WO2013136381A1 - Anchor casting and weighing device - Google Patents

Anchor casting and weighing device Download PDF

Info

Publication number
WO2013136381A1
WO2013136381A1 PCT/JP2012/005322 JP2012005322W WO2013136381A1 WO 2013136381 A1 WO2013136381 A1 WO 2013136381A1 JP 2012005322 W JP2012005322 W JP 2012005322W WO 2013136381 A1 WO2013136381 A1 WO 2013136381A1
Authority
WO
WIPO (PCT)
Prior art keywords
throwing
speed
chain
braking force
length
Prior art date
Application number
PCT/JP2012/005322
Other languages
French (fr)
Japanese (ja)
Inventor
雅行 小竹
陽平 森
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to KR1020137031990A priority Critical patent/KR101561145B1/en
Priority to JP2013502949A priority patent/JP5576981B2/en
Priority to CN201280040078.5A priority patent/CN103732488A/en
Publication of WO2013136381A1 publication Critical patent/WO2013136381A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/16Tying-up; Shifting, towing, or pushing equipment; Anchoring using winches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/22Handling or lashing of anchors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B2021/003Mooring or anchoring equipment, not otherwise provided for

Definitions

  • the present invention relates to a ship anchoring device, and in particular, anchoring capable of anchoring at a anchoring speed that follows the target anchoring speed until the anchor chain feed length (throwing length) reaches the target anchoring length. It relates to dredging equipment.
  • the anchorage device is intended to enable mooring even when the vessel is anchored in offshore waters, or when the vessel berths at a berthing facility such as a pier or quay, even under environmental external forces such as wind waves or tides. in use.
  • the anchoring device includes anchors (anchors), anchor chains (anchor chains), lifting machines (windlass), anchor holes (Hawse pipes) that bring the anchor chains out of the anchors, and the supply of anchor chains.
  • Chain controllers chain compressors
  • chain lockers chain lockers
  • chain lockers that store the chain
  • chain pipes chain pipes
  • Patent Document 1 discloses that a brake is provided in a hydraulic motor that drives a chain wheel (chain wheel) around which a chain is wound, and a control valve is provided in the hydraulic motor so that the rotation speed of the chain wheel (that is, In addition, a lifting machine is disclosed that brakes the brake or automatically controls the throwing speed of the control valve based on the result of counting the feed length of the chain.
  • a lifting machine is disclosed that brakes the brake or automatically controls the throwing speed of the control valve based on the result of counting the feed length of the chain.
  • the shaft rotational speed of the carriage is measured by a rotary encoder, and comparison calculation is performed until the measured rotational speed reaches a predetermined set value. ing.
  • the lifting machine disclosed in Patent Document 1 performs automatic throwing speed control of braking of a chain by a brake based on the feed length of the chain obtained by counting the rotation speed of the chain. That is, the lifting machine of Patent Document 1 merely determines the process of dropping (throwing) until the dredger reaches the seabed based only on the anchor chain feed length parameter. When the anchor reaches the predetermined target throwing length, it is possible to discriminate when the hoisting of the chain is finished or when the throwing is finished, and only simple control for applying a brake to stop the rotation of the hydraulic motor can be performed.
  • the present invention has been made in order to solve such a problem, and the purpose thereof is a throwing speed that follows the target throwing speed until the feed length (throwing length) of the chain during throwing reaches the target throwing length.
  • An object of the present invention is to provide a lifting anchor device that can be anchored at a distance.
  • a lifting dredge device includes a gear wheel around which the gear chain is wound, a brake mechanism that brakes rotation of the gear wheel, and actual rotation of the gear wheel.
  • a rotation speed measuring means for measuring a speed; a setting means for setting a target throwing speed of the chain; and a hydraulic actuator for driving the brake mechanism, and the brake according to pressure of pressure oil supplied to the hydraulic actuator
  • a braking force adjusting mechanism for adjusting a braking force of the mechanism, and the hydraulic actuator so that an actual rotational speed of the wheel measured by the rotational speed measuring unit follows the target throwing speed set by the setting unit.
  • Control means for outputting a command voltage to the braking force adjusting mechanism so as to control the pressure of the pressure oil supplied to the brake.
  • the rotation of the carriage is performed so that the actual rotation speed of the carriage follows the target throwing speed based on the rotation speed of the carriage instead of the rotation speed of the carriage (that is, the feed length of the chain).
  • the brake can be braked, which makes it possible to drop the anchor chain at a desired throwing speed.
  • the voltage value of the command voltage is set until the anchoring speed of the anchor chain reaches a predetermined initial speed.
  • Command voltage bias determining means may be further provided that gradually increases and determines the voltage value of the command voltage as the bias value of the command voltage when the throwing speed of the chain becomes equal to or higher than the initial speed.
  • the bias value of the command voltage applied to the braking force adjusting mechanism is determined based on the command value at which the chain starts to move at a predetermined throwing speed, so that the external length such as throwing length and brake lining wear can be reduced.
  • the influence of the factor can be reduced, and the adjustment of the brake mechanism by the braking force adjustment mechanism can be stabilized.
  • the command voltage includes a PWM signal component, and the amplitude of the PWM signal is larger than the hysteresis width of the hysteresis existing in the relationship between the braking force of the brake mechanism and the command voltage.
  • the center voltage of the PWM signal may be set so that the amplitude completely crosses the hysteresis width.
  • the command voltage having an amplitude exceeding the hysteresis width of the hysteresis existing in the relationship between the braking force of the brake mechanism and the command voltage is input to the braking force adjustment mechanism.
  • Hysteresis can be canceled.
  • the setting means can further set a target anchoring length, and anchoring time measuring means for measuring an elapsed time from the anchoring start; anchoring time measured by the anchoring time measuring means; Throwing length calculation means for calculating the actual throwing length of the spear chain sent out from the carriage based on the target throwing speed, the hail based on the target throwing speed, the target throwing length, and a preset deceleration.
  • the actual throwing length (feed length) of the chain can be sequentially grasped in the speed control process based on the throwing time and the target throwing speed. Also, before the actual throwing length of the chain reaches the target throwing length (after the actual throwing length reaches the deceleration start throwing length), the actual speed of the carriage is decelerated according to the deceleration. The rotation can be braked, and thereby, it is possible to suppress the mechanical impact given to the ship when the dredger reaches the bottom.
  • the setting means may be capable of setting the target anchoring speed over time.
  • a lifting rod device capable of anchoring at a anchoring speed that follows the target anchoring speed until the anchor chain feed length (throwing length) reaches the target anchoring length. it can.
  • FIG. 1 is a diagram showing an overall configuration example of a lifting rod device according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of a braking force adjusting mechanism of the brake-equipped driving device according to the embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of a hydraulic system of the braking force adjusting mechanism in the embodiment of the present invention.
  • FIG. 4 is a view showing a modification of the hydraulic system of the braking force adjusting mechanism in the embodiment of the present invention.
  • FIG. 5 is a flowchart showing an operation example of automatic anchoring speed control of the anchoring device according to the embodiment of the present invention.
  • FIG. 6 is a flowchart showing an operation example of automatic inching control for obtaining a bias value of a command voltage to the braking force adjusting mechanism before starting the throwing according to the embodiment of the present invention.
  • FIG. 7a is a diagram showing hysteresis that exists in the relationship between the braking force of the brake mechanism and the command voltage to the braking force adjusting mechanism in the embodiment of the present invention.
  • FIG. 7b is a diagram showing a PWM (pulse width modulation) signal in the embodiment of the present invention.
  • FIG. 1 is a diagram showing an overall configuration example of a lifting rod device according to an embodiment of the present invention.
  • the anchoring device 1 shown in FIG. 1 includes a anchor 7, a anchor chain 3 that connects the anchor 7 to one end, a lifting machine 2 installed on the deck 5 of the ship 10, and the anchor chain 3 when anchoring.
  • the anchor hole 12 for sending out to the outside, the chain guard 14 provided between the lifting machine 2 and the anchor chain hole 12 to prevent the anchor chain 3 from being sent out while the ship 10 is moored, and the bottom of the deck 5
  • a chain 16 for storing the chain 3 using the space and a chain pipe 18 for guiding the chain 3 from the chain 21 of the lifting machine 2 toward the chain 16 are provided.
  • the hoisting device 1 drives the chain wheel 21 of the lifting machine 2 and adjusts the braking force against the rotation of the chain wheel 21, and the rotation of the chain wheel 21 of the lifting machine 2.
  • a rotational speed measuring device 22 that measures the speed (the number of revolutions per unit time), and a control device 100 that controls the braking force adjusting mechanism 30 based on the rotational speed of the chain wheel 21 measured by the rotational speed measuring device 22. I have.
  • the rotational speed measuring device 22 can obtain the rotational speed indirectly from measurement results obtained from a rotational speed sensor, a rotor position sensor, and the like as well as an instrument that can directly measure the rotational speed, such as a tachometer. It may be a possible instrument.
  • the units measured by the rotational speed measuring device 22 are, for example, rotation per minute (rpm; rotation per minute), rotation per second (rps; rotation per second), and radians per second (rad / sec; radian per second).
  • the rotational speed measuring device 22 is provided at the end of the rotational shaft of the chain wheel 21, but is not limited to this position.
  • the rotational speed measuring device 22 can measure the rotational speed of the chain wheel 21 (for example, a brake described later). As long as it is on the rotation shaft 51 of the drum 50).
  • the control device 100 includes a controller 101 (CPU, DSP, microcontroller, PLC (Programmable Logic Controller, logic circuit, etc.), a storage device 102 (ROM, RAM, etc.), and an input device (keyboard, mouse, touch panel, etc.). 103 and an information processing apparatus provided with an output device (such as a display) 104.
  • the control device 100 includes only the controller 101 and the storage device 102.
  • the control device 100 is communicably connected to a terminal device such as a personal computer, and an input device and an output device included in the terminal device are used. It may be realized to do.
  • the control device 100 may include a plurality of controllers 101 that perform distributed control in cooperation with each other.
  • control device 100 further includes components such as a signal input interface and a signal converter in order to acquire the rotational speed of the chain wheel 21 of the lifting machine 2 measured by the rotational speed measuring device 22. Further, the control device 100 transmits the opening command value as an electrical signal (for example, command voltage) to an electromagnetic relief valve 36 or an electromagnetic pressure reducing valve 38 described later included in the hydraulic system of the braking force adjusting mechanism 30. In addition, components such as a signal converter and a signal output interface are further provided.
  • the control device 100 may use a software timer or a hardware timer provided in the controller 101 for the purpose of measuring a throwing time described later, or these timers are provided independently of the controller 101. You may do it.
  • the control device 100 may use an integrator or a multiplier included in the controller 101 for the purpose of calculating a throwing length, which will be described later, or these arithmetic units are provided independently of the controller 101. You may do it.
  • FIG. 2 is a diagram showing an example of a braking force adjusting mechanism in the embodiment of the present invention.
  • the concept of the direction used in the description of FIG. 2 is that the ship length direction is the front-rear direction, the width direction of the ship 10 is the left-right direction, and the height direction of the ship 10 is the up-down direction. Accordingly, FIG. 2 shows a left side view of the braking force adjusting mechanism 30.
  • the braking force adjusting mechanism 30 includes a base 41 installed on the deck 5 of the ship 10, and extends upward from the base 41 in the front-rear direction (horizontal direction) at predetermined intervals. Bracket 41a and bracket 41b, an actuator support member 42 supported by the bracket 41a and bracket 41b so as to be parallel to the front-rear direction (horizontal direction), and a coupling portion (42a) of the bracket 41a and the actuator support member 42
  • the cylinder bottom portion 40a on the lower side (the pressure oil supply side of the hydraulic actuator 40) is the actuator so that the band support member 43 supported in the upward direction (vertical direction) from the top and the longitudinal direction is parallel to the vertical direction
  • the hydraulic actuator 40 coupled to the central portion of the support member 42 and the upward direction of the hydraulic actuator 40
  • the cylinder head portion 40b is configured to be rotatable together with a later-described hook member 48 and a later-described bracket
  • a lever member 45 a brake drum 50 whose rotating shaft 51 is connected to the rotating shaft 21a of the chain wheel 21, a brake band 52 that surrounds the outer periphery of the brake drum 50 and has a gap that exposes the brake drum 50;
  • a bracket 46 provided on one end side of the brake band 52 and coupled to one end of the band support member 43;
  • a bracket 47 provided on the other end side of the brake band 52 and facing the bracket 46 through the gap;
  • One end thereof is connected to the lever member 45, and a fixing portion 48a provided on the other end side is a bracket.
  • Saojo member 48 is coupled with 7, and a.
  • the hydraulic actuator 40 includes a piston 400 and a piston rod 401 that are slidable in the vertical direction within the casing, a spiral spring 402 that biases the piston 400 and the piston rod 401 toward the pressure oil supply side of the hydraulic actuator 40, It has. That is, the hydraulic actuator 40 moves the piston 400 and the piston rod 401 in the vertical direction according to the relationship between the upward pressure due to the pressure oil supplied into the casing and the downward biasing force by the spring 402. It is configured to be telescopic.
  • the housing of the hydraulic actuator 40 is partitioned into a rod side oil chamber 401 a that houses the piston rod 401 and a piston side oil chamber 400 a that does not contain the piston rod 401.
  • the motor that rotates the brake drum 50 and the chain wheel 21 may be either a hydraulic motor or an electric motor (both not shown).
  • a band-shaped friction material is stuck on the surface of the brake band 52 that surrounds the outer periphery of the brake drum 50 so that the rotation of the brake drum 50 can be braked.
  • the brake band 52 may be installed so that the outer periphery of the rotor of the hydraulic motor and electric motor which drive the chain wheel 21 of the lifting machine 2 may be surrounded.
  • the braking force adjusting mechanism 30 performs the following operation. First, when pressure oil is not supplied into the casing of the hydraulic actuator 40 (normal case), the piston 400 and the piston rod 401 are urged toward the pressure oil supply side of the hydraulic actuator 40 by the elastic force of the spring 402. . Further, the brake band 52 is completely tightened with respect to the brake drum 50, and the rotation of the brake drum 50 and the chain wheel 21 is stopped.
  • FIG. 3 is a diagram showing an example of a hydraulic system of the braking force adjusting mechanism in the embodiment of the present invention.
  • the inflow amount of pressure oil to the hydraulic actuator is indirectly determined by adjusting the surplus flow rate on the assumption that the inflow amount of pressure oil from the hydraulic pump to the hydraulic actuator overflows.
  • a so-called bleed-off circuit is constructed.
  • an electric signal representing the measurement result (output of the rotation speed measuring device 22) of the rotation speed of the chain wheel 21 of the lifting machine 2 is provided on the pressure oil supply side to the hydraulic actuator 40.
  • An electromagnetic relief valve 36 that opens and closes in proportion to the level is provided, and the pressure of the pressure oil supplied to the hydraulic actuator 40 is adjusted according to the degree of opening and closing of the electromagnetic relief valve 36.
  • the pressure of the pressure oil supplied to the hydraulic actuator 40 is electromagnetic.
  • the relief valve 36 By arbitrarily adjusting with the relief valve 36, the braking force by the brake band 52 is arbitrarily adjusted.
  • the configuration of the hydraulic system shown in FIG. 3 will be specifically described.
  • the hydraulic system shown in FIG. 3 includes an oil tank 31 that stores hydraulic oil, a hydraulic actuator 40 that expands and contracts a piston rod 401 connected to the brake band 52, and a piston-side oil chamber 400 a of the hydraulic actuator 40 from the oil tank 31.
  • a hydraulic pump 32 that sucks up the hydraulic oil from the oil tank 31 and discharges the hydraulic oil into pressure oil, and a flow rate of the pressure oil discharged from the hydraulic pump 32.
  • a flow rate adjusting valve (34, 35) that adjusts the flow rate to be constant, and a check valve (check) that is provided between the hydraulic pump 32 and the flow rate adjusting valve (34, 35) and restricts the flow of pressure oil in one direction.
  • An electromagnetic relay provided on the piping system of the passage 303 and the bleed-off conduit 303 to return all or a part of the pressure oil supplied to the hydraulic actuator 40 from the diversion regulating valves (34, 35) to the oil tank 31.
  • a relief pipe 304 branched from a pipe connecting the hydraulic pump 32 and the check valve 33 in the oil supply pipe 301 and the oil supply pipe 301 to the oil tank 31; And a relief valve 37 for returning a part of the hydraulic oil discharged from the hydraulic pump 32 to the oil tank 31.
  • the flow rate adjusting valves (34, 35) are constituted by a parallel connection of a check valve 34 and a variable throttle valve 35.
  • the check valve 33, the flow rate adjusting valves (34, 35), and the relief valve 37 are provided to improve the reliability of the hydraulic system, but depending on the use of the hydraulic system. At least one of these valves (33, 34, 35, 37) may not be provided.
  • the rotational speed of the chain wheel 21 of the lifting machine 2 is measured by a rotational speed measuring device 22 provided on the rotational shaft of the chain wheel 21.
  • the degree of opening and closing of the electromagnetic relief valve 36 changes so as to be proportional to the level of the electrical signal corresponding to the rotational speed measured by the rotational speed measuring device 22.
  • the pressure oil pressure supplied from the flow rate adjusting valve (34, 35) to the piston side oil chamber 400a of the hydraulic actuator 40 increases or decreases, and as a result, the piston 400 and the piston rod 401 of the hydraulic actuator 40 move up and down. Stretch in the direction.
  • FIG. 4 is a view showing a modification of the hydraulic system of the braking force adjusting mechanism in the embodiment of the present invention.
  • the flow rate adjusting valves (34, 35) in the oil supply pipe 301 and the piston side oil of the hydraulic actuator 40 are used.
  • An electromagnetic pressure reducing valve 38 is provided in a pipe connecting the chamber 400a.
  • the electromagnetic pressure reducing valve 38 is a control valve that changes its opening / closing degree according to an electrical signal corresponding to the rotational speed measured by the rotational speed measuring device 22 and adjusts the discharge pressure accordingly.
  • the tightening force of the brake band 52 similar to that of the hydraulic system shown in FIG. 3 can also be adjusted by the hydraulic system shown in FIG.
  • FIG. 5 is a flowchart showing an operation example of automatic anchoring speed control of the lifting anchor device according to the embodiment of the present invention.
  • the operation of the hydraulic pump 32 is stopped, and the piston 400 and the piston rod 401 of the hydraulic actuator 40 are not in a state where hydraulic pressure is applied. That is, the brake drum 50 is completely tightened by the brake band 52, and the eaves chain 3 wound around the chain wheel 21 of the lifting machine 2 and the eaves 7 tied to one end thereof are stationary.
  • the crew of the ship 10 operates the input device of the control device 100 when the ship 10 is anchored in an offshore area, or when the ship berths at a berthing facility such as a pier or a quay.
  • the control program for the automatic anchoring speed control of the lifting rod device 1 stored in the storage device 102 of the controller 100 is started.
  • an initial setting message for prompting input of the target throwing speed V1 and the target throwing length L1 is displayed on the output device of the control device 100, and the crew operates the input device of the control device 100 to operate the target throwing speed V1,
  • the target throwing length L1 is input (step S500).
  • the target throwing speed V1 is less than the dead weight dropping speed.
  • the input target throwing speed V1 and the target throwing length L1 are stored (set) as parameters of the control program in the storage device 102 of the control device 100.
  • the target throwing speed V1 can be set to have a constant acceleration (for example, 0.1 (m / s ⁇ 2)) before a predetermined time has elapsed from the start of the throwing, and the predetermined time has passed. After that, the speed can be set to be constant (for example, 2.0 (m / s)). That is, the target throwing speed V1 can be set with time.
  • a constant acceleration for example, 0.1 (m / s ⁇ 2)
  • the speed can be set to be constant (for example, 2.0 (m / s)). That is, the target throwing speed V1 can be set with time.
  • a throwing start flag F1 indicating start of throwing by the control program is generated, and the throwing start flag F1 is set to the control program.
  • the measurement of the actual rotational speed RV of the chain wheel 21 is started by the rotational speed measuring device 22 attached to the rotational shaft of the chain wheel 21 of the lifting machine 2, and the controller 101 of the control device 100 measures the rotational speed. Acquisition (detection) of information on the measurement result of the actual rotational speed RV of the chain wheel 21 from the container 22 is started (step S502). Furthermore, the controller 101 starts integrating the throwing time when the throwing start flag F1 is generated.
  • the controller 101 based on the actual rotational speed RV of the chain wheel 21 acquired from the rotational speed measuring device 22, the chain 3 that has been sent out from the chain hole 12 since the throwing start flag F1 is generated. (Hereinafter referred to as actual throwing length RL) is calculated (step S503). Specifically, as described above, the controller 101 accumulates the elapsed time (throwing time) T from the start of throwing, and multiplies the throwing time T obtained by this accumulation by the target throwing speed V1. The actual throwing length RL is calculated.
  • the vehicle is sent out from the carriage 21 based on the target throwing speed V1 and the target throwing length L1 input in step S500 and a preset deceleration (for example, 0.1 (m / s ⁇ 2)).
  • the deceleration start throwing length L2 of the chain 3 is calculated (step 504). Specifically, the deceleration start throwing length L2 is determined in consideration of the timing at which deceleration should be started before throwing is stopped in the case of the above deceleration.
  • the deceleration is a fixed value set in advance and is stored in the storage device 102 of the controller 101.
  • the controller 101 opens the electromagnetic relief valve 36 shown in FIG. 3 or the electromagnetic pressure reducing valve 38 shown in FIG. 4 so that the actual rotational speed RV acquired from the rotational speed measuring device 22 follows the target throwing speed V1.
  • a degree command value (electric signal) is calculated (step S505).
  • the controller 101 outputs the calculated opening degree command value toward the electromagnetic relief valve 36 or the electromagnetic pressure reducing valve 38 (step S506).
  • step S507 determines whether or not the actual throwing length RL calculated in step S503 has reached the deceleration start throwing length L2 calculated in step S504 (RL ⁇ L2) (step S507).
  • step S507: NO the process returns to step S502.
  • step S508 NO
  • the controller 101 decelerates the actual rotational speed RV of the carriage according to a preset deceleration.
  • the target throwing speed V2 for deceleration is set (step S509).
  • the controller 101 causes the actual rotational speed RV acquired from the rotational speed measuring instrument 22 to follow the deceleration target throwing speed V2.
  • the opening command value of the electromagnetic relief valve 36 shown in FIG. 3 or the electromagnetic pressure reducing valve 38 shown in FIG. 4 is calculated (step S505).
  • the controller 101 outputs the calculated opening degree command value toward the electromagnetic relief valve 36 or the electromagnetic pressure reducing valve 38 (step S506).
  • step S508 If it is determined that the actual throwing length RL has reached the target throwing length L1 (step S508: YES), the controller 101 generates a throwing end flag F2 indicating the end of throwing by the control program, The throwing end flag F2 is stored in the storage device 102 as a parameter of the control program (step S510). Thus, the loop control that repeats steps S502 to S509 is completed.
  • the actual rotation speed RV of the dredger 21 is set to the target throwing speed V1 based on the rotation speed of the droop 21 rather than the rotation speed of the dredger 21 (that is, the feed length of the dredge 3). It is possible to brake the rotation of the carriage 21 so as to follow the above, and thereby it is possible to drop the eaves chain 3 at a desired throwing speed. Further, based on the throwing time T from the start of throwing and the target throwing speed V1, the actual throwing length (feed length) RL of the chain 3 can be sequentially grasped in the speed control process.
  • the actual rotation speed RV of the carriage is set to a predetermined deceleration.
  • the rotation of the wheel 21 can be braked so that the actual rotation speed RV of the vehicle 21 follows the deceleration target throwing speed V2 set according to the deceleration.
  • FIG. 6 is a flowchart showing an operation example of automatic inching control for obtaining a bias value of a command voltage to the braking force adjusting mechanism before starting the throwing according to the embodiment of the present invention.
  • the controller 101 includes a variable t representing discrete time, a voltage value E (t) of a command voltage applied to an electromagnetic valve (such as the electromagnetic relief valve 36 or the electromagnetic pressure reducing valve 38) of the braking force adjusting mechanism 30, and Is initially set (step S600). Then, the controller 101 gradually increases the voltage value of the command voltage (step S601, step S602: NO, step S603) until the throwing speed V of the chain 3 reaches a predetermined initial speed Vt (step S602: YES). .
  • an electromagnetic valve such as the electromagnetic relief valve 36 or the electromagnetic pressure reducing valve 38
  • step S602 determines that the throwing speed V of the anchor chain 3 is equal to or higher than the initial speed Vt (step S602: YES)
  • the controller 101 uses the command voltage value E (t) at that time as the command voltage bias.
  • the value Eb is determined (step S604).
  • the operation example described with reference to FIG. 6 is executed as an inching operation of the chain 3 for obtaining the bias value Eb of the command voltage to be applied to the braking force adjusting mechanism 30 before the actual throwing operation is started. .
  • the bias value Eb of the command voltage applied to the braking force adjusting mechanism 30 is determined based on the command value at which the chain 3 starts to move at a predetermined throwing speed. The influence of the factor can be reduced, and the adjustment of the brake mechanism by the braking force adjusting mechanism 30 can be stabilized.
  • FIG. 7a is a diagram showing hysteresis existing in the relationship between the braking force of the brake mechanism and the command voltage to the braking force adjusting mechanism 30 in the embodiment of the present invention
  • FIG. 7b is the PWM in the embodiment of the present invention. It is the figure which showed the (pulse width modulation) signal.
  • the command voltage to be applied to the electromagnetic valve (such as the electromagnetic relief valve 36 or the electromagnetic pressure reducing valve 38) of the braking force adjusting mechanism 30 includes a PWM signal component, and the amplitude value of the PWM signal was set to a value exceeding the hysteresis width, and the center voltage of the PWM signal was set so that the amplitude value completely crossed the hysteresis width.
  • the braking force is controlled by the PWM signal by the ON time and the OFF time, and can be finely controlled as an average braking force, the hysteresis can be canceled, and the braking force can be adjusted by adjusting the duty ratio of the PWM signal. Subtle control is possible. Furthermore, stability can be improved by limiting the amplitude and duty ratio.
  • the brake drum 50 and the chain wheel 21 microscopically repeat acceleration and deceleration, but the period of the PWM signal is about 100 (ms) units, which is a typical PWM control system. It is long compared to the system, but short compared to the responsiveness of the system, so it seems to rotate smoothly macroscopically.
  • the present invention is useful for a ship anchoring device.
  • Piston rod 402 ... Spring 41 ... Base 41a ... Bracket 41b ... Support member 42 ... Actuator support member 43 ... Band support member 45 ... Lever member 46 ... Bracket 47 ... Bracket 48 ... Piston member 50 ... Brake drum 51 ... Rotating shaft 52 ... Brake band 100 ... Control Location 101 ... controller 102 ... storage device 103 ... input device 104 ; output device V1 ... target anchor speed L1 ... target anchor length V2 ... decelerating target anchor speed L2 ... deceleration start anchor length

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Braking Arrangements (AREA)
  • Regulating Braking Force (AREA)

Abstract

This anchor casting and weighing device (1) includes: a chain wheel (21), around which an anchor chain (3) is wound; a brake mechanism (30) which brakes the rotation of the chain wheel; a rotational speed measurement means (22) which measures the actual rotational speed of the chain wheel; a setting means (100) which sets the target anchor casting speed of the chain wheel; a braking force adjustment mechanism (30) which includes a hydraulic actuator for driving the brake mechanism and adjusting the braking force of the brake mechanism according to the pressure of pressurized oil supplied to the hydraulic actuator; and a control means (100) which, in order that the actual rotational speed of the chain wheel measured by the rotational speed measurement means follows the target anchor casting speed set by the setting means, outputs a command voltage to the braking force adjustment mechanism so as to control the pressure of the pressurized oil supplied to the hydraulic actuator.

Description

投揚錨装置Rafting device
 本発明は、船舶の投揚錨装置に関し、特に投錨の際の錨鎖の送り長(投錨長)が目標投錨長に到達するまで目標投錨速度に追従した投錨速度で投錨することが可能な投揚錨装置に関する。 TECHNICAL FIELD The present invention relates to a ship anchoring device, and in particular, anchoring capable of anchoring at a anchoring speed that follows the target anchoring speed until the anchor chain feed length (throwing length) reaches the target anchoring length. It relates to dredging equipment.
 船舶には一般的に投揚錨を行う投揚錨装置が設置されている。投揚錨装置は、沖合の海域で船舶が停泊する際や、桟橋や岸壁などの接岸施設に船舶が接岸する際に、風波や潮流などによる環境外力下であっても係留可能とする目的で使用されている。投揚錨装置は、錨(アンカー;Anchor)、錨鎖(アンカーチェーン;Anchor chain)、揚錨機(ウインドラス; Windlass)、錨鎖を舷外に出す錨鎖孔(ホーズパイプ;Hawse pipe)、錨鎖の送り出しを抑止する制鎖器(チェーンコンプレッサー;Chain compressor)、錨鎖を格納する錨鎖庫(チェーンロッカー;Chain locker)、揚錨機の鎖車から錨鎖庫に錨鎖を誘導する錨鎖管(チェーンパイプ;Chain pipe)などを備えて構成されている。なお、揚錨機として、従来より手動ブレーキによる投錨が主に行われているが、乗組員がブレーキ操作に熟練していなければ円滑な投錨とならないので、投揚錨装置による投錨作業の自動化が求められている。 Ships are generally equipped with a lifting dredger that performs lifting dredging. The anchorage device is intended to enable mooring even when the vessel is anchored in offshore waters, or when the vessel berths at a berthing facility such as a pier or quay, even under environmental external forces such as wind waves or tides. in use. The anchoring device includes anchors (anchors), anchor chains (anchor chains), lifting machines (windlass), anchor holes (Hawse pipes) that bring the anchor chains out of the anchors, and the supply of anchor chains. Chain controllers (chain compressors), chain lockers (chain lockers) that store the chain, chain pipes (chain pipes) that guide the chain from the chain of the lifting machine to the chain ) And the like. As a lifting machine, throwing with a manual brake has been mainly performed, but since the anchoring is not smooth unless the crew is skilled in brake operation, it is possible to automate the throwing work with the lifting machine. It has been demanded.
 例えば、特許文献1には、錨鎖が巻き掛けられる鎖車(チェーンホイル;Chain wheel)を駆動する油圧モータにブレーキを設けるとともに、該油圧モータに制御バルブを設けて、鎖車の回転数(すなわち、錨鎖の送り長)を計数した結果に基づいて該ブレーキの制動又は該制御バルブを自動投錨速度制御する揚錨機が開示されている。なお、この自動投錨速度制御の具体的な内容としては、錨車の軸回転数がロータリーエンコーダによって計測され、その計測された回転数が所定の設定値となるまで比較演算されることが例示されている。 For example, Patent Document 1 discloses that a brake is provided in a hydraulic motor that drives a chain wheel (chain wheel) around which a chain is wound, and a control valve is provided in the hydraulic motor so that the rotation speed of the chain wheel (that is, In addition, a lifting machine is disclosed that brakes the brake or automatically controls the throwing speed of the control valve based on the result of counting the feed length of the chain. As specific contents of this automatic throwing speed control, the shaft rotational speed of the carriage is measured by a rotary encoder, and comparison calculation is performed until the measured rotational speed reaches a predetermined set value. ing.
特開平9-249391号公報JP-A-9-249391
 特許文献1に開示されている揚錨機は、鎖車の回転数を計数して得られる錨鎖の送り長に基づいてブレーキによる鎖車の制動を自動投錨速度制御している。つまり、特許文献1の揚錨機は、錨が海底に到達するまでの落下(投錨)の過程を錨鎖の送り長のパラメータのみで判別しているにすぎず、このため、例えば錨鎖の送り長が所定の目標投錨長に到達することにより錨鎖の巻揚げが終了した時又は投錨が終了した時を判別して、油圧モータの回転を停止させるようブレーキをかける単純な制御しか実施できない。 The lifting machine disclosed in Patent Document 1 performs automatic throwing speed control of braking of a chain by a brake based on the feed length of the chain obtained by counting the rotation speed of the chain. That is, the lifting machine of Patent Document 1 merely determines the process of dropping (throwing) until the dredger reaches the seabed based only on the anchor chain feed length parameter. When the anchor reaches the predetermined target throwing length, it is possible to discriminate when the hoisting of the chain is finished or when the throwing is finished, and only simple control for applying a brake to stop the rotation of the hydraulic motor can be performed.
 揚錨機の受ける機械的な衝撃などに鑑みれば、錨及び錨鎖を所定の目標投錨速度に従って落下させることが好ましいところ、特許文献1の揚錨機では、このように目標投錨速度に従って落下させることが困難という問題があった。また、ブレーキなどの機械系の応答性(時間遅れ)の影響を受けて錨鎖の送り長にはバラツキが生じやすく、このため、ブレーキによる鎖車の制動が不安定になりやすいという問題もあった。 In view of the mechanical impact received by the lifting machine, it is preferable to drop the eaves and the chain according to a predetermined target throwing speed. In the lifting machine of Patent Document 1, it is caused to fall according to the target throwing speed in this way. There was a problem of difficulty. In addition, the chain feed length is likely to vary under the influence of mechanical response such as brakes (time delay), and this causes the problem that the braking of the chain wheel by the brake tends to become unstable. .
 本発明は、このような課題を解決するためになされたもので、その目的は、投錨の際の錨鎖の送り長(投錨長)が目標投錨長に到達するまで目標投錨速度に追従した投錨速度で投錨することが可能な投揚錨装置を提供することにある。 The present invention has been made in order to solve such a problem, and the purpose thereof is a throwing speed that follows the target throwing speed until the feed length (throwing length) of the chain during throwing reaches the target throwing length. An object of the present invention is to provide a lifting anchor device that can be anchored at a distance.
 前記の課題を解決するために、本発明のある形態に係る投揚錨装置は、前記錨鎖が巻き掛けられる錨車と、前記錨車の回転を制動するブレーキ機構と、前記錨車の実回転速度を計測する回転速度計測手段と、前記錨鎖の目標投錨速度を設定する設定手段と、前記ブレーキ機構を駆動する油圧アクチュエータを含み、該油圧アクチュエータに供給される圧力油の圧力に応じて前記ブレーキ機構の制動力を調節する制動力調節機構と、前記回転速度計測手段により計測された前記錨車の実回転速度が前記設定手段により設定された前記目標投錨速度に追従するように、前記油圧アクチュエータに供給する圧力油の圧力を制御するように前記制動力調節機構に指令電圧を出力する制御手段と、を備えたものである。 In order to solve the above-described problems, a lifting dredge device according to an embodiment of the present invention includes a gear wheel around which the gear chain is wound, a brake mechanism that brakes rotation of the gear wheel, and actual rotation of the gear wheel. A rotation speed measuring means for measuring a speed; a setting means for setting a target throwing speed of the chain; and a hydraulic actuator for driving the brake mechanism, and the brake according to pressure of pressure oil supplied to the hydraulic actuator A braking force adjusting mechanism for adjusting a braking force of the mechanism, and the hydraulic actuator so that an actual rotational speed of the wheel measured by the rotational speed measuring unit follows the target throwing speed set by the setting unit. Control means for outputting a command voltage to the braking force adjusting mechanism so as to control the pressure of the pressure oil supplied to the brake.
 前記構成によれば、錨車の回転数(すなわち、錨鎖の送り長)ではなく錨車の回転速度に基づいて、錨車の実回転速度が目標投錨速度に追従するように錨車の回転を制動することができ、これにより錨鎖を所望の投錨速度で落下させることが可能となる。 According to the above-described configuration, the rotation of the carriage is performed so that the actual rotation speed of the carriage follows the target throwing speed based on the rotation speed of the carriage instead of the rotation speed of the carriage (that is, the feed length of the chain). The brake can be braked, which makes it possible to drop the anchor chain at a desired throwing speed.
 前記投揚錨装置において、投錨開始までに前記制動力調節機構への前記指令電圧のバイアス値を決定するために、前記錨鎖の投錨速度が所定の初期速度となるまで前記指令電圧の電圧値を漸次増加させ、前記錨鎖の投錨速度が前記初期速度以上となったときの前記指令電圧の電圧値を前記指令電圧のバイアス値として決定する指令電圧バイアス決定手段をさらに備える、としてもよい。 In the hoisting device, in order to determine the bias value of the command voltage to the braking force adjusting mechanism before starting the hoisting, the voltage value of the command voltage is set until the anchoring speed of the anchor chain reaches a predetermined initial speed. Command voltage bias determining means may be further provided that gradually increases and determines the voltage value of the command voltage as the bias value of the command voltage when the throwing speed of the chain becomes equal to or higher than the initial speed.
 前記構成によれば、制動力調節機構へ与える指令電圧のバイアス値を錨鎖が所定の投錨速度で動き始める指令値を基準として決定するので、投錨長やブレーキライニング(brake lining)の摩耗等の外部要因の影響を低減することができ、制動力調節機構によるブレーキ機構の調節を安定化させることができる。 According to the above configuration, the bias value of the command voltage applied to the braking force adjusting mechanism is determined based on the command value at which the chain starts to move at a predetermined throwing speed, so that the external length such as throwing length and brake lining wear can be reduced. The influence of the factor can be reduced, and the adjustment of the brake mechanism by the braking force adjustment mechanism can be stabilized.
 前記投揚錨装置において、前記指令電圧がPWM信号成分を含むものであって、前記PWM信号の振幅が、前記ブレーキ機構の制動力と前記指令電圧との関係において存在するヒステリシスのヒステリシス幅より大きく、前記PWM信号の中心電圧が、前記振幅が前記ヒステリシス幅を完全に跨ぐように設定される、としてもよい。 In the hoisting device, the command voltage includes a PWM signal component, and the amplitude of the PWM signal is larger than the hysteresis width of the hysteresis existing in the relationship between the braking force of the brake mechanism and the command voltage. The center voltage of the PWM signal may be set so that the amplitude completely crosses the hysteresis width.
 前記構成によれば、前記ブレーキ機構の制動力と前記指令電圧との関係において存在するヒステリシスのヒステリシス幅を超える振幅の指令電圧が制動力調節機構へ入力されるため、制動力の制御において、このヒステリシスをキャンセルすることができる。 According to the above configuration, the command voltage having an amplitude exceeding the hysteresis width of the hysteresis existing in the relationship between the braking force of the brake mechanism and the command voltage is input to the braking force adjustment mechanism. Hysteresis can be canceled.
 前記投揚錨装置において、前記設定手段は、目標投錨長をさらに設定可能であり、投錨開始からの経過時間を計測する投錨時間計測手段と、前記投錨時間計測手段により計測された投錨時間と前記目標投錨速度とに基づいて前記錨車から送り出された前記錨鎖の実投錨長を算出する投錨長算出手段と、前記目標投錨速度と前記目標投錨長と予め設定される減速度に基づいて前記錨車から送り出された前記錨鎖の減速開始投錨長を算出する減速開始投錨長算出手段と、をさらに備え、前記制御手段は、前記実投錨長が前記減速開始投錨長に到達した場合、前記実回転速度が前記減速度に応じて減速するように、前記油圧アクチュエータに供給する圧力油の圧力を制御するように前記制動力調節機構に指令電圧を出力する、としても良い。 In the anchoring device, the setting means can further set a target anchoring length, and anchoring time measuring means for measuring an elapsed time from the anchoring start; anchoring time measured by the anchoring time measuring means; Throwing length calculation means for calculating the actual throwing length of the spear chain sent out from the carriage based on the target throwing speed, the hail based on the target throwing speed, the target throwing length, and a preset deceleration. A deceleration start anchor length calculating means for calculating a deceleration start anchor length of the chain sent out from the vehicle, and the control means, when the actual anchor length reaches the deceleration start anchor length, the actual rotation A command voltage may be output to the braking force adjusting mechanism so as to control the pressure of the pressure oil supplied to the hydraulic actuator so that the speed is reduced according to the deceleration.
 前記構成によれば、投錨時間と目標投錨速度とに基づいて錨鎖の実投錨長(送り長)を速度制御の過程で逐次把握することができる。また、錨鎖の実投錨長が目標投錨長に到達する前に(実投錨長が減速開始投錨長に到達した後に)、錨車の実回転速度が減速度に応じて減速するように錨車の回転を制動することができ、これにより、錨が着底した際に船舶に与えられる機械的な衝撃を抑制することが可能となる。 According to the above configuration, the actual throwing length (feed length) of the chain can be sequentially grasped in the speed control process based on the throwing time and the target throwing speed. Also, before the actual throwing length of the chain reaches the target throwing length (after the actual throwing length reaches the deceleration start throwing length), the actual speed of the carriage is decelerated according to the deceleration. The rotation can be braked, and thereby, it is possible to suppress the mechanical impact given to the ship when the dredger reaches the bottom.
 前記投揚錨装置において、前記設定手段は、前記目標投錨速度を経時的に設定可能である、としてもよい。 In the anchoring device, the setting means may be capable of setting the target anchoring speed over time.
 前記構成によれば、よりきめ細やかに投錨を行うことが可能となる。 According to the above-described configuration, it becomes possible to perform throwing more finely.
 本発明によれば、投錨の際の錨鎖の送り長(投錨長)が目標投錨長に到達するまで目標投錨速度に追従した投錨速度で投錨することが可能な投揚錨装置を提供することができる。 According to the present invention, it is possible to provide a lifting rod device capable of anchoring at a anchoring speed that follows the target anchoring speed until the anchor chain feed length (throwing length) reaches the target anchoring length. it can.
図1は本発明の実施の形態に係る投揚錨装置の全体構成例を示した図である。FIG. 1 is a diagram showing an overall configuration example of a lifting rod device according to an embodiment of the present invention. 図2は本発明の実施の形態におけるブレーキ付駆動装置の制動力調節機構の一例を示した図である。FIG. 2 is a diagram showing an example of a braking force adjusting mechanism of the brake-equipped driving device according to the embodiment of the present invention. 図3は本発明の実施の形態における制動力調節機構の油圧系統例を示した図である。FIG. 3 is a diagram showing an example of a hydraulic system of the braking force adjusting mechanism in the embodiment of the present invention. 図4は本発明の実施の形態における制動力調節機構の油圧系統の変形例を示した図である。FIG. 4 is a view showing a modification of the hydraulic system of the braking force adjusting mechanism in the embodiment of the present invention. 図5は本発明の実施の形態に係る投揚錨装置の自動投錨速度制御の動作例を示すフローチャートである。FIG. 5 is a flowchart showing an operation example of automatic anchoring speed control of the anchoring device according to the embodiment of the present invention. 図6は本発明の実施の形態における投錨開始前に制動力調節機構への指令電圧のバイアス値を得る自動インチング制御の動作例を示すフローチャートである。FIG. 6 is a flowchart showing an operation example of automatic inching control for obtaining a bias value of a command voltage to the braking force adjusting mechanism before starting the throwing according to the embodiment of the present invention. 図7aは本発明の実施の形態におけるブレーキ機構の制動力と制動力調節機構への指令電圧との関係において存在するヒステリシスを示した図である。FIG. 7a is a diagram showing hysteresis that exists in the relationship between the braking force of the brake mechanism and the command voltage to the braking force adjusting mechanism in the embodiment of the present invention. 図7bは本発明の実施の形態におけるPWM(パルス幅変調)信号を示した図である。FIG. 7b is a diagram showing a PWM (pulse width modulation) signal in the embodiment of the present invention.
 以下、本発明の好ましい実施の形態を、図面を参照しながら説明する。なお、以下では全ての図を通じて同一又は相当する要素には同一の参照符号を付して、特に言及しない場合にはその重複する説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In the following description, the same or corresponding elements are denoted by the same reference symbols throughout the drawings, and redundant description thereof is omitted unless otherwise specified.
 [投揚錨装置の全体構成例]
 図1は、本発明の実施の形態に係る投揚錨装置の全体構成例を示した図である。図1に示す投揚錨装置1は、錨7と、錨7を一端に結び付けた錨鎖3と、船舶10の甲板5上に設置された揚錨機2と、錨鎖3を投錨の際に舷外に送り出すための錨鎖孔12と、揚錨機2と錨鎖孔12との間に設けられて錨鎖3が船舶10の係留中に送り出されることを抑止する制鎖器14と、甲板5下の空間を利用して錨鎖3を格納する錨鎖庫16と、揚錨機2の鎖車21から錨鎖庫16に向けて錨鎖3を誘導する錨鎖管18と、を備えている。さらに、投揚錨装置1は、揚錨機2の鎖車21を駆動するとともに鎖車21の回転に対する制動力を調節可能な制動力調節機構30と、揚錨機2の鎖車21の回転速度(単位時間あたりの回転数)を計測する回転速度計測器22と、回転速度計測器22により計測された鎖車21の回転速度に基づいて制動力調節機構30を制御する制御装置100とを備えている。
[Example of overall configuration of the anchoring device]
FIG. 1 is a diagram showing an overall configuration example of a lifting rod device according to an embodiment of the present invention. The anchoring device 1 shown in FIG. 1 includes a anchor 7, a anchor chain 3 that connects the anchor 7 to one end, a lifting machine 2 installed on the deck 5 of the ship 10, and the anchor chain 3 when anchoring. The anchor hole 12 for sending out to the outside, the chain guard 14 provided between the lifting machine 2 and the anchor chain hole 12 to prevent the anchor chain 3 from being sent out while the ship 10 is moored, and the bottom of the deck 5 A chain 16 for storing the chain 3 using the space and a chain pipe 18 for guiding the chain 3 from the chain 21 of the lifting machine 2 toward the chain 16 are provided. Further, the hoisting device 1 drives the chain wheel 21 of the lifting machine 2 and adjusts the braking force against the rotation of the chain wheel 21, and the rotation of the chain wheel 21 of the lifting machine 2. A rotational speed measuring device 22 that measures the speed (the number of revolutions per unit time), and a control device 100 that controls the braking force adjusting mechanism 30 based on the rotational speed of the chain wheel 21 measured by the rotational speed measuring device 22. I have.
 回転速度計測器22は、タコメータのように回転速度を直接的に計測可能な計器のみならず、回転数センサや回転子位置センサなどから得られた計測結果から回転速度を間接的に求めることが可能な計器であってもよい。回転速度計測器22によって計測される単位は、例えば、回転毎分(rpm; rotation per minute)、回転毎秒(rps; rotation per second)、ラジアン毎秒(rad/sec; radian per second)である。回転速度計測器22は、鎖車21の回転軸の端部に設けられるが、この位置に限定されるものではなく、例えば、鎖車21の回転速度を計測可能な位置(例えば、後述のブレーキドラム50の回転軸51上)であれば何処でもよい。 The rotational speed measuring device 22 can obtain the rotational speed indirectly from measurement results obtained from a rotational speed sensor, a rotor position sensor, and the like as well as an instrument that can directly measure the rotational speed, such as a tachometer. It may be a possible instrument. The units measured by the rotational speed measuring device 22 are, for example, rotation per minute (rpm; rotation per minute), rotation per second (rps; rotation per second), and radians per second (rad / sec; radian per second). The rotational speed measuring device 22 is provided at the end of the rotational shaft of the chain wheel 21, but is not limited to this position. For example, the rotational speed measuring device 22 can measure the rotational speed of the chain wheel 21 (for example, a brake described later). As long as it is on the rotation shaft 51 of the drum 50).
 制御装置100は、制御器101(CPU、DSP、マイクロコントローラ、PLC(Programmable Logic Controller)、論理回路など)と、記憶器102(ROM、RAMなど)と、入力装置(キーボード、マウス、タッチパネルなど)103と、出力装置(ディスプレイなど)104と、を備えた情報処理装置として実現される。なお、制御装置100は制御器101及び記憶器102のみを具備しており、制御装置100をパーソナルコンピュータなどの端末装置と通信可能に接続して、該端末装置が備える入力装置及び出力装置を利用するように実現されてもよい。なお、制御装置100は、互いに協働して分散制御する複数の制御器101を備えて構成されてもよい。 The control device 100 includes a controller 101 (CPU, DSP, microcontroller, PLC (Programmable Logic Controller, logic circuit, etc.), a storage device 102 (ROM, RAM, etc.), and an input device (keyboard, mouse, touch panel, etc.). 103 and an information processing apparatus provided with an output device (such as a display) 104. The control device 100 includes only the controller 101 and the storage device 102. The control device 100 is communicably connected to a terminal device such as a personal computer, and an input device and an output device included in the terminal device are used. It may be realized to do. The control device 100 may include a plurality of controllers 101 that perform distributed control in cooperation with each other.
 また、制御装置100は、回転速度計測器22により計測された揚錨機2の鎖車21の回転速度を取得するために、信号入力インタフェースや信号変換器などの部品をさらに備えている。さらに、制御装置100は、制動力調節機構30の油圧系統に含まれる後述の電磁リリーフ弁36又は電磁減圧弁38に対してその開度指令値を電気信号(例えば、指令電圧)として伝達するために、信号変換器や信号出力インタフェースなどの部品をさらに備えている。 Further, the control device 100 further includes components such as a signal input interface and a signal converter in order to acquire the rotational speed of the chain wheel 21 of the lifting machine 2 measured by the rotational speed measuring device 22. Further, the control device 100 transmits the opening command value as an electrical signal (for example, command voltage) to an electromagnetic relief valve 36 or an electromagnetic pressure reducing valve 38 described later included in the hydraulic system of the braking force adjusting mechanism 30. In addition, components such as a signal converter and a signal output interface are further provided.
 また、制御装置100は、後述の投錨時間を計測する目的で、制御器101が具備するソフトウェアタイマやハードウェアタイマを利用してもよいし、これらのタイマを制御器101とは独立して設けるようにしてもよい。 The control device 100 may use a software timer or a hardware timer provided in the controller 101 for the purpose of measuring a throwing time described later, or these timers are provided independently of the controller 101. You may do it.
 また、制御装置100は、後述の投錨長を算出する目的で、制御器101が具備する積分器や乗算器を利用してもよいし、これらの演算器を制御器101とは独立して設けるようにしてもよい。 The control device 100 may use an integrator or a multiplier included in the controller 101 for the purpose of calculating a throwing length, which will be described later, or these arithmetic units are provided independently of the controller 101. You may do it.
 [制動力調節機構の構造例]
 図2は、本発明の実施の形態における制動力調節機構の一例を示した図である。なお、図2の説明で用いる方向の概念は、船長方向を前後方向とし、船舶10の幅方向を左右方向とし、船舶10の高さ方向を上下方向とする。したがって、図2は制動力調節機構30の左側面図を表している。
[Example structure of braking force adjustment mechanism]
FIG. 2 is a diagram showing an example of a braking force adjusting mechanism in the embodiment of the present invention. The concept of the direction used in the description of FIG. 2 is that the ship length direction is the front-rear direction, the width direction of the ship 10 is the left-right direction, and the height direction of the ship 10 is the up-down direction. Accordingly, FIG. 2 shows a left side view of the braking force adjusting mechanism 30.
 図2に示すように、制動力調節機構30は、船舶10の甲板5上に設置された基台41と、基台41から前後方向(水平方向)に所定の間隔で上方向にそれぞれ延設されているブラケット41a及びブラケット41bと、ブラケット41a及びブラケット41bによって前後方向(水平方向)と平行となるように支持されるアクチュエータ支持部材42と、ブラケット41a及びアクチュエータ支持部材42の結合部分(42a)から上方向(垂直方向)に支持されるバンド支持部材43と、長手方向が上下方向と平行になるように、下方向側(油圧アクチュエータ40の圧力油供給側)にあるシリンダボトム部40aがアクチュエータ支持部材42の中央部と結合されている油圧アクチュエータ40と、油圧アクチュエータ40の上方向側(ピストンロッド401側)にあるシリンダヘッド部40bの上下方向の伸縮と連動して後述の連結点45bを支点として後述の棹状部材48及び後述のブラケット47とともに回動可能となるよう構成されたレバー部材45と、その回転軸51が鎖車21の回転軸21aと連結されているブレーキドラム50と、ブレーキドラム50の外周を取り囲むとともにブレーキドラム50が露出する空隙部を有するブレーキバンド52と、ブレーキバンド52の一端側に設けられ、バンド支持部材43の一端と結合されるブラケット46と、ブレーキバンド52の他端側に設けられ前記空隙部を介してブラケット46と互いに対向するブラケット47と、その一端はレバー部材45と連結され、その他端側に設けられた固定部48aがブラケット47と連結されている棹状部材48と、を備えている。 As shown in FIG. 2, the braking force adjusting mechanism 30 includes a base 41 installed on the deck 5 of the ship 10, and extends upward from the base 41 in the front-rear direction (horizontal direction) at predetermined intervals. Bracket 41a and bracket 41b, an actuator support member 42 supported by the bracket 41a and bracket 41b so as to be parallel to the front-rear direction (horizontal direction), and a coupling portion (42a) of the bracket 41a and the actuator support member 42 The cylinder bottom portion 40a on the lower side (the pressure oil supply side of the hydraulic actuator 40) is the actuator so that the band support member 43 supported in the upward direction (vertical direction) from the top and the longitudinal direction is parallel to the vertical direction The hydraulic actuator 40 coupled to the central portion of the support member 42 and the upward direction of the hydraulic actuator 40 In conjunction with the vertical expansion and contraction of the cylinder head portion 40b (on the piston rod 401 side), the cylinder head portion 40b is configured to be rotatable together with a later-described hook member 48 and a later-described bracket 47 with a later-described connection point 45b as a fulcrum. A lever member 45, a brake drum 50 whose rotating shaft 51 is connected to the rotating shaft 21a of the chain wheel 21, a brake band 52 that surrounds the outer periphery of the brake drum 50 and has a gap that exposes the brake drum 50; A bracket 46 provided on one end side of the brake band 52 and coupled to one end of the band support member 43; a bracket 47 provided on the other end side of the brake band 52 and facing the bracket 46 through the gap; One end thereof is connected to the lever member 45, and a fixing portion 48a provided on the other end side is a bracket. And Saojo member 48 is coupled with 7, and a.
 油圧アクチュエータ40は、その筐体内で上下方向に摺動可能なピストン400及びピストンロッド401と、ピストン400及びピストンロッド401を油圧アクチュエータ40の圧力油供給側に付勢する螺旋状のスプリング402と、を備えている。つまり、油圧アクチュエータ40は、その筐体内に供給された圧力油による上方向への圧力と、スプリング402による下方向への付勢力との関係に応じて、ピストン400及びピストンロッド401を上下方向に伸縮自在となるように構成されている。なお、油圧アクチュエータ40の筐体内は、ピストンロッド401を収容するロッド側油室401aと、ピストンロッド401を収容しないピストン側油室400aとに区画されている。 The hydraulic actuator 40 includes a piston 400 and a piston rod 401 that are slidable in the vertical direction within the casing, a spiral spring 402 that biases the piston 400 and the piston rod 401 toward the pressure oil supply side of the hydraulic actuator 40, It has. That is, the hydraulic actuator 40 moves the piston 400 and the piston rod 401 in the vertical direction according to the relationship between the upward pressure due to the pressure oil supplied into the casing and the downward biasing force by the spring 402. It is configured to be telescopic. The housing of the hydraulic actuator 40 is partitioned into a rod side oil chamber 401 a that houses the piston rod 401 and a piston side oil chamber 400 a that does not contain the piston rod 401.
 ブレーキドラム50は揚錨機2の鎖車21と同軸であるので、鎖車21と同期して回転する。なお、ブレーキドラム50及び鎖車21を回転させるモータとしては油圧モータ及び電気モータ(いずれも図示せず)のいずれでもよい。ブレーキドラム50の外周を取り囲むブレーキバンド52は、ブレーキドラム50の回転を制動可能とするように帯状の摩擦材が表面に貼付されている。なお、揚錨機2の鎖車21を駆動する油圧モータ及び電気モータの回転子の外周を取り囲むようにブレーキバンド52が設置されていてもよい。 Since the brake drum 50 is coaxial with the chain wheel 21 of the lifting machine 2, the brake drum 50 rotates in synchronization with the chain wheel 21. The motor that rotates the brake drum 50 and the chain wheel 21 may be either a hydraulic motor or an electric motor (both not shown). A band-shaped friction material is stuck on the surface of the brake band 52 that surrounds the outer periphery of the brake drum 50 so that the rotation of the brake drum 50 can be braked. In addition, the brake band 52 may be installed so that the outer periphery of the rotor of the hydraulic motor and electric motor which drive the chain wheel 21 of the lifting machine 2 may be surrounded.
 前述の構造により、制動力調節機構30は、つぎのような動作を行う。まず、油圧アクチュエータ40の筐体内に圧力油が供給されない場合(通常の場合)、ピストン400及びピストンロッド401は、スプリング402の弾発力によって油圧アクチュエータ40の圧力油供給側に付勢されている。また、ブレーキドラム50に対してブレーキバンド52が完全に締め付けられた状態となり、ブレーキドラム50及び鎖車21の回転が停止する。 With the above-described structure, the braking force adjusting mechanism 30 performs the following operation. First, when pressure oil is not supplied into the casing of the hydraulic actuator 40 (normal case), the piston 400 and the piston rod 401 are urged toward the pressure oil supply side of the hydraulic actuator 40 by the elastic force of the spring 402. . Further, the brake band 52 is completely tightened with respect to the brake drum 50, and the rotation of the brake drum 50 and the chain wheel 21 is stopped.
 一方、油圧アクチュエータ40の筐体内(ピストン側油室400a)に圧力油が供給された場合(加圧時の場合)、ピストン400及びピストンロッド401は圧力油の圧力によって上方向へと伸長していき、これにより、レバー部材45は、バンド支持部材43、レバー部材45、及びブラケット46の連結点45bを支点として時計回りに回動する。これに伴って、棹状部材48は、ブレーキドラム50に対するブレーキバンド52による締め付けを解除する方向(図2の例では右斜め下方向)に作動する。このとき、ブレーキドラム50及び鎖車21の回転速度が上昇を開始する。また、ピストン400及びピストンロッド401の伸長度合に応じたブレーキバンド52による締め付け力を変化させることにより、ブレーキドラム50及び鎖車21の回転速度が調整される。 On the other hand, when pressure oil is supplied into the casing (piston side oil chamber 400a) of the hydraulic actuator 40 (when pressurized), the piston 400 and the piston rod 401 are extended upward by the pressure oil pressure. As a result, the lever member 45 rotates clockwise with the connection point 45b of the band support member 43, the lever member 45, and the bracket 46 as a fulcrum. Along with this, the hook-shaped member 48 operates in a direction to release tightening by the brake band 52 with respect to the brake drum 50 (in the example of FIG. 2 diagonally downward to the right). At this time, the rotation speeds of the brake drum 50 and the chain wheel 21 start to increase. Moreover, the rotational speed of the brake drum 50 and the chain wheel 21 is adjusted by changing the tightening force by the brake band 52 according to the degree of extension of the piston 400 and the piston rod 401.
 [制動力調節機構の油圧系統例]
 図3は、本発明の実施の形態における制動力調節機構の油圧系統例を示した図である。
[Example of hydraulic system of braking force adjustment mechanism]
FIG. 3 is a diagram showing an example of a hydraulic system of the braking force adjusting mechanism in the embodiment of the present invention.
 図3に示す油圧系統では、油圧ポンプから油圧アクチュエータへの圧力油の流入量がオーバーフローの状態を前提として余剰流量を調整することで間接的に油圧アクチュエータへの圧力油の流入量を決定するという、いわゆるブリードオフ回路が構築されている。なお、ブリードオフ回路を実現するために、油圧アクチュエータ40への圧力油供給側には揚錨機2の鎖車21の回転速度の計測結果(回転速度計測器22の出力)を表す電気信号のレベルに比例して開閉する電磁リリーフ弁36が設けられて、電磁リリーフ弁36の開閉度合に応じて油圧アクチュエータ40へ供給される圧力油の圧力が調整される。なお、前述のとおり、油圧アクチュエータ40のピストンロッド401の伸縮が、ブレーキドラム50の外周を取り囲むブレーキバンド52の締め付け度合と関連付けられているので、油圧アクチュエータ40へ供給される圧力油の圧力が電磁リリーフ弁36によって任意に調整されることによって、ブレーキバンド52による制動力が任意に調節される。 In the hydraulic system shown in FIG. 3, the inflow amount of pressure oil to the hydraulic actuator is indirectly determined by adjusting the surplus flow rate on the assumption that the inflow amount of pressure oil from the hydraulic pump to the hydraulic actuator overflows. A so-called bleed-off circuit is constructed. In order to realize a bleed-off circuit, an electric signal representing the measurement result (output of the rotation speed measuring device 22) of the rotation speed of the chain wheel 21 of the lifting machine 2 is provided on the pressure oil supply side to the hydraulic actuator 40. An electromagnetic relief valve 36 that opens and closes in proportion to the level is provided, and the pressure of the pressure oil supplied to the hydraulic actuator 40 is adjusted according to the degree of opening and closing of the electromagnetic relief valve 36. As described above, since the expansion and contraction of the piston rod 401 of the hydraulic actuator 40 is associated with the tightening degree of the brake band 52 surrounding the outer periphery of the brake drum 50, the pressure of the pressure oil supplied to the hydraulic actuator 40 is electromagnetic. By arbitrarily adjusting with the relief valve 36, the braking force by the brake band 52 is arbitrarily adjusted.
 図3に示す油圧系統の構成を具体的に説明する。図3に示す油圧系統は、作動油を貯蔵する油タンク31と、ブレーキバンド52と連結されたピストンロッド401を伸縮させる油圧アクチュエータ40と、油タンク31から油圧アクチュエータ40のピストン側油室400aの圧力油供給口へと作動油を供給する油供給管路301と、油圧アクチュエータ40のロッド側油室401aの圧力油排出口から油タンク31へと作動油を排出する油排出管路302と、を備えている。 The configuration of the hydraulic system shown in FIG. 3 will be specifically described. The hydraulic system shown in FIG. 3 includes an oil tank 31 that stores hydraulic oil, a hydraulic actuator 40 that expands and contracts a piston rod 401 connected to the brake band 52, and a piston-side oil chamber 400 a of the hydraulic actuator 40 from the oil tank 31. An oil supply line 301 for supplying hydraulic oil to the pressure oil supply port, an oil discharge line 302 for discharging hydraulic oil from the pressure oil discharge port of the rod side oil chamber 401a of the hydraulic actuator 40 to the oil tank 31, It has.
 また、油供給管路301の配管系統上には、油タンク31から作動油を吸い上げてその作動油を圧力油に変えて吐出する油圧ポンプ32と、油圧ポンプ32から吐出された圧力油の流量を一定とするよう調整する流量調整弁(34,35)と、油圧ポンプ32と流量調整弁(34,35)との間に設けられ圧力油の流れを一方向に制限するチェック弁(逆止弁)33と、油供給管路301のうち流量調整弁(34,35)と油圧アクチュエータ40のピストン側油室400aとの間を接続する配管から分岐されて油タンク31へと至るブリードオフ管路303と、ブリードオフ管路303の配管系統上に設けられて流用調整弁(34,35)から油圧アクチュエータ40へ供給される圧力油の全部又は一部を油タンク31へと戻す電磁リリーフ弁36と、油供給管路301のうち油圧ポンプ32とチェック弁33との間を接続する配管から分岐されて油タンク31へと至るリリーフ管路304と、リリーフ管路304の配管系統上に設けられて油圧ポンプ32から吐出された作動油の一部を油タンク31へと戻すリリーフ弁37とを備えている。なお、流量調整弁(34,35)は、チェック弁34と可変絞り弁35との並列接続により構成されている。 Further, on the piping system of the oil supply pipeline 301, a hydraulic pump 32 that sucks up the hydraulic oil from the oil tank 31 and discharges the hydraulic oil into pressure oil, and a flow rate of the pressure oil discharged from the hydraulic pump 32. A flow rate adjusting valve (34, 35) that adjusts the flow rate to be constant, and a check valve (check) that is provided between the hydraulic pump 32 and the flow rate adjusting valve (34, 35) and restricts the flow of pressure oil in one direction. Valve) 33 and a bleed-off pipe branched from a pipe connecting the flow rate adjusting valves (34, 35) of the oil supply pipe line 301 and the piston-side oil chamber 400a of the hydraulic actuator 40 to the oil tank 31. An electromagnetic relay provided on the piping system of the passage 303 and the bleed-off conduit 303 to return all or a part of the pressure oil supplied to the hydraulic actuator 40 from the diversion regulating valves (34, 35) to the oil tank 31. A relief pipe 304 branched from a pipe connecting the hydraulic pump 32 and the check valve 33 in the oil supply pipe 301 and the oil supply pipe 301 to the oil tank 31; And a relief valve 37 for returning a part of the hydraulic oil discharged from the hydraulic pump 32 to the oil tank 31. The flow rate adjusting valves (34, 35) are constituted by a parallel connection of a check valve 34 and a variable throttle valve 35.
 なお、前記の構成の中で、チェック弁33、流量調整弁(34,35)、及びリリーフ弁37は油圧系統の信頼性の向上のために設けられているが、油圧系統の用途に応じてこれらの弁(33,34,35,37)の少なくともいずれかを設けなくてもよい。 In the above configuration, the check valve 33, the flow rate adjusting valves (34, 35), and the relief valve 37 are provided to improve the reliability of the hydraulic system, but depending on the use of the hydraulic system. At least one of these valves (33, 34, 35, 37) may not be provided.
 図3に示す油圧系統の動作及びそれに伴う投錨の動作を説明する。まず、油圧ポンプ32の運転が停止しており、且つ電磁リリーフ弁36が開いている状態(入力ポートと出力ポートとの間が遮断した状態)とする。このとき、油圧アクチュエータ40のピストン400及びピストンロッド401には上方向への圧力が殆どかからないので、ブレーキドラム50に対するブレーキバンド52の締め付けが維持されており、この結果、揚錨機2の鎖車21に巻き掛けられた錨鎖3及びその一端に結び付けられた錨7は静止している。 The operation of the hydraulic system shown in FIG. 3 and the accompanying throwing operation will be described. First, it is assumed that the operation of the hydraulic pump 32 is stopped and the electromagnetic relief valve 36 is open (a state where the input port and the output port are blocked). At this time, since the upward pressure is hardly applied to the piston 400 and the piston rod 401 of the hydraulic actuator 40, the tightening of the brake band 52 to the brake drum 50 is maintained. As a result, the chain of the lifting machine 2 The eaves chain 3 wound around 21 and the eaves 7 tied to one end thereof are stationary.
 投錨開始により油圧ポンプ32の動作が開始すると、油圧ポンプ32からチェック弁33及び流量調整弁(34,35)を介して油圧アクチュエータ40のピストン側油室400aへと供給される圧力油は、電磁リリーフ弁36によって油タンク31へのブリードオフ経路が遮断されているので、その全てが油圧アクチュエータ40のピストン側油室400aへと供給される。すると、油圧アクチュエータ40のピストン側油室400aの圧力は、徐々に上昇していくことになり、これに伴い、スプリング402による弾性的な付勢力に抗って油圧アクチュエータ40のピストン400及びピストンロッド401が上方向に伸長する。これにより、ブレーキドラム50に対するブレーキバンド52の締め付け力が緩和し、揚錨機2の鎖車21に巻き掛けられた錨鎖3及びその一端に結び付けられた錨7の送り出しが開始する。なお、電磁リリーフ弁36の設定圧力に到達すれば油圧アクチュエータ40のピストン側油室400aへと供給される圧力油の一部が油タンク31へとブリードオフ(リリーフ)される。これにより、ピストン400及びピストンロッド401の上方向への伸縮を徐々に停止しながら、油圧アクチュエータ40のピストン側油室400aの圧力は、電磁リリーフ弁36の設定圧力以下に維持される。 When the operation of the hydraulic pump 32 is started by starting the throwing operation, the pressure oil supplied from the hydraulic pump 32 to the piston-side oil chamber 400a of the hydraulic actuator 40 via the check valve 33 and the flow rate adjusting valve (34, 35) Since the bleed-off path to the oil tank 31 is blocked by the relief valve 36, all of that is supplied to the piston-side oil chamber 400 a of the hydraulic actuator 40. Then, the pressure in the piston-side oil chamber 400a of the hydraulic actuator 40 gradually increases, and accordingly, the piston 400 and the piston rod of the hydraulic actuator 40 against the elastic biasing force of the spring 402. 401 extends upward. Thereby, the tightening force of the brake band 52 against the brake drum 50 is relaxed, and the feeding of the eaves 3 wound around the chain wheel 21 of the lifting machine 2 and the eaves 7 linked to one end thereof is started. If the set pressure of the electromagnetic relief valve 36 is reached, part of the pressure oil supplied to the piston side oil chamber 400a of the hydraulic actuator 40 is bleed off (relieved) to the oil tank 31. As a result, the pressure in the piston-side oil chamber 400a of the hydraulic actuator 40 is maintained below the set pressure of the electromagnetic relief valve 36 while gradually stopping the upward expansion and contraction of the piston 400 and the piston rod 401.
 さらに、投錨が開始されると、揚錨機2の鎖車21の回転速度が鎖車21の回転軸上に設けられた回転速度計測器22によって計測される。回転速度計測器22により計測された回転速度に応じた電気信号のレベルに比例するように電磁リリーフ弁36の開閉度合(入力ポートと出力ポートとの間の経路断面積)が変化する。このとき、流量調整弁(34,35)から油圧アクチュエータ40のピストン側油室400aへと供給される圧力油の圧力が上昇又は下降し、ひいては、油圧アクチュエータ40のピストン400及びピストンロッド401が上下方向に伸縮する。これにより、ブレーキドラム50に対するブレーキバンド52の締め付け力が調節されて、この結果、揚錨機2の鎖車21に巻き掛けられた錨鎖3及びその一端に結び付けられた錨7の速度制御が行われる。 Furthermore, when throwing is started, the rotational speed of the chain wheel 21 of the lifting machine 2 is measured by a rotational speed measuring device 22 provided on the rotational shaft of the chain wheel 21. The degree of opening and closing of the electromagnetic relief valve 36 (path cross-sectional area between the input port and the output port) changes so as to be proportional to the level of the electrical signal corresponding to the rotational speed measured by the rotational speed measuring device 22. At this time, the pressure oil pressure supplied from the flow rate adjusting valve (34, 35) to the piston side oil chamber 400a of the hydraulic actuator 40 increases or decreases, and as a result, the piston 400 and the piston rod 401 of the hydraulic actuator 40 move up and down. Stretch in the direction. As a result, the tightening force of the brake band 52 against the brake drum 50 is adjusted. As a result, the speed control of the eaves 3 wound around the chain wheel 21 of the lifting machine 2 and the eaves 7 connected to one end thereof is performed. Is called.
 図4は、本発明の実施の形態における制動力調節機構の油圧系統の変形例を示した図である。具体的には、図3に示す油圧系統の構成と比べて、電磁リリーフ弁36が設けられる代わりに、油供給管路301のうち流量調整弁(34,35)と油圧アクチュエータ40のピストン側油室400aとの間を接続する配管に電磁減圧弁38が設けられている。電磁減圧弁38は、回転速度計測器22により計測された回転速度に応じた電気信号によってその開閉度合を変化し、これに伴って吐出圧力を調整する制御弁である。図4に示す油圧系統によっても、図3に示す油圧系統と同様なブレーキバンド52の締め付け力の調節が可能である。 FIG. 4 is a view showing a modification of the hydraulic system of the braking force adjusting mechanism in the embodiment of the present invention. Specifically, as compared with the configuration of the hydraulic system shown in FIG. 3, instead of providing the electromagnetic relief valve 36, the flow rate adjusting valves (34, 35) in the oil supply pipe 301 and the piston side oil of the hydraulic actuator 40 are used. An electromagnetic pressure reducing valve 38 is provided in a pipe connecting the chamber 400a. The electromagnetic pressure reducing valve 38 is a control valve that changes its opening / closing degree according to an electrical signal corresponding to the rotational speed measured by the rotational speed measuring device 22 and adjusts the discharge pressure accordingly. The tightening force of the brake band 52 similar to that of the hydraulic system shown in FIG. 3 can also be adjusted by the hydraulic system shown in FIG.
 [投揚錨装置の自動投錨速度制御例]
 図5は、本発明の実施の形態に係る投揚錨装置の自動投錨速度制御の動作例を示すフローチャートである。
[Example of automatic anchoring speed control of the anchoring device]
FIG. 5 is a flowchart showing an operation example of automatic anchoring speed control of the lifting anchor device according to the embodiment of the present invention.
 まず、油圧ポンプ32の運転が停止しており、油圧アクチュエータ40のピストン400及びピストンロッド401には油圧がかかっていない状態とする。つまり、ブレーキドラム50はブレーキバンド52によって完全に締め付けられて、揚錨機2の鎖車21に巻き掛けられた錨鎖3及びその一端に結び付けられた錨7は静止している。 First, the operation of the hydraulic pump 32 is stopped, and the piston 400 and the piston rod 401 of the hydraulic actuator 40 are not in a state where hydraulic pressure is applied. That is, the brake drum 50 is completely tightened by the brake band 52, and the eaves chain 3 wound around the chain wheel 21 of the lifting machine 2 and the eaves 7 tied to one end thereof are stationary.
 船舶10の乗組員は、例えば、船舶10が沖合の海域に船舶が停泊する際や、桟橋や岸壁などの接岸施設に船舶が接岸する際に、制御装置100の入力装置を操作するなどして、制御装置100の記憶器102に格納されている投揚錨装置1の自動投錨速度制御用の制御プログラムの実行を開始する。すると、制御装置100の出力装置には目標投錨速度V1,目標投錨長L1の入力を促す初期設定メッセージが表示されて、乗組員は、制御装置100の入力装置を操作して目標投錨速度V1,目標投錨長L1を入力する(ステップS500)。なお、目標投錨速度V1は自重落下速度未満とする。これにより、制御装置100の記憶器102には入力された目標投錨速度V1,目標投錨長L1が制御プログラムのパラメータとして格納(設定)される。 The crew of the ship 10 operates the input device of the control device 100 when the ship 10 is anchored in an offshore area, or when the ship berths at a berthing facility such as a pier or a quay. The control program for the automatic anchoring speed control of the lifting rod device 1 stored in the storage device 102 of the controller 100 is started. Then, an initial setting message for prompting input of the target throwing speed V1 and the target throwing length L1 is displayed on the output device of the control device 100, and the crew operates the input device of the control device 100 to operate the target throwing speed V1, The target throwing length L1 is input (step S500). Note that the target throwing speed V1 is less than the dead weight dropping speed. Thereby, the input target throwing speed V1 and the target throwing length L1 are stored (set) as parameters of the control program in the storage device 102 of the control device 100.
 また、目標投錨速度V1は、投錨開始から所定時間が経過する前は一定の加速度(例えば、0.1(m/s^2))となるように設定することができ、更に所定時間が経過した後は一定の速度(例えば、2.0(m/s))となるように設定することもできる。つまり、目標投錨速度V1は、経時的に設定することができる。 Further, the target throwing speed V1 can be set to have a constant acceleration (for example, 0.1 (m / s ^ 2)) before a predetermined time has elapsed from the start of the throwing, and the predetermined time has passed. After that, the speed can be set to be constant (for example, 2.0 (m / s)). That is, the target throwing speed V1 can be set with time.
 つぎに、制御装置100の出力装置に表示された所定の起動操作が行われることにより、制御プログラムによる投錨の実行開始を表す投錨開始フラグF1が生成されて、該投錨開始フラグF1が該制御プログラムのパラメータとして記憶器102に格納される(ステップS501)。そして、揚錨機2の鎖車21の回転軸に取り付けられた回転速度計測器22によって鎖車21の実回転速度RVの計測が開始されるとともに、制御装置100の制御器101は回転速度計測器22から鎖車21の実回転速度RVの計測結果の情報の取得(検出)を開始する(ステップS502)。さらに、制御器101は、投錨開始フラグF1が生成されたときを契機として投錨時間の積算を開始する。 Next, when a predetermined start operation displayed on the output device of the control device 100 is performed, a throwing start flag F1 indicating start of throwing by the control program is generated, and the throwing start flag F1 is set to the control program. Are stored in the memory 102 as parameters (step S501). Then, the measurement of the actual rotational speed RV of the chain wheel 21 is started by the rotational speed measuring device 22 attached to the rotational shaft of the chain wheel 21 of the lifting machine 2, and the controller 101 of the control device 100 measures the rotational speed. Acquisition (detection) of information on the measurement result of the actual rotational speed RV of the chain wheel 21 from the container 22 is started (step S502). Furthermore, the controller 101 starts integrating the throwing time when the throwing start flag F1 is generated.
 つぎに、制御器101は、回転速度計測器22から取得した鎖車21の実回転速度RVに基づいて、投錨開始フラグF1が生成されたときから錨鎖孔12より舷外に送り出された錨鎖3の長さ(以下、実投錨長RLという)を算出する(ステップS503)。具体的には、制御器101は、前述のとおり投錨開始からの経過時間(投錨時間)Tを積算しており、この積算により得られた投錨時間Tと目標投錨速度V1とを乗算することにより実投錨長RLを算出する。 Next, the controller 101, based on the actual rotational speed RV of the chain wheel 21 acquired from the rotational speed measuring device 22, the chain 3 that has been sent out from the chain hole 12 since the throwing start flag F1 is generated. (Hereinafter referred to as actual throwing length RL) is calculated (step S503). Specifically, as described above, the controller 101 accumulates the elapsed time (throwing time) T from the start of throwing, and multiplies the throwing time T obtained by this accumulation by the target throwing speed V1. The actual throwing length RL is calculated.
 つぎに、ステップS500によって入力された目標投錨速度V1及び目標投錨長L1と、予め設定された減速度(例えば、0.1(m/s^2))に基づいて、錨車21から送り出された錨鎖3の減速開始投錨長L2を算出する(ステップ504)。具体的には、減速開始投錨長L2は、上記の減速度の場合、投錨停止前の何時のタイミングで減速を開始しなければならないかを考慮して決定される。なお、減速度は予め設定された固定値であって、制御器101の記憶器102に格納されている。 Next, the vehicle is sent out from the carriage 21 based on the target throwing speed V1 and the target throwing length L1 input in step S500 and a preset deceleration (for example, 0.1 (m / s ^ 2)). The deceleration start throwing length L2 of the chain 3 is calculated (step 504). Specifically, the deceleration start throwing length L2 is determined in consideration of the timing at which deceleration should be started before throwing is stopped in the case of the above deceleration. The deceleration is a fixed value set in advance and is stored in the storage device 102 of the controller 101.
 つぎに、制御器101は、回転速度計測器22より取得した実回転速度RVが目標投錨速度V1に追従するように、図3に示す電磁リリーフ弁36又は図4に示す電磁減圧弁38の開度指令値(電気信号)を算出する(ステップS505)。そして、制御器101は、この算出した開度指令値を電磁リリーフ弁36又は電磁減圧弁38に向けて出力する(ステップS506)。 Next, the controller 101 opens the electromagnetic relief valve 36 shown in FIG. 3 or the electromagnetic pressure reducing valve 38 shown in FIG. 4 so that the actual rotational speed RV acquired from the rotational speed measuring device 22 follows the target throwing speed V1. A degree command value (electric signal) is calculated (step S505). Then, the controller 101 outputs the calculated opening degree command value toward the electromagnetic relief valve 36 or the electromagnetic pressure reducing valve 38 (step S506).
 つぎに、制御器101は、ステップS503において算出した実投錨長RLがステップS504において算出された減速開始投錨長L2に到達しているか(RL≧L2)否かを判定する(ステップS507)。実投錨長RLが減速開始投錨長L2に到達していないと判定された場合(ステップS507:NO)、ステップS502に戻る。実投錨長RLが減速開始投錨長L2に到達したと判定された場合(ステップS507:YES)、制御器101は、つぎに、実投錨長RLが目標投錨長L1に到達しているか(RL=L1)否かを判定する(ステップS508)。実投錨長RLが目標投錨長L1に到達していないと判定された場合(ステップS508:NO)、制御器101は、錨車の実回転速度RVが予め設定された減速度に応じて減速するように、減速用目標投錨速度V2を設定する(ステップS509)。このように、目標投錨速度V1が減速用目標投錨速度V2に切り替えられた後では、制御器101は、回転速度計測器22から取得した実回転速度RVが減速用目標投錨速度V2に追従するように、図3に示す電磁リリーフ弁36又は図4に示す電磁減圧弁38の開度指令値を算出する(ステップS505)。そして、制御器101は、この算出した開度指令値を電磁リリーフ弁36又は電磁減圧弁38に向けて出力する(ステップS506)。 Next, the controller 101 determines whether or not the actual throwing length RL calculated in step S503 has reached the deceleration start throwing length L2 calculated in step S504 (RL ≧ L2) (step S507). When it is determined that the actual anchoring length RL has not reached the deceleration start anchoring length L2 (step S507: NO), the process returns to step S502. When it is determined that the actual anchoring length RL has reached the deceleration start anchoring length L2 (step S507: YES), the controller 101 next determines whether the actual anchoring length RL has reached the target anchoring length L1 (RL = L1) It is determined whether or not (step S508). When it is determined that the actual throwing length RL has not reached the target throwing length L1 (step S508: NO), the controller 101 decelerates the actual rotational speed RV of the carriage according to a preset deceleration. In this manner, the target throwing speed V2 for deceleration is set (step S509). Thus, after the target throwing speed V1 is switched to the deceleration target throwing speed V2, the controller 101 causes the actual rotational speed RV acquired from the rotational speed measuring instrument 22 to follow the deceleration target throwing speed V2. Next, the opening command value of the electromagnetic relief valve 36 shown in FIG. 3 or the electromagnetic pressure reducing valve 38 shown in FIG. 4 is calculated (step S505). Then, the controller 101 outputs the calculated opening degree command value toward the electromagnetic relief valve 36 or the electromagnetic pressure reducing valve 38 (step S506).
 そして、実投錨長RLが目標投錨長L1に到達したことが判定された場合(ステップS508:YES)、制御器101は、制御プログラムによる投錨の実行終了を表す投錨終了フラグF2が生成されて、該投錨終了フラグF2が該制御プログラムのパラメータとして記憶器102に格納される(ステップS510)。これにより、ステップS502~ステップS509までを繰り返すループ制御が終了する。 If it is determined that the actual throwing length RL has reached the target throwing length L1 (step S508: YES), the controller 101 generates a throwing end flag F2 indicating the end of throwing by the control program, The throwing end flag F2 is stored in the storage device 102 as a parameter of the control program (step S510). Thus, the loop control that repeats steps S502 to S509 is completed.
 前述の自動投錨速度制御によれば、錨車21の回転数(すなわち、錨鎖3の送り長)ではなく錨車21の回転速度に基づいて、錨車21の実回転速度RVが目標投錨速度V1に追従するように錨車21の回転を制動することができ、これにより錨鎖3を所望の投錨速度で落下させることが可能となる。また、投錨開始からの投錨時間Tと目標投錨速度V1とに基づいて、錨鎖3の実投錨長(送り長)RLを速度制御の過程で逐次把握することができる。さらに、錨鎖3の実投錨長RLが目標投錨長L1に到達する前に(実投錨長RLが減速開始投錨長L2に到達した後に)、錨車の実回転速度RVが予め設定された減速度に応じて減速するように、つまり錨車21の実回転速度RVが減速度に応じて設定された減速用目標投錨速度V2に追従するように錨車21の回転を制動することができ、これにより、投錨の際に船舶10に与えられる機械的な衝撃を抑制することが可能となる。 According to the above-described automatic throwing speed control, the actual rotation speed RV of the dredger 21 is set to the target throwing speed V1 based on the rotation speed of the droop 21 rather than the rotation speed of the dredger 21 (that is, the feed length of the dredge 3). It is possible to brake the rotation of the carriage 21 so as to follow the above, and thereby it is possible to drop the eaves chain 3 at a desired throwing speed. Further, based on the throwing time T from the start of throwing and the target throwing speed V1, the actual throwing length (feed length) RL of the chain 3 can be sequentially grasped in the speed control process. Further, before the actual throwing length RL of the chain 3 reaches the target throwing length L1 (after the actual throwing length RL reaches the deceleration start throwing length L2), the actual rotation speed RV of the carriage is set to a predetermined deceleration. The rotation of the wheel 21 can be braked so that the actual rotation speed RV of the vehicle 21 follows the deceleration target throwing speed V2 set according to the deceleration. Thus, it is possible to suppress a mechanical impact given to the ship 10 at the time of throwing.
 [自動インチング制御例]
 図6は本発明の実施の形態における投錨開始前に制動力調節機構への指令電圧のバイアス値を得るための自動インチング制御の動作例を示すフローチャートである。
[Example of automatic inching control]
FIG. 6 is a flowchart showing an operation example of automatic inching control for obtaining a bias value of a command voltage to the braking force adjusting mechanism before starting the throwing according to the embodiment of the present invention.
 まず、制御器101は、離散的な時間を表す変数tと、制動力調節機構30の電磁弁(電磁リリーフ弁36又は電磁減圧弁38など)に与える指令電圧の電圧値E(t)と、を初期設定する(ステップS600)。そして、制御器101は、錨鎖3の投錨速度Vが所定の初期速度Vtとなるまで(ステップS602:YES)、指令電圧の電圧値を漸次増加させる(ステップS601,ステップS602:NO,ステップS603)。 First, the controller 101 includes a variable t representing discrete time, a voltage value E (t) of a command voltage applied to an electromagnetic valve (such as the electromagnetic relief valve 36 or the electromagnetic pressure reducing valve 38) of the braking force adjusting mechanism 30, and Is initially set (step S600). Then, the controller 101 gradually increases the voltage value of the command voltage (step S601, step S602: NO, step S603) until the throwing speed V of the chain 3 reaches a predetermined initial speed Vt (step S602: YES). .
 そして、制御器101は、錨鎖3の投錨速度Vが初期速度Vt以上となったことを判別したとき(ステップS602:YES)、そのときの指令電圧の電圧値E(t)を指令電圧のバイアス値Ebとして決定する(ステップS604)。 When the controller 101 determines that the throwing speed V of the anchor chain 3 is equal to or higher than the initial speed Vt (step S602: YES), the controller 101 uses the command voltage value E (t) at that time as the command voltage bias. The value Eb is determined (step S604).
 以上の図6を用いて説明した動作例は、実際の投錨操作が開始される前に、制動力調節機構30へ与える指令電圧のバイアス値Ebを得るための錨鎖3のインチング動作として実行される。 The operation example described with reference to FIG. 6 is executed as an inching operation of the chain 3 for obtaining the bias value Eb of the command voltage to be applied to the braking force adjusting mechanism 30 before the actual throwing operation is started. .
 以上によれば、制動力調節機構30へ与える指令電圧のバイアス値Ebを錨鎖3が所定の投錨速度で動き始める指令値を基準として決定しているので、投錨長やブレーキライニングの摩耗等の外部要因の影響を低減することができ、制動力調節機構30によるブレーキ機構の調節を安定化させることができる。 According to the above, the bias value Eb of the command voltage applied to the braking force adjusting mechanism 30 is determined based on the command value at which the chain 3 starts to move at a predetermined throwing speed. The influence of the factor can be reduced, and the adjustment of the brake mechanism by the braking force adjusting mechanism 30 can be stabilized.
 [PWM制御例]
 図7aは本発明の実施の形態におけるブレーキ機構の制動力と制動力調節機構30への指令電圧との関係において存在するヒステリシスを示した図であり、図7bは本発明の実施の形態におけるPWM(パルス幅変調)信号を示した図である。
[PWM control example]
FIG. 7a is a diagram showing hysteresis existing in the relationship between the braking force of the brake mechanism and the command voltage to the braking force adjusting mechanism 30 in the embodiment of the present invention, and FIG. 7b is the PWM in the embodiment of the present invention. It is the figure which showed the (pulse width modulation) signal.
 図7aに示すように、ブレーキ機構の制動力と制動力調節機構30への指令電圧との関係においてヒステリシスが存在する。さらにドラム停止中と回転中では摩擦係数が異なり、ブレーキ力にはより大きなヒステリシスが生じる。つまり、同一の指令電圧であっても、指令電圧が上昇中の場合と下降中の場合ではブレーキ機構の制動力に差が生じる。これにより、制動力の微妙な制御が困難となる。 As shown in FIG. 7a, there is hysteresis in the relationship between the braking force of the brake mechanism and the command voltage to the braking force adjusting mechanism 30. Furthermore, the friction coefficient is different between when the drum is stopped and when the drum is rotating, and a greater hysteresis is generated in the braking force. That is, even if the command voltage is the same, a difference occurs in the braking force of the brake mechanism when the command voltage is increasing and when the command voltage is decreasing. This makes it difficult to delicately control the braking force.
 そこで、その対策として、図7bに示すように、制動力調節機構30の電磁弁(電磁リリーフ弁36又は電磁減圧弁38など)に与える指令電圧をPWM信号成分を含むものとし、PWM信号の振幅値をヒステリシス幅を超える値とし、且つ、PWM信号の中心電圧をその振幅値がヒステリシス幅を完全に跨ぐように設定した。これにより、ブレーキ力をPWM信号によりON時間とOFF時間で制御することになり、平均的なブレーキ力として微妙に制御でき、ヒステリシスをキャンセルでき、PWM信号のデューティ比を調整することにより、制動力の微妙な制御が可能となる。さらに、振幅およびデューティ比に制限を持たせることで安定性を向上させることも可能である。 Therefore, as a countermeasure, as shown in FIG. 7b, the command voltage to be applied to the electromagnetic valve (such as the electromagnetic relief valve 36 or the electromagnetic pressure reducing valve 38) of the braking force adjusting mechanism 30 includes a PWM signal component, and the amplitude value of the PWM signal Was set to a value exceeding the hysteresis width, and the center voltage of the PWM signal was set so that the amplitude value completely crossed the hysteresis width. As a result, the braking force is controlled by the PWM signal by the ON time and the OFF time, and can be finely controlled as an average braking force, the hysteresis can be canceled, and the braking force can be adjusted by adjusting the duty ratio of the PWM signal. Subtle control is possible. Furthermore, stability can be improved by limiting the amplitude and duty ratio.
 前記指令電圧をPWM信号とすることにより、ブレーキドラム50や鎖車21は微視的には加速と減速を繰り返すが、PWM信号の周期は約100(ms)単位と一般的なPWM制御システムに比べて長いがシステムの応答性に比べて短いため、巨視的には滑らかに回転している様に見える。 By using the command voltage as a PWM signal, the brake drum 50 and the chain wheel 21 microscopically repeat acceleration and deceleration, but the period of the PWM signal is about 100 (ms) units, which is a typical PWM control system. It is long compared to the system, but short compared to the responsiveness of the system, so it seems to rotate smoothly macroscopically.
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。 From the above description, many modifications and other embodiments of the present invention are apparent to persons skilled in the art. Accordingly, the foregoing description should be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details of the structure and / or function may be substantially changed without departing from the spirit of the invention.
 本発明は、船舶の投揚錨装置にとって有益である。 The present invention is useful for a ship anchoring device.
1…投揚錨装置
2…揚錨機
21…鎖車
22…回転速度計測器
3…錨鎖
5…甲板
7…錨
10…船舶
12…錨鎖孔
14…制鎖器
16…錨鎖庫
18…錨鎖管
30…制動力調節機構
301…油供給管路
302…油排出管路
303…ブリードオフ管路
304…リリーフ管路
31…油タンク
32…油圧ポンプ
33…チェック弁
34…チェック弁
35…可変絞り弁
36…電磁リリーフ弁
37…リリーフ弁
38…電磁減圧弁
40…油圧アクチュエータ
400…ピストン
401…ピストンロッド
402…スプリング
41…基台
41a…ブラケット
41b…支持部材
42…アクチュエータ支持部材
43…バンド支持部材
45…レバー部材
46…ブラケット
47…ブラケット
48…ピストン部材
50…ブレーキドラム
51…回転軸
52…ブレーキバンド
100…制御装置
101…制御器
102…記憶器
103…入力装置
104…出力装置
V1…目標投錨速度
L1…目標投錨長
V2…減速用目標投錨速度
L2…減速開始投錨長
 
DESCRIPTION OF SYMBOLS 1 ... Lifting dredging device 2 ... Lifting machine 21 ... Chain wheel 22 ... Rotational speed measuring device 3 ... Chain 5 ... Deck 7 ... Anchor 10 ... Ship 12 ... Anchor chain hole 14 ... Chain controller 16 ... Anchor chain 18 ... Anchor chain pipe 30 ... Braking force adjustment mechanism 301 ... Oil supply line 302 ... Oil discharge line 303 ... Bleed-off line 304 ... Relief line 31 ... Oil tank 32 ... Hydraulic pump 33 ... Check valve 34 ... Check valve 35 ... Variable throttle valve 36 ... Electromagnetic relief valve 37 ... Relief valve 38 ... Electromagnetic pressure reducing valve 40 ... Hydraulic actuator 400 ... Piston 401 ... Piston rod 402 ... Spring 41 ... Base 41a ... Bracket 41b ... Support member 42 ... Actuator support member 43 ... Band support member 45 ... Lever member 46 ... Bracket 47 ... Bracket 48 ... Piston member 50 ... Brake drum 51 ... Rotating shaft 52 ... Brake band 100 ... Control Location 101 ... controller 102 ... storage device 103 ... input device 104 ... output device V1 ... target anchor speed L1 ... target anchor length V2 ... decelerating target anchor speed L2 ... deceleration start anchor length

Claims (5)

  1.  錨鎖が巻き掛けられる錨車と、
     前記錨車の回転を制動するブレーキ機構と、
     前記錨車の実回転速度を計測する回転速度計測手段と、
     前記錨鎖の目標投錨速度を設定する設定手段と、
     前記ブレーキ機構を駆動する油圧アクチュエータを含み、該油圧アクチュエータに供給される圧力油の圧力に応じて前記ブレーキ機構の制動力を調節する制動力調節機構と、
     前記回転速度計測手段により計測された前記錨車の実回転速度が前記設定手段により設定された前記目標投錨速度に追従するように、前記油圧アクチュエータに供給する圧力油の圧力を制御するように前記制動力調節機構に指令電圧を出力する制御手段と、
     を備えた投揚錨装置。
    A wheelbarrow around which a chain is wound,
    A brake mechanism for braking the rotation of the carriage,
    A rotational speed measuring means for measuring the actual rotational speed of the carriage,
    Setting means for setting a target throwing speed of the chain;
    A braking force adjustment mechanism that includes a hydraulic actuator that drives the brake mechanism, and that adjusts the braking force of the brake mechanism according to the pressure of pressure oil supplied to the hydraulic actuator;
    The pressure oil supplied to the hydraulic actuator is controlled so that the actual rotational speed of the wheel measured by the rotational speed measuring means follows the target throwing speed set by the setting means. Control means for outputting a command voltage to the braking force adjusting mechanism;
    Lifting dredger device equipped with.
  2.  投錨開始までに前記制動力調節機構への前記指令電圧のバイアス値を決定するために、前記錨鎖の投錨速度が所定の初期速度となるまで前記指令電圧の電圧値を漸次増加させ、前記錨鎖の投錨速度が前記初期速度以上となったときの前記指令電圧の電圧値を前記指令電圧のバイアス値として決定する指令電圧バイアス決定手段をさらに備える、請求項1に記載の投揚錨装置。 In order to determine the bias value of the command voltage to the braking force adjusting mechanism before the start of throwing, the voltage value of the command voltage is gradually increased until the throwing speed of the anchor chain reaches a predetermined initial speed. The hoisting device according to claim 1, further comprising command voltage bias determining means for determining a voltage value of the command voltage when the anchoring speed is equal to or higher than the initial speed as a bias value of the command voltage.
  3.  前記指令電圧がPWM信号成分を含むものであって、
     前記PWM信号の振幅が、前記ブレーキ機構の制動力と前記指令電圧との関係において存在するヒステリシスのヒステリシス幅より大きく、
     前記PWM信号の中心電圧が、前記振幅が前記ヒステリシス幅を完全に跨ぐように設定される請求項1又は2に記載の投揚錨装置。
    The command voltage includes a PWM signal component,
    The amplitude of the PWM signal is greater than the hysteresis width of the hysteresis present in the relationship between the braking force of the brake mechanism and the command voltage;
    The lifting rod device according to claim 1 or 2, wherein a center voltage of the PWM signal is set so that the amplitude completely crosses the hysteresis width.
  4.  前記設定手段は、目標投錨長をさらに設定可能であり、
     投錨開始からの経過時間を計測する投錨時間計測手段と、
     前記投錨時間計測手段により計測された投錨時間と前記目標投錨速度とに基づいて前記錨車から送り出された前記錨鎖の実投錨長を算出する投錨長算出手段と、
     前記目標投錨速度と前記目標投錨長と予め設定される減速度に基づいて前記錨車から送り出された前記錨鎖の減速開始投錨長を算出する減速開始投錨長算出手段と、をさらに備え、
     前記制御手段は、前記実投錨長が前記減速開始投錨長に到達した場合、前記実回転速度が前記減速度に応じて減速するように、前記油圧アクチュエータに供給する圧力油の圧力を制御するように前記制動力調節機構に指令電圧を出力する、
     請求項1乃至3のいずれか1項に記載の投揚錨装置。
    The setting means can further set a target throwing length,
    Throwing time measuring means for measuring the elapsed time from the start of throwing,
    Throwing length calculation means for calculating the actual throwing length of the anchor chain sent out from the cart based on the throwing time measured by the throwing time measuring means and the target throwing speed;
    A deceleration start throwing length calculating means for calculating a deceleration start throwing length of the chain sent from the vehicle based on the target throwing speed, the target throwing length, and a deceleration set in advance;
    The control means controls the pressure of the pressure oil supplied to the hydraulic actuator so that the actual rotational speed is decelerated according to the deceleration when the actual throwing length reaches the deceleration start throwing length. A command voltage is output to the braking force adjusting mechanism.
    The lifting dredger device according to any one of claims 1 to 3.
  5.  前記設定手段は、前記目標投錨速度を経時的に設定可能である、請求項1乃至4のいずれか1項に記載の投揚錨装置。 5. The lifting dredge apparatus according to any one of claims 1 to 4, wherein the setting means can set the target throwing speed over time.
PCT/JP2012/005322 2012-03-15 2012-08-24 Anchor casting and weighing device WO2013136381A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137031990A KR101561145B1 (en) 2012-03-15 2012-08-24 Anchor casting and weighing device
JP2013502949A JP5576981B2 (en) 2012-03-15 2012-08-24 Rafting device
CN201280040078.5A CN103732488A (en) 2012-03-15 2012-08-24 Anchor casting and weighing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012058884 2012-03-15
JP2012-058884 2012-03-15

Publications (1)

Publication Number Publication Date
WO2013136381A1 true WO2013136381A1 (en) 2013-09-19

Family

ID=49160356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005322 WO2013136381A1 (en) 2012-03-15 2012-08-24 Anchor casting and weighing device

Country Status (4)

Country Link
JP (1) JP5576981B2 (en)
KR (1) KR101561145B1 (en)
CN (1) CN103732488A (en)
WO (1) WO2013136381A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3170784A1 (en) * 2015-11-19 2017-05-24 ABB Technology Oy Method for operating anchor winch, and anchor winch
CN107010174A (en) * 2017-03-28 2017-08-04 上海箔梧能源有限公司 Overwater-floating floating photovoltaic plant anchors lifter apparatus
CN114872827A (en) * 2022-03-23 2022-08-09 泰兴市依科攀船舶设备股份有限公司 Ship anchoring machine is with speed limiting device that breaks down certainly

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6174475B2 (en) * 2013-12-19 2017-08-02 三井造船株式会社 Ship-shaped structure
KR102089944B1 (en) * 2019-06-24 2020-05-15 미래인더스트리(주) Windlass with automatic braking control device and Method for breaking of windlass using automatic braking control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5430576B2 (en) * 1974-06-14 1979-10-02
JPH0152318B2 (en) * 1984-01-09 1989-11-08 Hitachi Zosen Kk
JPH09249391A (en) * 1996-03-15 1997-09-22 Masabumi Nakade Anchor lifting machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326693U (en) * 1986-08-01 1988-02-22
CN2205374Y (en) * 1994-08-22 1995-08-16 石油勘探开发科学研究院机械研究所 Hydraulic control braking device for winches of -drilling and well repairing machine well

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5430576B2 (en) * 1974-06-14 1979-10-02
JPH0152318B2 (en) * 1984-01-09 1989-11-08 Hitachi Zosen Kk
JPH09249391A (en) * 1996-03-15 1997-09-22 Masabumi Nakade Anchor lifting machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3170784A1 (en) * 2015-11-19 2017-05-24 ABB Technology Oy Method for operating anchor winch, and anchor winch
CN107010174A (en) * 2017-03-28 2017-08-04 上海箔梧能源有限公司 Overwater-floating floating photovoltaic plant anchors lifter apparatus
CN114872827A (en) * 2022-03-23 2022-08-09 泰兴市依科攀船舶设备股份有限公司 Ship anchoring machine is with speed limiting device that breaks down certainly
CN114872827B (en) * 2022-03-23 2023-08-18 泰兴市依科攀船舶设备股份有限公司 Self-anchoring speed limiting device for ship anchor machine

Also Published As

Publication number Publication date
KR20140006998A (en) 2014-01-16
KR101561145B1 (en) 2015-10-16
JP5576981B2 (en) 2014-08-20
CN103732488A (en) 2014-04-16
JPWO2013136381A1 (en) 2015-07-30

Similar Documents

Publication Publication Date Title
JP5576981B2 (en) Rafting device
KR101114523B1 (en) A mooring winch and a method for controlling a cable of a mooring winch
US10196247B2 (en) Electric winch device
EP1190980B1 (en) Method for controlling crane brake operation
KR101888047B1 (en) Method for operating winch, and winch
CN109715547B (en) Electric hoist device
JP2011236056A (en) Mooring winch and method for controlling cable of the mooring winch
CN108946547A (en) The method with release descending mechanism is promoted by intelligent winding plant
KR20170058875A (en) Method for operating anchor winch, and anchor winch
US10280579B2 (en) Automatic gate operation and system status indication for marine barriers and gate systems
CN102616689B (en) Horizontal automatic-chain-arrahydraulic hydraulic drum winch
KR20120118729A (en) An offshore anchoring winch control system and operation method of the same
US11904984B2 (en) Ship mooring system and method
JP5953571B2 (en) Cable load measuring device
JP2014069724A (en) Windlass driving device
NO322834B1 (en) Mooring winch and winch control method
KR101167593B1 (en) Constant tension system and method for offshore crane
CN111422306B (en) Intelligent berthing device, pontoon, intelligent berthing method, and storage medium
CN113120158A (en) Anchoring device and anchoring method
WO2010092127A1 (en) A launching system
JP3202600U (en) Crane hook overwinding prevention device
KR102654093B1 (en) Mooring winch control simulator
JPH0152318B2 (en)
JP7235244B2 (en) Suspended load swing suppression device
JP2007069685A (en) Cable engine and cable laying ship using the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013502949

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871282

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137031990

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12871282

Country of ref document: EP

Kind code of ref document: A1