WO2013132906A1 - Liquid sample holder for electron microscope and method for manufacturing same - Google Patents

Liquid sample holder for electron microscope and method for manufacturing same Download PDF

Info

Publication number
WO2013132906A1
WO2013132906A1 PCT/JP2013/051239 JP2013051239W WO2013132906A1 WO 2013132906 A1 WO2013132906 A1 WO 2013132906A1 JP 2013051239 W JP2013051239 W JP 2013051239W WO 2013132906 A1 WO2013132906 A1 WO 2013132906A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid sample
substrates
electron microscope
frame
pair
Prior art date
Application number
PCT/JP2013/051239
Other languages
French (fr)
Japanese (ja)
Inventor
日▲高▼ 貴志夫
尚平 寺田
辰己 平野
悠香 腰越
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Publication of WO2013132906A1 publication Critical patent/WO2013132906A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/2002Controlling environment of sample
    • H01J2237/2003Environmental cells

Definitions

  • the present invention mainly relates to a sample holder for liquid sample observation used in a scanning transmission electron microscope.
  • a pair of silicon substrates 11 having a silicon nitride film 14 formed on the surface is provided in a vacuum atmosphere, and windows 12 for electron beam EB transmission are formed on the substrate 11 by chemical etching or the like. Then, a liquid sample 15 was made to flow between the substrates 11, and this was irradiated with an electron beam EB and observed with an electron microscope.
  • Patent Document 2 in sample observation using a transmission electron microscope or the like, heating / voltage application is performed without replacing the sample holder, and changes in the sample are observed to change the sample in the atmosphere.
  • a configuration is disclosed in which a heating means is installed on the sample holder.
  • the chip-on cartridge is configured of a mounting portion and a shuttle, and one end of the mounting portion is mounted at the tip of the introducing portion.
  • the shuttle is disclosed a configuration of sample holders that are each removably attached to the other end of the attachment.
  • Patent Document 4 discloses a configuration that provides a diaphragm-type gas atmosphere sample holder which is biaxially tiltable, does not have an operation failure due to burrs of parts, and has high sample position reproducibility.
  • a sealing block having a diaphragm type gas atmosphere sample chamber is supported by a pair of Y rotary shafts and bearings.
  • the inside of the gas supply side pipe, the gas discharge side pipe, and the diaphragm type gas atmosphere sample chamber serving as the gas flow path is kept airtight with the vacuum by the rubber O-ring, and the sealing block is airtight with the vacuum centering around the Y axis. Inclined operation while keeping the
  • the membrane of the liquid sample contact portion of the sample holder needs a sufficient strength.
  • the strength improves, but the absorption of the electron beam by the film material increases, so the thicker the film, the lower the beam intensity of the electron beam, which is unsuitable for high resolution observation.
  • the wettability between the membrane surface and the liquid sample is poor, the liquid sample is repelled from the membrane to form a sphere, so that the liquid sample can not be well contained inside the sample holder. Therefore, it is necessary to solve these problems.
  • the present invention relates to a liquid sample holder of an electron microscope for observing a liquid sample by irradiating an electron beam in a vacuum atmosphere, a pair of substrates sandwiching the liquid sample, a window for transmitting an electron beam provided on the pair of substrates, A frame for injecting a liquid sample provided at a position surrounding a window between the pair of substrates, and a seal between the pair of substrates and the outside of the frame for bonding the pair of substrates and the frame together with the liquid sample A silicon nitride film and a silicon oxide film are formed on the surface of a pair of substrates having a sealing resin for sealing in a frame and in contact with a liquid sample.
  • the pair of substrates is formed of a silicon substrate.
  • the thickness of the silicon oxide film is set to 1 nm to 10 nm.
  • the thickness of the silicon nitride film is set to 1 nm to 50 nm.
  • the stacking order of the sample holder is characterized in the order of silicon nitride film / silicon oxide film / liquid sample / silicon oxide film / silicon nitride film.
  • the total thickness of the two sets of silicon nitride films and silicon oxide films in the pair of substrates is set to 60 nm to 100 nm.
  • the height of the frame sandwiched between the pair of substrates is set to 1 nm to 10,000 nm.
  • the height of the frame sandwiched between the pair of substrates is set to 1 nm to 200 nm.
  • a storage container for fixing a liquid sample holder of an electron microscope is provided, and the storage container is detachably fixed to a sample cell holder provided in the electron microscope.
  • the storage container of the liquid sample holder is characterized by being made of copper or a copper alloy.
  • a sealing resin for sealing a pair of substrates and a frame while sealing the liquid sample in the frame, and a silicon nitride film and a silicon oxide film on the surface of the pair of substrates in contact with the liquid sample In the method of manufacturing a liquid sample holder of an electron microscope which observes a liquid sample in a vacuum atmosphere, forming a frame having a closed region with a fixed height on the surface of a lower substrate by providing two upper and lower substrates. The liquid sample is formed, injected into the frame, and a sealing resin is applied to the outer periphery of the frame to bond the upper and lower substrates and the frame to seal the liquid sample.
  • a window for electron beam transmission has a silicon nitride film formed on the substrate surface, then a silicon oxide film is formed on the silicon nitride film, and the substrate back surface is removed. It is characterized in that two layers of a silicon nitride film and a silicon oxide film are left on the surface.
  • the formation of the frame is characterized in that the frame made of tungsten is laminated on the surface of the silicon oxide film of the substrate by the FIB processing method.
  • the present invention relates to a liquid sample holder of an electron microscope for observing a liquid sample by irradiating an electron beam in a vacuum atmosphere, a pair of substrates sandwiching the liquid sample, a window for transmitting an electron beam provided on the pair of substrates, And a frame provided at a position surrounding the window between the pair of substrates, and sealed on the outside of the frame between the pair of substrates to bond the pair of substrates and the frame together and seal the liquid sample in the frame. And forming a silicon nitride film and a silicon oxide film on a pair of substrate surfaces in contact with the liquid sample, thereby forming an observation liquid sample of the sealing resin and oxidation with a narrow gap enabling high resolution. This produces the effect that a sample holder free from contamination of the silicon film observation window can be produced.
  • the present invention is a liquid sample holder for an electron microscope, comprising a silicon nitride film covering a window for observation of a silicon substrate, using a pair of substrates made of silicon or the like in which a window for observation is formed at the center, A silicon oxide film covering the surface of the film is formed, a frame is formed on the surface of the silicon oxide film, a liquid sample for observation is injected inside the frame, and two silicon holders are joined with a sealing resin. It is formed and characterized by the following points. (1) The sample holder has a structure in which a liquid sample is sandwiched between two silicon substrates. (2) A window through which an electron beam passes is opened at the center of both silicon substrates, and the window is covered with a silicon nitride film.
  • the film thickness of the silicon nitride film is desirably 50 nm or less.
  • the surface of the silicon nitride film is covered with a silicon oxide film, and a frame is sandwiched between the silicon oxide films facing each other.
  • the thickness of the silicon oxide film is preferably 10 nm or less.
  • the liquid sample for observation is in contact with the silicon oxide film at the top and the bottom, and the periphery is in contact with the inner periphery of the frame. When high resolution is realized, the height of the frame is preferably 200 nm or less.
  • the sealing resin for bonding is in contact with the silicon oxide film at the top and bottom, with the periphery in the open air, and the inside with the outer periphery of the frame.
  • FIG. 1 is a cross-sectional view seen from the side of the main body of the sample holder showing the first embodiment.
  • 10 denotes a sample holder
  • 11 denotes a pair of upper and lower silicon substrates
  • 12 denotes a window for electron beam EB transmission formed at the center of the silicon substrate.
  • a silicon nitride film 13 and a silicon oxide film 14 are formed on the surface of the silicon substrate 11. After a silicon nitride film 13 is formed on the surface of a silicon substrate 11 by CVD or the like, the surface is oxidized to form a hydrophilic silicon oxide film 14, and then the silicon substrate 11 of the base material is perforated and removed by chemical etching or the like. A window 12 about 100 ⁇ m in diameter is formed.
  • 15 is a liquid sample for observation
  • 16 is a frame
  • 17 is a sealing resin.
  • the liquid sample 15 for observation is injected into the frame 16, and the upper and lower silicon substrates 11 are adhered with the sealing resin 17 to seal the liquid sample 15 for observation.
  • the electron beam EB is incident from the window 12 of the upper silicon substrate 11, passes through the silicon nitride film 13 and the silicon oxide film 14, irradiates the liquid sample 15, and again the silicon oxide film 14 and silicon nitride film of the lower silicon substrate 11 It passes 13 sequentially and emits from the lower window 12.
  • this sample holder has a geometrical shape which is line-symmetrical vertically with respect to the horizontal axis passing through the liquid sample portion in FIG. 1, the electron beam is viewed even when the upper and lower sides are reversed as viewed from the horizontal axis of the liquid sample 15 center.
  • the passing order is the same.
  • the electron beam EB does not always come in contact with the frame 16 but passes through only the inside of the frame 16.
  • the frame 16 is present between the liquid sample 15 and the sealing resin 17 and clearly separates the liquid sample 15 and the sealing resin 17 to prevent the liquid samples from invading and mixing with each other.
  • the sealing resin to the surface of the hydrophilic silicon oxide film 14 is in direct contact with the liquid sample 15 in a region where the electron beam EB incident from the window 12 passes through the silicon nitride film 13, the silicon oxide 14 and the liquid sample 15. 17 can prevent contamination. That is, the sealing resin 17 on the surface of the silicon oxide film 14 has an effect of preventing the observation of the liquid sample 15 with the electron microscope.
  • the electron beam EB absorbs the electron beam EB every time it passes through the silicon nitride film 13, the silicon oxide film 14, and the liquid sample 15, the beam intensity attenuates as it becomes thicker as a function of its thickness. Therefore, the total thickness of the silicon nitride film 13 and the silicon oxide film 14 in the silicon substrate 11 provided on the upper and lower sides is preferably 60 to 100 nm. That is, the thickness of the silicon nitride film 13 and the silicon oxide film 14 in one silicon substrate 11 is preferably 30 to 50 nm.
  • the silicon nitride film 13 mainly gives strength to the window 12, and the silicon oxide film 14 gives water repellency to the window 12. Furthermore, the composite film achieves strength to withstand the atmospheric pressure of a liquid sample in a vacuum atmosphere.
  • the liquid sample 15 is desirably 10 ⁇ m or less in general, and desirably 200 nm or less in thickness for achieving high resolution over 10 nm. If the thickness is larger than this, the Rutherford scattering significantly reduces the resolution.
  • the sample holder 10 needs to prepare two substrates of plane symmetry in the upper and lower direction, but when forming the frame 16, it is placed so that the silicon oxide film 14 faces the upper surface using the lower substrate 11 .
  • a frame 16 is provided to surround the electron beam transmission region at a position sufficiently separated from the electron beam transmission region. Since the height of the frame 16 becomes the thickness of the liquid sample 15, in order to obtain a high resolution image, the lower the height of the frame 16, the higher the resolution. Therefore, controlling the height of the frame 16 controls the resolution of the sample holder 10.
  • FIG. 3 An SEM image when the frame structure shown in FIG. 2 is formed on the silicon oxide film 14 is shown in FIG.
  • WCO gas 6 is introduced into the FIB vacuum chamber using a FIB (Focused Ion Beam) apparatus on the silicon oxide film 14 and the WCO gas is decomposed by Ga ion irradiation 6WCO ⁇ W + 6CO
  • a frame 16 made of W was formed on the silicon oxide film 14 using tungsten (W) which becomes solid by reaction. Therefore, the SEM image of FIG. 3 is a specific example of the frame structure of FIG.
  • the SEM image in FIG. 3 was tilted 45 ° to expose the sidewalls to ensure uniformity of the thickness and height of the frame. According to the result of forming the frame 16 using FIB, a sound frame structure with less variation in the thickness and height of the wall of the frame 16 was obtained.
  • the laminated structure of the sample holder 10 is shown in FIG. As described above, the sample holder 10 is divided into upper and lower two substrates, and the lower silicon substrate 11 shown in FIG. 4 is placed with the silicon oxide film 14 as the uppermost surface, and the frame 16 is formed thereon. And a liquid sample 15 was injected therein. The liquid sample 15 remained without overflowing due to the effect of the frame 16.
  • the sealing resin 17 was applied and filled so as to be in contact with the outer periphery of the frame 16.
  • the stacking order of the sample cells in this state is, from the top, the sealing resin 17, the silicon oxide film 14, the silicon nitride film 13, and the silicon substrate 11 in this order.
  • the sample holder 10 In order to produce the sample holder 10, a substrate in which the silicon substrate 11, the silicon nitride film 13 and the silicon oxide film 14 are sequentially stacked from the top is covered on the laminated silicon substrate prepared in FIG.
  • the sealing resin 17 was solidified as it was.
  • the positions of the windows 12 of the upper and lower two silicon substrates 11 In order to transmit the electron beam EB to the sample holder 10 and observe the liquid sample 15, the positions of the windows 12 of the upper and lower two silicon substrates 11 must be matched. For that purpose, the optical axis was confirmed using visible light instead of the electron beam EB. That is, it was confirmed that the area through which light passes through the two windows 12 of the sample holder 10 from the lower side is a sufficient size using visible light of the LED.
  • FIG. 5 shows an embodiment of the structure of the whole liquid sample cell holder.
  • the sample holder 10 was installed at the bottom 23 of the storage container 20 at a position where the window 12 of the sample holder 10 and the hole 22 opened in the storage container bottom 23 do not prevent the electron beam EB from transmitting each other.
  • a method was used in which the outer peripheral portion of the sample holder 10 and the bottom portion 23 of the storage container 20 were joined using an adhesive resin.
  • the sample holder 10 and the storage container 20 were placed on the liquid sample cell holder 30.
  • the liquid sample cell holder 30 is provided with a washer (not shown) for fixing the storage container 20 to the cell holder bottom 31. Therefore, the optical axis through which the electron beam EB passes can pass through the window 12 of the sample holder 10, the hole 22 of the storage container 20 and the hole 32 of the liquid sample cell holder 30, and the holes mutually reduce their area. It does not disturb.
  • the sample holder 10 In order to perform STEM (Scanning Transmission Electron Microscope) observation and elemental analysis by EELS (Electron Energy Loss Spectroscopy) or EDX (Energy Dispersive X-ray Spectroscopy), the sample holder 10, the storage container 20, and the liquid sample cell holder 30 It has a structure in which three parts are stacked one after another.
  • the sample holder 10, the storage container 20, and the liquid sample cell holder 30 are separated and independent from each other, so replacement of the liquid sample 15 is easy, and after contamination such as contamination adhering from the outside at the time of electron beam irradiation by STEM observation etc. Since it is easy to replace with the new sample holder 10 and the storage container 20, the uncontaminated liquid sample 15 can be used. Therefore, STEM observation and EELS or EDX analysis using the liquid sample 15 always free of contamination has become possible.
  • FIG. 6 shows an Au nanoparticle image by STEM observation of this example, and an elemental analysis result of nanoparticle and liquid sample by EDX.
  • Au nanoparticles are shown as white particles with a diameter of about 10 nm, and the measurable resolution of the distance between the particles showed a high performance of about 1 nm.
  • EDX was used because it was difficult to determine from the EELS spectrum of the H 2 O molecule to verify the presence of the liquid sample.
  • the spectrum of H can not be measured, and since O is also contained in the silicon oxide film 14, it can not be determined. Therefore, a saturated aqueous solution of lithium chloride (LiCl) was prepared, and the presence of a liquid sample was confirmed by the spectrum of chlorine (Cl) contained therein.
  • the measurement was performed in two places for the nanoparticle and the liquid sample to verify that the nanoparticle is Au and Cl derived from LiCl in the liquid sample is present in both.
  • the liquid sample 15 in the sample holder 10 can be subjected to STEM observation and EELS or EDX analysis using the liquid sample cell holder 30.
  • the sample holder can be manufactured with a narrow gap enabling high resolution and without contamination of the observation liquid sample and the silicon oxide film observation window by the sealing resin, and the storage container portion Since it is detachable from the liquid sample holder of the electron microscope, it has an effect that can always be observed with a new silicon nitride film and silicon oxide film.
  • sample holder 11 silicon substrate 12: window 13: silicon nitride film 14: silicon oxide film 15: liquid sample 16: frame 17: sealing resin 20: storage container 21: outer frame 22, 32: hole 23: Storage container bottom 30: Liquid sample cell holder 31: Cell holder bottom

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

A liquid sample holder (10) for an electron microscope according to the present invention comprises: a pair of silicon substrates (11) into which a liquid sample (15) is inserted; an electron beam transmitting window (12) that is disposed on the pair of substrates; a frame body (16) having a thickness of equal to or less than 200 nm that is disposed at a position surrounding the window for the injection of the liquid sample; and a sealing resin (17) that is sealed on an outer side of the frame body to allow the frame body to be adhered to the pair of substrates and to seal the liquid sample inside the frame body. A silicon nitride film (13) and a silicon oxide film (14) are formed at a position on the surfaces of the pair of substrates which are in contact with the liquid sample. Therefore, the scattering of an electron beam can be inhibited, and thus a high-resolution observation can be made.

Description

電子顕微鏡の液体試料ホルダ及びその製造方法Liquid sample holder for electron microscope and method for manufacturing the same
 本発明は、主として、走査透過型電子顕微鏡に用いられる液体試料観察用の試料ホルダに関する。 The present invention mainly relates to a sample holder for liquid sample observation used in a scanning transmission electron microscope.
 半導体事業分野における基板の微細な鍍金配線などの電気化学的反応、および電気自動車用電池の化学反応を原子レベルで精密に調査することは、開発中の関連技術にとって必須の課題となってきている。特に、自動車産業ではグリーン環境への対応として、脱化石燃料が急務の課題である。 Precise investigation at the atomic level of electrochemical reactions such as fine plating wiring of substrates in the semiconductor business field and chemical reactions of batteries for electric vehicles has become an essential issue for related technologies under development . In the automotive industry, in particular, de-fossil fuels are an urgent issue as a response to the green environment.
 電気自動車の実用化に当たっては高出力および高信頼性等の電池材料の性能向上が課題であるが、その課題解決には現用の材料を使用するだけでは限界がある。そのため、正極および負極材料にナノレベルの原子配列を制御した部材を開発する必要がある。 In the practical application of electric vehicles, there is a problem to improve the performance of battery materials such as high output and high reliability, but there is a limit to solving the problems only by using current materials. Therefore, it is necessary to develop a member in which the atomic level arrangement at the nano level is controlled for the positive and negative electrode materials.
 材料特性および電池セル構造での性能検査を行うためには、従来の手法として、電池性能評価後に破壊して部材を電子顕微鏡を用いて観察してきた。しかし、より正確な性能検査には電気化学的なイオンの動きをその場で観察する必要がある。そのためには、電子顕微鏡のホルダの中で、原子が正極と負極の間を移動し、正極または負極に到達後に拡散もしくは浸透してゆく電気化学的挙動を観察する手法が必要不可欠になる。 In order to conduct a material property and performance inspection in a battery cell structure, as a conventional method, it has been broken after battery performance evaluation, and members have been observed using an electron microscope. However, for more accurate performance inspection, it is necessary to observe the electrochemical ion movement in situ. For this purpose, a method of observing the electrochemical behavior in which atoms move between the positive electrode and the negative electrode and diffuse or penetrate after reaching the positive electrode or the negative electrode becomes essential in the holder of the electron microscope.
 そこで従来は、例えば図7に示す様に、表面に窒化シリコン膜14を形成した一対のシリコン基板11を真空雰囲気中に設け、基板11にケミカルエッチング等により電子線EB透過用の窓12を形成して基板11の間に液体試料15を流入させ、これに電子線EBを照射して電子顕微鏡で観察していた。 Therefore, conventionally, for example, as shown in FIG. 7, a pair of silicon substrates 11 having a silicon nitride film 14 formed on the surface is provided in a vacuum atmosphere, and windows 12 for electron beam EB transmission are formed on the substrate 11 by chemical etching or the like. Then, a liquid sample 15 was made to flow between the substrates 11, and this was irradiated with an electron beam EB and observed with an electron microscope.
 また、金属の接合に用いられるハンダ用ナノ粒子の接合形態も、真空中では不可能な反応を大気雰囲気で観察する必要がある。 In addition, it is also necessary to observe a reaction which can not be performed in a vacuum in the atmosphere, in the bonding form of the solder nanoparticles used for metal bonding.
 また走査透過型電子顕微鏡に用いられる液体試料観察用の試料ホルダとしては、従来種々の改良工夫が提案されている。例えば特許文献1には、試料から電気的信号を取り出して観察を行う電子顕微鏡において、試料交換の際に良好な電気的接続を得て、交換作業が容易に行え、試料ホルダの厚みを薄くし、電荷蓄積による観察像のドリフトを回避できる試料ホルダを実現するため、試料を試料台に押止する押止部材と電圧印加する端子を共用し、試料台の片面を絶縁コーティングする構成が開示されている。 In addition, various improvements and improvements have been proposed as sample holders for liquid sample observation used in scanning transmission electron microscopes. For example, in Patent Document 1, in an electron microscope that takes out an electrical signal from a sample and observes it, a good electrical connection can be obtained at the time of sample exchange, the exchange operation can be easily performed, and the thickness of the sample holder is reduced. In order to realize a sample holder capable of avoiding the drift of the observation image due to charge accumulation, a configuration is disclosed in which one side of the sample stage is coated with an insulating coating, which shares a terminal for applying a voltage and a pressing member ing.
 また、特許文献2には、透過電子顕微鏡等を用いた試料観察において、試料ホルダを交換すること無く加熱/電圧印加を行って試料の変化を観察することにより、大気中での試料交換時の試料への汚れ等の付着や破損のない試料ホルダを提供するため、試料ホルダに加熱手段が設置された構成が開示されている。 Further, in Patent Document 2, in sample observation using a transmission electron microscope or the like, heating / voltage application is performed without replacing the sample holder, and changes in the sample are observed to change the sample in the atmosphere. In order to provide a sample holder free from adhesion or damage to the sample such as dirt or the like, a configuration is disclosed in which a heating means is installed on the sample holder.
 また、特許文献3には、試料を2軸傾斜ホルダへ容易に配置できる試料ホルダを提供するため、チップオンカートリッジは取付部とシャトルから構成され、取付部の一端は導入部の先端に取り付けられシャトルは取付部の他端に各々着脱可能に取り付けられた試料ホルダの構成が開示されている。 In addition, in order to provide a sample holder in which the sample can be easily arranged in the two-axis inclined holder in Patent Document 3, the chip-on cartridge is configured of a mounting portion and a shuttle, and one end of the mounting portion is mounted at the tip of the introducing portion. The shuttle is disclosed a configuration of sample holders that are each removably attached to the other end of the attachment.
 また、特許文献4には、2軸傾斜可能で、部品同士のカジリ等による動作不良が無く、試料位置再現性の高い隔膜型ガス雰囲気試料ホルダを提供する構成が開示されている。隔膜型ガス雰囲気試料室を有するシーリングブロックは一対のY回転軸と軸受けにより支えられている。ガスの流路となるガス供給側管、 ガス排出側管、隔膜型ガス雰囲気試料室内部は、ゴムOリングによって真空との気密を保持され、シーリングブロックはY軸を中心にして真空との気密を保ったまま傾斜動作する。 Further, Patent Document 4 discloses a configuration that provides a diaphragm-type gas atmosphere sample holder which is biaxially tiltable, does not have an operation failure due to burrs of parts, and has high sample position reproducibility. A sealing block having a diaphragm type gas atmosphere sample chamber is supported by a pair of Y rotary shafts and bearings. The inside of the gas supply side pipe, the gas discharge side pipe, and the diaphragm type gas atmosphere sample chamber serving as the gas flow path is kept airtight with the vacuum by the rubber O-ring, and the sealing block is airtight with the vacuum centering around the Y axis. Inclined operation while keeping the
特開2003-263969号公報Japanese Patent Application Publication No. 2003-263969 特開2004-022192号公報Unexamined-Japanese-Patent No. 2004-022192 特開2005-293865号公報Unexamined-Japanese-Patent No. 2005-293865 特開2009-117196号公報JP, 2009-117196, A
 一般に、電子顕微鏡の真空チャンバ内で液体試料を保持するためには、サンプルホルダの液体試料接触部の膜に十分な強度が必要である。膜の厚さが厚いほど強度は向上するが、膜材料による電子線の吸収が大きくなるため、膜が厚くなるほど電子線のビーム強度が低下して分解能の高い観察には不適当になる。また、膜表面と液体試料との濡れ性が悪いと、液体試料が前記膜からはじかれて球を形成するため、サンプルホルダ内部に液体試料がうまく納まらなくなる。したがって、これらの課題を解決する必要がある。 In general, in order to hold the liquid sample in the vacuum chamber of the electron microscope, the membrane of the liquid sample contact portion of the sample holder needs a sufficient strength. As the thickness of the film increases, the strength improves, but the absorption of the electron beam by the film material increases, so the thicker the film, the lower the beam intensity of the electron beam, which is unsuitable for high resolution observation. In addition, if the wettability between the membrane surface and the liquid sample is poor, the liquid sample is repelled from the membrane to form a sphere, so that the liquid sample can not be well contained inside the sample holder. Therefore, it is necessary to solve these problems.
 本発明は、真空雰囲気中で液体試料に電子線を照射して観察する電子顕微鏡の液体試料ホルダにおいて、液体試料を挟み込む一対の基板と、一対の基板に設けられた電子線透過用の窓と、一対の基板間の窓を囲む位置に設けられた液体試料を注入する枠体と、一対の基板間の枠体の外側に封止されて一対の基板と枠体を接着すると共に液体試料を枠体内に封止する封止樹脂とを有し、液体試料と接する一対の基板表面に窒化シリコン膜と酸化シリコン膜を形成したことを特徴とする。 The present invention relates to a liquid sample holder of an electron microscope for observing a liquid sample by irradiating an electron beam in a vacuum atmosphere, a pair of substrates sandwiching the liquid sample, a window for transmitting an electron beam provided on the pair of substrates, A frame for injecting a liquid sample provided at a position surrounding a window between the pair of substrates, and a seal between the pair of substrates and the outside of the frame for bonding the pair of substrates and the frame together with the liquid sample A silicon nitride film and a silicon oxide film are formed on the surface of a pair of substrates having a sealing resin for sealing in a frame and in contact with a liquid sample.
 また、電子顕微鏡の液体試料ホルダにおいて、一対の基板はシリコン基板から形成されたことを特徴とする。 Further, in the liquid sample holder of the electron microscope, the pair of substrates is formed of a silicon substrate.
 また、電子顕微鏡の液体試料ホルダにおいて、酸化シリコン膜の厚さを1nm~10nmとしたことを特徴とする。 In the liquid sample holder of the electron microscope, the thickness of the silicon oxide film is set to 1 nm to 10 nm.
 また、電子顕微鏡の液体試料ホルダにおいて、窒化シリコン膜の厚さを1nm~50nmとしたことを特徴とする。 In the liquid sample holder of the electron microscope, the thickness of the silicon nitride film is set to 1 nm to 50 nm.
 また、電子顕微鏡の液体試料ホルダにおいて、試料ホルダの積層順序が、窒化シリコン膜/酸化シリコン膜/液体試料/酸化シリコン膜/窒化シリコン膜の順であることを特徴とする。 In the liquid sample holder of the electron microscope, the stacking order of the sample holder is characterized in the order of silicon nitride film / silicon oxide film / liquid sample / silicon oxide film / silicon nitride film.
 また、電子顕微鏡の液体試料ホルダにおいて、一対の基板における二組の窒化シリコン膜及び酸化シリコン膜の合計厚さを60nm~100nmとしたことを特徴とする。 In the liquid sample holder of the electron microscope, the total thickness of the two sets of silicon nitride films and silicon oxide films in the pair of substrates is set to 60 nm to 100 nm.
 また、電子顕微鏡の液体試料ホルダにおいて、一対の基板に挟まれた枠体の高さを1nm~10,000nmとしたことを特徴とする。 In the liquid sample holder of the electron microscope, the height of the frame sandwiched between the pair of substrates is set to 1 nm to 10,000 nm.
 また、電子顕微鏡の液体試料ホルダにおいて、一対の基板に挟まれた枠体の高さを1nm~200nmとしたことを特徴とする。 In the liquid sample holder of the electron microscope, the height of the frame sandwiched between the pair of substrates is set to 1 nm to 200 nm.
 さらに、電子顕微鏡の液体試料ホルダを固定する収納容器を設け、収納容器を電子顕微鏡に設けた試料セルホルダに着脱自在に固定したことを特徴とする。 Furthermore, a storage container for fixing a liquid sample holder of an electron microscope is provided, and the storage container is detachably fixed to a sample cell holder provided in the electron microscope.
 さらに、電子顕微鏡において、液体試料ホルダの収納容器は銅または銅合金からなることを特徴とする。 Furthermore, in the electron microscope, the storage container of the liquid sample holder is characterized by being made of copper or a copper alloy.
 さらに、液体試料を挟み込む一対の基板と、一対の基板に設けられた電子線透過用の窓と、一対の基板間の窓を囲む位置に設けられた枠体と、一対の基板間の枠体の外側に封止されて一対の基板と枠体を接着すると共に液体試料を枠体内に封止する封止樹脂とを有し、液体試料と接する一対の基板表面に窒化シリコン膜と酸化シリコン膜を形成した、真空雰囲気中で液体試料を観察する電子顕微鏡の液体試料ホルダの製造方法において、上下2層の基板を設け、下側基板の表面に一定高さを有する閉鎖領域をもつ枠体を形成し、枠体内に液体試料を注入し、枠体の外周に封止樹脂を塗布して上下2層の基板と枠体を接着して液体試料を封止したことを特徴とする。 Furthermore, a pair of substrates sandwiching the liquid sample, a window for electron beam transmission provided on the pair of substrates, a frame provided at a position surrounding the window between the pair of substrates, and a frame between the pair of substrates A sealing resin for sealing a pair of substrates and a frame while sealing the liquid sample in the frame, and a silicon nitride film and a silicon oxide film on the surface of the pair of substrates in contact with the liquid sample In the method of manufacturing a liquid sample holder of an electron microscope which observes a liquid sample in a vacuum atmosphere, forming a frame having a closed region with a fixed height on the surface of a lower substrate by providing two upper and lower substrates. The liquid sample is formed, injected into the frame, and a sealing resin is applied to the outer periphery of the frame to bond the upper and lower substrates and the frame to seal the liquid sample.
 さらに、電子顕微鏡の液体試料ホルダの製造方法において、電子線透過用の窓は、基板表面に窒化シリコン膜を形成し、次いで窒化シリコン膜の上に酸化シリコン膜を形成し、さらに基板裏面を除去して表面に窒化シリコン膜と酸化シリコン膜の2層を残して形成したことを特徴とする。 Furthermore, in a method of manufacturing a liquid sample holder for an electron microscope, a window for electron beam transmission has a silicon nitride film formed on the substrate surface, then a silicon oxide film is formed on the silicon nitride film, and the substrate back surface is removed. It is characterized in that two layers of a silicon nitride film and a silicon oxide film are left on the surface.
 さらに、電子顕微鏡の液体試料ホルダの製造方法において、枠体の形成は、基板の酸化シリコン膜表面にFIB加工方法によりタングステンからなる枠体を積層形成したことを特徴とする。 Further, in the method of manufacturing a liquid sample holder of an electron microscope, the formation of the frame is characterized in that the frame made of tungsten is laminated on the surface of the silicon oxide film of the substrate by the FIB processing method.
 本発明は、真空雰囲気中で液体試料に電子線を照射して観察する電子顕微鏡の液体試料ホルダにおいて、液体試料を挟み込む一対の基板と、一対の基板に設けられた電子線透過用の窓と、一対の基板間の窓を囲む位置に設けられた枠体と、一対の基板間の枠体の外側に封止されて一対の基板と枠体を接着すると共に液体試料を枠体内に封止する封止樹脂とを有し、液体試料と接する一対の基板表面に窒化シリコン膜と酸化シリコン膜を形成したことにより、高分解能を可能にする狭ギャップで、封止樹脂の観察液体試料および酸化シリコン膜観察窓の汚染のない試料ホルダを作製することができるという効果を奏する。 The present invention relates to a liquid sample holder of an electron microscope for observing a liquid sample by irradiating an electron beam in a vacuum atmosphere, a pair of substrates sandwiching the liquid sample, a window for transmitting an electron beam provided on the pair of substrates, And a frame provided at a position surrounding the window between the pair of substrates, and sealed on the outside of the frame between the pair of substrates to bond the pair of substrates and the frame together and seal the liquid sample in the frame. And forming a silicon nitride film and a silicon oxide film on a pair of substrate surfaces in contact with the liquid sample, thereby forming an observation liquid sample of the sealing resin and oxidation with a narrow gap enabling high resolution. This produces the effect that a sample holder free from contamination of the silicon film observation window can be produced.
本発明の実施例における液体試料ホルダを示す断面構成図。BRIEF DESCRIPTION OF THE DRAWINGS Sectional block diagram which shows the liquid sample holder in the Example of this invention. 本発明の実施例における液体試料ホルダの概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic block diagram of the liquid sample holder in the Example of this invention. 本発明の実施例における枠体構造のSEM画像。The SEM image of the frame structure in the Example of this invention. 本発明の実施例における試料ホルダ下部の概略構成図。The schematic block diagram of the sample holder lower part in the Example of this invention. 本発明の実施例における液体試料セルホルダの全体概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The whole schematic block diagram of the liquid sample cell holder in the Example of this invention. 本発明の図1の実施例における液体試料のSTEM画像およびEDX元素分析結果を示す説明図。Explanatory drawing which shows the STEM image and EDX elemental-analysis result of the liquid sample in the Example of FIG. 1 of this invention. 従来例の走査透過型電子顕微鏡における液体試料観察部を示す模式図。The schematic diagram which shows the liquid sample observation part in the scanning transmission electron microscope of a prior art example.
 本発明は、電子顕微鏡用液体試料ホルダにおいて、中央に観察用の窓が形成された一対のシリコン製等の基板を用い、シリコン基板の観察用の窓部を被う窒化シリコン膜と、窒化シリコン膜の表面を覆う酸化シリコン膜とを形成し、酸化シリコン膜表面に枠体を形成し、枠体の内側に観察用液体試料を注入し、二枚のシリコンホルダを封止樹脂で接合して形成され、以下の点を特徴とする。
(1)試料ホルダはシリコン基板二枚で液体試料を挟む構造である。
(2)二枚のシリコン基板とも中央に電子線が通過する窓が開いており、窓は窒化シリコン膜で覆われている。窒化シリコン膜の膜厚は50nm以下が望ましい。
(3)窒化シリコン膜の表面は酸化シリコン膜で覆われており、向かい合った酸化シリコン膜の間に枠体が挟持されている。酸化シリコン膜の膜厚は10nm以下が望ましい。
(4)観察用の液体試料は上下を酸化シリコン膜に接し、周囲を枠体の内周に接している。高分解能を実現する場合は、枠体の高さは200nm以下が望ましい。
(5)接着用の封止樹脂は上下を酸化シリコン膜に接し、周囲を外気に接し、内部を枠体の外周に接している。
The present invention is a liquid sample holder for an electron microscope, comprising a silicon nitride film covering a window for observation of a silicon substrate, using a pair of substrates made of silicon or the like in which a window for observation is formed at the center, A silicon oxide film covering the surface of the film is formed, a frame is formed on the surface of the silicon oxide film, a liquid sample for observation is injected inside the frame, and two silicon holders are joined with a sealing resin. It is formed and characterized by the following points.
(1) The sample holder has a structure in which a liquid sample is sandwiched between two silicon substrates.
(2) A window through which an electron beam passes is opened at the center of both silicon substrates, and the window is covered with a silicon nitride film. The film thickness of the silicon nitride film is desirably 50 nm or less.
(3) The surface of the silicon nitride film is covered with a silicon oxide film, and a frame is sandwiched between the silicon oxide films facing each other. The thickness of the silicon oxide film is preferably 10 nm or less.
(4) The liquid sample for observation is in contact with the silicon oxide film at the top and the bottom, and the periphery is in contact with the inner periphery of the frame. When high resolution is realized, the height of the frame is preferably 200 nm or less.
(5) The sealing resin for bonding is in contact with the silicon oxide film at the top and bottom, with the periphery in the open air, and the inside with the outer periphery of the frame.
 以下に本発明を実施例について説明する。 The invention will now be described by way of example.
 図1は実施例1を示す試料ホルダの本体側面から見た断面図である。ここで10は試料ホルダを示し、11は上下一対のシリコン基板、12はシリコン基板の中央部に形成された電子線EB透過用の窓である。 FIG. 1 is a cross-sectional view seen from the side of the main body of the sample holder showing the first embodiment. Here, 10 denotes a sample holder, 11 denotes a pair of upper and lower silicon substrates, and 12 denotes a window for electron beam EB transmission formed at the center of the silicon substrate.
 シリコン基板11の表面には、窒化シリコン膜13及び酸化シリコン膜14が形成されている。シリコン基板11の表面に窒化シリコン膜13をCVD等で形成した後、表面を酸化させて親水性の酸化シリコン膜14を形成した後、母材のシリコン基板11をケミカルエッチング等で穿孔除去して直径100μm程度の窓12を形成する。 A silicon nitride film 13 and a silicon oxide film 14 are formed on the surface of the silicon substrate 11. After a silicon nitride film 13 is formed on the surface of a silicon substrate 11 by CVD or the like, the surface is oxidized to form a hydrophilic silicon oxide film 14, and then the silicon substrate 11 of the base material is perforated and removed by chemical etching or the like. A window 12 about 100 μm in diameter is formed.
 15は観察用液体試料、16は枠体、および17は封止樹脂である。枠体16内に観察用液体試料15を注入し、封止樹脂17で上下一対のシリコン基板11を接着して観察用液体試料15を封止する。 15 is a liquid sample for observation, 16 is a frame, and 17 is a sealing resin. The liquid sample 15 for observation is injected into the frame 16, and the upper and lower silicon substrates 11 are adhered with the sealing resin 17 to seal the liquid sample 15 for observation.
 電子線EBは上部シリコン基板11の窓12から入射し、窒化シリコン膜13と酸化シリコン膜14を透過して、液体試料15を照射し、再び下部シリコン基板11の酸化シリコン膜14と窒化シリコン膜13を順次通過して下部の窓12から出射する。 The electron beam EB is incident from the window 12 of the upper silicon substrate 11, passes through the silicon nitride film 13 and the silicon oxide film 14, irradiates the liquid sample 15, and again the silicon oxide film 14 and silicon nitride film of the lower silicon substrate 11 It passes 13 sequentially and emits from the lower window 12.
 この試料ホルダは、図1において液体試料部分を通る水平軸に対し上下に線対称の幾何形状をしているため、液体試料15中心の水平軸から見て、上下が逆であっても電子線通過順序は同様である。 Since this sample holder has a geometrical shape which is line-symmetrical vertically with respect to the horizontal axis passing through the liquid sample portion in FIG. 1, the electron beam is viewed even when the upper and lower sides are reversed as viewed from the horizontal axis of the liquid sample 15 center. The passing order is the same.
 電子線EBは常にこの枠体16に接触せず、枠体16の内側のみを透過してゆく。枠体16は液体試料15と封止樹脂17の間に存在し、液体試料15と封止樹脂17を明確に分離して、お互いの液体試料が侵入して混ざり合うことを防止する。このことは、窓12から入射する電子線EBが窒化シリコン膜13、酸化シリコン14、液体試料15を透過する領域において、液体試料15と直接接する親水性の酸化シリコン膜14表面への封止樹脂17による汚染を防止できる。すなわち、酸化シリコン膜14表面上の封止樹脂17が、液体試料15の電子顕微鏡での観察の妨げになることを防止する効果を有する。 The electron beam EB does not always come in contact with the frame 16 but passes through only the inside of the frame 16. The frame 16 is present between the liquid sample 15 and the sealing resin 17 and clearly separates the liquid sample 15 and the sealing resin 17 to prevent the liquid samples from invading and mixing with each other. This means that the sealing resin to the surface of the hydrophilic silicon oxide film 14 is in direct contact with the liquid sample 15 in a region where the electron beam EB incident from the window 12 passes through the silicon nitride film 13, the silicon oxide 14 and the liquid sample 15. 17 can prevent contamination. That is, the sealing resin 17 on the surface of the silicon oxide film 14 has an effect of preventing the observation of the liquid sample 15 with the electron microscope.
 また、電子線EBは窒化シリコン膜13及び酸化シリコン膜14、液体試料15を透過するたびに電子線EBを吸収されるため、ビーム強度はその厚さの関数として、厚くなるほど減衰してゆく。したがって、上下に設けたシリコン基板11における窒化シリコン膜13及び酸化シリコン膜14のトータルな厚さとしては60乃至100nmであることが望ましい。すなわち、一枚のシリコン基板11における窒化シリコン膜13及び酸化シリコン膜14の厚さは30乃至50nmであることが望ましい。窒化シリコン膜13は窓12に主に強度を与え、酸化シリコン膜14は窓12に撥水性を与える。さらに上記複合膜により、真空雰囲気中の液体試料のもつ大気圧に耐える強度を実現する。 Further, since the electron beam EB absorbs the electron beam EB every time it passes through the silicon nitride film 13, the silicon oxide film 14, and the liquid sample 15, the beam intensity attenuates as it becomes thicker as a function of its thickness. Therefore, the total thickness of the silicon nitride film 13 and the silicon oxide film 14 in the silicon substrate 11 provided on the upper and lower sides is preferably 60 to 100 nm. That is, the thickness of the silicon nitride film 13 and the silicon oxide film 14 in one silicon substrate 11 is preferably 30 to 50 nm. The silicon nitride film 13 mainly gives strength to the window 12, and the silicon oxide film 14 gives water repellency to the window 12. Furthermore, the composite film achieves strength to withstand the atmospheric pressure of a liquid sample in a vacuum atmosphere.
 また、液体試料15は、一般に10μm以下が望ましく、10nmを超える高分解能化のためには200nm以下の厚さが望ましい。これ以上の厚さではラザフォード散乱により分解能が著しく低下する。 In addition, the liquid sample 15 is desirably 10 μm or less in general, and desirably 200 nm or less in thickness for achieving high resolution over 10 nm. If the thickness is larger than this, the Rutherford scattering significantly reduces the resolution.
 次に、図2を用いて、枠体構造について説明する。試料ホルダ10は、上下に面対称な二枚の基板を用意する必要があるが、枠体16の形成については、下側の基板11を用いて酸化シリコン膜14が上部表面を向くように置く。電子線透過領域に接触しない十分離れた位置に、枠体16を電子線透過領域を囲むように設ける。枠体16の高さが液体試料15の厚さになるため、高分解能像を得るためには枠体16の高さが低いほど高分解能化する。したがって、枠体16の高さを制御することが試料ホルダ10の分解能を制御することになる。 Next, the frame structure will be described with reference to FIG. The sample holder 10 needs to prepare two substrates of plane symmetry in the upper and lower direction, but when forming the frame 16, it is placed so that the silicon oxide film 14 faces the upper surface using the lower substrate 11 . A frame 16 is provided to surround the electron beam transmission region at a position sufficiently separated from the electron beam transmission region. Since the height of the frame 16 becomes the thickness of the liquid sample 15, in order to obtain a high resolution image, the lower the height of the frame 16, the higher the resolution. Therefore, controlling the height of the frame 16 controls the resolution of the sample holder 10.
 図2で示した枠体構造を、酸化シリコン膜14上に作製したときのSEM像を図3に示す。酸化シリコン膜14上にFIB(Focused Ion Beam)装置を用いて、WCOガス6をFIBの真空チャンバ内に導入し、Gaイオン照射でWCOガスを分解することによって       6WCO→W+6CO
反応によって固体になるタングステン(W)を用いて、W製の枠体16を酸化シリコン膜14上に形成した。したがって、図3のSEM像は図2の枠体構造の具体例である。図3のSEM像は枠体の厚さおよび高さの均一性を確認するため、45°傾斜させて側壁を露出させた。FIBを用いた枠体16の形成結果では、枠体16の壁の厚さおよび高さにばらつきの少ない、健全な枠体構造が得られた。
An SEM image when the frame structure shown in FIG. 2 is formed on the silicon oxide film 14 is shown in FIG. WCO gas 6 is introduced into the FIB vacuum chamber using a FIB (Focused Ion Beam) apparatus on the silicon oxide film 14 and the WCO gas is decomposed by Ga ion irradiation 6WCO → W + 6CO
A frame 16 made of W was formed on the silicon oxide film 14 using tungsten (W) which becomes solid by reaction. Therefore, the SEM image of FIG. 3 is a specific example of the frame structure of FIG. The SEM image in FIG. 3 was tilted 45 ° to expose the sidewalls to ensure uniformity of the thickness and height of the frame. According to the result of forming the frame 16 using FIB, a sound frame structure with less variation in the thickness and height of the wall of the frame 16 was obtained.
 図4に試料ホルダ10の積層構造を示す。前に述べたように試料ホルダ10は上下二枚の基板に分かれており、図4にしめす下側のシリコン基板11を酸化シリコン膜14を最上面にして載置し、その上に枠体16を形成しその内部に液体試料15を注入した。液体試料15は枠体16の効果で外部に溢れることなく留まった。 The laminated structure of the sample holder 10 is shown in FIG. As described above, the sample holder 10 is divided into upper and lower two substrates, and the lower silicon substrate 11 shown in FIG. 4 is placed with the silicon oxide film 14 as the uppermost surface, and the frame 16 is formed thereon. And a liquid sample 15 was injected therein. The liquid sample 15 remained without overflowing due to the effect of the frame 16.
 次いで、上下二枚のシリコン基板を接合するために封止樹脂17を枠体16の外周に接するように塗布充填した。この状態での試料セルの積層順序は上から封止樹脂17、酸化シリコン膜14、窒化シリコン膜13、シリコン基板11の順である。 Subsequently, in order to bond the upper and lower two silicon substrates, the sealing resin 17 was applied and filled so as to be in contact with the outer periphery of the frame 16. The stacking order of the sample cells in this state is, from the top, the sealing resin 17, the silicon oxide film 14, the silicon nitride film 13, and the silicon substrate 11 in this order.
 試料ホルダ10の作製には、図4で準備した積層シリコン基板の上に、上からシリコン基板11、窒化シリコン膜13、酸化シリコン膜14の順に積層した基板を被せて、軽く圧力をかけて圧迫したまま封止樹脂17を固化させた。試料ホルダ10に電子線EBを透過させて液体試料15を観察するためには、上下二枚の11シリコン基板の窓12の位置が合致していなければならない。そのために、電子線EBの代わりに可視光を用いた光軸の確認を行った。すなわち、LEDの可視光を用いて下部から試料ホルダ10の二個の窓12を光が透過する面積が十分な大きさであることを確認した。 In order to produce the sample holder 10, a substrate in which the silicon substrate 11, the silicon nitride film 13 and the silicon oxide film 14 are sequentially stacked from the top is covered on the laminated silicon substrate prepared in FIG. The sealing resin 17 was solidified as it was. In order to transmit the electron beam EB to the sample holder 10 and observe the liquid sample 15, the positions of the windows 12 of the upper and lower two silicon substrates 11 must be matched. For that purpose, the optical axis was confirmed using visible light instead of the electron beam EB. That is, it was confirmed that the area through which light passes through the two windows 12 of the sample holder 10 from the lower side is a sufficient size using visible light of the LED.
 図5に液体試料セルホルダ全体の構造の実施例を示す。試料ホルダ10は収納容器20の底部23に、試料ホルダ10の窓12と収納容器底部23に開けた穴22とが、お互いに電子線EBを透過させる妨げにならない位置に設置された。両者の固定は、接着樹脂を用いて試料ホルダ10の外周部と収納容器20の底部23とを接合する方法を用いた。 FIG. 5 shows an embodiment of the structure of the whole liquid sample cell holder. The sample holder 10 was installed at the bottom 23 of the storage container 20 at a position where the window 12 of the sample holder 10 and the hole 22 opened in the storage container bottom 23 do not prevent the electron beam EB from transmitting each other. For fixing the two, a method was used in which the outer peripheral portion of the sample holder 10 and the bottom portion 23 of the storage container 20 were joined using an adhesive resin.
 試料ホルダ10と収納容器20を接着樹脂で接合した後、液体試料セルホルダ30に載置した。液体試料セルホルダ30は、セルホルダ底部31に収納容器20を固定する図示しない座金を設けてある。したがって、電子線EBが透過する光軸は、試料ホルダ10の窓12、収納容器20の穴22および液体試料セルホルダ30の穴32を通過することができ、穴どうしはお互いにその面積を減少させる妨げにはならない。 After bonding the sample holder 10 and the storage container 20 with an adhesive resin, the sample holder 10 and the storage container 20 were placed on the liquid sample cell holder 30. The liquid sample cell holder 30 is provided with a washer (not shown) for fixing the storage container 20 to the cell holder bottom 31. Therefore, the optical axis through which the electron beam EB passes can pass through the window 12 of the sample holder 10, the hole 22 of the storage container 20 and the hole 32 of the liquid sample cell holder 30, and the holes mutually reduce their area. It does not disturb.
 STEM(Scanning Transmission Electron Microscope)観察、およびEELS(Electron Energy Loss Spectroscopy)またはEDX(Energy Dispersive X-ray Spectroscopy)による元素分析を行うためには、試料ホルダ10、収納容器20、および液体試料セルホルダ30の三パーツを順次積み上げた構造になっている。試料ホルダ10及び収納容器20と液体試料セルホルダ30は、互いに分離独立しているため液体試料15の交換が容易であり、STEM観察などによる電子ビーム照射時に外部から付着するコンタミネーションなどの汚染後、新規の試料ホルダ10及び収納容器20に交換することが容易であるため、汚染されていない液体試料15を用いることが出来る。したがって、常に汚染の無い液体試料15を用いたSTEM観察およびEELSまたはEDX分析が可能となった。 In order to perform STEM (Scanning Transmission Electron Microscope) observation and elemental analysis by EELS (Electron Energy Loss Spectroscopy) or EDX (Energy Dispersive X-ray Spectroscopy), the sample holder 10, the storage container 20, and the liquid sample cell holder 30 It has a structure in which three parts are stacked one after another. The sample holder 10, the storage container 20, and the liquid sample cell holder 30 are separated and independent from each other, so replacement of the liquid sample 15 is easy, and after contamination such as contamination adhering from the outside at the time of electron beam irradiation by STEM observation etc. Since it is easy to replace with the new sample holder 10 and the storage container 20, the uncontaminated liquid sample 15 can be used. Therefore, STEM observation and EELS or EDX analysis using the liquid sample 15 always free of contamination has become possible.
 図6は、本実施例のSTEM観察によるAuナノ粒子画像、およびEDXによるナノ粒子および液体試料の元素分析結果を示す。 FIG. 6 shows an Au nanoparticle image by STEM observation of this example, and an elemental analysis result of nanoparticle and liquid sample by EDX.
 Auナノ粒子は直径が約10nmの白色粒子で示されており、その粒子間距離の計測可能な分解能は約1nmと高い性能を示した。 Au nanoparticles are shown as white particles with a diameter of about 10 nm, and the measurable resolution of the distance between the particles showed a high performance of about 1 nm.
 液体試料の存在を検証するのにH2O分子のEELSスペクトルから判断することが困難であったため、EDXを用いた。EDXではHのスペクトルは計測不可能であり、Oは酸化シリコン膜14にも含まれるため断定することができない。そこで、塩化リチウム(LiCl)の飽和水溶液を作製し、そこに含まれる塩素(Cl)のスペクトルによって液体試料の存在を確認した。測定はナノ粒子および液体試料について二か所づつ実施して、ナノ粒子がAuであり、液体試料中のLiClに由来するClがどちらにも存在することを検証した。このように、試料ホルダ10中の液体試料15は、液体試料セルホルダ30を用いてSTEM観察およびEELSもしくはEDX分析することができることが実証できた。 EDX was used because it was difficult to determine from the EELS spectrum of the H 2 O molecule to verify the presence of the liquid sample. In EDX, the spectrum of H can not be measured, and since O is also contained in the silicon oxide film 14, it can not be determined. Therefore, a saturated aqueous solution of lithium chloride (LiCl) was prepared, and the presence of a liquid sample was confirmed by the spectrum of chlorine (Cl) contained therein. The measurement was performed in two places for the nanoparticle and the liquid sample to verify that the nanoparticle is Au and Cl derived from LiCl in the liquid sample is present in both. Thus, it can be demonstrated that the liquid sample 15 in the sample holder 10 can be subjected to STEM observation and EELS or EDX analysis using the liquid sample cell holder 30.
 本発明は、以上の構成により、高分解能を可能にする狭ギャップで、封止樹脂による観察液体試料および酸化シリコン膜観察窓の汚染なしに試料ホルダを作製することができ、かつ、収納容器部分が電子顕微鏡の液体試料ホルダから着脱可能であるため、常に新しい窒化シリコン膜および酸化シリコン膜で観察できる効果を奏する。 According to the present invention, with the above configuration, the sample holder can be manufactured with a narrow gap enabling high resolution and without contamination of the observation liquid sample and the silicon oxide film observation window by the sealing resin, and the storage container portion Since it is detachable from the liquid sample holder of the electron microscope, it has an effect that can always be observed with a new silicon nitride film and silicon oxide film.
10:試料ホルダ
11:シリコン基板
12:窓
13:窒化シリコン膜
14:酸化シリコン膜
15:液体試料
16:枠体
17:封止樹脂
20:収納容器
21:外枠体
22、32:穴
23:収納容器底部
30:液体試料セルホルダ
31:セルホルダ底部
10: sample holder 11: silicon substrate 12: window 13: silicon nitride film 14: silicon oxide film 15: liquid sample 16: frame 17: sealing resin 20: storage container 21: outer frame 22, 32: hole 23: Storage container bottom 30: Liquid sample cell holder 31: Cell holder bottom

Claims (13)

  1.  真空雰囲気中で液体試料に電子線を照射して観察する電子顕微鏡の液体試料ホルダにおいて、
     前記液体試料を挟み込む一対の基板と、該一対の基板に設けられた電子線透過用の窓と、前記一対の基板間の前記窓を囲む位置に設けられた前記液体試料を注入する枠体と、前記一対の基板間の前記枠体の外側に塗布充填されて前記一対の基板と枠体を接着すると共に前記液体試料を前記枠体内に封止する封止樹脂とを有し、前記液体試料と接する前記一対の基板表面に窒化シリコン膜と酸化シリコン膜を形成したことを特徴とする電子顕微鏡の液体試料ホルダ。
    In a liquid sample holder of an electron microscope for observing a liquid sample by irradiating an electron beam in a vacuum atmosphere,
    A pair of substrates sandwiching the liquid sample, a window for transmitting an electron beam provided on the pair of substrates, and a frame for injecting the liquid sample provided at a position surrounding the window between the pair of substrates A sealing resin which is applied and filled on the outside of the frame between the pair of substrates to bond the pair of substrates and the frame and seal the liquid sample in the frame; A liquid sample holder for an electron microscope, wherein a silicon nitride film and a silicon oxide film are formed on the surface of the pair of substrates in contact with the above.
  2.  請求項1に記載された電子顕微鏡の液体試料ホルダにおいて、前記一対の基板はシリコン基板から形成されたことを特徴とする電子顕微鏡の液体試料ホルダ。 The liquid sample holder for an electron microscope according to claim 1, wherein the pair of substrates is formed of a silicon substrate.
  3.  請求項1または2に記載された電子顕微鏡の液体試料ホルダにおいて、前記酸化シリコン膜の厚さを1nm~10nmとしたことを特徴とする電子顕微鏡の液体試料ホルダ。 The liquid sample holder for an electron microscope according to claim 1 or 2, wherein the silicon oxide film has a thickness of 1 nm to 10 nm.
  4.  請求項1または2に記載された電子顕微鏡の液体試料ホルダにおいて、前記窒化シリコン膜の厚さを1nm~50nmとしたことを特徴とする電子顕微鏡の液体試料ホルダ。 The liquid sample holder for an electron microscope according to claim 1 or 2, wherein the silicon nitride film has a thickness of 1 nm to 50 nm.
  5.  請求項1乃至4のいずれかに記載された電子顕微鏡の液体試料ホルダにおいて、前記試料ホルダの積層順序が、窒化シリコン膜/酸化シリコン膜/液体試料/酸化シリコン膜/窒化シリコン膜の順であることを特徴とする電子顕微鏡の液体試料ホルダ。 5. The liquid sample holder for an electron microscope according to any one of claims 1 to 4, wherein the stacking order of the sample holder is in the order of silicon nitride film / silicon oxide film / liquid sample / silicon oxide film / silicon nitride film. What is claimed is: 1. A liquid sample holder for an electron microscope, characterized in that
  6.  請求項1乃至5のいずれかに記載された電子顕微鏡の液体試料ホルダにおいて、前記一対の基板における前記二組の窒化シリコン膜及び酸化シリコン膜の合計厚さを60nm~100nmとしたことを特徴とする電子顕微鏡の液体試料ホルダ。 The liquid sample holder for an electron microscope according to any one of claims 1 to 5, wherein a total thickness of the two sets of silicon nitride films and silicon oxide films in the pair of substrates is 60 nm to 100 nm. Electron microscope liquid sample holder.
  7.  請求項1乃至6のいずれかに記載された電子顕微鏡の液体試料ホルダにおいて、前記一対の基板に挟まれた前記枠体の高さを1nm~10,000nmとしたことを特徴とする電子顕微鏡の液体試料ホルダ。 7. The liquid sample holder for an electron microscope according to any one of claims 1 to 6, wherein the height of the frame sandwiched between the pair of substrates is 1 nm to 10,000 nm. Liquid sample holder.
  8.  請求項7に記載された電子顕微鏡の液体試料ホルダにおいて、前記一対の基板に挟まれた前記枠体の高さを1nm~200nmとしたことを特徴とする電子顕微鏡の液体試料ホルダ。 The liquid sample holder for an electron microscope according to claim 7, wherein the height of the frame sandwiched between the pair of substrates is 1 nm to 200 nm.
  9.  請求項1乃至8のいずれかに記載された電子顕微鏡の液体試料ホルダを固定する収納容器を設け、該収納容器を前記電子顕微鏡に設けた試料セルホルダに着脱自在に固定したことを特徴とする電子顕微鏡。 A storage container for fixing the liquid sample holder of the electron microscope according to any one of claims 1 to 8 is provided, and the storage container is detachably fixed to a sample cell holder provided in the electron microscope. microscope.
  10.  請求項9に記載された電子顕微鏡において、前記収納容器は銅または銅合金からなることを特徴とする電子顕微鏡。 The electron microscope according to claim 9, wherein the storage container is made of copper or a copper alloy.
  11.  液体試料を挟み込む一対の基板と、前記一対の基板に設けられた電子線透過用の窓と、前記一対の基板間の前記窓を囲む位置に設けられた枠体と、前記一対の基板間の前記枠体の外側に封止されて前記一対の基板と枠体を接着すると共に前記液体試料を前記枠体内に封止する封止樹脂とを有し、前記液体試料と接する前記一対の基板表面に窒化シリコン膜と酸化シリコン膜を形成した、真空雰囲気中で液体試料を観察する電子顕微鏡の液体試料ホルダの製造方法において、
     上下2層の基板を設け、下側基板の表面に一定高さを有する閉鎖領域をもつ前記枠体を形成し、該枠体内に前記液体試料を注入し、前記枠体の外周に前記封止樹脂を塗布して前記上下2層の基板と前記枠体を接着して前記液体試料を封止したことを特徴とする電子顕微鏡の液体試料ホルダの製造方法。
    Between a pair of substrates sandwiching a liquid sample, a window for electron beam transmission provided on the pair of substrates, a frame provided at a position surrounding the window between the pair of substrates, and a pair of substrates The pair of substrate surfaces that are sealed on the outside of the frame and have a sealing resin that adheres the pair of substrates and the frame while sealing the liquid sample in the frame, and are in contact with the liquid sample In a method of manufacturing a liquid sample holder of an electron microscope for observing a liquid sample in a vacuum atmosphere, in which a silicon nitride film and a silicon oxide film are formed on
    Two frames of upper and lower layers are provided, the frame having a closed area having a certain height is formed on the surface of the lower substrate, the liquid sample is injected into the frame, and the seal is performed on the outer periphery of the frame A method of manufacturing a liquid sample holder for an electron microscope, characterized in that a resin is applied, and the upper and lower two layers of substrates and the frame are adhered to each other to seal the liquid sample.
  12.  請求項11に記載された電子顕微鏡の液体試料ホルダの製造方法において、前記電子線透過用の窓は、前記基板表面に窒化シリコン膜を形成し、次いで該窒化シリコン膜の上に前記酸化シリコン膜を形成し、さらに基板裏面を除去して表面に前記窒化シリコン膜と前記酸化シリコン膜の2層を残して形成したことを特徴とする電子顕微鏡の液体試料ホルダの製造方法。 The method according to claim 11, wherein the window for electron beam transmission forms a silicon nitride film on the surface of the substrate, and then the silicon oxide film is formed on the silicon nitride film. And removing the back surface of the substrate to leave two layers of the silicon nitride film and the silicon oxide film on the front surface of the substrate.
  13.  請求項11または12に記載された電子顕微鏡の液体試料ホルダの製造方法において、前記枠体の形成は、前記基板の前記酸化シリコン膜表面にFIB加工方法によりタングステンからなる枠体を積層形成したことを特徴とする電子顕微鏡の液体試料ホルダの製造方法。 The method for manufacturing a liquid sample holder of an electron microscope according to claim 11 or 12, wherein the frame is formed by laminating a frame made of tungsten on the surface of the silicon oxide film of the substrate by an FIB processing method. The manufacturing method of the liquid sample holder of the electron microscope characterized by the above.
PCT/JP2013/051239 2012-03-09 2013-01-23 Liquid sample holder for electron microscope and method for manufacturing same WO2013132906A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012052528A JP2013187096A (en) 2012-03-09 2012-03-09 Liquid sample holder of electron microscope and manufacturing method therefor
JP2012-052528 2012-03-09

Publications (1)

Publication Number Publication Date
WO2013132906A1 true WO2013132906A1 (en) 2013-09-12

Family

ID=49116393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051239 WO2013132906A1 (en) 2012-03-09 2013-01-23 Liquid sample holder for electron microscope and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP2013187096A (en)
WO (1) WO2013132906A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047829A1 (en) * 2014-09-26 2016-03-31 한국기초과학지원연구원 Electron microscope holder for sample observation in gas or liquid phase
CN110021512A (en) * 2019-04-04 2019-07-16 北京工业大学 A kind of in-situ liquid environment transmission electron microscope electrothermics specimen holder system
KR20200110571A (en) * 2019-03-15 2020-09-24 한국생산기술연구원 Zig for adjusting thickness of TEM Specimen and Method for Producing TEM Specimen using for it

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5993891B2 (en) * 2014-04-09 2016-09-14 本田技研工業株式会社 Analytical battery
JP6492601B2 (en) * 2014-12-08 2019-04-03 大日本印刷株式会社 Sample storage cell
US10431416B2 (en) * 2015-08-21 2019-10-01 Hitachi High-Technologies Corporation Observation support unit for charged particle microscope and sample observation method using same
KR101971825B1 (en) * 2018-04-03 2019-04-23 한국표준과학연구원 Large scale graphene liquid cell, and large scale graphene liquid cell fabrication method
WO2022269073A1 (en) 2021-06-25 2022-12-29 Danmarks Tekniske Universitet Improved temperature control in liquid phase transmission electron microscopy

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06318445A (en) * 1993-01-18 1994-11-15 Tanpaku Kogaku Kenkyusho:Kk Sample holder for electron microscope, etc.
JP2002333387A (en) * 2001-05-08 2002-11-22 Hitachi Ltd Beam member and sample processor, and sampling method using the same
JP2007165283A (en) * 2005-12-09 2007-06-28 Lee Bing Huan Strip for controlling ultrathin liquid for electron microscope, and combination of same and box
JP2008047411A (en) * 2006-08-15 2008-02-28 Jeol Ltd Sample retainer, sample inspection method and sample inspection device
JP2008512841A (en) * 2004-09-13 2008-04-24 テヒニシェ、ユニベルシテイト、デルフト Microreactor and heating element for transmission electron microscope and manufacturing method thereof
JP2008171830A (en) * 2000-12-01 2008-07-24 Yeda Research & Development Co Ltd Device and method for examination of sample in non-vacuum environment using scanning electron microscope
JP2010027488A (en) * 2008-07-23 2010-02-04 Jeol Ltd Specimen holder, specimen inspecting device, and specimen inspecting method
JP2011007766A (en) * 2009-05-22 2011-01-13 National Institute Of Advanced Industrial Science & Technology Sample support member for x-ray microscope, sample-housing cell, x-ray microscope, and method for observing x-ray microscopic image

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06318445A (en) * 1993-01-18 1994-11-15 Tanpaku Kogaku Kenkyusho:Kk Sample holder for electron microscope, etc.
JP2008171830A (en) * 2000-12-01 2008-07-24 Yeda Research & Development Co Ltd Device and method for examination of sample in non-vacuum environment using scanning electron microscope
JP2002333387A (en) * 2001-05-08 2002-11-22 Hitachi Ltd Beam member and sample processor, and sampling method using the same
JP2008512841A (en) * 2004-09-13 2008-04-24 テヒニシェ、ユニベルシテイト、デルフト Microreactor and heating element for transmission electron microscope and manufacturing method thereof
JP2007165283A (en) * 2005-12-09 2007-06-28 Lee Bing Huan Strip for controlling ultrathin liquid for electron microscope, and combination of same and box
JP2008047411A (en) * 2006-08-15 2008-02-28 Jeol Ltd Sample retainer, sample inspection method and sample inspection device
JP2010027488A (en) * 2008-07-23 2010-02-04 Jeol Ltd Specimen holder, specimen inspecting device, and specimen inspecting method
JP2011007766A (en) * 2009-05-22 2011-01-13 National Institute Of Advanced Industrial Science & Technology Sample support member for x-ray microscope, sample-housing cell, x-ray microscope, and method for observing x-ray microscopic image

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047829A1 (en) * 2014-09-26 2016-03-31 한국기초과학지원연구원 Electron microscope holder for sample observation in gas or liquid phase
KR20200110571A (en) * 2019-03-15 2020-09-24 한국생산기술연구원 Zig for adjusting thickness of TEM Specimen and Method for Producing TEM Specimen using for it
KR102186572B1 (en) 2019-03-15 2020-12-04 한국생산기술연구원 Zig for adjusting thickness of TEM Specimen and Method for Producing TEM Specimen using for it
CN110021512A (en) * 2019-04-04 2019-07-16 北京工业大学 A kind of in-situ liquid environment transmission electron microscope electrothermics specimen holder system

Also Published As

Publication number Publication date
JP2013187096A (en) 2013-09-19

Similar Documents

Publication Publication Date Title
WO2013132906A1 (en) Liquid sample holder for electron microscope and method for manufacturing same
Yang et al. Fabrication of liquid cell for in situ transmission electron microscopy of electrochemical processes
Foroozan et al. Synergistic effect of graphene oxide for impeding the dendritic plating of Li
Pu et al. Liquid cell transmission electron microscopy and its applications
US20130146221A1 (en) Graphene-based membranes as electron transparent windows for ambient pressure x-ray photoelectron spectroscopy
Kolmakov et al. Recent approaches for bridging the pressure gap in photoelectron microspectroscopy
WO2012147632A1 (en) Sample holding apparatus for electron microscope, and electron microscope apparatus
Bi et al. Sodium peroxide dihydrate or sodium superoxide: the importance of the cell configuration for sodium–oxygen batteries
TWI617673B (en) Fuel cell
TW201709601A (en) Electro-chemical module
TWI433195B (en) Specimen supporting device for electron microscope and fabrication method thereof
Weiling et al. Vibrational spectroscopy insight into the electrode| electrolyte interface/interphase in lithium batteries
CN101080635A (en) Cell electro-physiological sensor and method of manufacturing the same
JP5993891B2 (en) Analytical battery
JP2009210371A (en) Low acceleration voltage x-ray microscope device
Zhang et al. Recent advances in in situ and operando characterization techniques for Li 7 La 3 Zr 2 O 12-based solid-state lithium batteries
Jensen et al. Encapsulated liquid cells for transmission electron microscopy
US20100276277A1 (en) Electrochemical liquid cell apparatus
JP2014002987A (en) Sample holder for electron microscope
US10504688B2 (en) Analytical cell and method of producing the same
TW201640103A (en) Specimen holder for electron microscope and manufacturing method thereof
JP2018049691A (en) Holder and transmission electron microscope equipped with the same
JP2014186877A (en) Battery for analysis
Chen et al. A Study of nano materials and their reactions in liquid using in situ wet cell TEM technology
US10718731B2 (en) Cell for electrochemical measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13757381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13757381

Country of ref document: EP

Kind code of ref document: A1