JP5842994B2 - 運転計画作成方法、運転計画作成プログラムおよび運転計画作成装置 - Google Patents

運転計画作成方法、運転計画作成プログラムおよび運転計画作成装置 Download PDF

Info

Publication number
JP5842994B2
JP5842994B2 JP2014504493A JP2014504493A JP5842994B2 JP 5842994 B2 JP5842994 B2 JP 5842994B2 JP 2014504493 A JP2014504493 A JP 2014504493A JP 2014504493 A JP2014504493 A JP 2014504493A JP 5842994 B2 JP5842994 B2 JP 5842994B2
Authority
JP
Japan
Prior art keywords
scenario
operation plan
countermeasure
demand
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014504493A
Other languages
English (en)
Other versions
JPWO2013136419A1 (ja
Inventor
谷口 剛
剛 谷口
由雄 仲尾
由雄 仲尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JPWO2013136419A1 publication Critical patent/JPWO2013136419A1/ja
Application granted granted Critical
Publication of JP5842994B2 publication Critical patent/JP5842994B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/16Regulation of the charging current or voltage by variation of field
    • H02J7/28Regulation of the charging current or voltage by variation of field using magnetic devices with controllable degree of saturation in combination with controlled discharge tube or controlled semiconductor device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/20Systems characterised by their energy storage means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/50Energy storage in industry with an added climate change mitigation effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/20Information technology specific aspects, e.g. CAD, simulation, modelling, system security

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Software Systems (AREA)
  • Automation & Control Theory (AREA)
  • Medical Informatics (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Primary Health Care (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • Public Health (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Selective Calling Equipment (AREA)

Description

本発明は、運転計画作成方法、運転計画作成プログラムおよび運転計画作成装置に関する。
現在、地球環境問題への対策は世界規模の課題として認識されている。この対策として注目されているのが、太陽光発電などの自然エネルギーの利用である。一般的に、太陽光発電は天候の影響を受けやすく、発電の出力が不安定であるため、その有効活用にはさまざまな工夫がなされている。
太陽光発電の不安定性に対応する方法としては、蓄電池や燃料電池などの他の種類の分散電源を運転計画に沿って運用する方法がある。この運転計画は、例えば、容量に限りがある蓄電池からの放電を適切に制御する制御パラメータである。例えば、蓄電池の制御方式として、電力需要が所定の電力値を超えた場合に蓄電池を放電するピークカット方式を用いる場合には、この電力値が運転計画となる。太陽光発電と蓄電池の組み合わせの運用では、一般的に、翌日の電力需要の推移の予測と翌日の天候変動の予測とに基づいて、蓄電池を運用した場合のシミュレーションを行い、予測通りに電力需給が推移した場合にシミュレーション結果である評価値が最良になるように、蓄電池を一日運転するための運転計画が作成される。
また、例えば、蓄電池運用中に運転計画を修正する運用方法がある。一般的に、当日の天候状況を確認後の予測は、前日に天候を予測するよりも確度が高い。このため、天候変動の前日予測が外れてしまった場合には、当日に確認した天候状況に基づいて運用中の運転計画を修正することにより、蓄電池の運用状況が改善される。
また、例えば、予測が逸脱した場合に運転計画を修正することを踏まえてシミュレーションを行うことで、蓄電池の運転計画を作成する方法もある。この方法では、過去の電力需給のデータに基づいて、電力需給の予測値が一定値以上外れる予測逸脱パターンとその発生確率を予め収集しておく。そして、各予測逸脱パターンに対し、予測逸脱時の運転計画の修正を考慮した評価値をシミュレーションで求める。そして、予測的中時の評価値に、各予測逸脱パターンについて得られた評価値を、それぞれの発生確率に応じて重み付け加算して求めた総合的な評価値に基づき、予測が逸脱した場合を考慮した運転計画を作成する。
特許第4245583号公報 特開2005−86953号公報 特開2008−141918号公報
工藤満、竹内章、野崎洋介、遠藤久仁、角田二郎,「エネルギーネットワークにおける太陽光発電予測技術」,電気学会論文誌B,Vol.127(2007)、No.7、pp.847‐853 高山聡志、岩坂佑二、原亮一、北裕幸、伊藤孝充、植田喜延、三輪修也、松野直也、滝谷克幸、山口浩司,「大規模太陽光発電所における日射量予測に基づく発電計画作成手法」,電気学会論文誌B,Vol.129(2009),No.12,pp.1514‐1521
しかしながら、従来の技術の当日の精度が高い予測に基づき運転計画を修正する手法では、所定の時刻もしくは所定の時間間隔ごとに予測をし直して、運転計画を修正することが一般的である。したがって、所定の修正時刻の前に運転計画を修正したほうが効果の高まるような状況に対応できないという問題がある。
例えば、自然エネルギーによる発電の出力を予測する現在の予測精度は、気象予報の精度への依存性が大きく、運用時に短い時間間隔で取得できるデータにより、予測精度を大幅に向上することはできない。このため、気象予報が更新されるタイミングにあわせて、正午付近に運転計画を修正することが合理的であるが、この場合、正午以前の気象条件の急変に伴う出力変動には対応できないことになる。
例えば、太陽光発電と蓄電池を併用により需要のピーク低減効果を狙う場合、気象条件の変化により、発電出力の低下が予想される状況では、蓄電池の残量が枯渇しないよう、気象予報のタイミングにあわせた運転計画修正より、早めに運転計画を修正することが望まれる。
本発明は、運転計画の修正時刻が遅くなると効果に影響が出る状況において、その影響が出る前に検出できる修正運転計画を作成することを目的とする。
本発明の一側面によれば、外部からの環境条件に応じて発電を行う発電装置と、前記発電装置からの電力により充電されるとともに電力需給に応じて放電する蓄電池とを有する発電システムの運転計画作成方法、運転計画作成プログラム、および運転計画作成装置において、前記外部からの環境条件に応じた電力需給の推移を示し記憶部に記憶された複数の需給電力シナリオについて、前記蓄電池からの放電量に関する運転計画を所定の定期修正時刻で修正した場合に最良の放電量が得られる第1の修正運転計画と、前記定期修正時刻を変更した対策時刻で前記蓄電池の当初運転計画を修正した場合に最良の放電量が得られる第2の修正運転計画とに基づいて、前記対策時刻において前記第1の修正運転計画を前記第2の修正運転計画に修正する必要があるかを示す評価値を算出し、前記複数の需給電力シナリオのうち、算出された前記評価値に基づいて、前記対策時刻において前記第1の修正運転計画を前記第2の修正運転計画に修正する必要がある要対策シナリオを抽出し、抽出された前記要対策シナリオから、前記要対策シナリオに対する当初運転計画と第2の修正運転計画とに基づいて、前記対策時刻において前記要対策シナリオに対する当初運転計画を修正する変更対策シナリオを分類し、分類された変更対策シナリオについて、前記外部からの環境条件に基づいて、分類された前記変更対策シナリオを識別する識別条件を生成し、生成された前記識別条件に分類された前記変更対策シナリオを対応付けて出力することを特徴とする運転計画作成方法、運転計画作成プログラムおよび運転計画作成装置が提案される。
本発明の一側面によれば、運転計画の修正時刻が遅くなると効果に影響が出る状況において、その影響が出る前に検出できる修正運転計画を作成することができるという効果を奏する。
図1は、蓄電池の運転計画に基づく運用形態の一例を示す説明図である。 図2は、ピークカット制御方式の一例を示す説明図である。 図3は、適用条件が付与された修正運転計画を示す説明図である。 図4は、運転計画作成システム103による運転計画の修正例を示す説明図である。 図5は、運転計画作成システム103を構成するコンピュータのハードウェア構成例を示す図である。 図6は、作成装置の機能的構成例を示すブロック図である。 図7は、シナリオDB700の記憶内容の一例を示す説明図である。 図8は、要対策度算出例(その1)を示す説明図である。 図9は、図8の(A)および(B)の比較例を示す説明図である。 図10は、要対策度算出例(その2)を示す説明図である。 図11は、図10の(A)および(B)の比較例を示す説明図である。 図12は、要対策シナリオの分類例を示す説明図である。 図13は、識別条件作成部614による識別条件の作成例を示す説明図である。 図14は、出力情報作成部602で使用するシナリオDBの内容の一例を示す説明図である。 図15は、出力情報作成部602による出力例を示す説明図である。 図16は、作成装置600による処理手順の一例を示すフローチャートである。 図17は、図16に示した早期対策対象シナリオ抽出処理(ステップS1601)の詳細な処理手順例を示すフローチャートである。 図18は、図17に示した要対策度算出処理(ステップS1702)の詳細な処理手順例を示すフローチャートである。 図19は、図17に示した要対策シナリオ分類処理(ステップS1704)の詳細な処理手順例を示すフローチャートである。 図20は、図17に示した識別条件作成処理(ステップS1705)の詳細な処理手順例を示すフローチャートである。 図21は、図16に示した出力情報作成処理(ステップS1602)の詳細な処理手順例を示すフローチャートである。 図22は、回帰木による要対策シナリオの分類例を示す説明図である。 図23は、回帰木2200により作成された識別条件作成テーブル2300の一例を示す説明図である。 図24は、実施の形態2にかかる要対策シナリオ分類部613による要対策シナリオ分類処理手順例を示すフローチャートである。 図25は、図24に示した分割処理(ステップS2405)の詳細な処理手順例を示すフローチャートである。 図26は、実施の形態2にかかる識別条件作成部614による識別条件作成処理の詳細な処理手順例を示すフローチャートである。 図27は、実施の形態2にかかる出力情報作成部602による出力情報作成処理の詳細な処理手順例を示すフローチャートである。 図28は、実施の形態3にかかる作成装置600の機能的構成例を示すブロック図である。 図29は、日照時間変動確率テーブル2813の一例を示す図である。 図30は、天候変動モデルを説明するための図である。 図31は、日射量変動シナリオの一例を示す図である。 図32は、需要変動シナリオの一例を示す図である。 図33は、需給シナリオの一例を示す図である。 図34は、最適運転評価テーブルの一例を示す図である。 図35は、制御パラメータの探索範囲について説明するための図である。 図36は、当初運転計画テーブルの一例を示す図である。 図37は、修正運転評価テーブルの一例を示す図である。 図38は、実施の形態3にかかる作成装置600による出力情報作成処理手順の一例を示すフローチャートである。 図39は、需給シナリオ生成部2802による需給シナリオの生成処理(ステップS3801)の処理手順を示すフローチャートである。
以下に添付図面を参照して、この発明にかかる運転計画作成方法、運転計画作成プログラムおよび運転計画作成装置の実施の形態を詳細に説明する。
(実施の形態1)
<運用形態の一例>
図1は、蓄電池の運転計画に基づく運用形態の一例を示す説明図である。図1において、電力系統101は、例えば、住宅やマンション、ビル、店舗、施設などの建造物に設置され、これらの建造物に電力を供給する。電力系統101は、発電装置111と、蓄電池112と、パワーコンデョショナ(Power Conditioning System、以下、「PCS」)113と、電力計114と、が接続されて構成される。電力系統101は、発電装置111からの電力により充電されるとともに電力需給に応じて放電する蓄電池112とを有する発電システムである。
発電装置111は、外部からの環境条件に応じて発電を行う装置である。具体的には、発電装置111は、太陽光などの自然エネルギーを電気に変換する装置である。本実施の形態では、一例として太陽光発電装置として説明するが、風力発電装置でもよい。蓄電池112は、発電装置111によって発電された電気を蓄積または放電する装置である。PCSは、発電装置111によって発電された電気の直流/交流変換、蓄電池112に対する充放電制御、発電装置111の発電量制御などをおこなう装置である。電力計114は、建造物での消費電力を計測する計器である。発電装置111によって発電された電気は、蓄電池112に蓄電され、また、電力供給先115に供給される。
運用システム102は、電力系統101から積算電力値や発電量を取得して電力系統101を監視する。また、運用システム102は、運転計画作成システム103から与えられた適用条件付の運転計画に基づきPCSを制御して、蓄電池112の充放電をおこなう。
ここで、運転計画とは、電力系統101内の蓄電池112などの制御対象機器の動作を規定する制御パラメータであり、例えば、電力需要が所定の電力値を超えた時に放電するというピークカット制御方式で蓄電池112を運転する場合には、その電力値(「放電基準値」と称す。)が制御パラメータ、すなわち、運転計画となる。
図2は、ピークカット制御方式の一例を示す説明図である。図2において、横軸は1日の時間であり、縦軸は電力値である。図2の波形は、需給シナリオであり、蓄電池112は、電力値が放電基準値を超えた場合に放電する。需給シナリオとは、蓄電池112からの電力を使用する電力網内の電力需要と、太陽光発電による出力との差を要素とする時系列データである。
図1に戻り、適用条件とは、運転計画を適用すべき状況を特定する条件であり、例えば、別の運転計画の適用(運転計画の修正)の要否を判定すべき早期対策時刻と当該適用の要否を識別する識別条件とを含む。早期対策時刻および識別条件の詳細については後述する。
また、運用システム102は、外部から現在の気象の状態を表す気象データや将来の気象の状態を予測する気象予報データを取得して、電力系統101での発電装置111の発電や蓄電池112の充放電を制御する。具体的には、例えば、運用システム102は、1日の初めにその時点の最新の天気予報データを取得し、そのデータに一致する適用条件が付与された運転計画を選択し、その運転計画に沿って電力系統101の運用を開始する。そして、運用システム102は、各時点での電力系統101の状態や気象状況等を監視し、運転計画作成システム103により与えられた適用条件に一致する状況を検知すると、適用条件と関係づけられた運転計画に切り替えて、電力系統101の運用を継続する。
図3は、適用条件が付与された修正運転計画を示す説明図である。図3において、横軸は時間であり、縦軸は電力値である。図3では、直近のn時間の積算日射量などの監視対象データが適用条件を満たした場合に、修正運転計画を適用する例である。
図1に戻り、運転計画作成システム103は、運用システム102から気象・予報ログ、積算電力ログ、発電ログといった過去のデータを取得して、適用条件が付与された修正運転計画を運用システム102に出力する。具体的には、運転計画作成システム103は、起こり得る需給状況の推移を網羅的に表現した需給シナリオを外部装置から取得する。また、運転計画作成システム103が需給シナリオを生成してもよい。そして、運転計画作成システム103は、生成された需給シナリオに基づいて、運転計画を作成する。
また、運転計画作成システム103は、作成した運転計画を修正すべき状況を運用システム102が運用時に検知する適用条件を、起こり得る状況を網羅的に想定したシミュレーションによって自動作成する。具体的には、運転計画作成システム103は、図4に示すように、下記(1)〜(3)を実行する。
図4は、運転計画作成システム103による運転計画の修正例を示す説明図である。図4において、(1)運転計画作成システム103は、需給シナリオに基づくシミュレーションによって、1日の運用における各時点について、その時点で運転計画を修正すれば効果が高められるシナリオを抽出する。抽出したシナリオを、「要対策シナリオ」と称す。
(2)運転計画作成システム103は、要対策シナリオを対策の類似性で分類する。対策とは、その要対策シナリオにとって最適な、その時点以降の運転計画である。運転計画作成システム103は、対策が類似する要対策シナリオ群と修正すべき時刻を決定する。対策が類似する要対策シナリオ群を「早期対策対象シナリオ群」と称す。また、修正すべき時刻を「対策時刻」といい、一例として「早期対策時刻」と称す。
(3)運転計画作成システム103は、早期対策対象シナリオ群が当日の早期対策時刻に利用可能なデータによって識別可能かを判定する。そして、運転計画作成システム103は、識別可能な場合に、早期対策対象シナリオ群の識別条件と、識別条件に合致するシナリオ群に対する最適な運転計画とを作成する。
運転計画作成システム103は、上記(1)〜(3)の手順によって、運転計画の修正ルール、すなわち、早期対策時刻と識別条件とを有する適用条件が付与された修正運転計画を作成する。これにより、例えば、ある時点までに対策が必要な需給シナリオ、すなわち、その時点までに運転計画を修正しないと高い効果が得られない需給シナリオに対して、適切なタイミングで対策を打てるようにすることができる。具体的には、対策が必要な時点において利用可能なデータで、その需給シナリオおよび同様な対策が有効な需給シナリオを識別できる場合、その時点までに運転計画を修正しないと高い効果が得られない需給シナリオに対して、運転計画を修正して対策を打てるようにすることができる。
<コンピュータのハードウェア構成例>
図5は、運転計画作成システム103を構成するコンピュータのハードウェア構成例を示す図である。図5に示すように、コンピュータ500は、各種演算処理を実行するCPU501と、ユーザからデータの入力を受け付ける入力装置502と、モニタ503とを有する。また、コンピュータ500は、記憶媒体からプログラム等を読み取る媒体読み取り装置504と、他の装置とデータの授受を行うネットワークインターフェース装置505とを有する。また、コンピュータ500は、各種情報を一時記憶するRAM(Random Access Memory)506と、ハードディスク装置507とを有する。また、各装置501〜507は、バス508に接続される。
ハードディスク装置507は、運転計画作成プログラムを記憶する。また、ハードディスク装置507は、運転計画作成プログラムを実現するための各種データを記憶する。CPU501が運転計画作成プログラムをハードディスク装置507から読み出してRAM506に展開して実行することにより、運転計画作成プログラムは、運転計画作成プロセスとして機能する。
なお、上記の運転計画作成プログラムは、必ずしもハードディスク装置507に記憶されている必要はない。例えば、コンピュータが読み取り可能な記録媒体に記憶されたプログラムを、コンピュータ500が読み出して実行するようにしても良い。コンピュータが読み取り可能な記録媒体は、例えば、CD−ROM(Compact Disc Read Only Memory)やDVD(Digital Versatile Disc)ディスク、USB(Universal Serial Bus)メモリ等の可搬型記録媒体、フラッシュメモリ等の半導体メモリ、ハードディスクドライブ等が対応する。また、公衆回線、インターネット、LAN(Local Area Network)、WAN(Wide Area Network)等に接続された装置にこのプログラムを記憶させておき、コンピュータ500がこれらからプログラムを読み出して実行するようにしても良い。
<作成装置の機能的構成例>
つぎに、作成装置の機能について説明する。作成装置は、図1に示した運転計画作成システム103に含まれる、運転計画の作成機能を実現するコンピュータである。具体的には、作成装置は、太陽光発電との併用により、需要のピークカットを狙う蓄電池112の運用に関し、早期対策を実施するための運転計画修正ルールを作成するコンピュータである。例えば、1日のはじめに、最新の気象予報に基づいて作成した蓄電池112の当初運転計画を、気象予報の更新タイミングにあわせて定期修正時刻に修正することを前提に、定期修正時刻以前の各時点の状況に応じて対策を実施するための運転計画修正ルールを作成する。定期修正時刻としては、具体的には、昼頃、例えば、13時が挙げられる。
ここで、当初運転計画としては、運転計画作成時点において最も起こりやすいと予測される1つの需給シナリオに対して最適な計画を求めるという一般的な計画作成方法により作成した値を用いることができる。実施の形態1では、一例として、当初運転計画を午前中に修正するためのルールを作成する場合について説明するが、本発明はこれに限定されるものではない。例えば、定期修正時刻に、気象予報に基づいて作成した運転計画についても、同様の手順で修正ルールを作成することができる。
図6は、作成装置の機能的構成例を示すブロック図である。作成装置600は、シナリオDB(Data Base)700と、早期対策対象シナリオ抽出部601と、出力情報作成部602と、を有する。シナリオDB700は、具体的には、例えば、図5に示したハードディスク装置507によりその機能を実現する。早期対策対象シナリオ抽出部601および出力情報作成部602は、具体的には、例えば、図5に示したRAM506またはハードディスク装置507に記憶されたプログラムを、CPU501に実行させることにより、その機能を実現する。早期対策対象シナリオ抽出部601および出力情報作成部602の説明の前に、シナリオDB700について図7を用いて説明する。
図7は、シナリオDB700の記憶内容の一例を示す説明図である。シナリオDB700は、運転計画作成システム103が有するデータベースであり、需給シナリオを記憶する。シナリオDB700は、需給シナリオID項目と、時系列データ項目と、当初計画項目と、定期修正項目と、早期対策項目と、を有する。需給シナリオID項目には、n個(n≧1)の需給シナリオに対して、各需給シナリオを一意に特定するn個の需給シナリオID(s1〜sn)が記憶される。i番目(1≦i≦n)の需給シナリオを「需給シナリオsi」とする。時系列データとは、需給シナリオsiと時刻tj(1≦j≦m)によって特定されるデータdi(tj)であり、需給データ、および、需給データの推移に関連する観測可能データや気象予報データが含まれる。需給データは、電力値であり、電力需要、発電出力、および、それらの差の値である需給差からなり、それぞれ、di(tj).d、di(tj).s、di(tj).pと表記する。観測可能データは、例えば、日射量di(tj).i、気温di(tj).tである。気象予報データは、例えば、晴・曇・雨という天気カテゴリdi(tj).wである。
当初計画項目には、需給シナリオsiごとに、そのシナリオの実現が予想される場合に適用される当初運転計画paiが記憶される。例えば、本発明で、天気予報のみに基づいて作成される計画に対して修正計画を作成する場合には、同じ天気カテゴリに対応するシナリオに対しては、同一の当初計画が記憶される。また、当初運転計画paiとは、例えば、当初の放電基準値である。
定期修正項目と、早期対策項目は、本発明の計画作成処理の主要な処理結果を記憶する領域である。定期修正項目は、計画項目と評価値項目からなる。計画項目には、定期修正計画pbiが記憶される。定期修正計画pbiとは、あらかじめ決められた定期修正時刻以降の最適な運転計画(例えば、放電基準値)である。評価値項目には、定期修正計画の評価値ebiが記憶される。
定期修正計画の評価値ebiとは、修正時刻まで当初運転計画で運用し、修正時刻以降は、修正時刻の蓄電池残量の制約において効果が最大になる最適運転計画で運用した場合の効果を見積もるシミュレーションにより得られたシミュレーション結果である。早期対策項目は、時刻項目と計画項目と評価値項目と群ID項目とを有する。時刻項目には、需給シナリオsiごとの早期対策時刻tciが記憶される。計画項目には、需給シナリオsiごとの早期対策運転計画pciが記憶され、評価項目には、早期対策運転計画pciの評価値eciが記憶される。早期対策運転計画pciとは、早期対策時刻tci以降の最適な運転計画(例えば、放電基準値)である。群ID項目には、そのシナリオが対応する早期対策対象シナリオ群の識別子gciが記憶される。
図6に戻り、早期対策対象シナリオ抽出部601は、需給シナリオ群と早期対策時刻を入力とし、早期対策時刻において対策を必要とするシナリオを抽出する。具体的には、早期対策対象シナリオ抽出部601は、要対策度算出部611と、要対策シナリオ抽出部612と、要対策シナリオ分類部613と、識別条件作成部614と、を有する。以下、順に説明する。
要対策度算出部611は、それぞれの需給シナリオに対して、早期対策時刻において対策が必要かを示す評価値となる要対策度を算出する。具体的には、例えば、要対策度算出部611は、それぞれの需給シナリオに対して、早期対策が必要かどうかを判定するために2種類のシミュレーションを行う。1つは対策を早期に行った場合のシミュレーションであり、もう1つは通常の運用で想定する定期修正時刻で当初運転計画の修正を行った場合のシミュレーションである。要対策度算出部611は、この2種類のシミュレーション結果を比較することにより、早期に対策が必要かどうかを示す要対策度を算出することになる。
要対策シナリオ抽出部612は、要対策度に基づいて、早期対策が必要なシナリオを需給シナリオ群の中から抽出する。例えば、要対策度の抽出しきい値が設定されており、ある早期対策時刻tjでのある需給シナリオsiの要対策度が抽出しきい値以上である場合、要対策シナリオ抽出部612は、その需給シナリオsiを要対策シナリオとして抽出する。
要対策シナリオ分類部613は、要対策シナリオ抽出部612によって抽出された要対策シナリオを、対策(各シナリオにとって最適な運転計画)の類似性により分類する。そして、要対策シナリオ分類部613は、分類された要対策シナリオを、早期対策時刻に対応する早期対策対象シナリオ群として出力する。
要対策シナリオ抽出部612により抽出された要対策シナリオ群には、必要な対策が異なる要対策シナリオが混在する場合がある。そのような要対策シナリオを識別できても適切な対策、すなわち、ある識別条件で識別されるシナリオのすべてに対して有効な運転計画を定めることができない。このため、要対策シナリオ分類部613は、あらかじめ対策によって分類を行う。要対策シナリオ分類部613によって分類された要対策シナリオ群を、「早期対策対象シナリオ群」と称す。早期対策対象シナリオは変更対策シナリオである。
識別条件作成部614は、早期対策対象シナリオ群を入力として、早期対策時刻において利用可能なデータによって識別可能な早期対策対象シナリオ群を選別する。そして、識別条件作成部614は、選別したシナリオ群に対して識別条件を作成する。要対策度算出部611〜識別条件作成部614による処理は、早期対策時刻ごとに実行される。識別条件作成部614は、生成部の一例である。
出力情報作成部602は、識別条件作成部614により作成された識別条件を入力として、修正運転計画を作成する。そして、出力情報作成部602は、早期対策時刻と識別条件と修正運転計画とを運用システム102に対して出力する。出力情報作成部602は出力部の一例である。
<要対策度算出例>
つぎに、要対策度算出部611による要対策度算出例について説明する。上述したように、要対策度算出部611は、当初運転計画を定期修正時刻より早い時間帯に修正することが必要かどうか評価するために、同一の需給シナリオに対して異なる修正時刻による2種類のシミュレーションを実行する。このシミュレーションは、与えられた需給シナリオと修正時刻において得られる効果(例えばピークカット効果、環境負荷低減効果、コスト削減効果)を見積もるシミュレーションである。ここで、修正時刻とは、早期対策時刻または定期修正時刻である。
具体的には、シミュレーションは、修正時刻まで当初運転計画で運用し、修正時刻以降は、修正時刻の蓄電池残量の制約において効果が最大になる最適運転計画で運用した場合の効果を見積もるシミュレーションである。最適運転計画は、需給シナリオについて様々な制御パラメータで蓄電池112を運用した場合のシミュレーションを行い、シミュレーション結果として得られた評価値が最良となる運転計画を選択することで求める。そして、修正時刻が定期修正時刻の場合には、需給シナリオDB700の定期修正項目pbi、ebiに、最適運転計画とその評価値を記録する。また、修正時刻が早期対策時刻の場合には、シナリオDB700の早期対策項目tci、pci、eciに、早期対策時刻と最適運転計画とその評価値をそれぞれ記録する。
例えば、評価値は、電力需要が所定の電力値を超えた場合に放電するピークカット方式により蓄電池112が運転される場合には、ピークカット効果が用いられる。この所定の電力値は、放電基準値とも称する。また、最適な制御パラメータは、最適運転計画による評価値が得られる蓄電池112の制御パラメータを示す。
例えば、制御パラメータは、ピークカット方式により蓄電池112が運転される場合には、放電基準値が用いられる。なお、評価値は、ピークカット効果に限定されるものではなく、例えば、環境負荷低減効果、コスト削減効果、あるいはこれらの値の組み合わせなどを評価値として用いても良い。また、制御パラメータは、放電基準値に限定されるものではない。例えば、一定放電方式により蓄電池112が運転される場合には、放電すべき時間帯と放電量との組み合わせが制御パラメータとなる。また、例えば、余剰電力吸収方式により蓄電池112が運転される場合には、蓄電池112の初期電力量が制御パラメータとなる。以下では、ピークカット方式により蓄電池112が運転され、評価値としてピークカット効果が用いられる場合について、図8〜図11を用いて、説明する。
図8は、要対策度算出例(その1)を示す説明図である。図8は、修正により放電基準値が高くなる場合の要対策度算出例である。図8において、(A)は、早期対策時刻で運転計画を修正するシミュレーションを示すグラフであり、(B)は、定期修正時刻で運転計画を修正するシミュレーションを示すグラフである。両グラフともに、横軸は時間であり、縦軸は電力量[kWh]である。この電力量は、一例として30分間の使用電力量を示す。
ここで、要対策度の算出例について図8を用いて説明する。要対策度を算出する場合、デマンド値[kW]を用いる。デマンド値は、30分間の平均使用電力[kW]であるので、30分間(0.5[h])の使用電力量[kWh]を2倍した値(0.5[h]で割った値)となる。例えば、図8(A),(B)において、元の需給シナリオ(電力需要と発電出力の差を要素とする時系列データ)における30分間の最大使用電力量は、157.9[kWh]であるので、この場合の最大デマンド値は、315.8[kW]となる。
また、(A)において、早期対策時刻で最適運転計画に修正した場合の30分間の最大使用電力量は、131[kWh]であるため、早期対策による最大デマンド値は、262[kW]である。したがって、(A)におけるピークカット効果を示す結果は、下記式(1)により求められる。
(315.8−262)/315.8×100=17.0[%]・・・(1)
また、(B)において、定期修正時刻で最適運転計画に修正した場合の30分間の使用電力量は、140[kWh]であるため、定期修正による最大デマンド値は、280[kW]である。したがって、(B)におけるピークカット効果を示す結果は、下記式(2)により求められる。
(315.8−280)/315.8×100=11.3[%]・・・(2)
要対策度は、下記式(3)により求められる。
要対策度=早期対策による結果−定期修正による結果・・・(3)
上記の例では、要対策度=17.0−11.3=5.7となる。このように、要対策度算出部611では、早期対策候補時刻に当初運転計画を修正した場合の結果に対して、定期修正時刻に修正した場合の結果が悪い場合、対策が遅れたために効果が低下したと考え、要対策度が算出される。
図9は、図8の(A)および(B)の比較例を示す説明図である。図9は、図8(A)の需給シナリオに対して早期対策を行った場合のシナリオ、および、図8(B)の需給シナリオに対して定期修正を行った場合のシナリオを重ねたグラフである。
図10は、要対策度算出例(その2)を示す説明図である。図10は、修正により放電基準値が低くなる場合の要対策度算出例である。図10において、(A)は、早期対策時刻で運転計画するシミュレーションを示すグラフであり、(B)は、定期修正時刻で運転計画を修正するシミュレーションを示すグラフである。両グラフともに、横軸は時間であり、縦軸は電力量[kWh]である。この電力量は、一例として30分間の使用電力量を示す。
ここで、要対策度の算出例について図10を用いて説明する。要対策度の算出方法は、図8に示した場合と同じである。なお、図10(A),(B)において、最大電力量は、153.7[kWh]であるので、この場合の最大デマンド値は、307.4[kW]となる。
また、図10(A)において、早期対策時刻で最適運転計画に修正した場合の最大電力量は、110[kWh]であるため、早期対策による最大デマンド値は、220[kW]である。したがって、(A)におけるピークカット効果を示す結果は、下記式(4)により求められる。
(307.4−220)/307.4×100=28.4[%]・・・(4)
また、図10(B)において、定期修正時刻で最適運転計画に修正した場合の最大電力量は、120[kWh]であるため、定期修正による最大デマンド値は、240[kW]である。したがって、(B)におけるピークカット効果を示す結果は、下記式(5)により求められる。
(307.4−240)/307.4×100=21.9[%]・・・(5)
要対策度は、上記式(3)により求められ、28.4−21.9=6.5となる。
図11は、図10の(A)および(B)の比較例を示す説明図である。図11は、図10(A)の需給シナリオに対して早期対策を行った場合のシナリオ、および、図10(B)の需給シナリオに対して定期修正を行った場合のシナリオを重ねたグラフである。図11において、ハッチングを施した領域は、図10(B)により修正が遅れたために、ピークカットできなかった電力量を示している。すなわち、定期修正の前の需要で実現可能なピークカットにおけるデマンドよりも高い値で放電されるため、早期対策を行わないと最大デマンド値になってしまうことを示している。
要対策度算出部611では、需給シナリオごとに、上記のように要対策度が求められ、求められた要対策度がしきい値以上である場合、要対策シナリオ抽出部612は、その需給シナリオを、要対策シナリオとして抽出する。
<要対策シナリオ分類例>
つぎに、要対策シナリオ分類部613による要対策シナリオ分類例について説明する。要対策シナリオには、必要とされる対策が大きく異なるシナリオが混在する場合がある。例えば、当初運転計画における放電基準値に対して放電基準値を高くするような対策の場合には放電を抑える意味があり、放電基準値を低くするような対策の場合には放電を起こりやすくする意味がある。この場合、日射量や気温、需要などを用いた識別条件によって要対策シナリオ群が識別できたとしても、上記のように放電を抑える対策と起こりやすくする対策が混在していると、対策を1つに定めることができない。
このため、要対策シナリオ群が識別できれば対策が可能なことを保証するために、要対策シナリオ分類部613は、要対策シナリオを対策の類似性で分類する。実施の形態1では、当初計画および当初運転計画の修正方向により要対策シナリオを分類する。この処理によって分類された各グループが、早期対策対象シナリオ群であり、それぞれのグループを一意に識別する群IDが割り付けられる。そして、各早期対策対象シナリオ群に分類された需給シナリオに対しては、そのシナリオが属する早期対策対象シナリオ群の群IDが、シナリオDB700の早期対策項目に記憶される。
図12は、要対策シナリオの分類例を示す説明図である。図12では、図8の要対策シナリオと図10の要対策シナリオとを分類する例を示す。当初運転計画は240[kW](30分間の使用電力量では120[kWh])とする。図12において、(A)は、要対策シナリオ抽出部612によって抽出された要対策シナリオ群である。要対策シナリオ群には、図8の要対策シナリオsxと、図10の早要対策シナリオsyが含まれている。
(B)要対策シナリオsxでの早期対策による修正後の最適運転計画(図8(A))は131[kWh]であるため、当初運転計画120[kWh]よりも大きい。したがって、要対策シナリオsxは、修正により放電基準値を高くするグループに分類される。
(C)また、要対策シナリオsyでの早期対策による修正後の最適運転計画は110[kWh]であるため、当初運転計画120[kWh]よりも小さい。したがって、要対策シナリオsyは、修正により放電基準値を低くするグループに分類される。
このように、運転計画を構成する制御パラメータの値が、当初運転計画に比べて大きいか小さいかという傾向(運転計画の修正方向)が同じものだけからなるように要対策シナリオがグループ化され、早期対策対象シナリオ群としてメモリ上に記憶される。例えば、上記のように、運転計画を構成する制御パラメータが放電基準値のみから構成される場合には、当初運転計画に比べて放電基準値を高くする最適運転計画に対応するグループと、低くする運転計画に対応するグループに、要対策シナリオ群が2分割される。分割されたそれぞれのグループは早期対策対象シナリオ群となる。
また、運転計画が複数の制御パラメータからなる場合には、各連続値の制御パラメータの値の増減に対応する2つの分類区分、および、各離散値の制御パラメータの値の種類に対応する「種類数−1」個の分類区分の組み合わせによるグループに、要対策シナリオ群が分類される。例えば、放電基準値に加え、蓄電池残量(SOC:State Of Charge)の目標値(SOC目標値)を設定し、SOC目標値より蓄電池残量が少ない場合に、放電基準値を超えない範囲で蓄電池を充電するという制御を行う場合には、放電基準値とSOC目標値という2つの制御パラメータに対応して、4つの分類区分により、要対策シナリオ群が分類される。すなわち、当初計画に比べ、(1)放電基準値とSOC目標値が共に大きい、(2)放電基準値のみ大きい、(3)放電基準値のみ小さい、(4)両者が共に小さい、という4つの区分に対応して、要対策シナリオ群が分類される。あるいは、電力消費機器の稼働状態(例えば、起動/停止)をスケジュールにより切り替える制御を加える場合には、スケジュール設定の単位となる時間帯における当該機器の稼働状態の違いに対応する分類区分をさらに組み合わせることになる。例えば、1日に1回、所定の時間の連続稼働が必要な製造機器の起動/停止を、1時間単位でスケジュール制御する場合には、その機器を何時に起動するかに対応する分類区分を組み合わせて、要対策シナリオを分類する。そして、いずれかのシナリオが分類されたグループが、早期対策対象シナリオ群としてメモリ上に記憶される。
<識別条件作成例>
つぎに、識別条件作成部614による識別条件の作成例について説明する。識別条件作成部614は、要対策シナリオ分類部613により分類された複数の早期対策対象シナリオ群の各々の早期対策対象シナリオ群について、識別条件を作成する。具体的には、識別条件作成部614は、処理対象の早期対策対象シナリオ群に属すべきシナリオか否かを判別するための判別モデルを作成する。
ここで、判別モデルとは、当日の運用時に実現しつつある需給シナリオが、早期対策対象シナリオ群に属するのか、それ以外のシナリオ群に属するかを、当日の早期対策時刻で利用可能なデータに基づき判別するモデルである。判別モデルは、一般的な判別分析の方法を使って作成される。すなわち、識別条件作成部614は、シミュレーションにより求めた説明属性と目的属性の関係に基づき、判別の基準となる判別関数を求め、その基準に基づき、当該早期対策対象シナリオ群に属するかどうかを判別するモデルを構築すればよい。
つぎに、識別条件作成部614は、作成した判別モデルが、需給シナリオの中から当該早期対策対象シナリオ群をしきい値より高い精度で判別できるかを評価する。そして、所定のしきい値より高い精度で判別できる場合には、識別条件作成部614は、その判別モデルに基づき、当該早期対策対象シナリオ群の識別条件を作成する。
以下では、説明属性ベクトル空間における距離に基づく判別モデルに基づく識別条件の作成例を示す。この判別モデルは、例えば、運用当日の積算日射量が要対策シナリオ群の標準的な積算日射量に近ければ要対策であると判定し、対策を必要としないシナリオ群の標準的な積算日射量に近ければ対策が不要と判定するような判別モデルである。
図13は、識別条件作成部614による識別条件の作成例を示す説明図である。図13では、説明を単純化するため、需給シナリオをs0〜s9とし、ある早期対策対象シナリオ群を、s1,s4,s5,s7,s9を例に挙げて説明する。識別条件の作成では、一例として識別条件作成テーブル1300が用いられる。識別条件作成テーブル1300とは、需給シナリオID項目、目的属性項目、および、説明属性項目と有し、需給シナリオごとに、需給シナリオID、目的属性、および説明属性が設定されるテーブルである。
説明属性とは、目的属性(対策要否)を推定する手がかりとなるデータであり、運用当日の早期対策時刻において利用可能な観測データや観測データの集計値などが採用される。例えば、早期対策時刻における天気・気温・日射強度・消費電力などの観測値や、早期対策時刻までの積算日射量・積算電力などの集計値が採用される。本例では、説明属性を、「9時までの積算日射量[MJ/m2]」とする。
また、説明属性に設定する値としては、説明属性が連続値の場合にはその値を、離散値の場合には、それぞれの離散値に対応する整数値を設定すればよい。例えば、天気の場合は,晴れ、曇り、雨などに対応して、1,2,3のような離散値を設定すればよい。
図13において、(A)では、まず、識別条件作成部614は、識別条件作成テーブル1300を初期化する。具体的には、例えば、識別条件作成部614は、全需給シナリオの対策要否を「不要」に設定する。そして、識別条件作成部614は、需給シナリオごとの説明属性の値を設定する。説明属性の値は、例えば、運用システム102から取得された過去データに基づいて設定されたシナリオDB700の時系列データより計算する。
(B)では、識別条件作成部614は、ある早期対策対象シナリオ群の各早期対策対象シナリオs1,s4,s5,s7,s9の対策要否を、「要」に変更する。
(C)では、識別条件作成部614は、対策要否「要」の需給シナリオ、すなわち、早期対策対象シナリオs1,s4,s5,s7,s9の平均日射量を求める。本例では、1.60[MJ/m2]である。同様に、識別条件作成部614は、対策要否「不要」の需給シナリオs0,s2,s3,s6,s8の平均日射量を求める。本例では、6.60[MJ/m2]である。そして、識別条件作成部614は、両平均の中間値を求める。本例では、4.10[MJ/m2]である。両平均の中間値が判別モデルにおける判別の基準値となる。なお、(C)では、平均を求めることとしたが、中央値を求めてもよい。
そして、識別条件作成部614は、早期対策対象シナリオ群に属すべきシナリオか否かを判別する判別モデルを生成する。本例では、識別条件作成部614は、両平均の中間値を基準にして、中間値以下の早期対策対象シナリオを、「要対策」と判別する判別モデルを生成する。この判別モデルは、運用当日の観測値が、平均日射量1.60[MJ/m2]のグループと平均日射量6.60[MJ/m2]のグループのうちいずれのグループの平均日射量に近いかを判定する判別モデルである。
(D)では、識別条件作成部614は、(C)で生成された判別モデルを用いて、「要対策」として判定されるシナリオ(「早期対策条件適合シナリオ」と呼ぶ)を抽出する。これにより、早期対策対象シナリオs1,s4,s5,s7,s9のうち、早期対策対象シナリオs1,s4,s7,s9が「要対策」の早期対策対象シナリオとして抽出される。一方、早期対策対象シナリオs5は、判別モデルにより平均日射量6.60[MJ/m2]のグループに近いシナリオであるため、「対策不要」と判別され、「早期対策条件適合シナリオ」としては抽出されない。また、「早期対策条件適合シナリオ」として抽出されるシナリオには、「対策不要」シナリオs0,s2,s3,s6,s8は含まれていない。よって、「早期対策対象シナリオ」を漏れなく抽出できるかという観点からの精度(再現率)は、80%(4/5)であり、また、「早期対策条件適合シナリオ」が正しく「早期対策対象シナリオ」であるかという観点からの精度(適合率)は、100%となる。
このように、この判別モデルでは、処理対象の早期対策対象シナリオ群が、再現率80%、適合率100%の精度で判別できるので、例えば、再現率・適合率のしきい値が80%であれば、この判別モデルが識別条件となる。
このように、早期対策対象シナリオ抽出部601は、要対策度算出〜識別条件作成の一連の処理を、早期対策時刻ごとに実行する。早期対策対象シナリオ抽出部601は、つぎの早期対策時刻についての要対策度算出〜識別条件作成の一連の処理の実行に先立って、需給シナリオ群から、作成した識別条件に適合する需給シナリオ(早期対策条件適合シナリオ)を処理対象から除外する。上記の例では、需給シナリオs0〜s9から要対策シナリオs1,s4,s7,s9が削除され、残余の需給シナリオs0,s2,s3,s5,s6,s8に対し、つぎの早期対策時刻についての要対策度算出〜識別条件作成の一連の処理が実行される。
<出力情報作成例>
つぎに、出力情報作成部602による修正運転計画の作成例について説明する。出力情報作成部602は、識別条件が明らかになった要対策シナリオ群に対する修正運転計画を作成する。出力情報作成部602は、早期対策対象シナリオ群の各々に対して作成された識別条件を順々に処理対象として選択し、下記の処理を行う。
出力情報作成部602は、まず、選択した識別条件に合致する需給シナリオを需給シナリオ群から抽出する。抽出される需給シナリオは、要対策シナリオ分類部613によって分類された早期対策対象シナリオ群とは必ずしも同一ではない。つまり、ここで抽出されるシナリオ群には、早期対策対象シナリオではあっても識別条件に合致しないシナリオは含まれず、逆に、早期対策対象シナリオでない需給シナリオも、識別条件に合致する限り含まれる。そのため、本実施の形態1では、出力情報作成部602において、識別条件に基づく需給シナリオの抽出を改めて実行することとする。また、前段の識別条件作成部614において、早期対策対象シナリオ群を識別条件に合致するように調整する形で実行してもよい。
出力情報作成部602は、抽出した需給シナリオのそれぞれに対して、修正運転計画候補作成処理を実行する。具体的には、例えば、出力情報作成部602は、抽出した需給シナリオのそれぞれに対して、シナリオDB700の早期対策項目に記録された早期対策時刻以後の最適運転計画を取得し、以降の処理で用いる修正運転計画の候補とする。
図14は、出力情報作成部602が使用するシナリオDB700の早期対策項目の一例を示す説明図である。図14は、前期の説明で用いた早期対策対象シナリオ群、すなわち、9時に当初計画の放電基準値(220kW)を高くする方向に修正する早期対策に対応するシナリオ群の処理において使用される部分について、運需給シナリオID項目と、早期対策項目の時刻項目と、計画項目と、群ID項目とを示している。以下の処理では、計画項目に記録された運転計画(要対策度算出部611によって計算された各需給シナリオにとって最適な、早期対策時刻における修正運転計画)が修正運転計画の候補となる。
出力情報作成部602は、シナリオDB700に早期対策項目に記憶された修正運転計画の中から、1つの修正運転計画を選択する。具体的には、例えば、出力情報作成部602は、抽出したそれぞれの需給シナリオに対し計算された修正運転計画の中で、最も安全な修正運転計画を早期対策候補時刻における修正運転計画として選択する。最も安全な修正運転計画とは、どの需給シナリオに対しても効果が落ちない修正運転計画である。
図14の例では、抽出した需給シナリオに対して早期対策候補時刻における修正運転計画が250〜290[kW]となっている。ピークカット効果において、放電基準値を290[kW]に設定しなければならない場合、250[kW]に設定すると放電が多くなりすぎてピークカットが失敗してしまう。これに対し、放電基準値を250[kW]に設定しなければならない場合に290[kW]に設定してもピークカットは失敗しない。したがって、図14の例では、需給シナリオs4の290[kW]が安全な修正運転計画として選択される。出力情報作成部602は、最終的には、早期対策時刻と識別条件と修正運転計画を出力する。
図15は、出力情報作成部602による出力例を示す説明図である。例えば、出力情報1500は、『早期対策時刻9時までの日射量が4.10[MJ/m2]以下であれば、放電基準値を290[kW]に修正する』という早期対策時刻と識別条件と修正運転計画が関連付けられた情報である。出力情報1500は、運用システム102に出力される。運用システム102では、9時までの日射量が4.10[MJ/m2]以下の場合、定期修正時刻(例えば13時)から前倒しして、9時に運転計画を、290[kW]に修正することになる。
<処理手順>
図16は、作成装置600による処理手順の一例を示すフローチャートである。作成装置600は、早期対策対象シナリオ抽出部601により、早期対策対象シナリオ抽出処理を実行し(ステップS1601)、出力情報作成部602により出力情報作成処理を実行する(ステップS1602)。
図17は、図16に示した早期対策対象シナリオ抽出処理(ステップS1601)の詳細な処理手順例を示すフローチャートである。まず、作成装置600は、処理対象時刻を初期化する(ステップS1701)。例えば、作成装置600は、処理対象時刻をt1にする。つぎに、作成装置600は、要対策度算出部611により、処理対象時刻である早期対策時刻について、要対策度算出処理を実行する(ステップS1702)。要対策度算出処理(ステップS1702)の詳細については図18で説明する。
つぎに、作成装置600は、要対策シナリオ抽出部612により、要対策度がしきい値以上となる需給シナリオを要対策シナリオとして抽出する(ステップS1703)。そして、作成装置600は、要対策シナリオ分類部613により、要対策シナリオ分類処理を実行し(ステップS1704)、さらに、識別条件作成部614により、識別条件作成処理を実行する(ステップS1705)。要対策シナリオ分類処理(ステップS1704)の詳細については図19で説明する。また、識別条件作成処理(ステップS1705)の詳細については図20で説明する。
このあと、作成装置600は、すべての早期対策時刻に対し、早期対策対象シナリオの抽出処理をおこなったか否かを判断する(ステップS1706)。例えば、作成部は、処理対象時刻が定期修正時刻の直前の時刻であるか否かを判断する。すべての早期対策時刻に対し、早期対策対象シナリオの抽出処理をおこなっていない場合(ステップS1706:No)、作成装置600は、識別条件により識別された早期対策対象シナリオを、要対策度算出処理(ステップS1702)の評価対象の需給シナリオ群から除外する(ステップS1707)。そして、作成装置600は、次の早期対策時刻を処理対象時刻として選択して(ステップS1708)、ステップS1702に戻る。例えば、作成装置600は、処理対象時刻が早期対策時刻t1の場合、次の早期対策時刻t2を選択する。
ステップS1702では、作成装置600は、ステップS1708で選択された処理対象時刻について、ステップS1707で除外された早期対象シナリオを除く残余の評価対象の需給シナリオ群に対して要対策度算出処理を実行する。また、ステップS1706において、すべての早期対策時刻に対し、早期対策対象シナリオの抽出処理をおこなった場合(ステップS1706:Yes)、早期対策対象シナリオ抽出処理(ステップS1601)が終了する。
図18は、図17に示した要対策度算出処理(ステップS1702)の詳細な処理手順例を示すフローチャートである。図18において、作成装置600は、評価対象の需給シナリオ群の中に未選択の需給シナリオがあるか否かを判断する(ステップS1801)。未選択の需給シナリオがある場合(ステップS1801:Yes)、作成装置600は、未選択の需給シナリオを1つ選択する(ステップS1802)。選択された需給シナリオを「選択需給シナリオ」と称す。
作成装置600は、選択需給シナリオにおいて、当初運転計画を早期対策時刻で修正するシミュレーションを実行し、その結果をシナリオDB700の早期対策項目に記録する(ステップS1803)。また、作成装置600は、当初運転計画を定期修正時刻で修正するシミュレーションを実行し、その結果をシナリオDB700の定期修正項目に記録する(ステップS1804)。このあと、作成装置600は、ステップS1803、S1804の両結果から、選択需給シナリオの要対策度を算出する(ステップS1805)。算出された要対策度は、選択需給シナリオの需給シナリオIDと関連付けてメモリ上に記憶される。
このあと、ステップS1801に戻り、未選択の需給シナリオがなくなるまで、選択需給シナリオごとにステップS1802〜S1805が実行される。そして、未選択の需給シナリオがない場合(ステップS1801:No)、要対策度算出処理(ステップS1702)が終了する。
図19は、図17に示した要対策シナリオ分類処理(ステップS1704)の詳細な処理手順例を示すフローチャートである。図19において、作成装置600は、まず、ステップS1703で抽出された要対策シナリオのうち、未選択の要対策シナリオがあるか否かを判断する(ステップS1901)。未選択の要対策シナリオがある場合(ステップS1901:Yes)、作成装置600は、未選択の要対策シナリオを1つ選択する(ステップS1902)。選択された要対策シナリオを「選択要対策シナリオ」と称す。
作成装置600は、選択要対策シナリオの修正後の運転計画が当初運転計画以上であるか否かを判断する(ステップS1903)。選択要対策シナリオの修正後の運転計画が当初運転計画以上である場合(ステップS1903:Yes)、作成装置600は、放電基準値を高くするグループに選択要対策シナリオを分類して(ステップS1904)、ステップS1901に戻る。
一方、選択要対策シナリオの修正後の運転計画が当初運転計画以上でない場合(ステップS1903:No)、作成装置600は、放電基準値を低くするグループに選択要対策シナリオを分類して(ステップS1905)、ステップS1901に戻る。そして、ステップS1901において、未選択の要対策シナリオがない場合(ステップS1901:No)、要対策シナリオ分類処理(ステップS1704)が終了する。
図20は、図17に示した識別条件作成処理(ステップS1705)の詳細な処理手順例を示すフローチャートである。図20において、作成装置600は、まず、図13の(A)に示したように、識別条件作成テーブル1300において、全需給シナリオの説明属性を設定し(ステップS2001)、全需給シナリオの目的属性を「対策不要」に設定する(ステップS2002)。これにより、図13の(A)に示した識別条件作成テーブル1300が作成される。
つぎに、作成装置600は、ステップS1704で分類された複数の早期対策対象シナリオ群のうち、未選択の早期対策対象シナリオ群があるか否かを判断する(ステップS2003)。未選択の早期対策対象シナリオ群がある場合(ステップS2003:Yes)、作成装置600は、未選択の早期対策対象シナリオ群を1つ選択し(ステップS2004)、選択した早期対策対象シナリオ群の各シナリオの目的属性を「要」に設定する(ステップS2005)。これにより、識別条件作成テーブル1300は、図13の(B)のような状態になる。
そして、作成装置600は、図13の(C)に示したように判別モデルを生成し(ステップS2006)、図13の(D)に示したように識別条件を作成する(ステップS2007)。そして、ステップS2002に戻り、作成装置600は、すべての需給シナリオの目的属性を「対策不要」にリセットする。そして、ステップS2003において、未選択の早期対策対象シナリオ群があれば(ステップS2003:Yes)、ステップS2004〜S2007が実行される。したがって、分類された早期対策対象シナリオ群ごとに、識別条件が作成される。そして、ステップS2003において、未選択の早期対策対象シナリオ群がない場合(ステップS2003:No)、識別条件作成処理(ステップS1705)が終了する。
図21は、図16に示した出力情報作成処理(ステップS1602)の詳細な処理手順例を示すフローチャートである。図21において、作成装置600は、まず、未選択の識別条件があるか否かを判断する(ステップS2101)。未選択の識別条件がある場合(ステップS2101:Yes)、作成装置600は、未選択の識別条件を1つ選択する(ステップS2102)。選択された識別条件を「選択識別条件」と称す。
つぎに、作成装置600は、需給シナリオ群から選択識別条件に合致する需給シナリオを抽出する(ステップS2103)。抽出された需給シナリオを「抽出シナリオ」と称す。作成装置600は、未選択の抽出シナリオがあるか否かを判断する(ステップS2104)。そして、未選択の抽出シナリオがある場合(ステップS2104:Yes)、作成装置600は、未選択の抽出シナリオを1つ選択し(ステップS2105)、選択した抽出シナリオについて修正運転計画を求める(ステップS2106)。具体的には、作成装置600は、出力情報作成部602により、選択した抽出シナリオに対して、シナリオDB700の早期対策項目に記録された運転計画、すなわち、早期対策時刻における最適な修正運転計画を取得する。
このあと、ステップS2104に戻り、未選択の抽出シナリオがあるか否かを判断する(ステップS2104)。未選択の抽出シナリオがない場合(ステップS2104:No)、作成装置600は、抽出シナリオごとの修正運転計画の中から最適な修正運転計画を選択する(ステップS2107)。最適な修正運転計画が選択されると、最適な修正運転計画とともに、その早期対策時刻および識別条件の組み合わせが、出力情報1500の1つとして保持される。このあと、ステップS2101に戻り、未選択の識別条件がなくなるまで、ステップS2102〜S2107が繰り返し実行される。
ステップS2101において、未選択の識別条件がない場合(ステップS2101:No)、作成装置600は、図15に示したような出力情報1500を運用システム102に出力する(ステップS2108)。これにより、出力情報作成処理(ステップS1602)が終了する。
ここで、実施の形態1の早期対策の有効性について説明する。例えば、ピークカット効果を高めたい状況を例に挙げる。この場合、当初の放電基準値の設定が低いと、定期修正時刻より前に不必要な放電が生じてしまい、結果として、定期修正時刻における蓄電池残量が不足し、その後の時間帯のカットすべきピークに対応できなくなる。したがって、可能な限り不適切な放電量が少なくなるように、できるだけ早い時間帯に運転計画を修正する必要がある。
一方、運用初期段階では、起こり得る需給シナリオを絞り込むための手がかり(観測データ)が少ないため、放電を抑えるべき状況であるかを判定することが難しい。そこで、実施の形態1では、作成装置600は、早期対策時刻の候補について、起こり得る需給状況の中から放電量を抑制すべき需給シナリオをシミュレーションにより抽出し、抽出したシナリオ群がその時点で得られるデータで識別可能かをチェックする。
これにより、作成装置600は、放電抑制を開始すべき条件として早期対策時刻および識別条件を決定し、その条件に合致する状況に対する適切な対策を作成する。例えば、作成装置600は、不必要な放電を回避できる安全な放電基準値を作成する。この条件により、運用当日の各時点において、放電量を抑制すべき状況を検知し、対策を実施することにより、不必要な放電を回避し、ピークカット効果を高めることができる。
またもう1つの例として、太陽光発電の余剰電力を蓄電池112に充電することにより、有効活用したい場合を考える。この場合には、発生する余剰電力に対して蓄電池112の空きが十分ではない場合に、余剰電力を充電できないための損失が生じる。この例では、余剰電力の売電は考慮しないものとする。したがって、余剰電力が発生する前に適切な放電を行って余剰電力吸収用の空きを作る必要がある。
しかしながら、逆潮流を発生させずに放電するには、電力需要の範囲内の放電量にとどめる必要があるため、放電を開始すべき時刻は、需要の推移にも依存する。そこで、本実施の形態1では、早期対策時刻の候補について、需要の推移も反映した需給シナリオに基づくシミュレーションにより、早期対策時刻に放電を開始すべき要対策シナリオを特定し、そのようなシナリオを検知するための識別条件を作成する。この識別条件により、運用当日の各時点においては、余剰電力吸収に対処が必要とする状況を検知し、余剰電力吸収用の空きを作るための放電を行い、余剰電力の損失を回避することができる。
(実施の形態2)
つぎに、実施の形態2について説明する。実施の形態1では、図12に示したように、作成装置600は、要対策度が抽出された要対策シナリオの修正後の最適な運転計画が当初運転計画以上であるか否かにより分類した。これに対し、実施の形態2では、作成装置600は、回帰木を構築し、構築した回帰木により要対策シナリオを分類し、回帰木を用いて識別条件を作成する。なお、実施の形態2において、要対策シナリオ分類部613、識別条件作成部614、および出力情報作成部602が実施の形態1と異なるが、それ以外は実施の形態1と同一である。したがって、実施の形態2では、要対策シナリオ分類部613、識別条件作成部614、および出力情報作成部602について説明する。まず、実施の形態2の要対策シナリオ分類部613について説明する。
<要対策シナリオ分類>
要対策シナリオ分類部613は、回帰木により、早期対策時刻に利用可能なデータの値が類似し、かつ、対策(各シナリオにとって最適な修正運転計画)の違いが所定の範囲内になるような要対策シナリオのグループを求める。具体的には、例えば、要対策シナリオ分類部613は、対策を目的属性とし、早期対策時刻において利用可能なデータを説明属性とする要対策シナリオ群の回帰木を、回帰木の葉ノードにおける対策の違いが所定のしきい値以下になるように構築する。回帰木の葉ノードにおける対策の違いとしては、例えば、平均2乗誤差の値が用いられる。そして、要対策シナリオ分類部613は、対策の違いが所定の閾値以下に収めることができた葉ノードを、早期対策対象シナリオ群として選択する。そして、選択した早期対策対象シナリオ群(葉ノード)に、それぞれの群を一意に識別する群IDを割り付け、また、各早期対策対象シナリオ群に分類される需給シナリオに対して、00の早期対策項目gciに、対応する群IDを記憶する。
図22は、回帰木による要対策シナリオの分類例を示す説明図である。図22では、目的属性を「放電基準値(対策)」、説明属性を「9時までの積算日射量と気温」に設定し、最小2乗誤差の平方根が5[kW]以下になるように構築した回帰木2200の例が示されている。
回帰木2200の最上段の根ノードN0は、要対策シナリオ全体に対応し、最下段の4つの葉ノードは、早期対策対象シナリオ群に対応する。また、根ノードN0および2つの中間ノードN1,N2は、それぞれのノードに対応するシナリオ群を下位ノードへと分割するためのルール(分割テスト)を有する。
例えば、根ノードN0に対する分割ルールR0は、「9時までの積算日射量が1.0[MJ/m2]以下」である。また、中間ノードN1に対する分割ルールR1は、「気温が20度以上」である。また、中間ノードN2に対する分割ルールR2は、「9時までの積算日射量が7.0[MJ/m2]以上」である。
また、葉ノードL1〜L4は、それぞれの葉ノードL1〜L4に分類される要対策シナリオの対策(各シナリオにとって最適な放電基準値)の平均値とばらつきを有する。例えば、葉ノードL1は、要対策シナリオの中で分割ルールR0,T1という両条件を満たすシナリオ群に対応し、そのシナリオ群の対策(各シナリオにとって最適な放電基準値)の平均は250[kW]、ばらつきが4[kW]であることを示している。
なお、本例では、すべての葉ノードL1〜L4が最小2乗誤差のしきい値の条件を満たしているため、全葉ノードL1〜L4の各々が早期対策対象シナリオ群として選択される。ただし、最小2乗誤差のしきい値の条件を満たしていない葉ノードがある場合には、その葉ノードに対応するシナリオ群は、早期対策対象シナリオ群としては選択されないことになる。
<識別条件作成>
次に、実施の形態2の識別条件作成部614について説明する。識別条件作成部614は、回帰木2200に基づいて識別条件を作成する。具体的には、要対策シナリオ分類部613によって構築された回帰木2200における分割テストは、識別条件の候補となる。すなわち、回帰木2200は、要対策シナリオ群に対応する根ノードN0を、早期対策対象シナリオ群に対応する葉ノードL1〜L4に分割するためのルールを表現する。
したがって、識別条件作成部614は、根ノードN0から葉ノードL1〜L4に至る分割テストに基づいて、要対策シナリオ群の中から、早期対策対象シナリオ群を識別する条件を作成することができる。一方、全需給シナリオには、要対策シナリオではない対策不要シナリオが含まれている。このため、回帰木2200によって、全需給シナリオを根ノードN0から分割すると、早期対策対象シナリオ群に相当する葉ノードL1〜L4には、対策不要シナリオも割り付けられることになる。すなわち、回帰木2200によって早期対策対象シナリオ群の識別条件の作成を行うと、作成された識別条件により、早期対策対象シナリオだけでなく対策不要シナリオを識別してしまう可能性がある。
そこで、実施の形態2の識別条件作成部614は、回帰木2200に表現された各早期対策対象シナリオ群に対する識別条件と対策が、その識別条件によって識別されてしまう対策不要シナリオに対して悪影響を及ぼさないかをチェックする。そして、識別条件作成部614は、悪影響のない場合のみ、識別条件を採用するという処理を行う。
すなわち、識別条件作成部614は、各早期対策対象シナリオ群に対して回帰木2200に基づいて作成した識別条件により識別される対策不要シナリオに対して、下記の2種類のシミュレーションを実行し、シミュレーション結果として得られた効果の差を評価する。2種類のシミュレーションの一方は、早期対策時刻までは当初運転計画で、その後は回帰木2200の当該葉ノードに記録された対策に従って運転計画の修正を行うシミュレーションである。対策とは、早期対策対象シナリオにとって最適な放電基準値の平均値もしくは最大値である。2種類のシミュレーションの他方は、当初運転計画のまま運用を続けるシミュレーションである。
そして、対策により効果が下がる場合、対策によるデメリットがあるので、その識別条件は採用されない。一方、例え早期対策対象シナリオ群の識別条件で対策不要シナリオを識別してしまったとしても、対策を行っても効果に悪影響がないならば、識別条件として問題がない。したがって、このような識別条件は採用される。
なお、以下では、このような悪影響のない識別条件のみを採用する処理を説明するが、実施の形態2の識別条件作成部614では、悪影響を被る対策不要シナリオが識別されないように、さらに識別条件を追加することで、悪影響を回避してもよい。例えば、実施の形態1の識別条件作成部614のように、実施の形態2の識別条件作成部614は、早期対策対象シナリオ群と早期対策による悪影響のない対策不要シナリオ群に対する目的属性を「要」に設定し、早期対策が悪影響を及ぼす対策不要シナリオに対する目的属性を「不要」に設定する。そして、実施の形態2の識別条件作成部614は、作成された識別条件を回帰木2200による識別条件に追加することとしてもよい。
図23は、回帰木2200により作成された識別条件作成テーブル2300の一例を示す説明図である。識別条件作成テーブル2300は、識別条件項目、対策項目と、影響フラグ項目とを有する。識別条件項目には、識別条件の一例として根ノードから葉ノードまでの分割ルールのAND結合が記憶される。対策項目には、対策の一例として放電基準値が記憶される。影響フラグ項目には、対策不要シナリオチェックにより、対策不要シナリオについて「影響なし」または「影響あり」を示すフラグが記憶される。
「影響なし」の場合、対策項目に記憶された対策を行っても効果に悪影響がないことを示す。「影響あり」の場合、対策項目に記憶された対策を行うと効果に悪影響が生じることを示す。図23の識別条件作成テーブル2300の1行目のレコードは、葉ノードL1に対応し、2行目のレコードは、葉ノードL2に対応し、3行目のレコードは、葉ノードL3に対応し、4行目のレコードは、葉ノードL4に対応する。
例えば、1行目のレコードは、回帰木2200により作成した識別条件が「9時までの積算日射量が1.0[MJ/m2]以下」でかつ「気温が20度以上」であることを示している。また、1行目のレコードは、この識別条件で識別される対策不要シナリオに対して、早期対策時刻である9時に放電基準値を250[kW]に変更するシミュレーションを行った結果、すべての対策不要シナリオにおいて効果の劣化が所定のしきい値以内であったことを示している。
一方、4行目のレコードは、回帰木2200により作成した識別条件が「9時までの積算日射量が1.0[MJ/m2]より大」かつ「9時までの積算日射量が7.0[MJ/m2]未満」であることを示している。また、4行目のレコードは、この識別条件で識別される対策不要シナリオに対して、早期対策時刻である9時に放電基準値200[kW]に変更するシミュレーションを行った結果、効果の劣化が所定のしきい値を超えるシナリオが存在したことを示している。
<出力情報作成>
実施の形態2の出力情報作成部602は、識別条件作成部614によって作成された識別条件および対策の組み合わせのうち、対策不要シナリオチェックで「影響なし」の組み合わせを修正運転計画として設定する。図23の例では、出力情報作成部602は、識別条件作成テーブル2300の1〜3行目のレコードを修正運転計画とし、運用システム102に出力する。
これにより、例えば、運用システム102では、当日の9時までの積算日射量が1.0[MJ/m2]以下であり、かつ、気温が20度以上である場合は、早期対策時刻である9時に、当初運転計画を修正運転計画である放電基準値250[kW]に修正する。これにより、効果の劣化が生じたとしても、しきい値以下に収まるため、有効な対策を講じたことになる。また、実施の形態2では、修正運転計画は、識別条件作成テーブル2300から抽出することで作成できるため、修正運転計画の作成処理の効率化を図ることができる。
<処理手順>
つぎに、実施の形態2にかかる作成装置600による処理手順例について説明する。上述したように、実施の形態2は、要対策シナリオ分類部613、識別条件作成部614、および出力情報作成部602が実施の形態1と異なる。したがって、処理手順についても、要対策シナリオ分類部613、識別条件作成部614、および出力情報作成部602による処理のみを説明し、それ以外は、実施の形態1と同一であるため、説明を省略する。まず、要対策シナリオ分類部613による要対策シナリオ分類処理の処理手順例について説明する。
図24は、実施の形態2にかかる要対策シナリオ分類部613による要対策シナリオ分類処理手順例を示すフローチャートである。図24において、作成装置600は、まず、要対策シナリオ抽出部612によって抽出された要対策シナリオのうち、未選択の要対策シナリオがあるか否かを判断する(ステップS2401)。
つぎに、作成装置600は、未選択の要対策シナリオがある場合(ステップS2401:Yes)、未選択の要対策シナリオを1つ選択する(ステップS2402)。選択された要対策シナリオを、「選択要対策シナリオ」と称す。そして、作成装置600は、シミュレーションにより、選択要対策シナリオに対し、早期対策時刻以降の最適運転計画を算出する(ステップS2403)。算出された最適運転計画は、選択要対策シナリオの目的属性となる。そして、作成装置600は、選択要対策シナリオに対し、早期対策時刻において利用可能なデータをシナリオDB700により計算して、説明属性に設定し(ステップS2404)、ステップS2401に戻る。早期対策時刻において利用可能なデータとは、例えば、日射量や温度である。実施の形態2では、回帰木を構築する必要があるため、説明属性は複数設定される。本例では、分割ルールR0〜R2となる。
ステップS2401において、未選択の要対策シナリオがない場合(ステップS2401:No)、作成装置600は、分割処理を実行する(ステップS2405)。分割処理(ステップS2405)では、回帰木2200を構築し、要対策シナリオ群を葉ノードに対応するシナリオ群に分割する。分割処理(ステップS2405)の詳細については後述する。分割処理(ステップS2405)のあと、作成装置600は、回帰木2200の葉ノードに対応するシナリオ群で対策の違いが所定範囲内のシナリオ群を、早期対策対象シナリオに決定する(ステップS2406)。これにより、要対策シナリオ分類処理(ステップS1704)を終了する。
図25は、図24に示した分割処理(ステップS2405)の詳細な処理手順例を示すフローチャートである。図25において、作成装置600は、まず、分割終了条件を満たすか否かを判断する(ステップS2501)。分割終了条件とは、分割対象ノードに対応する要対策シナリオ群について、ステップS2401で求められた最適運転計画である目的属性のばらつき(最小2乗誤差)が所定のしきい値以下であり、分割対象ノードに対応するデータ数(シナリオ数)が全データ数(全シナリオ数)に対して十分小さいという条件である。
分割終了条件を満たさない場合(ステップS2501:No)、作成装置600は、分割対象ノードに対応する要対策シナリオ群に対し、各説明属性に対する分割テストを実行する(ステップS2502)。具体的には、各説明属性に対する分割テストでは、分割後の2群における目的属性の平均2乗誤差が最小(あるいは、群間分散が最大)になるように当該説明属性による分割ルールを設定する。そして、作成装置600は、平均2乗誤差を最小化あるいはクラス間分散を最大化した分割ルールを選択する(ステップS2503)。
そして、作成装置600は、データ集合である分割対象ノードに対応する要対策シナリオ群を、選択された分割ルールに従って、第1データ集合と第2データ集合とに分割する(ステップS2504)。例えば、分割ルールが根ノードN0において「9時までの積算日射量が1.0[MJ/m2]以下」の場合、今ノードN0に対応する要対策シナリオ群を、「9時までの積算日射量が1.0[MJ/m2]以下」である第1データ集合と、「9時までの積算日射量が1.0[MJ/m2]以下」でない第2データ集合と、に分割する。
このあと、作成装置600は、第1データ集合の分割処理を実行する(ステップS2505)。具体的には、作成装置600は、ステップS2501〜S2504を、第1データ集合について実行する。また、作成装置600は、第2データ集合の分割処理を実行する(ステップS2506)。具体的には、作成装置600は、ステップS2501〜S2504を、第2データ集合について実行する。
第1データ集合の分割処理(ステップS2505)および第2データ集合の分割処理(ステップS2506)は、再帰的な分割処理(ステップS2405)である。第2データ集合の分割処理(ステップS2506)のあと、ステップS2501に戻る。ステップS2501において、分割終了条件を満たす場合(ステップS2501:Yes)、分割処理(ステップS2405)が終了する。
図26は、実施の形態2にかかる識別条件作成部614による識別条件作成処理の詳細な処理手順例を示すフローチャートである。図26において、作成装置600は、まず、回帰木2200において未選択の早期対策対象シナリオ群があるか否かを判断する(ステップS2601)。未選択の早期対策対象シナリオ群がある場合(ステップS2601:Yes)、作成装置600は、未選択の早期対策対象シナリオ群を1つ選択する(ステップS2602)。
つぎに、作成装置600は、選択された早期対策対象シナリオ群について、識別条件および対策を識別条件作成テーブル1300に設定する(ステップS2603)。具体的には、例えば、作成装置600は、根ノードN0から、選択された早期対策対象シナリオ群の葉ノードまでの、分割ルールを通ってきた経路を識別条件とする。また、識別条件作成テーブル2300の対策には、ステップS2403で求められた最適運転計画が格納される。
例えば、葉ノードL1の早期対策対象シナリオ群について、作成装置600は、識別条件として「9時までの積算日射量が1.0[MJ/m2]以下」でかつ「気温が20度以上」を設定する。また、作成装置600は、対策として、早期対策対象シナリオ群の各々について、ステップS2403で算出された最適運転計画の平均値を設定する。なお、この時点では、影響フラグはすべて初期状態「影響なし」である。
そして、作成装置600は、需給シナリオ群内の対策不要シナリオ群の中から、選択した早期対策対象シナリオ群について作成した識別条件により識別される対策不要シナリオを抽出する(ステップS2604)。具体的には、たとえば、識別条件作成部614は、対策不要シナリオ群を回帰木2200に与えて分割テストを実行する。これにより、対策不要シナリオ群は、葉ノードL1〜L4に分類される。識別条件作成部614は、葉ノードL1〜L4に分類された各対策不要シナリオ群のうち、選択した早期対策対象シナリオ群に対応する葉ノードに分類された対策不要シナリオ群を抽出する。
このあと、作成装置600は、抽出した対策不要シナリオ群の中から未選択の対策不要シナリオがあるか否かを判断する(ステップS2605)。未選択の対策不要シナリオがある場合(ステップS2605:Yes)、作成装置600は、未選択の対策不要シナリオを1つ選択する(ステップS2606)。そして、作成装置600は、選択した対策不要シナリオにおいて、早期対策時刻まで当初運転計画で運用し、早期対策時刻に早期対策シナリオ群の対策に従って修正するシミュレーションを実行する(ステップS2607)。また、作成装置600は、選択した対策不要シナリオにおいて、当初運転計画で運用するシミュレーションを実行する(ステップS2608)。
このあと、作成装置600は、ステップS2607、S2608のシミュレーション結果として得られた効果、例えば、最適運転計画である放電基準値を比較する(ステップS2609)。効果の差が所定のしきい値以下の場合(ステップS2609:Yes)、ステップS2603で設定された識別条件は採用されることになるため、ステップS2603で設定された識別条件に対応する影響フラグをOFFのままとし、ステップS2605に戻る。
一方、効果の差が所定のしきい値より大きい場合(ステップS2609:No)、作成装置600は、ステップS2603で作成された識別条件に対応する影響フラグを「影響あり」に設定する(ステップS2610)。すなわち、早期対策によって対策不要シナリオの効果を下げてしまったことを回避するという趣旨により、識別条件として採用しない。このあと、ステップS2605に戻る。作成装置600は、未選択の対策不要シナリオがなくなるまで、ステップS2606以降の処理を繰り返し実行する。また、ステップS2605において、未選択の対策不要シナリオがない場合(ステップS2605:No)。ステップS2601に戻る。
作成装置600は、未選択の早期対策対象シナリオ群がなくなるまで、ステップS2602以降の処理を繰り返し実行する。そして、作成装置600は、ステップS2601において、未選択の早期対策対象シナリオ群がない場合(ステップS2601:No)、識別条件作成処理(ステップS1705)が終了する。
図27は、実施の形態2にかかる出力情報作成部602による出力情報作成処理の詳細な処理手順例を示すフローチャートである。図27において、作成装置600は、まず、識別条件作成テーブル2300を取得する(ステップS2701)。つぎに、作成装置600は、取得した識別条件作成テーブル2300のうち、影響フラグが「影響あり」のレコードを削除する(ステップS2702)。そして、作成装置600は、削除後の識別条件作成テーブル2300を出力情報として運用システム102に出力する(ステップS2703)。
このように、実施の形態2によれば、修正運転計画は、識別条件作成テーブル2300から抽出することで作成できるため、修正運転計画の作成処理の効率化を図ることができる。また、識別条件によって識別されてしまう対策不要シナリオに対して悪影響を及ぼさないかをチェックすることにより、早期対策の効果に悪影響を及ぼす識別条件を不採用とすることができる。これにより、早期対策の予測精度の向上を図ることができる。
(実施の形態3)
つぎに、実施の形態3について説明する。実施の形態1,2では、あらかじめ用意された需給シナリオ群を用いたが、実施の形態3では、作成装置600が、需給シナリオ群を生成する。なお、実施の形態1,2と同一構成には同一符号を付し、その説明を省略する。
<作成装置600の機能的構成例>
図28は、実施の形態3にかかる作成装置600の機能的構成例を示すブロック図である。図28において、作成装置600は、シナリオDB700、早期対策対象シナリオ抽出部601および出力情報作成部602のほか、記憶部2800と、受付部2801と、需給シナリオ生成部2802と、最適評価値算出部2803と、修正評価値算出部2804と、を有する。記憶部2800は、各種データが記憶されている。また、記憶部2800には、生成されたデータがCPU501により書き込まれる。また、記憶部2800に記憶されたデータは、CPU501により読み出し可能である。記憶部2800は、例えば、ハードディスク装置507により実現される。
受付部2801は、入力装置502から各種情報を受け付ける。例えば、受付部2801は、需要データ2811および日射量データ2812を入力装置502から受け付けて、受け付けた需要データ2811および日射量データ2812を記憶部2800に格納する。需要データ2811とは、需要電力値を要素とする時系列データである。例えば、需要データ2811は、一日における各時間帯と需要電力値とを対応づけたデータである。この需要電力値は、例えば、過去の消費電力値の統計データから算出される。
日射量データ2812は、所定時間ごとの過去の日射量の記録である。日射量には、例えば、日照時間という単位で計測された値を含む。ここで、日照時間とは、直射日光が雲などに遮られずに所定の値(一般に0.12[kW/m2])以上の強さで地表を照射した時間として定義される値である。日射量データ2812は、例えば、2010年7月の1ヶ月分の日照時間と単位面積あたりの積算日射量が1時間ごとに記録されたものである。日射量データ2812は、例えば、日本気象協会のデータベースから取得されるデータである。
また、例えば、受付部2801は、運転計画作成において考慮すべき日射量変動の範囲を特定する条件として、開始時刻t0と、終了時刻tnと、初期日照時間h0と、時間刻み幅Δtとを入力装置502から受け付ける。ここで、開始時刻t0および終了時刻tnは、天候の変動の影響により、考慮すべき程度以上に発電出力が変動する可能性がある時間帯、すなわち、晴天時であれば十分な発電出力が期待できる時間帯の開始時刻および終了時刻にそれぞれ対応する。例えば、開始時刻t0は9時であり、終了時刻tnは15時である。
また、初期日照時間h0は、当初運転計画の作成対象となる日の開始時刻t0における日射量であり、例えば、前日の天気予報によって予想される開始時刻t0における天候に基づいて算出される。例えば、開始時刻t0における天候が「晴れ」と予想される場合には、初期日照時間h0は「1」である。なお、ここでは、受付部2801が初期日照時間h0を受け付ける場合を説明したが、これに限定されるものではない。例えば、受付部2801は、初期日射量を受け付けても良い。そして、日射量を日照時間に変換することで、初期日照時間h0が算出される。
この変換には、例えば、各月ごとの日照時間と日射量との間の相関関係を用いる。具体的には、日照時間と日射量との回帰分析を行い、得られた回帰直線の式を用いることで、日照時間を算出する。また、時間刻み幅Δtは、日射量データ2812に記録された日照時間の時間間隔に対応する。例えば、時間刻み幅Δtは、1時間である。そして、受付部2801は、受け付けた開始時刻t0と、終了時刻tnと、初期日照時間h0と、時間刻み幅Δtとを需給シナリオ生成部2802に出力する。
需給シナリオ生成部2802は、需給電力値の推移の可能性を示す複数のシナリオを生成する。例えば、需給シナリオ生成部2802は、日射量データ2812に基づいて単位時間当たりの天候変動をマルコフ過程としてモデル化した天候変動モデルを構築する。需給シナリオ生成部2802は、構築した天候変動モデルに基づいてモンテカルロシミュレーションを行うことで、複数の出力変動シナリオ2815を発生する。
そして、需給シナリオ生成部2802は、複数の出力変動シナリオ2815と、需要データ2811によって示される需要変動シナリオ2816との差をとることで、複数の需給シナリオを生成する。ここで、需給シナリオとは、蓄電池112を運用する電力網内の電力需要と、太陽光発電による出力との差を要素とする時系列データである。なお、需給シナリオ生成部2802は、生成部の一例である。また、需給電力値は、蓄電池112を運用する電力網内の電力需要と、太陽光発電による出力との差に対応し、需給差、又は需給バランスとも称される。また、需給シナリオは、シナリオの一例である。
以下において、需給シナリオ生成部2802が実行する処理について詳細に説明する。例えば、需給シナリオ生成部2802は、日射量データ2812から日照時間変動確率テーブル2813を生成する。具体的には、需給シナリオ生成部2802は、ある時刻の日照時間がその直前の時刻の日照時間の影響を受けるものと仮定して、単位時間ごとの日照時間の変動をマルコフ過程としてモデル化する。ここで、需給シナリオ生成部2802が日照時間の変動をマルコフ過程としてモデル化できるのは、日照時間が雲の影響を受け、曇の量や密度などの状態が時間に伴って連続的に変化すると考えられるからである。すなわち、雲の状態の連続的な変化を捉えられる程度の時間間隔で計測された日照時間は、直前の時刻の天候の影響を受けるものと考えられるからである。
図29は、日照時間変動確率テーブル2813の一例を示す図である。図29の横方向は変動前の日照時間Hbeforeを示し、「0.0」、「0.1−0.5」、「0.6−0.9」および「1.0」の4項目に分類される。また、縦方向は変動後の日照時間Hafterを示し、「0.0」から「1.0」まで「0.1」刻みで11項目に分類される。図29に示すように、日照時間変動確率テーブル2813は、変動前の日照時間Hbeforeが1時間過ぎた後に変動後の日照時間Hafterへ変動する条件付確率P(Hafter|Hbefore)を格納する。なお、条件付確率Pは、0〜1で表される値である。
図29に示すように、日照時間変動確率テーブル2813は、例えば、日照時間Hbefore「0.0」から1時間後に日照時間Hafter「0.0」へ変動する条件付確率Pが「0.86」であることを格納する。また、日照時間変動確率テーブル2813は、日照時間Hbefore「0.1−0.5」から1時間後に日照時間Hafter「0.3」へ変動する条件付確率Pが「0.07」であることを格納する。また、日照時間変動確率テーブル2813は、他の条件付確率Pについても同様に格納する。なお、図29に示した日照時間変動確率テーブル2813のデータ構造は一例であり、これに限定されるものではない。例えば、変動前の日照時間Hbeforeを「0.0」から「1.0」まで「0.1」刻みで11項目に分類するようにしても良い。
図30は、天候変動モデルを説明するための図である。例えば、図30に示すように、需給シナリオ生成部2802は、天候を晴れ、曇り、雨の3種類に分類する。そして、需給シナリオ生成部2802は、現在の天候から1時間後の天候(晴れ、曇り、雨の3種類)に変動する確率を、過去の天候が記録されたデータから算出することで、天候変動モデルを生成する。需給シナリオ生成部2802は、1時間毎に天候変動モデルを繰り返し適用することで、一日の天候変動の可能性を示すシナリオを複数出力する。なお、図30に示した天候変動モデルは一例である。より詳細には、需給シナリオ生成部2802は、天候を日照時間によって分類し、それぞれの日照時間の後にどのように日照時間が変化するかをモデル化している。
例えば、需給シナリオ生成部2802は、日射量データ2812に基づいて、日照時間Hbeforeが単位時間過ぎた後に日照時間Hafterへ変動する条件付確率P(Hafter|Hbefore)を、下記の式(6)を用いて計算する。
P(Hafter|Hbefore)=(日照時間Hbeforeの後に日照時間Hafterが出現するデータ数)/(日照時間Hbeforeが出現するデータ数)・・・(6)
上記式(6)を利用して過去の日射量データ2812から条件付確率P(Hafter|Hbefore)を計算することで、需給シナリオ生成部2802は、図29に示した日照時間変動確率テーブル2813を生成する。
例えば、需給シナリオ生成部2802は、生成した日照時間変動確率テーブル2813に基づいて、複数の出力変動シナリオを生成する。具体的には、需給シナリオ生成部2802は、開始時刻t0と、終了時刻tnと、初期日照時間h0と、時間刻み幅Δtとを受付部2801から受け付ける。需給シナリオ生成部2802は、初期日照時間h0を初期値とし、開始時刻t0から終了時刻tnまでに対して単位時間ごとに日照時間変動確率テーブル2813を適用することで、確率的にNパターンの日射量変動シナリオをモンテカルロシミュレーションによって発生する。なお、Nは、十分に大きい自然数であり、例えば、10000である。
例えば、需給シナリオ生成部2802は、一様乱数rを発生させ、x以下の条件付確率P(x|H(t))の積算値がrより大きくなる最小のxをH(t+Δt)とする。例えば、需給シナリオ生成部2802は、日照時間H(t)が「0.1」の場合には、図29に示した日照時間変動確率テーブル2813の変動前の日照時間が「0.1−0.5」の列を参照する。
そして、需給シナリオ生成部2802は、発生した乱数が「r<0.45」の場合には、「H(t+Δt)=0.0」を取得し、乱数が「0.45≦r<0.6」の場合には、「H(t+Δt)=0.1」を取得する。このように、需給シナリオ生成部2802は、開始時刻t0から終了時刻tnまでの間に、時間刻み幅Δtごとに変動する日照時間H(t+Δt)を取得する。
そして、需給シナリオ生成部2802は、上述した日照時間と日射量と間の相関関係を用いて、取得した日照時間H(t+Δt)を日射量I(t+Δt)に変換する。そして、需給シナリオ生成部2802は、開始時刻t0から終了時刻tnまでの日射量I(t)の変動を、日射量変動シナリオIとして生成する。また、需給シナリオ生成部2802は、同様の処理を繰り返し実行することで、Nパターンの日射量変動シナリオ2814を生成する。なお、Nは、十分に大きい自然数であり、例えば、10000である。
図31は、日射量変動シナリオ2814の一例を示す図である。図31の横軸は時間を示し、縦軸は日射量[MJ/m2]を示す。日射量変動シナリオ2814のうち9時から16時までの時間帯は、9時から16時までの日射量の変動を示す日射量変動シナリオ2814であり、Nパターンのシナリオを含む。また、0時から9時までの時間帯および16時から24時までの時間帯は、過去の日射量データ2812に基づいて生成される部分であり、1パターンのシナリオを含む。
例えば、需給シナリオ生成部2802は、生成した日射量変動シナリオ2814に基づいて、太陽光発電における出力変動シナリオ2815を生成する。例えば、需給シナリオ生成部2802は、日射量変動シナリオ2814に含まれる日射量I(t)[MJ/m2]を太陽光発電による発電量O(t)[kWh]に変換する。この変換は、例えば、パネルの規模や種類、気温などによって変化する変換効率に日射量を対応づけて発電量を見積もることによって行う。このように、需給シナリオ生成部2802は、日射量変動シナリオ2814に含まれる日射量I(t)から発電量O(t)を算出することで、開始時刻t0から終了時刻tnまでのシナリオを生成する。
また、例えば、需給シナリオ生成部2802は、太陽光発電の発電量の過去のデータを参照し、各時間帯における発電量の平均値を算出することで、0時から開始時刻t0までの発電量および終了時刻tnから24時までのシナリオを生成する。そして、需給シナリオ生成部2802は、開始時刻t0から終了時刻tnまでのシナリオと、0時から開始時刻t0までの発電量および終了時刻tnから24時までのシナリオとを組み合わせることで、一日の出力変動シナリオ2815を生成する。
また、需給シナリオ生成部2802は、生成した出力変動シナリオ2815を出力変動データ114として記憶部2800に格納する。なお、ここでは、変換効率を用いる場合を説明したが、これに限定されるものではない。例えば、日射量I(t)と発電量O(t)と間の相関関係を用いても良い。具体的には、日射量I(t)と発電量O(t)との回帰分析を行い、得られた回帰直線の式に日射量I(t)を代入することで発電量O(t)を算出する。例えば、需給シナリオ生成部2802は、複数の出力変動シナリオ2815と、需要変動シナリオとの差をとることで、複数の需給シナリオを生成する。
例えば、需給シナリオ生成部2802は、需要変動シナリオ2816における各時間帯の需要電力値から、出力変動シナリオ2815において対応する時間帯の発電量を減算することで、需給シナリオを生成する。つまり、この需給シナリオは、蓄電池112に対する需要電力量の指標となる。
図32は、需要変動シナリオの一例を示す図である。図32の横軸は時間を示し、縦軸は電力量[kWh]を示す。需要変動シナリオ2816は、運転計画策定対象の1日に対する需要の推移の可能性を示す。例えば、需要変動シナリオ2816は、一日の時間帯ごとの需要電力値の推移を示し、需要データ2811に基づいて生成される。図32には、ある工場における一日の需要変動シナリオ2816を例示する。図32では、需要変動シナリオ2816が1パターンである場合を示したが、本発明はこれに限定されるものではない。例えば、需要変動シナリオ2816は、曜日や時期に違いがあり、複数の推移の仕方が予想されるような場合には、Mパターン存在する場合もある。なお、Mは、自然数である。
図33は、需給シナリオの一例を示す図である。図33の横軸は時間を示し、縦軸は電力量[kWh]を示す。この電力量が多いほど、需要が多いことを示す。図33に示すように、需給シナリオは、一日の時間帯ごとの需給電力量の推移を示す。例えば、需給シナリオ生成部2802は、Mパターンの需要変動シナリオとNパターンの出力変動シナリオとを用いた場合には、M×Nパターンの需給シナリオを生成する。また、需給シナリオ生成部2802は、生成した需給シナリオ、および、その生成した需給シナリオに対応する需要変動シナリオ2816、出力変動シナリオ2815、日射量変動シナリオ2815をシナリオDB700に格納する。
図28の説明に戻る。最適評価値算出部2803は、需給シナリオごとに、蓄電池112を運転した場合の評価値が最良の評価値となる運転計画を算出し、その最良の評価値を各シナリオに対する第1の評価値として記録する。例えば、最適評価値算出部2803は、需給シナリオ生成部2802により生成された需給シナリオのそれぞれに対して、シミュレーションによる評価値が最良となる運転計画である最適運転計画を作成する。そして、最適評価値算出部2803は、需給シナリオと、最適運転計画による評価値と、最良の評価値を示した最適な制御パラメータとを対応づけて最適運転評価テーブル2817に格納する。
図34は、最適運転評価テーブル2817の一例を示す図である。例えば、最適運転評価テーブル2817は、需給シナリオ「1」と、最適運転計画による評価値「36」と、最適な制御パラメータ「278」とを対応づけて記憶する。つまり、最適運転評価テーブル2817は、需給シナリオ「1」に対して最良の放電基準値は278[kW]であり、この放電基準値で蓄電池112を運転した場合のピークカット効果が36[kW]であることを示す。また、最適運転評価テーブル2817は、他の需給シナリオについても同様に、需給シナリオと、最適運転計画による評価値と、最適な制御パラメータとを対応づけて記憶する。
図28の説明に戻る。以下において、最適評価値算出部2803が行う最適運転計画作成処理について詳細に説明する。ここでは、蓄電池112がピークカット方式により運転される場合を説明する。例えば、最適評価値算出部2803は、需給シナリオ生成部2802により生成された需給シナリオを一つずつ選択し、以下の処理を行う。最適評価値算出部2803は、選択した需給シナリオについて、様々な放電基準値を適用してシミュレーションを行って評価値を算出する。この放電基準値は、例えば、制御パラメータの探索範囲に含まれる放電基準値を、所定の刻み幅で順に適用する。そして、評価値が最良になる放電基準値を最適運転計画として選択する。ここで、制御パラメータの探索範囲について説明する。
図35は、制御パラメータの探索範囲について説明するための図である。図35の横軸は時間を示し、縦軸は電力量[kWh]を示す。図35には、図33に示した需給シナリオに対する制御パラメータの探索範囲を示す。ピークカット方式により蓄電池112が運転される場合には、放電基準値は需給シナリオの最大デマンド値を超えない正の値である。このため、図35に示す例では、最適評価値算出部2803は、最大デマンド値35aから電力値0[kW]までの範囲を探索範囲35bとして用いる。つまり、最適評価値算出部2803は、探索範囲35bから任意の電力値を放電基準値として選択し、選択した放電基準値をシミュレーションに用いる。なお、例えば、放電基準値35cは125[kW]であり、放電基準値35dは100[kW]であり、放電基準値35eは75[kW]である。
例えば、最適評価値算出部2803は、探索範囲35bに含まれる放電基準値のうち最も高い放電基準値157[kW]を選択し、選択した放電基準値157[kW]で蓄電池112を運転した場合のシミュレーションを行う。最適評価値算出部2803は、次の放電基準値として、刻み幅1[kW]低い値を選択し、同様にシミュレーションを行うという処理を、探索範囲35bの下限まで繰り返す。最適評価値算出部2803は、シミュレーションで得られた放電基準値のうち最良のピークカット効果を示す放電基準値を最適運転計画として選択する。
そして、最適評価値算出部2803は、需給シナリオと、最良のピークカット効果と、最良のピークカット効果を示す放電基準値とを対応づけて、最適運転評価テーブル2817に格納する。なお、最良のピークカット効果は最適運転計画による評価値に対応し、最良のピークカット効果を示す放電基準値は最適な制御パラメータに対応する。また、最適評価値算出部2803は、他の需給シナリオについても同様の処理を実行することで、最適運転評価テーブル2817を生成する。
なお、最適評価値算出部2803が行う最適運転計画の探索処理は、上記の方法に限定されるものではない。例えば、探索範囲35bに含まれる放電基準値のうち最も低い放電基準値0[kW]から順に、1[kW]間隔で放電基準値を選択するようにしても良い。また、例えば、放電基準値を5[kW]間隔で選択するようにしても良い。あるいは、Particle Swarm Optimizationや遺伝的アルゴリズムなどの最適化アルゴリズムを用いて、最適計画を探索しても良い。
修正評価値算出部2804は、複数の運転計画候補を作成し、それぞれの運転計画候補について、各シナリオに対してその運転計画候補で定期修正時刻まで蓄電池112を運転した場合に得られる第2の評価値を算出する。例えば、修正評価値算出部2804は、当初運転計画の候補を複数作成する。そして、修正評価値算出部2804は、作成した当初運転計画について、その計画で修正時点まで蓄電池112を運転する。そして、修正評価値算出部2804は、その後の蓄電池残量で、修正時点以降の最適な運転計画を示す最適修正運転計画で蓄電池112が運転された場合の評価値を、需給シナリオごとに算出する。
以下において、修正評価値算出部2804が行う処理について詳細に説明する。まず、修正評価値算出部2804は、当初運転計画の候補を作成する。例えば、修正評価値算出部2804は、最適運転評価テーブル2817の最適な制御パラメータのうち最小値から最大値の範囲で当初運転計画の候補を作成する。これは、ピークカット方式により蓄電池112が運転される場合には、各需給シナリオに対するピークカット効果は、放電基準値がその需給シナリオに対して最適な放電基準値から乖離するに従って減少し、一定以上乖離すると0になるという性質があるからである。
例えば、修正評価値算出部2804は、50[kW]から10[kW]間隔で150[kW]までの放電基準値を当初運転計画の候補として作成する。そして、修正評価値算出部2804は、当初運転計画と制御パラメータとを対応づけて、当初運転計画テーブル2818に格納する。
図36は、当初運転計画テーブル2818の一例を示す図である。当初運転計画テーブル2818は、当初運転計画と、制御パラメータとを対応づけて記憶する。このうち、当初運転計画テーブル2818の「当初運転計画」は、当初運転計画の候補を識別する識別情報を示す。また、「制御パラメータ」は、当初運転計画の制御パラメータを示す。例えば、制御パラメータは、ピークカット方式により蓄電池112が運転される場合には、放電基準値に対応する。
例えば、当初運転計画テーブル2818は、当初運転計画「1」と、制御パラメータ「50」とを対応づけて記憶する。つまり、当初運転計画テーブル2818は、当初運転計画「1」の放電基準値が50[kW]であることを示す。また、当初運転計画テーブル2818は、他の当初運転計画の候補についても同様に、当初運転計画と、制御パラメータとを対応づけて記憶する。
なお、当初運転計画の候補は当初運転計画に対応し、放電基準値は制御パラメータに対応する。なお、当初運転計画の候補の作成方法は、上記の方法に限定されるものではない。例えば、修正評価値算出部2804は、探索範囲35bで任意に作成しても良い。
図28の説明に戻る。次に、修正評価値算出部2804は、各当初運転計画候補について、最適な修正運転計画を作成する。例えば、修正評価値算出部2804は、各需給シナリオについて当初運転計画候補で蓄電池112が運用された場合のシミュレーションを行う。修正評価値算出部2804は、シミュレーション結果から蓄電池112が定期修正時刻まで運用された場合の蓄電池残量を算出する。そして、算出した蓄電池残量を蓄電池112の初期残量として、修正時刻から運転終了時刻まで運転した場合に最良の評価値となる最適な運転計画を作成し、当初運転計画候補とシナリオの組み合わせに対する最適修正運転計画として記録する。この最適出力情報作成処理は、最適評価値算出部2803が行う最適運転計画作成処理と同様の手順で実施する。
次に、修正評価値算出部2804は、定期修正時刻までは当初運転計画候補で、定期修正時刻以降は最適修正運転計画で、蓄電池112を運転した場合の評価値を算出し、その評価値を、当初運転計画候補と各シナリオの組み合わせに対する第2の評価値として、修正運転評価テーブル2819に格納する。
図37は、修正運転評価テーブル2819の一例を示す図である。修正運転評価テーブル2819は、当初運転計画と、需給シナリオと、当初運転計画に対する最適修正運転計画の評価値とを対応づけて記憶する。このうち、修正運転評価テーブル2819の「当初運転計画」は、当初運転計画の候補を識別する識別情報を示す。また、「需給シナリオ」は、需給シナリオを識別する識別情報を示す。また、「当初運転計画Pに対する最適修正運転計画の評価値」は、対応する当初運転計画について、修正時点以降の最適な運転計画を示す最適修正運転計画で蓄電池112が運転された場合の評価値を需給シナリオごとに示す。
例えば、修正運転評価テーブル2819は、当初運転計画「1」と、需給シナリオ「1」と、当初運転計画Pに対する最適修正運転計画の評価値「34」とを対応づけて記憶する。つまり、修正運転評価テーブル2819は、需給シナリオ「1」に対して当初運転計画「1」で蓄電池112が運転された後に最適修正運転計画で蓄電池112が運転された場合の評価値が「34」であることを示す。
また、修正運転評価テーブル2819は、当初運転計画「1」について、他の需給シナリオと、他の当初運転計画に対する最適修正運転計画の他の評価値とを対応づけて記憶する。このように、修正運転評価テーブル2819は、一つの当初運転計画に対して、複数の需給シナリオと、複数の当初運転計画Pに対する最適修正運転計画の評価値とを対応づけて記憶する。そして、修正運転評価テーブル2819は、他の当初運転計画についても同様に、当初運転計画と、需給シナリオと、当初運転計画に対する最適修正運転計画の評価値とを対応づけて記憶する。
図28の説明に戻る。また、修正評価値算出部2804は、他の当初運転計画についても同様に処理を実行する。あるいは、Particle Swarm Optimizationや遺伝的アルゴリズムなどの最適化アルゴリズムを用いて、最適計画を探索しても良い。このように、実施の形態3では、需給シナリオ群と、需給シナリオごとの当初運転計画と、定期修正時刻での修正運転計画が得られ、シナリオDB700に格納される。
<出力情報作成処理手順>
図38は、実施の形態3にかかる作成装置600による出力情報作成処理手順の一例を示すフローチャートである。作成装置600は、需給シナリオ生成部2802により、需給シナリオ生成処理を実行する(ステップS3801)。需給シナリオ生成処理(ステップS3801)の詳細については、図39で説明する。
つぎに、作成装置600は、最適評価値算出部2803および修正評価値算出部2804により、当初運転計画を生成し(ステップS3802)、定期修正時刻での修正運転計画を生成する(ステップS3803)。これにより、シナリオDB700が構築される。このあと、実施の形態1,2と同様、作成装置600は、早期対策対象シナリオ抽出部601により、早期対策対象シナリオ抽出処理を実行し(ステップS1601)、出力情報作成部602により出力情報作成処理を実行する(ステップS1602)。
図39は、需給シナリオ生成部2802による需給シナリオの生成処理(ステップS3801)の処理手順を示すフローチャートである。図39において、作成装置600は、需給シナリオ生成部2802により、日射量データ2812から日照時間変動確率テーブル2813を生成する(ステップS3901)。需給シナリオ生成部2802は、時刻t、日射量Iを初期化する(ステップS3902)。つまり、時刻t=t0、日射量I(t)=h0とする。
作成装置600は、時間刻み幅Δt後の時刻の日射量I(t+Δt)を決定する(ステップS3903)。作成装置600は、初期日照時間h0を初期値とし、時間刻み幅Δt後の時刻の日照時間H(t+Δt)を取得する。作成装置600は、上述した日照時間と日射量との間の相関関係を用いて、取得した日照時間H(t+Δt)を日射量I(t+Δt)に変換する。
作成装置600は、現在の時刻tに時間刻み幅Δtを加算する(ステップS3904)。作成装置600は、時刻tと終了時刻tnとを比較し、t<tnであるか否かを判定する(ステップS3905)。t<tnである場合には(ステップS3905:Yes)、作成装置600は、ステップS3903の処理に戻る。作成装置600は、日射量変動シナリオ2814を発生するまで、ステップS3903からステップS3905までの処理を繰り返す。
一方、t<tnでない場合には(ステップS3905:No)、作成装置600は、日射量変動シナリオ2814に基づいて、出力変動シナリオ2815を生成する(ステップS3906)。なお、作成装置600は、Nパターンの出力変動シナリオ2815を生成するまでステップS3902からステップS3906までの処理を繰り返す。そして、需給シナリオ生成部2802は、Nパターンの出力変動シナリオ2815と、Mパターンの需要変動シナリオとの差をとることで、M×Nパターンの需給シナリオを生成する(ステップS3907)。
このように、実施の形態3によれば、需給シナリオ群と、各需給シナリオの当初運転計画および定期修正運転計画を自動生成することができる。したがって、当初運転計画に対して早期に対策が必要となる需給シナリオをシミュレーションによって特定することができる。
このように、本実施の形態によれば、早期対策時刻、識別条件および対策(修正運転計画)を含む運転計画修正ルールを用いて運用することにより、運用中の各時点で利用可能な情報を利用して適切なタイミングで運転計画を修正することができる。すなわち、運転計画修正ルールに基づき、運用当日の各時点の状況を監視し、いずれかの運転計画修正ルールの識別条件に合致した状況が検知された場合、その運転計画修正ルールに示された対策(修正運転計画)に切り替えて蓄電池112を運用することで、そのタイミングで運転計画を適切に修正できなかった場合に生じる損失を回避することができる。
また、大きな計算コストが必要な運転計画作成処理を、運転計画作成システム103内の作成装置600によって事前に行うシステム構成の場合、運用システム102が運用時に必要とする計算資源を軽減できるという効果も得られる。不確実性の大きい太陽光発電の出力変動に対して適切な運転計画を作成するには、その時点以降に起こり得る様々な状況を考慮する必要があり、大きな計算コストが必要となる。
本実施の形態では、適切な運転計画を求める計算を運転計画作成システム103内の作成装置600によって事前に行うことで、運用システム102では、運転計画の識別条件の判定と運転計画の切り替えという比較的小さい計算コストの処理のみ実施する構成となる。例えば、運用システム102が利用できる計算資源と運用時に許容される計算時間の制約によらず、それぞれの時点以降に起こり得る様々な状況を考慮して運転計画を最適化することが可能となるため、結果としてより高い運用効果が達成可能となる。
さらに、作成装置600は、早期対策を実施すべき状況を検知するための識別条件を、とるべき対策が類似しているシナリオ群に対して行う。したがって、識別条件と適切な運転計画が作成できる可能性を高めることができる。起こり得る状況を網羅する需給シナリオの中には、すべての利用可能なデータ項目を組み合わせた複雑な条件を用いても、互いに区別できないような類似シナリオが存在する場合がある。
この点において、本実施の形態では、作成装置600は、対策の類似性によってグループ化した早期対策対象シナリオ群を対象に、識別条件の作成を試みるため、識別条件を作成できる可能性が高くなる。すなわち、区別困難な需給シナリオであっても、対策が類似していれば、識別条件によってそれらを区別する必要がない。また、対策の類似性による要対策シナリオの分類には、適切な運転計画の作成可能性を保障するという意味もある。
例えば、要対策シナリオ群に必要とされる対策が大きく異なるシナリオが混在していると、そのシナリオ群をまとめて識別できる条件が作成できたとしても、適切な1つの対策を定めることができない場合が考えられる。したがって、予め対策の類似性で要対策シナリオ群を分類しておくことで、このような事態を回避することができる。
以上説明したように、運転計画作成装置、運転計画作成方法、および運転計画作成プログラムによれば、運転計画の修正時刻が遅くなると効果に影響が出る状況を、その影響が出る前に検出できる修正運転計画を作成することができる。これにより、運転システムでは、運転計画の修正時刻が遅くなると効果に影響が出る状況を、その影響が出る前に検出することができ、検出できたタイミングで運転計画を適切に修正することができる。
上述した実施の形態に関し、さらに以下の付記を開示する。
(付記1)外部からの環境条件に応じて発電を行う発電装置と、前記発電装置からの電力により充電されるとともに電力需給に応じて放電する蓄電池とを有する発電システムの運転計画作成方法において、
コンピュータが、
前記外部からの環境条件に応じた電力需給の推移を示し記憶部に記憶された複数の需給電力シナリオについて、前記蓄電池からの放電量に関する運転計画を所定の定期修正時刻で修正した場合に最良の放電量が得られる第1の修正運転計画と、前記定期修正時刻を変更した対策時刻で前記蓄電池の当初運転計画を修正した場合に最良の放電量が得られる第2の修正運転計画とに基づいて、前記対策時刻において前記第1の修正運転計画を前記第2の修正運転計画に修正する必要があるかを示す評価値を算出し、
前記複数の需給電力シナリオのうち、算出された前記評価値に基づいて、前記対策時刻において前記第1の修正運転計画を前記第2の修正運転計画に修正する必要がある要対策シナリオを抽出し、
抽出された前記要対策シナリオから、前記要対策シナリオに対する当初運転計画と第2の修正運転計画とに基づいて、前記対策時刻において前記要対策シナリオに対する当初運転計画を修正する変更対策シナリオを分類し、
分類された変更対策シナリオについて、前記外部からの環境条件に基づいて、分類された前記変更対策シナリオを識別する識別条件を生成し、
生成された前記識別条件に分類された前記変更対策シナリオを対応付けて出力することを特徴とする運転計画作成方法。
(付記2)前記抽出する処理は、
前記評価値がしきい値以上となる需給電力シナリオを前記要対策シナリオとして抽出することを特徴とする付記1に記載の運転計画作成方法。
(付記3)前記抽出する処理は、
前記評価値が相対的に高い需給電力シナリオ群を前記要対策シナリオとして抽出することを特徴とする付記1に記載の運転計画作成方法。
(付記4)前記分類する処理は、
前記第2の修正運転計画が前記運転計画以上の場合、前記要対策シナリオを、前記蓄電池の放電を抑制する対策をおこなう変更対策シナリオのグループに分類することを特徴とする付記1〜3のいずれか一つに記載の運転計画作成方法。
(付記5)前記分類する処理は、
前記第2の修正運転計画が前記運転計画よりも小さい場合、前記要対策シナリオを、前記蓄電池の放電を促進する対策をおこなう変更対策シナリオのグループに分類することを特徴とする付記1〜4のいずれか一つに記載の運転計画作成方法。
(付記6)前記分類する処理は、
各ノードが前記要対策シナリオを観測データにより分割する複数の分割規則となる回帰木を構築し、前記回帰木に基づいて、前記要対策シナリオを前記回帰木の葉ノードに対応する前記複数の変更対策シナリオに分類し、
前記識別条件を生成する処理は、
前記変更対策シナリオについて、前記回帰木において対応する葉ノードに至るまでの分割規則に基づいて識別条件を生成することを特徴とする付記1〜4のいずれか一つに記載の運転計画作成方法。
(付記7)前記識別条件を生成する処理は、
前記需給電力シナリオ群のうち前記要対策シナリオを除く複数の対策不要シナリオを、前記回帰木に基づいて、前記回帰木の葉ノードに対応する複数の対策不要シナリオ群に分類し、前記対策不要シナリオ群の各対策不要シナリオについて、前記運転計画を前記対策時刻に前記変更対策シナリオの対策に従って修正した場合に得られる第1の評価値と、前記運転計画を修正しなかった場合に得られる第2の評価値と、の差が許容範囲外である場合、前記対策不要シナリオが属する葉ノードに至るまでの分割規則に基づく識別条件を除外することを特徴とする付記6に記載の運転計画作成方法。
(付記8)前記コンピュータが、
自然エネルギー発電の出力変動の確率的生成モデルを用いて、前記シナリオ群を生成する処理を実行し、
前記評価値を算出する処理は、
生成された前記需給電力シナリオ群の各々について、前記第1の修正運転計画と、前記第2の修正運転計画と、に基づいて、前記対策時刻で前記第1の修正運転計画を前記第2の修正運転計画に修正する対策が必要かを示す評価値を算出することを特徴とする付記1〜7のいずれか一つに記載の運転計画作成方法。
(付記9)外部からの環境条件に応じて発電を行う発電装置と、前記発電装置からの電力により充電されるとともに電力需給に応じて放電する蓄電池とを有する発電システムの運転計画を作成する運転計画作成プログラムにおいて、
コンピュータに、
前記外部からの環境条件に応じた電力需給の推移を示し記憶部に記憶された複数の需給電力シナリオについて、前記蓄電池からの放電量に関する運転計画を所定の定期修正時刻で修正した場合に最良の放電量が得られる第1の修正運転計画と、前記定期修正時刻を変更した対策時刻で前記蓄電池の当初運転計画を修正した場合に最良の放電量が得られる第2の修正運転計画とに基づいて、前記対策時刻において前記第1の修正運転計画を前記第2の修正運転計画に修正する必要があるかを示す評価値を算出させ、
前記複数の需給電力シナリオのうち、算出された前記評価値に基づいて、前記対策時刻において前記第1の修正運転計画を前記第2の修正運転計画に修正する必要がある要対策シナリオを抽出させ、
抽出された前記要対策シナリオから、前記要対策シナリオに対する当初運転計画と第2の修正運転計画とに基づいて、前記対策時刻において前記要対策シナリオに対する当初運転計画を修正する変更対策シナリオを分類させ、
分類された変更対策シナリオについて、前記外部からの環境条件に基づいて、分類された前記変更対策シナリオを識別する識別条件を生成させ、
生成された前記識別条件に分類された前記変更対策シナリオを対応付けて出力させる
ことを特徴とする運転計画作成プログラム。
(付記10)外部からの環境条件に応じて発電を行う発電装置と、前記発電装置からの電力により充電されるとともに電力需給に応じて放電する蓄電池とを有する発電システムの運転計画作成装置において、
前記外部からの環境条件に応じた電力需給の推移を示し記憶部に記憶された複数の需給電力シナリオについて、前記蓄電池からの放電量に関する運転計画を所定の定期修正時刻で修正した場合に最良の放電量が得られる第1の修正運転計画と、前記定期修正時刻を変更した対策時刻で前記蓄電池の当初運転計画を修正した場合に最良の放電量が得られる第2の修正運転計画とに基づいて、前記対策時刻において前記第1の修正運転計画を前記第2の修正運転計画に修正する必要があるかを示す評価値を算出する算出部と、
前記複数の需給電力シナリオのうち、算出された前記評価値に基づいて、前記対策時刻において前記第1の修正運転計画を前記第2の修正運転計画に修正する必要がある要対策シナリオを抽出する抽出部と、
抽出された前記要対策シナリオから、前記要対策シナリオに対する当初運転計画と第2の修正運転計画とに基づいて、前記対策時刻において前記要対策シナリオに対する当初運転計画を修正する変更対策シナリオを分類する分類部と、
分類された変更対策シナリオについて、前記外部からの環境条件に基づいて、分類された前記変更対策シナリオを識別する識別条件を生成する生成部と、
生成された前記識別条件に分類された前記変更対策シナリオを対応付けて出力する出力部と、
を有することを特徴とする運転計画作成装置。
600 作成装置
601 早期対策対象シナリオ抽出部
602 出力情報作成部
611 要対策度算出部
612 要対策シナリオ抽出部
613 要対策シナリオ分類部
614 識別条件作成部
2800 記憶部
2801 受付部
2802 需給シナリオ生成部
2803 最適評価値算出部
2804 修正評価値算出部

Claims (8)

  1. 外部からの環境条件に応じて発電を行う発電装置と、前記発電装置からの電力により充電されるとともに電力需給に応じて放電する蓄電池とを有する発電システムの運転計画作成方法において、
    コンピュータが、
    前記外部からの環境条件に応じた電力需給の推移を示し記憶部に記憶された複数の需給電力シナリオについて、前記蓄電池からの放電量に関する運転計画を所定の定期修正時刻で修正した場合に最良の放電量が得られる第1の修正運転計画と、前記定期修正時刻を変更した対策時刻で前記蓄電池の当初運転計画を修正した場合に最良の放電量が得られる第2の修正運転計画とに基づいて、前記対策時刻において前記第1の修正運転計画を前記第2の修正運転計画に修正する必要があるかを示す評価値を算出し、
    前記複数の需給電力シナリオのうち、算出された前記評価値に基づいて、前記対策時刻において前記第1の修正運転計画を前記第2の修正運転計画に修正する必要がある要対策シナリオを抽出し、
    抽出された前記要対策シナリオから、前記要対策シナリオに対する当初運転計画と第2の修正運転計画とに基づいて、前記対策時刻において前記要対策シナリオに対する当初運転計画を修正する変更対策シナリオを分類し、
    分類された変更対策シナリオについて、前記外部からの環境条件に基づいて、分類された前記変更対策シナリオを識別する識別条件を生成し、
    生成された前記識別条件に分類された前記変更対策シナリオを対応付けて出力することを特徴とする運転計画作成方法。
  2. 前記分類する処理は、
    前記第2の修正運転計画が前記運転計画以上の場合、前記要対策シナリオを、前記蓄電池の放電を抑制する対策をおこなう変更対策シナリオのグループに分類することを特徴とする請求項1に記載の運転計画作成方法。
  3. 前記分類する処理は、
    前記第2の修正運転計画が前記運転計画よりも小さい場合、前記要対策シナリオを、前記蓄電池の放電を促進する対策をおこなう変更対策シナリオのグループに分類することを特徴とする請求項1または2に記載の運転計画作成方法。
  4. 前記分類する処理は、
    各ノードが前記要対策シナリオを観測データにより分割する複数の分割規則となる回帰木を構築し、前記回帰木に基づいて、前記要対策シナリオを前記回帰木の葉ノードに対応する前記複数の変更対策シナリオに分類し、
    前記識別条件を生成する処理は、
    前記変更対策シナリオについて、前記回帰木において対応する葉ノードに至るまでの分割規則に基づいて識別条件を生成することを特徴とする請求項1または2に記載の運転計画作成方法。
  5. 前記識別条件を生成する処理は、
    前記複数の需給電力シナリオのうち前記要対策シナリオを除く複数の対策不要シナリオを、前記回帰木に基づいて、前記回帰木の葉ノードに対応する複数の対策不要シナリオ群に分類し、前記対策不要シナリオ群の各対策不要シナリオについて、前記運転計画を前記対策時刻に前記変更対策シナリオの対策に従って修正した場合に得られる第1の評価値と、前記運転計画を修正しなかった場合に得られる第2の評価値と、の差が許容範囲外である場合、前記対策不要シナリオが属する葉ノードに至るまでの分割規則に基づく識別条件を除外することを特徴とする請求項4に記載の運転計画作成方法。
  6. 前記コンピュータが、
    自然エネルギー発電の出力変動の確率的生成モデルを用いて、前記複数の需給電力シナリオを生成する処理を実行し、
    前記評価値を算出する処理は、
    生成された前記複数の需給電力シナリオの各々について、前記第1の修正運転計画と、前記第2の修正運転計画と、に基づいて、前記対策時刻で前記第1の修正運転計画を前記第2の修正運転計画に修正する対策が必要かを示す評価値を算出することを特徴とする請求項1〜5のいずれか一つに記載の運転計画作成方法。
  7. 外部からの環境条件に応じて発電を行う発電装置と、前記発電装置からの電力により充電されるとともに電力需給に応じて放電する蓄電池とを有する発電システムの運転計画を作成する運転計画作成プログラムにおいて、
    コンピュータに、
    前記外部からの環境条件に応じた電力需給の推移を示し記憶部に記憶された複数の需給電力シナリオについて、前記蓄電池からの放電量に関する運転計画を所定の定期修正時刻で修正した場合に最良の放電量が得られる第1の修正運転計画と、前記定期修正時刻を変更した対策時刻で前記蓄電池の当初運転計画を修正した場合に最良の放電量が得られる第2の修正運転計画とに基づいて、前記対策時刻において前記第1の修正運転計画を前記第2の修正運転計画に修正する必要があるかを示す評価値を算出させ、
    前記複数の需給電力シナリオのうち、算出された前記評価値に基づいて、前記対策時刻において前記第1の修正運転計画を前記第2の修正運転計画に修正する必要がある要対策シナリオを抽出させ、
    抽出された前記要対策シナリオから、前記要対策シナリオに対する当初運転計画と第2の修正運転計画とに基づいて、前記対策時刻において前記要対策シナリオに対する当初運転計画を修正する変更対策シナリオを分類させ、
    分類された変更対策シナリオについて、前記外部からの環境条件に基づいて、分類された前記変更対策シナリオを識別する識別条件を生成させ、
    生成された前記識別条件に分類された前記変更対策シナリオを対応付けて出力させる
    ことを特徴とする運転計画作成プログラム。
  8. 外部からの環境条件に応じて発電を行う発電装置と、前記発電装置からの電力により充電されるとともに電力需給に応じて放電する蓄電池とを有する発電システムの運転計画作成装置において、
    前記外部からの環境条件に応じた電力需給の推移を示し記憶部に記憶された複数の需給電力シナリオについて、前記蓄電池からの放電量に関する運転計画を所定の定期修正時刻で修正した場合に最良の放電量が得られる第1の修正運転計画と、前記定期修正時刻を変更した対策時刻で前記蓄電池の当初運転計画を修正した場合に最良の放電量が得られる第2の修正運転計画とに基づいて、前記対策時刻において前記第1の修正運転計画を前記第2の修正運転計画に修正する必要があるかを示す評価値を算出する算出部と、
    前記複数の需給電力シナリオのうち、算出された前記評価値に基づいて、前記対策時刻において前記第1の修正運転計画を前記第2の修正運転計画に修正する必要がある要対策シナリオを抽出する抽出部と、
    抽出された前記要対策シナリオから、前記要対策シナリオに対する当初運転計画と第2の修正運転計画とに基づいて、前記対策時刻において前記要対策シナリオに対する当初運転計画を修正する変更対策シナリオを分類する分類部と、
    分類された変更対策シナリオについて、前記外部からの環境条件に基づいて、分類された前記変更対策シナリオを識別する識別条件を生成する生成部と、
    生成された前記識別条件に分類された前記変更対策シナリオを対応付けて出力する出力部と、
    を有することを特徴とする運転計画作成装置。
JP2014504493A 2012-03-12 2012-03-12 運転計画作成方法、運転計画作成プログラムおよび運転計画作成装置 Expired - Fee Related JP5842994B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/056309 WO2013136419A1 (ja) 2012-03-12 2012-03-12 運転計画作成方法、運転計画作成プログラムおよび運転計画作成装置

Publications (2)

Publication Number Publication Date
JPWO2013136419A1 JPWO2013136419A1 (ja) 2015-08-03
JP5842994B2 true JP5842994B2 (ja) 2016-01-13

Family

ID=49160390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014504493A Expired - Fee Related JP5842994B2 (ja) 2012-03-12 2012-03-12 運転計画作成方法、運転計画作成プログラムおよび運転計画作成装置

Country Status (4)

Country Link
US (1) US9727036B2 (ja)
JP (1) JP5842994B2 (ja)
DE (1) DE112012006017T5 (ja)
WO (1) WO2013136419A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6168061B2 (ja) * 2012-09-12 2017-07-26 日本電気株式会社 電力管理方法、電力管理装置およびプログラム
JP6119558B2 (ja) * 2013-10-29 2017-04-26 富士通株式会社 見積発電量算出装置、プログラム、および方法
JP2016082617A (ja) * 2014-10-10 2016-05-16 富士通株式会社 需要調整計画生成装置、需要調整計画生成方法、及び需要調整計画生成プログラム
SG10201406883UA (en) * 2014-10-23 2016-05-30 Sun Electric Pte Ltd "Power Grid System And Method Of Consolidating Power Injection And Consumption In A Power Grid System"
US9874859B1 (en) * 2015-02-09 2018-01-23 Wells Fargo Bank, N.A. Framework for simulations of complex-adaptive systems
CN106557828A (zh) * 2015-09-30 2017-04-05 中国电力科学研究院 一种长时间尺度光伏出力时间序列建模方法和装置
US11271400B2 (en) 2015-12-10 2022-03-08 Mitsubishi Electric Corporation Power control device, operation plan planning method, and recording medium
CN105576699B (zh) * 2016-01-12 2018-01-26 四川大学 一种独立微电网储能裕度检测方法
WO2017155437A1 (en) * 2016-03-09 2017-09-14 Telefonaktiebolaget Lm Ericsson (Publ) Adjusting to green energy consuption in an energy consuming system
WO2018105645A1 (ja) * 2016-12-09 2018-06-14 日本電気株式会社 運転制御システム及びその制御方法
WO2018139604A1 (ja) * 2017-01-27 2018-08-02 京セラ株式会社 電源制御方法、電源制御装置及び電源制御システム
JP6696699B2 (ja) 2017-11-15 2020-05-20 株式会社東芝 電力制御装置、電力制御方法及び電力制御プログラム
KR20190107888A (ko) * 2018-03-13 2019-09-23 한국전자통신연구원 제로 에너지 타운 피크 전력 관리 방법 및 장치
JP7240156B2 (ja) * 2018-12-06 2023-03-15 株式会社日立製作所 電力需給計画装置
CN111967123B (zh) * 2020-06-30 2023-10-27 中汽数据有限公司 一种仿真测试中仿真测试用例的生成方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005086953A (ja) * 2003-09-10 2005-03-31 Nippon Telegr & Teleph Corp <Ntt> エネルギー需給制御方法及び装置
JP4245583B2 (ja) * 2005-04-15 2009-03-25 日本電信電話株式会社 分散型エネルギーシステムの制御装置、制御方法、プログラム、および記録媒体
JP2008141918A (ja) * 2006-12-05 2008-06-19 Nippon Telegr & Teleph Corp <Ntt> 太陽光発電システム評価装置、方法、およびプログラム
JP2011002929A (ja) * 2009-06-17 2011-01-06 Nippon Telegr & Teleph Corp <Ntt> 分散電力供給システムおよびその制御方法
JP5618501B2 (ja) * 2009-07-14 2014-11-05 株式会社東芝 需要予測装置、プログラムおよび記録媒体
EP2702657B1 (en) * 2011-04-27 2016-02-24 Steffes Corporation Energy storage device control

Also Published As

Publication number Publication date
US9727036B2 (en) 2017-08-08
US20140358307A1 (en) 2014-12-04
JPWO2013136419A1 (ja) 2015-08-03
DE112012006017T5 (de) 2014-12-18
WO2013136419A1 (ja) 2013-09-19

Similar Documents

Publication Publication Date Title
JP5842994B2 (ja) 運転計画作成方法、運転計画作成プログラムおよび運転計画作成装置
US11876374B2 (en) System and method for optimal control of energy storage system
US8606418B1 (en) Wind prediction for wind farms through the use of weather radar
US8489247B1 (en) Agent-based chaotic control of wind turbines
EP2562901B1 (en) Unit commitment for wind power generation
JP5271162B2 (ja) 設備計画作成装置及び設備計画作成方法
JP6386744B2 (ja) 蓄電池制御装置およびその方法
JP6520517B2 (ja) 需給計画作成装置、プログラム
JP6582758B2 (ja) 発電計画作成装置、発電計画作成プログラム及び発電計画作成方法
Arrigo et al. Optimal power flow under uncertainty: An extensive out-of-sample analysis
Hosseini-Firouz et al. Financial planning for the preventive maintenance of the power distribution systems critical components using the reliability-centered approach
Hartmann et al. Suspicious electric consumption detection based on multi-profiling using live machine learning
Jurković et al. Robust unit commitment with large-scale battery storage
McDowell et al. A Technical and Economic Assessment of LWR Flexible Operation for Generation and Demand Balancing to Optimize Plant Revenue
He et al. A real-time electricity price forecasting based on the spike clustering analysis
JP2016042748A (ja) エネルギーマネジメントシステムおよび電力需給計画最適化方法
Ruddick et al. Evolutionary scheduling of university activities based on consumption forecasts to minimise electricity costs
CN114282952A (zh) 电价计费异常识别方法、装置、计算机设备和存储介质
Pandey et al. A scenario-based stochastic dynamic economic load dispatch considering wind uncertainty
CN112036794A (zh) 一种用于造价管控的工程物料入库方法、系统及装置
Barracosa et al. A Bayesian approach for the optimal integration of renewable energy sources in distribution networks over multi-year horizons
JP7048797B1 (ja) 管理装置、管理方法、および管理プログラム
Canevese et al. BESS Revenue Stacking Optimization in the Italian Market by means of the MUSST Stochastic Tool
Gong et al. Integrated multi-horizon power and energy forecast for aggregated electric water heaters
Atiç et al. Smart Reserve Planning Using Machine Learning Methods in Power Systems with Renewable Energy Sources

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151102

R150 Certificate of patent or registration of utility model

Ref document number: 5842994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees