicate whether the countermeasure is necessary or not. In this example, it is 6.60 [MJ / m 2 ]. Then, the identification condition creating unit 614 obtains an average value between both averages. In this example, it is 4.10 [MJ / m 2 ]. The intermediate value of both averages becomes the reference value for discrimination in the discrimination model. In (C), the average is obtained, but the median may be obtained.
  • the identification condition creation unit 614 generates a discrimination model that determines whether the scenario should belong to the early countermeasure target scenario group.
  • the identification condition creating unit 614 generates a discrimination model that discriminates an early countermeasure target scenario that is equal to or lower than the intermediate value as “necessary countermeasures” based on the intermediate value of both averages.
  • This discriminant model has an average solar radiation amount of any of the group having an average solar radiation amount of 1.60 [MJ / m 2 ] and an average solar radiation amount of 6.60 [MJ / m 2 ] on the day of operation. This is a discriminant model for determining whether or not it is close.
  • the identification condition creating unit 614 uses the discrimination model generated in (C) to extract a scenario (referred to as “early countermeasure requirement conforming scenario”) that is determined as “required countermeasure”.
  • a scenario referred to as “early countermeasure requirement conforming scenario”
  • the early countermeasure target scenarios s1, s4, s7, and s9 are extracted as the early countermeasure target scenarios of “required countermeasures”.
  • the scenario s5 for early countermeasures is a scenario close to the group with an average solar radiation amount of 6.60 [MJ / m 2 ] according to the discrimination model, it is determined as “No countermeasures required” and Not extracted.
  • the scenario extracted as the “early countermeasure condition conforming scenario” does not include the “measures unnecessary” scenarios s0, s2, s3, s6, and s8. Therefore, the accuracy (recall rate) from the viewpoint of whether the “early countermeasure target scenario” can be extracted without omission is 80% (4/5). The accuracy (accuracy rate) from the viewpoint of “scenario” is 100%.
  • the early countermeasure target scenario group to be processed can be discriminated with an accuracy of 80% recall rate and 100% accuracy rate.
  • the threshold value of the recall rate and accuracy rate is 80%. If there is, this discrimination model becomes the discrimination condition.
  • the early countermeasure target scenario extraction unit 601 executes a series of processing from calculation of required countermeasure level to creation of identification conditions at each early countermeasure time.
  • the early countermeasure target scenario extraction unit 601 performs a supply and demand scenario that matches the created identification condition (early stage) from the supply and demand scenario group prior to the execution of a series of processing of calculating the required countermeasure level for the next early countermeasure time and creating the identification condition. Exclude countermeasure condition conformity scenario) from the target of processing.
  • the countermeasure scenario s1, s4, s7, s9 is deleted from the supply / demand scenario s0 to s9, and the next early countermeasure time is determined for the remaining supply / demand scenarios s0, s2, s3, s5, s6, s8.
  • a series of processes from calculation of countermeasure level to creation of identification conditions is executed.
  • the output information creation unit 602 creates a corrected operation plan for a countermeasure required scenario group whose identification conditions are clarified.
  • the output information creation unit 602 sequentially selects the identification conditions created for each of the early countermeasure target scenario groups as processing targets, and performs the following processing.
  • the output information creation unit 602 first extracts a supply and demand scenario that matches the selected identification condition from the supply and demand scenario group.
  • the extracted supply-demand scenario is not necessarily the same as the early countermeasure target scenario group classified by the countermeasure scenario classification unit 613.
  • the scenario group extracted here does not include scenarios that do not meet the identification conditions even if they are targeted for early countermeasures, and conversely, supply and demand scenarios that are not targeted for early countermeasures are included as long as they meet the identification conditions. .
  • the output information creation unit 602 executes the extraction of the supply and demand scenario based on the identification condition again.
  • the identification condition creation unit 614 in the previous stage may be executed in such a manner that the early countermeasure target scenario group is adjusted so as to match the identification condition.
  • the output information creation unit 602 executes a modified operation plan candidate creation process for each of the extracted supply and demand scenarios. Specifically, for example, the output information creation unit 602 acquires the optimum operation plan after the early countermeasure time recorded in the early countermeasure item of the scenario DB 700 for each of the extracted supply and demand scenarios, and performs the subsequent processing. It is a candidate for a modified operation plan to be used.
  • FIG. 14 is an explanatory diagram illustrating an example of an early countermeasure item of the scenario DB 700 used by the output information creation unit 602.
  • FIG. 14 is a part used in the processing of the early countermeasure target scenario group used in the description of the previous period, that is, the scenario group corresponding to the early countermeasure that is corrected to increase the discharge reference value (220 kW) of the initial plan at 9:00.
  • the operation plan recorded in the plan item (the corrected operation plan at the early countermeasure time that is optimal for each supply-demand scenario calculated by the countermeasure level calculation unit 611) is a candidate for the corrected operation plan.
  • the output information creation unit 602 selects one corrected operation plan from the corrected operation plans stored in the early countermeasure items in the scenario DB 700. Specifically, for example, the output information creation unit 602 selects the safest corrected operation plan as the corrected operation plan at the early countermeasure candidate time among the corrected operation plans calculated for each extracted supply and demand scenario. .
  • the safest corrective operation plan is a corrective operation plan that has no effect on any supply and demand scenario.
  • the corrected operation plan at the early countermeasure candidate time is 250 to 290 [kW] for the extracted supply and demand scenario.
  • the discharge reference value when the discharge reference value must be set to 290 [kW], if it is set to 250 [kW], the discharge becomes too much and the peak cut fails.
  • the discharge reference value when the discharge reference value must be set to 250 [kW], the peak cut does not fail even if it is set to 290 [kW]. Therefore, in the example of FIG. 14, 290 [kW] of the supply and demand scenario s4 is selected as a safe corrected operation plan.
  • the output information creation unit 602 ultimately outputs the early countermeasure time, the identification condition, and the corrected operation plan.
  • FIG. 15 is an explanatory diagram illustrating an output example by the output information creation unit 602.
  • the output information 1500 is identified as an early countermeasure time of “If the amount of solar radiation by 9:00 early countermeasure time is 4.10 [MJ / m 2 ] or less, the discharge reference value is corrected to 290 [kW]”. It is information in which the condition and the corrected operation plan are associated with each other.
  • the output information 1500 is output to the operation system 102. In the operation system 102, when the amount of solar radiation until 9:00 is 4.10 [MJ / m 2 ] or less, the operation plan is corrected to 290 [kW] by moving forward from the regular correction time (for example, 13:00) and at 9:00. Will do.
  • FIG. 16 is a flowchart illustrating an example of a processing procedure performed by the creation apparatus 600.
  • the early countermeasure target scenario extraction unit 601 executes early countermeasure target scenario extraction processing (step S1601)
  • the output information creation unit 602 executes output information creation processing (step S1602).
  • FIG. 17 is a flowchart showing a detailed processing procedure example of the early countermeasure target scenario extraction process (step S1601) shown in FIG.
  • the creation device 600 initializes the processing target time (step S1701). For example, the creation apparatus 600 sets the processing target time to t1.
  • the countermeasure level calculation unit 611 executes the countermeasure level calculation process for the early countermeasure time that is the processing target time (step S1702). Details of the countermeasure degree calculation process (step S1702) will be described with reference to FIG.
  • the creation apparatus 600 extracts, as the required countermeasure scenario, the supply and demand scenario in which the degree of required countermeasure is equal to or greater than the threshold value by the required countermeasure scenario extracting unit 612 (step S1703). Then, the creation device 600 executes the countermeasure scenario classification process by the countermeasure scenario classification unit 613 (step S1704), and further executes the identification condition creation process by the identification condition creation unit 614 (step S1705). Details of the countermeasure scenario classification process (step S1704) will be described with reference to FIG. Details of the identification condition creation processing (step S1705) will be described with reference to FIG.
  • the creation apparatus 600 determines whether or not the early countermeasure target scenario extraction processing has been performed for all early countermeasure times (step S1706). For example, the creating unit determines whether or not the processing target time is a time immediately before the regular correction time. When the extraction process of the early countermeasure target scenario is not performed for all early countermeasure times (step S1706: No), the creation device 600 calculates the countermeasure required degree calculation process for the early countermeasure target scenario identified by the identification condition ( It is excluded from the supply and demand scenario group to be evaluated in step S1702) (step S1707). Then, the creation device 600 selects the next early countermeasure time as the processing target time (step S1708), and returns to step S1702. For example, when the processing target time is the early countermeasure time t1, the creation apparatus 600 selects the next early countermeasure time t2.
  • step S ⁇ b> 1702 the creation apparatus 600 executes a countermeasure degree calculation process for the remaining supply-demand scenario groups to be evaluated excluding the early target scenario excluded in step S ⁇ b> 1707, for the processing target time selected in step S ⁇ b> 1708.
  • step S1706 when the early countermeasure target scenario extraction process is performed for all early countermeasure times (step S1706: Yes), the early countermeasure target scenario extraction process (step S1601) ends.
  • FIG. 18 is a flowchart showing a detailed processing procedure example of the countermeasure level calculation processing (step S1702) shown in FIG.
  • the creation apparatus 600 determines whether there is an unselected supply / demand scenario in the evaluation target supply / demand scenario group (step S ⁇ b> 1801). When there is an unselected supply-demand scenario (step S1801: Yes), the creation apparatus 600 selects one unselected supply-demand scenario (step S1802).
  • the selected supply and demand scenario is referred to as a “selected supply and demand scenario”.
  • the creation apparatus 600 executes a simulation for correcting the initial operation plan at the early countermeasure time in the selected supply and demand scenario, and records the result in the early countermeasure item of the scenario DB 700 (step S1803). Further, the creation apparatus 600 executes a simulation for correcting the initial operation plan at the periodic correction time, and records the result in the periodic correction item of the scenario DB 700 (step S1804). Thereafter, the creation apparatus 600 calculates the degree of countermeasure required for the selected supply and demand scenario from both the results of steps S1803 and S1804 (step S1805). The calculated measure level is stored in the memory in association with the supply / demand scenario ID of the selected supply / demand scenario.
  • step S1801 No
  • step S1702 ends.
  • FIG. 19 is a flowchart showing a detailed processing procedure example of the countermeasure required scenario classification process (step S1704) shown in FIG.
  • the creation apparatus 600 first determines whether there is a countermeasure scenario that has not been selected from the countermeasure scenarios extracted in step S1703 (step S1901). If there is an unselected countermeasure scenario required (step S1901: Yes), the creation apparatus 600 selects one unselected countermeasure scenario required (step S1902). The selected countermeasure scenario is referred to as “selected scenario”.
  • the creation apparatus 600 determines whether or not the operation plan after the correction of the selection-needed countermeasure scenario is equal to or more than the initial operation plan (step S1903). When the operation plan after the correction of the selection-required countermeasure scenario is equal to or greater than the initial operation plan (step S1903: Yes), the creation apparatus 600 classifies the selection-required countermeasure scenario into a group that increases the discharge reference value (step S1904). Return to step S1901.
  • step S1903: No when the operation plan after the correction of the selection-needed countermeasure scenario is not equal to or higher than the initial operation plan (step S1903: No), the creation apparatus 600 classifies the selection-needed countermeasure scenario into a group that lowers the discharge reference value (step S1905). ), The process returns to step S1901. In step S1901, if there is no unselected countermeasure scenario required (step S1901: No), the countermeasure scenario classification process (step S1704) ends.
  • FIG. 20 is a flowchart showing a detailed processing procedure example of the identification condition creation processing (step S1705) shown in FIG.
  • the creating apparatus 600 first sets the description attribute of the total supply and demand scenario in the identification condition creation table 1300 (step S2001), as shown in FIG. Is set to “measures not required” (step S2002). As a result, the identification condition creation table 1300 shown in FIG. 13A is created.
  • the creation apparatus 600 determines whether there is an unselected early countermeasure target scenario group among the plurality of early countermeasure target scenario groups classified in step S1704 (step S2003).
  • step S2003 Yes
  • the creation apparatus 600 selects one unselected early countermeasure target scenario group (step S2004), and each of the selected early countermeasure target scenario groups.
  • the objective attribute of the scenario is set to “necessary” (step S2005).
  • the identification condition creation table 1300 is in a state as shown in FIG.
  • step S2006 the creation device 600 generates a discrimination model as shown in FIG. 13C (step S2006), and creates an identification condition as shown in FIG. 13D (step S2007). Then, the process returns to step S2002, and the creation apparatus 600 resets the purpose attributes of all supply and demand scenarios to “measures not required”. If there is an unselected early countermeasure target scenario group in step S2003 (step S2003: Yes), steps S2004 to S2007 are executed. Therefore, an identification condition is created for each classified early countermeasure target scenario group. In step S2003, if there is no unselected early countermeasure target scenario group (step S2003: No), the identification condition creation process (step S1705) is terminated.
  • FIG. 21 is a flowchart showing a detailed processing procedure example of the output information creation processing (step S1602) shown in FIG.
  • the creating apparatus 600 first determines whether there is an unselected identification condition (step S2101). If there is an unselected identification condition (step S2101: Yes), the creation apparatus 600 selects one unselected identification condition (step S2102). The selected identification condition is referred to as “selected identification condition”.
  • the creation apparatus 600 extracts a supply and demand scenario that matches the selection identification condition from the supply and demand scenario group (step S2103).
  • the extracted supply and demand scenario is referred to as an “extraction scenario”.
  • the creation apparatus 600 determines whether there is an unselected extraction scenario (step S2104). If there is an unselected extraction scenario (step S2104: Yes), the creation apparatus 600 selects one unselected extraction scenario (step S2105), and obtains a corrected operation plan for the selected extraction scenario (step S2106). ).
  • the creation device 600 uses the output information creation unit 602 to select an operation plan recorded in the early countermeasure item of the scenario DB 700 for the selected extracted scenario, that is, an optimal modified operation plan at the early countermeasure time. get.
  • step S2104 determines whether there is an unselected extraction scenario. If there is no unselected extraction scenario (step S2104: No), the creation apparatus 600 selects an optimal corrected operation plan from the corrected operation plans for each extracted scenario (step S2107). When the optimum corrected operation plan is selected, a combination of the early countermeasure time and the identification condition is held as one of the output information 1500 together with the optimum corrected operation plan. Thereafter, the process returns to step S2101 and steps S2102 to S2107 are repeatedly executed until there is no unselected identification condition.
  • step S2101 if there is no unselected identification condition (step S2101: No), the creation apparatus 600 outputs output information 1500 as shown in FIG. 15 to the operation system 102 (step S2108). Thereby, the output information creation process (step S1602) ends.
  • the effectiveness of the early countermeasure of the first embodiment will be described.
  • a situation where the peak cut effect is desired to be enhanced is taken as an example.
  • the initial setting of the discharge reference value is low, unnecessary discharge occurs before the periodic correction time, and as a result, the remaining battery level at the periodic correction time is insufficient, and the subsequent time zone is cut. Unable to cope with a power peak. Therefore, it is necessary to correct the operation plan at the earliest possible time so as to reduce the inappropriate discharge amount as much as possible.
  • the creation device 600 extracts a supply and demand scenario for which the amount of discharge should be suppressed from the possible supply and demand situations from the possible supply and demand situations for the candidate for the early countermeasure time, and the extracted scenario group is obtained at that time. Check whether it can be identified by the data
  • the creation apparatus 600 determines the early countermeasure time and the identification condition as conditions for starting the discharge suppression, and creates an appropriate countermeasure for the situation that matches the condition. For example, the creation device 600 creates a safe discharge reference value that can avoid unnecessary discharge. Under these conditions, it is possible to avoid the unnecessary discharge and enhance the peak cut effect by detecting the situation where the discharge amount should be suppressed at each time point on the day of operation and taking countermeasures.
  • a countermeasure scenario that should start discharging at an early countermeasure time is identified by simulation based on a supply and demand scenario that reflects the transition of demand. Create identification conditions for detection. With this identification condition, it is possible to detect a situation that requires handling of surplus power absorption at each point of time on the day of operation, perform discharge to create a space for surplus power absorption, and avoid loss of surplus power. it can.
  • the creation device 600 classifies according to whether or not the optimum operation plan after the correction of the required countermeasure scenario from which the degree of countermeasure is extracted is equal to or higher than the initial operation plan. .
  • the creation device 600 constructs a regression tree, classifies countermeasure scenarios using the constructed regression tree, and creates an identification condition using the regression tree.
  • the countermeasure scenario classification unit 613, the identification condition creation unit 614, and the output information creation unit 602 are different from those in the first embodiment, but are otherwise the same as those in the first embodiment. Therefore, in the second embodiment, a countermeasure scenario classification unit 613, an identification condition creation unit 614, and an output information creation unit 602 will be described. First, the countermeasure required scenario classification unit 613 of the second embodiment will be described.
  • the countermeasure scenario classification unit 613 uses the regression tree so that the values of the data that can be used at the early countermeasure time are similar, and the difference in the countermeasures (correction operation plan optimal for each scenario) is within a predetermined range. Find groups of scenarios that require action. Specifically, for example, the countermeasure scenario classification unit 613 uses a countermeasure tree as a target attribute and sets a regression tree of countermeasure scenario groups having a description attribute as data that can be used at an early countermeasure time. Is constructed to be below a predetermined threshold. For example, a mean square error value is used as a difference in the countermeasures in the leaf nodes of the regression tree.
  • the countermeasure-necessary scenario classification unit 613 selects a leaf node whose difference in countermeasures was within a predetermined threshold as an early countermeasure target scenario group. Then, a group ID for uniquely identifying each group is assigned to the selected early countermeasure target scenario group (leaf node), and 00 early countermeasures are applied to the supply and demand scenarios classified in each early countermeasure target scenario group. The corresponding group ID is stored in the item gci.
  • FIG. 22 is an explanatory diagram showing a classification example of a countermeasure required scenario based on a regression tree.
  • the objective attribute is set to “discharge reference value (measure)”
  • the explanatory attribute is set to “integrated solar radiation amount and temperature until 9 o'clock”
  • the square root of the least square error is 5 [kW] or less.
  • An example of the constructed regression tree 2200 is shown.
  • the root node N0 at the top of the regression tree 2200 corresponds to the entire countermeasure scenario, and the four leaf nodes at the bottom correspond to the early countermeasure target scenario group. Further, the root node N0 and the two intermediate nodes N1 and N2 have rules (division test) for dividing the scenario group corresponding to each node into lower nodes.
  • the division rule R0 for the root node N0 is “the accumulated solar radiation amount until 9 o'clock is 1.0 [MJ / m 2 ] or less”.
  • the division rule R1 for the intermediate node N1 is “temperature is 20 degrees or higher”.
  • the division rule R2 for the intermediate node N2 is “the cumulative amount of solar radiation up to 9 o'clock is 7.0 [MJ / m 2 ] or more”.
  • the leaf nodes L1 to L4 have an average value and variation of countermeasures for the countermeasure scenarios required to be classified into the respective leaf nodes L1 to L4 (discharge reference values optimum for each scenario).
  • the leaf node L1 corresponds to a scenario group that satisfies both conditions of the division rules R0 and T1 in the countermeasure required scenario, and the average of countermeasures (the discharge reference value optimum for each scenario) of the scenario group is 250 [kW. ], The variation is 4 [kW].
  • all the leaf nodes L1 to L4 satisfy the threshold condition of the least square error, all the leaf nodes L1 to L4 are selected as the early countermeasure target scenario group. However, if there is a leaf node that does not satisfy the threshold condition of the least square error, the scenario group corresponding to the leaf node is not selected as the early countermeasure target scenario group.
  • the identification condition creating unit 614 creates an identification condition based on the regression tree 2200.
  • the division test in the regression tree 2200 constructed by the countermeasure required scenario classification unit 613 is a candidate for the identification condition. That is, the regression tree 2200 represents a rule for dividing the root node N0 corresponding to the countermeasure required scenario group into leaf nodes L1 to L4 corresponding to the early countermeasure target scenario group.
  • the identification condition creating unit 614 can create a condition for identifying the early countermeasure target scenario group from the necessary countermeasure scenario groups based on the division test from the root node N0 to the leaf nodes L1 to L4.
  • the total supply and demand scenario includes a countermeasure-unnecessary scenario that is not a countermeasure-necessary scenario.
  • a countermeasure-unnecessary scenario is also allocated to the leaf nodes L1 to L4 corresponding to the early countermeasure target scenario group. That is, when the identification condition of the early countermeasure target scenario group is created by the regression tree 2200, not only the early countermeasure target scenario but also the countermeasure unnecessary scenario may be identified by the created identification condition.
  • the identification condition creating unit 614 of the second embodiment adversely affects the identification conditions and countermeasures for each early countermeasure target scenario group expressed in the regression tree 2200 with respect to the countermeasure-unnecessary scenarios that are identified by the identification conditions. Check if it does not reach. Then, the identification condition creating unit 614 performs a process of adopting the identification condition only when there is no adverse effect.
  • the identification condition creating unit 614 executes the following two types of simulations for the countermeasure-unnecessary scenarios identified by the identification conditions created based on the regression tree 2200 for each early countermeasure target scenario group. Evaluate the resulting difference in effect.
  • One of the two types of simulations is a simulation in which the operation plan is corrected according to the countermeasure recorded in the leaf node of the regression tree 2200 after the initial countermeasure until the early countermeasure time.
  • the measure is the average value or the maximum value of the discharge reference value that is optimal for the scenario for the early measure.
  • the other of the two types of simulations is a simulation that continues operation with the original operation plan.
  • the identification condition creating unit 614 of the second embodiment further identifies an identification condition so that a countermeasure-unnecessary scenario that suffers an adverse effect is not identified. By adding, adverse effects may be avoided.
  • the identification condition creation unit 614 of the second embodiment sets “requirement” for the purpose attribute for the early countermeasure target scenario group and the countermeasure unnecessary scenario group that is not adversely affected by the early countermeasure.
  • the purpose attribute for the countermeasure-unnecessary scenario that the early countermeasures have an adverse effect is set to “unnecessary”. Then, the identification condition creating unit 614 of the second embodiment may add the created identification condition to the identification condition by the regression tree 2200.
  • FIG. 23 is an explanatory diagram showing an example of the identification condition creation table 2300 created by the regression tree 2200.
  • the identification condition creation table 2300 includes identification condition items, countermeasure items, and influence flag items.
  • an AND combination of the division rules from the root node to the leaf node is stored as an example of the identification condition.
  • a discharge reference value is stored as an example of the countermeasure.
  • the influence flag item a flag indicating “no influence” or “with influence” is stored for the countermeasure unnecessary scenario by the countermeasure unnecessary scenario check.
  • ⁇ “ No impact ” indicates that there is no adverse effect on the effect even if the measure stored in the measure item is taken. “Influential” indicates that the countermeasure stored in the countermeasure item has an adverse effect on the effect.
  • the record in the first line of the identification condition creation table 2300 in FIG. 23 corresponds to the leaf node L1
  • the record in the second line corresponds to the leaf node L2
  • the record in the third line corresponds to the leaf node L3.
  • the record in the fourth row corresponds to the leaf node L4.
  • the identification condition created by the regression tree 2200 is “the cumulative amount of solar radiation until 9 o'clock is 1.0 [MJ / m 2 ] or less” and “the temperature is 20 degrees or more”. Is shown.
  • the record on the first line shows all countermeasures as a result of the simulation of changing the discharge reference value to 250 [kW] at 9:00, which is the early countermeasure time, for the countermeasure-unnecessary scenario identified by this identification condition. It shows that the deterioration of the effect was within a predetermined threshold in the unnecessary scenario.
  • the identification condition created by the regression tree 2200 is “the accumulated solar radiation amount by 9 o'clock is greater than 1.0 [MJ / m 2 ]” and “the cumulative solar radiation amount by 9 o'clock is 7 0.0 [MJ / m 2 ] ".
  • the effect is deteriorated. This indicates that there was a scenario exceeding a predetermined threshold.
  • the output information creation unit 602 sets a combination of “no influence” in the countermeasure-unnecessary scenario check as the corrected operation plan among the combinations of the identification condition and the countermeasure created by the identification condition creation unit 614.
  • the output information creation unit 602 sets the records in the first to third lines of the identification condition creation table 2300 as the corrected operation plan and outputs them to the operation system 102.
  • the corrected operation plan can be created by extracting it from the identification condition creation table 2300, so that the efficiency of the modified operation plan creation process can be improved.
  • FIG. 24 is a flowchart illustrating an example of a countermeasure scenario classification processing procedure required by the countermeasure scenario classification unit 613 according to the second embodiment.
  • the creation apparatus 600 first determines whether or not there is an unselected countermeasure scenario among the countermeasure scenarios extracted by the countermeasure scenario extraction unit 612 (step S2401).
  • the creation apparatus 600 selects one countermeasure scenario that has not been selected (step S2402).
  • the selected countermeasure scenario is referred to as a “selected countermeasure scenario”.
  • the creation apparatus 600 calculates an optimum operation plan after the early countermeasure time for the scenario requiring countermeasures by simulation (step S2403).
  • the calculated optimum operation plan is the target attribute of the scenario requiring countermeasures.
  • the creation apparatus 600 calculates data that can be used at the early countermeasure time for the scenario requiring countermeasures by the scenario DB 700, sets the data as an explanation attribute (step S2404), and returns to step S2401.
  • Data available at the early countermeasure time is, for example, the amount of solar radiation and temperature.
  • a plurality of explanation attributes are set.
  • the division rules are R0 to R2.
  • step S2405 when there is no unselected countermeasure scenario that needs to be selected (step S2401: No), the creation apparatus 600 executes division processing (step S2405).
  • step S2405 the regression tree 2200 is constructed, and the countermeasure required scenario group is divided into scenario groups corresponding to leaf nodes. Details of the division processing (step S2405) will be described later.
  • step S2405 the creating apparatus 600 determines a scenario group corresponding to the leaf node of the regression tree 2200 and having a countermeasure difference within a predetermined range as an early countermeasure target scenario (step S2406). This completes the countermeasure scenario classification process (step S1704).
  • FIG. 25 is a flowchart showing a detailed processing procedure example of the division processing (step S2405) shown in FIG.
  • the creating apparatus 600 first determines whether or not a division end condition is satisfied (step S2501).
  • the division end condition is that the objective attribute variation (minimum square error), which is the optimum operation plan obtained in step S2401, is less than or equal to a predetermined threshold for the countermeasure required scenario group corresponding to the division target node.
  • the condition is that the number of data (number of scenarios) corresponding to the target node is sufficiently smaller than the total number of data (total number of scenarios).
  • step S2501 the creation apparatus 600 executes a division test for each explanation attribute for the required countermeasure scenario group corresponding to the division target node (step S2502). Specifically, in the division test for each explanation attribute, the division rule based on the explanation attribute is set so that the mean square error of the target attribute in the two groups after division is minimized (or the variance between groups is maximized). . Then, the creation apparatus 600 selects a division rule that minimizes the mean square error or maximizes the interclass variance (step S2503).
  • the creation device 600 divides the required countermeasure scenario group corresponding to the division target node, which is a data set, into a first data set and a second data set according to the selected division rule (step S2504).
  • the division rule is “the cumulative amount of solar radiation up to 9 o'clock is 1.0 [MJ / m 2 ] or less” at the root node N0
  • the countermeasure scenario group corresponding to the current node N0 is set as “integrated up to 9 o'clock”.
  • a first data set of solar radiation amount is 1.0 [MJ / m 2] or less "
  • the second data set accumulated amount of solar radiation until" 9 is not 1.0 [MJ / m 2] or less ", the To divide.
  • the creation device 600 executes a division process for the first data set (step S2505). Specifically, the creation device 600 executes steps S2501 to S2504 for the first data set. In addition, the creation apparatus 600 executes a division process for the second data set (step S2506). Specifically, the creation device 600 executes steps S2501 to S2504 for the second data set.
  • the first data set dividing process (step S2505) and the second data set dividing process (step S2506) are recursive dividing processes (step S2405). After dividing the second data set (step S2506), the process returns to step S2501. In step S2501, when the division end condition is satisfied (step S2501: Yes), the division process (step S2405) ends.
  • FIG. 26 is a flowchart of a detailed processing procedure example of identification condition creation processing by the identification condition creation unit 614 according to the second embodiment.
  • the creating apparatus 600 first determines whether there is an unselected early countermeasure target scenario group in the regression tree 2200 (step S2601). When there is an unselected early countermeasure target scenario group (step S2601: Yes), the creation apparatus 600 selects one unselected early countermeasure target scenario group (step S2602).
  • the creation device 600 sets identification conditions and countermeasures in the identification condition creation table 1300 for the selected early countermeasure target scenario group (step S2603). Specifically, for example, the creation apparatus 600 uses, as an identification condition, a route that has passed through the division rule from the root node N0 to the leaf node of the selected early countermeasure target scenario group. Further, the optimum operation plan obtained in step S2403 is stored in the countermeasure of the identification condition creation table 2300.
  • the creation apparatus 600 uses “the accumulated solar radiation amount until 9 o'clock is 1.0 [MJ / m 2 ] or less” and “the temperature is 20 degrees or more” as the identification condition. Set.
  • the creation apparatus 600 sets the average value of the optimum operation plan calculated in step S2403 for each of the early countermeasure target scenario groups. At this time, all the influence flags are in the initial state “no influence”.
  • the creation device 600 extracts a countermeasure-unnecessary scenario identified by the identification condition created for the selected early countermeasure target scenario group from the countermeasure-unnecessary scenario group in the supply and demand scenario group (step S2604).
  • the identification condition creating unit 614 gives a countermeasure-unnecessary scenario group to the regression tree 2200 and executes the division test. Thereby, the countermeasure-unnecessary scenario group is classified into leaf nodes L1 to L4.
  • the identification condition creating unit 614 extracts a countermeasure-unnecessary scenario group classified as a leaf node corresponding to the selected early countermeasure target scenario group from among the countermeasure-unnecessary scenario groups classified into the leaf nodes L1 to L4.
  • the creation apparatus 600 determines whether there is an unselected countermeasure-unnecessary scenario from the extracted countermeasure-unnecessary scenario group (step S2605).
  • the creation apparatus 600 selects one unselected countermeasure-unnecessary scenario (step S2606).
  • the creation device 600 operates in the initial operation plan until the early countermeasure time in the selected countermeasure-unnecessary scenario, and executes a simulation that corrects according to the countermeasure of the early countermeasure scenario group at the early countermeasure time (step S2607).
  • the creation device 600 executes a simulation operated in the initial operation plan in the selected countermeasure-free scenario (step S2608).
  • the creation apparatus 600 compares the effects obtained as the simulation results of steps S2607 and S2608, for example, the discharge reference value that is the optimum operation plan (step S2609).
  • the difference in effect is equal to or smaller than the predetermined threshold (step S2609: Yes)
  • the identification condition set in step S2603 is adopted, so the influence flag corresponding to the identification condition set in step S2603 is set. Leave OFF and return to step S2605.
  • step S2609: No when the effect difference is larger than the predetermined threshold (step S2609: No), the creation apparatus 600 sets the influence flag corresponding to the identification condition created in step S2603 to “influenced” (step S2610). ). That is, it is not adopted as an identification condition for the purpose of avoiding that the effect of the countermeasure-unnecessary scenario has been lowered by the early countermeasure. Thereafter, the process returns to step S2605.
  • the creation apparatus 600 repeatedly executes the processing from step S2606 until there is no unselected countermeasure-unnecessary scenario. In step S2605, there is no unselected countermeasure-unnecessary scenario (step S2605: No). The process returns to step S2601.
  • the creation apparatus 600 repeatedly executes the processing from step S2602 until there is no unselected early countermeasure target scenario group. If there is no unselected early countermeasure target scenario group in step S2601 (step S2601: No), the creation apparatus 600 ends the identification condition creation process (step S1705).
  • FIG. 27 is a flowchart of a detailed processing procedure example of output information creation processing by the output information creation unit 602 according to the second embodiment.
  • the creating apparatus 600 first acquires the identification condition creating table 2300 (step S2701).
  • the creation device 600 deletes the record whose influence flag is “influenced” from the acquired identification condition creation table 2300 (step S2702).
  • the creation device 600 outputs the deleted identification condition creation table 2300 as output information to the operation system 102 (step S2703).
  • the corrected operation plan can be created by extracting it from the identification condition creation table 2300. Therefore, it is possible to improve the efficiency of the modified operation plan creation process. Further, by checking whether the countermeasure-unnecessary scenario identified by the identification condition is adversely affected, the identification condition that adversely affects the effect of the early countermeasure can be rejected. Thereby, the improvement of the prediction precision of an early countermeasure can be aimed at.
  • FIG. 28 is a block diagram of a functional configuration example of the creating apparatus 600 according to the third embodiment. 28, in addition to the scenario DB 700, the early countermeasure target scenario extraction unit 601 and the output information creation unit 602, the creation device 600 includes a storage unit 2800, a reception unit 2801, a supply and demand scenario generation unit 2802, and an optimum evaluation value calculation unit. 2803 and a modified evaluation value calculation unit 2804.
  • the storage unit 2800 stores various data.
  • the generated data is written into the storage unit 2800 by the CPU 501. Further, data stored in the storage unit 2800 can be read by the CPU 501.
  • the storage unit 2800 is realized by the hard disk device 507, for example.
  • the accepting unit 2801 accepts various information from the input device 502.
  • the reception unit 2801 receives demand data 2811 and solar radiation amount data 2812 from the input device 502 and stores the received demand data 2811 and solar radiation amount data 2812 in the storage unit 2800.
  • the demand data 2811 is time series data having a demand power value as an element.
  • the demand data 2811 is data in which each time zone in a day is associated with the demand power value. This power demand value is calculated from statistical data of past power consumption values, for example.
  • the solar radiation amount data 2812 is a record of the past solar radiation amount every predetermined time.
  • the amount of solar radiation includes, for example, a value measured in units of sunshine hours.
  • the sunshine time is a value defined as a time during which direct sunlight is irradiated on the ground surface with an intensity of a predetermined value (generally 0.12 [kW / m 2 ]) or more without being blocked by clouds or the like.
  • the solar radiation amount data 2812 for example, the sunshine hours for one month in July 2010 and the cumulative solar radiation amount per unit area are recorded every hour.
  • the solar radiation amount data 2812 is data acquired from, for example, a database of the Japan Weather Association.
  • the reception unit 2801 inputs a start time t0, an end time tn, an initial sunshine time h0, and a time step size ⁇ t as conditions for specifying the range of the solar radiation amount variation to be considered in the operation plan creation.
  • the start time t0 and the end time tn are expected to have sufficient power generation output in the time zone in which the power generation output may fluctuate more than should be considered due to the influence of weather fluctuations, that is, in fine weather.
  • the start time t0 is 9:00 and the end time tn is 15:00.
  • the initial sunshine time h0 is the amount of solar radiation at the start time t0 of the day for which the initial operation plan is to be created, and is calculated based on, for example, the weather at the start time t0 predicted by the weather forecast of the previous day. For example, when the weather at the start time t0 is predicted to be “sunny”, the initial sunshine time h0 is “1”.
  • the reception unit 2801 may receive an initial amount of solar radiation.
  • the initial sunshine duration h0 is calculated by converting the amount of solar radiation into the sunshine duration.
  • the correlation between the sunshine hours and the amount of solar radiation for each month is used. Specifically, a regression analysis is performed between the sunshine duration and the amount of solar radiation, and the sunshine duration is calculated by using an equation of the obtained regression line.
  • the time interval ⁇ t corresponds to the time interval of the sunshine time recorded in the solar radiation amount data 2812. For example, the time increment ⁇ t is 1 hour.
  • the reception unit 2801 outputs the received start time t0, end time tn, initial sunshine time h0, and time interval ⁇ t to the supply and demand scenario generation unit 2802.
  • the supply and demand scenario generation unit 2802 generates a plurality of scenarios indicating the possibility of a change in the supply and demand power value. For example, the supply and demand scenario generation unit 2802 builds a weather fluctuation model in which the weather fluctuation per unit time is modeled as a Markov process based on the solar radiation data 2812. The supply and demand scenario generation unit 2802 generates a plurality of output fluctuation scenarios 2815 by performing a Monte Carlo simulation based on the constructed weather fluctuation model.
  • the supply and demand scenario generation unit 2802 generates a plurality of supply and demand scenarios by taking the difference between the plurality of output fluctuation scenarios 2815 and the demand fluctuation scenario 2816 indicated by the demand data 2811.
  • the supply and demand scenario is time-series data whose element is the difference between the power demand in the power network operating the storage battery 112 and the output from solar power generation.
  • the supply and demand scenario generation unit 2802 is an example of a generation unit.
  • the supply and demand power value corresponds to the difference between the power demand in the power network operating the storage battery 112 and the output from solar power generation, and is also referred to as the supply and demand difference or the supply and demand balance.
  • the supply and demand scenario is an example of a scenario.
  • the supply and demand scenario generation unit 2802 generates a sunshine duration fluctuation probability table 2813 from the solar radiation amount data 2812. Specifically, the supply and demand scenario generation unit 2802 assumes that the sunshine time at a certain time is affected by the sunshine time at the immediately preceding time, and models the fluctuation of the sunshine time per unit time as a Markov process. .
  • the supply and demand scenario generation unit 2802 can model the fluctuation of the sunshine time as a Markov process when the sunshine time is affected by the clouds and the state such as the amount of cloudiness and density changes continuously with time. It is possible. That is, it is considered that the sunshine time measured at a time interval that can capture a continuous change in the state of the cloud is affected by the weather at the previous time.
  • FIG. 29 is a diagram showing an example of the sunshine duration fluctuation probability table 2813.
  • the horizontal direction in FIG. 29 indicates the sunshine time H before before the change, and four items of “0.0”, “0.1-0.5”, “0.6-0.9”, and “1.0”. are categorized.
  • the vertical direction indicates the sunshine time H after after the change, and is classified into 11 items from “0.0” to “1.0” in increments of “0.1”.
  • the sunshine duration fluctuation probability table 2813 shows the conditional probability P (H after
  • the conditional probability P is a value represented by 0 to 1.
  • the sunshine duration fluctuation probability table 2813 has, for example, a conditional probability P that changes from a sunshine duration H before “0.0” to a sunshine duration H after “0.0” one hour later. 86 "is stored. Further, the sunshine duration fluctuation probability table 2813 shows that the conditional probability P that changes from the sunshine duration H before “0.1-0.5” to the sunshine duration H after “0.3” after 1 hour is “0.07”. Store something. Also, the sunshine duration fluctuation probability table 2813 stores the other conditional probabilities P in the same manner. Note that the data structure of the sunshine duration fluctuation probability table 2813 shown in FIG. 29 is an example, and the present invention is not limited to this. For example, the sunshine hours H before before change may be classified into 11 items in increments of “0.1” from “0.0” to “1.0”.
  • FIG. 30 is a diagram for explaining a weather variation model.
  • the supply and demand scenario generation unit 2802 classifies the weather into three types: sunny, cloudy, and rainy. Then, the supply and demand scenario generation unit 2802 calculates the probability of changing from the current weather to the weather one hour later (sunny, cloudy, rain) from the data in which the past weather is recorded, thereby changing the weather fluctuation. Generate a model.
  • the supply and demand scenario generation unit 2802 outputs a plurality of scenarios indicating the possibility of daily weather fluctuation by repeatedly applying the weather fluctuation model every hour.
  • the weather variation model shown in FIG. 30 is an example. More specifically, the supply and demand scenario generation unit 2802 classifies the weather according to the sunshine hours, and models how the sunshine hours change after each sunshine hour.
  • the supply and demand scenario generation unit 2802 calculates a conditional probability P (H after
  • the demand-and-supply scenario generation unit 2802 can obtain the sunshine duration fluctuation probability table shown in FIG. 2813 is generated.
  • the supply and demand scenario generation unit 2802 generates a plurality of output fluctuation scenarios based on the generated sunshine duration fluctuation probability table 2813. Specifically, the supply and demand scenario generation unit 2802 receives the start time t0, the end time tn, the initial sunshine time h0, and the time increment ⁇ t from the reception unit 2801. The supply and demand scenario generation unit 2802 uses the initial sunshine duration h0 as an initial value, and applies the sunshine duration variation probability table 2813 for each unit time from the start time t0 to the end time tn, thereby probabilistically generating N patterns of solar radiation. A quantity variation scenario is generated by Monte Carlo simulation. Note that N is a sufficiently large natural number, for example, 10,000.
  • the supply and demand scenario generation unit 2802 generates a uniform random number r, and sets H (t + ⁇ t) as the minimum x at which the integrated value of the conditional probability P (x
  • H (t) when the sunshine duration H (t) is “0.1”, the demand-and-supply scenario generator 2802 sets the sunshine duration before change in the sunshine duration change probability table 2813 shown in FIG. 29 to “0.1-0”. .5 "column.
  • the demand-and-supply scenario generation unit 2802 converts the acquired sunshine duration H (t + ⁇ t) into the sunshine duration I (t + ⁇ t) using the correlation between the sunshine duration and the amount of sunshine described above. Then, the supply and demand scenario generation unit 2802 generates a variation in the solar radiation amount I (t) from the start time t0 to the end time tn as the solar radiation amount variation scenario I. Further, the supply and demand scenario generation unit 2802 generates an N pattern solar radiation amount fluctuation scenario 2814 by repeatedly executing the same processing. Note that N is a sufficiently large natural number, for example, 10,000.
  • FIG. 31 is a diagram showing an example of the solar radiation amount fluctuation scenario 2814.
  • the horizontal axis of FIG. 31 indicates time, and the vertical axis indicates the amount of solar radiation [MJ / m 2 ].
  • the time zone from 9:00 to 16:00 in the solar radiation amount fluctuation scenario 2814 is a solar radiation amount fluctuation scenario 2814 indicating the fluctuation of the solar radiation amount from 9:00 to 16:00, and includes an N pattern scenario.
  • the time zone from 0 o'clock to 9 o'clock and the time zone from 16 o'clock to 24 o'clock are parts generated based on the past solar radiation amount data 2812 and include one pattern of scenarios.
  • the supply and demand scenario generation unit 2802 generates an output fluctuation scenario 2815 in solar power generation based on the generated solar radiation amount fluctuation scenario 2814.
  • the supply and demand scenario generation unit 2802 converts the solar radiation amount I (t) [MJ / m 2 ] included in the solar radiation amount fluctuation scenario 2814 into a power generation amount O (t) [kWh] by solar power generation. This conversion is performed by, for example, estimating the amount of power generation by associating the amount of solar radiation with the conversion efficiency that changes depending on the scale, type, temperature, etc. of the panel.
  • the supply and demand scenario generation unit 2802 generates a scenario from the start time t0 to the end time tn by calculating the power generation amount O (t) from the solar radiation amount I (t) included in the solar radiation amount fluctuation scenario 2814. To do.
  • the supply and demand scenario generation unit 2802 refers to the past data of the power generation amount of solar power generation, and calculates the average value of the power generation amount in each time zone, thereby generating the power generation amount from 0:00 to the start time t0.
  • a scenario from the end time tn to 24:00 is generated.
  • the supply and demand scenario generation unit 2802 combines the scenario from the start time t0 to the end time tn with the power generation amount from 0:00 to the start time t0 and the scenario from the end time tn to 24:00.
  • An output fluctuation scenario 2815 is generated.
  • the supply and demand scenario generation unit 2802 stores the generated output fluctuation scenario 2815 in the storage unit 2800 as the output fluctuation data 114.
  • a correlation between the solar radiation amount I (t) and the power generation amount O (t) may be used.
  • the regression analysis of the solar radiation amount I (t) and the power generation amount O (t) is performed, and the solar radiation amount I (t) is substituted into the obtained regression line equation to generate the power generation amount O (t). Is calculated.
  • the supply and demand scenario generation unit 2802 generates a plurality of supply and demand scenarios by taking the difference between the plurality of output fluctuation scenarios 2815 and the demand fluctuation scenarios.
  • the supply and demand scenario generation unit 2802 generates a supply and demand scenario by subtracting the power generation amount in the corresponding time zone in the output fluctuation scenario 2815 from the power demand value in each time zone in the demand fluctuation scenario 2816. That is, this supply and demand scenario is an indicator of the amount of power demand for the storage battery 112.
  • FIG. 32 is a diagram illustrating an example of a demand fluctuation scenario.
  • the horizontal axis of FIG. 32 shows time, and the vertical axis shows electric energy [kWh].
  • the demand fluctuation scenario 2816 indicates the possibility of a change in demand for one day of the operation plan formulation target.
  • the demand fluctuation scenario 2816 shows the transition of the power demand value for each time slot of the day, and is generated based on the demand data 2811.
  • FIG. 32 illustrates a daily demand fluctuation scenario 2816 in a certain factory.
  • FIG. 32 shows a case where the demand fluctuation scenario 2816 has one pattern, the present invention is not limited to this.
  • the demand fluctuation scenario 2816 has a difference in day of the week and time, and there may be an M pattern when a plurality of ways of transition are expected. M is a natural number.
  • FIG. 33 is a diagram illustrating an example of a supply and demand scenario.
  • the horizontal axis indicates time, and the vertical axis indicates the electric energy [kWh]. It shows that there is much demand, so that there is much this electric energy.
  • the supply and demand scenario shows a change in the amount of power supply and demand for each time zone of the day.
  • the supply and demand scenario generation unit 2802 generates an M ⁇ N pattern supply and demand scenario.
  • the supply and demand scenario generation unit 2802 stores the generated supply and demand scenario and the demand fluctuation scenario 2816, the output fluctuation scenario 2815, and the solar radiation amount fluctuation scenario 2815 corresponding to the generated supply and demand scenario in the scenario DB 700.
  • the optimum evaluation value calculation unit 2803 calculates an operation plan in which the evaluation value when the storage battery 112 is operated is the best evaluation value for each supply and demand scenario, and uses the best evaluation value as the first evaluation value for each scenario. Record. For example, the optimum evaluation value calculation unit 2803 creates an optimum operation plan that is an operation plan having the best evaluation value by simulation for each of the supply and demand scenarios generated by the supply and demand scenario generation unit 2802. Then, the optimum evaluation value calculation unit 2803 stores the supply and demand scenario, the evaluation value based on the optimum operation plan, and the optimum control parameter indicating the best evaluation value in the optimum operation evaluation table 2817 in association with each other.
  • FIG. 34 is a diagram showing an example of the optimum operation evaluation table 2817.
  • the optimum operation evaluation table 2817 stores the supply and demand scenario “1”, the evaluation value “36” based on the optimum operation plan, and the optimum control parameter “278” in association with each other. That is, in the optimum operation evaluation table 2817, the best discharge reference value for the supply and demand scenario “1” is 278 [kW], and the peak cut effect when the storage battery 112 is operated with this discharge reference value is 36 [kW]. Indicates that Similarly, the optimum operation evaluation table 2817 also stores the supply and demand scenario, the evaluation value based on the optimum operation plan, and the optimum control parameter in association with each other for the supply and demand scenario.
  • the optimum evaluation value calculation unit 2803 selects the supply / demand scenarios generated by the supply / demand scenario generation unit 2802 one by one, and performs the following processing.
  • the optimum evaluation value calculation unit 2803 calculates an evaluation value by performing simulation for the selected supply and demand scenario by applying various discharge reference values.
  • the discharge reference value for example, the discharge reference value included in the search range of the control parameter is sequentially applied in a predetermined step size. Then, the discharge reference value with the best evaluation value is selected as the optimum operation plan.
  • the control parameter search range will be described.
  • FIG. 35 is a diagram for explaining a search range of control parameters.
  • the horizontal axis indicates time, and the vertical axis indicates the electric energy [kWh].
  • FIG. 35 shows a search range of control parameters for the supply and demand scenario shown in FIG.
  • the discharge reference value is a positive value that does not exceed the maximum demand value of the supply and demand scenario. Therefore, in the example illustrated in FIG. 35, the optimum evaluation value calculation unit 2803 uses a range from the maximum demand value 35a to the power value 0 [kW] as the search range 35b. That is, the optimum evaluation value calculation unit 2803 selects an arbitrary power value from the search range 35b as the discharge reference value, and uses the selected discharge reference value for the simulation.
  • the discharge reference value 35c is 125 [kW]
  • the discharge reference value 35d is 100 [kW]
  • the discharge reference value 35e is 75 [kW].
  • the optimum evaluation value calculation unit 2803 selects the highest discharge reference value 157 [kW] among the discharge reference values included in the search range 35b, and operates the storage battery 112 with the selected discharge reference value 157 [kW]. Perform a simulation.
  • the optimum evaluation value calculation unit 2803 repeats the process of selecting a value with a step size of 1 [kW] lower as the next discharge reference value and performing a simulation in the same manner until the lower limit of the search range 35b.
  • the optimum evaluation value calculation unit 2803 selects a discharge reference value indicating the best peak cut effect among the discharge reference values obtained by the simulation as the optimum operation plan.
  • the optimum evaluation value calculation unit 2803 stores the supply and demand scenario, the best peak cut effect, and the discharge reference value indicating the best peak cut effect in the optimum operation evaluation table 2817 in association with each other.
  • the best peak cut effect corresponds to the evaluation value according to the optimum operation plan
  • the discharge reference value showing the best peak cut effect corresponds to the optimum control parameter.
  • the optimum evaluation value calculation unit 2803 generates the optimum operation evaluation table 2817 by executing the same processing for other supply and demand scenarios.
  • the optimum operation plan search process performed by the optimum evaluation value calculation unit 2803 is not limited to the above method.
  • the discharge reference value may be selected at intervals of 1 [kW] in order from the lowest discharge reference value 0 [kW] among the discharge reference values included in the search range 35b. Further, for example, the discharge reference value may be selected at intervals of 5 [kW].
  • an optimal plan may be searched using an optimization algorithm such as Particle Swarm Optimization or a genetic algorithm.
  • the modified evaluation value calculation unit 2804 creates a plurality of operation plan candidates, and for each operation plan candidate, a second obtained by operating the storage battery 112 with the operation plan candidate for each scenario until the regular correction time. An evaluation value is calculated. For example, the modified evaluation value calculation unit 2804 creates a plurality of initial operation plan candidates. Then, the corrected evaluation value calculation unit 2804 operates the storage battery 112 with respect to the created initial operation plan until the correction point in the plan. Then, the corrected evaluation value calculation unit 2804 calculates, for each supply and demand scenario, an evaluation value when the storage battery 112 is operated with an optimal correction operation plan indicating an optimal operation plan after the correction time with the remaining storage battery remaining amount. .
  • the modified evaluation value calculation unit 2804 creates an initial operation plan candidate.
  • the modified evaluation value calculation unit 2804 creates initial operation plan candidates in the range from the minimum value to the maximum value among the optimal control parameters in the optimal operation evaluation table 2817. This is because, when the storage battery 112 is operated by the peak cut method, the peak cut effect for each supply / demand scenario decreases as the discharge reference value deviates from the optimum discharge reference value for the supply / demand scenario, and exceeds a certain level. This is because it has the property of becoming 0 when it deviates.
  • the modified evaluation value calculation unit 2804 creates discharge reference values from 50 [kW] to 150 [kW] at intervals of 10 [kW] as initial operation plan candidates. Then, the modified evaluation value calculation unit 2804 associates the initial operation plan with the control parameters and stores them in the initial operation plan table 2818.
  • FIG. 36 is a diagram showing an example of the initial operation plan table 2818.
  • the initial operation plan table 2818 stores the initial operation plan and the control parameters in association with each other.
  • “initial operation plan” in the initial operation plan table 2818 indicates identification information for identifying candidates for the initial operation plan.
  • control parameter indicates a control parameter of the initial operation plan.
  • the control parameter corresponds to the discharge reference value when the storage battery 112 is operated by the peak cut method.
  • the initial operation plan table 2818 stores the initial operation plan “1” and the control parameter “50” in association with each other. That is, the initial operation plan table 2818 indicates that the discharge reference value of the initial operation plan “1” is 50 [kW]. Similarly, the initial operation plan table 2818 stores the initial operation plan and the control parameter in association with each other for the other initial operation plan candidates.
  • the initial operation plan candidate corresponds to the initial operation plan
  • the discharge reference value corresponds to the control parameter.
  • the method of creating the initial operation plan candidate is not limited to the above method.
  • the modified evaluation value calculation unit 2804 may be arbitrarily created within the search range 35b.
  • the corrected evaluation value calculation unit 2804 creates an optimal corrected operation plan for each initial operation plan candidate.
  • the modified evaluation value calculation unit 2804 performs a simulation when the storage battery 112 is operated as an initial operation plan candidate for each supply and demand scenario.
  • the modified evaluation value calculation unit 2804 calculates the remaining amount of storage battery when the storage battery 112 is operated until the regular correction time from the simulation result. Then, using the calculated storage battery remaining amount as the initial remaining amount of the storage battery 112, an optimal operation plan that is the best evaluation value when driving from the correction time to the operation end time is created, and the combination of the initial operation plan candidate and the scenario Record as optimally modified operation plan.
  • This optimum output information creation process is performed in the same procedure as the optimum operation plan creation process performed by the optimum evaluation value calculation unit 2803.
  • the corrected evaluation value calculation unit 2804 calculates an evaluation value when the storage battery 112 is operated with the initial operation plan candidate until the periodic correction time, and with the optimal correction operation plan after the periodic correction time, and the evaluation value is calculated. Then, it is stored in the modified operation evaluation table 2819 as the second evaluation value for the combination of the initial operation plan candidate and each scenario.
  • FIG. 37 is a diagram showing an example of the corrected operation evaluation table 2819.
  • the corrected operation evaluation table 2819 stores the initial operation plan, the supply and demand scenario, and the evaluation value of the optimum corrected operation plan for the initial operation plan in association with each other.
  • “initial operation plan” in the corrected operation evaluation table 2819 indicates identification information for identifying candidates for the initial operation plan.
  • “Supply / demand scenario” indicates identification information for identifying a supply / demand scenario.
  • the “evaluation value of the optimum corrected operation plan with respect to the initial operation plan P” is an evaluation value when the storage battery 112 is operated in the optimum corrected operation plan indicating the optimum operation plan after the correction time for the corresponding initial operation plan. Is shown for each supply-demand scenario.
  • the corrected operation evaluation table 2819 stores the initial operation plan “1”, the supply and demand scenario “1”, and the evaluation value “34” of the optimum corrected operation plan for the initial operation plan P in association with each other. That is, the corrected operation evaluation table 2819 has an evaluation value “34” when the storage battery 112 is operated in the optimum corrected operation plan after the storage battery 112 is operated in the initial operation plan “1” for the supply and demand scenario “1”. Indicates that
  • the corrected operation evaluation table 2819 stores other supply-demand scenarios and other evaluation values of the optimal corrected operation plan for the other initial operation plans in association with each other for the initial operation plan “1”. In this way, the corrected operation evaluation table 2819 stores a plurality of supply and demand scenarios and evaluation values of the optimum corrected operation plan for the plurality of initial operation plans P in association with one initial operation plan. Similarly, the corrected operation evaluation table 2819 stores the initial operation plan, the supply and demand scenario, and the evaluation value of the optimum corrected operation plan for the initial operation plan in association with each other.
  • the modified evaluation value calculation unit 2804 performs the same process for other initial operation plans.
  • an optimal plan may be searched using an optimization algorithm such as Particle Swarm Optimization or a genetic algorithm.
  • the supply and demand scenario group, the initial operation plan for each supply and demand scenario, and the corrected operation plan at the regular correction time are obtained and stored in the scenario DB 700.
  • FIG. 38 is a flowchart of an example of an output information creation processing procedure performed by the creation device 600 according to the third embodiment.
  • the creation apparatus 600 performs supply / demand scenario generation processing by the supply / demand scenario generation unit 2802 (step S3801). Details of the supply and demand scenario generation process (step S3801) will be described with reference to FIG.
  • the creation device 600 generates an initial operation plan by using the optimum evaluation value calculation unit 2803 and the correction evaluation value calculation unit 2804 (step S3802), and generates a correction operation plan at the periodic correction time (step S3803).
  • the scenario DB 700 is constructed.
  • the creation device 600 executes the early countermeasure target scenario extraction process by the early countermeasure target scenario extraction unit 601 (step S1601), and the output information generation unit 602 performs the output information generation process. Is executed (step S1602).
  • FIG. 39 is a flowchart showing a processing procedure of supply / demand scenario generation processing (step S3801) by the supply / demand scenario generation unit 2802.
  • the creation device 600 generates a sunshine duration variation probability table 2813 from the solar radiation amount data 2812 by using the supply and demand scenario generation unit 2802 (step S3901).
  • the creation device 600 determines the amount of solar radiation I (t + ⁇ t) at the time after the time interval ⁇ t (step S3903).
  • the creation device 600 uses the initial sunshine time h0 as an initial value, and acquires the sunshine time H (t + ⁇ t) at the time after the time interval ⁇ t.
  • the creation apparatus 600 converts the acquired sunshine duration H (t + ⁇ t) into the sunshine duration I (t + ⁇ t) using the correlation between the sunshine duration and the amount of sunshine described above.
  • the creation device 600 adds the time increment ⁇ t to the current time t (step S3904).
  • the creation apparatus 600 compares the time t with the end time tn, and determines whether or not t ⁇ tn (step S3905). If t ⁇ tn (step S3905: Yes), the creation apparatus 600 returns to the process of step S3903.
  • the creation apparatus 600 repeats the processing from step S3903 to step S3905 until the solar radiation amount fluctuation scenario 2814 is generated.
  • step S3905 when t ⁇ tn is not satisfied (step S3905: No), the creation apparatus 600 generates an output fluctuation scenario 2815 based on the solar radiation amount fluctuation scenario 2814 (step S3906). Note that the creation apparatus 600 repeats the processing from step S3902 to step S3906 until an N pattern output fluctuation scenario 2815 is generated. Then, the supply and demand scenario generation unit 2802 generates an M ⁇ N pattern supply and demand scenario by taking the difference between the N pattern output fluctuation scenario 2815 and the M pattern demand fluctuation scenario (step S3907).
  • the third embodiment it is possible to automatically generate a supply and demand scenario group, and an initial operation plan and a regularly corrected operation plan for each supply and demand scenario. Therefore, it is possible to specify by simulation the supply and demand scenario that requires early measures against the initial operation plan.
  • the operation plan correction rule including the early countermeasure time, the identification condition, and the countermeasure (corrected operation plan)
  • the operation plan can be corrected at an appropriate timing.
  • the situation at each point of time on the day of operation is monitored, and if a situation that matches the identification conditions of any operation plan correction rule is detected, the measures indicated in the operation plan correction rule By switching to (corrected operation plan) and operating the storage battery 112, it is possible to avoid a loss that occurs when the operation plan cannot be appropriately corrected at that timing.
  • a calculation for obtaining an appropriate operation plan is performed in advance by the creation device 600 in the operation plan creation system 103, so that the operation system 102 compares the determination of the identification condition of the operation plan and the switching of the operation plan. Only a process with a relatively small calculation cost is performed. For example, it is possible to optimize an operation plan in consideration of various situations that may occur after each point of time, regardless of the computational resources that can be used by the operation system 102 and the calculation time allowed during operation. As a result, a higher operational effect can be achieved.
  • the creation device 600 performs an identification condition for detecting a situation where an early countermeasure should be implemented on a scenario group having similar countermeasures to be taken. Therefore, it is possible to increase the possibility that an identification condition and an appropriate operation plan can be created.
  • supply and demand scenarios that cover possible situations, there may be similar scenarios that are indistinguishable from each other even when complex conditions combining all available data items are used.
  • the creation apparatus 600 tries to create an identification condition for the early countermeasure target scenario group grouped according to the similarity of the countermeasures, and thus there is a high possibility that the identification condition can be created. . That is, even if it is difficult to distinguish between supply and demand scenarios, it is not necessary to distinguish between them according to the identification conditions if the measures are similar.
  • the classification of countermeasure scenarios based on the similarity of countermeasures also means ensuring the possibility of creating an appropriate operation plan.
  • the creation of a corrected operation plan that can detect the situation that affects the effect when the correction time of the operation plan is delayed can be detected before that effect occurs. Can do.
  • the operation system it is possible to detect a situation that affects the effect when the operation plan correction time is delayed, and to appropriately correct the operation plan at the detected timing. .
  • 600 creation device 601 early countermeasure target scenario extraction unit 602 output information creation unit 611 countermeasure level calculation unit 612 countermeasure scenario extraction unit 613 countermeasure scenario classification unit 614 identification condition creation unit 2800 storage unit 2801 reception unit 2802 supply and demand scenario generation unit 2803 Optimal evaluation value calculation unit 2804 Correction evaluation value calculation unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • Theoretical Computer Science (AREA)
  • General Business, Economics & Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • Automation & Control Theory (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Medical Informatics (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Electrochemistry (AREA)
  • Educational Administration (AREA)
  • Primary Health Care (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Development Economics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Selective Calling Equipment (AREA)

Abstract

 (1)運転計画作成システムは、需給シナリオに基づくシミュレーションによって、1日の運用における各時点について、その時点で運転計画を修正すれば効果が高められるシナリオを抽出する。(2)運転計画作成システムは、要対策シナリオを対策の類似性で分類する。運転計画作成システムは、対策が類似する要対策シナリオ群と修正すべき時刻を決定する。(3)運転計画作成システムは、早期対策対象シナリオ群が当日の早期対策時刻に利用可能なデータによって識別可能かを判定する。そして、運転計画作成システム103は、識別可能な場合に、早期対策対象シナリオ群の識別条件と、識別条件に合致するシナリオ群に対する最適な運転計画とを作成する。

Description

運転計画作成方法、運転計画作成プログラムおよび運転計画作成装置
 本発明は、運転計画作成方法、運転計画作成プログラムおよび運転計画作成装置に関する。
 現在、地球環境問題への対策は世界規模の課題として認識されている。この対策として注目されているのが、太陽光発電などの自然エネルギーの利用である。一般的に、太陽光発電は天候の影響を受けやすく、発電の出力が不安定であるため、その有効活用にはさまざまな工夫がなされている。
 太陽光発電の不安定性に対応する方法としては、蓄電池や燃料電池などの他の種類の分散電源を運転計画に沿って運用する方法がある。この運転計画は、例えば、容量に限りがある蓄電池からの放電を適切に制御する制御パラメータである。例えば、蓄電池の制御方式として、電力需要が所定の電力値を超えた場合に蓄電池を放電するピークカット方式を用いる場合には、この電力値が運転計画となる。太陽光発電と蓄電池の組み合わせの運用では、一般的に、翌日の電力需要の推移の予測と翌日の天候変動の予測とに基づいて、蓄電池を運用した場合のシミュレーションを行い、予測通りに電力需給が推移した場合にシミュレーション結果である評価値が最良になるように、蓄電池を一日運転するための運転計画が作成される。
 また、例えば、蓄電池運用中に運転計画を修正する運用方法がある。一般的に、当日の天候状況を確認後の予測は、前日に天候を予測するよりも確度が高い。このため、天候変動の前日予測が外れてしまった場合には、当日に確認した天候状況に基づいて運用中の運転計画を修正することにより、蓄電池の運用状況が改善される。
 また、例えば、予測が逸脱した場合に運転計画を修正することを踏まえてシミュレーションを行うことで、蓄電池の運転計画を作成する方法もある。この方法では、過去の電力需給のデータに基づいて、電力需給の予測値が一定値以上外れる予測逸脱パターンとその発生確率を予め収集しておく。そして、各予測逸脱パターンに対し、予測逸脱時の運転計画の修正を考慮した評価値をシミュレーションで求める。そして、予測的中時の評価値に、各予測逸脱パターンについて得られた評価値を、それぞれの発生確率に応じて重み付け加算して求めた総合的な評価値に基づき、予測が逸脱した場合を考慮した運転計画を作成する。
特許第4245583号公報 特開2005-86953号公報 特開2008-141918号公報
工藤満、竹内章、野崎洋介、遠藤久仁、角田二郎,「エネルギーネットワークにおける太陽光発電予測技術」,電気学会論文誌B,Vol.127(2007)、No.7、pp.847‐853 高山聡志、岩坂佑二、原亮一、北裕幸、伊藤孝充、植田喜延、三輪修也、松野直也、滝谷克幸、山口浩司,「大規模太陽光発電所における日射量予測に基づく発電計画作成手法」,電気学会論文誌B,Vol.129(2009),No.12,pp.1514‐1521
 しかしながら、従来の技術の当日の精度が高い予測に基づき運転計画を修正する手法では、所定の時刻もしくは所定の時間間隔ごとに予測をし直して、運転計画を修正することが一般的である。したがって、所定の修正時刻の前に運転計画を修正したほうが効果の高まるような状況に対応できないという問題がある。
 例えば、自然エネルギーによる発電の出力を予測する現在の予測精度は、気象予報の精度への依存性が大きく、運用時に短い時間間隔で取得できるデータにより、予測精度を大幅に向上することはできない。このため、気象予報が更新されるタイミングにあわせて、正午付近に運転計画を修正することが合理的であるが、この場合、正午以前の気象条件の急変に伴う出力変動には対応できないことになる。
 例えば、太陽光発電と蓄電池を併用により需要のピーク低減効果を狙う場合、気象条件の変化により、発電出力の低下が予想される状況では、蓄電池の残量が枯渇しないよう、気象予報のタイミングにあわせた運転計画修正より、早めに運転計画を修正することが望まれる。
 本発明は、運転計画の修正時刻が遅くなると効果に影響が出る状況において、その影響が出る前に検出できる修正運転計画を作成することを目的とする。
 本発明の一側面によれば、外部からの環境条件に応じて発電を行う発電装置と、前記発電装置からの電力により充電されるとともに電力需給に応じて放電する蓄電池とを有する発電システムの運転計画作成方法、運転計画作成プログラム、および運転計画作成装置において、前記外部からの環境条件に応じた電力需給の推移を示し記憶部に記憶された複数の需給電力シナリオについて、前記蓄電池からの放電量に関する運転計画を所定の定期修正時刻で修正した場合に最良の放電量が得られる第1の修正運転計画と、前記定期修正時刻を変更した対策時刻で前記蓄電地の当初運転計画を修正した場合に最良の放電量が得られる第2の修正運転計画とに基づいて、前記対策時刻において前記第1の修正運転計画を前記第2の修正運転計画に修正する必要があるかを示す評価値を算出し、前記複数の需給電力シナリオのうち、算出された前記評価値に基づいて、前記対策時刻において前記第1の修正運転計画を前記第2の修正運転計画に修正する必要がある要対策シナリオを抽出し、抽出された前記要対策シナリオから、前記要対策シナリオに対する当初運転計画と第2の修正運転計画とに基づいて、前記対策時刻において前記要対策シナリオに対する当初運転計画を修正する変更対策シナリオを分類し、分類された変更対策シナリオについて、前記外部からの環境条件に基づいて、分類された前記変更対策シナリオを識別する識別条件を生成し、生成された前記識別条件に分類された前記変更対策シナリオを対応付けて出力することを特徴とする運転計画作成方法、作成プログラムおよび作成装置が提案される。
 本発明の一側面によれば、運転計画の修正時刻が遅くなると効果に影響が出る状況において、その影響が出る前に検出できる修正運転計画を作成することができるという効果を奏する。
図1は、蓄電池の運転計画に基づく運用形態の一例を示す説明図である。 図2は、ピークカット制御方式の一例を示す説明図である。 図3は、適用条件が付与された修正運転計画を示す説明図である。 図4は、運転計画作成システム103による運転計画の修正例を示す説明図である。 図5は、運転計画作成システム103を構成するコンピュータのハードウェア構成例を示す図である。 図6は、作成装置の機能的構成例を示すブロック図である。 図7は、シナリオDB700の記憶内容の一例を示す説明図である。 図8は、要対策度算出例(その1)を示す説明図である。 図9は、図8の(A)および(B)の比較例を示す説明図である。 図10は、要対策度算出例(その2)を示す説明図である。 図11は、図10の(A)および(B)の比較例を示す説明図である。 図12は、要対策シナリオの分類例を示す説明図である。 図13は、識別条件作成部614による識別条件の作成例を示す説明図である。 図14は、出力情報作成部602で使用するシナリオDBの内容の一例を示す説明図である。 図15は、出力情報作成部602による出力例を示す説明図である。 図16は、作成装置600による処理手順の一例を示すフローチャートである。 図17は、図16に示した早期対策対象シナリオ抽出処理(ステップS1601)の詳細な処理手順例を示すフローチャートである。 図18は、図17に示した要対策度算出処理(ステップS1702)の詳細な処理手順例を示すフローチャートである。 図19は、図17に示した要対策シナリオ分類処理(ステップS1704)の詳細な処理手順例を示すフローチャートである。 図20は、図17に示した識別条件作成処理(ステップS1705)の詳細な処理手順例を示すフローチャートである。 図21は、図16に示した出力情報作成処理(ステップS1602)の詳細な処理手順例を示すフローチャートである。 図22は、回帰木による要対策シナリオの分類例を示す説明図である。 図23は、回帰木2200により作成された識別条件作成テーブル2300の一例を示す説明図である。 図24は、実施の形態2にかかる要対策シナリオ分類部613による要対策シナリオ分類処理手順例を示すフローチャートである。 図25は、図24に示した分割処理(ステップS2405)の詳細な処理手順例を示すフローチャートである。 図26は、実施の形態2にかかる識別条件作成部614による識別条件作成処理の詳細な処理手順例を示すフローチャートである。 図27は、実施の形態2にかかる出力情報作成部602による出力情報作成処理の詳細な処理手順例を示すフローチャートである。 図28は、実施の形態3にかかる作成装置600の機能的構成例を示すブロック図である。 図29は、日照時間変動確率テーブル2813の一例を示す図である。 図30は、天候変動モデルを説明するための図である。 図31は、日射量変動シナリオの一例を示す図である。 図32は、需要変動シナリオの一例を示す図である。 図33は、需給シナリオの一例を示す図である。 図34は、最適運転評価テーブルの一例を示す図である。 図35は、制御パラメータの探索範囲について説明するための図である。 図36は、当初運転計画テーブルの一例を示す図である。 図37は、修正運転評価テーブルの一例を示す図である。 図38は、実施の形態3にかかる作成装置600による出力情報作成処理手順の一例を示すフローチャートである。 図39は、需給シナリオ生成部2802による需給シナリオの生成処理(ステップS3801)の処理手順を示すフローチャートである。
 以下に添付図面を参照して、この発明にかかる運転計画作成方法、運転計画作成プログラムおよび運転計画作成装置の実施の形態を詳細に説明する。
(実施の形態1)
<運用形態の一例>
 図1は、蓄電池の運転計画に基づく運用形態の一例を示す説明図である。図1において、電力系統101は、例えば、住宅やマンション、ビル、店舗、施設などの建造物に設置され、これらの建造物に電力を供給する。電力系統101は、発電装置111と、蓄電池112と、パワーコンデョショナ(Power Conditioning System、以下、「PCS」)113と、電力計114と、が接続されて構成される。電力系統101は、発電装置111からの電力により充電されるとともに電力需給に応じて放電する蓄電池112とを有する発電システムである。
 発電装置111は、外部からの環境条件に応じて発電を行う装置である。具体的には、発電装置111は、太陽光などの自然エネルギーを電気に変換する装置である。本実施の形態では、一例として太陽光発電装置として説明するが、風力発電装置でもよい。蓄電池112は、発電装置111によって発電された電気を蓄積または放電する装置である。PCSは、発電装置111によって発電された電気の直流/交流変換、蓄電池112に対する充放電制御、発電装置111の発電量制御などをおこなう装置である。電力計114は、建造物での消費電力を計測する計器である。発電装置111によって発電された電気は、蓄電池112に蓄電され、また、電力供給先115に供給される。
 運用システム102は、電力系統101から積算電力値や発電量を取得して電力系統101を監視する。また、運用システム102は、運転計画作成システム103から与えられた適用条件付の運転計画に基づきPCSを制御して、蓄電池112の充放電をおこなう。
 ここで、運転計画とは、電力系統101内の蓄電池112などの制御対象機器の動作を規定する制御パラメータであり、例えば、電力需要が所定の電力値を超えた時に放電するというピークカット制御方式で蓄電池112を運転する場合には、その電力値(「放電基準値」と称す。)が制御パラメータ、すなわち、運転計画となる。
 図2は、ピークカット制御方式の一例を示す説明図である。図2において、横軸は1日の時間であり、縦軸は電力値である。図2の波形は、需給シナリオであり、蓄電池112は、電力値が放電基準値を超えた場合に放電する。需給シナリオとは、蓄電池112からの電力を使用する電力網内の電力需要と、太陽光発電による出力との差を要素とする時系列データである。
 図1に戻り、適用条件とは、運転計画を適用すべき状況を特定する条件であり、例えば、別の運転計画の適用(運転計画の修正)の要否を判定すべき早期対策時刻と当該適用の要否を識別する識別条件とを含む。早期対策時刻および識別条件の詳細については後述する。
 また、運用システム102は、外部から現在の気象の状態を表す気象データや将来の気象の状態を予測する気象予報データを取得して、電力系統101での発電装置111の発電や蓄電池112の充放電を制御する。具体的には、例えば、運用システム102は、1日の初めにその時点の最新の天気予報データを取得し、そのデータに一致する適用条件が付与された運転計画を選択し、その運転計画に沿って電力系統101の運用を開始する。そして、運用システム102は、各時点での電力系統101の状態や気象状況等を監視し、運転計画作成システム103により与えられた適用条件に一致する状況を検知すると、適用条件と関係づけられた運転計画に切り替えて、電力系統101の運用を継続する。
 図3は、適用条件が付与された修正運転計画を示す説明図である。図3において、横軸は時間であり、縦軸は電力値である。図3では、直近のn時間の積算日射量などの監視対象データが適用条件を満たした場合に、修正運転計画を適用する例である。
 図1に戻り、運転計画作成システム103は、運用システム102から気象・予報ログ、積算電力ログ、発電ログといった過去のデータを取得して、適用条件が付与された修正運転計画を運用システム102に出力する。具体的には、運転計画作成システム103は、起こり得る需給状況の推移を網羅的に表現した需給シナリオを外部装置から取得する。また、運転計画作成システム103が需給シナリオを生成してもよい。そして、運転計画作成システム103は、生成された需給シナリオに基づいて、運転計画を作成する。
 また、運転計画作成システム103は、作成した運転計画を修正すべき状況を運用システム102が運用時に検知する適用条件を、起こり得る状況を網羅的に想定したシミュレーションによって自動作成する。具体的には、運転計画作成システム103は、図4に示すように、下記(1)~(3)を実行する。
 図4は、運転計画作成システム103による運転計画の修正例を示す説明図である。図4において、(1)運転計画作成システム103は、需給シナリオに基づくシミュレーションによって、1日の運用における各時点について、その時点で運転計画を修正すれば効果が高められるシナリオを抽出する。抽出したシナリオを、「要対策シナリオ」と称す。
 (2)運転計画作成システム103は、要対策シナリオを対策の類似性で分類する。対策とは、その要対策シナリオにとって最適な、その時点以降の運転計画である。運転計画作成システム103は、対策が類似する要対策シナリオ群と修正すべき時刻を決定する。対策が類似する要対策シナリオ群を「早期対策対象シナリオ群」と称す。また、修正すべき時刻を「対策時刻」といい、一例として「早期対策時刻」と称す。
 (3)運転計画作成システム103は、早期対策対象シナリオ群が当日の早期対策時刻に利用可能なデータによって識別可能かを判定する。そして、運転計画作成システム103は、識別可能な場合に、早期対策対象シナリオ群の識別条件と、識別条件に合致するシナリオ群に対する最適な運転計画とを作成する。
 運転計画作成システム103は、上記(1)~(3)の手順によって、運転計画の修正ルール、すなわち、早期対策時刻と識別条件とを有する適用条件が付与された修正運転計画を作成する。これにより、例えば、ある時点までに対策が必要な需給シナリオ、すなわち、その時点までに運転計画を修正しないと高い効果が得られない需給シナリオに対して、適切なタイミングで対策を打てるようにすることができる。具体的には、対策が必要な時点において利用可能なデータで、その需給シナリオおよび同様な対策が有効な需給シナリオを識別できる場合、その時点までに運転計画を修正しないと高い効果が得られない需給シナリオに対して、運転計画を修正して対策を打てるようにすることができる。
<コンピュータのハードウェア構成例>
 図5は、運転計画作成システム103を構成するコンピュータのハードウェア構成例を示す図である。図5に示すように、コンピュータ500は、各種演算処理を実行するCPU501と、ユーザからデータの入力を受け付ける入力装置502と、モニタ503とを有する。また、コンピュータ500は、記憶媒体からプログラム等を読み取る媒体読み取り装置504と、他の装置とデータの授受を行うネットワークインターフェース装置505とを有する。また、コンピュータ500は、各種情報を一時記憶するRAM(Random Access Memory)506と、ハードディスク装置507とを有する。また、各装置501~507は、バス508に接続される。
 ハードディスク装置507は、運転計画作成プログラムを記憶する。また、ハードディスク装置507は、運転計画作成プログラムを実現するための各種データを記憶する。CPU501が運転計画作成プログラムをハードディスク装置507から読み出してRAM506に展開して実行することにより、運転計画作成プログラムは、運転計画作成プロセスとして機能する。
 なお、上記の運転計画作成プログラムは、必ずしもハードディスク装置507に記憶されている必要はない。例えば、コンピュータが読み取り可能な記録媒体に記憶されたプログラムを、コンピュータ500が読み出して実行するようにしても良い。コンピュータが読み取り可能な記録媒体は、例えば、CD-ROM(Compact Disc Read Only Memory)やDVD(Digital Versatile Disc)ディスク、USB(Universal Serial Bus)メモリ等の可搬型記録媒体、フラッシュメモリ等の半導体メモリ、ハードディスクドライブ等が対応する。また、公衆回線、インターネット、LAN(Local Area Network)、WAN(Wide Area Network)等に接続された装置にこのプログラムを記憶させておき、コンピュータ500がこれらからプログラムを読み出して実行するようにしても良い。
<作成装置の機能的構成例>
 つぎに、作成装置の機能について説明する。作成装置は、図1に示した運転計画作成システム103に含まれる、運転計画の作成機能を実現するコンピュータである。具体的には、作成装置は、太陽光発電との併用により、需要のピークカットを狙う蓄電池112の運用に関し、早期対策を実施するための運転計画修正ルールを作成するコンピュータである。例えば、1日のはじめに、最新の気象予報に基づいて作成した蓄電池112の当初運転計画を、気象予報の更新タイミングにあわせて定期修正時刻に修正することを前提に、定期修正時刻以前の各時点の状況に応じて対策を実施するための運転計画修正ルールを作成する。定期修正時刻としては、具体的には、昼頃、例えば、13時が挙げられる。
 ここで、当初運転計画としては、運転計画作成時点において最も起こりやすいと予測される1つの需給シナリオに対して最適な計画を求めるという一般的な計画作成方法により作成した値を用いることができる。実施の形態1では、一例として、当初運転計画を午前中に修正するためのルールを作成する場合について説明するが、本発明はこれに限定されるものではない。例えば、定期修正時刻に、気象予報に基づいて作成した運転計画についても、同様の手順で修正ルールを作成することができる。
 図6は、作成装置の機能的構成例を示すブロック図である。作成装置600は、シナリオDB(Data Base)700と、早期対策対象シナリオ抽出部601と、出力情報作成部602と、を有する。シナリオDB700は、具体的には、例えば、図5に示したハードディスク装置507によりその機能を実現する。早期対策対象シナリオ抽出部601および出力情報作成部602は、具体的には、例えば、図5に示したRAM506またはハードディスク装置507に記憶されたプログラムを、CPU501に実行させることにより、その機能を実現する。早期対策対象シナリオ抽出部601および出力情報作成部602の説明の前に、シナリオDB700について図7を用いて説明する。
 図7は、シナリオDB700の記憶内容の一例を示す説明図である。シナリオDB700は、運転計画作成システム103が有するデータベースであり、需給シナリオを記憶する。シナリオDB700は、需給シナリオID項目と、時系列データ項目と、当初計画項目と、定期修正項目と、早期対策項目と、を有する。需給シナリオID項目には、n個(n≧1)の需給シナリオに対して、各需給シナリオを一意に特定するn個の需給シナリオID(s1~sn)が記憶される。i番目(1≦i≦n)の需給シナリオを「需給シナリオsi」とする。時系列データとは、需給シナリオsiと時刻tj(1≦j≦m)によって特定されるデータdi(tj)であり、需給データ、および、需給データの推移に関連する観測可能データや気象予報データが含まれる。需給データは、電力値であり、電力需要、発電出力、および、それらの差の値である需給差からなり、それぞれ、di(tj).d、di(tj).s、di(tj).pと表記する。観測可能データは、例えば、日射量di(tj).i、気温di(tj).tである。気象予報データは、例えば、晴・曇・雨という天気カテゴリdi(tj).wである。
 当初計画項目には、需給シナリオsiごとに、そのシナリオの実現が予想される場合に適用される当初運転計画paiが記憶される。例えば、本発明で、天気予報のみに基づいて作成される計画に対して修正計画を作成する場合には、同じ天気カテゴリに対応するシナリオに対しては、同一の当初計画が記憶される。また、当初運転計画paiとは、例えば、当初の放電基準値である。
 定期修正項目と、早期対策項目は、本発明の計画作成処理の主要な処理結果を記憶する領域である。定期修正項目は、計画項目と評価値項目からなる。計画項目には、定期修正計画pbiが記憶される。定期修正計画pbiとは、あらかじめ決められた定期修正時刻以降の最適な運転計画(例えば、放電基準値)である。評価値項目には、定期修正計画の評価値ebiが記憶される。
 定期修正計画の評価値ebiとは、修正時刻まで当初運転計画で運用し、修正時刻以降は、修正時刻の蓄電池残量の制約において効果が最大になる最適運転計画で運用した場合の効果を見積もるシミュレーションにより得られたシミュレーション結果である。早期対策項目は、時刻項目と計画項目と評価値項目と群ID項目とを有する。時刻項目には、需給シナリオsiごとの早期対策時刻tciが記憶される。計画項目には、需給シナリオsiごとの早期対策運転計画pciが記憶され、評価項目には、早期対策運転計画pciの評価値eciが記憶される。早期対策運転計画pciとは、早期対策時刻tci以降の最適な運転計画(例えば、放電基準値)である。群ID項目には、そのシナリオが対応する早期対策対象シナリオ群の識別子gciが記憶される。
 図6に戻り、早期対策対象シナリオ抽出部601は、需給シナリオ群と早期対策時刻を入力とし、早期対策時刻において対策を必要とするシナリオを抽出する。具体的には、早期対策対象シナリオ抽出部601は、要対策度算出部611と、要対策シナリオ抽出部612と、要対策シナリオ分類部613と、識別条件作成部614と、を有する。以下、順に説明する。
 要対策度算出部611は、それぞれの需給シナリオに対して、早期対策時刻において対策が必要かを示す評価値となる要対策度を算出する。具体的には、例えば、要対策度算出部611は、それぞれの需給シナリオに対して、早期対策が必要かどうかを判定するために2種類のシミュレーションを行う。1つは対策を早期に行った場合のシミュレーションであり、もう1つは通常の運用で想定する定期修正時刻で当初運転計画の修正を行った場合のシミュレーションである。要対策度算出部611は、この2種類のシミュレーション結果を比較することにより、早期に対策が必要かどうかを示す要対策度を算出することになる。
 要対策シナリオ抽出部612は、要対策度に基づいて、早期対策が必要なシナリオを需給シナリオ群の中から抽出する。例えば、要対策度の抽出しきい値が設定されており、ある早期対策時刻tjでのある需給シナリオsiの要対策度が抽出しきい値以上である場合、要対策シナリオ抽出部612は、その需給シナリオsiを要対策シナリオとして抽出する。
 要対策シナリオ分類部613は、要対策シナリオ抽出部612によって抽出された要対策シナリオを、対策(各シナリオにとって最適な運転計画)の類似性により分類する。そして、要対策シナリオ分類部613は、分類された要対策シナリオを、早期対策時刻に対応する早期対策対象シナリオ群として出力する。
 要対策シナリオ抽出部612により抽出された要対策シナリオ群には、必要な対策が異なる要対策シナリオが混在する場合がある。そのような要対策シナリオを識別できても適切な対策、すなわち、ある識別条件で識別されるシナリオのすべてに対して有効な運転計画を定めることができない。このため、要対策シナリオ分類部613は、あらかじめ対策によって分類を行う。要対策シナリオ分類部613によって分類された要対策シナリオ群を、「早期対策対象シナリオ群」と称す。早期対策対象シナリオは変更対策シナリオである。
 識別条件作成部614は、早期対策対象シナリオ群を入力として、早期対策時刻において利用可能なデータによって識別可能な早期対策対象シナリオ群を選別する。そして、識別条件作成部614は、選別したシナリオ群に対して識別条件を作成する。要対策度算出部611~識別条件作成部614による処理は、早期対策時刻ごとに実行される。識別条件作成部614は、生成部の一例である。
 出力情報作成部602は、識別条件作成部614により作成された識別条件を入力として、修正運転計画を作成する。そして、出力情報作成部602は、早期対策時刻と識別条件と修正運転計画とを運用システム102に対して出力する。出力情報作成部602は出力部の一例である。
<要対策度算出例>
 つぎに、要対策度算出部611による要対策度算出例について説明する。上述したように、要対策度算出部611は、当初運転計画を定期修正時刻より早い時間帯に修正することが必要かどうか評価するために、同一の需給シナリオに対して異なる修正時刻による2種類のシミュレーションを実行する。このシミュレーションは、与えられた需給シナリオと修正時刻において得られる効果(例えばピークカット効果、環境負荷低減効果、コスト削減効果)を見積もるシミュレーションである。ここで、修正時刻とは、早期対策時刻または定期修正時刻である。
 具体的には、シミュレーションは、修正時刻まで当初運転計画で運用し、修正時刻以降は、修正時刻の蓄電池残量の制約において効果が最大になる最適運転計画で運用した場合の効果を見積もるシミュレーションである。最適運転計画は、需給シナリオについて様々な制御パラメータで蓄電池112を運用した場合のシミュレーションを行い、シミュレーション結果として得られた評価値が最良となる運転計画を選択することで求める。そして、修正時刻が定期修正時刻の場合には、需給シナリオDB700の定期修正項目pbi、ebiに、最適運転計画とその評価値を記録する。また、修正時刻が早期対策時刻の場合には、シナリオDB700の早期対策項目tci、pci、eciに、早期対策時刻と最適運転計画とその評価値をそれぞれ記録する。
 例えば、評価値は、電力需要が所定の電力値を超えた場合に放電するピークカット方式により蓄電池112が運転される場合には、ピークカット効果が用いられる。この所定の電力値は、放電基準値とも称する。また、最適な制御パラメータは、最適運転計画による評価値が得られる蓄電池112の制御パラメータを示す。
 例えば、制御パラメータは、ピークカット方式により蓄電池112が運転される場合には、放電基準値が用いられる。なお、評価値は、ピークカット効果に限定されるものではなく、例えば、環境負荷低減効果、コスト削減効果、あるいはこれらの値の組み合わせなどを評価値として用いても良い。また、制御パラメータは、放電基準値に限定されるものではない。例えば、一定放電方式により蓄電池112が運転される場合には、放電すべき時間帯と放電量との組み合わせが制御パラメータとなる。また、例えば、余剰電力吸収方式により蓄電池112が運転される場合には、蓄電池112の初期電力量が制御パラメータとなる。以下では、ピークカット方式により蓄電池112が運転され、評価値としてピークカット効果が用いられる場合について、図8~図11を用いて、説明する。
 図8は、要対策度算出例(その1)を示す説明図である。図8は、修正により放電基準値が高くなる場合の要対策度算出例である。図8において、(A)は、早期対策時刻で運転計画を修正するシミュレーションを示すグラフであり、(B)は、定期修正時刻で運転計画を修正するシミュレーションを示すグラフである。両グラフともに、横軸は時間であり、縦軸は電力量[kWh]である。この電力量は、一例として30分間の使用電力量を示す。
 ここで、要対策度の算出例について図8を用いて説明する。要対策度を算出する場合、デマンド値[kW]を用いる。デマンド値は、30分間の平均使用電力[kW]であるので、30分間(0.5[h])の使用電力量[kWh]を2倍した値(0.5[h]で割った値)となる。例えば、図8(A),(B)において、元の需給シナリオ(電力需要と発電出力の差を要素とする時系列データ)における30分間の最大使用電力量は、157.9[kWh]であるので、この場合の最大デマンド値は、315.8[kW]となる。
 また、(A)において、早期対策時刻で最適運転計画に修正した場合の30分間の最大使用電力量は、131[kWh]であるため、早期対策による最大デマンド値は、262[kW]である。したがって、(A)におけるピークカット効果を示す結果は、下記式(1)により求められる。
(315.8-262)/315.8×100=17.0[%]・・・(1)
 また、(B)において、定期修正時刻で最適運転計画に修正した場合の30分間の使用電力量は、140[kWh]であるため、定期修正による最大デマンド値は、280[kW]である。したがって、(B)におけるピークカット効果を示す結果は、下記式(2)により求められる。
(315.8-280)/315.8×100=11.3[%]・・・(2)
 要対策度は、下記式(3)により求められる。
 要対策度=早期対策による結果-定期修正による結果・・・(3)
 上記の例では、要対策度=17.0-11.3=5.7となる。このように、要対策度算出部611では、早期対策候補時刻に当初運転計画を修正した場合の結果に対して、定期修正時刻に修正した場合の結果が悪い場合、対策が遅れたために効果が低下したと考え、要対策度が算出される。
 図9は、図8の(A)および(B)の比較例を示す説明図である。図9は、図8(A)の需給シナリオに対して早期対策を行った場合のシナリオ、および、図8(B)の需給シナリオに対して定期修正を行った場合のシナリオを重ねたグラフである。
 図10は、要対策度算出例(その2)を示す説明図である。図10は、修正により放電基準値が低くなる場合の要対策度算出例である。図10において、(A)は、早期対策時刻で運転計画するシミュレーションを示すグラフであり、(B)は、定期修正時刻で運転計画を修正するシミュレーションを示すグラフである。両グラフともに、横軸は時間であり、縦軸は電力量[kWh]である。この電力量は、一例として30分間の使用電力量を示す。
 ここで、要対策度の算出例について図10を用いて説明する。要対策度の算出方法は、図8に示した場合と同じである。なお、図10(A),(B)において、最大電力量は、153.7[kWh]であるので、この場合の最大デマンド値は、307.4[kW]となる。
 また、図10(A)において、早期対策時刻で最適運転計画に修正した場合の最大電力量は、110[kWh]であるため、早期対策による最大デマンド値は、220[kW]である。したがって、(A)におけるピークカット効果を示す結果は、下記式(4)により求められる。
(307.4-220)/307.4×100=28.4[%]・・・(4)
 また、図10(B)において、定期修正時刻で最適運転計画に修正した場合の最大電力量は、120[kWh]であるため、定期修正による最大デマンド値は、240[kW]である。したがって、(B)におけるピークカット効果を示す結果は、下記式(5)により求められる。
(307.4-240)/307.4×100=21.9[%]・・・(5)
 要対策度は、上記式(3)により求められ、28.4-21.9=6.5となる。
 図11は、図10の(A)および(B)の比較例を示す説明図である。図11は、図10(A)の需給シナリオに対して早期対策を行った場合のシナリオ、および、図10(B)の需給シナリオに対して定期修正を行った場合のシナリオを重ねたグラフである。図11において、ハッチングを施した領域は、図10(B)により修正が遅れたために、ピークカットできなかった電力量を示している。すなわち、定期修正の前の需要で実現可能なピークカットにおけるデマンドよりも高い値で放電されるため、早期対策を行わないと最大デマンド値になってしまうことを示している。
 要対策度算出部611では、需給シナリオごとに、上記のように要対策度が求められ、求められた要対策度がしきい値以上である場合、要対策シナリオ抽出部612は、その需給シナリオを、要対策シナリオとして抽出する。
<要対策シナリオ分類例>
 つぎに、要対策シナリオ分類部613による要対策シナリオ分類例について説明する。要対策シナリオには、必要とされる対策が大きく異なるシナリオが混在する場合がある。例えば、当初運転計画における放電基準値に対して放電基準値を高くするような対策の場合には放電を抑える意味があり、放電基準値を低くするような対策の場合には放電を起こりやすくする意味がある。この場合、日射量や気温、需要などを用いた識別条件によって要対策シナリオ群が識別できたとしても、上記のように放電を抑える対策と起こりやすくする対策が混在していると、対策を1つに定めることができない。
 このため、要対策シナリオ群が識別できれば対策が可能なことを保証するために、要対策シナリオ分類部613は、要対策シナリオを対策の類似性で分類する。実施の形態1では、当初計画および当初運転計画の修正方向により要対策シナリオを分類する。この処理によって分類された各グループが、早期対策対象シナリオ群であり、それぞれのグループを一意に識別する群IDが割り付けられる。そして、各早期対策対象シナリオ群に分類された需給シナリオに対しては、そのシナリオが属する早期対策対象シナリオ群の群IDが、シナリオDB700の早期対策項目に記憶される。
 図12は、要対策シナリオの分類例を示す説明図である。図12では、図8の要対策シナリオと図10の要対策シナリオとを分類する例を示す。当初運転計画は240[kW](30分間の使用電力量では120[kWh])とする。図12において、(A)は、要対策シナリオ抽出部612によって抽出された要対策シナリオ群である。要対策シナリオ群には、図8の要対策シナリオsxと、図10の早要対策シナリオsyが含まれている。
 (B)要対策シナリオsxでの早期対策による修正後の最適運転計画(図8(A))は131[kWh]であるため、当初運転計画120[kWh]よりも大きい。したがって、要対策シナリオsxは、修正により放電基準値を高くするグループに分類される。
 (C)また、要対策シナリオsyでの早期対策による修正後の最適運転計画は110[kWh]であるため、当初運転計画120[kWh]よりも小さい。したがって、要対策シナリオsyは、修正により放電基準値を低くするグループに分類される。
 このように、運転計画を構成する制御パラメータの値が、当初運転計画に比べて大きいか小さいかという傾向(運転計画の修正方向)が同じものだけからなるように要対策シナリオがグループ化され、早期対策対象シナリオ群としてメモリ上に記憶される。例えば、上記のように、運転計画を構成する制御パラメータが放電基準値のみから構成される場合には、当初運転計画に比べて放電基準値を高くする最適運転計画に対応するグループと、低くする運転計画に対応するグループに、要対策シナリオ群が2分割される。分割されたそれぞれのグループは早期対策対象シナリオ群となる。
 また、運転計画が複数の制御パラメータからなる場合には、各連続値の制御パラメータの値の増減に対応する2つの分類区分、および、各離散値の制御パラメータの値の種類に対応する「種類数-1」個の分類区分の組み合わせによるグループに、要対策シナリオ群が分類される。例えば、放電基準値に加え、蓄電池残量(SOC:State Of Charge)の目標値(SOC目標値)を設定し、SOC目標値より蓄電池残量が少ない場合に、放電基準値を超えない範囲で蓄電池を充電するという制御を行う場合には、放電基準値とSOC目標値という2つの制御パラメータに対応して、4つの分類区分により、要対策シナリオ群が分類される。すなわち、当初計画に比べ、(1)放電基準値とSOC目標値が共に大きい、(2)放電基準値のみ大きい、(3)放電基準値のみ小さい、(4)両者が共に小さい、という4つの区分に対応して、要対策シナリオ群が分類される。あるいは、電力消費機器の稼働状態(例えば、起動/停止)をスケジュールにより切り替える制御を加える場合には、スケジュール設定の単位となる時間帯における当該機器の稼働状態の違いに対応する分類区分をさらに組み合わせることになる。例えば、1日に1回、所定の時間の連続稼働が必要な製造機器の起動/停止を、1時間単位でスケジュール制御する場合には、その機器を何時に起動するかに対応する分類区分を組み合わせて、要対策シナリオを分類する。そして、いずれかのシナリオが分類されたグループが、早期対策対象シナリオ群としてメモリ上に記憶される。
<識別条件作成例>
 つぎに、識別条件作成部614による識別条件の作成例について説明する。識別条件作成部614は、要対策シナリオ分類部613により分類された複数の早期対策対象シナリオ群の各々の早期対策対象シナリオ群について、識別条件を作成する。具体的には、識別条件作成部614は、処理対象の早期対策対象シナリオ群に属すべきシナリオか否かを判別するための判別モデルを作成する。
 ここで、判別モデルとは、当日の運用時に実現しつつある需給シナリオが、早期対策対象シナリオ群に属するのか、それ以外のシナリオ群に属するかを、当日の早期対策時刻で利用可能なデータに基づき判別するモデルである。判別モデルは、一般的な判別分析の方法を使って作成される。すなわち、識別条件作成部614は、シミュレーションにより求めた説明属性と目的属性の関係に基づき、判別の基準となる判別関数を求め、その基準に基づき、当該早期対策対象シナリオ群に属するかどうかを判別するモデルを構築すればよい。
 つぎに、識別条件作成部614は、作成した判別モデルが、需給シナリオの中から当該早期対策対象シナリオ群をしきい値より高い精度で判別できるかを評価する。そして、所定のしきい値より高い精度で判別できる場合には、識別条件作成部614は、その判別モデルに基づき、当該早期対策対象シナリオ群の識別条件を作成する。
 以下では、説明属性ベクトル空間における距離に基づく判別モデルに基づく識別条件の作成例を示す。この判別モデルは、例えば、運用当日の積算日射量が要対策シナリオ群の標準的な積算日射量に近ければ要対策であると判定し、対策を必要としないシナリオ群の標準的な積算日射量に近ければ対策が不要と判定するような判別モデルである。
 図13は、識別条件作成部614による識別条件の作成例を示す説明図である。図13では、説明を単純化するため、需給シナリオをs0~s9とし、ある早期対策対象シナリオ群を、s1,s4,s5,s7,s9を例に挙げて説明する。識別条件の作成では、一例として識別条件作成テーブル1300が用いられる。識別条件作成テーブル1300とは、需給シナリオID項目、目的属性項目、および、説明属性項目と有し、需給シナリオごとに、需給シナリオID、目的属性、および説明属性が設定されるテーブルである。
 説明属性とは、目的属性(対策要否)を推定する手がかりとなるデータであり、運用当日の早期対策時刻において利用可能な観測データや観測データの集計値などが採用される。例えば、早期対策時刻における天気・気温・日射強度・消費電力などの観測値や、早期対策時刻までの積算日射量・積算電力などの集計値が採用される。本例では、説明属性を、「9時までの積算日射量[MJ/m2]」とする。
 また、説明属性に設定する値としては、説明属性が連続値の場合にはその値を、離散値の場合には、それぞれの離散値に対応する整数値を設定すればよい。例えば、天気の場合は,晴れ、曇り、雨などに対応して、1,2,3のような離散値を設定すればよい。
 図13において、(A)では、まず、識別条件作成部614は、識別条件作成テーブル1300を初期化する。具体的には、例えば、識別条件作成部614は、全需給シナリオの対策要否を「不要」に設定する。そして、識別条件作成部614は、需給シナリオごとの説明属性の値を設定する。説明属性の値は、例えば、運用システム102から取得された過去データに基づいて設定されたシナリオDB700の時系列データより計算する。
 (B)では、識別条件作成部614は、ある早期対策対象シナリオ群の各早期対策対象シナリオs1,s4,s5,s7,s9の対策要否を、「要」に変更する。
 (C)では、識別条件作成部614は、対策要否「要」の需給シナリオ、すなわち、早期対策対象シナリオs1,s4,s5,s7,s9の平均日射量を求める。本例では、1.60[MJ/m2]である。同様に、識別条件作成部614は、対策要否「不要」の需給シナリオs0,s2,s3,s6,s8の平均日射量を求める。本例では、6.60[MJ/m2]である。そして、識別条件作成部614は、両平均の中間値を求める。本例では、4.10[MJ/m2]である。両平均の中間値が判別モデルにおける判別の基準値となる。なお、(C)では、平均を求めることとしたが、中央値を求めてもよい。
 そして、識別条件作成部614は、早期対策対象シナリオ群に属すべきシナリオか否かを判別する判別モデルを生成する。本例では、識別条件作成部614は、両平均の中間値を基準にして、中間値以下の早期対策対象シナリオを、「要対策」と判別する判別モデルを生成する。この判別モデルは、運用当日の観測値が、平均日射量1.60[MJ/m2]のグループと平均日射量6.60[MJ/m2]のグループのうちいずれのグループの平均日射量に近いかを判定する判別モデルである。
 (D)では、識別条件作成部614は、(C)で生成された判別モデルを用いて、「要対策」として判定されるシナリオ(「早期対策条件適合シナリオ」と呼ぶ)を抽出する。これにより、早期対策対象シナリオs1,s4,s5,s7,s9のうち、早期対策対象シナリオs1,s4,s7,s9が「要対策」の早期対策対象シナリオとして抽出される。一方、早期対策対象シナリオs5は、判別モデルにより平均日射量6.60[MJ/m2]のグループに近いシナリオであるため、「対策不要」と判別され、「早期対策条件適合シナリオ」としては抽出されない。また、「早期対策条件適合シナリオ」として抽出されるシナリオには、「対策不要」シナリオs0,s2,s3,s6,s8は含まれていない。よって、「早期対策対象シナリオ」を漏れなく抽出できるかという観点からの精度(再現率)は、80%(4/5)であり、また、「早期対策条件適合シナリオ」が正しく「早期対策対象シナリオ」であるかという観点からの精度(適合率)は、100%となる。
 このように、この判別モデルでは、処理対象の早期対策対象シナリオ群が、再現率80%、適合率100%の精度で判別できるので、例えば、再現率・適合率のしきい値が80%であれば、この判別モデルが識別条件となる。
 このように、早期対策対象シナリオ抽出部601は、要対策度算出~識別条件作成の一連の処理を、早期対策時刻ごとに実行する。早期対策対象シナリオ抽出部601は、つぎの早期対策時刻についての要対策度算出~識別条件作成の一連の処理の実行に先立って、需給シナリオ群から、作成した識別条件に適合する需給シナリオ(早期対策条件適合シナリオ)を処理対象から除外する。上記の例では、需給シナリオs0~s9から要対策シナリオs1,s4,s7,s9が削除され、残余の需給シナリオs0,s2,s3,s5,s6,s8に対し、つぎの早期対策時刻についての要対策度算出~識別条件作成の一連の処理が実行される。
<出力情報作成例>
 つぎに、出力情報作成部602による修正運転計画の作成例について説明する。出力情報作成部602は、識別条件が明らかになった要対策シナリオ群に対する修正運転計画を作成する。出力情報作成部602は、早期対策対象シナリオ群の各々に対して作成された識別条件を順々に処理対象として選択し、下記の処理を行う。
 出力情報作成部602は、まず、選択した識別条件に合致する需給シナリオを需給シナリオ群から抽出する。抽出される需給シナリオは、要対策シナリオ分類部613によって分類された早期対策対象シナリオ群とは必ずしも同一ではない。つまり、ここで抽出されるシナリオ群には、早期対策対象シナリオではあっても識別条件に合致しないシナリオは含まれず、逆に、早期対策対象シナリオでない需給シナリオも、識別条件に合致する限り含まれる。そのため、本実施の形態1では、出力情報作成部602において、識別条件に基づく需給シナリオの抽出を改めて実行することとする。また、前段の識別条件作成部614において、早期対策対象シナリオ群を識別条件に合致するように調整する形で実行してもよい。
 出力情報作成部602は、抽出した需給シナリオのそれぞれに対して、修正運転計画候補作成処理を実行する。具体的には、例えば、出力情報作成部602は、抽出した需給シナリオのそれぞれに対して、シナリオDB700の早期対策項目に記録された早期対策時刻以後の最適運転計画を取得し、以降の処理で用いる修正運転計画の候補とする。
 図14は、出力情報作成部602が使用するシナリオDB700の早期対策項目の一例を示す説明図である。図14は、前期の説明で用いた早期対策対象シナリオ群、すなわち、9時に当初計画の放電基準値(220kW)を高くする方向に修正する早期対策に対応するシナリオ群の処理において使用される部分について、運需給シナリオID項目と、早期対策項目の時刻項目と、計画項目と、群ID項目とを示している。以下の処理では、計画項目に記録された運転計画(要対策度算出部611によって計算された各需給シナリオにとって最適な、早期対策時刻における修正運転計画)が修正運転計画の候補となる。
 出力情報作成部602は、シナリオDB700に早期対策項目に記憶された修正運転計画の中から、1つの修正運転計画を選択する。具体的には、例えば、出力情報作成部602は、抽出したそれぞれの需給シナリオに対し計算された修正運転計画の中で、最も安全な修正運転計画を早期対策候補時刻における修正運転計画として選択する。最も安全な修正運転計画とは、どの需給シナリオに対しても効果が落ちない修正運転計画である。
 図14の例では、抽出した需給シナリオに対して早期対策候補時刻における修正運転計画が250~290[kW]となっている。ピークカット効果において、放電基準値を290[kW]に設定しなければならない場合、250[kW]に設定すると放電が多くなりすぎてピークカットが失敗してしまう。これに対し、放電基準値を250[kW]に設定しなければならない場合に290[kW]に設定してもピークカットは失敗しない。したがって、図14の例では、需給シナリオs4の290[kW]が安全な修正運転計画として選択される。出力情報作成部602は、最終的には、早期対策時刻と識別条件と修正運転計画を出力する。
 図15は、出力情報作成部602による出力例を示す説明図である。例えば、出力情報1500は、『早期対策時刻9時までの日射量が4.10[MJ/m2]以下であれば、放電基準値を290[kW]に修正する』という早期対策時刻と識別条件と修正運転計画が関連付けられた情報である。出力情報1500は、運用システム102に出力される。運用システム102では、9時までの日射量が4.10[MJ/m2]以下の場合、定期修正時刻(例えば13時)から前倒しして、9時に運転計画を、290[kW]に修正することになる。
<処理手順>
 図16は、作成装置600による処理手順の一例を示すフローチャートである。作成装置600は、早期対策対象シナリオ抽出部601により、早期対策対象シナリオ抽出処理を実行し(ステップS1601)、出力情報作成部602により出力情報作成処理を実行する(ステップS1602)。
 図17は、図16に示した早期対策対象シナリオ抽出処理(ステップS1601)の詳細な処理手順例を示すフローチャートである。まず、作成装置600は、処理対象時刻を初期化する(ステップS1701)。例えば、作成装置600は、処理対象時刻をt1にする。つぎに、作成装置600は、要対策度算出部611により、処理対象時刻である早期対策時刻について、要対策度算出処理を実行する(ステップS1702)。要対策度算出処理(ステップS1702)の詳細については図18で説明する。
 つぎに、作成装置600は、要対策シナリオ抽出部612により、要対策度がしきい値以上となる需給シナリオを要対策シナリオとして抽出する(ステップS1703)。そして、作成装置600は、要対策シナリオ分類部613により、要対策シナリオ分類処理を実行し(ステップS1704)、さらに、識別条件作成部614により、識別条件作成処理を実行する(ステップS1705)。要対策シナリオ分類処理(ステップS1704)の詳細については図19で説明する。また、識別条件作成処理(ステップS1705)の詳細については図20で説明する。
 このあと、作成装置600は、すべての早期対策時刻に対し、早期対策対象シナリオの抽出処理をおこなったか否かを判断する(ステップS1706)。例えば、作成部は、処理対象時刻が定期修正時刻の直前の時刻であるか否かを判断する。すべての早期対策時刻に対し、早期対策対象シナリオの抽出処理をおこなっていない場合(ステップS1706:No)、作成装置600は、識別条件により識別された早期対策対象シナリオを、要対策度算出処理(ステップS1702)の評価対象の需給シナリオ群から除外する(ステップS1707)。そして、作成装置600は、次の早期対策時刻を処理対象時刻として選択して(ステップS1708)、ステップS1702に戻る。例えば、作成装置600は、処理対象時刻が早期対策時刻t1の場合、次の早期対策時刻t2を選択する。
 ステップS1702では、作成装置600は、ステップS1708で選択された処理対象時刻について、ステップS1707で除外された早期対象シナリオを除く残余の評価対象の需給シナリオ群に対して要対策度算出処理を実行する。また、ステップS1706において、すべての早期対策時刻に対し、早期対策対象シナリオの抽出処理をおこなった場合(ステップS1706:Yes)、早期対策対象シナリオ抽出処理(ステップS1601)が終了する。
 図18は、図17に示した要対策度算出処理(ステップS1702)の詳細な処理手順例を示すフローチャートである。図18において、作成装置600は、評価対象の需給シナリオ群の中に未選択の需給シナリオがあるか否かを判断する(ステップS1801)。未選択の需給シナリオがある場合(ステップS1801:Yes)、作成装置600は、未選択の需給シナリオを1つ選択する(ステップS1802)。選択された需給シナリオを「選択需給シナリオ」と称す。
 作成装置600は、選択需給シナリオにおいて、当初運転計画を早期対策時刻で修正するシミュレーションを実行し、その結果をシナリオDB700の早期対策項目に記録する(ステップS1803)。また、作成装置600は、当初運転計画を定期修正時刻で修正するシミュレーションを実行し、その結果をシナリオDB700の定期修正項目に記録する(ステップS1804)。このあと、作成装置600は、ステップS1803、S1804の両結果から、選択需給シナリオの要対策度を算出する(ステップS1805)。算出された要対策度は、選択需給シナリオの需給シナリオIDと関連付けてメモリ上に記憶される。
 このあと、ステップS1801に戻り、未選択の需給シナリオがなくなるまで、選択需給シナリオごとにステップS1802~S1805が実行される。そして、未選択の需給シナリオがない場合(ステップS1801:No)、要対策度算出処理(ステップS1702)が終了する。
 図19は、図17に示した要対策シナリオ分類処理(ステップS1704)の詳細な処理手順例を示すフローチャートである。図19において、作成装置600は、まず、ステップS1703で抽出された要対策シナリオのうち、未選択の要対策シナリオがあるか否かを判断する(ステップS1901)。未選択の要対策シナリオがある場合(ステップS1901:Yes)、作成装置600は、未選択の要対策シナリオを1つ選択する(ステップS1902)。選択された要対策シナリオを「選択要対策シナリオ」と称す。
 作成装置600は、選択要対策シナリオの修正後の運転計画が当初運転計画以上であるか否かを判断する(ステップS1903)。選択要対策シナリオの修正後の運転計画が当初運転計画以上である場合(ステップS1903:Yes)、作成装置600は、放電基準値を高くするグループに選択要対策シナリオを分類して(ステップS1904)、ステップS1901に戻る。
 一方、選択要対策シナリオの修正後の運転計画が当初運転計画以上でない場合(ステップS1903:No)、作成装置600は、放電基準値を低くするグループに選択要対策シナリオを分類して(ステップS1905)、ステップS1901に戻る。そして、ステップS1901において、未選択の要対策シナリオがない場合(ステップS1901:No)、要対策シナリオ分類処理(ステップS1704)が終了する。
 図20は、図17に示した識別条件作成処理(ステップS1705)の詳細な処理手順例を示すフローチャートである。図20において、作成装置600は、まず、図13の(A)に示したように、識別条件作成テーブル1300において、全需給シナリオの説明属性を設定し(ステップS2001)、全需給シナリオの目的属性を「対策不要」に設定する(ステップS2002)。これにより、図13の(A)に示した識別条件作成テーブル1300が作成される。
 つぎに、作成装置600は、ステップS1704で分類された複数の早期対策対象シナリオ群のうち、未選択の早期対策対象シナリオ群があるか否かを判断する(ステップS2003)。未選択の早期対策対象シナリオ群がある場合(ステップS2003:Yes)、作成装置600は、未選択の早期対策対象シナリオ群を1つ選択し(ステップS2004)、選択した早期対策対象シナリオ群の各シナリオの目的属性を「要」に設定する(ステップS2005)。これにより、識別条件作成テーブル1300は、図13の(B)のような状態になる。
 そして、作成装置600は、図13の(C)に示したように判別モデルを生成し(ステップS2006)、図13の(D)に示したように識別条件を作成する(ステップS2007)。そして、ステップS2002に戻り、作成装置600は、すべての需給シナリオの目的属性を「対策不要」にリセットする。そして、ステップS2003において、未選択の早期対策対象シナリオ群があれば(ステップS2003:Yes)、ステップS2004~S2007が実行される。したがって、分類された早期対策対象シナリオ群ごとに、識別条件が作成される。そして、ステップS2003において、未選択の早期対策対象シナリオ群がない場合(ステップS2003:No)、識別条件作成処理(ステップS1705)が終了する。
 図21は、図16に示した出力情報作成処理(ステップS1602)の詳細な処理手順例を示すフローチャートである。図21において、作成装置600は、まず、未選択の識別条件があるか否かを判断する(ステップS2101)。未選択の識別条件がある場合(ステップS2101:Yes)、作成装置600は、未選択の識別条件を1つ選択する(ステップS2102)。選択された識別条件を「選択識別条件」と称す。
 つぎに、作成装置600は、需給シナリオ群から選択識別条件に合致する需給シナリオを抽出する(ステップS2103)。抽出された需給シナリオを「抽出シナリオ」と称す。作成装置600は、未選択の抽出シナリオがあるか否かを判断する(ステップS2104)。そして、未選択の抽出シナリオがある場合(ステップS2104:Yes)、作成装置600は、未選択の抽出シナリオを1つ選択し(ステップS2105)、選択した抽出シナリオについて修正運転計画を求める(ステップS2106)。具体的には、作成装置600は、出力情報作成部602により、選択した抽出シナリオに対して、シナリオDB700の早期対策項目に記録された運転計画、すなわち、早期対策時刻における最適な修正運転計画を取得する。
 このあと、ステップS2104に戻り、未選択の抽出シナリオがあるか否かを判断する(ステップS2104)。未選択の抽出シナリオがない場合(ステップS2104:No)、作成装置600は、抽出シナリオごとの修正運転計画の中から最適な修正運転計画を選択する(ステップS2107)。最適な修正運転計画が選択されると、最適な修正運転計画とともに、その早期対策時刻および識別条件の組み合わせが、出力情報1500の1つとして保持される。このあと、ステップS2101に戻り、未選択の識別条件がなくなるまで、ステップS2102~S2107が繰り返し実行される。
 ステップS2101において、未選択の識別条件がない場合(ステップS2101:No)、作成装置600は、図15に示したような出力情報1500を運用システム102に出力する(ステップS2108)。これにより、出力情報作成処理(ステップS1602)が終了する。
 ここで、実施の形態1の早期対策の有効性について説明する。例えば、ピークカット効果を高めたい状況を例に挙げる。この場合、当初の放電基準値の設定が低いと、定期修正時刻より前に不必要な放電が生じてしまい、結果として、定期修正時刻における蓄電池残量が不足し、その後の時間帯のカットすべきピークに対応できなくなる。したがって、可能な限り不適切な放電量が少なくなるように、できるだけ早い時間帯に運転計画を修正する必要がある。
 一方、運用初期段階では、起こり得る需給シナリオを絞り込むための手がかり(観測データ)が少ないため、放電を抑えるべき状況であるかを判定することが難しい。そこで、実施の形態1では、作成装置600は、早期対策時刻の候補について、起こり得る需給状況の中から放電量を抑制すべき需給シナリオをシミュレーションにより抽出し、抽出したシナリオ群がその時点で得られるデータで識別可能かをチェックする。
 これにより、作成装置600は、放電抑制を開始すべき条件として早期対策時刻および識別条件を決定し、その条件に合致する状況に対する適切な対策を作成する。例えば、作成装置600は、不必要な放電を回避できる安全な放電基準値を作成する。この条件により、運用当日の各時点において、放電量を抑制すべき状況を検知し、対策を実施することにより、不必要な放電を回避し、ピークカット効果を高めることができる。
 またもう1つの例として、太陽光発電の余剰電力を蓄電池112に充電することにより、有効活用したい場合を考える。この場合には、発生する余剰電力に対して蓄電池112の空きが十分ではない場合に、余剰電力を充電できないための損失が生じる。この例では、余剰電力の売電は考慮しないものとする。したがって、余剰電力が発生する前に適切な放電を行って余剰電力吸収用の空きを作る必要がある。
 しかしながら、逆潮流を発生させずに放電するには、電力需要の範囲内の放電量にとどめる必要があるため、放電を開始すべき時刻は、需要の推移にも依存する。そこで、本実施の形態1では、早期対策時刻の候補について、需要の推移も反映した需給シナリオに基づくシミュレーションにより、早期対策時刻に放電を開始すべき要対策シナリオを特定し、そのようなシナリオを検知するための識別条件を作成する。この識別条件により、運用当日の各時点においては、余剰電力吸収に対処が必要とする状況を検知し、余剰電力吸収用の空きを作るための放電を行い、余剰電力の損失を回避することができる。
(実施の形態2)
 つぎに、実施の形態2について説明する。実施の形態1では、図12に示したように、作成装置600は、要対策度が抽出された要対策シナリオの修正後の最適な運転計画が当初運転計画以上であるか否かにより分類した。これに対し、実施の形態2では、作成装置600は、回帰木を構築し、構築した回帰木により要対策シナリオを分類し、回帰木を用いて識別条件を作成する。なお、実施の形態2において、要対策シナリオ分類部613、識別条件作成部614、および出力情報作成部602が実施の形態1と異なるが、それ以外は実施の形態1と同一である。したがって、実施の形態2では、要対策シナリオ分類部613、識別条件作成部614、および出力情報作成部602について説明する。まず、実施の形態2の要対策シナリオ分類部613について説明する。
<要対策シナリオ分類>
 要対策シナリオ分類部613は、回帰木により、早期対策時刻に利用可能なデータの値が類似し、かつ、対策(各シナリオにとって最適な修正運転計画)の違いが所定の範囲内になるような要対策シナリオのグループを求める。具体的には、例えば、要対策シナリオ分類部613は、対策を目的属性とし、早期対策時刻において利用可能なデータを説明属性とする要対策シナリオ群の回帰木を、回帰木の葉ノードにおける対策の違いが所定のしきい値以下になるように構築する。回帰木の葉ノードにおける対策の違いとしては、例えば、平均2乗誤差の値が用いられる。そして、要対策シナリオ分類部613は、対策の違いが所定の閾値以下に収めることができた葉ノードを、早期対策対象シナリオ群として選択する。そして、選択した早期対策対象シナリオ群(葉ノード)に、それぞれの群を一意に識別する群IDを割り付け、また、各早期対策対象シナリオ群に分類される需給シナリオに対して、00の早期対策項目gciに、対応する群IDを記憶する。
 図22は、回帰木による要対策シナリオの分類例を示す説明図である。図22では、目的属性を「放電基準値(対策)」、説明属性を「9時までの積算日射量と気温」に設定し、最小2乗誤差の平方根が5[kW]以下になるように構築した回帰木2200の例が示されている。
 回帰木2200の最上段の根ノードN0は、要対策シナリオ全体に対応し、最下段の4つの葉ノードは、早期対策対象シナリオ群に対応する。また、根ノードN0および2つの中間ノードN1,N2は、それぞれのノードに対応するシナリオ群を下位ノードへと分割するためのルール(分割テスト)を有する。
 例えば、根ノードN0に対する分割ルールR0は、「9時までの積算日射量が1.0[MJ/m2]以下」である。また、中間ノードN1に対する分割ルールR1は、「気温が20度以上」である。また、中間ノードN2に対する分割ルールR2は、「9時までの積算日射量が7.0[MJ/m2]以上」である。
 また、葉ノードL1~L4は、それぞれの葉ノードL1~L4に分類される要対策シナリオの対策(各シナリオにとって最適な放電基準値)の平均値とばらつきを有する。例えば、葉ノードL1は、要対策シナリオの中で分割ルールR0,T1という両条件を満たすシナリオ群に対応し、そのシナリオ群の対策(各シナリオにとって最適な放電基準値)の平均は250[kW]、ばらつきが4[kW]であることを示している。
 なお、本例では、すべての葉ノードL1~L4が最小2乗誤差のしきい値の条件を満たしているため、全葉ノードL1~L4の各々が早期対策対象シナリオ群として選択される。ただし、最小2乗誤差のしきい値の条件を満たしていない葉ノードがある場合には、その葉ノードに対応するシナリオ群は、早期対策対象シナリオ群としては選択されないことになる。
<識別条件作成>
 次に、実施の形態2の識別条件作成部614について説明する。識別条件作成部614は、回帰木2200に基づいて識別条件を作成する。具体的には、要対策シナリオ分類部613によって構築された回帰木2200における分割テストは、識別条件の候補となる。すなわち、回帰木2200は、要対策シナリオ群に対応する根ノードN0を、早期対策対象シナリオ群に対応する葉ノードL1~L4に分割するためのルールを表現する。
 したがって、識別条件作成部614は、根ノードN0から葉ノードL1~L4に至る分割テストに基づいて、要対策シナリオ群の中から、早期対策対象シナリオ群を識別する条件を作成することができる。一方、全需給シナリオには、要対策シナリオではない対策不要シナリオが含まれている。このため、回帰木2200によって、全需給シナリオを根ノードN0から分割すると、早期対策対象シナリオ群に相当する葉ノードL1~L4には、対策不要シナリオも割り付けられることになる。すなわち、回帰木2200によって早期対策対象シナリオ群の識別条件の作成を行うと、作成された識別条件により、早期対策対象シナリオだけでなく対策不要シナリオを識別してしまう可能性がある。
 そこで、実施の形態2の識別条件作成部614は、回帰木2200に表現された各早期対策対象シナリオ群に対する識別条件と対策が、その識別条件によって識別されてしまう対策不要シナリオに対して悪影響を及ぼさないかをチェックする。そして、識別条件作成部614は、悪影響のない場合のみ、識別条件を採用するという処理を行う。
 すなわち、識別条件作成部614は、各早期対策対象シナリオ群に対して回帰木2200に基づいて作成した識別条件により識別される対策不要シナリオに対して、下記の2種類のシミュレーションを実行し、シミュレーション結果として得られた効果の差を評価する。2種類のシミュレーションの一方は、早期対策時刻までは当初運転計画で、その後は回帰木2200の当該葉ノードに記録された対策に従って運転計画の修正を行うシミュレーションである。対策とは、早期対策対象シナリオにとって最適な放電基準値の平均値もしくは最大値である。2種類のシミュレーションの他方は、当初運転計画のまま運用を続けるシミュレーションである。
 そして、対策により効果が下がる場合、対策によるデメリットがあるので、その識別条件は採用されない。一方、例え早期対策対象シナリオ群の識別条件で対策不要シナリオを識別してしまったとしても、対策を行っても効果に悪影響がないならば、識別条件として問題がない。したがって、このような識別条件は採用される。
 なお、以下では、このような悪影響のない識別条件のみを採用する処理を説明するが、実施の形態2の識別条件作成部614では、悪影響を被る対策不要シナリオが識別されないように、さらに識別条件を追加することで、悪影響を回避してもよい。例えば、実施の形態1の識別条件作成部614のように、実施の形態2の識別条件作成部614は、早期対策対象シナリオ群と早期対策による悪影響のない対策不要シナリオ群に対する目的属性を「要」に設定し、早期対策が悪影響を及ぼす対策不要シナリオに対する目的属性を「不要」に設定する。そして、実施の形態2の識別条件作成部614は、作成された識別条件を回帰木2200による識別条件に追加することとしてもよい。
 図23は、回帰木2200により作成された識別条件作成テーブル2300の一例を示す説明図である。識別条件作成テーブル2300は、識別条件項目、対策項目と、影響フラグ項目とを有する。識別条件項目には、識別条件の一例として根ノードから葉ノードまでの分割ルールのAND結合が記憶される。対策項目には、対策の一例として放電基準値が記憶される。影響フラグ項目には、対策不要シナリオチェックにより、対策不要シナリオについて「影響なし」または「影響あり」を示すフラグが記憶される。
 「影響なし」の場合、対策項目に記憶された対策を行っても効果に悪影響がないことを示す。「影響あり」の場合、対策項目に記憶された対策を行うと効果に悪影響が生じることを示す。図23の識別条件作成テーブル2300の1行目のレコードは、葉ノードL1に対応し、2行目のレコードは、葉ノードL2に対応し、3行目のレコードは、葉ノードL3に対応し、4行目のレコードは、葉ノードL4に対応する。
 例えば、1行目のレコードは、回帰木2200により作成した識別条件が「9時までの積算日射量が1.0[MJ/m2]以下」でかつ「気温が20度以上」であることを示している。また、1行目のレコードは、この識別条件で識別される対策不要シナリオに対して、早期対策時刻である9時に放電基準値を250[kW]に変更するシミュレーションを行った結果、すべての対策不要シナリオにおいて効果の劣化が所定のしきい値以内であったことを示している。
 一方、4行目のレコードは、回帰木2200により作成した識別条件が「9時までの積算日射量が1.0[MJ/m2]より大」かつ「9時までの積算日射量が7.0[MJ/m2]未満」であることを示している。また、4行目のレコードは、この識別条件で識別される対策不要シナリオに対して、早期対策時刻である9時に放電基準値200[kW]に変更するシミュレーションを行った結果、効果の劣化が所定のしきい値を超えるシナリオが存在したことを示している。
<出力情報作成>
 実施の形態2の出力情報作成部602は、識別条件作成部614によって作成された識別条件および対策の組み合わせのうち、対策不要シナリオチェックで「影響なし」の組み合わせを修正運転計画として設定する。図23の例では、出力情報作成部602は、識別条件作成テーブル2300の1~3行目のレコードを修正運転計画とし、運用システム102に出力する。
 これにより、例えば、運用システム102では、当日の9時までの積算日射量が1.0[MJ/m2]以下であり、かつ、気温が20度以上である場合は、早期対策時刻である9時に、当初運転計画を修正運転計画である放電基準値250[kW]に修正する。これにより、効果の劣化が生じたとしても、しきい値以下に収まるため、有効な対策を講じたことになる。また、実施の形態2では、修正運転計画は、識別条件作成テーブル2300から抽出することで作成できるため、修正運転計画の作成処理の効率化を図ることができる。
<処理手順>
 つぎに、実施の形態2にかかる作成装置600による処理手順例について説明する。上述したように、実施の形態2は、要対策シナリオ分類部613、識別条件作成部614、および出力情報作成部602が実施の形態1と異なる。したがって、処理手順についても、要対策シナリオ分類部613、識別条件作成部614、および出力情報作成部602による処理のみを説明し、それ以外は、実施の形態1と同一であるため、説明を省略する。まず、要対策シナリオ分類部613による要対策シナリオ分類処理の処理手順例について説明する。
 図24は、実施の形態2にかかる要対策シナリオ分類部613による要対策シナリオ分類処理手順例を示すフローチャートである。図24において、作成装置600は、まず、要対策シナリオ抽出部612によって抽出された要対策シナリオのうち、未選択の要対策シナリオがあるか否かを判断する(ステップS2401)。
 つぎに、作成装置600は、未選択の要対策シナリオがある場合(ステップS2401:Yes)、未選択の要対策シナリオを1つ選択する(ステップS2402)。選択された要対策シナリオを、「選択要対策シナリオ」と称す。そして、作成装置600は、シミュレーションにより、選択要対策シナリオに対し、早期対策時刻以降の最適運転計画を算出する(ステップS2403)。算出された最適運転計画は、選択要対策シナリオの目的属性となる。そして、作成装置600は、選択要対策シナリオに対し、早期対策時刻において利用可能なデータをシナリオDB700により計算して、説明属性に設定し(ステップS2404)、ステップS2401に戻る。早期対策時刻において利用可能なデータとは、例えば、日射量や温度である。実施の形態2では、回帰木を構築する必要があるため、説明属性は複数設定される。本例では、分割ルールR0~R2となる。
 ステップS2401において、未選択の要対策シナリオがない場合(ステップS2401:No)、作成装置600は、分割処理を実行する(ステップS2405)。分割処理(ステップS2405)では、回帰木2200を構築し、要対策シナリオ群を葉ノードに対応するシナリオ群に分割する。分割処理(ステップS2405)の詳細については後述する。分割処理(ステップS2405)のあと、作成装置600は、回帰木2200の葉ノードに対応するシナリオ群で対策の違いが所定範囲内のシナリオ群を、早期対策対象シナリオに決定する(ステップS2406)。これにより、要対策シナリオ分類処理(ステップS1704)を終了する。
 図25は、図24に示した分割処理(ステップS2405)の詳細な処理手順例を示すフローチャートである。図25において、作成装置600は、まず、分割終了条件を満たすか否かを判断する(ステップS2501)。分割終了条件とは、分割対象ノードに対応する要対策シナリオ群について、ステップS2401で求められた最適運転計画である目的属性のばらつき(最小2乗誤差)が所定のしきい値以下であり、分割対象ノードに対応するデータ数(シナリオ数)が全データ数(全シナリオ数)に対して十分小さいという条件である。
 分割終了条件を満たさない場合(ステップS2501:No)、作成装置600は、分割対象ノードに対応する要対策シナリオ群に対し、各説明属性に対する分割テストを実行する(ステップS2502)。具体的には、各説明属性に対する分割テストでは、分割後の2群における目的属性の平均2乗誤差が最小(あるいは、群間分散が最大)になるように当該説明属性による分割ルールを設定する。そして、作成装置600は、平均2乗誤差を最小化あるいはクラス間分散を最大化した分割ルールを選択する(ステップS2503)。
 そして、作成装置600は、データ集合である分割対象ノードに対応する要対策シナリオ群を、選択された分割ルールに従って、第1データ集合と第2データ集合とに分割する(ステップS2504)。例えば、分割ルールが根ノードN0において「9時までの積算日射量が1.0[MJ/m2]以下」の場合、今ノードN0に対応する要対策シナリオ群を、「9時までの積算日射量が1.0[MJ/m2]以下」である第1データ集合と、「9時までの積算日射量が1.0[MJ/m2]以下」でない第2データ集合と、に分割する。
 このあと、作成装置600は、第1データ集合の分割処理を実行する(ステップS2505)。具体的には、作成装置600は、ステップS2501~S2504を、第1データ集合について実行する。また、作成装置600は、第2データ集合の分割処理を実行する(ステップS2506)。具体的には、作成装置600は、ステップS2501~S2504を、第2データ集合について実行する。
 第1データ集合の分割処理(ステップS2505)および第2データ集合の分割処理(ステップS2506)は、再帰的な分割処理(ステップS2405)である。第2データ集合の分割処理(ステップS2506)のあと、ステップS2501に戻る。ステップS2501において、分割終了条件を満たす場合(ステップS2501:Yes)、分割処理(ステップS2405)が終了する。
 図26は、実施の形態2にかかる識別条件作成部614による識別条件作成処理の詳細な処理手順例を示すフローチャートである。図26において、作成装置600は、まず、回帰木2200において未選択の早期対策対象シナリオ群があるか否かを判断する(ステップS2601)。未選択の早期対策対象シナリオ群がある場合(ステップS2601:Yes)、作成装置600は、未選択の早期対策対象シナリオ群を1つ選択する(ステップS2602)。
 つぎに、作成装置600は、選択された早期対策対象シナリオ群について、識別条件および対策を識別条件作成テーブル1300に設定する(ステップS2603)。具体的には、例えば、作成装置600は、根ノードN0から、選択された早期対策対象シナリオ群の葉ノードまでの、分割ルールを通ってきた経路を識別条件とする。また、識別条件作成テーブル2300の対策には、ステップS2403で求められた最適運転計画が格納される。
 例えば、葉ノードL1の早期対策対象シナリオ群について、作成装置600は、識別条件として「9時までの積算日射量が1.0[MJ/m2]以下」でかつ「気温が20度以上」を設定する。また、作成装置600は、対策として、早期対策対象シナリオ群の各々について、ステップS2403で算出された最適運転計画の平均値を設定する。なお、この時点では、影響フラグはすべて初期状態「影響なし」である。
 そして、作成装置600は、需給シナリオ群内の対策不要シナリオ群の中から、選択した早期対策対象シナリオ群について作成した識別条件により識別される対策不要シナリオを抽出する(ステップS2604)。具体的には、たとえば、識別条件作成部614は、対策不要シナリオ群を回帰木2200に与えて分割テストを実行する。これにより、対策不要シナリオ群は、葉ノードL1~L4に分類される。識別条件作成部614は、葉ノードL1~L4に分類された各対策不要シナリオ群のうち、選択した早期対策対象シナリオ群に対応する葉ノードに分類された対策不要シナリオ群を抽出する。
 このあと、作成装置600は、抽出した対策不要シナリオ群の中から未選択の対策不要シナリオがあるか否かを判断する(ステップS2605)。未選択の対策不要シナリオがある場合(ステップS2605:Yes)、作成装置600は、未選択の対策不要シナリオを1つ選択する(ステップS2606)。そして、作成装置600は、選択した対策不要シナリオにおいて、早期対策時刻まで当初運転計画で運用し、早期対策時刻に早期対策シナリオ群の対策に従って修正するシミュレーションを実行する(ステップS2607)。また、作成装置600は、選択した対策不要シナリオにおいて、当初運転計画で運用するシミュレーションを実行する(ステップS2608)。
 このあと、作成装置600は、ステップS2607、S2608のシミュレーション結果として得られた効果、例えば、最適運転計画である放電基準値を比較する(ステップS2609)。効果の差が所定のしきい値以下の場合(ステップS2609:Yes)、ステップS2603で設定された識別条件は採用されることになるため、ステップS2603で設定された識別条件に対応する影響フラグをOFFのままとし、ステップS2605に戻る。
 一方、効果の差が所定のしきい値より大きい場合(ステップS2609:No)、作成装置600は、ステップS2603で作成された識別条件に対応する影響フラグを「影響あり」に設定する(ステップS2610)。すなわち、早期対策によって対策不要シナリオの効果を下げてしまったことを回避するという趣旨により、識別条件として採用しない。このあと、ステップS2605に戻る。作成装置600は、未選択の対策不要シナリオがなくなるまで、ステップS2606以降の処理を繰り返し実行する。また、ステップS2605において、未選択の対策不要シナリオがない場合(ステップS2605:No)。ステップS2601に戻る。
 作成装置600は、未選択の早期対策対象シナリオ群がなくなるまで、ステップS2602以降の処理を繰り返し実行する。そして、作成装置600は、ステップS2601において、未選択の早期対策対象シナリオ群がない場合(ステップS2601:No)、識別条件作成処理(ステップS1705)が終了する。
 図27は、実施の形態2にかかる出力情報作成部602による出力情報作成処理の詳細な処理手順例を示すフローチャートである。図27において、作成装置600は、まず、識別条件作成テーブル2300を取得する(ステップS2701)。つぎに、作成装置600は、取得した識別条件作成テーブル2300のうち、影響フラグが「影響あり」のレコードを削除する(ステップS2702)。そして、作成装置600は、削除後の識別条件作成テーブル2300を出力情報として運用システム102に出力する(ステップS2703)。
 このように、実施の形態2によれば、修正運転計画は、識別条件作成テーブル2300から抽出することで作成できるため、修正運転計画の作成処理の効率化を図ることができる。また、識別条件によって識別されてしまう対策不要シナリオに対して悪影響を及ぼさないかをチェックすることにより、早期対策の効果に悪影響を及ぼす識別条件を不採用とすることができる。これにより、早期対策の予測精度の向上を図ることができる。
(実施の形態3)
 つぎに、実施の形態3について説明する。実施の形態1,2では、あらかじめ用意された需給シナリオ群を用いたが、実施の形態3では、作成装置600が、需給シナリオ群を生成する。なお、実施の形態1,2と同一構成には同一符号を付し、その説明を省略する。
<作成装置600の機能的構成例>
 図28は、実施の形態3にかかる作成装置600の機能的構成例を示すブロック図である。図28において、作成装置600は、シナリオDB700、早期対策対象シナリオ抽出部601および出力情報作成部602のほか、記憶部2800と、受付部2801と、需給シナリオ生成部2802と、最適評価値算出部2803と、修正評価値算出部2804と、を有する。記憶部2800は、各種データが記憶されている。また、記憶部2800には、生成されたデータがCPU501により書き込まれる。また、記憶部2800に記憶されたデータは、CPU501により読み出し可能である。記憶部2800は、例えば、ハードディスク装置507により実現される。
 受付部2801は、入力装置502から各種情報を受け付ける。例えば、受付部2801は、需要データ2811および日射量データ2812を入力装置502から受け付けて、受け付けた需要データ2811および日射量データ2812を記憶部2800に格納する。需要データ2811とは、需要電力値を要素とする時系列データである。例えば、需要データ2811は、一日における各時間帯と需要電力値とを対応づけたデータである。この需要電力値は、例えば、過去の消費電力値の統計データから算出される。
 日射量データ2812は、所定時間ごとの過去の日射量の記録である。日射量には、例えば、日照時間という単位で計測された値を含む。ここで、日照時間とは、直射日光が雲などに遮られずに所定の値(一般に0.12[kW/m2])以上の強さで地表を照射した時間として定義される値である。日射量データ2812は、例えば、2010年7月の1ヶ月分の日照時間と単位面積あたりの積算日射量が1時間ごとに記録されたものである。日射量データ2812は、例えば、日本気象協会のデータベースから取得されるデータである。
 また、例えば、受付部2801は、運転計画作成において考慮すべき日射量変動の範囲を特定する条件として、開始時刻t0と、終了時刻tnと、初期日照時間h0と、時間刻み幅Δtとを入力装置502から受け付ける。ここで、開始時刻t0および終了時刻tnは、天候の変動の影響により、考慮すべき程度以上に発電出力が変動する可能性がある時間帯、すなわち、晴天時であれば十分な発電出力が期待できる時間帯の開始時刻および終了時刻にそれぞれ対応する。例えば、開始時刻t0は9時であり、終了時刻tnは15時である。
 また、初期日照時間h0は、当初運転計画の作成対象となる日の開始時刻t0における日射量であり、例えば、前日の天気予報によって予想される開始時刻t0における天候に基づいて算出される。例えば、開始時刻t0における天候が「晴れ」と予想される場合には、初期日照時間h0は「1」である。なお、ここでは、受付部2801が初期日照時間h0を受け付ける場合を説明したが、これに限定されるものではない。例えば、受付部2801は、初期日射量を受け付けても良い。そして、日射量を日照時間に変換することで、初期日照時間h0が算出される。
 この変換には、例えば、各月ごとの日照時間と日射量との間の相関関係を用いる。具体的には、日照時間と日射量との回帰分析を行い、得られた回帰直線の式を用いることで、日照時間を算出する。また、時間刻み幅Δtは、日射量データ2812に記録された日照時間の時間間隔に対応する。例えば、時間刻み幅Δtは、1時間である。そして、受付部2801は、受け付けた開始時刻t0と、終了時刻tnと、初期日照時間h0と、時間刻み幅Δtとを需給シナリオ生成部2802に出力する。
 需給シナリオ生成部2802は、需給電力値の推移の可能性を示す複数のシナリオを生成する。例えば、需給シナリオ生成部2802は、日射量データ2812に基づいて単位時間当たりの天候変動をマルコフ過程としてモデル化した天候変動モデルを構築する。需給シナリオ生成部2802は、構築した天候変動モデルに基づいてモンテカルロシミュレーションを行うことで、複数の出力変動シナリオ2815を発生する。
 そして、需給シナリオ生成部2802は、複数の出力変動シナリオ2815と、需要データ2811によって示される需要変動シナリオ2816との差をとることで、複数の需給シナリオを生成する。ここで、需給シナリオとは、蓄電池112を運用する電力網内の電力需要と、太陽光発電による出力との差を要素とする時系列データである。なお、需給シナリオ生成部2802は、生成部の一例である。また、需給電力値は、蓄電池112を運用する電力網内の電力需要と、太陽光発電による出力との差に対応し、需給差、又は需給バランスとも称される。また、需給シナリオは、シナリオの一例である。
 以下において、需給シナリオ生成部2802が実行する処理について詳細に説明する。例えば、需給シナリオ生成部2802は、日射量データ2812から日照時間変動確率テーブル2813を生成する。具体的には、需給シナリオ生成部2802は、ある時刻の日照時間がその直前の時刻の日照時間の影響を受けるものと仮定して、単位時間ごとの日照時間の変動をマルコフ過程としてモデル化する。ここで、需給シナリオ生成部2802が日照時間の変動をマルコフ過程としてモデル化できるのは、日照時間が雲の影響を受け、曇の量や密度などの状態が時間に伴って連続的に変化すると考えられるからである。すなわち、雲の状態の連続的な変化を捉えられる程度の時間間隔で計測された日照時間は、直前の時刻の天候の影響を受けるものと考えられるからである。
 図29は、日照時間変動確率テーブル2813の一例を示す図である。図29の横方向は変動前の日照時間Hbeforeを示し、「0.0」、「0.1-0.5」、「0.6-0.9」および「1.0」の4項目に分類される。また、縦方向は変動後の日照時間Hafterを示し、「0.0」から「1.0」まで「0.1」刻みで11項目に分類される。図29に示すように、日照時間変動確率テーブル2813は、変動前の日照時間Hbeforeが1時間過ぎた後に変動後の日照時間Hafterへ変動する条件付確率P(Hafter|Hbefore)を格納する。なお、条件付確率Pは、0~1で表される値である。
 図29に示すように、日照時間変動確率テーブル2813は、例えば、日照時間Hbefore「0.0」から1時間後に日照時間Hafter「0.0」へ変動する条件付確率Pが「0.86」であることを格納する。また、日照時間変動確率テーブル2813は、日照時間Hbefore「0.1-0.5」から1時間後に日照時間Hafter「0.3」へ変動する条件付確率Pが「0.07」であることを格納する。また、日照時間変動確率テーブル2813は、他の条件付確率Pについても同様に格納する。なお、図29に示した日照時間変動確率テーブル2813のデータ構造は一例であり、これに限定されるものではない。例えば、変動前の日照時間Hbeforeを「0.0」から「1.0」まで「0.1」刻みで11項目に分類するようにしても良い。
 図30は、天候変動モデルを説明するための図である。例えば、図30に示すように、需給シナリオ生成部2802は、天候を晴れ、曇り、雨の3種類に分類する。そして、需給シナリオ生成部2802は、現在の天候から1時間後の天候(晴れ、曇り、雨の3種類)に変動する確率を、過去の天候が記録されたデータから算出することで、天候変動モデルを生成する。需給シナリオ生成部2802は、1時間毎に天候変動モデルを繰り返し適用することで、一日の天候変動の可能性を示すシナリオを複数出力する。なお、図30に示した天候変動モデルは一例である。より詳細には、需給シナリオ生成部2802は、天候を日照時間によって分類し、それぞれの日照時間の後にどのように日照時間が変化するかをモデル化している。
 例えば、需給シナリオ生成部2802は、日射量データ2812に基づいて、日照時間Hbeforeが単位時間過ぎた後に日照時間Hafterへ変動する条件付確率P(Hafter|Hbefore)を、下記の式(6)を用いて計算する。
 P(Hafter|Hbefore)=(日照時間Hbeforeの後に日照時間Hafterが出現するデータ数)/(日照時間Hbeforeが出現するデータ数)・・・(6)
 上記式(6)を利用して過去の日射量データ2812から条件付確率P(Hafter|Hbefore)を計算することで、需給シナリオ生成部2802は、図29に示した日照時間変動確率テーブル2813を生成する。
 例えば、需給シナリオ生成部2802は、生成した日照時間変動確率テーブル2813に基づいて、複数の出力変動シナリオを生成する。具体的には、需給シナリオ生成部2802は、開始時刻t0と、終了時刻tnと、初期日照時間h0と、時間刻み幅Δtとを受付部2801から受け付ける。需給シナリオ生成部2802は、初期日照時間h0を初期値とし、開始時刻t0から終了時刻tnまでに対して単位時間ごとに日照時間変動確率テーブル2813を適用することで、確率的にNパターンの日射量変動シナリオをモンテカルロシミュレーションによって発生する。なお、Nは、十分に大きい自然数であり、例えば、10000である。
 例えば、需給シナリオ生成部2802は、一様乱数rを発生させ、x以下の条件付確率P(x|H(t))の積算値がrより大きくなる最小のxをH(t+Δt)とする。例えば、需給シナリオ生成部2802は、日照時間H(t)が「0.1」の場合には、図29に示した日照時間変動確率テーブル2813の変動前の日照時間が「0.1-0.5」の列を参照する。
 そして、需給シナリオ生成部2802は、発生した乱数が「r<0.45」の場合には、「H(t+Δt)=0.0」を取得し、乱数が「0.45≦r<0.6」の場合には、「H(t+Δt)=0.1」を取得する。このように、需給シナリオ生成部2802は、開始時刻t0から終了時刻tnまでの間に、時間刻み幅Δtごとに変動する日照時間H(t+Δt)を取得する。
 そして、需給シナリオ生成部2802は、上述した日照時間と日射量と間の相関関係を用いて、取得した日照時間H(t+Δt)を日射量I(t+Δt)に変換する。そして、需給シナリオ生成部2802は、開始時刻t0から終了時刻tnまでの日射量I(t)の変動を、日射量変動シナリオIとして生成する。また、需給シナリオ生成部2802は、同様の処理を繰り返し実行することで、Nパターンの日射量変動シナリオ2814を生成する。なお、Nは、十分に大きい自然数であり、例えば、10000である。
 図31は、日射量変動シナリオ2814の一例を示す図である。図31の横軸は時間を示し、縦軸は日射量[MJ/m2]を示す。日射量変動シナリオ2814のうち9時から16時までの時間帯は、9時から16時までの日射量の変動を示す日射量変動シナリオ2814であり、Nパターンのシナリオを含む。また、0時から9時までの時間帯および16時から24時までの時間帯は、過去の日射量データ2812に基づいて生成される部分であり、1パターンのシナリオを含む。
 例えば、需給シナリオ生成部2802は、生成した日射量変動シナリオ2814に基づいて、太陽光発電における出力変動シナリオ2815を生成する。例えば、需給シナリオ生成部2802は、日射量変動シナリオ2814に含まれる日射量I(t)[MJ/m2]を太陽光発電による発電量O(t)[kWh]に変換する。この変換は、例えば、パネルの規模や種類、気温などによって変化する変換効率に日射量を対応づけて発電量を見積もることによって行う。このように、需給シナリオ生成部2802は、日射量変動シナリオ2814に含まれる日射量I(t)から発電量O(t)を算出することで、開始時刻t0から終了時刻tnまでのシナリオを生成する。
 また、例えば、需給シナリオ生成部2802は、太陽光発電の発電量の過去のデータを参照し、各時間帯における発電量の平均値を算出することで、0時から開始時刻t0までの発電量および終了時刻tnから24時までのシナリオを生成する。そして、需給シナリオ生成部2802は、開始時刻t0から終了時刻tnまでのシナリオと、0時から開始時刻t0までの発電量および終了時刻tnから24時までのシナリオとを組み合わせることで、一日の出力変動シナリオ2815を生成する。
 また、需給シナリオ生成部2802は、生成した出力変動シナリオ2815を出力変動データ114として記憶部2800に格納する。なお、ここでは、変換効率を用いる場合を説明したが、これに限定されるものではない。例えば、日射量I(t)と発電量O(t)と間の相関関係を用いても良い。具体的には、日射量I(t)と発電量O(t)との回帰分析を行い、得られた回帰直線の式に日射量I(t)を代入することで発電量O(t)を算出する。例えば、需給シナリオ生成部2802は、複数の出力変動シナリオ2815と、需要変動シナリオとの差をとることで、複数の需給シナリオを生成する。
 例えば、需給シナリオ生成部2802は、需要変動シナリオ2816における各時間帯の需要電力値から、出力変動シナリオ2815において対応する時間帯の発電量を減算することで、需給シナリオを生成する。つまり、この需給シナリオは、蓄電池112に対する需要電力量の指標となる。
 図32は、需要変動シナリオの一例を示す図である。図32の横軸は時間を示し、縦軸は電力量[kWh]を示す。需要変動シナリオ2816は、運転計画策定対象の1日に対する需要の推移の可能性を示す。例えば、需要変動シナリオ2816は、一日の時間帯ごとの需要電力値の推移を示し、需要データ2811に基づいて生成される。図32には、ある工場における一日の需要変動シナリオ2816を例示する。図32では、需要変動シナリオ2816が1パターンである場合を示したが、本発明はこれに限定されるものではない。例えば、需要変動シナリオ2816は、曜日や時期に違いがあり、複数の推移の仕方が予想されるような場合には、Mパターン存在する場合もある。なお、Mは、自然数である。
 図33は、需給シナリオの一例を示す図である。図33の横軸は時間を示し、縦軸は電力量[kWh]を示す。この電力量が多いほど、需要が多いことを示す。図33に示すように、需給シナリオは、一日の時間帯ごとの需給電力量の推移を示す。例えば、需給シナリオ生成部2802は、Mパターンの需要変動シナリオとNパターンの出力変動シナリオとを用いた場合には、M×Nパターンの需給シナリオを生成する。また、需給シナリオ生成部2802は、生成した需給シナリオ、および、その生成した需給シナリオに対応する需要変動シナリオ2816、出力変動シナリオ2815、日射量変動シナリオ2815をシナリオDB700に格納する。
 図28の説明に戻る。最適評価値算出部2803は、需給シナリオごとに、蓄電池112を運転した場合の評価値が最良の評価値となる運転計画を算出し、その最良の評価値を各シナリオに対する第1の評価値として記録する。例えば、最適評価値算出部2803は、需給シナリオ生成部2802により生成された需給シナリオのそれぞれに対して、シミュレーションによる評価値が最良となる運転計画である最適運転計画を作成する。そして、最適評価値算出部2803は、需給シナリオと、最適運転計画による評価値と、最良の評価値を示した最適な制御パラメータとを対応づけて最適運転評価テーブル2817に格納する。
 図34は、最適運転評価テーブル2817の一例を示す図である。例えば、最適運転評価テーブル2817は、需給シナリオ「1」と、最適運転計画による評価値「36」と、最適な制御パラメータ「278」とを対応づけて記憶する。つまり、最適運転評価テーブル2817は、需給シナリオ「1」に対して最良の放電基準値は278[kW]であり、この放電基準値で蓄電池112を運転した場合のピークカット効果が36[kW]であることを示す。また、最適運転評価テーブル2817は、他の需給シナリオについても同様に、需給シナリオと、最適運転計画による評価値と、最適な制御パラメータとを対応づけて記憶する。
 図28の説明に戻る。以下において、最適評価値算出部2803が行う最適運転計画作成処理について詳細に説明する。ここでは、蓄電池112がピークカット方式により運転される場合を説明する。例えば、最適評価値算出部2803は、需給シナリオ生成部2802により生成された需給シナリオを一つずつ選択し、以下の処理を行う。最適評価値算出部2803は、選択した需給シナリオについて、様々な放電基準値を適用してシミュレーションを行って評価値を算出する。この放電基準値は、例えば、制御パラメータの探索範囲に含まれる放電基準値を、所定の刻み幅で順に適用する。そして、評価値が最良になる放電基準値を最適運転計画として選択する。ここで、制御パラメータの探索範囲について説明する。
 図35は、制御パラメータの探索範囲について説明するための図である。図35の横軸は時間を示し、縦軸は電力量[kWh]を示す。図35には、図33に示した需給シナリオに対する制御パラメータの探索範囲を示す。ピークカット方式により蓄電池112が運転される場合には、放電基準値は需給シナリオの最大デマンド値を超えない正の値である。このため、図35に示す例では、最適評価値算出部2803は、最大デマンド値35aから電力値0[kW]までの範囲を探索範囲35bとして用いる。つまり、最適評価値算出部2803は、探索範囲35bから任意の電力値を放電基準値として選択し、選択した放電基準値をシミュレーションに用いる。なお、例えば、放電基準値35cは125[kW]であり、放電基準値35dは100[kW]であり、放電基準値35eは75[kW]である。
 例えば、最適評価値算出部2803は、探索範囲35bに含まれる放電基準値のうち最も高い放電基準値157[kW]を選択し、選択した放電基準値157[kW]で蓄電池112を運転した場合のシミュレーションを行う。最適評価値算出部2803は、次の放電基準値として、刻み幅1[kW]低い値を選択し、同様にシミュレーションを行うという処理を、探索範囲35bの下限まで繰り返す。最適評価値算出部2803は、シミュレーションで得られた放電基準値のうち最良のピークカット効果を示す放電基準値を最適運転計画として選択する。
 そして、最適評価値算出部2803は、需給シナリオと、最良のピークカット効果と、最良のピークカット効果を示す放電基準値とを対応づけて、最適運転評価テーブル2817に格納する。なお、最良のピークカット効果は最適運転計画による評価値に対応し、最良のピークカット効果を示す放電基準値は最適な制御パラメータに対応する。また、最適評価値算出部2803は、他の需給シナリオについても同様の処理を実行することで、最適運転評価テーブル2817を生成する。
 なお、最適評価値算出部2803が行う最適運転計画の探索処理は、上記の方法に限定されるものではない。例えば、探索範囲35bに含まれる放電基準値のうち最も低い放電基準値0[kW]から順に、1[kW]間隔で放電基準値を選択するようにしても良い。また、例えば、放電基準値を5[kW]間隔で選択するようにしても良い。あるいは、Particle Swarm Optimizationや遺伝的アルゴリズムなどの最適化アルゴリズムを用いて、最適計画を探索しても良い。
 修正評価値算出部2804は、複数の運転計画候補を作成し、それぞれの運転計画候補について、各シナリオに対してその運転計画候補で定期修正時刻まで蓄電池112を運転した場合に得られる第2の評価値を算出する。例えば、修正評価値算出部2804は、当初運転計画の候補を複数作成する。そして、修正評価値算出部2804は、作成した当初運転計画について、その計画で修正時点まで蓄電池112を運転する。そして、修正評価値算出部2804は、その後の蓄電池残量で、修正時点以降の最適な運転計画を示す最適修正運転計画で蓄電池112が運転された場合の評価値を、需給シナリオごとに算出する。
 以下において、修正評価値算出部2804が行う処理について詳細に説明する。まず、修正評価値算出部2804は、当初運転計画の候補を作成する。例えば、修正評価値算出部2804は、最適運転評価テーブル2817の最適な制御パラメータのうち最小値から最大値の範囲で当初運転計画の候補を作成する。これは、ピークカット方式により蓄電池112が運転される場合には、各需給シナリオに対するピークカット効果は、放電基準値がその需給シナリオに対して最適な放電基準値から乖離するに従って減少し、一定以上乖離すると0になるという性質があるからである。
 例えば、修正評価値算出部2804は、50[kW]から10[kW]間隔で150[kW]までの放電基準値を当初運転計画の候補として作成する。そして、修正評価値算出部2804は、当初運転計画と制御パラメータとを対応づけて、当初運転計画テーブル2818に格納する。
 図36は、当初運転計画テーブル2818の一例を示す図である。当初運転計画テーブル2818は、当初運転計画と、制御パラメータとを対応づけて記憶する。このうち、当初運転計画テーブル2818の「当初運転計画」は、当初運転計画の候補を識別する識別情報を示す。また、「制御パラメータ」は、当初運転計画の制御パラメータを示す。例えば、制御パラメータは、ピークカット方式により蓄電池112が運転される場合には、放電基準値に対応する。
 例えば、当初運転計画テーブル2818は、当初運転計画「1」と、制御パラメータ「50」とを対応づけて記憶する。つまり、当初運転計画テーブル2818は、当初運転計画「1」の放電基準値が50[kW]であることを示す。また、当初運転計画テーブル2818は、他の当初運転計画の候補についても同様に、当初運転計画と、制御パラメータとを対応づけて記憶する。
 なお、当初運転計画の候補は当初運転計画に対応し、放電基準値は制御パラメータに対応する。なお、当初運転計画の候補の作成方法は、上記の方法に限定されるものではない。例えば、修正評価値算出部2804は、探索範囲35bで任意に作成しても良い。
 図28の説明に戻る。次に、修正評価値算出部2804は、各当初運転計画候補について、最適な修正運転計画を作成する。例えば、修正評価値算出部2804は、各需給シナリオについて当初運転計画候補で蓄電池112が運用された場合のシミュレーションを行う。修正評価値算出部2804は、シミュレーション結果から蓄電池112が定期修正時刻まで運用された場合の蓄電池残量を算出する。そして、算出した蓄電池残量を蓄電池112の初期残量として、修正時刻から運転終了時刻まで運転した場合に最良の評価値となる最適な運転計画を作成し、当初運転計画候補とシナリオの組み合わせに対する最適修正運転計画として記録する。この最適出力情報作成処理は、最適評価値算出部2803が行う最適運転計画作成処理と同様の手順で実施する。
 次に、修正評価値算出部2804は、定期修正時刻までは当初運転計画候補で、定期修正時刻以降は最適修正運転計画で、蓄電池112を運転した場合の評価値を算出し、その評価値を、当初運転計画候補と各シナリオの組み合わせに対する第2の評価値として、修正運転評価テーブル2819に格納する。
 図37は、修正運転評価テーブル2819の一例を示す図である。修正運転評価テーブル2819は、当初運転計画と、需給シナリオと、当初運転計画に対する最適修正運転計画の評価値とを対応づけて記憶する。このうち、修正運転評価テーブル2819の「当初運転計画」は、当初運転計画の候補を識別する識別情報を示す。また、「需給シナリオ」は、需給シナリオを識別する識別情報を示す。また、「当初運転計画Pに対する最適修正運転計画の評価値」は、対応する当初運転計画について、修正時点以降の最適な運転計画を示す最適修正運転計画で蓄電池112が運転された場合の評価値を需給シナリオごとに示す。
 例えば、修正運転評価テーブル2819は、当初運転計画「1」と、需給シナリオ「1」と、当初運転計画Pに対する最適修正運転計画の評価値「34」とを対応づけて記憶する。つまり、修正運転評価テーブル2819は、需給シナリオ「1」に対して当初運転計画「1」で蓄電池112が運転された後に最適修正運転計画で蓄電池112が運転された場合の評価値が「34」であることを示す。
 また、修正運転評価テーブル2819は、当初運転計画「1」について、他の需給シナリオと、他の当初運転計画に対する最適修正運転計画の他の評価値とを対応づけて記憶する。このように、修正運転評価テーブル2819は、一つの当初運転計画に対して、複数の需給シナリオと、複数の当初運転計画Pに対する最適修正運転計画の評価値とを対応づけて記憶する。そして、修正運転評価テーブル2819は、他の当初運転計画についても同様に、当初運転計画と、需給シナリオと、当初運転計画に対する最適修正運転計画の評価値とを対応づけて記憶する。
 図28の説明に戻る。また、修正評価値算出部2804は、他の当初運転計画についても同様に処理を実行する。あるいは、Particle Swarm Optimizationや遺伝的アルゴリズムなどの最適化アルゴリズムを用いて、最適計画を探索しても良い。このように、実施の形態3では、需給シナリオ群と、需給シナリオごとの当初運転計画と、定期修正時刻での修正運転計画が得られ、シナリオDB700に格納される。
<出力情報作成処理手順>
 図38は、実施の形態3にかかる作成装置600による出力情報作成処理手順の一例を示すフローチャートである。作成装置600は、需給シナリオ生成部2802により、需給シナリオ生成処理を実行する(ステップS3801)。需給シナリオ生成処理(ステップS3801)の詳細については、図39で説明する。
 つぎに、作成装置600は、最適評価値算出部2803および修正評価値算出部2804により、当初運転計画を生成し(ステップS3802)、定期修正時刻での修正運転計画を生成する(ステップS3803)。これにより、シナリオDB700が構築される。このあと、実施の形態1,2と同様、作成装置600は、早期対策対象シナリオ抽出部601により、早期対策対象シナリオ抽出処理を実行し(ステップS1601)、出力情報作成部602により出力情報作成処理を実行する(ステップS1602)。
 図39は、需給シナリオ生成部2802による需給シナリオの生成処理(ステップS3801)の処理手順を示すフローチャートである。図39において、作成装置600は、需給シナリオ生成部2802により、日射量データ2812から日照時間変動確率テーブル2813を生成する(ステップS3901)。需給シナリオ生成部2802は、時刻t、日射量Iを初期化する(ステップS3902)。つまり、時刻t=t0、日射量I(t)=h0とする。
 作成装置600は、時間刻み幅Δt後の時刻の日射量I(t+Δt)を決定する(ステップS3903)。作成装置600は、初期日照時間h0を初期値とし、時間刻み幅Δt後の時刻の日照時間H(t+Δt)を取得する。作成装置600は、上述した日照時間と日射量との間の相関関係を用いて、取得した日照時間H(t+Δt)を日射量I(t+Δt)に変換する。
 作成装置600は、現在の時刻tに時間刻み幅Δtを加算する(ステップS3904)。作成装置600は、時刻tと終了時刻tnとを比較し、t<tnであるか否かを判定する(ステップS3905)。t<tnである場合には(ステップS3905:Yes)、作成装置600は、ステップS3903の処理に戻る。作成装置600は、日射量変動シナリオ2814を発生するまで、ステップS3903からステップS3905までの処理を繰り返す。
 一方、t<tnでない場合には(ステップS3905:No)、作成装置600は、日射量変動シナリオ2814に基づいて、出力変動シナリオ2815を生成する(ステップS3906)。なお、作成装置600は、Nパターンの出力変動シナリオ2815を生成するまでステップS3902からステップS3906までの処理を繰り返す。そして、需給シナリオ生成部2802は、Nパターンの出力変動シナリオ2815と、Mパターンの需要変動シナリオとの差をとることで、M×Nパターンの需給シナリオを生成する(ステップS3907)。
 このように、実施の形態3によれば、需給シナリオ群と、各需給シナリオの当初運転計画および定期修正運転計画を自動生成することができる。したがって、当初運転計画に対して早期に対策が必要となる需給シナリオをシミュレーションによって特定することができる。
 このように、本実施の形態によれば、早期対策時刻、識別条件および対策(修正運転計画)を含む運転計画修正ルールを用いて運用することにより、運用中の各時点で利用可能な情報を利用して適切なタイミングで運転計画を修正することができる。すなわち、運転計画修正ルールに基づき、運用当日の各時点の状況を監視し、いずれかの運転計画修正ルールの識別条件に合致した状況が検知された場合、その運転計画修正ルールに示された対策(修正運転計画)に切り替えて蓄電池112を運用することで、そのタイミングで運転計画を適切に修正できなかった場合に生じる損失を回避することができる。
 また、大きな計算コストが必要な運転計画作成処理を、運転計画作成システム103内の作成装置600によって事前に行うシステム構成の場合、運用システム102が運用時に必要とする計算資源を軽減できるという効果も得られる。不確実性の大きい太陽光発電の出力変動に対して適切な運転計画を作成するには、その時点以降に起こり得る様々な状況を考慮する必要があり、大きな計算コストが必要となる。
 本実施の形態では、適切な運転計画を求める計算を運転計画作成システム103内の作成装置600によって事前に行うことで、運用システム102では、運転計画の識別条件の判定と運転計画の切り替えという比較的小さい計算コストの処理のみ実施する構成となる。例えば、運用システム102が利用できる計算資源と運用時に許容される計算時間の制約によらず、それぞれの時点以降に起こり得る様々な状況を考慮して運転計画を最適化することが可能となるため、結果としてより高い運用効果が達成可能となる。
 さらに、作成装置600は、早期対策を実施すべき状況を検知するための識別条件を、とるべき対策が類似しているシナリオ群に対して行う。したがって、識別条件と適切な運転計画が作成できる可能性を高めることができる。起こり得る状況を網羅する需給シナリオの中には、すべての利用可能なデータ項目を組み合わせた複雑な条件を用いても、互いに区別できないような類似シナリオが存在する場合がある。
 この点において、本実施の形態では、作成装置600は、対策の類似性によってグループ化した早期対策対象シナリオ群を対象に、識別条件の作成を試みるため、識別条件を作成できる可能性が高くなる。すなわち、区別困難な需給シナリオであっても、対策が類似していれば、識別条件によってそれらを区別する必要がない。また、対策の類似性による要対策シナリオの分類には、適切な運転計画の作成可能性を保障するという意味もある。
 例えば、要対策シナリオ群に必要とされる対策が大きく異なるシナリオが混在していると、そのシナリオ群をまとめて識別できる条件が作成できたとしても、適切な1つの対策を定めることができない場合が考えられる。したがって、予め対策の類似性で要対策シナリオ群を分類しておくことで、このような事態を回避することができる。
 以上説明したように、作成装置、作成方法、および作成プログラムによれば、運転計画の修正時刻が遅くなると効果に影響が出る状況を、その影響が出る前に検出できる修正運転計画を作成することができる。これにより、運転システムでは、運転計画の修正時刻が遅くなると効果に影響が出る状況を、その影響が出る前に検出することができ、検出できたタイミングで運転計画を適切に修正することができる。
600 作成装置
601 早期対策対象シナリオ抽出部
602 出力情報作成部
611 要対策度算出部
612 要対策シナリオ抽出部
613 要対策シナリオ分類部
614 識別条件作成部
2800 記憶部
2801 受付部
2802 需給シナリオ生成部
2803 最適評価値算出部
2804 修正評価値算出部

Claims (10)

  1.  外部からの環境条件に応じて発電を行う発電装置と、前記発電装置からの電力により充電されるとともに電力需給に応じて放電する蓄電池とを有する発電システムの運転計画作成方法において、
     コンピュータが、
     前記外部からの環境条件に応じた電力需給の推移を示し記憶部に記憶された複数の需給電力シナリオについて、前記蓄電池からの放電量に関する運転計画を所定の定期修正時刻で修正した場合に最良の放電量が得られる第1の修正運転計画と、前記定期修正時刻を変更した対策時刻で前記蓄電地の当初運転計画を修正した場合に最良の放電量が得られる第2の修正運転計画とに基づいて、前記対策時刻において前記第1の修正運転計画を前記第2の修正運転計画に修正する必要があるかを示す評価値を算出し、
     前記複数の需給電力シナリオのうち、算出された前記評価値に基づいて、前記対策時刻において前記第1の修正運転計画を前記第2の修正運転計画に修正する必要がある要対策シナリオを抽出し、
     抽出された前記要対策シナリオから、前記要対策シナリオに対する当初運転計画と第2の修正運転計画とに基づいて、前記対策時刻において前記要対策シナリオに対する当初運転計画を修正する変更対策シナリオを分類し、
     分類された変更対策シナリオについて、前記外部からの環境条件に基づいて、分類された前記変更対策シナリオを識別する識別条件を生成し、
     生成された前記識別条件に分類された前記変更対策シナリオを対応付けて出力することを特徴とする運転計画作成方法。
  2.  前記抽出する処理は、
     前記評価値がしきい値以上となる需給電力シナリオを前記要対策シナリオとして抽出することを特徴とする請求項1記載の作成方法。
  3.  前記抽出する処理は、
     前記評価値が相対的に高い需給電力シナリオ群を前記要対策シナリオとして抽出することを特徴とする請求項1に記載の作成方法。
  4.  前記分類する処理は、
     前記第2の修正運転計画が前記運転計画以上の場合、前記要対策シナリオを、前記蓄電池の放電を抑制する対策をおこなう変更対策シナリオのグループに分類することを特徴とする請求項1~3のいずれか一つに記載の作成方法。
  5.  前記分類する処理は、
     前記第2の修正運転計画が前記運転計画よりも小さい場合、前記要対策シナリオを、前記蓄電池の放電を促進する対策をおこなう変更対策シナリオのグループに分類することを特徴とする請求項1~4のいずれか一つに記載の作成方法。
  6.  前記分類する処理は、
     各ノードが前記要対策シナリオを観測データにより分割する複数の分割規則となる回帰木を構築し、前記回帰木に基づいて、前記要対策シナリオを前記回帰木の葉ノードに対応する前記複数の変更対策シナリオに分類し、
     前記識別条件を生成する処理は、
     前記変更対策シナリオについて、前記回帰木において対応する葉ノードに至るまでの分割規則に基づいて識別条件を生成し、
     前記出力情報を作成する処理は、
     生成された前記識別条件に分類された前記変更対策シナリオを対応付けて出力することを特徴とする請求項1~4のいずれか一つに記載の作成方法。
  7.  前記識別条件を生成する処理は、
     前記需給電力シナリオ群のうち前記要対策シナリオを除く複数の対策不要シナリオを、前記回帰木に基づいて、前記回帰木の葉ノードに対応する複数の対策不要シナリオ群に分類し、前記対策不要シナリオ群の各対策不要シナリオについて、前記運転計画を前記早期対策時刻に前記変更対策シナリオの対策に従って修正した場合に得られる第1の評価値と、前記運転計画を修正しなかった場合に得られる第2の評価値と、の差が許容範囲外である場合、前記対策不要シナリオが属する葉ノードに至るまでの分割規則に基づく識別条件を除外することを特徴とする請求項6記載の作成方法。
  8.  前記コンピュータが、
     前記自然エネルギー発電の出力変動の確率的生成モデルを用いて、前記シナリオ群を生成する処理を実行し、
     前記評価値を算出する処理は、
     生成された前記需給電力シナリオ群の各々について、前記第1の修正運転計画と、前記第2の修正運転計画と、に基づいて、前記早期対策時刻で前記第1の修正運転計画を前記第2の修正運転計画に修正する対策が必要かを示す評価値を算出することを特徴とする請求項1~7のいずれか一つに記載の作成方法。
  9.  外部からの環境条件に応じて発電を行う発電装置と、前記発電装置からの電力により充電されるとともに電力需給に応じて放電する蓄電池とを有する発電システムの運転計画を作成する運転計画作成プログラムにおいて、
     コンピュータに、
     前記外部からの環境条件に応じた電力需給の推移を示し記憶部に記憶された複数の需給電力シナリオについて、前記蓄電池からの放電量に関する運転計画を所定の定期修正時刻で修正した場合に最良の放電量が得られる第1の修正運転計画と、前記定期修正時刻を変更した対策時刻で前記蓄電地の当初運転計画を修正した場合に最良の放電量が得られる第2の修正運転計画とに基づいて、前記対策時刻において前記第1の修正運転計画を前記第2の修正運転計画に修正する必要があるかを示す評価値を算出させ、
     前記複数の需給電力シナリオのうち、算出された前記評価値に基づいて、前記対策時刻において前記第1の修正運転計画を前記第2の修正運転計画に修正する必要がある要対策シナリオを抽出させ、
     抽出された前記要対策シナリオから、前記要対策シナリオに対する当初運転計画と第2の修正運転計画とに基づいて、前記対策時刻において前記要対策シナリオに対する当初運転計画を修正する変更対策シナリオを分類させ、
     分類された変更対策シナリオについて、前記外部からの環境条件に基づいて、分類された前記変更対策シナリオを識別する識別条件を生成させ、
     生成された前記識別条件に分類された前記変更対策シナリオを対応付けて出力させるこ
     ことを特徴とする運転計画作成プログラム。
  10.  外部からの環境条件に応じて発電を行う発電装置と、前記発電装置からの電力により充電されるとともに電力需給に応じて放電する蓄電池とを有する発電システムの運転計画作成装置において、
     前記外部からの環境条件に応じた電力需給の推移を示し記憶部に記憶された複数の需給電力シナリオについて、前記蓄電池からの放電量に関する運転計画を所定の定期修正時刻で修正した場合に最良の放電量が得られる第1の修正運転計画と、前記定期修正時刻を変更した対策時刻で前記蓄電地の当初運転計画を修正した場合に最良の放電量が得られる第2の修正運転計画とに基づいて、前記対策時刻において前記第1の修正運転計画を前記第2の修正運転計画に修正する必要があるかを示す評価値を算出する算出部と、
     前記複数の需給電力シナリオのうち、算出された前記評価値に基づいて、前記対策時刻において前記第1の修正運転計画を前記第2の修正運転計画に修正する必要がある要対策シナリオを抽出する抽出部と、
     抽出された前記要対策シナリオから、前記要対策シナリオに対する当初運転計画と第2の修正運転計画とに基づいて、前記対策時刻において前記要対策シナリオに対する当初運転計画を修正する変更対策シナリオを分類する分類部と、
     分類された変更対策シナリオについて、前記外部からの環境条件に基づいて、分類された前記変更対策シナリオを識別する識別条件を生成する生成部と、
     生成された前記識別条件に分類された前記変更対策シナリオを対応付けて出力する出力部と、
     を有することを特徴とする作成装置。
PCT/JP2012/056309 2012-03-12 2012-03-12 運転計画作成方法、運転計画作成プログラムおよび運転計画作成装置 WO2013136419A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014504493A JP5842994B2 (ja) 2012-03-12 2012-03-12 運転計画作成方法、運転計画作成プログラムおよび運転計画作成装置
PCT/JP2012/056309 WO2013136419A1 (ja) 2012-03-12 2012-03-12 運転計画作成方法、運転計画作成プログラムおよび運転計画作成装置
DE112012006017.2T DE112012006017T5 (de) 2012-03-12 2012-03-12 Betriebsplan-Erschaffungssverfahren, Betriebsplan-Erschaffungsprogramm und Betriebsplan-Erschaffungsvorrichtung
US14/463,186 US9727036B2 (en) 2012-03-12 2014-08-19 Operation plan creating method, computer product, and operation plan creating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/056309 WO2013136419A1 (ja) 2012-03-12 2012-03-12 運転計画作成方法、運転計画作成プログラムおよび運転計画作成装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/463,186 Continuation US9727036B2 (en) 2012-03-12 2014-08-19 Operation plan creating method, computer product, and operation plan creating apparatus

Publications (1)

Publication Number Publication Date
WO2013136419A1 true WO2013136419A1 (ja) 2013-09-19

Family

ID=49160390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056309 WO2013136419A1 (ja) 2012-03-12 2012-03-12 運転計画作成方法、運転計画作成プログラムおよび運転計画作成装置

Country Status (4)

Country Link
US (1) US9727036B2 (ja)
JP (1) JP5842994B2 (ja)
DE (1) DE112012006017T5 (ja)
WO (1) WO2013136419A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015089196A (ja) * 2013-10-29 2015-05-07 富士通株式会社 見積発電量算出装置、プログラム、および方法
EP3007299A1 (en) * 2014-10-10 2016-04-13 Fujitsu Limited Demand adjustment plan generation apparatus, method, and program
CN105576699A (zh) * 2016-01-12 2016-05-11 四川大学 一种独立微电网储能裕度检测方法
WO2018105645A1 (ja) * 2016-12-09 2018-06-14 日本電気株式会社 運転制御システム及びその制御方法
JPWO2018139604A1 (ja) * 2017-01-27 2019-11-07 京セラ株式会社 電源制御方法、電源制御装置及び電源制御システム
US10673240B2 (en) 2017-11-15 2020-06-02 Kabushiki Kaisha Toshiba Power control apparatus, power control method, and recording medium
WO2020116043A1 (ja) * 2018-12-06 2020-06-11 株式会社日立製作所 電力需給計画装置
CN111967123A (zh) * 2020-06-30 2020-11-20 中汽数据有限公司 一种仿真测试中仿真测试用例的生成方法
JP2022139181A (ja) * 2021-03-11 2022-09-26 株式会社東芝 情報処理装置、情報処理方法、情報処理システム及びコンピュータプログラム

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6168061B2 (ja) * 2012-09-12 2017-07-26 日本電気株式会社 電力管理方法、電力管理装置およびプログラム
SG10201406883UA (en) * 2014-10-23 2016-05-30 Sun Electric Pte Ltd "Power Grid System And Method Of Consolidating Power Injection And Consumption In A Power Grid System"
US9874859B1 (en) * 2015-02-09 2018-01-23 Wells Fargo Bank, N.A. Framework for simulations of complex-adaptive systems
CN106557828A (zh) * 2015-09-30 2017-04-05 中国电力科学研究院 一种长时间尺度光伏出力时间序列建模方法和装置
BR112018008377A2 (ja) 2015-12-10 2018-10-23 Mitsubishi Electric Corporation A power control unit, an operation planning method, and a program
WO2017155437A1 (en) * 2016-03-09 2017-09-14 Telefonaktiebolaget Lm Ericsson (Publ) Adjusting to green energy consuption in an energy consuming system
KR20190107888A (ko) * 2018-03-13 2019-09-23 한국전자통신연구원 제로 에너지 타운 피크 전력 관리 방법 및 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005086953A (ja) * 2003-09-10 2005-03-31 Nippon Telegr & Teleph Corp <Ntt> エネルギー需給制御方法及び装置
JP2006304402A (ja) * 2005-04-15 2006-11-02 Nippon Telegr & Teleph Corp <Ntt> 分散型エネルギーシステムの制御装置、制御方法、プログラム、および記録媒体
JP2008141918A (ja) * 2006-12-05 2008-06-19 Nippon Telegr & Teleph Corp <Ntt> 太陽光発電システム評価装置、方法、およびプログラム
JP2011002929A (ja) * 2009-06-17 2011-01-06 Nippon Telegr & Teleph Corp <Ntt> 分散電力供給システムおよびその制御方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5618501B2 (ja) * 2009-07-14 2014-11-05 株式会社東芝 需要予測装置、プログラムおよび記録媒体
AU2012249617B2 (en) * 2011-04-27 2016-01-07 Steffes Corporation Energy storage device control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005086953A (ja) * 2003-09-10 2005-03-31 Nippon Telegr & Teleph Corp <Ntt> エネルギー需給制御方法及び装置
JP2006304402A (ja) * 2005-04-15 2006-11-02 Nippon Telegr & Teleph Corp <Ntt> 分散型エネルギーシステムの制御装置、制御方法、プログラム、および記録媒体
JP2008141918A (ja) * 2006-12-05 2008-06-19 Nippon Telegr & Teleph Corp <Ntt> 太陽光発電システム評価装置、方法、およびプログラム
JP2011002929A (ja) * 2009-06-17 2011-01-06 Nippon Telegr & Teleph Corp <Ntt> 分散電力供給システムおよびその制御方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015089196A (ja) * 2013-10-29 2015-05-07 富士通株式会社 見積発電量算出装置、プログラム、および方法
EP3007299A1 (en) * 2014-10-10 2016-04-13 Fujitsu Limited Demand adjustment plan generation apparatus, method, and program
CN105576699A (zh) * 2016-01-12 2016-05-11 四川大学 一种独立微电网储能裕度检测方法
WO2018105645A1 (ja) * 2016-12-09 2018-06-14 日本電気株式会社 運転制御システム及びその制御方法
JPWO2018139604A1 (ja) * 2017-01-27 2019-11-07 京セラ株式会社 電源制御方法、電源制御装置及び電源制御システム
US10673240B2 (en) 2017-11-15 2020-06-02 Kabushiki Kaisha Toshiba Power control apparatus, power control method, and recording medium
WO2020116043A1 (ja) * 2018-12-06 2020-06-11 株式会社日立製作所 電力需給計画装置
JP2020092533A (ja) * 2018-12-06 2020-06-11 株式会社日立製作所 電力需給計画装置
JP7240156B2 (ja) 2018-12-06 2023-03-15 株式会社日立製作所 電力需給計画装置
CN111967123A (zh) * 2020-06-30 2020-11-20 中汽数据有限公司 一种仿真测试中仿真测试用例的生成方法
CN111967123B (zh) * 2020-06-30 2023-10-27 中汽数据有限公司 一种仿真测试中仿真测试用例的生成方法
JP2022139181A (ja) * 2021-03-11 2022-09-26 株式会社東芝 情報処理装置、情報処理方法、情報処理システム及びコンピュータプログラム
JP7504823B2 (ja) 2021-03-11 2024-06-24 株式会社東芝 情報処理装置、情報処理方法、情報処理システム及びコンピュータプログラム

Also Published As

Publication number Publication date
US20140358307A1 (en) 2014-12-04
DE112012006017T5 (de) 2014-12-18
US9727036B2 (en) 2017-08-08
JPWO2013136419A1 (ja) 2015-08-03
JP5842994B2 (ja) 2016-01-13

Similar Documents

Publication Publication Date Title
JP5842994B2 (ja) 運転計画作成方法、運転計画作成プログラムおよび運転計画作成装置
US8606418B1 (en) Wind prediction for wind farms through the use of weather radar
JP6298465B2 (ja) 電力管理装置、電力管理システム、サーバ、電力管理方法、プログラム
EP2562901B1 (en) Unit commitment for wind power generation
JP5271162B2 (ja) 設備計画作成装置及び設備計画作成方法
JP6365069B2 (ja) エネルギーマネジメントシステム、電力需給計画最適化方法および電力需給計画最適化プログラム
JP6582758B2 (ja) 発電計画作成装置、発電計画作成プログラム及び発電計画作成方法
JP6520517B2 (ja) 需給計画作成装置、プログラム
JP6386744B2 (ja) 蓄電池制御装置およびその方法
Hartmann et al. Suspicious electric consumption detection based on multi-profiling using live machine learning
McDowell et al. A Technical and Economic Assessment of LWR Flexible Operation for Generation and Demand Balancing to Optimize Plant Revenue
Jurković et al. Robust unit commitment with large-scale battery storage
Nemes et al. Availability assessment for grid-connected photovoltaic systems with energy storage
He et al. A real-time electricity price forecasting based on the spike clustering analysis
CN105956799B (zh) 一种评估含风电电力系统旋转备用效益和风险的方法
CN117458460A (zh) 一种基于短期负荷预测的微电网规划调度方法和系统
JP2016042748A (ja) エネルギーマネジメントシステムおよび電力需給計画最適化方法
Ruddick et al. Evolutionary scheduling of university activities based on consumption forecasts to minimise electricity costs
Baltputnis et al. ANN-based city heat demand forecast
Teferra et al. A fuzzy based prediction of an industrial load in microgrid system using particle swarm optimization algorithm
KR102241872B1 (ko) 위성의 특이 동작 검출 방법 및 장치
Canevese et al. BESS Revenue Stacking Optimization in the Italian Market by means of the MUSST Stochastic Tool
Dakir et al. On the number of representative days for sizing microgrids with an industrial load profile
Besson et al. Control optimization and sizing of energy storage for PV systems using probabilistic forecasts
Barracosa et al. A Bayesian approach for the optimal integration of renewable energy sources in distribution networks over multi-year horizons

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871192

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014504493

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112012006017

Country of ref document: DE

Ref document number: 1120120060172

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12871192

Country of ref document: EP

Kind code of ref document: A1