WO2013133022A1 - 液晶表示パネルおよび液晶表示装置 - Google Patents

液晶表示パネルおよび液晶表示装置 Download PDF

Info

Publication number
WO2013133022A1
WO2013133022A1 PCT/JP2013/054209 JP2013054209W WO2013133022A1 WO 2013133022 A1 WO2013133022 A1 WO 2013133022A1 JP 2013054209 W JP2013054209 W JP 2013054209W WO 2013133022 A1 WO2013133022 A1 WO 2013133022A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
electrode
crystal display
display panel
substrate
Prior art date
Application number
PCT/JP2013/054209
Other languages
English (en)
French (fr)
Inventor
雄一 川平
松本 俊寛
村田 充弘
洋典 岩田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US14/382,753 priority Critical patent/US9274375B2/en
Publication of WO2013133022A1 publication Critical patent/WO2013133022A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/0009Materials therefor
    • G02F1/0045Liquid crystals characterised by their physical properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133541Circular polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/13Positive birefingence

Definitions

  • the present invention relates to a transflective liquid crystal display panel and a liquid crystal display device including the transflective liquid crystal display panel.
  • liquid crystal display devices have been widely used in various fields such as televisions, monitors, and mobile phones, taking advantage of their energy-saving, thin, and lightweight features.
  • Such liquid crystal display devices are classified into a transmission type, a reflection type, and a semi-transmission type depending on the light source used for display.
  • the transmissive liquid crystal display device is configured to perform display by irradiating a liquid crystal display panel provided in the liquid crystal display device with light from a separately provided backlight, so that a bright and high-contrast display is performed.
  • a liquid crystal display panel provided in the liquid crystal display device with light from a separately provided backlight
  • power consumption becomes large.
  • the reflective liquid crystal display device does not use the light from the backlight, but uses the ambient light reflected by the reflective electrode provided in the liquid crystal display panel to perform display.
  • the contrast is lowered depending on the brightness of the surroundings where the reflective liquid crystal display device is used.
  • the light is reflected by a transmissive region and a reflective electrode in one pixel of the liquid crystal display panel, using light from the backlight.
  • a transflective liquid crystal display device has been developed that includes a reflective region that displays using ambient light.
  • the transflective liquid crystal display device is provided with a reflective region for displaying using ambient light reflected by the reflective electrode.
  • a reflective region for displaying using ambient light reflected by the reflective electrode.
  • light from the backlight is provided. Since it is not used, lower power consumption can be realized.
  • the transflective liquid crystal display device having such features is used indoors and outdoors and is actively used in portable electronic devices such as smartphones and mobile phones that use a limited power source.
  • the transflective liquid crystal display device has problems as described below.
  • FIG. 18 is a diagram showing a schematic configuration of a conventional transflective liquid crystal display panel.
  • a transflective liquid crystal display panel 100a includes an active matrix substrate, a color filter substrate, and a liquid crystal layer 107 composed of liquid crystal molecules 106 sandwiched between these substrates. It is equipped with.
  • the active matrix substrate is connected to an insulating substrate 101 that transmits visible light, a TFT element (not shown) formed on the insulating substrate 101, an insulating layer (not shown), and a drain electrode of the TFT element.
  • a reflection electrode 102 and a transparent electrode 103 as pixel electrodes, and an alignment film (not shown) are provided.
  • the color filter substrate includes an insulating substrate 104 that transmits visible light, a transparent electrode 105 as a common electrode, and an alignment film (not shown).
  • a reflective electrode 102 which is a part of the pixel electrode is provided in the reflective region of the transflective liquid crystal display panel 100a, and a part of the pixel electrode is provided in the transmissive region.
  • a certain transparent electrode 103 is provided.
  • the retardation is a value determined by the refractive index anisotropy ⁇ n of the liquid crystal layer and the panel gap (the thickness of the liquid crystal layer) d.
  • phase difference generated in light between the reflective region and the transmissive region does not match is generally that light passes through the liquid crystal layer 106 in the transflective liquid crystal display panel 100a having both the transmissive region and the reflective region. This is because the distance to be reflected is twice that of the transmissive region in the reflective region.
  • the light path is one-way in the transmissive region, while it is reciprocating in the reflective region.
  • the transflective liquid crystal display panel it is necessary to make the phase difference generated in the light in the reflection region and the phase difference generated in the light in the transmission region the same, and make the optical characteristics of the transmission region and the reflection region almost equal. There is.
  • FIG. 18 (b) and FIG. 18 (c) show the liquid crystal display panels 100b and 100c in which the optical characteristics of the transmission region and the reflection region are substantially equal.
  • the panel gap (the thickness of the liquid crystal layer) in the reflection region is set so that the phase difference of light generated in the reflection region and the phase difference of light generated in the transmission region are the same.
  • a multi-gap structure in which a panel gap adjusting structure 108 is provided in the reflective region is employed. .
  • the liquid crystal display panel 100c illustrated in FIG. 18C has different electric fields in the reflective region and the transmissive region in order to make the alignment state of the liquid crystal molecules 106 in the reflective region and the transmissive region different.
  • the electrode structure is such that the electric field A and the electric field B can be applied, and is driven by a driving method in which the electric field A and the electric field B, which are different electric fields, are applied to the reflective region and the transmissive region, respectively.
  • the phase difference that occurs in light in the reflective region and the level that occurs in light in the transmissive region for the following reasons.
  • the above-described panel gap adjusting structure 108 and a driving method of applying different electric fields to the reflective region and the transmissive region are used. It was necessary to use it.
  • the liquid crystal molecules are aligned horizontally on the substrate surface when the applied voltage is turned off. Even if the circularly polarized light used to realize the normally black liquid crystal display device is used as it is in the transflective liquid crystal display device of the mode, it is difficult to realize the normally black liquid crystal display device. .
  • the above-described panel gap adjusting structure 108 and the reflective region and the transmissive region are provided. It is necessary to use a driving method in which different electric fields are applied to each.
  • Patent Document 1 discloses a TBA mode (Transverse Bend Alignment Mode) in which a comb-shaped electrode and liquid crystal molecules vertically aligned when an applied voltage is turned off are aligned in a bent shape in a horizontal direction by a horizontal electric field generated when the applied voltage is turned on. ), The phase difference that occurs in the light that has passed through the reflective region and the phase difference that occurs in the light that has passed through the transmissive region are disclosed.
  • TBA mode Transverse Bend Alignment Mode
  • FIG. 19 shows a TBA mode transflective liquid crystal display panel 200 including an active matrix substrate 210 disclosed in Patent Document 1, a counter substrate 250, and a liquid crystal layer 230 sandwiched between the two substrates. It is a figure which shows schematic structure of these.
  • the reflective layer 228 provided only in the reflective region R in the transmissive region T and the reflective region R, Interlayer insulating film 223, gate bus line 212 and Cs bus line 213, gate insulating film 214, semiconductor layer 215, source wiring 217, drain wiring 218 and source bus line 216, and interlayer insulating film having contact hole 227 223 and the planarizing film 224, comb-shaped common electrodes 221 and 229, comb-shaped common electrode branches 229c and comb-shaped pixel electrode branches 220b and 220c, and a vertical alignment film 225 They are stacked in this order.
  • a polarizing plate 242 is provided on the side of the insulating substrate 211 opposite to the side in contact with the liquid crystal layer 230.
  • a vertical alignment film 255 is provided on a side of the insulating substrate 251 provided in the counter substrate 250 in contact with the liquid crystal layer 230, and a polarizing plate 241 is provided on the side of the insulating substrate 251 opposite to the side in contact with the liquid crystal layer 230. Is provided.
  • FIG. 20 shows an electric field generated when a voltage is applied by a LCD-MASTER manufactured by Shintech Co., Ltd. using the structure shown in FIG. 20A as a model structure of the TBA mode transflective liquid crystal display panel 200 shown in FIG. It is a figure which shows the result of having calculated the direction of and the orientation of the liquid crystal molecule 231 in this case.
  • FIG. 20B shows the direction of the electric field generated when a 10V voltage is applied
  • FIG. 20C shows the orientation of the liquid crystal molecules 231 when the 10V voltage is applied.
  • the spatial distribution of the refractive index anisotropy ⁇ n of the liquid crystal layer 230 occurs in the x-axis direction shown in FIG. 20A, it is shown in FIG.
  • the region where the electric field is distorted is relatively small, and as shown in FIG. 20C, the alignment of the liquid crystal molecules 231 is horizontal alignment with little distortion.
  • the electrode spacing S in the transmissive region T and the electrode spacing S in the reflective region R are different, that is, a multi-L / S structure is provided. Adopted, the transmittance change curve according to the applied voltage in the transmissive region T and the reflectance change curve according to the applied voltage in the reflective region R are approximated.
  • FIG. 21 is a diagram showing the electrode spacing S in the transmission region T and the electrode spacing S in the reflection region R in the TBA mode transflective liquid crystal display panel 200 shown in FIG.
  • the electrode interval S in the transmissive region T is narrower than the electrode interval S in the reflective region R.
  • the common electrode and the pixel electrode are both formed in a comb-like shape, the comb-like electrode is used as a reflector. It is necessary to separately form a metallic reflective layer 228 only in the reflective region R.
  • the reflective layer 228 Since the reflective layer 228 is not connected to any electrode, it has a structure that cannot be released once charges are accumulated for some reason.
  • TBA mode transflective liquid crystal display panel 200 adopting the multi-L / S structure disclosed in Patent Document 1 will be described in detail later, but as shown in FIG.
  • the present invention has been made in view of the above problems, and without using a panel gap adjusting structure, a driving method for applying different electric fields to the reflective region and the transmissive region, or a multi-L / S structure.
  • a transflective liquid crystal display panel having high transmittance, reflectivity, and yield, and capable of suppressing the occurrence of display defects such as burn-in, and a liquid crystal display device including such a transflective liquid crystal display panel To provide.
  • the liquid crystal display panel of the present invention includes a first substrate, a second substrate, a liquid crystal layer sandwiched between the first substrate and the second substrate, A liquid crystal display panel that performs display by reflecting and transmitting incident light in each of the plurality of pixels, the first substrate and the second substrate.
  • Each is provided with a circularly polarizing member, and the liquid crystal molecules contained in the liquid crystal layer have positive dielectric anisotropy, and when no voltage is applied, in the first substrate and the second substrate.
  • the insulating film formed on the first electrode and the first electrode are in plan view To overlap Oite, it is characterized in that a second electrode having a plurality of linear electrodes formed at regular intervals and a constant line width on the insulating layer, is provided.
  • the first substrate formed in a planar shape on one of the first substrate and the second substrate, an insulating film formed on the first electrode,
  • An electrode structure comprising: a second electrode having a plurality of linear electrodes formed on the insulating layer at a constant interval and a constant line width so as to overlap the first electrode in plan view Therefore, the orientation of the liquid crystal molecules in the liquid crystal layer when an electric field is applied is adjusted using the lateral electric field (Fringe Field) generated from such an electrode structure. It can be intentionally non-uniform along the horizontal direction.
  • lateral electric field Frringe Field
  • the first electrode is formed in a planar shape, it can be used as an electrode and reflector, so that the first electrode has a structure in which charges are not easily accumulated.
  • transmittance, reflectance, and yield can be achieved without using a panel gap adjusting structure, a driving method that applies different electric fields to the reflective region and the transmissive region, or a multi-L / S structure.
  • a transflective liquid crystal display panel that is high and can suppress display defects such as image sticking can be realized.
  • the liquid crystal display device of the present invention is characterized by comprising the above-mentioned liquid crystal display panel and a backlight in order to solve the above problems.
  • the transmittance, reflectance, and yield are high without using a panel gap adjusting structure, a driving method for applying different electric fields to the reflective region and the transmissive region, and a multi-L / S structure,
  • each of the first substrate and the second substrate is provided with a circularly polarizing member, and the liquid crystal molecules contained in the liquid crystal layer are positive.
  • the first substrate and the second substrate are aligned in a direction perpendicular to each surface on the side in contact with the liquid crystal layer, and the first substrate
  • the first electrode formed in a planar shape, the insulating film formed on the first electrode, and the first electrode overlap in plan view.
  • the second electrode including a plurality of linear electrodes formed at a constant interval and a constant line width on the insulating layer is provided.
  • the liquid crystal display device of the present invention has the above-described liquid crystal display panel and a backlight.
  • FIG. 1 It is a figure which shows schematic structure of the liquid crystal display device provided with the transflective liquid crystal display panel of one embodiment of this invention.
  • the transflective liquid crystal display panel of one embodiment of the present invention it is a diagram showing the alignment state of liquid crystal molecules when no voltage is applied.
  • the transflective liquid crystal display panel of one embodiment of the present invention it is a diagram showing the alignment state of liquid crystal molecules when a voltage is applied.
  • the transflective liquid crystal display panel according to one embodiment of the present invention can approximate optical characteristics (voltage-transmission / reflection characteristics) in the transmissive region and the reflective region without requiring a multi-gap structure or a multi-L / S structure. It is a figure for demonstrating a reason.
  • the line width L of each linear electrode, which is a branch of the comb-shaped electrode is set to 4.0 ⁇ m, and the panel gap d is set to 3.4 ⁇ m.
  • FIG. 8 is a diagram showing voltage-transmittance / reflectance curves when only the interval width S between adjacent linear electrodes is changed to 8.0 ⁇ m, 12.0 ⁇ m, and 16.0 ⁇ m, respectively.
  • the line width L of each linear electrode which is a branch of the comb-shaped electrode is set to 4.0 ⁇ m, and the panel gap d is set to 3.8 ⁇ m.
  • FIG. 8 is a diagram showing voltage-transmittance / reflectance curves when only the interval width S between adjacent linear electrodes is changed to 8.0 ⁇ m, 12.0 ⁇ m, and 16.0 ⁇ m, respectively.
  • the line width L of each linear electrode which is a branch of the comb-shaped electrode, is set to 4.0 ⁇ m, and the panel gap d is set to 4.2 ⁇ m.
  • FIG. 8 is a diagram showing voltage-transmittance / reflectance curves when only the interval width S between adjacent linear electrodes is changed to 8.0 ⁇ m, 12.0 ⁇ m, and 16.0 ⁇ m, respectively.
  • FIG. (A) is a figure which shows the structure of the comparative example 1
  • (b) is a figure which shows the result of having calculated the voltage-transmittance / reflectance curve using the structure of the comparative example 1.
  • FIG. (A) is a figure which shows the structure of the transflective liquid crystal display panel of one embodiment of this invention
  • (b) is the structure of the transflective liquid crystal display panel of one embodiment of this invention.
  • FIG. 6 is a diagram showing a result of calculating a voltage-transmittance / reflectance curve using a curve.
  • FIG. (A) is a figure which shows the structure of the comparative example 2
  • (b) is a figure which shows the result of having calculated the voltage-transmittance / reflectance curve using the structure of the comparative example 2.
  • FIG. (A) is a figure which shows the structure of the comparative example 3
  • (b) is a figure which shows the result of having calculated the voltage-transmittance / reflectance curve using the structure of the comparative example 3.
  • FIG. (A) is a figure which shows the structure of the comparative example 3
  • (b) is a figure which shows the result of having calculated the voltage-transmittance / reflectance curve using the structure of the comparative example 3.
  • FIG. 11 is a diagram illustrating a schematic configuration of a TBA mode transflective liquid crystal display panel disclosed in Patent Document 1.
  • A is a figure which shows the model structure of the transflective liquid crystal display panel of the TBA mode currently disclosed by patent document 1
  • (b) is a figure which shows the direction of the electric field which generate
  • C is a figure which shows the orientation of the liquid crystal molecule at the time of 10V voltage application.
  • FIG. 20 is a diagram illustrating an electrode interval S in a transmission region T and an electrode interval S in a reflection region R in the TBA mode transflective liquid crystal display panel illustrated in FIG. 19.
  • FIG. 1 is a diagram showing a schematic configuration of a liquid crystal display device 1 including a transflective liquid crystal display panel 2.
  • the liquid crystal display device 1 includes a transflective liquid crystal display panel 2 and a backlight 3 that emits uniform light from the opposite side of the display surface of the transflective liquid crystal display panel 2. I have.
  • the transflective liquid crystal display panel 2 includes an active matrix substrate 4, a counter substrate 12, and a liquid crystal layer 17 including liquid crystal molecules 16 sandwiched between the two substrates.
  • FIG. 1 shows one pixel provided in the liquid crystal display device 1, and in this embodiment, an example in which one reflection region and one transmission region are provided in one pixel.
  • the present invention is not limited to this, and a plurality of reflection regions and a plurality of transmission regions may be provided in one pixel.
  • a metal electrode 6 formed in a planar shape in the reflective region and a transparent electrode 7 formed in a planar shape in the transmissive region. , Each is formed.
  • an interlayer insulating layer 8 is formed so as to cover the metal electrode 6 and the transparent electrode 7.
  • the active matrix substrate 4 is provided with a TFT element and wiring for driving the TFT element, and the comb-shaped electrode 9 having a trunk part and a branch part is provided with the TFT. It is electrically connected to the drain electrode of the element.
  • the comb-shaped electrode 9 includes a plurality of linear electrodes that are branches, and these branches are illustrated in FIG. 1.
  • each linear electrode that is a branch of the comb-shaped electrode 9 is formed to have a constant line width L and a constant interval width S.
  • liquid crystal molecules 16 included in the liquid crystal layer 17 are applied to the active matrix substrate 4 and the counter substrate 12 with no voltage applied so as to cover the comb-shaped electrodes 9 and the interlayer insulating layer 8.
  • a vertical alignment film is provided for vertical alignment during heating.
  • a ⁇ / 4 plate 10 and a linearly polarizing plate 11 are sequentially stacked as a circularly polarizing member on the surface opposite to the side in contact with the liquid crystal layer 17 in the insulating substrate 5 provided in the active matrix substrate 4. It has been.
  • a color filter layer and a vertical alignment film are provided on the surface of the insulating substrate 13 provided on the counter substrate 12 that is in contact with the liquid crystal layer 17.
  • a ⁇ / 4 plate 14 and a linearly polarizing plate 15 are sequentially stacked as a circularly polarizing member on the surface opposite to the surface in contact with the liquid crystal layer 17 in the insulating substrate 13 provided in the counter substrate 12. Is provided.
  • the transflective liquid crystal display panel 2 includes the active matrix substrate 4.
  • a COA (Color Filter On Array) structure having a color filter layer on the side may be employed.
  • FIG. 2 is a diagram showing the alignment state of the liquid crystal molecules 16 in the transflective liquid crystal display panel 2 when no voltage is applied.
  • liquid crystal molecules 16 included in the liquid crystal layer 17 are vertically aligned with respect to the active matrix substrate 4 and the counter substrate 12 when no voltage is applied.
  • FIG. 3 is a diagram showing the alignment state of the liquid crystal molecules 16 when a voltage is applied in the transflective liquid crystal display panel 2.
  • the active matrix substrate 4 includes a metal electrode 6 and a transparent electrode 7 formed in a planar shape, an interlayer insulating film 8 formed on the metal electrode 6 and the transparent electrode 7, and a metal electrode 6. And a comb-like electrode 9 having a plurality of linear electrodes formed at a constant interval and a constant line width on the interlayer insulating film 8 so as to overlap the transparent electrode 7 in plan view. Since it has an electrode structure, a horizontal electric field (Fringe Field) generated from such an electrode structure is used, and when a voltage (electric field) is applied, the orientation of the liquid crystal molecules 16 in the liquid crystal layer 17 is opposed to the active matrix substrate 4. It can be intentionally non-uniform along the horizontal direction of the substrate 12 (substrate horizontal direction).
  • the metal electrode 6 is formed in a planar shape, it can be used as an electrode / reflector, so that the metal electrode 6 has a structure in which charges are difficult to accumulate.
  • the transflective liquid crystal display panel 2 of the present embodiment a panel gap adjusting structure, a driving method for applying different electric fields to the reflective region and the transmissive region, or a multi-L / S structure Therefore, the transflective liquid crystal display panel 2 can be realized that has high transmittance, reflectance, and yield and can suppress display defects such as image sticking.
  • transflective liquid crystal display panel 2 and a backlight 3, a panel gap adjusting structure, a driving method for applying different electric fields to the reflective region and the transmissive region, or a multi-L / L
  • S structure it is possible to realize a transflective liquid crystal display device 1 that has high transmittance, reflectance, and yield, and can suppress display defects such as image sticking.
  • glass substrates are used as the insulating substrate 5 provided in the active matrix substrate 4 and the insulating substrate 13 provided in the counter substrate 12, but light in the visible light region can be transmitted. And if it is a board
  • the metal electrode 6 was formed using Al which has high electroconductivity and a high reflectance with respect to at least visible light, it is not limited to this, For example, Ag or You may form using Au etc.
  • the metal electrode 6 is formed of an Al single layer.
  • a multi-layered film having Al, Ag, Au, etc. as the uppermost layer may be used.
  • the transparent electrode 7 is formed using ITO (Indium Tin Oxide) having conductivity and at least a transmittance for visible light, but is not limited thereto.
  • ITO Indium Tin Oxide
  • IZO Indium Zinc Oxide
  • IZO Indium Zinc Oxide
  • an acrylic interlayer insulating film having a dielectric constant of 6.9 is used as the interlayer insulating film 8 and has a thickness of 1.0 ⁇ m.
  • the present invention is not limited to this.
  • an inorganic insulating film, a hybrid insulating film in which an organic system and an inorganic system are mixed, and these insulating films are adjusted by appropriately adjusting the film thickness according to the dielectric constant of the insulating film A structure in which is stacked can also be used.
  • the comb-shaped electrode 9 is formed using ITO having conductivity and at least a transmittance for visible light, like the transparent electrode 7, but is not limited thereto.
  • ITO having conductivity and at least a transmittance for visible light, like the transparent electrode 7, but is not limited thereto.
  • it may be formed using IZO or the like.
  • each linear electrode which is a branch portion of the comb-shaped electrode 9 has a line width L of 4.0 ⁇ m and an interval width S between adjacent linear electrodes of 8.0 ⁇ m to 16.0 ⁇ m. Formed as follows.
  • FIG. 4 illustrates the positional relationship between the optical axes of the ⁇ / 4 plates 10 and 14 as the circularly polarizing members provided in the transflective liquid crystal display panel 2 and the transmission axes of the linear polarizing plates 11 and 15.
  • FIG. 4 illustrates the positional relationship between the optical axes of the ⁇ / 4 plates 10 and 14 as the circularly polarizing members provided in the transflective liquid crystal display panel 2 and the transmission axes of the linear polarizing plates 11 and 15.
  • FIG. 4 shows how the optical axes of the ⁇ / 4 plates 10 and 14 as circularly polarizing members and the transmission axes of the linearly polarizing plates 11 and 15 are arranged in the present embodiment.
  • the figure shows how the linear electrodes, which are the branches of the comb-shaped electrode 9, are arranged in the direction in which the linear electrodes extend (parallel to the comb teeth).
  • the angle formed by the optical axis of the ⁇ / 4 plate 10 provided in the active matrix substrate 4 and the transmission axis of the linear polarizing plate 11 is 45 °
  • the counter substrate is The angle formed by the optical axis of the ⁇ / 4 plate 14 provided in 12 and the transmission axis of the linear polarizing plate 15 is also 45 °.
  • the transmission axis of the linearly polarizing plate 11 provided on the active matrix substrate 4 is rotated by 90 ° with respect to the transmission axis of the linearly polarizing plate 15 provided on the counter substrate 12.
  • the optical axis of the ⁇ / 4 plate 10 provided in the active matrix substrate 4 is also rotated by 90 ° with respect to the optical axis of the ⁇ / 4 plate 14 provided in the counter substrate 12.
  • the alignment of the liquid crystal molecules 16 in the liquid crystal layer 17 when no voltage (electric field) is applied Is perpendicular to the active matrix substrate 4 and the counter substrate 12, and the optical axes of the ⁇ / 4 plates 10 and 14 as circularly polarizing members so that the light incident on the liquid crystal layer 17 is circularly polarized, It arrange
  • FIG. 5 shows the reason why the optical characteristics (voltage-transmission / reflection characteristics) in the transmissive region and the reflective region can be approximated without requiring the multi-gap structure or the multi-L / S structure in the liquid crystal display panel 2 of the present embodiment. It is a figure for demonstrating.
  • liquid crystal is applied to the comb-shaped electrode 9 when a voltage is applied. It is necessary that the molecules are not uniformly tilted along the horizontal direction of the substrate (the x-axis direction in FIG. 5A).
  • the distance that the light passes through the reflection area is always twice the distance that passes through the transmission area. Therefore, when ⁇ n is constant along the x-axis direction, And a phase difference (a value proportional to the refractive index anisotropy ⁇ n of the liquid crystal layer ⁇ the distance d through which the light passes) generated between the light passing through both the reflection region and the reflection region can be the same in any coordinate of the x-axis. Therefore, it is not possible to obtain optical characteristics (voltage-transmission / reflection characteristics) that are equivalent or approximate to each other between the transmission area and the reflection area.
  • a lateral electric field (Fringe Field) is generated by the electrode structure, and as shown in FIG. 5C.
  • the alignment of the liquid crystal molecules 16 can be made non-uniform in the inclination of the liquid crystal molecules 16 along the x-axis. In other words, the orientation of the liquid crystal molecules 16 is distorted using the distortion of the electric field.
  • ⁇ n of the liquid crystal layer 17 changes its value depending on the x coordinate. That is, it is possible to obtain a state in which a distribution is generated in the value of ⁇ n along the x axis.
  • the transmittance and reflectance at a given voltage cannot be matched, but the transmittance is high in one region and the reflectance is high in another region.
  • a spatial distribution of transmittance / reflectance that is, a spatial distribution of ⁇ n is generated, and the panel gap (liquid crystal layer) is set so that the average transmittance and the average reflectance per predetermined unit region can be equal or approximate.
  • D, the line width L of each linear electrode that is a branch of the comb-shaped electrode 9, and the interval width S between adjacent linear electrodes are set.
  • the panel gap (the thickness of the liquid crystal layer) d and the respective linear shapes that are the branches of the comb-shaped electrode 9 are used.
  • the optical characteristics (voltage-transmission in the transmission region and the reflection region). ⁇ Reflection characteristics cannot be approximated.
  • the reflectance is 100% of the amount of visible light incident on the liquid crystal layer 17 from the side opposite to the side where the metal electrode 6 is provided, and is reflected by the metal electrode 6 and passes through the liquid crystal layer 17 again. This is a calculation of the light amount of the predetermined wavelength emitted from the side opposite to the side where the metal electrode 6 is provided. The calculation is performed assuming that the reflectance of the metal electrode 6 is 100%.
  • the transmittance is opposite to the side where the transparent electrode 7 is provided via the liquid crystal layer 17 with the light amount of the predetermined wavelength entering the liquid crystal layer 17 from the side where the transparent electrode 7 is provided being 100%.
  • the amount of light having the predetermined wavelength emitted from the side is calculated.
  • the line width L of each linear electrode which is a branch of the comb-shaped electrode 9 is set to 4.0 ⁇ m, and the panel gap d is set to 3.4 ⁇ m.
  • a voltage-transmittance / reflectance curve is shown when only the spacing width S between adjacent linear electrodes is changed to 8.0 ⁇ m, 12.0 ⁇ m, and 16.0 ⁇ m.
  • the line width L of each linear electrode which is a branch of the comb-shaped electrode 9 is set to 4.0 ⁇ m, and the panel gap d is set to 3.8 ⁇ m.
  • the voltage-transmittance / reflectance curves are shown when the spacing width S between adjacent linear electrodes is changed to 8.0 ⁇ m, 12.0 ⁇ m, and 16.0 ⁇ m, respectively.
  • the line width L of each linear electrode which is a branch of the comb-shaped electrode 9, is set to 4.0 ⁇ m, and the panel gap d is set to 4.2 ⁇ m.
  • the voltage-transmittance / reflectance curves are shown when the spacing width S between adjacent linear electrodes is changed to 8.0 ⁇ m, 12.0 ⁇ m, and 16.0 ⁇ m, respectively.
  • the inventors found that the refractive index anisotropy ⁇ n of the liquid crystal layer, the panel gap (the thickness of the liquid crystal layer) d, and the respective linear shapes that are the branches of the comb-shaped electrode 9. If the relationship of the following formulas (1) and (2) is satisfied between the line width L of the electrodes and the interval width S between the adjacent linear electrodes, the voltage-transmittance curve and the voltage- The reflectance curve was predicted to be a better approximation.
  • the voltage-transmittance curve and the voltage-reflectance curve are well approximated as expected by the inventors.
  • the product of the refractive index anisotropy ⁇ n of the liquid crystal layer 17 and the thickness d of the liquid crystal layer 17 is approximately 450 nm, and the thickness d of the liquid crystal layer 17 is
  • the shortest line width L of each linear electrode that is a branch of the comb-shaped electrode 9 and the interval width S between adjacent linear electrodes satisfy a ratio of 1: 1: 3.
  • the liquid crystal layer 17 and the comb-shaped electrode 9 are preferably formed. That is, the liquid crystal display panel 2 of the present embodiment preferably satisfies the relationship of the above formula (1) and the above formula (2).
  • the panel gap (the thickness of the liquid crystal layer) d, the shortest line width L of each linear electrode which is a branch of the comb-shaped electrode, and the spacing width S between adjacent linear electrodes
  • the voltage-transmittance curve and the voltage-reflectance curve are well approximated regardless of the range of the refractive index anisotropy ⁇ n of the liquid crystal layer. That is, the allowable range of the product (retardation) of the refractive index anisotropy ⁇ n of the liquid crystal layer and the thickness d of the liquid crystal layer was calculated.
  • FIG. 10 is a diagram for explaining an allowable range of retardation.
  • the transmittance and reflectance were calculated while changing only the refractive index anisotropy ⁇ n in the range of 0.11 to 0.13.
  • each voltage value between 0V to 10V (0V, 1V, 2V) 3V, 4V, 5V, 6V, 7V, 8V, 9V, and 10V)
  • the square residual (transmittance-reflectance) 2 was obtained and the sum of these was used.
  • the horizontal axis represents the retardation value
  • the vertical axis represents the sum of the square residuals of the transmittance and reflectance at 0 V to 10 V
  • the graph shows the above values for the corresponding retardation values. The sum of squared residuals is plotted.
  • the value of the sum of the square residuals is 1.0E-03, that is, less than 1.0 ⁇ 10 ⁇ 3 , the voltage-transmittance curve and the voltage-reflectance curve are closely approximated, and the transmission display It was confirmed that the same display was achieved with the reflection display.
  • the panel gap (the thickness of the liquid crystal layer) d, the shortest line width L of each linear electrode that is a branch of the comb-shaped electrode, and the interval width S between adjacent linear electrodes are
  • the refractive index anisotropy ⁇ n of the liquid crystal layer is the product (retardation) of the refractive index anisotropy ⁇ n of the liquid crystal layer and the thickness d of the liquid crystal layer.
  • FIG. 11A shows a configuration of the liquid crystal display panel 20 disclosed in Patent Document 1 in which a multi-L / S structure and a TBA structure are adopted, and FIG. The result of calculating the voltage-transmittance / reflectance curve using the configuration of
  • liquid crystal display panel 20 disclosed in Patent Document 1 satisfies the above formula (1) but does not satisfy the above formula (2).
  • a branch portion 9a of the pixel electrode and a branch portion 9b of the common electrode are formed on the interlayer insulating film 8, and the metal electrode 6 and the transparent electrode are formed. 7 is not provided.
  • the transmittance and reflectance when 5 V is applied are as low as about 4%.
  • FIG. 12A shows the configuration of the liquid crystal display panel 2 of the present embodiment
  • FIG. 12B shows the voltage-transmittance / reflectance using the configuration of FIG. The result of calculating the curve is shown.
  • liquid crystal display panel 2 of the present embodiment satisfies the relationship of the above formula (1) and the above formula (2).
  • the transmittance and reflectance when 5 V is applied are about 10%, which is higher than that of the comparative example 1.
  • the liquid crystal display panel 2 of the present embodiment has a higher light utilization efficiency than the liquid crystal display panel 20 (Comparative Example 1) disclosed in Patent Document 1.
  • the liquid crystal display panel 20 disclosed in Patent Document 1 has a configuration in which a reflection plate needs to be separately provided in the reflection region.
  • the metal electrode 6 formed in a planar shape also functions as the reflection plate.
  • the metal electrode 6 formed in a planar shape also serves as the function of the reflection plate, and the reflection plate itself is an electrode, so that electric charges are temporarily accumulated.
  • the reflection plate itself is an electrode, so that electric charges are temporarily accumulated.
  • FIG. 13 compares the transmittance (reflectance) when 5 V is applied and the degree of image sticking between the liquid crystal display panel 2 of the present embodiment and the liquid crystal display panel 20 disclosed in Patent Document 1 (Comparative Example 1). It is a figure which shows the result.
  • FIG. 14A only the electrode structure is made the same as that of a general TBA mode, that is, the branch portion 9a of the pixel electrode and the branch portion 9b of the common electrode are formed on the interlayer insulating film 8, and the metal electrode 6 and Adopting a structure in which the transparent electrode 7 is not provided, the branch portion 9a of the pixel electrode and the branch portion 9b of the common electrode are adjacent to each other in both the transmission region and the reflection region with a line width L of 4.0 ⁇ m.
  • 1 shows a schematic configuration of a liquid crystal display panel 20a formed with an interval width S of 12.0 ⁇ m.
  • FIG. 14B shows the result of calculating a voltage-transmittance / reflectance curve using the liquid crystal display panel 20a shown in FIG.
  • the product of the refractive index anisotropy ⁇ n of the liquid crystal layer 17 and the thickness d of the liquid crystal layer 17 is approximately 450 nm, and the thickness d of the liquid crystal layer 17, the branch portions 9a of the pixel electrodes, and the branches of the common electrode
  • the line width L of the portion 9b and the interval width S between the branch portion 9a of the adjacent pixel electrode and the branch portion 9b of the common electrode are set to satisfy a ratio of 1: 1: 3.
  • FIG. 15B shows the result of calculating a voltage-transmittance / reflectance curve using the liquid crystal display panel 20b shown in FIG.
  • liquid crystal display panel 2 of the present embodiment it is necessary to use a liquid crystal layer including liquid crystal molecules having positive dielectric anisotropy that is employed.
  • the metal electrode 6 and the transparent electrode 7 in the first embodiment are the same as those of the first embodiment in that they are formed by the semi-transmissive electrode 18 regardless of the reflective region and the transmissive region. Is different.
  • Other configurations are as described in the first embodiment.
  • members having the same functions as those shown in the drawings of the first embodiment are given the same reference numerals, and descriptions thereof are omitted.
  • FIG. 16 is a diagram showing a schematic configuration of the liquid crystal display panel 2a.
  • the reflective region and the transmissive region are not distinguished, and the transflective electrode 18 that reflects and transmits the incident light is formed in a planar shape.
  • the transflective electrode 18 may be formed of a thin film of Al, Ag, Au, or the like.
  • the reflectance and transmittance of the semi-transmissive electrode 18 change according to the film thickness of the semi-transmissive electrode 18.
  • the calculation is performed assuming that the reflectance of the metal electrode 6 is 100%, but in the case of the present embodiment, the reflectance of the transflective electrode 18 having a predetermined film thickness.
  • the shortest line width L of the linear electrodes and the interval width S between the adjacent linear electrodes may be calculated.
  • the transflective electrode 18 is formed with a film thickness such that the reflectance and the transmissivity are 1: 1, and the reflectance of the transflective electrode 18 is calculated as 50%. .
  • the thickness d of the liquid crystal layer 17 and the branches of the comb-shaped electrode 9 are the same as in the case of the first embodiment.
  • the transflective electrode 18 can be formed in a single process, the number of manufacturing processes can be reduced, and the productivity of the liquid crystal display panel 2a can be improved.
  • the liquid crystal display panel 2b of the present embodiment is different from that of the first embodiment in that the metal electrode 6 in the first embodiment is formed in an uneven shape.
  • Other configurations are as described in the first embodiment.
  • members having the same functions as those shown in the drawings of the first embodiment are given the same reference numerals, and descriptions thereof are omitted.
  • FIG. 17 is a diagram showing a schematic configuration of the liquid crystal display panel 2b.
  • an insulating film 19 is formed under the metal electrode 6a and the transparent electrode 7, and a part of the upper surface of the insulating film 19 (region where the metal electrode 6a is formed) is formed in a rounded uneven shape. .
  • an organic film such as a transparent acrylic resin having photosensitivity is used as the insulating film 19 in order to form a part of the upper surface of the insulating film 19 in a rounded uneven shape, and exposure and development are performed. After patterning into a concavo-convex shape, it is melt-flowed by heat treatment to form a rounded concavo-convex shape.
  • the metal electrode 6a having a finely rounded uneven shape is formed on a part of the upper surface of the insulating film 19 formed in such a rounded uneven shape, light is scattered in a certain angle range.
  • the bright reflection characteristics can be obtained by efficiently using the ambient light.
  • the entire semi-transmissive electrode 18 can also be formed in an uneven shape by using the same method for the semi-transmissive electrode 18 illustrated in FIG.
  • the first electrode is formed of a transflective electrode that reflects and transmits the incident light.
  • the first electrode can be formed in a single step, the number of manufacturing steps can be reduced, and the productivity of the liquid crystal display panel can be improved.
  • each of the plurality of pixels has a reflective region and a transmissive region
  • the first electrode formed in the reflective region is a material having reflectivity for at least visible light.
  • the first electrode formed in the transmissive region is preferably formed of a material having a property of transmitting at least visible light.
  • the first electrode in the reflective region, is formed of a material having a reflectance with respect to at least visible light, and in the transmissive region, the first electrode is transmitted with at least visible light. Therefore, a liquid crystal display panel with high display quality can be realized regardless of the use environment.
  • the product of the refractive index anisotropy ⁇ n of the liquid crystal layer and the thickness d of the liquid crystal layer is 430 nm to 470 nm, and the thickness d of the liquid crystal layer is
  • the shortest line width L in each linear electrode of the second electrode and the interval width S between the linear electrodes of the second electrode satisfy a ratio of approximately 1: 1: 3. preferable.
  • the product of the refractive index anisotropy ⁇ n of the liquid crystal layer and the thickness d of the liquid crystal layer is preferably about 450 nm.
  • the transmittance change curve according to the applied voltage in the transmissive region and the reflectance change curve according to the applied voltage in the reflective region can be approximated, so that liquid crystal with higher display quality can be obtained.
  • a display panel can be realized.
  • about 1 means 0.5 or more and less than 1.5, and about 3 means 2.5 or more and less than 3.5.
  • the circularly polarizing member preferably includes a polarizing plate and a ⁇ / 4 plate.
  • the circularly polarizing member can be provided on the liquid crystal display panel relatively easily.
  • the angle formed by the optical axis of the ⁇ / 4 plate provided on the first substrate and the transmission axis of the polarizing plate and ⁇ / 4 provided on the second substrate is 45 °, and the transmission axis of the polarizing plate provided on the first substrate is provided on the second substrate.
  • the optical axis of the ⁇ / 4 plate provided on the first substrate is rotated by 90 ° with respect to the transmission axis of the polarizing plate, and the optical axis of the ⁇ / 4 plate provided on the second substrate is In contrast, it is preferably rotated by 90 °.
  • the second electrode has a comb-tooth shape having a trunk portion and a branch portion that are electrically connected, and the plurality of linear electrodes of the second electrode are:
  • the branch part may be used.
  • the panel gap adjusting structure even when the second electrode has a comb-teeth shape, the panel gap adjusting structure, the driving method for applying different electric fields to the reflective region and the transmissive region, or the multi-L Without using the / S structure, it is possible to realize a transflective liquid crystal display panel that has high transmittance, reflectance, and yield, and that can suppress display defects such as image sticking.
  • the first electrode is preferably formed in an uneven shape.
  • the first electrode formed in the reflective region is formed in an uneven shape.
  • the first electrode used for reflection since the first electrode used for reflection is formed in a concavo-convex shape, it can be designed to scatter light in a certain range of angles, and efficiently emit ambient light. By using this, brighter reflection characteristics can be obtained.
  • the present invention can be suitably used for a liquid crystal display panel and a liquid crystal display device including the liquid crystal display panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

 金属電極(6)および透明電極(7)と、層間絶縁膜(8)と、櫛歯形状の電極(9)と、を備え、歪んだ横電界を生じさせ、液晶分子(16)の配向に歪みを生じさせる。従って、パネルギャップ調整用構造物や反射領域と透過領域とのそれぞれに異なる電界を印加する駆動方法やマルチL/S構造を用いることなく、透過率、反射率および歩留まりが高く、かつ、焼き付きなどの表示不良が生じるのを抑制できる半透過型の液晶表示装置(1)を実現できる。

Description

液晶表示パネルおよび液晶表示装置
 本発明は、半透過型の液晶表示パネルおよび半透過型の液晶表示パネルを備えた液晶表示装置に関するものである。
 近年、液晶表示装置は、省エネ型、薄型、軽量型等の特徴を活かしテレビ、モニター、携帯電話などさまざまな分野において幅広く利用されている。
 このような液晶表示装置は、表示に用いられる光源によって、透過型、反射型、半透過型に分類される。
 透過型の液晶表示装置は、別途設けられたバックライトからの光で、液晶表示装置に備えられた液晶表示パネルを照射し、表示を行う構成であるため、明るく、高コントラストを有する表示を行うことができるが、消費電力が大きくなってしまうという問題がある。
 一方、反射型の液晶表示装置は、バックライトからの光を使用せず、液晶表示パネルに備えられた反射電極で反射された周囲光を利用して、表示を行う構成であるため、バックライトを必要としない分、消費電力を抑制することができるが、反射型の液晶表示装置を使用する周囲の明るさによってコントラストが低下してしまうという問題がある。
 このような透過型および反射型の液晶表示装置における問題点を改善するため、液晶表示パネルの一画素内に、バックライトからの光を利用して表示を行う透過領域と反射電極で反射された周囲光を利用して表示を行う反射領域とを備えた半透過型の液晶表示装置が開発されている。
 このような半透過型の液晶表示装置においては、周囲の明るさが暗い場合には、バックライトからの光を利用して表示を行う透過領域が備えられているので、周囲の明るさによらず、ある程度の高コントラストを維持することができる。
 また、半透過型の液晶表示装置においては、反射電極で反射された周囲の光を利用して表示を行う反射領域が備えられており、このような反射領域においては、バックライトからの光を利用しないので、その分、低消費電力化を実現することができる。
 このような特徴を有する半透過型の液晶表示装置は、屋内外で使用され、限られた電源を使用するスマートフォンや携帯電話などのような携帯型電子機器に活発に採用されている。
 しかしながら、半透過型の液晶表示装置においては、以下で説明するような問題点がある。
 図18は、従来の半透過型の液晶表示パネルの概略構成を示す図である。
 図18(a)に図示されているように、半透過型の液晶表示パネル100aは、アクティブマトリクス基板と、カラーフィルタ基板と、これらの基板間に挟持された液晶分子106からなる液晶層107と、を備えている。
 上記アクティブマトリクス基板は、可視光を透過させる絶縁基板101と、絶縁基板101上に形成されたTFT素子(未図示)と、絶縁層(未図示)と、上記TFT素子のドレイン電極に接続された画素電極としての反射電極102および透明電極103と、配向膜(未図示)と、を備えている。
 一方、カラーフィルタ基板は、可視光を透過させる絶縁基板104と、共通電極としての透明電極105と、配向膜(未図示)と、を備えている。
 そして、図示されているように、半透過型の液晶表示パネル100aの反射領域には、画素電極の一部である反射電極102が設けられており、透過領域には、画素電極の一部である透明電極103が設けられている。
 このように、単純に反射電極102を半透過型の液晶表示パネル100aの反射領域に、透明電極103を半透過型の液晶表示パネル100aの透過領域に配置するだけでは、反射領域と透過領域とにおいて光に生じる位相差が一致しなくなってしまう。
 なお、上記位相差は、液晶層の屈折率異方性Δnとパネルギャップ(液晶層の厚さ)dとによって決まる値である。
 反射領域と透過領域とにおいて光に生じる位相差が一致しなくなるのは、一般的に、透過領域と反射領域の両方を有する半透過型の液晶表示パネル100aでは、光が液晶層106中を通過する距離が反射領域では透過領域の2倍となるからである。
 すなわち、透過領域では光路が片道であるのに対し、反射領域では往復であるからである。
 したがって、半透過型の液晶表示パネルにおいては、反射領域において光に生じる位相差と、透過領域において光に生じる位相差と、を同じにし、透過領域と反射領域との光学特性をほぼ等しくする必要がある。
 このように透過領域と反射領域との光学特性をほぼ等しくした液晶表示パネル100b・100cが図18(b)および図18(c)に図示されている。
 図18(b)に図示されている液晶表示パネル100bにおいては、反射領域で生じる光の位相差と透過領域で生じる光の位相差を同じにするため、反射領域のパネルギャップ(液晶層の厚さ)dを、透過領域におけるパネルギャップ(液晶層の厚さ)dに対して1/2と小さくするため、反射領域にパネルギャップ調整用構造物108を設けたマルチギャップ構造が採用されている。
 しかしながら、この構造においては、基板上に凹凸構造を設ける必要があり、構造が複雑になりやすく、製造工程において精度が要求されるといった問題が生じる。
 一方で、図18(c)に図示されている液晶表示パネル100cは、反射領域と透過領域との液晶分子106の配向状態を異なるようにするため、反射領域と透過領域とのそれぞれに異なる電界である電界Aと電界Bとを印加できるような電極構造を有しており、反射領域と透過領域とのそれぞれに異なる電界である電界Aと電界Bとを印加する駆動方法で駆動される。
 しかしながら、この構造においては、複雑な駆動方法や電極構造が必要となるので問題である。
 液晶表示装置の分野において、一般的によく用いられるモードであるVAモードやIPSモードやFFSモードにおいては、以下に示す理由から、反射領域において光に生じる位相差と、透過領域において光に生じる位相差と、を同じにし、透過領域と反射領域との光学特性をほぼ等しくするには、上述したパネルギャップ調整用構造物108や反射領域と透過領域とのそれぞれに異なる電界を印加する駆動方法を用いる必要があった。
 なぜなら、印加電圧オフ時に液晶分子が基板面に垂直に配向し、印加電圧オン時に液晶分子を倒れ込ませることで表示を行う一般的なVAモードでは、2枚の基板(平行平板)間に発生する一様な電界によって配向変化を起こすため、電圧印加時の液晶分子の配向が、基板水平方向に沿ってほぼ一様であるので、基板水平方向に沿っての液晶層の屈折率異方性Δnの変化が少ないから、反射領域において光に生じる位相差と、透過領域において光に生じる位相差と、を同じにするためには、パネルギャップ調整用構造物108を用いてパネルギャップ(液晶層の厚さ)dを調整するか、反射領域と透過領域とのそれぞれに異なる電界を印加し、反射領域と透過領域とにおける液晶層の屈折率異方性Δnを異なるようにする必要がある。
 一方で、液晶分子を基板面内で回転させて表示を行う一般的なIPSモードやFFSモードの液晶表示装置においては、印加電圧オフ時に液晶分子が基板面に水平に配向しているため、VAモードの半透過型の液晶表示装置において、ノーマリーブラック型の液晶表示装置を実現するために用いられる円偏光をそのまま用いても、ノーマリーブラック型の液晶表示装置を実現するのは困難である。
 したがって、IPSモードやFFSモードの液晶表示装置において、円偏光を用いて、ノーマリーブラック型の液晶表示装置を実現するには、上述したパネルギャップ調整用構造物108や反射領域と透過領域とのそれぞれに異なる電界を印加する駆動方法を用いる必要が生じる。
 以上から、VAモードやIPSモードやFFSモードの液晶表示装置において、円偏光を用いて、ノーマリーブラック型の液晶表示装置を実現しようとすると、その構成が複雑化してしまうという問題がある。
 そこで、VAモードやIPSモードやFFSモード以外のモードを利用するとともに、パネルギャップ調整用構造物108や反射領域と透過領域とのそれぞれに異なる電界を印加する駆動方法を用いずに、反射領域において光に生じる位相差と、透過領域において光に生じる位相差と、を同じにし、透過領域と反射領域との光学特性をほぼ等しくするノーマリーブラック型の半透過型液晶表示装置も提案されている。
 特許文献1には、櫛歯電極と、印加電圧オフ時に垂直配向した液晶分子を、印加電圧オン時に生じる横電界により、水平方向にベント状に配向させて表示を行うTBAモード(Transverse Bend Alignment Mode)と、を用いることにより、反射領域を通過した光に生じる位相差と、透過領域を通過した光に生じる位相差と、を一致させる構成について開示されている。
日本国公開特許公報「特開2011-149967号公報(2011年8月4日公開)」
 図19は、上記特許文献1に開示されているアクティブマトリクス基板210と、対向基板250と、上記両基板間に挟持された液晶層230と、を備えたTBAモードの半透過型液晶表示パネル200の概略構成を示す図である。
 図示されているように、アクティブマトリクス基板210に備えられた絶縁基板211における液晶層230と接する側には、透過領域Tおよび反射領域R中、反射領域Rにのみ設けられた反射層228と、層間絶縁膜223と、ゲートバスライン212およびCsバスライン213と、ゲート絶縁膜214と、半導体層215と、ソース配線217、ドレイン配線218およびソースバスライン216と、コンタクトホール227を有する層間絶縁膜223および平坦化膜224と、櫛歯形状の共通電極221・229、櫛歯形状の共通電極の枝部229cおよび櫛歯形状の画素電極の枝部220b・220cと、垂直配向膜225と、がこの順に積層されている。
 なお、Csバスライン213と、ゲート絶縁膜214と、ドレイン配線218との重なり部分は保持容量部222となる。
 そして、絶縁基板211における液晶層230と接する側の反対側には、偏光板242が設けられている。
 一方、対向基板250に備えられた絶縁基板251における液晶層230と接する側には垂直配向膜255が設けられており、絶縁基板251における液晶層230と接する側の反対側には偏光板241が設けられている。
 図20は、図19に図示するTBAモードの半透過型液晶表示パネル200のモデル構造として、図20(a)に示す構造を用いて、シンテック社製LCD-MASTERにより、電圧印加時に発生する電界の向きやこの際の液晶分子231の配向を計算した結果を示す図である。
 図20(b)は10V電圧印加時に発生する電界の向きを示しており、図20(c)は10V電圧印加時の液晶分子231の配向を示している。
 図示されているように、一般的なTBAモードにおいては、図20(a)に示すx軸方向に液晶層230の屈折率異方性Δnの空間分布は生じるが、図20(b)に示す電界の様子からもわかるように、電界が歪んだ領域は比較的少なく、図20(c)に示すように、それに沿う形で液晶分子231の配向も歪みの小さな水平配向となっている。
 このような場合においては、透過領域Tと反射領域Rとの両方において、共通にパネルギャップd、電極幅Lおよび電極間隔Sを適切に設定したとしても、透過領域Tにおける印加電圧に応じた透過率の変化曲線と、反射領域Rにおける印加電圧に応じた反射率の変化曲線と、は大きく異なってしまう。
 したがって、図19に図示するTBAモードの半透過型液晶表示パネル200においては、透過領域Tにおいての電極間隔Sと反射領域Rにおいての電極間隔Sとを異ならせ、すなわち、マルチL/S構造を採用し、透過領域Tにおける印加電圧に応じた透過率の変化曲線と、反射領域Rにおける印加電圧に応じた反射率の変化曲線と、を近似させている。
 図21は、図19に図示するTBAモードの半透過型液晶表示パネル200における、透過領域Tにおいての電極間隔Sと反射領域Rにおいての電極間隔Sを示す図である。
 図示されているように、図19に図示するTBAモードの半透過型液晶表示パネル200においては、透過領域Tにおいての電極間隔Sが反射領域Rにおいての電極間隔Sより狭くなっている。
 以上のように、上記特許文献1に開示されているTBAモードの半透過型液晶表示パネル200においては、パネルギャップ調整用構造物や反射領域と透過領域とのそれぞれに異なる電界を印加する駆動方法は必要ないが、透過領域Tにおける櫛歯状の電極間隔と反射領域Rにおける櫛歯状の電極間隔とは、異なるように設ける必要が生じ、このような場合、櫛歯状の電極間隔の加工の難しさが原因となって、製造における歩留まりの低下を招いてしまう恐れがある。
 また、上記特許文献1に開示されているTBAモードの半透過型液晶表示パネル200においては、共通電極および画素電極は何れも櫛歯状に形成されるため、これらの櫛歯状電極を反射板として兼ねることができず、反射領域Rにのみ、別途、金属性の反射層228を形成する必要がある。
 したがって、このような構成においては、反射層228に電荷が蓄積し、焼き付きなどの表示不良が生じる可能性が高い。反射層228は、どの電極とも接続されてないため、何らかの影響で一度電荷が溜まってしまうと、逃がすことができない構造となっている。
 また、上記特許文献1に開示されているマルチL/S構造を採用したTBAモードの半透過型液晶表示パネル200においては、詳しくは後述するが、図11に図示されているように、透過率および反射率が低いという問題がある。
 本発明は、上記の問題点に鑑みてなされたものであり、パネルギャップ調整用構造物や反射領域と透過領域とのそれぞれに異なる電界を印加する駆動方法やマルチL/S構造を用いることなく、透過率、反射率および歩留まりが高く、かつ、焼き付きなどの表示不良が生じるのを抑制できる半透過型の液晶表示パネルと、このような半透過型の液晶表示パネルを備えた液晶表示装置と、を提供することを目的とする。
 本発明の液晶表示パネルは、上記の課題を解決するために、第1の基板と、第2の基板と、上記第1の基板と上記第2の基板との間に挟持された液晶層と、複数の画素と、を備え、上記複数の画素の各々においては、入射された光を反射および透過させて表示を行う液晶表示パネルであって、上記第1の基板および上記第2の基板の各々には、円偏光部材が備えられており、上記液晶層に含まれる液晶分子は、正の誘電異方性を有するとともに、電圧無印加時には、上記第1の基板および上記第2の基板において上記液晶層と接する側の各々の面に対して垂直な方向に配向され、上記第1の基板および上記第2の基板の何れか一方には、面状に形成された第1の電極と、上記第1の電極上に形成された絶縁膜と、上記第1の電極とは平面視において重なるように、上記絶縁層上に一定間隔および一定線幅で形成された複数の線状電極を備えた第2の電極と、が備えられていることを特徴としている。
 上記構成によれば、上記第1の基板および上記第2の基板の何れか一方には、面状に形成された第1の電極と、上記第1の電極上に形成された絶縁膜と、上記第1の電極とは平面視において重なるように、上記絶縁層上に一定間隔および一定線幅で形成された複数の線状電極を備えた第2の電極と、が備えられている電極構造を有するので、このような電極構造から発生するような横電界(Fringe Field)を利用し、電界印加時の上記液晶層における液晶分子の配向を、上記第1の基板および上記第2の基板の水平方向に沿って意図的に一様でなくすることができる。
 すなわち、上記液晶層における液晶分子の配向に空間分布を付与することで、透過率の高い部分と反射率の高い部分の分布を生じさせ、所定の電圧印加時において、空間平均的に透過率と反射率とを近似させることができる。
 また、上記第1の電極は、面状に形成されているので、電極兼反射板として用いることができるので、上記第1の電極によっては電荷が溜まりにくい構造となっている。
 したがって、上記構成によれば、パネルギャップ調整用構造物や反射領域と透過領域とのそれぞれに異なる電界を印加する駆動方法やマルチL/S構造を用いることなく、透過率、反射率および歩留まりが高く、かつ、焼き付きなどの表示不良が生じるのを抑制できる半透過型の液晶表示パネルを実現することができる。
 本発明の液晶表示装置は、上記の課題を解決するために、上記液晶表示パネルと、バックライトと、を備えていることを特徴としている。
 上記構成によれば、パネルギャップ調整用構造物や反射領域と透過領域とのそれぞれに異なる電界を印加する駆動方法やマルチL/S構造を用いることなく、透過率、反射率および歩留まりが高く、かつ、焼き付きなどの表示不良が生じるのを抑制できる半透過型の液晶表示装置を実現することができる。
 本発明の液晶表示パネルは、以上のように、上記第1の基板および上記第2の基板の各々には、円偏光部材が備えられており、上記液晶層に含まれる液晶分子は、正の誘電異方性を有するとともに、電圧無印加時には、上記第1の基板および上記第2の基板において上記液晶層と接する側の各々の面に対して垂直な方向に配向され、上記第1の基板および上記第2の基板の何れか一方には、面状に形成された第1の電極と、上記第1の電極上に形成された絶縁膜と、上記第1の電極とは平面視において重なるように、上記絶縁層上に一定間隔および一定線幅で形成された複数の線状電極を備えた第2の電極と、が備えられている構成である。
 本発明の液晶表示装置は、以上のように、上記液晶表示パネルと、バックライトと、を備えている構成である。
 それゆえ、パネルギャップ調整用構造物や反射領域と透過領域とのそれぞれに異なる電界を印加する駆動方法やマルチL/S構造を用いることなく、透過率、反射率および歩留まりが高く、かつ、焼き付きなどの表示不良が生じるのを抑制できる半透過型の液晶表示パネルと、このような半透過型の液晶表示パネルを備えた液晶表示装置と、を実現することができる。
本発明の一実施の形態の半透過型の液晶表示パネルを備えた液晶表示装置の概略構成を示す図である。 本発明の一実施の形態の半透過型の液晶表示パネルにおいて、電圧無印加時における液晶分子の配向状態を示す図である。 本発明の一実施の形態の半透過型の液晶表示パネルにおいて、電圧印加時における液晶分子の配向状態を示す図である。 本発明の一実施の形態の半透過型の液晶表示パネルに備えられた円偏光部材としてのλ/4板の光学軸と、直線偏光板の透過軸と、の配置関係を説明するための図である。 本発明の一実施の形態の半透過型の液晶表示パネルにおいてマルチギャップ構造やマルチL/S構造を必要とせずに、透過領域と反射領域における光学特性(電圧-透過・反射特性)を近似できる理由を説明するための図である。 本発明の一実施の形態の半透過型の液晶表示パネルにおいて、櫛歯形状の電極の枝部である各々の線状電極の線幅Lを4.0μmに、パネルギャップdを3.4μmに、それぞれ固定し、隣接する線状電極の間隔幅Sのみを8.0μm、12.0μmおよび16.0μmに変化させた場合の電圧-透過率・反射率曲線を示す図である。 本発明の一実施の形態の半透過型の液晶表示パネルにおいて、櫛歯形状の電極の枝部である各々の線状電極の線幅Lを4.0μmに、パネルギャップdを3.8μmに、それぞれ固定し、隣接する線状電極の間隔幅Sのみを8.0μm、12.0μmおよび16.0μmに変化させた場合の電圧-透過率・反射率曲線を示す図である。 本発明の一実施の形態の半透過型の液晶表示パネルにおいて、櫛歯形状の電極の枝部である各々の線状電極の線幅Lを4.0μmに、パネルギャップdを4.2μmに、それぞれ固定し、隣接する線状電極の間隔幅Sのみを8.0μm、12.0μmおよび16.0μmに変化させた場合の電圧-透過率・反射率曲線を示す図である。 (a)は、Δn=0.15,d=3.0μm、L=3.0μm、S=9.0μmである場合の電圧-透過率・反射率曲線計算結果を示し図であり、(b)は、Δn=0.09、d=5.0μm、L=5.0μm、S=15.0μmである場合の電圧-透過率・反射率曲線計算結果を示す図である。 本発明の一実施の形態の半透過型の液晶表示パネルにおいて、リタデーションの許容範囲を説明するための図である。 (a)は、比較例1の構成を示す図であり、(b)は、比較例1の構成を用いて、電圧-透過率・反射率曲線を計算した結果を示す図である。 (a)は、本発明の一実施の形態の半透過型の液晶表示パネルの構成を示す図であり、(b)は、本発明の一実施の形態の半透過型の液晶表示パネルの構成を用いて、電圧-透過率・反射率曲線を計算した結果を示す図である。 本実施の形態の液晶表示パネルと比較例1とにおいて、5V印加時における透過率(反射率)と焼き付きの程度を比較した結果を示す図である。 (a)は、比較例2の構成を示す図であり、(b)は、比較例2の構成を用いて、電圧-透過率・反射率曲線を計算した結果を示す図である。 (a)は、比較例3の構成を示す図であり、(b)は、比較例3の構成を用いて、電圧-透過率・反射率曲線を計算した結果を示す図である。 本発明のさらに他の一実施の形態の液晶表示パネルの概略構成を示す図である。 本発明のさらに他の一実施の形態の液晶表示パネルの概略構成を示す図である。 従来の半透過型の液晶表示パネルの概略構成を示す図である。 特許文献1に開示されているTBAモードの半透過型液晶表示パネルの概略構成を示す図である。 (a)は、特許文献1に開示されているTBAモードの半透過型液晶表示パネルのモデル構造を示す図であり、(b)は、10V電圧印加時に発生する電界の向きを示す図であり、(c)は、10V電圧印加時の液晶分子の配向を示す図である。 図19に図示するTBAモードの半透過型液晶表示パネルにおける、透過領域Tにおいての電極間隔Sと反射領域Rにおいての電極間隔Sを示す図である。
 以下、図面に基づいて本発明の実施の形態について詳しく説明する。ただし、この実施の形態に記載されている構成部品の寸法、材質、形状、その相対配置などはあくまで一実施形態に過ぎず、これらによってこの発明の範囲が限定解釈されるべきではない。
 〔実施の形態1〕
 以下、図1から図15に基づいて、本発明の第1の実施形態について説明する。
 図1は、半透過型の液晶表示パネル2を備えた液晶表示装置1の概略構成を示す図である。
 図示されているように、液晶表示装置1は、半透過型の液晶表示パネル2と、半透過型の液晶表示パネル2の表示面の反対側から均一な光を照射するバックライト3と、を備えている。
 そして、半透過型の液晶表示パネル2は、アクティブマトリクス基板4と、対向基板12と、上記両基板間に挟持された液晶分子16を含む液晶層17と、を備えている。
 なお、図1は、液晶表示装置1に備えられた1画素を示しており、本実施の形態においては、1画素内に1つの反射領域と1つの透過領域とが備えられている場合を例に挙げて説明するが、これに限定されることはなく、1画素内に複数の反射領域と複数の透過領域とが設けられていてもよい。
 アクティブマトリクス基板4に備えられた絶縁基板5における液晶層17と接する側においては、反射領域には面状に形成された金属電極6が、透過領域には面状に形成された透明電極7が、それぞれ形成されている。
 そして、金属電極6および透明電極7を覆うように、層間絶縁層8が形成されている。
 また、図示されてないが、アクティブマトリクス基板4には、TFT素子や上記TFT素子を駆動するための配線が設けられており、幹部と枝部とを有する櫛歯形状の電極9は、上記TFT素子のドレイン電極に電気的に接続されている。
 なお、櫛歯形状の電極9は、枝部である複数の線状電極を備えており、図1においては、この枝部が図示されている。
 図示されているように、櫛歯形状の電極9の枝部である各々の線状電極は、一定の線幅Lと、一定の間隔幅Sを有するように形成されている。
 なお、櫛歯形状の電極9には、各画素毎に外部から入力される画像信号に応じた電圧が印加されることとなる。
 そして、図示されてないが、櫛歯形状の電極9および層間絶縁層8を覆うように、液晶層17に含まれた液晶分子16を、アクティブマトリクス基板4および対向基板12に対して、電圧無印加時に垂直配向させるため、垂直配向膜が設けられている。
 それから、アクティブマトリクス基板4に備えられた絶縁基板5における液晶層17と接する側の反対側の面には、円偏光部材として、λ/4板10と直線偏光板11とが順に重ねられて設けられている。
 一方、対向基板12に備えられた絶縁基板13における液晶層17と接する側の面には、図示されてないが、カラーフィルタ層と垂直配向膜とが備えられている。
 そして、対向基板12に備えられた絶縁基板13における液晶層17と接する側の面の反対側の面には、円偏光部材として、λ/4板14と直線偏光板15とが順に重ねられて設けられている。
 なお、本実施の形態においては、カラーフィルタ層が対向基板12に備えられている場合について説明するが、これに限定されることはなく、半透過型の液晶表示パネル2は、アクティブマトリクス基板4側にカラーフィルタ層を備えたCOA(Color Filter On Array)構造を採用してもよい。
 図2は、半透過型の液晶表示パネル2において、電圧無印加時における液晶分子16の配向状態を示す図である。
 図示されているように、液晶層17に含まれた液晶分子16は、アクティブマトリクス基板4および対向基板12に対して、電圧無印加時に垂直配向されている。
 一方、図3は、半透過型の液晶表示パネル2において、電圧印加時における液晶分子16の配向状態を示す図である。
 図示されているように、アクティブマトリクス基板4には、面状に形成された金属電極6および透明電極7と、金属電極6および透明電極7上に形成された層間絶縁膜8と、金属電極6および透明電極7とは平面視において重なるように、層間絶縁膜8上に一定間隔および一定線幅で形成された複数の線状電極を備えた櫛歯形状の電極9と、が備えられている電極構造を有するので、このような電極構造から発生するような横電界(Fringe Field)を利用し、電圧(電界)印加時には、液晶層17における液晶分子16の配向を、アクティブマトリクス基板4および対向基板12の水平方向(基板水平方向)に沿って、意図的に一様でなくすることができる。
 すなわち、液晶層17における液晶分子16の配向に空間分布を付与することで、透過率の高い部分と反射率の高い部分の分布を生じさせ、所定の電圧印加時において、空間平均的に透過率と反射率とを近似させることができる。
 そして、金属電極6は、面状に形成されているので、電極兼反射板として用いることができるので、金属電極6によっては電荷が溜まりにくい構造となっている。
 したがって、本実施の形態の半透過型の液晶表示パネル2の構成によれば、パネルギャップ調整用構造物や反射領域と透過領域とのそれぞれに異なる電界を印加する駆動方法やマルチL/S構造を用いることなく、透過率、反射率および歩留まりが高く、かつ、焼き付きなどの表示不良が生じるのを抑制できる半透過型の液晶表示パネル2を実現することができる。
 また、このような半透過型の液晶表示パネル2とバックライト3とを備えることにより、パネルギャップ調整用構造物や反射領域と透過領域とのそれぞれに異なる電界を印加する駆動方法やマルチL/S構造を用いることなく、透過率、反射率および歩留まりが高く、かつ、焼き付きなどの表示不良が生じるのを抑制できる半透過型の液晶表示装置1を実現することができる。
 なお、本実施の形態においては、アクティブマトリクス基板4に備えられた絶縁基板5および対向基板12に備えられた絶縁基板13として、何れもガラス基板を用いたが、可視光領域の光を透過でき、かつ、絶縁基板5・13上に形成する膜の工程温度に耐えられる基板であれば、特に限定されない。
 そして、本実施の形態においては、金属電極6は、高い導電性と少なくとも可視光に対して高い反射率を有するAlを用いて形成したが、これに限定されることはなく、例えば、AgやAuなどを用いて形成してもよい。
 また、本実施の形態においては、金属電極6をAl単層で形成しているが、Al、AgおよびAuなどを最上層とする複数膜の積層膜を用いることもできる。
 それから、本実施の形態においては、透明電極7は、導電性と少なくとも可視光に対して透過率を有するITO(Indium Tin Oxide)を用いて形成したが、これに限定されることはなく、例えば、IZO(Indium Zinc Oxide)などを用いて形成してもよい。
 また、本実施の形態においては、層間絶縁膜8として、誘電率が6.9であるアクリル系層間絶縁膜を用いて、膜厚1.0μmで形成したが、これに限定されることはなく、絶縁膜が有する誘電率によって、膜厚を適宜調整することで、有機系絶縁膜以外にも、無機系絶縁膜、有機系と無機系とが混合されたハイブリッド系絶縁膜およびこれらの絶縁膜が積層された構成なども用いることができる。
 また、本実施の形態においては、櫛歯形状の電極9は、透明電極7と同様に、導電性と少なくとも可視光に対して透過率を有するITOを用いて形成したが、これに限定されることはなく、例えば、IZOなどを用いて形成してもよい。
 それから、櫛歯形状の電極9の枝部である各々の線状電極は、その線幅Lが4.0μmで、隣接する線状電極同士の間隔幅Sが8.0μm~16.0μmとなるように形成した。
 以下、図4に基づいて、半透過型の液晶表示パネル2に備えられた円偏光部材について説明する。
 図4は、半透過型の液晶表示パネル2に備えられた円偏光部材としてのλ/4板10・14の光学軸と、直線偏光板11・15の透過軸と、の配置関係を説明するための図である。
 図4には、本実施の形態において、円偏光部材としてのλ/4板10・14の光学軸と、直線偏光板11・15の透過軸と、をどのように配置し、また、これらと櫛歯形状の電極9の枝部である各々の線状電極が延在される方向(櫛歯平行方向)とがどのように配置されているかが図示されている。
 図示されているように、アクティブマトリクス基板4に備えられたλ/4板10の光学軸と、直線偏光板11の透過軸と、のなす角度は、45°となっており、一方、対向基板12に備えられたλ/4板14の光学軸と、直線偏光板15の透過軸と、のなす角度も、45°となっている。
 そして、アクティブマトリクス基板4に備えられた直線偏光板11の透過軸は、対向基板12に備えられた直線偏光板15の透過軸に対して、90°回転した構成となっている。
 それから、アクティブマトリクス基板4に備えられたλ/4板10の光学軸も、対向基板12に備えられたλ/4板14の光学軸に対して、90°回転した構成となっている。
 半透過型の液晶表示パネル2に備えられた円偏光部材としてのλ/4板10・14の光学軸と、直線偏光板11・15の透過軸と、の配置が上述するそれぞれの関係を満たしていれば、櫛歯形状の電極9の枝部である各々の線状電極が延在される方向(櫛歯平行方向)は、特に限定されない。
 そして、本実施の形態の液晶表示パネル2においては、透過領域・反射領域ともにノーマリーブラック型の表示を容易に実現するため、電圧(電界)無印加時に、液晶層17における液晶分子16の配向を、アクティブマトリクス基板4および対向基板12に対して垂直とし、液晶層17中に入射される光が円偏光となるように、円偏光部材としてのλ/4板10・14の光学軸と、直線偏光板11・15の透過軸と、の配置関係が上述した関係を満たすように配置している。
 なお、本実施の形態においての液晶分子16を含む液晶層17は、正の誘電率異方性(Δn=0.12、Δε=20)を有し、パネルギャップ(液晶層17の厚さ)は、3.4μm~4.2μmとした。
 図5は、本実施の形態の液晶表示パネル2においてマルチギャップ構造やマルチL/S構造を必要とせずに、透過領域と反射領域における光学特性(電圧-透過・反射特性)を近似できる理由を説明するための図である。
 マルチギャップ構造やマルチL/S構造を必要とせずに、透過領域と反射領域における光学特性(電圧-透過・反射特性)を近似させるには、櫛歯形状の電極9に電圧印加時において、液晶分子が基板水平方向(図5(a)におけるx軸方向)に沿って一様に傾斜していないことが必要である。
 櫛歯形状の電極9に電圧印加時、液晶分子が図5(a)におけるx軸方向に沿って一様に傾斜している場合、液晶層のΔnは上記x軸方向に沿ってほぼ一定となる。
 一方、上述したように、光が反射領域を通過する距離は、必ず透過領域を通過する距離の2倍であることから、Δnが上記x軸方向に沿って一定である場合には、透過領域および反射領域の両領域を通過した光間で生じる位相差(液晶層の屈折率異方性Δn×光が通過する距離dに比例する値)は、上記x軸のどの座標においても一致し得ないので、透過領域と反射領域とで同等または近似する光学特性(電圧-透過・反射特性)を得ることはできない。
 本実施の形態の液晶表示パネル2においては、図5(b)に図示されているように、その電極構造により横電界(Fringe Field)を発生させ、図5(c)に図示されているように、液晶分子16の配向を、上記x軸に沿って液晶分子16の傾斜が非一様になるようにすることができる。すなわち、電界の歪みを利用して、液晶分子16の配向に歪みを生じさせている。
 このようにすることにより、液晶層17のΔnは、x座標によって値を変えることになる。すなわち、上記x軸に沿ってΔnの値に分布を生じさせた状態とすることができる。
 ある特定のx座標に固定して見ると、所定の電圧における透過率と反射率とは一致しえないが、ある領域では透過率が高くなり、別のある領域では反射率が高くなるような透過率・反射率の空間分布、すなわち、Δnの空間分布が生じており、所定の単位領域あたりの平均透過率と平均反射率とを等しくまたは近似させることができるように、パネルギャップ(液晶層の厚さ)dと、櫛歯形状の電極9の枝部である各々の線状電極の線幅Lと、隣接する線状電極の間隔幅Sと、が設定されている。
 これらの値は、透過領域、反射領域区別することなく全領域共通で設定することができるので、マルチギャップ構造やマルチL/S構造を用いる必要がなくなる。
 図20(b)および図20(c)に図示されているように、一般的なTBAモードにおいても、既に説明したように、x軸方向にΔnの空間分布は生じるが、その電界が歪んだ領域は、本実施の形態の液晶表示パネル2において用いている横電界(Fringe Field)よりも小さく、それに沿う形で液晶分子の配向も歪みの小さな水平配向となっている。
 したがって、一般的なTBAモードにおいては、本実施の形態の液晶表示パネル2のように、パネルギャップ(液晶層の厚さ)dと、櫛歯形状の電極9の枝部である各々の線状電極の線幅Lと、隣接する線状電極の間隔幅Sと、を透過領域、反射領域区別することなく全領域共通で設定するだけでは、透過領域と反射領域とにおける光学特性(電圧-透過・反射特性)を近似させることができない。
 以下、図6から図8に基づいて、櫛歯形状の電極9の枝部である各々の線状電極の線幅Lを4.0μmに固定したまま、パネルギャップdおよび隣接する線状電極の間隔幅Sを変えながら、電圧-透過率・反射率曲線をシンテック社製LCD-MASTERを用いて計算した結果について説明する。
 反射率は、金属電極6が設けられている側の反対側から液晶層17に入射される可視光の所定波長の光量を100%とし、金属電極6に反射され、再び液晶層17を介して金属電極6が設けられている側の反対側から出射される上記所定波長の光量を計算したものである。なお、金属電極6の反射率は100%として、計算を行っている。
 一方、透過率は、透明電極7が設けられている側から液晶層17に入射される上記所定波長の光量を100%とし、液晶層17を介して透明電極7が設けられている側の反対側から出射される上記所定波長の光量を計算したものである。
 図6(a)から図6(c)には、櫛歯形状の電極9の枝部である各々の線状電極の線幅Lを4.0μmに、パネルギャップdを3.4μmに、それぞれ固定し、隣接する線状電極の間隔幅Sのみを8.0μm、12.0μmおよび16.0μmに変化させた場合の電圧-透過率・反射率曲線を示す。
 そして、図7(a)から図7(c)には、櫛歯形状の電極9の枝部である各々の線状電極の線幅Lを4.0μmに、パネルギャップdを3.8μmに、それぞれ固定し、隣接する線状電極の間隔幅Sのみを8.0μm、12.0μmおよび16.0μmに変化させた場合の電圧-透過率・反射率曲線を示す。
 それから、図8(a)から図8(c)には、櫛歯形状の電極9の枝部である各々の線状電極の線幅Lを4.0μmに、パネルギャップdを4.2μmに、それぞれ固定し、隣接する線状電極の間隔幅Sのみを8.0μm、12.0μmおよび16.0μmに変化させた場合の電圧-透過率・反射率曲線を示す。
 図6から図8に示す計算結果より、櫛歯形状の電極9の枝部である各々の線状電極の線幅Lを4.0μmとし、パネルギャップdを3.8μmとし、隣接する線状電極の間隔幅Sを12.0μmとした場合(図7(b)の場合)において、電圧-透過率曲線と電圧-反射率曲線とが最も近似することがわかった。
 そこで、上記計算結果から、発明者らは、液晶層の屈折率異方性Δnと、パネルギャップ(液晶層の厚さ)dと、櫛歯形状の電極9の枝部である各々の線状電極の線幅Lと、隣接する線状電極の間隔幅Sと、の間において、以下の式(1)および式(2)の関係が満たされていれば、電圧-透過率曲線と電圧-反射率曲線とが、よりよく近似すると予測した。
 Δn×d≒450nm 式(1)
 なお、上記式(1)において、450nmという値は、Δn×d=0.12×3800nm=456nmより求めている。
 d:L:S≒1:1:3 式(2)
 なお、上記式(2)において、1:1:3はd:L:S=3.8μm:4.0μm:12.0μmより求めた。
 そして、発明者らは、検証のため、適当に上記式(1)および上記式(2)の関係を満たす、Δn=0.15,d=3.0μm、L=3.0μm、S=9.0μmである場合と、Δn=0.09、d=5.0μm、L=5.0μm、S=15.0μmである場合と、について、上記同様に電圧-透過率・反射率曲線計算した。
 図9(a)は、Δn=0.15,d=3.0μm、L=3.0μm、S=9.0μmである場合の電圧-透過率・反射率曲線計算結果を示し、図9(b)は、Δn=0.09、d=5.0μm、L=5.0μm、S=15.0μmである場合の電圧-透過率・反射率曲線計算結果を示す。
 図9(a)および図9(b)に図示されているように、何れの場合においても、発明者らの予測通り、電圧-透過率曲線と電圧-反射率曲線とは、よく近似した。
 したがって、本実施の形態の液晶表示パネル2においては、液晶層17の屈折率異方性Δnと、液晶層17の厚さdと、の積が略450nmとなり、液晶層17の厚さdと、櫛歯形状の電極9の枝部である各々の線状電極の最短の線幅Lと、隣接する線状電極の間隔幅Sと、は、1:1:3の比を満たすように、液晶層17および櫛歯形状の電極9が形成されていることが好ましい。すなわち、本実施の形態の液晶表示パネル2は、上記式(1)および上記式(2)の関係を満たすことが好ましい。
 なお、以下では、パネルギャップ(液晶層の厚さ)dと、櫛歯形状の電極の枝部である各々の線状電極の最短の線幅Lと、隣接する線状電極の間隔幅Sと、が、略1:1:3の比を満たす場合において、液晶層の屈折率異方性Δnをどの程度の範囲で変えても電圧-透過率曲線と電圧-反射率曲線とが、よく近似するか、すなわち、液晶層の屈折率異方性Δnと、液晶層の厚さdと、の積(リタデーション)の許容範囲について算出した。
 図10は、リタデーションの許容範囲を説明するための図である。
 図10に図示されているリタデーションの許容範囲を求めるため、パネルギャップ(液晶層の厚さ)dと、櫛歯形状の電極の枝部である各々の線状電極の線幅Lと、隣接する線状電極の間隔幅Sと、の間においては、上記式(2)の関係を満たすように、d=3.8μm、L=4.0μm、S=12.0μmに固定し、液晶層の屈折率異方性Δnのみを0.11~0.13の範囲で変えながら、透過率および反射率を計算した。
 なお、ここで特にその値を記載してないその他の構成および物性値は、図2に示す半透過型の液晶表示パネル2と同様である。
 なお、リタデーションの許容範囲を求めるため、ここでは、電圧-透過率曲線と電圧-反射率曲線との近似具合の数値化を行うため、0V~10Vの間における各電圧値(0V、1V、2V、3V、4V、5V、6V、7V、8V、9Vおよび10V)で、平方残差である(透過率-反射率)を求め、これらの和を取ったものを用いた。
 上記平方残差の和が小さい方が、電圧-透過率曲線と電圧-反射率曲線とが、より一致していることを意味する。
 図10において、横軸はリタデーションの値を示しており、縦軸は0V~10Vでの透過率と反射率の平方残差の和の値を示しており、グラフは該当するリタデーションの値における上記平方残差の和の値をプロットしたものである。
 そして、上記平方残差の和の値が1.0E-03、すなわち、1.0×10-3未満であれば、電圧-透過率曲線と電圧-反射率曲線とがよく近似し、透過表示と反射表示とで同等の表示ができていることが確認できた。
 したがって、図10に図示されたグラフにおいて、上記平方残差の和の値が1.0E-03、すなわち、1.0×10-3未満となるリタデーションの値を求めると、図示されているように、430nm~470nmの範囲となり、リタデーションの許容範囲は、450nmを中心に±20nmであることがわかる。
 以上から、パネルギャップ(液晶層の厚さ)dと、櫛歯形状の電極の枝部である各々の線状電極の最短の線幅Lと、隣接する線状電極の間隔幅Sと、が、ほぼ1:1:3の比を満たす場合において、液晶層の屈折率異方性Δnは、液晶層の屈折率異方性Δnと、液晶層の厚さdと、の積(リタデーション)が、450nmを中心に±20nm、すなわち、430nm~470nmとなる範囲内で設定することが好ましい。
 以下、図11に基づいて、比較例1について説明する。
 図11(a)は、マルチL/S構造とTBA構造とが採用された特許文献1に開示されている液晶表示パネル20の構成を示しており、図11(b)は、図11(a)の構成を用いて、電圧-透過率・反射率曲線を計算した結果を示す。
 なお、特許文献1に開示されている液晶表示パネル20は、上記式(1)は満たしているが、上記式(2)は満たしてない場合である。
 そして、液晶表示パネル20に備えられたアクティブマトリクス基板4aには、画素電極の枝部9aと共通電極の枝部9bとが、層間絶縁膜8上に形成されており、金属電極6および透明電極7は設けられてない。
 図11(b)に図示されているように、液晶表示パネル20においては、5V印加時の透過率および反射率は、4%程度と低い。
 一方、図12(a)は、本実施の形態の液晶表示パネル2の構成を示しており、図12(b)は、図12(a)の構成を用いて、電圧-透過率・反射率曲線を計算した結果を示す。
 なお、本実施の形態の液晶表示パネル2は、上記式(1)および上記式(2)の関係を満たしている。
 図12(b)に図示されているように、本実施の形態の液晶表示パネル2においては、5V印加時の透過率および反射率は、10%程度と上記比較例1と比べると高い。
 したがって、本実施の形態の液晶表示パネル2は、特許文献1に開示されている液晶表示パネル20(比較例1)と比べると、光利用効率が高い。
 また、図11(a)には図示されてないが、特許文献1に開示されている液晶表示パネル20においては、反射領域に反射板を別途、設ける必要がある構成となっているが、本実施の形態の液晶表示パネル2においては、面状に形成された金属電極6が上記反射板の機能を兼ねている。
 特許文献1に開示されている液晶表示パネル20においては、反射領域に設けられた反射板が、電極と電気的に接続されていないため、上記反射板に電荷が蓄積された場合、電荷はどこにも逃げることができず、焼き付きという表示不良が生じやすい。
 一方、本実施の形態の液晶表示パネル2においては、面状に形成された金属電極6が上記反射板の機能を兼ねており、反射板自体が電極であるため、電荷が一時的に蓄積したとしても、すぐに電極を通して逃がすことが可能であるので、焼き付きが生じにくい構成となっている。
 図13は、本実施の形態の液晶表示パネル2と特許文献1に開示されている液晶表示パネル20(比較例1)とにおいて、5V印加時における透過率(反射率)と焼き付きの程度を比較した結果を示す図である。
 以下、図14に基づいて、比較例2について説明する。
 図14(a)は、電極構造のみを一般的なTBAモードと同じにし、すなわち、画素電極の枝部9aと共通電極の枝部9bとを層間絶縁膜8上に形成し、金属電極6および透明電極7は設けられてない構造を採用し、画素電極の枝部9aと共通電極の枝部9bとを、透過領域および反射領域の両方において、線幅Lを4.0μmで、隣接する電極の間隔幅Sを12.0μmで形成した液晶表示パネル20aの概略構成を示している。
 そして、図14(b)は、図14(a)に示す液晶表示パネル20aを用いて、電圧-透過率・反射率曲線を計算した結果を示す。
 なお、液晶層17の屈折率異方性Δnと、液晶層17の厚さdと、の積は略450nmとなり、液晶層17の厚さdと、画素電極の枝部9aおよび共通電極の枝部9bの線幅Lと、隣接する画素電極の枝部9aおよび共通電極の枝部9bの間隔幅Sと、は、1:1:3の比を満たすようにした。
 しかしながら、図14(b)に図示されているように、電圧-透過率曲線と電圧-反射率曲線とは、あまりよく近似させることはできなかった。
 以上から、本実施の形態の液晶表示パネル2において、採用されているような、横電界(Fringe Field)を発生させる電極構造が必要であることがわかる。
 以下、図15に基づいて、比較例3について説明する。
 図15(a)に示す液晶表示パネル20bにおいては、正の誘電率異方性(Δn=0.12、Δε=20)を有する液晶分子16を含む液晶層17を、負の誘電率異方性(Δn=0.11、Δε=-5.0)を有する液晶分子16aを含む液晶層17aに変えたのみで、その他は液晶表示パネル2と同様である。
 そして、図15(b)は、図15(a)に示す液晶表示パネル20bを用いて、電圧-透過率・反射率曲線を計算した結果を示す。
 しかしながら、図15(b)に図示されているように、電圧-透過率曲線と電圧-反射率曲線とは、あまりよく近似させることはできなかった。
 以上から、本実施の形態の液晶表示パネル2において、採用されている正の誘電率異方性を有する液晶分子を含む液晶層を用いる必要があることがわかる。
 〔実施の形態2〕
 次に、図16に基づいて、本発明の第2の実施形態について説明する。本実施の形態の液晶表示パネル2aにおいては、実施の形態1における金属電極6および透明電極7が、反射領域および透過領域に関係なく、半透過電極18で形成されている点において実施の形態1とは異なっている。その他の構成については実施の形態1において説明したとおりである。説明の便宜上、上記の実施の形態1の図面に示した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
 図16は、液晶表示パネル2aの概略構成を示す図である。
 図示されているように、液晶表示パネル2aにおいては、反射領域と透過領域とが区別されてなく、入射された光を反射および透過させる半透過電極18が面状に形成されている。
 なお、半透過電極18は、Al、AgおよびAuなどを薄膜で形成すればよい。
 そして、半透過電極18の膜厚に応じて、半透過電極18の反射率および透過率は変わる。
 したがって、上述した実施の形態1においては、金属電極6の反射率は100%として計算を行っているが、本実施の形態の場合においては、所定の膜厚を有する半透過電極18の反射率を用いて、所定の単位領域あたりの平均透過率と平均反射率とを等しくまたは近似させることができるように、液晶層17の厚さdと、櫛歯形状の電極9の枝部である各々の線状電極の最短の線幅Lと、隣接する線状電極の間隔幅Sと、を算出すればよい。
 そして、本実施の形態においては、半透過電極18が、反射率と透過率とが1:1となる膜厚で形成されており、半透過電極18の反射率を50%として計算を行った。
 このように半透過電極18の反射率が50%である場合においても、上述した実施の形態1の場合と同様に、液晶層17の厚さdと、櫛歯形状の電極9の枝部である各々の線状電極の最短の線幅Lと、隣接する線状電極の間隔幅Sと、を略1:1:3の比を満たすように設けることで、電圧-透過率曲線と電圧-反射率曲線とを、よりよく近似させることができた。
 上記構成によれば、半透過電極18を、単一工程で形成できるので、製造工程数を減らすことができ、液晶表示パネル2aの生産性を向上させることができる。
 〔実施の形態3〕
 次に、図17に基づいて、本発明の第3の実施形態について説明する。本実施の形態の液晶表示パネル2bは、実施の形態1における金属電極6が凹凸形状に形成されている点において実施の形態1とは異なっている。その他の構成については実施の形態1において説明したとおりである。説明の便宜上、上記の実施の形態1の図面に示した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
 図17は、液晶表示パネル2bの概略構成を示す図である。
 図示されているように、金属電極6aおよび透明電極7の下層に、絶縁膜19を形成し、絶縁膜19の一部上面(金属電極6aが形成される領域)を丸まった凹凸状に形成する。
 絶縁膜19の一部上面を丸まった凹凸状に形成するため、本実施の形態においては、絶縁膜19として感光性を有する透明なアクリル樹脂などの有機膜を用いており、露光および現像を行い凹凸形状にパターニングした後に、熱処理によってメルトフロウさせ、丸まった凹凸形状にしている。
 このように丸まった凹凸状に形成された絶縁膜19の一部上面上には、微細に丸まった凹凸形状を有する金属電極6aが形成されるため、光をある一定の角度範囲に散乱するように設計することが可能となり、効率よく周囲光を利用することで明るい反射特性を得ることができる。
 なお、図示は省略するが、実施の形態2において、図16に図示されている半透過電極18も同様の方法を用いて、半透過電極18全体を凹凸状に形成できる。
 本発明の液晶表示パネルにおいて、上記第1の電極は、上記入射された光を反射および透過させる半透過電極で形成されていることが好ましい。
 上記構成によれば、上記第1の電極を、単一工程で形成できるので、製造工程数を減らすことができ、液晶表示パネルの生産性を向上させることができる。
 本発明の液晶表示パネルにおいて、上記複数の画素の各々は、反射領域と透過領域とを有しており、上記反射領域に形成される第1の電極は、少なくとも可視光に対する反射性を有する材料で形成され、上記透過領域に形成される第1の電極は、少なくとも可視光に対する透過性を有する材料で形成されていることが好ましい。
 上記構成によれば、上記反射領域においては、上記第1の電極を少なくとも可視光に対する反射率を有する材料で形成しており、上記透過領域においては、上記第1の電極を少なくとも可視光に対する透過率を有する材料で形成しているので、使用環境に関係なく、表示品質の高い液晶表示パネルを実現することができる。
 本発明の液晶表示パネルにおいては、上記液晶層の屈折率異方性Δnと、上記液晶層の厚さdと、の積の値が430nm~470nmであり、上記液晶層の厚さdと、上記第2の電極の各々の線状電極における最短の線幅Lと、上記第2の電極の各々の線状電極間の間隔幅Sとは、略1:1:3の比を満たすことが好ましい。
 本発明の液晶表示パネルにおいては、上記液晶層の屈折率異方性Δnと、上記液晶層の厚さdと、の積が略450nmであることが好ましい。
 上記構成によれば、透過領域における印加電圧に応じた透過率の変化曲線と、反射領域における印加電圧に応じた反射率の変化曲線と、を近似させることができるので、より表示品質の高い液晶表示パネルを実現することができる。
 なお、上記略1:1:3という表現において略1とは0.5以上1.5未満を意味し、略3とは2.5以上3.5未満を意味する。
 本発明の液晶表示パネルにおいて、上記円偏光部材は、偏光板とλ/4板とを備えていることが好ましい。
 上記構成によれば、上記液晶表示パネルに比較的容易に円偏光部材を設けることができる。
 本発明の液晶表示パネルにおいては、上記第1の基板に備えられたλ/4板の光学軸と、偏光板の透過軸と、のなす角度および上記第2の基板に備えられたλ/4板の光学軸と、偏光板の透過軸と、のなす角度は、何れも45°であり、上記第1の基板に備えられた偏光板の透過軸は、上記第2の基板に備えられた偏光板の透過軸に対して、90°回転されており、上記第1の基板に備えられたλ/4板の光学軸は、上記第2の基板に備えられたλ/4板の光学軸に対して、90°回転されていることが好ましい。
 上記構成によれば、上記第2の電極の各々の線状電極が延在される方向を考慮せずに、自由に液晶表示パネルを製作することができる。
 本発明の液晶表示パネルにおいて、上記第2の電極は、電気的に接続された幹部と枝部とを有する櫛歯形状を有しており、上記第2の電極の複数の線状電極は、上記枝部であってもよい。
 上記構成によれば、上記第2の電極が櫛歯形状を有している場合においても、パネルギャップ調整用構造物や反射領域と透過領域とのそれぞれに異なる電界を印加する駆動方法やマルチL/S構造を用いることなく、透過率、反射率および歩留まりが高く、かつ、焼き付きなどの表示不良が生じるのを抑制できる半透過型の液晶表示パネルを実現することができる。
 本発明の液晶表示パネルにおいて、上記第1の電極は、凹凸状に形成されていることが好ましい。
 本発明の液晶表示パネルにおいて、上記反射領域に形成される第1の電極は、凹凸状に形成されていることが好ましい。
 上記構成によれば、反射に用いられる上記第1の電極は、凹凸状に形成されているので、光をある一定の角度範囲に散乱するように設計することが可能となり、効率よく周囲光を利用することでより明るい反射特性を得ることができる。
 本発明は上記した各実施の形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施の形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施の形態についても本発明の技術的範囲に含まれる。
 本発明は、液晶表示パネルおよび液晶表示パネルを備えた液晶表示装置に好適に用いることができる。
 1        液晶表示装置
 2、2a、2b  液晶表示パネル
 3        バックライト
 4        アクティブマトリクス基板
 5、13     絶縁基板
 6        金属電極(第1の電極)
 7        透明電極(第1の電極)
 8        層間絶縁膜(絶縁膜)
 9        櫛歯形状の電極(第2の電極)
 10、14    直線偏光板
 11、15    λ/4板
 12       対向基板
 16       液晶分子
 17       液晶層
 18       半透過電極
 19       絶縁膜
 d        パネルギャップ(液晶層の厚さ)
 L        櫛歯形状の電極の線状電極の線幅
 S        櫛歯形状の電極の線状電極間の間隔
 Δn       液晶層の屈折率異方性

Claims (11)

  1.  第1の基板と、第2の基板と、上記第1の基板と上記第2の基板との間に挟持された液晶層と、複数の画素と、を備え、上記複数の画素の各々においては、入射された光を反射および透過させて表示を行う液晶表示パネルであって、
     上記第1の基板および上記第2の基板の各々には、円偏光部材が備えられており、
     上記液晶層に含まれる液晶分子は、正の誘電異方性を有するとともに、電圧無印加時には、上記第1の基板および上記第2の基板において上記液晶層と接する側の各々の面に対して垂直な方向に配向され、
     上記第1の基板および上記第2の基板の何れか一方には、
     面状に形成された第1の電極と、
     上記第1の電極上に形成された絶縁膜と、
     上記第1の電極とは平面視において重なるように、上記絶縁層上に一定間隔および一定線幅で形成された複数の線状電極を備えた第2の電極と、が備えられていることを特徴とする液晶表示パネル。
  2.  上記第1の電極は、上記入射された光を反射および透過させる半透過電極で形成されていることを特徴とする請求項1に記載の液晶表示パネル。
  3.  上記複数の画素の各々は、反射領域と透過領域とを有しており、
     上記反射領域に形成される第1の電極は、少なくとも可視光に対する反射性を有する材料で形成され、
     上記透過領域に形成される第1の電極は、少なくとも可視光に対する透過性を有する材料で形成されていることを特徴とする請求項1に記載の液晶表示パネル。
  4.  上記液晶層の屈折率異方性Δnと、上記液晶層の厚さdと、の積の値が430nm~470nmであり、
     上記液晶層の厚さdと、上記第2の電極の各々の線状電極における最短の線幅Lと、上記第2の電極の各々の線状電極間の間隔幅Sとは、略1:1:3の比を満たすことを特徴とする請求項1から3の何れか1項に記載の液晶表示パネル。
  5.  上記液晶層の屈折率異方性Δnと、上記液晶層の厚さdと、の積が略450nmであることを特徴とする請求項4に記載の液晶表示パネル。
  6.  上記円偏光部材は、偏光板とλ/4板とを備えていることを特徴とする請求項1から5の何れか1項に記載の液晶表示パネル。
  7.  上記第1の基板に備えられたλ/4板の光学軸と、偏光板の透過軸と、のなす角度および上記第2の基板に備えられたλ/4板の光学軸と、偏光板の透過軸と、のなす角度は、何れも45°であり、
     上記第1の基板に備えられた偏光板の透過軸は、上記第2の基板に備えられた偏光板の透過軸に対して、90°回転されており、
     上記第1の基板に備えられたλ/4板の光学軸は、上記第2の基板に備えられたλ/4板の光学軸に対して、90°回転されていることを特徴とする請求項6に記載の液晶表示パネル。
  8.  上記第2の電極は、電気的に接続された幹部と枝部とを有する櫛歯形状を有しており、
     上記第2の電極の複数の線状電極は、上記枝部であることを特徴とする請求項1から7の何れか1項に記載の液晶表示パネル。
  9.  上記第1の電極は、凹凸状に形成されていることを特徴とする請求項2に記載の液晶表示パネル。
  10.  上記反射領域に形成される第1の電極は、凹凸状に形成されていることを特徴とする請求項3に記載の液晶表示パネル。
  11.  請求項1から10の何れか1項に記載の液晶表示パネルと、バックライトと、を備えていることを特徴とする液晶表示装置。
PCT/JP2013/054209 2012-03-08 2013-02-20 液晶表示パネルおよび液晶表示装置 WO2013133022A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/382,753 US9274375B2 (en) 2012-03-08 2013-02-20 Liquid crystal display panel and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-052268 2012-03-08
JP2012052268 2012-03-08

Publications (1)

Publication Number Publication Date
WO2013133022A1 true WO2013133022A1 (ja) 2013-09-12

Family

ID=49116505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054209 WO2013133022A1 (ja) 2012-03-08 2013-02-20 液晶表示パネルおよび液晶表示装置

Country Status (2)

Country Link
US (1) US9274375B2 (ja)
WO (1) WO2013133022A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014209212A (ja) * 2013-03-29 2014-11-06 株式会社ジャパンディスプレイ 液晶表示装置及び電子機器
JP2014209213A (ja) 2013-03-29 2014-11-06 株式会社ジャパンディスプレイ 液晶表示装置及び電子機器
JP2014209228A (ja) * 2013-03-29 2014-11-06 株式会社ジャパンディスプレイ 液晶表示装置及び電子機器
CN104360550A (zh) * 2014-11-18 2015-02-18 深圳市华星光电技术有限公司 液晶显示器及其阵列基板
CN104698524B (zh) * 2015-02-13 2018-04-03 上海天马微电子有限公司 一种偏振片及其制备方法和图像显示面板、图像显示装置
CN104777693B (zh) * 2015-04-28 2017-05-03 深圳市华星光电技术有限公司 高穿透率psva型液晶显示面板及其制作方法
CN109856871B (zh) * 2019-03-29 2022-08-19 京东方科技集团股份有限公司 显示基板、显示面板和显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002139736A (ja) * 2000-10-31 2002-05-17 Sanyo Electric Co Ltd 液晶表示装置
JP2002365657A (ja) * 2001-06-07 2002-12-18 Seiko Epson Corp 液晶装置、投射型表示装置および電子機器
WO2009139199A1 (ja) * 2008-05-12 2009-11-19 シャープ株式会社 液晶表示装置
WO2010041491A1 (ja) * 2008-10-06 2010-04-15 シャープ株式会社 液晶表示装置
WO2012011443A1 (ja) * 2010-07-22 2012-01-26 シャープ株式会社 液晶パネルおよび液晶表示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW588171B (en) * 2001-10-12 2004-05-21 Fujitsu Display Tech Liquid crystal display device
US7920233B2 (en) * 2004-11-12 2011-04-05 Merck Patent Gmbh Transflective vertically aligned liquid crystal display with in-cell patterned quarter-wave retarder
US7932980B2 (en) * 2005-11-23 2011-04-26 University Of Central Florida Research Foundation, Inc. Liquid crystal display device having patterned electrodes for repetitive divided horizontal electric field and fringing electric field
CN101490611B (zh) * 2006-07-21 2011-02-09 夏普株式会社 显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002139736A (ja) * 2000-10-31 2002-05-17 Sanyo Electric Co Ltd 液晶表示装置
JP2002365657A (ja) * 2001-06-07 2002-12-18 Seiko Epson Corp 液晶装置、投射型表示装置および電子機器
WO2009139199A1 (ja) * 2008-05-12 2009-11-19 シャープ株式会社 液晶表示装置
WO2010041491A1 (ja) * 2008-10-06 2010-04-15 シャープ株式会社 液晶表示装置
WO2012011443A1 (ja) * 2010-07-22 2012-01-26 シャープ株式会社 液晶パネルおよび液晶表示装置

Also Published As

Publication number Publication date
US9274375B2 (en) 2016-03-01
US20150042922A1 (en) 2015-02-12

Similar Documents

Publication Publication Date Title
WO2013133022A1 (ja) 液晶表示パネルおよび液晶表示装置
US7292297B2 (en) Optical sheet assembly with specific ranges of angles
US7760295B2 (en) Liquid crystal display device and electronic apparatus
US8294857B2 (en) In-plane switching mode transflective liquid crystal display device and method of fabricating the same
US8018553B2 (en) Liquid crystal display device that includes both a transmissive portion and a reflective portion
US20100110351A1 (en) Transflective liquid crystal displays
US20100208176A1 (en) Wide Viewing Angle Transflective Liquid Crystal Displays
JP5943265B2 (ja) 液晶表示装置
WO2009139199A1 (ja) 液晶表示装置
US7728929B2 (en) Transflective liquid crystal display device
JP2007108654A (ja) 高透過率及び広視野角の半透過型液晶表示装置
JP4337854B2 (ja) 液晶表示装置
US20100110318A1 (en) Liquid crystal display device
KR100865843B1 (ko) 금속격자를 이용한 단일갭형 반투과형 프린지 필드 스위칭액정표시소자
JP5159403B2 (ja) 液晶表示装置
JP5254477B2 (ja) 液晶表示装置
KR101415573B1 (ko) 액정표시장치
CN203287662U (zh) 一种可实现视角可控及透反显示的蓝相液晶显示装置
US20110019136A1 (en) Liquid crystal display device
US20160018697A1 (en) Transflective liquid crystal display panel and display device
TWI493260B (zh) 電場控制雙折射模式液晶面板及液晶顯示裝置
KR101117988B1 (ko) 반투과형 액정표시소자
JP5397989B2 (ja) 液晶表示装置
US10317741B2 (en) Transflective type liquid crystal display device
CN118057231A (zh) 液晶显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13758581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14382753

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13758581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP