WO2013133197A1 - Welding robot and gap adjustment method for welding robot - Google Patents

Welding robot and gap adjustment method for welding robot Download PDF

Info

Publication number
WO2013133197A1
WO2013133197A1 PCT/JP2013/055795 JP2013055795W WO2013133197A1 WO 2013133197 A1 WO2013133197 A1 WO 2013133197A1 JP 2013055795 W JP2013055795 W JP 2013055795W WO 2013133197 A1 WO2013133197 A1 WO 2013133197A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding head
welding
focal length
workpiece
gap
Prior art date
Application number
PCT/JP2013/055795
Other languages
French (fr)
Japanese (ja)
Inventor
輝 菊地
剛 岩野
英子 茂知野
竜一 戸島
栄貴 小林
Original Assignee
株式会社 アマダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 アマダ filed Critical 株式会社 アマダ
Publication of WO2013133197A1 publication Critical patent/WO2013133197A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam
    • B23K26/048Automatically focusing the laser beam by controlling the distance between laser head and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • B23K26/0884Devices involving movement of the laser head in at least one axial direction in at least two axial directions in at least in three axial directions, e.g. manipulators, robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/10Devices involving relative movement between laser beam and workpiece using a fixed support, i.e. involving moving the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/123Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of particular gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • B23K26/1464Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/126Controlling the spatial relationship between the work and the gas torch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/127Means for tracking lines during arc welding or cutting
    • B23K9/1272Geometry oriented, e.g. beam optical trading
    • B23K9/1274Using non-contact, optical means, e.g. laser means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas

Definitions

  • the present invention relates to a welding robot having a function of automatically adjusting a gap between a welding head and a workpiece to be appropriate, and a gap adjusting method for the welding robot.
  • a teaching operation that guides the welding head of the robot on the actual welding path and stores the welding position (teaching) And welding is performed by moving the welding head along the taught path.
  • Such teaching operation can teach the two-dimensional position of the welding head, but it is difficult to set the distance (gap) between the welding head and the workpiece to an appropriate distance. In other words, it is difficult to set the gap between the welding head and the workpiece so that the gap between the welding head and the workpiece coincides with the focal length of the laser in welding processing by a welding robot. Thus, the gap between the tip of the welding head and the workpiece is adjusted to be a predetermined distance.
  • Patent Document 1 discloses that when a workpiece is distorted, a sensor for measuring the distortion is provided to correct the teaching program.
  • Patent Document 1 has a configuration in which a sensor for distance measurement is provided in order to measure a gap between the machining head and the workpiece, and there is a problem that the configuration becomes large. .
  • a welding robot has a welding head arranged with a predetermined gap with respect to a workpiece, and welds a desired part of the workpiece with the welding head.
  • An imaging unit (for example, a CCD camera 13) that is installed in the vicinity and set to the same focal length as the welding head and images a workpiece to be welded by the welding head, and a workpiece image captured by the imaging unit
  • the focal point control means for example, the robot controller 16
  • the focal point control means for setting the focal length of the imaging means so as to be in focus
  • the welding robot has a welding head arranged with a predetermined gap with respect to the workpiece, and the welding robot adjusts the gap in the welding robot that welds a desired portion of the workpiece.
  • the focal length of the imaging means is adjusted so that the step of changing the focal length of the imaging means for imaging the welded part of the workpiece and the image of the welded part of the workpiece imaged by the imaging means are in focus.
  • a step of controlling the position of the welding head so that the position is in focus.
  • FIG. 1 is a side view showing an appearance of a welding robot according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing an electrical configuration of the welding robot shown in FIG.
  • FIG. 3 is a diagram schematically showing the relationship between the welding head and the workpiece in the welding robot shown in FIG.
  • FIG. 4 is a flowchart showing a processing procedure of gap adjustment processing in the welding robot according to the first embodiment of the present invention.
  • FIG. 5 is a flowchart showing a processing procedure of gap adjustment processing in the welding robot according to the second embodiment of the present invention.
  • FIG. 6 is a flowchart showing a processing procedure of gap adjustment processing in the welding robot according to the third embodiment of the present invention.
  • FIG. 1 is a side view showing an appearance of a welding robot according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing an electrical configuration of the welding robot shown in FIG.
  • FIG. 3 is a diagram schematically showing the relationship between the welding head and the workpiece in the welding robot
  • FIG. 7 is a diagram showing an operation of gap adjustment processing in the welding robot according to the first embodiment of the present invention.
  • FIG. 8 is a diagram showing the operation of the gap adjustment process in the welding robot according to the second embodiment of the present invention.
  • FIG. 9 is a diagram illustrating an operation of gap adjustment processing in the welding robot according to the third embodiment of the present invention.
  • FIG. 1 is a side view showing an appearance of a laser welding robot according to an embodiment of the present invention
  • FIG. 2 is a block diagram showing an electrical configuration of the laser welding robot.
  • the laser welding robot shown in FIG. 1 is a 6-axis multi-joint mechanism robot, and includes an arm 3 and a welding head 5 provided at the tip of the arm 3, and further includes a 6-axis multi-joint mechanism 11 (see FIG. 2). It has. Then, by operating the 6-axis multi-joint mechanism 11, the tip position of the welding head 5 can be moved to an arbitrary three-dimensional position.
  • the welding head 5 is connected to a laser oscillator 12 (see FIG. 2) via a transmission optical fiber 7, and laser light output from the laser oscillator 12 passes through the transmission optical fiber 7 and is welded to the welding head 5.
  • the laser beam is irradiated from the tip of the welding head 5 toward the workpiece W.
  • a CCD camera 13 for capturing an image in the vicinity of the welded portion is provided on the side of the welding head 5.
  • the CCD camera 13 has a focus adjustment function capable of adjusting the focal length, and an image captured by the CCD camera 13 is output to the teaching monitor 14 and output to the operation screen 22. Further, as shown in FIG. 2, a gas flow rate controller 15 is connected to the welding head 5, and a shield gas is supplied from the gas flow rate controller 15.
  • the 6-axis multi-joint mechanism 11, the laser oscillator 12, the CCD camera 13, and the gas flow rate controller 15 are connected to the robot controller 16 and operate under the control of the robot controller 16. That is, the robot controller 16 has a function of storing a machining program, outputs an operation command signal to the 6-axis multi-joint mechanism 11, outputs a laser oscillation command to the laser oscillator 12, and supplies a gas flow rate to the gas flow rate controller 15. A supply command is output, and an imaging command and a focus setting command are output to the CCD camera 13.
  • the robot controller 16 is connected to the teaching pendant 21 operated by the operator, and outputs an operation command signal to each in accordance with an operation instruction input from the teaching pendant 21. Further, the robot controller 16 is connected to an operation screen 22 such as a touch panel, and the operation screen 22 operates a welding condition editing / selection function, a processing schedule management function, a processing program storage function, and a TAS (program correction) function. Can do. Further, the operation screen 22 is connected to the CCD camera 13 and displays an image captured by the CCD camera 13 on the screen.
  • FIG. 3 is a diagram schematically showing a detailed configuration of the welding head 5.
  • the tip 5a of the welding head 5 is disposed so as to face the workpiece W to be welded, and the welding head 5 is connected to a laser oscillator 12 via a transmission optical fiber 7.
  • the laser beam is guided to the tip 5a.
  • tip part 5a of the welding head 5 is set to the focal distance based on the distance between the workpiece
  • a CCD camera 13 is provided on the side of the welding head 5, and an image of the processed part of the workpiece W is captured by the CCD camera 13, and the captured image is displayed on the teaching monitor 14 shown in FIG. 2. It is displayed. Therefore, the operator can monitor on the screen the processing site where laser welding is performed. Furthermore, the focal point of the CCD camera 13 is set to coincide with the focal point of the welding head 5. Therefore, as will be described later, the focus of the welding head 5 can be adjusted by adjusting the focus when the CCD camera 13 images the workpiece W.
  • the welding head 5 is initially set as a measurement start position, for example, at a position separated from the workpiece W by a predetermined distance as shown in FIG. As shown in FIG. 7, the welding head 5 is arranged so that the central axis thereof is slightly inclined with respect to the workpiece W.
  • step S11 shown in FIG. 4 the robot controller 16 raises the welding head 5 by a certain amount.
  • step S ⁇ b> 12 the robot controller 16 outputs an imaging command signal to the CCD camera 13 mounted on the welding head 5 and images the vicinity of the processing portion of the workpiece W by the welding head 5.
  • step S13 the robot controller 16 determines whether or not the image captured by the CCD camera 13 is out of a certain value with respect to the case where the image is in focus. If it is determined that the image is out of focus by a certain value (focused to some extent) (NO in step S13), the process returns to step S11, and the welding head 5 is again moved by a certain amount. Raise. In other words, in this process, the focus of the image captured by the CCD camera 13 deviates by more than a predetermined value while the welding head 5 shown in FIG. Move.
  • step S14 the robot controller 16 sets the current coordinates of the welding head 5 as a focus upper limit position in a memory or the like (not shown). Save and save. As a result, for example, the upper limit position P1 shown in FIG. 7B is stored and saved.
  • step S15 the robot controller 16 moves the welding head 5 to the measurement start position. In this process, the welding head 5 is returned to the measurement start position shown in FIG. Thereafter, in step S16, the robot controller 16 lowers the welding head 5 by a certain amount.
  • step S ⁇ b> 17 the robot controller 16 outputs an imaging command signal to the CCD camera 13 mounted on the welding head 5, and images the vicinity of the processing portion of the workpiece W by the welding head 5.
  • step S18 the robot controller 16 determines whether or not the image captured by the CCD camera 13 is out of a certain value with respect to the case where the image is in focus. If it is determined that the image is out of focus by a certain value (focused to some extent) (NO in step S18), the process returns to step S16, and the welding head 5 is again moved by a certain amount. Lower. In other words, in this process, the welding head 5 shown in FIG. 7A is moved down by a certain amount so that the focus of the image picked up by the CCD camera 13 deviates by a predetermined value or more.
  • step S19 the robot controller 16 sets the current coordinates of the welding head 5 as a lower limit position of the focus in a memory or the like (not shown). Save and save. As a result, for example, the lower limit position P2 shown in FIG. 7B is stored and saved.
  • step S20 the robot controller 16 obtains an intermediate point P3 between the upper limit position P1 and the lower limit position P2 obtained by the above processing (see FIG. 7C), and the tip of the welding head 5 is located at the intermediate point P3.
  • the 6-axis multi-joint mechanism 11 is controlled so as to be positioned.
  • An intermediate point P3 between the upper limit position P1 and the lower limit position P2 is a position where the image captured by the CCD camera 13 is in focus, and as described above, the focus of the welding head 5 is the focus of the CCD camera 13. Since they are set to match, the focal length of the welding head 5 can be adjusted to an appropriate distance.
  • the CCD camera 13 is installed on the side of the welding head 5, and the processed part of the workpiece W is imaged by the CCD camera 13. An upper limit position and a lower limit position at which the deviation amount becomes a predetermined value are obtained, and the position of the welding head 5 is adjusted so that the tip of the welding head 5 comes to an intermediate point between these upper limit position and lower limit position.
  • the focus of the welding head 5 set to be the same as the focus of the CCD camera 13 can be adjusted to an appropriate distance, and a highly accurate gap can be set. As a result, it is possible to perform a highly accurate welding operation.
  • the welding robot according to the second embodiment has substantially the same configuration as that shown in the first embodiment, and is different in that the focal length of the CCD camera 13 can be appropriately adjusted by the robot controller 16. That is, in the second embodiment, the focal length of the CCD camera 13 can be changed by an external signal.
  • step S31 the robot controller 16 stores the focal position of the CCD camera 13.
  • the CCD camera 13 is set to a preset initial focal length (reference focal length).
  • the focal length is set so that P10 shown in FIG.
  • step S32 the robot controller 16 adjusts the focal length of the CCD camera 13 to raise the focal point by a certain amount.
  • step S ⁇ b> 33 the robot controller 16 images the processed part of the workpiece W by the welding head 5 using the CCD camera 13.
  • step S34 the robot controller 16 determines whether the focus of the captured image has deviated from a predetermined value or more. If it is determined that the focus of the image has not deviated beyond a certain value (NO in step S34), the process returns to step S32, and the focal distance of the CCD camera 13 is changed again to raise the focus by a certain amount. .
  • step S35 the robot controller 16 stores and saves the current focus position as an upper limit position in a memory (not shown) or the like. That is, in this process, with the welding head 5 shown in FIG. 8A fixed, the focal length of the CCD camera 13 is changed to gradually raise the focal point from P10, and the defocus amount is constant. When the value is reached, this position is stored and saved in a memory or the like as the upper limit position P11.
  • step S36 the robot controller 16 returns the focus of the CCD camera 13 to the start focus. That is, the focal length of the CCD camera 13 is adjusted so as to be the focal position stored in the process of step S31. Specifically, adjustment is made so that the position of P10 shown in FIG.
  • step S37 the robot controller 16 adjusts the focal length of the CCD camera 13 to lower the focal point by a certain amount.
  • the robot controller 16 images the processed part of the workpiece W by the welding head 5 using the CCD camera 13.
  • step S39 the robot controller 16 determines whether the focus of the captured image has deviated from a predetermined value or more. If it is determined that the focus of the image has not deviated beyond a certain value (NO in step S39), the process returns to step S37 to change the focal length of the CCD camera 13 again to lower the focus by a certain amount. .
  • step S40 the robot controller 16 stores and saves the current focus position as a lower limit position in a memory (not shown) or the like. That is, in this process, with the welding head 5 shown in FIG. 8A fixed, the focal length of the CCD camera 13 is changed to gradually lower the focal point from P10, and the defocus amount is constant. When the value is reached, this position is stored and saved in a memory or the like as the lower limit position P12.
  • step S41 the robot controller 16 obtains an intermediate point between the upper limit position P11 and the lower limit position P12 obtained by the above processing, and further, the difference between this intermediate point and the focal position when the reference focal length is set. Is calculated. That is, as shown in FIG. 8B, when the intermediate point P13 is obtained, the distance between P10 and P13 is calculated as the difference L.
  • step S42 the robot controller 16 moves the welding head 5 by the difference L between P10 and P13. Specifically, as shown in FIG. 8 (c), the welding head 5 is lowered by a difference L and adjusted so that the focus of the welding head 5 matches the machining site of the workpiece W. Thus, the gap between the welding head 5 and the workpiece W can be set to an appropriate distance.
  • the focal length of the CCD camera 13 mounted on the welding head 5 is appropriately changed to obtain the upper limit position and the lower limit position, and further, the intermediate points thereof are determined.
  • the position of the welding head 5 is moved based on the relationship between the intermediate point and the reference focal length, and the welding head 5 is adjusted to be in focus. Therefore, the same effects as those of the first embodiment can be obtained, and further, the welding head 5 is not moved up and down at the time of gap adjustment, so that the labor required for gap adjustment can be reduced. Furthermore, it is possible to prevent the welding head 5 from contacting an obstacle or the like.
  • step S51 the robot controller 16 lowers the welding head 5 by a certain amount (arrow in FIG. 9A).
  • step S ⁇ b> 52 the robot controller 16 images the processed part of the workpiece W by the welding head 5 with the CCD camera 13 provided on the side of the welding head 5.
  • step S53 the robot controller 16 determines whether the image captured by the CCD camera 13 is in focus. If the focus is not achieved (NO in step S53), the process returns to step S51, and the process of lowering the welding head 5 by a predetermined amount is performed again.
  • step S54 the robot controller 16 sets the current position coordinates of the welding head 5 as the focus position, and stops the welding head 5 at this position. As a result, as shown in FIG. 9B, the welding head 5 can be stopped at a position where the focus is achieved. Thereafter, this process is terminated.
  • the welding head 5 is set at a position sufficiently away from the workpiece W with respect to the workpiece W, and then the welding head 5 is gradually moved.
  • the welding head 5 is stopped at a position close to the work W and the image captured by the CCD camera 13 is in focus, and this position is set as a processing position by the welding head 5. Therefore, the focus of the welding head 5 can be adjusted to a desired position by a simple method.
  • the moving amount of the welding head 5 can be reduced as compared with the first embodiment, it is possible to reduce the occurrence of troubles such as contact with an obstacle.
  • the welding robot and the gap adjustment method of the present invention have been described based on some embodiments, the present invention is not limited to this, and the configuration of each part is an arbitrary configuration having the same function. Can be replaced with something.
  • a laser welding robot has been described as an example of a welding robot, but the present invention is a welding robot that needs to strictly adjust the gap between the welding head 5 and the workpiece W, For example, it can be applied to an arc welding robot.
  • the present invention can be used to appropriately control the gap between the welding head of the welding robot and the workpiece.

Abstract

To control the gap between a welding head and work so as to be an appropriate distance with a simple constitution, the constitution in this welding robot is such that a welding region on work (W) is imaged by a CCD camera (13) in a state in which the focal distance of the CCD camera (13) and the focal distance of a welding head (5) are set the same. Furthermore, the focal distance or focal position of the CCD camera (13) is changed and an upper limit position and a lower limit position are found when the focal point is off by a fixed value or greater. Furthermore, an intermediate point between these is found, and the position of the welding head (5) is adjusted such that the focal point comes to this intermediate point.

Description

溶接ロボット及び溶接ロボットのギャップ調整方法Welding robot and gap adjustment method for welding robot
 本発明は、溶接ヘッドとワークとの間のギャップが適正となるように自動調整する機能を備えた溶接ロボット及び溶接ロボットのギャップ調整方法に関する。 The present invention relates to a welding robot having a function of automatically adjusting a gap between a welding head and a workpiece to be appropriate, and a gap adjusting method for the welding robot.
 従来、レーザ溶接やアーク溶接を行う溶接ロボットを用いて溶接加工を行う際には、初期設定として、実際に溶接を行う経路上にロボットの溶接ヘッドを導いて溶接位置を記憶する教示操作(ティーチングともいう)を行い、教示した経路に沿って溶接ヘッドを移動させることにより溶接加工を行う。 Conventionally, when performing welding using a welding robot that performs laser welding or arc welding, as an initial setting, a teaching operation (teaching) that guides the welding head of the robot on the actual welding path and stores the welding position (teaching) And welding is performed by moving the welding head along the taught path.
 このような教示操作は、溶接ヘッドの二次元的な位置を教示することができるが、溶接ヘッドとワークの間の距離(ギャップ)を適正な距離に設定することは難しい。即ち、溶接ロボットによる溶接加工は溶接ヘッドとワークとの間のギャップがレーザの焦点距離と一致するように設定することは難しく、従来より、ギャップと同一径の六角レンチを挟み、作業者の目視により溶接ヘッドの先端部とワークとの間のギャップが所定の距離となるように調整していた。 Such teaching operation can teach the two-dimensional position of the welding head, but it is difficult to set the distance (gap) between the welding head and the workpiece to an appropriate distance. In other words, it is difficult to set the gap between the welding head and the workpiece so that the gap between the welding head and the workpiece coincides with the focal length of the laser in welding processing by a welding robot. Thus, the gap between the tip of the welding head and the workpiece is adjusted to be a predetermined distance.
 また、特許文献1には、ワークに歪みが発生している場合に、これを計測するためのセンサを設けて教示プログラムを補正することが開示されている。 Further, Patent Document 1 discloses that when a workpiece is distorted, a sensor for measuring the distortion is provided to correct the teaching program.
特開平9-248687号公報JP-A-9-248687
 しかしながら、特許文献1に開示された技術は、加工ヘッドとワークとの間のギャップを測定するために、距離測定用のセンサを設ける構成とされており、構成が大がかりになるという問題があった。 However, the technique disclosed in Patent Document 1 has a configuration in which a sensor for distance measurement is provided in order to measure a gap between the machining head and the workpiece, and there is a problem that the configuration becomes large. .
 本発明は、この課題を解決するためになされたものであり、その目的とするところは、簡単な構成で溶接ヘッドとワークとの間のギャップが適正な距離となるように制御することが可能なレーザ溶接ロボット、及びそのギャップ調整方法を提供することにある。 The present invention has been made to solve this problem, and the object of the present invention is to control the gap between the welding head and the workpiece to an appropriate distance with a simple configuration. Another object of the present invention is to provide a laser welding robot and a gap adjusting method thereof.
 上記目的を達成するため、本発明に係る溶接ロボットは、ワークに対して所定のギャップをもって配置された溶接ヘッドを有し、前記溶接ヘッドによりワークの所望部位を溶接する溶接ロボットにおいて、前記溶接ヘッド近傍に設置され、且つ、該溶接ヘッドと同一の焦点距離に設定され、溶接ヘッドにより溶接されるワークを撮像する撮像手段(例えば、CCDカメラ13)と、前記撮像手段により撮像されるワーク画像の焦点が合うように、該撮像手段の焦点距離を設定する焦点制御手段(例えば、ロボットコントローラ16)と、前記焦点制御手段により設定された焦点距離に基づいて、前記溶接ヘッドの、前記ワークに対するギャップを制御するギャップ制御手段(例えば、ロボットコントローラ16)と、を備えたことを特徴とする。 In order to achieve the above object, a welding robot according to the present invention has a welding head arranged with a predetermined gap with respect to a workpiece, and welds a desired part of the workpiece with the welding head. An imaging unit (for example, a CCD camera 13) that is installed in the vicinity and set to the same focal length as the welding head and images a workpiece to be welded by the welding head, and a workpiece image captured by the imaging unit Based on the focal length set by the focal point control means (for example, the robot controller 16) and the focal point control means for setting the focal length of the imaging means so as to be in focus, the gap between the welding head and the workpiece is set. And gap control means (for example, robot controller 16) for controlling That.
 また、本発明に係る溶接ロボットのギャップ設定方法では、ワークに対して所定のギャップをもって配置された溶接ヘッドを有し、前記溶接ヘッドによりワークの所望部位を溶接する溶接ロボットにおける前記ギャップを調整する調整方法において、前記ワークの溶接部位を撮像する撮像手段の、焦点距離を変化させるステップと、撮像手段で撮像される前記ワークの溶接部位の画像の焦点が合うように、前記撮像手段の焦点距離を変化させるステップと、前記焦点が合った位置となるように、前記溶接ヘッドの位置を制御するステップと、を備えたことを特徴とする。 In the welding robot gap setting method according to the present invention, the welding robot has a welding head arranged with a predetermined gap with respect to the workpiece, and the welding robot adjusts the gap in the welding robot that welds a desired portion of the workpiece. In the adjustment method, the focal length of the imaging means is adjusted so that the step of changing the focal length of the imaging means for imaging the welded part of the workpiece and the image of the welded part of the workpiece imaged by the imaging means are in focus. And a step of controlling the position of the welding head so that the position is in focus.
図1は、本発明の一実施形態に係る溶接ロボットの外観を示す側面図である。FIG. 1 is a side view showing an appearance of a welding robot according to an embodiment of the present invention. 図2は、図1に示した溶接ロボットの電気的な構成を示すブロック図である。FIG. 2 is a block diagram showing an electrical configuration of the welding robot shown in FIG. 図3は、図1に示した溶接ロボットにおける溶接ヘッドとワークとの関係を模式的に示す図である。FIG. 3 is a diagram schematically showing the relationship between the welding head and the workpiece in the welding robot shown in FIG. 図4は、本発明の第1実施形態に係る溶接ロボットにおけるギャップ調整処理の処理手順を示すフローチャートである。FIG. 4 is a flowchart showing a processing procedure of gap adjustment processing in the welding robot according to the first embodiment of the present invention. 図5は、本発明の第2実施形態に係る溶接ロボットにおけるギャップ調整処理の処理手順を示すフローチャートである。FIG. 5 is a flowchart showing a processing procedure of gap adjustment processing in the welding robot according to the second embodiment of the present invention. 図6は、本発明の第3実施形態に係る溶接ロボットにおけるギャップ調整処理の処理手順を示すフローチャートである。FIG. 6 is a flowchart showing a processing procedure of gap adjustment processing in the welding robot according to the third embodiment of the present invention. 図7は、本発明の第1実施形態に係る溶接ロボットにおけるギャップ調整処理の動作を示す図である。FIG. 7 is a diagram showing an operation of gap adjustment processing in the welding robot according to the first embodiment of the present invention. 図8は、本発明の第2実施形態に係る溶接ロボットにおけるギャップ調整処理の動作を示す図である。FIG. 8 is a diagram showing the operation of the gap adjustment process in the welding robot according to the second embodiment of the present invention. 図9は、本発明の第3実施形態に係る溶接ロボットにおけるギャップ調整処理の動作を示す図である。FIG. 9 is a diagram illustrating an operation of gap adjustment processing in the welding robot according to the third embodiment of the present invention.
 以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 [第1実施形態の説明]
 図1は、本発明の一実施形態に係るレーザ溶接ロボットの外観を示す側面図、図2は、該レーザ溶接ロボットの電気的な構成を示すブロック図である。図1に示すレーザ溶接ロボットは、6軸多関節機構ロボットであり、アーム3、及び該アーム3の先端部に設けられる溶接ヘッド5を備え、更に、6軸多関節機構11(図2参照)を備えている。そして、該6軸多関節機構11を作動させることにより、溶接ヘッド5の先端位置を3次元の任意の位置に移動させることが可能である。
[Description of First Embodiment]
FIG. 1 is a side view showing an appearance of a laser welding robot according to an embodiment of the present invention, and FIG. 2 is a block diagram showing an electrical configuration of the laser welding robot. The laser welding robot shown in FIG. 1 is a 6-axis multi-joint mechanism robot, and includes an arm 3 and a welding head 5 provided at the tip of the arm 3, and further includes a 6-axis multi-joint mechanism 11 (see FIG. 2). It has. Then, by operating the 6-axis multi-joint mechanism 11, the tip position of the welding head 5 can be moved to an arbitrary three-dimensional position.
 溶接ヘッド5は、伝送用光ファイバ7を介してレーザ発振器12(図2参照)に接続されており、レーザ発振器12より出力されるレーザ光が、伝送用光ファイバ7を経由して溶接ヘッド5に導入され、該溶接ヘッド5の先端部からワークWに向けてレーザ光が照射される。また、溶接ヘッド5の側部には、溶接加工部近傍の画像を撮像するためのCCDカメラ13が設けられている。 The welding head 5 is connected to a laser oscillator 12 (see FIG. 2) via a transmission optical fiber 7, and laser light output from the laser oscillator 12 passes through the transmission optical fiber 7 and is welded to the welding head 5. The laser beam is irradiated from the tip of the welding head 5 toward the workpiece W. In addition, a CCD camera 13 for capturing an image in the vicinity of the welded portion is provided on the side of the welding head 5.
 CCDカメラ13は、焦点距離を調整可能な焦点調整機能を備えており、該CCDカメラ13で撮像された画像は、教示用モニタ14に出力され、且つ操作画面22に出力される。また、図2に示すように、溶接ヘッド5には、ガス流量コントローラ15が接続され、該ガス流量コントローラ15よりシールドガスが供給されるようになっている。 The CCD camera 13 has a focus adjustment function capable of adjusting the focal length, and an image captured by the CCD camera 13 is output to the teaching monitor 14 and output to the operation screen 22. Further, as shown in FIG. 2, a gas flow rate controller 15 is connected to the welding head 5, and a shield gas is supplied from the gas flow rate controller 15.
 そして、6軸多関節機構11、レーザ発振器12、CCDカメラ13、及びガス流量コントローラ15は、ロボットコントローラ16に接続され、該ロボットコントローラ16の制御下で作動する。即ち、ロボットコントローラ16は、加工プログラムを記憶する機能を備えており、6軸多関節機構11に動作指令信号を出力し、レーザ発振器12にレーザの発振指令を出力し、ガス流量コントローラ15にガス供給指令を出力し、CCDカメラ13に撮像指令、及び焦点設定指令を出力する。 The 6-axis multi-joint mechanism 11, the laser oscillator 12, the CCD camera 13, and the gas flow rate controller 15 are connected to the robot controller 16 and operate under the control of the robot controller 16. That is, the robot controller 16 has a function of storing a machining program, outputs an operation command signal to the 6-axis multi-joint mechanism 11, outputs a laser oscillation command to the laser oscillator 12, and supplies a gas flow rate to the gas flow rate controller 15. A supply command is output, and an imaging command and a focus setting command are output to the CCD camera 13.
 また、ロボットコントローラ16は、操作者が操作する教示ペンダント21に接続され、該教示ペンダント21より入力される操作指示に従って、それぞれに操作指令信号を出力する。更に、ロボットコントローラ16は、タッチパネル等の操作画面22に接続され、該操作画面22は、溶接条件編集・選択機能、加工スケジュール管理機能、加工プログラム記憶機能、TAS(プログラム補正)機能を操作することができる。更に、操作画面22は、CCDカメラ13と接続されており、CCDカメラ13で撮像された画像を画面表示する。 Further, the robot controller 16 is connected to the teaching pendant 21 operated by the operator, and outputs an operation command signal to each in accordance with an operation instruction input from the teaching pendant 21. Further, the robot controller 16 is connected to an operation screen 22 such as a touch panel, and the operation screen 22 operates a welding condition editing / selection function, a processing schedule management function, a processing program storage function, and a TAS (program correction) function. Can do. Further, the operation screen 22 is connected to the CCD camera 13 and displays an image captured by the CCD camera 13 on the screen.
 図3は、溶接ヘッド5の詳細な構成を模式的に示す図である。図示のように、溶接ヘッド5の先端部5aは、溶接対象となるワークW側に向くように配置されており、該溶接ヘッド5は、伝送用光ファイバ7を介してレーザ発振器12に接続され、先端部5aにレーザ光が導かれるようになっている。そして、溶接ヘッド5の先端部5aは、ワークWとの間の距離に基づいて焦点距離が設定されており、この焦点距離でレーザ光が照射されて、ワークWの所望部位を溶接加工する。 FIG. 3 is a diagram schematically showing a detailed configuration of the welding head 5. As shown in the figure, the tip 5a of the welding head 5 is disposed so as to face the workpiece W to be welded, and the welding head 5 is connected to a laser oscillator 12 via a transmission optical fiber 7. The laser beam is guided to the tip 5a. And the front-end | tip part 5a of the welding head 5 is set to the focal distance based on the distance between the workpiece | work W, a laser beam is irradiated by this focal distance, and the desired site | part of the workpiece | work W is welded.
 また、溶接ヘッド5の側部にはCCDカメラ13が設けられており、該CCDカメラ13により、ワークWの加工部位の映像が撮像され、撮像された画像が図2に示す教示用モニタ14に表示されるようになっている。従って、作業者はレーザ溶接が行われている加工部位を画面にて監視することができる。更に、CCDカメラ13の焦点は、溶接ヘッド5の焦点と一致するように設定されている。従って、後述するように、CCDカメラ13がワークWを撮像する際の焦点を合わせることにより、溶接ヘッド5の焦点を合わせることができることとなる。 Further, a CCD camera 13 is provided on the side of the welding head 5, and an image of the processed part of the workpiece W is captured by the CCD camera 13, and the captured image is displayed on the teaching monitor 14 shown in FIG. 2. It is displayed. Therefore, the operator can monitor on the screen the processing site where laser welding is performed. Furthermore, the focal point of the CCD camera 13 is set to coincide with the focal point of the welding head 5. Therefore, as will be described later, the focus of the welding head 5 can be adjusted by adjusting the focus when the CCD camera 13 images the workpiece W.
 次に、本発明の第1実施形態に係る溶接ロボットにおける溶接ヘッドのギャップ調整処理について、図4に示すフローチャートを参照して説明する。この制御は、ロボットコントローラ16により行われる。 Next, the gap adjustment processing of the welding head in the welding robot according to the first embodiment of the present invention will be described with reference to the flowchart shown in FIG. This control is performed by the robot controller 16.
 溶接ヘッド5は、初期的には測定開始位置として、例えば、図7(a)に示すように、ワークWから所定の距離だけ隔てた位置にくるように設定されている。なお、図7に示すように、溶接ヘッド5は、その中心軸がワークWに対して若干傾斜するように配置されている。 The welding head 5 is initially set as a measurement start position, for example, at a position separated from the workpiece W by a predetermined distance as shown in FIG. As shown in FIG. 7, the welding head 5 is arranged so that the central axis thereof is slightly inclined with respect to the workpiece W.
 初めに、図4に示すステップS11において、ロボットコントローラ16は、溶接ヘッド5を一定量だけ上昇させる。次いで、ステップS12において、ロボットコントローラ16は、溶接ヘッド5に搭載されたCCDカメラ13に撮像指令信号を出力し、溶接ヘッド5によるワークWの加工部近傍を撮像する。 First, in step S11 shown in FIG. 4, the robot controller 16 raises the welding head 5 by a certain amount. Next, in step S <b> 12, the robot controller 16 outputs an imaging command signal to the CCD camera 13 mounted on the welding head 5 and images the vicinity of the processing portion of the workpiece W by the welding head 5.
 ステップS13において、ロボットコントローラ16は、CCDカメラ13にて撮像される画像の焦点が、焦点が合っている場合に対して一定値以上外れているか否かを判断する。そして、画像の焦点が一定値以上外れていない(ある程度ピントが合っている)と判断された場合には(ステップS13でNO)、ステップS11に処理を戻して、再度溶接ヘッド5を一定量だけ上昇させる。つまり、ここでの処理では、図7(a)に示す溶接ヘッド5を一定量ずつ上昇させながら、CCDカメラ13で撮像される画像の焦点が所定値以上外れるように(ピントがずれるように)移動させる。 In step S13, the robot controller 16 determines whether or not the image captured by the CCD camera 13 is out of a certain value with respect to the case where the image is in focus. If it is determined that the image is out of focus by a certain value (focused to some extent) (NO in step S13), the process returns to step S11, and the welding head 5 is again moved by a certain amount. Raise. In other words, in this process, the focus of the image captured by the CCD camera 13 deviates by more than a predetermined value while the welding head 5 shown in FIG. Move.
 そして、画像の焦点が一定値以上外れた場合には(ステップS13でYES)、ステップS14において、ロボットコントローラ16は、現在の溶接ヘッド5の座標を、焦点の上限位置として、図示しないメモリ等に記憶保存する。その結果、例えば図7(b)に示す上限位置P1が記憶保存される。 If the focus of the image deviates by a certain value or more (YES in step S13), in step S14, the robot controller 16 sets the current coordinates of the welding head 5 as a focus upper limit position in a memory or the like (not shown). Save and save. As a result, for example, the upper limit position P1 shown in FIG. 7B is stored and saved.
 ステップS15において、ロボットコントローラ16は、溶接ヘッド5を測定開始位置へ移動させる。この処理では、溶接ヘッド5を図7(a)に示した測定開始位置に戻す。その後、ステップS16において、ロボットコントローラ16は、溶接ヘッド5を一定量だけ下降させる。次いで、ステップS17において、ロボットコントローラ16は、溶接ヘッド5に搭載されたCCDカメラ13に撮像指令信号を出力し、溶接ヘッド5によるワークWの加工部近傍を撮像する。 In step S15, the robot controller 16 moves the welding head 5 to the measurement start position. In this process, the welding head 5 is returned to the measurement start position shown in FIG. Thereafter, in step S16, the robot controller 16 lowers the welding head 5 by a certain amount. Next, in step S <b> 17, the robot controller 16 outputs an imaging command signal to the CCD camera 13 mounted on the welding head 5, and images the vicinity of the processing portion of the workpiece W by the welding head 5.
 ステップS18において、ロボットコントローラ16は、CCDカメラ13にて撮像される画像の焦点が、焦点が合っている場合に対して一定値以上外れているか否かを判断する。そして、画像の焦点が一定値以上外れていない(ある程度ピントが合っている)と判断された場合には(ステップS18でNO)、ステップS16に処理を戻して、再度溶接ヘッド5を一定量だけ下降させる。つまり、ここでの処理では、図7(a)に示す溶接ヘッド5を一定量ずつ下降させながら、CCDカメラ13で撮像される画像の焦点が所定値以上外れるように移動させる。 In step S18, the robot controller 16 determines whether or not the image captured by the CCD camera 13 is out of a certain value with respect to the case where the image is in focus. If it is determined that the image is out of focus by a certain value (focused to some extent) (NO in step S18), the process returns to step S16, and the welding head 5 is again moved by a certain amount. Lower. In other words, in this process, the welding head 5 shown in FIG. 7A is moved down by a certain amount so that the focus of the image picked up by the CCD camera 13 deviates by a predetermined value or more.
 そして、画像の焦点が一定値以上外れた場合には(ステップS18でYES)、ステップS19において、ロボットコントローラ16は、現在の溶接ヘッド5の座標を、焦点の下限位置として、図示しないメモリ等に記憶保存する。その結果、例えば図7(b)に示す下限位置P2が記憶保存される。 If the focus of the image deviates more than a certain value (YES in step S18), in step S19, the robot controller 16 sets the current coordinates of the welding head 5 as a lower limit position of the focus in a memory or the like (not shown). Save and save. As a result, for example, the lower limit position P2 shown in FIG. 7B is stored and saved.
 ステップS20において、ロボットコントローラ16は、上記の処理で求められた上限位置P1と下限位置P2の中間点P3を求め(図7(c)参照)、この中間点P3に溶接ヘッド5の先端部が位置するように、6軸多関節機構11を制御する。そして、上限位置P1と下限位置P2の中間点P3は、CCDカメラ13で撮像される画像の焦点が合う位置であり、且つ、上述したように溶接ヘッド5の焦点は、CCDカメラ13の焦点と一致するように設定されているので、溶接ヘッド5の焦点距離を適正な距離に合わせることができることになる。 In step S20, the robot controller 16 obtains an intermediate point P3 between the upper limit position P1 and the lower limit position P2 obtained by the above processing (see FIG. 7C), and the tip of the welding head 5 is located at the intermediate point P3. The 6-axis multi-joint mechanism 11 is controlled so as to be positioned. An intermediate point P3 between the upper limit position P1 and the lower limit position P2 is a position where the image captured by the CCD camera 13 is in focus, and as described above, the focus of the welding head 5 is the focus of the CCD camera 13. Since they are set to match, the focal length of the welding head 5 can be adjusted to an appropriate distance.
 このようにして、第1実施形態に係る溶接ロボットでは、溶接ヘッド5の側部にCCDカメラ13を設置し、該CCDカメラ13にてワークWの加工部位を撮像し、撮像した画像の焦点の外れ量が所定値となる上限位置、及び下限位置を求め、これらの上限位置と下限位置の中間点に溶接ヘッド5の先端部が来るように、溶接ヘッド5の位置を調節する。 In this way, in the welding robot according to the first embodiment, the CCD camera 13 is installed on the side of the welding head 5, and the processed part of the workpiece W is imaged by the CCD camera 13. An upper limit position and a lower limit position at which the deviation amount becomes a predetermined value are obtained, and the position of the welding head 5 is adjusted so that the tip of the welding head 5 comes to an intermediate point between these upper limit position and lower limit position.
 従って、CCDカメラ13の焦点と同一に設定されている溶接ヘッド5の焦点を、適切な距離に合わせることが可能となり、高精度なギャップ設定が可能となる。その結果、高精度な溶接作業を行うことが可能となる。 Therefore, the focus of the welding head 5 set to be the same as the focus of the CCD camera 13 can be adjusted to an appropriate distance, and a highly accurate gap can be set. As a result, it is possible to perform a highly accurate welding operation.
 [第2実施形態の説明]
 次に、本発明の第2実施形態について説明する。第2実施形態に係る溶接ロボットは、第1実施形態で示したものとほぼ同一の構成であり、CCDカメラ13の焦点距離を、ロボットコントローラ16により適宜調節可能である点が相違している。即ち、第2実施形態では、外部信号によりCCDカメラ13の焦点距離を変更することができる。
[Description of Second Embodiment]
Next, a second embodiment of the present invention will be described. The welding robot according to the second embodiment has substantially the same configuration as that shown in the first embodiment, and is different in that the focal length of the CCD camera 13 can be appropriately adjusted by the robot controller 16. That is, in the second embodiment, the focal length of the CCD camera 13 can be changed by an external signal.
 以下、第2実施形態に係る溶接ロボットにおける溶接ヘッドのギャップ調整処理について、図5に示すフローチャートを参照して説明する。この制御は、ロボットコントローラ16により行われる。初めに、ステップS31において、ロボットコントローラ16は、CCDカメラ13の焦点位置を記憶する。この際、CCDカメラ13は予め設定された初期的な焦点距離(基準焦点距離)に設定されている。例えば、図8(a)に示すP10が焦点となるように焦点距離が設定されている。 Hereinafter, the gap adjustment processing of the welding head in the welding robot according to the second embodiment will be described with reference to the flowchart shown in FIG. This control is performed by the robot controller 16. First, in step S31, the robot controller 16 stores the focal position of the CCD camera 13. At this time, the CCD camera 13 is set to a preset initial focal length (reference focal length). For example, the focal length is set so that P10 shown in FIG.
 ステップS32において、ロボットコントローラ16は、CCDカメラ13の焦点距離を調整して、焦点を一定量だけ上昇させる。ステップS33において、ロボットコントローラ16は、CCDカメラ13により、溶接ヘッド5によるワークWの加工部位を撮像する。 In step S32, the robot controller 16 adjusts the focal length of the CCD camera 13 to raise the focal point by a certain amount. In step S <b> 33, the robot controller 16 images the processed part of the workpiece W by the welding head 5 using the CCD camera 13.
 そして、ステップS34において、ロボットコントローラ16は、撮像した画像の焦点が一定値以上外れたか否かを判定する。画像の焦点が一定値以上外れていないと判断された場合には(ステップS34でNO)、ステップS32に処理を戻して、再度CCDカメラ13の焦点距離を変更して焦点を一定量だけ上昇させる。 In step S34, the robot controller 16 determines whether the focus of the captured image has deviated from a predetermined value or more. If it is determined that the focus of the image has not deviated beyond a certain value (NO in step S34), the process returns to step S32, and the focal distance of the CCD camera 13 is changed again to raise the focus by a certain amount. .
 そして、画像の焦点が一定値以上外れた場合には(ステップS34でYES)、ステップS35において、ロボットコントローラ16は、現在の焦点位置を、上限位置として図示省略のメモリ等に記憶保存する。つまり、ここでの処理では、図8(a)に示す溶接ヘッド5を固定させた状態で、CCDカメラ13の焦点距離を変更して焦点をP10から徐々に上昇させ、焦点の外れ量が一定値に達した際に、この位置を上限位置P11としてメモリ等に記憶保存する。 If the focus of the image deviates from a predetermined value or more (YES in step S34), in step S35, the robot controller 16 stores and saves the current focus position as an upper limit position in a memory (not shown) or the like. That is, in this process, with the welding head 5 shown in FIG. 8A fixed, the focal length of the CCD camera 13 is changed to gradually raise the focal point from P10, and the defocus amount is constant. When the value is reached, this position is stored and saved in a memory or the like as the upper limit position P11.
 ステップS36において、ロボットコントローラ16は、CCDカメラ13の焦点を開始時の焦点に戻す。即ち、ステップS31の処理で記憶した焦点位置となるように、CCDカメラ13の焦点距離を調整する。具体的には、図8(a)に示すP10の位置が焦点となるように調整する。 In step S36, the robot controller 16 returns the focus of the CCD camera 13 to the start focus. That is, the focal length of the CCD camera 13 is adjusted so as to be the focal position stored in the process of step S31. Specifically, adjustment is made so that the position of P10 shown in FIG.
 その後、ステップS37において、ロボットコントローラ16は、CCDカメラ13の焦点距離を調整して、焦点を一定量だけ下降させる。ステップS38において、ロボットコントローラ16は、CCDカメラ13により、溶接ヘッド5によるワークWの加工部位を撮像する。 Thereafter, in step S37, the robot controller 16 adjusts the focal length of the CCD camera 13 to lower the focal point by a certain amount. In step S <b> 38, the robot controller 16 images the processed part of the workpiece W by the welding head 5 using the CCD camera 13.
 そして、ステップS39において、ロボットコントローラ16は、撮像した画像の焦点が一定値以上外れたか否かを判定する。画像の焦点が一定値以上外れていないと判断された場合には(ステップS39でNO)、ステップS37に処理を戻して、再度CCDカメラ13の焦点距離を変更して焦点を一定量だけ下降させる。 In step S39, the robot controller 16 determines whether the focus of the captured image has deviated from a predetermined value or more. If it is determined that the focus of the image has not deviated beyond a certain value (NO in step S39), the process returns to step S37 to change the focal length of the CCD camera 13 again to lower the focus by a certain amount. .
 そして、画像の焦点が一定値以上外れた場合には(ステップS39でYES)、ステップS40において、ロボットコントローラ16は、現在の焦点位置を、下限位置として図示省略のメモリ等に記憶保存する。つまり、ここでの処理では、図8(a)に示す溶接ヘッド5を固定させた状態で、CCDカメラ13の焦点距離を変更して焦点をP10から徐々に下降させ、焦点の外れ量が一定値に達した際に、この位置を下限位置P12としてメモリ等に記憶保存する。 If the focus of the image deviates from a certain value (YES in step S39), in step S40, the robot controller 16 stores and saves the current focus position as a lower limit position in a memory (not shown) or the like. That is, in this process, with the welding head 5 shown in FIG. 8A fixed, the focal length of the CCD camera 13 is changed to gradually lower the focal point from P10, and the defocus amount is constant. When the value is reached, this position is stored and saved in a memory or the like as the lower limit position P12.
 ステップS41において、ロボットコントローラ16は、上記の処理で求めた上限位置P11と下限位置P12の中間点を求め、更に、この中間点と、基準焦点距離に設定されているときの焦点位置との差分を演算する。即ち、図8(b)に示すように、中間点P13が求められた場合には、P10とP13との距離が差分Lとして演算される。 In step S41, the robot controller 16 obtains an intermediate point between the upper limit position P11 and the lower limit position P12 obtained by the above processing, and further, the difference between this intermediate point and the focal position when the reference focal length is set. Is calculated. That is, as shown in FIG. 8B, when the intermediate point P13 is obtained, the distance between P10 and P13 is calculated as the difference L.
 その後、ステップS42において、ロボットコントローラ16は、P10とP13の差分Lだけ、溶接ヘッド5を移動させる。具体的には、図8(c)に示すように、差分Lだけ溶接ヘッド5を下降させて溶接ヘッド5の焦点がワークWの加工部位に合うように調整する。こうして、溶接ヘッド5とワークWとの間のギャップを適正な距離に設定することが可能となる。 Thereafter, in step S42, the robot controller 16 moves the welding head 5 by the difference L between P10 and P13. Specifically, as shown in FIG. 8 (c), the welding head 5 is lowered by a difference L and adjusted so that the focus of the welding head 5 matches the machining site of the workpiece W. Thus, the gap between the welding head 5 and the workpiece W can be set to an appropriate distance.
 このようにして、第2実施形態に係る溶接ロボットでは、溶接ヘッド5に搭載されるCCDカメラ13の焦点距離を適宜変更して、上限位置、及び下限位置を求め、更に、これらの中間点を求め、この中間点と基準焦点距離との関係に基づいて、溶接ヘッド5の位置を移動させ、溶接ヘッド5の焦点が合うように調整している。従って、第1実施形態と同様の効果を得ることができ、更に、ギャップ調整時に、溶接ヘッド5をむやみに上下に動作させないので、ギャップ調整に要する手間を軽減できる。更に、溶接ヘッド5が障害物等に接触することを防止することが可能となる。 In this way, in the welding robot according to the second embodiment, the focal length of the CCD camera 13 mounted on the welding head 5 is appropriately changed to obtain the upper limit position and the lower limit position, and further, the intermediate points thereof are determined. The position of the welding head 5 is moved based on the relationship between the intermediate point and the reference focal length, and the welding head 5 is adjusted to be in focus. Therefore, the same effects as those of the first embodiment can be obtained, and further, the welding head 5 is not moved up and down at the time of gap adjustment, so that the labor required for gap adjustment can be reduced. Furthermore, it is possible to prevent the welding head 5 from contacting an obstacle or the like.
 [第3実施形態の説明]
 次に、本発明の第3実施形態に係る溶接ロボットについて説明する。第3実施形態に係る溶接ロボットは、第1実施形態と同様の構成を備えているので、構成説明を省略する。以下、第3実施形態に係る溶接ロボットにおける溶接ヘッドのギャップ調整処理について、図6に示すフローチャートを参照して説明する。この制御は、ロボットコントローラ16により行われる。そして、この処理は、ワークWに対して溶接ヘッド5を予め十分に上昇させた位置に設定した状態(図9(a)参照)で実行する。また、第1実施形態と同様に、溶接ヘッド5の焦点距離とCCDカメラ13の焦点距離が一致するように設定している。
[Description of Third Embodiment]
Next, a welding robot according to a third embodiment of the present invention will be described. Since the welding robot according to the third embodiment has the same configuration as that of the first embodiment, description of the configuration is omitted. Hereinafter, the gap adjustment processing of the welding head in the welding robot according to the third embodiment will be described with reference to the flowchart shown in FIG. This control is performed by the robot controller 16. And this process is performed in the state (refer to Drawing 9 (a)) set to the position where welding head 5 was fully raised beforehand to work W. Further, similarly to the first embodiment, the focal length of the welding head 5 and the focal length of the CCD camera 13 are set to coincide with each other.
 初めに、ステップS51において、ロボットコントローラ16は、溶接ヘッド5を一定量だけ下降させる(図9(a)の矢印)。次いで、ステップS52において、ロボットコントローラ16は、溶接ヘッド5の側部に設けられているCCDカメラ13により、溶接ヘッド5によるワークWの加工部位を撮像する。 First, in step S51, the robot controller 16 lowers the welding head 5 by a certain amount (arrow in FIG. 9A). Next, in step S <b> 52, the robot controller 16 images the processed part of the workpiece W by the welding head 5 with the CCD camera 13 provided on the side of the welding head 5.
 ステップS53において、ロボットコントローラ16は、CCDカメラ13で撮像された画像の焦点が合ったか否かを判定する。そして、焦点が合わない場合には(ステップS53でNO)、ステップS51に処理を戻して、再度溶接ヘッド5を一定量だけ下降させる処理を行う。 In step S53, the robot controller 16 determines whether the image captured by the CCD camera 13 is in focus. If the focus is not achieved (NO in step S53), the process returns to step S51, and the process of lowering the welding head 5 by a predetermined amount is performed again.
 一方、焦点が合った場合には(ステップS53でYES)、ステップS54において、ロボットコントローラ16は、現在の溶接ヘッド5の位置座標を焦点位置として設定し、この位置で溶接ヘッド5を停止させる。その結果、図9(b)に示すように、焦点が合う位置に溶接ヘッド5を停止させることができる。その後、本処理を終了する。 On the other hand, when the focus is achieved (YES in step S53), in step S54, the robot controller 16 sets the current position coordinates of the welding head 5 as the focus position, and stops the welding head 5 at this position. As a result, as shown in FIG. 9B, the welding head 5 can be stopped at a position where the focus is achieved. Thereafter, this process is terminated.
 このようにして、第3実施形態に係る溶接ロボットでは、初期的な操作として、ワークWに対して溶接ヘッド5をワークWから十分に離れた位置に設定し、その後、徐々に溶接ヘッド5をワークWに近づけ、CCDカメラ13で撮像された画像の焦点が合った位置で溶接ヘッド5を停止させ、この位置を溶接ヘッド5による加工位置に設定する。従って、溶接ヘッド5の焦点を簡便な方法で所望する位置に合わせることができる。 Thus, in the welding robot according to the third embodiment, as an initial operation, the welding head 5 is set at a position sufficiently away from the workpiece W with respect to the workpiece W, and then the welding head 5 is gradually moved. The welding head 5 is stopped at a position close to the work W and the image captured by the CCD camera 13 is in focus, and this position is set as a processing position by the welding head 5. Therefore, the focus of the welding head 5 can be adjusted to a desired position by a simple method.
 また、第1実施形態と比較して、溶接ヘッド5の移動量を少なくすることができるので、障害物との接触などのトラブルの発生を低減することができる。 Moreover, since the moving amount of the welding head 5 can be reduced as compared with the first embodiment, it is possible to reduce the occurrence of troubles such as contact with an obstacle.
 以上、本発明の溶接ロボット及びギャップ調整方法を幾つかの実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、各部の構成は、同様の機能を有する任意の構成のものに置き換えることができる。 As mentioned above, although the welding robot and the gap adjustment method of the present invention have been described based on some embodiments, the present invention is not limited to this, and the configuration of each part is an arbitrary configuration having the same function. Can be replaced with something.
 例えば、上述した各実施形態では、溶接ロボットとしてレーザ溶接ロボットを例に挙げて説明したが、本発明は、溶接ヘッド5とワークWとの間のギャップを厳密に調整する必要のある溶接ロボット、例えば、アーク溶接ロボットについて適用することができる。 For example, in each of the above-described embodiments, a laser welding robot has been described as an example of a welding robot, but the present invention is a welding robot that needs to strictly adjust the gap between the welding head 5 and the workpiece W, For example, it can be applied to an arc welding robot.
 本発明は、溶接ロボットの溶接ヘッドとワークとの間のギャップが適正に制御することに利用することができる。 The present invention can be used to appropriately control the gap between the welding head of the welding robot and the workpiece.

Claims (6)

  1.  ワークに対して所定のギャップをもって配置された溶接ヘッドを有し、前記溶接ヘッドによりワークの所望部位を溶接する溶接ロボットにおいて、
     前記溶接ヘッド近傍に設置され、且つ、該溶接ヘッドと同一の焦点距離に設定され、溶接ヘッドにより溶接されるワークを撮像する撮像手段と、
     前記撮像手段により撮像されるワーク画像の焦点が合うように、該撮像手段の焦点距離を設定する焦点制御手段と、
     前記焦点制御手段により設定された焦点距離に基づいて、前記溶接ヘッドの、前記ワークに対するギャップを制御するギャップ制御手段と、
     を備えたことを特徴とする溶接ロボット。
    In a welding robot having a welding head arranged with a predetermined gap with respect to a workpiece, and welding a desired part of the workpiece by the welding head,
    An imaging means that is installed in the vicinity of the welding head and is set to the same focal length as the welding head and images a workpiece to be welded by the welding head;
    A focus control unit that sets a focal length of the imaging unit so that a work image captured by the imaging unit is in focus;
    Gap control means for controlling the gap of the welding head to the workpiece based on the focal length set by the focus control means;
    A welding robot characterized by comprising:
  2.  前記ギャップ制御手段は、前記撮像手段の焦点距離が一定の条件で、該溶接ヘッドを前記ワークに対して離間、或いは近接させ、前記ワーク画像の焦点のずれ量が所定値を超える際の上限位置、及び下限位置を求め、前記上限位置と下限位置の中間点となる位置に、前記溶接ヘッドの先端部を移動させることを特徴とする請求項1に記載の溶接ロボット。 The gap control means is an upper limit position when the amount of defocus of the work image exceeds a predetermined value when the welding head is separated from or close to the work under a condition that the focal length of the imaging means is constant. The welding robot according to claim 1, wherein a lower limit position is obtained and the tip of the welding head is moved to a position that is an intermediate point between the upper limit position and the lower limit position.
  3.  前記ギャップ制御手段は、前記撮像手段の焦点距離が一定の条件で、該溶接ヘッドを前記ワークに対して離間、或いは近接させて前記ワーク画像の焦点が合う位置を求め、この位置に溶接ヘッドの先端部として設定することを特徴とする請求項1に記載の溶接ロボット。 The gap control means obtains a position where the welding image is focused by separating or approaching the welding head with respect to the work under the condition that the focal length of the imaging means is constant, and the position of the welding head is determined at this position. It sets as a front-end | tip part, The welding robot of Claim 1 characterized by the above-mentioned.
  4.  前記焦点制御手段は、前記撮像手段の基準焦点距離を予め設定し、該基準焦点距離に対して、前記撮像手段の焦点距離を変化させることにより、前記ワークの画像の焦点ずれ量が所定値を超える上限焦点距離、及び下限焦点距離を求め、更に、上限焦点距離と下限焦点距離の中間点となる中間焦点距離を求め、
     前記ギャップ制御手段は、前記中間焦点距離と前記基準焦点距離との差分だけ、前記溶接ヘッドの先端部を移動させることを特徴とする請求項1に記載の溶接ロボット。
    The focal point control unit presets a reference focal length of the imaging unit, and changes a focal length of the imaging unit with respect to the reference focal length, whereby a defocus amount of the image of the workpiece becomes a predetermined value. Obtain an upper limit focal length that exceeds the lower limit focal length, and further obtain an intermediate focal length that is an intermediate point between the upper limit focal length and the lower limit focal length.
    The welding robot according to claim 1, wherein the gap control unit moves the tip of the welding head by a difference between the intermediate focal length and the reference focal length.
  5.  前記ギャップ制御手段は、前記溶接ヘッドをワークから十分離間した位置を基準位置として設定し、前記溶接ヘッドを前記基準位置から徐々にワークに近接させ、前記撮像手段で撮像された画像の焦点が合う位置に達した場合に、この位置を溶接ヘッドの位置として設定することを特徴とする請求項1に記載の溶接ロボット。 The gap control means sets the position where the welding head is sufficiently separated from the work as a reference position, gradually moves the welding head closer to the work from the reference position, and the image taken by the imaging means is focused. The welding robot according to claim 1, wherein when the position is reached, the position is set as the position of the welding head.
  6.  ワークに対して所定のギャップをもって配置された溶接ヘッドを有し、前記溶接ヘッドによりワークの所望部位を溶接する溶接ロボットにおける前記ギャップを調整する調整方法において、
     前記ワークの溶接部位を撮像する撮像手段の焦点距離を変化させるステップと、
     撮像手段で撮像される前記ワークの溶接部位の画像の焦点が合うように、前記撮像手段の焦点距離を変化させるステップと、
     前記焦点が合った位置となるように、前記溶接ヘッドの位置を制御するステップと、
     を備えたことを特徴とする溶接ロボットのギャップ調整方法。
    In an adjustment method for adjusting the gap in a welding robot having a welding head arranged with a predetermined gap with respect to a workpiece, and welding a desired part of the workpiece by the welding head,
    Changing the focal length of the imaging means for imaging the welded part of the workpiece;
    Changing the focal length of the imaging means so that the image of the welded part of the workpiece imaged by the imaging means is in focus;
    Controlling the position of the welding head so as to be in the focused position;
    A gap adjustment method for a welding robot, comprising:
PCT/JP2013/055795 2012-03-08 2013-03-04 Welding robot and gap adjustment method for welding robot WO2013133197A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012051734A JP5947571B2 (en) 2012-03-08 2012-03-08 Welding robot and gap adjustment method for welding robot
JP2012-051734 2012-03-08

Publications (1)

Publication Number Publication Date
WO2013133197A1 true WO2013133197A1 (en) 2013-09-12

Family

ID=49116674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055795 WO2013133197A1 (en) 2012-03-08 2013-03-04 Welding robot and gap adjustment method for welding robot

Country Status (2)

Country Link
JP (1) JP5947571B2 (en)
WO (1) WO2013133197A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107414290A (en) * 2017-05-02 2017-12-01 上海贝特威自动化科技有限公司 A kind of fixed-position welding method for air throttle of car
WO2020010844A1 (en) * 2018-07-11 2020-01-16 成都熊谷加世电器有限公司 Laser-tracking-based welding system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6495989B1 (en) 2017-10-02 2019-04-03 株式会社アマダホールディングス Program creation apparatus, welding system, and program creation method
CN109894744A (en) * 2019-04-03 2019-06-18 瑞茂光学(深圳)有限公司 A kind of atomic thin metal assembly fully-automatic laser welding detection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06344167A (en) * 1993-06-07 1994-12-20 Toshiba Corp Laser beam machine
JPH11192565A (en) * 1998-01-07 1999-07-21 Amada Co Ltd Processing point detector

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101426611B (en) * 2006-06-30 2012-07-04 O.M.C株式会社 Laser machining apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06344167A (en) * 1993-06-07 1994-12-20 Toshiba Corp Laser beam machine
JPH11192565A (en) * 1998-01-07 1999-07-21 Amada Co Ltd Processing point detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107414290A (en) * 2017-05-02 2017-12-01 上海贝特威自动化科技有限公司 A kind of fixed-position welding method for air throttle of car
WO2020010844A1 (en) * 2018-07-11 2020-01-16 成都熊谷加世电器有限公司 Laser-tracking-based welding system

Also Published As

Publication number Publication date
JP2013184197A (en) 2013-09-19
JP5947571B2 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
US6040550A (en) Apparatus and method for laser welding the outer joints of metal bellows
CA2403596C (en) Method of welding three-dimensional structure and apparatus for use in such method
CN101269442B (en) Laser welding apparatus and method
JP3761657B2 (en) Laser processing method and apparatus
CA2941153C (en) Hybrid laser welding system and method using two robots
WO2013133197A1 (en) Welding robot and gap adjustment method for welding robot
JPH029538B2 (en)
JP2003326362A (en) Automatic beveling copy-welding apparatus and method
CN102029463A (en) Device for controlling deflection correction of MIG/MAG backing weld joint of pipe based on visual sensor
DE102010011253A1 (en) Laser processing head and method for processing a workpiece by means of a laser beam
JP5645687B2 (en) Laser processing apparatus and laser processing method
CN105171234B (en) Robotic laser welds defocusing amount automatic regulating apparatus and its automatic adjusting method
JP2019058942A (en) Welding appearance failure detection device, laser welder, and welding appearance failure detection method
CN114633021A (en) Laser welding method and device for real-time vision acquisition
CN110508906A (en) A kind of method that robotic laser displacement sensor seeks position
JPH05185227A (en) Automatic welding system and method of automatic welding
JP6052798B2 (en) Abnormality monitoring device for automatic welding machine
JP6261678B1 (en) Laser alignment adjustment method and water jet laser processing machine
JP4861738B2 (en) Laser welding equipment
JP6411828B2 (en) Camera position adjustment apparatus, welding robot system, and camera position adjustment method
EP1314510B1 (en) Method of welding three-dimensional structure and apparatus for use in such method
JP2822315B2 (en) Laser processing equipment
JPH11147187A (en) Method and device for yag laser machining
JP2010046679A (en) Method of and device for inspecting laser welding quality
JP2000351071A (en) Automatic welding system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13757586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13757586

Country of ref document: EP

Kind code of ref document: A1