JP2009210371A - Low acceleration voltage x-ray microscope device - Google Patents
Low acceleration voltage x-ray microscope device Download PDFInfo
- Publication number
- JP2009210371A JP2009210371A JP2008052874A JP2008052874A JP2009210371A JP 2009210371 A JP2009210371 A JP 2009210371A JP 2008052874 A JP2008052874 A JP 2008052874A JP 2008052874 A JP2008052874 A JP 2008052874A JP 2009210371 A JP2009210371 A JP 2009210371A
- Authority
- JP
- Japan
- Prior art keywords
- ray
- sample
- imaging
- base material
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
本発明は、X線を試料(被検査体)に照射して観察(若しくは検査)を行うX線顕微装置に関し、特に真空封止用のX線透過窓基材として10〜60μmの薄いベリリウム(Be)板材を用いると共に、X線発生部で0.1nm〜1.2nmの長波長の特性X線を発生させ、ヘリウム(He)ガス内で試料を観察するようにした低加速電圧駆動型のX線顕微装置に関する。 The present invention relates to an X-ray microscope apparatus that performs observation (or inspection) by irradiating a sample (inspected object) with X-rays, and in particular, thin beryllium (10 to 60 μm) as an X-ray transmission window substrate for vacuum sealing. Be) A low acceleration voltage drive type that uses a plate material, generates characteristic X-rays having a long wavelength of 0.1 nm to 1.2 nm in the X-ray generation unit, and observes the sample in helium (He) gas. The present invention relates to an X-ray microscope.
図8は従来のX線顕微装置100の構造例を示しており、図9はX線発生手段としての開放型X線管110の内部構成例を示している。X線顕微装置100の上部には電子線を発生してX線ターゲット111に照射するX線管110が配設され、X線ターゲット111から放射されたX線がステージ機構101に載置若しくは保持された試料102を透過し、その透過X線が下方に配設された撮像手段としての撮像管103に取り込まれる。なお、試料102周りは外部へのX線漏洩を防ぐためのカバー(図示せず)が配置され、試料102は大気中に置かれる。また、X線像の幾何拡大倍率を稼ぐために、試料102はX線ターゲット111の近くに置かれ、適当に離れた位置に撮像管103が配置される。 FIG. 8 shows an example of the structure of a conventional X-ray microscope 100, and FIG. 9 shows an internal configuration example of an open X-ray tube 110 as X-ray generation means. An X-ray tube 110 that generates an electron beam and irradiates the X-ray target 111 is disposed above the X-ray microscope 100, and the X-ray emitted from the X-ray target 111 is placed or held on the stage mechanism 101. The transmitted sample 102 is transmitted, and the transmitted X-rays are taken into an imaging tube 103 as imaging means disposed below. A cover (not shown) for preventing X-ray leakage to the outside is disposed around the sample 102, and the sample 102 is placed in the atmosphere. In addition, in order to increase the geometric magnification of the X-ray image, the sample 102 is placed near the X-ray target 111, and the imaging tube 103 is disposed at an appropriate distance.
開放型X線管110では図9に示すように、内部を真空ポンプ(図示せず)により真空状態に排気し、電子源として電流加熱により熱電子を放出する熱電子放射陰極112を用い、熱電子放射陰極112とアノード114との間に40kV〜120kVの高電圧を印加することにより、熱電子放射陰極112から放射される電子Reを加速し、厚さ約250μmのベリリウム(Be)板材(X線透過窓基材)上に載置されたタングステン(W)で作成されたX線ターゲット111上に電子レンズ115により電子Reを集束させ、微小な点状X線源を得るようにしている。そして、X線ターゲット111上のX線源から発生する点状X線Rxを用いて、大気中で試料102の内部を拡大投影し、II(Image Intensifier)、CCD又はCMOS撮像素子で成る撮像管103で試料102内部の微細構造を非破壊で透視観察するようになっている。 In the open X-ray tube 110, as shown in FIG. 9, the inside is evacuated to a vacuum state by a vacuum pump (not shown), and a thermionic emission cathode 112 that emits thermoelectrons by current heating is used as an electron source. By applying a high voltage of 40 kV to 120 kV between the electron emission cathode 112 and the anode 114, the electrons Re emitted from the thermion emission cathode 112 are accelerated, and a beryllium (Be) plate material (X Electrons Re are focused by an electron lens 115 on an X-ray target 111 made of tungsten (W) placed on a (transmission window base material) to obtain a fine point X-ray source. Then, the inside of the sample 102 is enlarged and projected in the atmosphere using the point X-rays Rx generated from the X-ray source on the X-ray target 111, and an imaging tube composed of an II (Image Intensifier), CCD, or CMOS imaging device. In 103, the fine structure inside the sample 102 is non-destructively seen through.
電子源としては熱電子放射陰極112の他に、電流加熱と強電界により電子を放出する熱電界放射陰極も同様に使用されている。 As the electron source, in addition to the thermionic emission cathode 112, a thermionic emission cathode that emits electrons by current heating and a strong electric field is also used.
このようなX線顕微装置において、X線ターゲット111に衝突した電子ReはX線Rxに変換されるが、その変換効率は1%以下と極めて低く、電子Reのエネルギーの殆どはX線ターゲット111で熱に変換される。ところで、X線は電荷を持たないため、電子のように電子レンズを用いて自由に曲げるということができない。そのため、大きな倍率を得るためには、試料102をX線ターゲット111の点状X線源にできるだけ近付け、試料102を透過して放射状に広がっていくX線Rxをできるだけ距離をおいて配置された撮像管103で取り込み、画像にする必要がある。理論上は、試料102と撮像管103との間の距離を大きくとればとるほど倍率は上がるが、実際には単位面積当たりのX線量は距離の2乗に逆比例して減衰するため、撮像管103の感度と拡大された像のX線量との兼ね合いによって倍率の上限が決まってくる。 In such an X-ray microscope, the electron Re that collides with the X-ray target 111 is converted into X-ray Rx, but the conversion efficiency is extremely low at 1% or less, and most of the energy of the electron Re is X-ray target 111. Is converted to heat. By the way, since X-rays have no electric charge, they cannot be bent freely using an electron lens like electrons. Therefore, in order to obtain a large magnification, the sample 102 is placed as close as possible to the pointed X-ray source of the X-ray target 111, and the X-rays Rx that pass through the sample 102 and spread radially are arranged as far as possible. It is necessary to capture the image with the image pickup tube 103 to form an image. Theoretically, the larger the distance between the sample 102 and the imaging tube 103, the higher the magnification. However, in actuality, the X-ray dose per unit area attenuates in inverse proportion to the square of the distance. The upper limit of the magnification is determined by the balance between the sensitivity of the tube 103 and the X-ray dose of the magnified image.
他方、試料102を透過したX線像の分解能については、X線源サイズ(焦点サイズ)が小さい方がボケ量が減って向上する。しかし、同じ熱電子放射陰極112を用いる場合、電子レンズ115で小さく集束するとX線源サイズを小さくできるが、それに含まれる電子線量がスポット径の2乗に逆比例して減少し、X線量もそれに応じて減少するので、最終的な分解能は撮像管103の感度との兼ね合いで決まり、ある限界を持っている。 On the other hand, the resolution of the X-ray image transmitted through the sample 102 is improved when the X-ray source size (focal size) is smaller and the amount of blur is reduced. However, when the same thermionic emission cathode 112 is used, the X-ray source size can be reduced by converging it with the electron lens 115, but the electron dose contained therein decreases in inverse proportion to the square of the spot diameter. Since it decreases accordingly, the final resolution depends on the sensitivity of the image pickup tube 103 and has a certain limit.
ところで、X線顕微装置では水素と酸素から成る水滴や水分の観察は、いずれも軽元素であり、X線の吸収が少ないために従来不可能と考えられて来た。そのため、従来のX線顕微装置では、例えば燃料電池内で生成される水の観察はほとんどできなかった。 By the way, in the X-ray microscope, observation of water droplets and water composed of hydrogen and oxygen are both light elements and have been considered impossible in the past because of little X-ray absorption. For this reason, in the conventional X-ray microscope, for example, water generated in the fuel cell could hardly be observed.
燃料電池内で生成される水の観察を説明すると、燃料電池内では発電時に水素(H2)と酸素(O2)が結合して水が生成される。この水が水素及び酸素の流れを妨げることによって、発電効率が大きく低下することが分かっている。しかし、どの部分からどのように水滴が発生し、成長していくのか、そのメカニズムは良く分かっていない。燃料電池内の水の生成メカニズムを解析することによって、燃料電池の性能向上に寄与することが期待されている。 Explaining the observation of water generated in the fuel cell, hydrogen (H 2 ) and oxygen (O 2 ) are combined to generate water in the fuel cell during power generation. It has been found that this water greatly reduces power generation efficiency by hindering the flow of hydrogen and oxygen. However, the mechanism of how water droplets are generated and grown from which part is not well understood. By analyzing the mechanism of water generation in the fuel cell, it is expected to contribute to improving the performance of the fuel cell.
燃料電池内の水滴の観察に関する従来技術として、熱中性子線による放射線画像、或いは核磁気共鳴装置(MRI)による画像など、水分子中の水素を比較的検出し易いことを特徴とする観察方法によって観察はされているが、水滴発生の初期である10〜数10μmの極く小さなものの観察は不可能であり、現在100〜数100μmとかなり大きく成長したものしか観察されていないのが実情である。
現在のX線顕微装置では、試料中の軽元素から成る微細構造に対して充分な画像コントラストを得ることができないため、その改善が強く望まれている。また、燃料電池の発電時には水素と酸素が結合して水が生成されるが、この水がどの部分からどのように発生し、成長していくのか、そのメカニズムを解明することが期待されているが、その要請に応え得るX線顕微装置は出現していない。 In the current X-ray microscope, a sufficient image contrast cannot be obtained with respect to a fine structure composed of light elements in a sample. In addition, hydrogen and oxygen combine to produce water during fuel cell power generation, and it is expected to clarify the mechanism by which this water is generated and how it grows. However, no X-ray microscope apparatus that can meet the demand has appeared.
また、従来ベリリウム製のX線透過窓基材の厚さは約250μmであり、その厚さでの窓基材部のX線の吸収は少なく、問題となることはなかった。一方、軽元素観察のために長波長X線を使用する場合は、ベリリウム製窓基材の吸収が無視できなくなるため、吸収を少なくするために更に薄くする必要がある。従来、このX線透過窓基材を更に薄くすることは、次のような理由で考えられなかった。即ち、ベリリウムは塩素等を含むガスによって腐食し易く、また、内部的な構造からピンホールができ易いため、薄くすると真空漏れを起こし易くなり、X線透過窓基材を極く薄くする試みはなされていない。 In addition, the thickness of a conventional beryllium X-ray transmissive window base material is about 250 μm, and the X-ray absorption of the window base material portion at that thickness is small, and there is no problem. On the other hand, when using long-wavelength X-rays for light element observation, the absorption of the beryllium window base material cannot be ignored, so it is necessary to further reduce the thickness in order to reduce the absorption. Conventionally, further thinning the X-ray transmission window base material has not been considered for the following reason. In other words, beryllium is easily corroded by gas containing chlorine, etc., and pinholes are easily formed from the internal structure. Therefore, if it is made thin, vacuum leakage is likely to occur, and attempts to make the X-ray transmission window substrate extremely thin Not done.
本発明は上述のような事情によりなされたものであり、本発明の目的は、軽元素から成る微小な試料等に対しても充分な高分解能、高コントラストを得ることができ、in-situの状態で試料を観察することができる低加速電圧駆動型のX線顕微装置を提供することにある。 The present invention has been made under the circumstances as described above, and the object of the present invention is to obtain a sufficiently high resolution and high contrast even for a minute sample made of a light element. An object of the present invention is to provide a low acceleration voltage driven X-ray microscope capable of observing a sample in a state.
また、X線顕微装置で観察するに適した構造の燃料電池を提供することも本発明の目的である。 It is another object of the present invention to provide a fuel cell having a structure suitable for observation with an X-ray microscope.
本発明は、電子銃の電子源からの電子線をX線ターゲットに当ててX線を発生させるX線発生手段と、試料に照射された前記X線の透過X線を撮像素子で撮像する撮像手段とを具備したX線顕微装置に関し、本発明の上記目的は、前記電子線の加速電圧を6〜30kVとし、前記X線ターゲットを真空封止するX線透過窓基材がベリリウムで成り、前記X線透過窓基材の厚さが10〜60μmであると共に、前記撮像手段の試料室が密封構成であり、前記試料室にガスを充填して前記試料の透過画像を前記撮像手段で得ることにより、或いは前記X線発生手段は波長0.1nm〜1.2nmの長波長の特性X線を発生し、前記X線ターゲットを真空封止するX線透過窓基材がベリリウムで成り、前記X線透過窓基材の厚さが10〜60μmであると共に、前記撮像手段の試料室が密封構成であり、前記試料室にガスを充填して前記試料の透過画像を前記撮像手段で得ることにより達成される。 The present invention provides an X-ray generation means for generating an X-ray by applying an electron beam from an electron source of an electron gun to an X-ray target, and imaging for imaging the transmitted X-ray of the X-ray irradiated to a sample with an imaging device. The above object of the present invention is to provide an acceleration voltage of the electron beam of 6 to 30 kV, and an X-ray transmission window base material for vacuum-sealing the X-ray target is made of beryllium. The X-ray transmission window base material has a thickness of 10 to 60 μm, and the sample chamber of the imaging unit has a hermetically sealed configuration, and the sample chamber is filled with gas to obtain a transmission image of the sample by the imaging unit. Or the X-ray generation means generates a characteristic X-ray having a long wavelength of 0.1 nm to 1.2 nm, and the X-ray transmission window base material for vacuum-sealing the X-ray target is made of beryllium, The thickness of the X-ray transmission window substrate is 10 to 60 μm In addition, the sample chamber of the imaging unit has a sealed configuration, and the sample chamber is filled with a gas and a transmission image of the sample is obtained by the imaging unit.
また、本発明の上記目的は、前記ガスがヘリウムガスであることにより、或いは前記X線ターゲットがゲルマニウム、クロム、バナジウム又は金のいずれかで成っており、前記特性X線が前記ゲルマニウム、クロム又はバナジウムのKα線、前記金のMα線であることにより、或いは前記試料がステージ機構に載置若しくは保持され、前記ステージ機構により前記試料を移動、傾斜することにより立体観察が可能になっていることにより、より効果的に達成される。 The object of the present invention is that the gas is helium gas, or the X-ray target is made of germanium, chromium, vanadium or gold, and the characteristic X-ray is the germanium, chromium or 3D observation is possible by using Kα ray of vanadium, Mα ray of gold, or by placing or holding the sample on a stage mechanism and moving and tilting the sample by the stage mechanism. Is achieved more effectively.
また、本発明はX線観察用燃料電池であり、燃料電池本体の表裏に複数の穴が開けられている金属カバーを層設され、前記金属カバーの外表面若しくは内表面にそれぞれ高分子膜又はベリリウム板が層設されており、或いは前記高分子膜が機械的強度を有し、長波長X線を透過し易い特性を有している。 Further, the present invention is a fuel cell for X-ray observation, wherein a metal cover having a plurality of holes formed on the front and back of the fuel cell body is layered, and a polymer film or A beryllium plate is layered, or the polymer film has mechanical strength and has a characteristic of easily transmitting long wavelength X-rays.
本発明によれば、波長0.1nm〜1.2nmの長波長の特性X線をX線ターゲット及びX線透過窓基材で成るX線発生部から発生させ、10μm〜60μm厚のベリリウム板材を真空封止用のX線透過窓基材として使用し、ヘリウムガス室内で試料の透過画像を撮像するようにしているので、軽元素物質の試料であっても高分解能、高コントラストで観察することができる。 According to the present invention, a long-wavelength characteristic X-ray with a wavelength of 0.1 nm to 1.2 nm is generated from an X-ray generation unit composed of an X-ray target and an X-ray transmission window base material, and a beryllium plate material having a thickness of 10 μm to 60 μm is obtained. Because it is used as a base material for X-ray transmission window for vacuum sealing and captures a transmission image of the sample in the helium gas chamber, even a light element material sample should be observed with high resolution and high contrast. Can do.
また、水素と酸素を電気化学反応させて電気を発生させる反応室内に水滴や水分が発生する様子、例えば燃料電池発電時の水滴発生のin-situ観察を、燃料電池本体の表裏に複数の穴が設けられた金属カバーを層設し、さらにその穴部を塞ぐように金属カバーの内表面若しくは外表面にベリリウム板又は高分子膜を層設することによって、高分解能、高コントラストで観察することができる。 In addition, water droplets and moisture are generated in the reaction chamber that generates electricity by electrochemical reaction of hydrogen and oxygen, for example, in-situ observation of water droplet generation during fuel cell power generation. A high-resolution, high-contrast observation is possible by layering a metal cover provided with a beryllium plate or a polymer film on the inner or outer surface of the metal cover so as to block the hole. Can do.
更に同様に、ヘリウムガス室内での観察であるため、有機材料や水分を含む生物試料等に対しても、高分解能、高コントラストで観察することができる。 Similarly, since the observation is performed in the helium gas chamber, it is possible to observe a biological sample containing an organic material or moisture with high resolution and high contrast.
X線顕微装置ではX線の長波長成分ほど空気中での吸収を受け易い性質があり、波長0.1nm以上の長波長X線は、窒素、酸素などから成る空気層を僅かな距離だけ通るだけでも大幅に減衰してしまう。しかしながら、点状X線源であるX線ターゲットから撮像素子までの試料室を真空にするか、若しくは不活性気体であるヘリウムガスで充填することにより、波長0.1nm以上の長波長X線の減衰を抑制することができる。 In the X-ray microscope, the longer wavelength components of X-rays are more susceptible to absorption in the air, and long-wavelength X-rays with a wavelength of 0.1 nm or more pass through an air layer made of nitrogen, oxygen, etc. for a short distance. Attenuation will greatly decrease. However, if the sample chamber from the X-ray target, which is a point X-ray source, to the imaging device is evacuated or filled with helium gas, which is an inert gas, long-wavelength X-rays with a wavelength of 0.1 nm or more are obtained. Attenuation can be suppressed.
また、試料中で炭素,酸素,窒素等の吸収を受けて生じる各元素成分に応じたコントラスト像は、空気中を進行中に長波長X線の成分ほど大きな吸収を受けるので、撮像素子に達したときは、長波長成分が失われた短波長成分を多く含んだ低コントラスト画像になってしまう。空気の代わりに真空又はX線吸収の少ないガスを用いるとX線の吸収が生じないので、試料のコントラスト像が劣化することなく撮像素子に伝達される。ヘリウムガスを充填された試料室内で観察するようにすれば、波長0.1nm以上の長波長X線を吸収し難く、真空に近い状態でX線を透過させることができる。真空下ではないので、試料の水分や有機物等の蒸発が起き難く、in-situ状態の観察が可能である。ヘリウムガスは軽いので、試料室内への封入操作が簡単であり、波長0.1〜1.2nm近傍の長波長X線は大気圧のヘリウムガスに対して殆ど吸収されない。 In addition, the contrast image corresponding to each elemental component generated by absorption of carbon, oxygen, nitrogen, etc. in the sample is absorbed by the longer wavelength X-ray component while traveling in the air, and therefore reaches the image sensor. In this case, a low-contrast image containing many short wavelength components from which the long wavelength components are lost is obtained. When a vacuum or a gas with little X-ray absorption is used instead of air, X-ray absorption does not occur, and the contrast image of the sample is transmitted to the image sensor without deterioration. By observing in a sample chamber filled with helium gas, it is difficult to absorb long wavelength X-rays having a wavelength of 0.1 nm or more, and X-rays can be transmitted in a state close to vacuum. Since it is not under vacuum, evaporation of moisture and organic substances in the sample hardly occurs, and in-situ observation is possible. Since helium gas is light, the operation of sealing in the sample chamber is simple, and long-wavelength X-rays in the vicinity of a wavelength of 0.1 to 1.2 nm are hardly absorbed by helium gas at atmospheric pressure.
図1は、X線ターゲットにクロム(Cr)を使用して発生する特性X線Cr−Kα線(波長0.229nm)が、大気を構成する主要ガス(窒素N2、酸素O2)及びヘリウムガスの1気圧雰囲気中において進行する距離と強度がどのように減衰するかを示す特性図である。この特性図からも、ヘリウムガスの試料室内への導入が極めて有効であることが分かる。 FIG. 1 shows that characteristic X-ray Cr-Kα rays (wavelength 0.229 nm) generated by using chromium (Cr) as an X-ray target are the main gases (nitrogen N 2 , oxygen O 2 ) and helium constituting the atmosphere. It is a characteristic view which shows how the distance and intensity which advance in 1 atmosphere of gas attenuate | damp. From this characteristic diagram, it can be seen that introduction of helium gas into the sample chamber is extremely effective.
一方、軽元素成分から構成される生物細胞(C,O,N)、水分(O)や有機物成分は短波長X線に対しては透過してしまうので、透明体と同じように振る舞い、像コントラストが付かないという性質を有することになるが、長波長X線に対しては吸収するので、元素の含有量に応じたコントラストの付いた画像が得られる。なお、炭素,酸素,窒素よりもX線吸収が小さいガスはヘリウムのみであり、他の不活性ガス(ネオン、アルゴン、キセノン等)は、炭素,酸素,窒素よりもX線吸収が大きく、本発明では使用することができない。 On the other hand, biological cells (C, O, N), water (O), and organic components composed of light element components are transmitted through short-wavelength X-rays. Although it has the property of not giving contrast, since it absorbs long-wavelength X-rays, an image with contrast according to the element content can be obtained. Note that helium is the only gas that has lower X-ray absorption than carbon, oxygen, and nitrogen, and other inert gases (neon, argon, xenon, etc.) have higher X-ray absorption than carbon, oxygen, and nitrogen. It cannot be used in the invention.
燃料電池の発電時の内部水滴発生の様子を的確に観察したり、軽元素から成る物質(例えば生物試料)のX線像のコントラストを増加したり、画質を向上することがX線顕微装置に強く求められているが、クロムKα線(波長0.229nm)などの長波長の特性X線など、酸素に対して吸収係数の大きいX線を用いることによって、数10μmの水滴や水分の観察が可能であることが本発明者によって知見された。そのため、本発明に用いるX線観察可能な燃料電池では、燃料電池本体の表裏に複数の穴が設けられた金属ケースを層設すると共に、さらにその内側表面若しくは外側表面にそれぞれ薄い高分子膜又はベリリウム板を層設することによって、発電中の燃料電池内をX線が効率良く通るような構造にしている。燃料電池内は1気圧より僅かに高いことが望まれるため、燃料電池をX線観察のために真空中に置く場合は、燃料電池の内外圧差に高分子膜又はベリリウム板が耐える必要があるので高分子膜又はベリリウム板が厚くなり、そのために高分子膜又はベリリウム板中での長波長成分が大きな吸収を受けてしまう。その結果、長波長の特性X線を有効利用することができず、良い画像の撮像が望めなくなる。そのため、高分子膜又はベリリウム板は長波長の特性X線を充分透過し、しかも機械的強度を有する丈夫な薄い膜を用いることが重要である。 The X-ray microscope can accurately observe the generation of internal water droplets during fuel cell power generation, increase the contrast of X-ray images of substances consisting of light elements (eg, biological samples), and improve image quality. Although strongly demanded, by using X-rays having a large absorption coefficient with respect to oxygen, such as long-wavelength characteristic X-rays such as chromium Kα rays (wavelength 0.229 nm), water droplets and moisture of several tens of μm can be observed. It has been found by the present inventors that this is possible. Therefore, in the X-ray observable fuel cell used in the present invention, a metal case having a plurality of holes provided on the front and back of the fuel cell body is layered, and a thin polymer film or By arranging the beryllium plates in layers, the structure is such that X-rays efficiently pass through the fuel cell during power generation. Since it is desired that the pressure inside the fuel cell is slightly higher than 1 atm, when the fuel cell is placed in a vacuum for X-ray observation, the polymer membrane or beryllium plate must withstand the pressure difference between the inside and outside of the fuel cell. The polymer film or beryllium plate becomes thick, so that the long wavelength component in the polymer film or beryllium plate is greatly absorbed. As a result, long-wavelength characteristic X-rays cannot be used effectively, and it is not possible to take a good image. Therefore, it is important that the polymer film or beryllium plate is a strong thin film that sufficiently transmits long-wavelength characteristic X-rays and has mechanical strength.
一方、X線顕微装置の金属製筐体内部を真空とせずに、燃料電池内と同程度の圧力でヘリウムガスを封入することにより、燃料電池に層設した高分子膜又はベリリウム板に気圧差が加わらなくなるので、膜厚を薄くでき、長波長の特性X線の損失を最小にすることができる。 On the other hand, the inside of the metal housing of the X-ray microscope is not evacuated, but helium gas is sealed at the same pressure as the inside of the fuel cell, so that a pressure difference is applied to the polymer film or beryllium plate layered on the fuel cell. Therefore, the film thickness can be reduced and the loss of characteristic X-rays with long wavelengths can be minimized.
X線ターゲットの材料の選択条件は下記条件となる。即ち、電子ビームが衝突して局所的に高温になるため融点温度が高いこと、真空中で使用するため蒸気圧が低いこと、X線ターゲットの熱を放熱する必要があるため熱伝導率が良いこと、電子による帯電を防止する必要があるため電気伝導率が良いこと、試料観察に適した波長λの特性X線を発生できることといった条件が必要であり、波長λ=0.1nm〜1.2nmの長波長に適したターゲット材及び特性X線の組み合わせは、下記表1の通りである。電子線の加速電圧に応じて、X線ターゲットで発生する特性X線と連続X線の波長スペクトルが変化するが、軽元素成分の観察では、加速電圧を発生させたい特性X線のエネルギー(eV)の2〜3倍の値にとると、コントラストの良い画像が得られた。 The conditions for selecting the material of the X-ray target are as follows. That is, the electron beam collides and becomes locally high temperature, so that the melting point temperature is high, the vapor pressure is low because it is used in vacuum, and the heat of the X-ray target needs to be dissipated so that the heat conductivity is good. In addition, since it is necessary to prevent charging by electrons, it is necessary that the electrical conductivity is good and that characteristic X-rays with a wavelength λ suitable for sample observation can be generated, and the wavelength λ = 0.1 nm to 1.2 nm. Table 1 below shows the combinations of target materials and characteristic X-rays suitable for the long wavelengths. Depending on the acceleration voltage of the electron beam, the wavelength spectrum of the characteristic X-rays generated by the X-ray target and the continuous X-rays changes. When the value is 2 to 3 times that of), an image with good contrast was obtained.
更に燃料電池の観察に対しては、X線観察用の穴を複数設けられた金属カバーを電池本体の表裏に層設すると共に、更にその内側表面に機械的な強度があり、長波長X線を透過する薄い高分子膜又はベリリウム板をそれぞれ層設した燃料電池構造とし、その燃料電池を試料室内のステージ機構に載置若しくは保持し、燃料電池内部に発生する10μm程度の極く初期の水滴や水分も観察できるようにしている。また、ステージ機構は載置若しくは保持した試料(燃料電池)を移動、旋回させることができ、立体的な観察が可能である。なお、高分子膜又はベリリウム板は金属カバーの各内側表面である必要はなく、各外側表面に層設することによっても同様の効果を得ることができる。 Furthermore, for fuel cell observation, a metal cover provided with a plurality of X-ray observation holes is layered on the front and back of the battery body, and further, the inner surface has mechanical strength and long wavelength X-rays. A fuel cell structure in which thin polymer membranes or beryllium plates that are permeable to each other are layered, and the fuel cell is placed or held on a stage mechanism in the sample chamber, and an extremely early water droplet of about 10 μm generated inside the fuel cell And water can be observed. In addition, the stage mechanism can move and swivel the sample (fuel cell) placed or held, and three-dimensional observation is possible. The polymer film or beryllium plate does not need to be on each inner surface of the metal cover, and the same effect can be obtained by layering on each outer surface.
以下に、本発明の実施形態を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.
図2は本発明に係るX線顕微装置の構成例を示す断面構造図であり、X線発生手段としての開放型X線管10と、X線管10から放射されるX線をステージ機構21上の試料(被検査体)22に照射して撮像するII、CCD、CMOS撮像素子等で成る撮像管23を具備した撮像手段20とで構成されている。開放型X線管10は図9で説明した開放型X線管110とほぼ同様な構成であり、印加電圧が6〜30kVの低電圧である点のみが異なっている。即ち、熱電子放射陰極(図示せず)又は熱電界放射陰極から放射される電子を低電圧印加のアノード(図示せず)で加速し、その電子を電子レンズ(図示せず)によりX線発生部16のX線ターゲット11に集束させ、微小な点状X線源を得る。発生するX線の波長成分は、連続X線成分と特性X線成分から成っており、前者は主にアノードへの印加電圧で決まり、後者はX線ターゲット板の元素の種類及びアノードへの印加電圧で決まる。 FIG. 2 is a sectional structural view showing an example of the configuration of the X-ray microscope according to the present invention. An open X-ray tube 10 as X-ray generation means and X-rays emitted from the X-ray tube 10 are used as a stage mechanism 21. The imaging means 20 includes an imaging tube 23 formed of an II, CCD, CMOS imaging device or the like that irradiates and images the upper sample (inspected object) 22. The open-type X-ray tube 10 has substantially the same configuration as the open-type X-ray tube 110 described with reference to FIG. 9 except that the applied voltage is a low voltage of 6 to 30 kV. That is, electrons emitted from a thermionic emission cathode (not shown) or a thermal field emission cathode are accelerated by a low voltage applied anode (not shown), and the electrons are generated by an electron lens (not shown). Focusing on the X-ray target 11 of the unit 16, a fine point X-ray source is obtained. The wavelength component of the generated X-ray consists of a continuous X-ray component and a characteristic X-ray component. The former is mainly determined by the voltage applied to the anode, and the latter is the element type of the X-ray target plate and the application to the anode. Determined by voltage.
また、撮像部20は密封性試料室を形成する金属製筐体24で構成され、金属製筐体24の上部の開口部には、X線ターゲット11及びX線透過窓基材14で成るX線発生部16が位置するようにX線管10に連結されている。試料室上方にはステージ機構21が設けられており、ステージ機構21上に試料22が載置若しくは保持され、X線ターゲット11の点状X線源から放射されるX線が、X線透過窓基材14を経て試料22に照射されるようになっている。試料22に照射されたX線は試料22の内部で吸収を受けて減衰し、吸収によるコントラスト像が拡大投影されて試料室下方の撮像管23で画像として撮像される。筐体24には、試料22をステージ機構21上に載置若しくは保持したり、交換するための試料交換扉25が設けられると共に、内部の試料22を外部から目視観察するための観察窓26が設けられており、更に内部を真空にするための真空ポンプ及び弁に連結された真空排気管27が設けられ、内部にヘリウムガスを導入するガス導入管28が弁を経て連結されている。 The imaging unit 20 includes a metal casing 24 that forms a hermetic sample chamber. An X-ray target 11 and an X-ray transmission window base material 14 are formed in an opening at the top of the metal casing 24. The X-ray tube 10 is connected so that the line generation unit 16 is located. A stage mechanism 21 is provided above the sample chamber. A sample 22 is placed on or held on the stage mechanism 21, and X-rays emitted from a point X-ray source of the X-ray target 11 are transmitted through an X-ray transmission window. The sample 22 is irradiated through the base material 14. The X-rays irradiated to the sample 22 are absorbed and attenuated inside the sample 22, and a contrast image due to the absorption is enlarged and projected as an image by the imaging tube 23 below the sample chamber. The housing 24 is provided with a sample exchange door 25 for placing or holding the sample 22 on the stage mechanism 21 or exchanging it, and an observation window 26 for visually observing the internal sample 22 from the outside. Further, a vacuum pump for evacuating the inside and a vacuum exhaust pipe 27 connected to a valve are provided, and a gas introduction pipe 28 for introducing helium gas is connected to the inside through a valve.
図3はX線発生部16の構造例を一部断面構造で示しており、X線管10の底部のターゲットホルダ12に設けられている照射窓13を塞ぐようにして、ベリリウム製の厚さd2=10〜60μmのX線透過窓基材14及びクロム製のX線ターゲット11で成るX線発生部16が、ろう付け15(又は接着剤)によりターゲットホルダ12に装着されている。本例ではX線ターゲット11の径D2は約3mm、X線透過窓基材14の径D3は約4mmであり、照射窓13の径D1はX線透過窓基材14の厚さd2に依存させる構造となっている。 FIG. 3 shows an example of the structure of the X-ray generation unit 16 in a partial cross-sectional structure. The X-ray generation unit 16 has a beryllium thickness so as to close the irradiation window 13 provided in the target holder 12 at the bottom of the X-ray tube 10. An X-ray generation part 16 comprising an X-ray transmission window base material 14 of d2 = 10 to 60 μm and a chromium X-ray target 11 is mounted on the target holder 12 by brazing 15 (or adhesive). In this example, the diameter D2 of the X-ray target 11 is about 3 mm, the diameter D3 of the X-ray transmission window base material 14 is about 4 mm, and the diameter D1 of the irradiation window 13 depends on the thickness d2 of the X-ray transmission window base material 14. It has a structure to let you.
X線発生部16の照射窓13のある面は真空であるのに対して、反対側の面は大気圧を受けるので、X線発生部16はこの気圧差によって生じる応力に耐える必要がある。そのために、X線透過窓基材14の厚さd2が薄いほど、径D1を小さくする必要がある。X線透過窓基材14の厚さが、例えば60μm厚のときに径D1=1.5mmφ以下、10μm厚のときに径D1=1.0mmφ以下が望ましい。 The surface on which the irradiation window 13 of the X-ray generator 16 is provided is in a vacuum, while the surface on the opposite side is subjected to atmospheric pressure. Therefore, the X-ray generator 16 needs to withstand the stress caused by this atmospheric pressure difference. Therefore, it is necessary to make the diameter D1 smaller as the thickness d2 of the X-ray transmissive window base material 14 is thinner. For example, when the thickness of the X-ray transmission window base material 14 is 60 μm, the diameter D1 = 1.5 mmφ or less is desirable, and when the thickness is 10 μm, the diameter D1 = 1.0 mmφ or less is desirable.
ここで、本発明で使用するX線透過窓基材14について説明する。必要な特性として長波長X線の透過性が良く、X線管110内の真空と外気の大気圧差に耐える程度に機械的強度が強く、X線ターゲット11で発生する熱をX線管容器に伝達し、X線ターゲット11の温度を下げるように熱伝導性が高い必要がある。X線透過窓基材14の材料は、X線の透過率が高く、波長0.1nm〜1.2nmの長波長X線に対しても吸収が少ないベリリウムを使用する。汎用X線管では、主に製造コストの点からアルミニウム材、セラミックス材、ガラス材が用いられる場合もあるが、低加速電圧用のX線管ではベリリウム材が使われている。また、ベリリウム材の大きさは約250μm厚×約10mmφのものが使用されている。 Here, the X-ray transmissive window base material 14 used in the present invention will be described. As a necessary characteristic, long wavelength X-ray transmission is good, mechanical strength is strong enough to withstand the atmospheric pressure difference between the vacuum in the X-ray tube 110 and the outside air, and the heat generated in the X-ray target 11 is stored in the X-ray tube container. The thermal conductivity needs to be high so that the temperature of the X-ray target 11 is lowered. The material of the X-ray transmissive window base material 14 uses beryllium, which has a high X-ray transmittance and little absorption even for long-wavelength X-rays having a wavelength of 0.1 nm to 1.2 nm. In general-purpose X-ray tubes, aluminum materials, ceramic materials, and glass materials are sometimes used mainly from the viewpoint of manufacturing cost, but beryllium materials are used in X-ray tubes for low acceleration voltages. The beryllium material is about 250 μm thick × about 10 mmφ.
そして、本発明では、波長0.1nm〜1.2nmの長波長の特性X線に対するベリリウム内部(X線透過窓基材14)の吸収による減衰を少なくするため、X線透過窓基材14を従来よりも薄くする。図4は、波長0.1nmと1.0nmのX線のベリリウムの厚さに対する透過度を示す特性図であり、ベリリウム窓厚を10μmとすることで、波長1.0nmに対しても50%以上のX線透過が実現できる。また、ベリリウム厚の薄さに合わせてターゲットホルダ12の照射窓13の開口径D1を小さくして、大気圧が加わる面積を減らして、ベリリウム基材への応力を小さくするようにしている。また、ベリリウム材は大気中の腐食性ガス成分、例えば塩素成分による腐食を受けやすく、また内部構造上の欠陥のためにピンホールを生じやすい性質があり、これが顕在化すると、X線管内の真空度が低下して故障の原因となる。従って、本発明では、X線吸収による減衰強度とピンホール発生の兼ね合いから、厚さd2=10〜60μmのX線透過窓基材14を採用している。 And in this invention, in order to reduce attenuation by absorption inside beryllium (X-ray transmissive window base material 14) with respect to long wavelength characteristic X-rays having a wavelength of 0.1 nm to 1.2 nm, the X-ray transmissive window base material 14 is Thinner than before. FIG. 4 is a characteristic diagram showing the transmittance of the X-rays with wavelengths of 0.1 nm and 1.0 nm with respect to the thickness of beryllium. By setting the beryllium window thickness to 10 μm, 50% of the wavelength is 1.0 nm. The above X-ray transmission can be realized. In addition, the opening diameter D1 of the irradiation window 13 of the target holder 12 is reduced in accordance with the thin beryllium thickness, the area to which atmospheric pressure is applied is reduced, and the stress on the beryllium substrate is reduced. In addition, beryllium materials are susceptible to corrosion by corrosive gas components in the atmosphere, such as chlorine components, and are prone to pinholes due to internal structural defects. Degradation will cause failure. Therefore, in the present invention, the X-ray transmissive window base material 14 having a thickness d2 = 10 to 60 μm is employed in view of the balance between the attenuation intensity due to X-ray absorption and the generation of pinholes.
X線ターゲット11は、例えば次のように作成する。即ち、ベルジャー(釣鐘状のガラス容器)の中にベリリウム製X線透過窓基材の鏡面研磨面側と蒸着物を向き合わせて配置し、真空ポンプで空気を抜いて真空状態(10-3〜10-4 Pa)にする。次に、タングステンバスケット中に置いた蒸着物(顆粒状クロム)を抵抗加熱により溶融すると、霧状になって窓基材に付着する。蒸着厚さは蒸着物の質量、窓基材と蒸着物との間の距離、蒸着時間等によってコントロールする。最適な蒸着厚は元素によって異なるが、クロムの場合、厚さd1=1.3μmの場合、良好なコントラスト像が得られた。蒸着層の厚さは触針式表面形状測定器等を用いて測定できる。銅(Cu),タングステン(W),白金(Pt),チタン(Ti),バナジウム(V),タンタル(Ta)等の蒸着には、スパッタリング法も使用することができる。 The X-ray target 11 is created as follows, for example. In other words, the mirror polished surface side of the beryllium X-ray transmission window base material and the deposited material are placed facing each other in a bell jar (fish bell-shaped glass container), and the vacuum state is removed by evacuating the air with a vacuum pump (10 −3 to 10 -4 Pa). Next, when the deposited material (granular chromium) placed in the tungsten basket is melted by resistance heating, it forms a mist and adheres to the window substrate. The deposition thickness is controlled by the mass of the deposit, the distance between the window substrate and the deposit, the deposition time, and the like. The optimum deposition thickness differs depending on the element, but in the case of chromium, a good contrast image was obtained when the thickness d1 = 1.3 μm. The thickness of the vapor deposition layer can be measured using a stylus type surface shape measuring instrument or the like. Sputtering can also be used for vapor deposition of copper (Cu), tungsten (W), platinum (Pt), titanium (Ti), vanadium (V), tantalum (Ta), and the like.
なお、ステージ機構21はモータを具備した駆動機構(図示せず)に連結されており、ステージ機構21上に載置若しくは保持された試料22を照射X線に対して移動、傾動させたり、必要に応じて回転させることができ、試料22を立体的にかつあらゆる方向から観察することができるようになっている。なお、立体観察には回転は必ずしも必要ではないが、回転があれば見やすい方向に調整しての観察が可能である。 The stage mechanism 21 is connected to a drive mechanism (not shown) equipped with a motor, and the sample 22 placed or held on the stage mechanism 21 is moved or tilted with respect to the irradiation X-ray, or necessary. The sample 22 can be observed three-dimensionally and from all directions. Note that rotation is not always necessary for stereoscopic observation, but if there is rotation, observation can be performed with adjustment in an easy-to-see direction.
図5はステージ機構21の機構例を概略的に示しており、試料22をxy方向の水平方向に移動させるxyステージ21Aと、試料22を鉛直方向(z軸)に移動させて透視拡大倍率を変更するzステージ21Bと、試料22を視野内でX線ビーム回りに回転させる回転ステージ21Cと、試料22をX線ビーム軸に対して傾斜(θ)させる傾斜ステージ21Dとで構成された5軸駆動機構になっている。 FIG. 5 schematically shows an example of the mechanism of the stage mechanism 21. The xy stage 21A that moves the sample 22 in the horizontal direction in the xy direction, and the sample 22 is moved in the vertical direction (z axis) to increase the perspective magnification. A five-axis configuration including a z stage 21B to be changed, a rotating stage 21C that rotates the sample 22 around the X-ray beam in the field of view, and an inclined stage 21D that tilts (θ) the sample 22 with respect to the X-ray beam axis. It is a drive mechanism.
一方、図6は本発明のX線顕微装置で観察するために改造された燃料電池30の断面構造例を模式的に示しており、縦(厚さ)方向の倍率を横方向の5倍程度に拡大して示している。層状のサブストレート、触媒層、多孔質膜、電解質膜等で成る燃料電池本体31の表裏面には、それぞれX線像観察用の穴32A及び33Aが複数設けられた金属カバー32及び33が層設されており、その金属カバー32及び33の各内側表面には更に、機械的強度があり、X線を透過し易いポリイミドフィルム(例えばデュポン社のカプトン(登録商標))やポリエステルフィルムなどで成る高分子膜34及び35がそれぞれ層設されている。これにより、波長0.1nm〜1.2nmの長波長X線が穴32A及び33Aを通過すると共に、高分子膜34及び35を通過するので、燃料電池本体31から生じる水分を的確に観察することができる。高分子膜34及び35に代えて、ベリリウム板を用いるようにしても良い。 On the other hand, FIG. 6 schematically shows an example of a cross-sectional structure of the fuel cell 30 modified for observation with the X-ray microscope of the present invention. The magnification in the vertical (thickness) direction is about 5 times that in the horizontal direction. It is enlarged to show. Metal covers 32 and 33 each having a plurality of X-ray image observation holes 32A and 33A are formed on the front and back surfaces of the fuel cell body 31 made of a layered substrate, a catalyst layer, a porous membrane, an electrolyte membrane, and the like. The inner surfaces of the metal covers 32 and 33 are made of a polyimide film (for example, Kapton (registered trademark) of DuPont) or a polyester film which has mechanical strength and is easy to transmit X-rays. Polymer films 34 and 35 are provided in layers. Accordingly, long-wavelength X-rays having a wavelength of 0.1 nm to 1.2 nm pass through the holes 32A and 33A and also through the polymer films 34 and 35, so that moisture generated from the fuel cell main body 31 is accurately observed. Can do. A beryllium plate may be used in place of the polymer films 34 and 35.
また、図7は燃料電池30を立体的に観察する様子を示しており、ステージ機構21のxyステージ21Aで燃料電池30を水平移動(xy)させると共に、傾斜ステージ21Dによって燃料電池30を傾斜(θ)させることによって、任意位置での立体的な観察が可能であることを示している。 FIG. 7 shows a state in which the fuel cell 30 is observed three-dimensionally. The fuel cell 30 is horizontally moved (xy) by the xy stage 21A of the stage mechanism 21, and the fuel cell 30 is tilted by the tilt stage 21D (see FIG. θ) indicates that stereoscopic observation at an arbitrary position is possible.
10 開放型X線管
11 X線ターゲット
12 ターゲットホルダ
13 照射窓
14 X線透過窓基材
15 ろう付け
16 X線発生部
20 撮像手段
21 ステージ機構
22 試料
23 撮像管
24 金属製筐体
25 試料交換扉
26 観察窓
27 真空排気管
28 ガス導入管
30 燃料電池
31 燃料電池本体
32、33 金属カバー
34、35 高分子膜
100 X線顕微装置
101 ステージ機構
102 試料
103 撮像管
110 開放型X線管
111 X線ターゲット
112 熱電子放射陰極
113 グリッド
114 アノード
115 電子レンズ
DESCRIPTION OF SYMBOLS 10 Open type X-ray tube 11 X-ray target 12 Target holder 13 Irradiation window 14 X-ray transmissive window base material 15 Brazing 16 X-ray generation part 20 Imaging means 21 Stage mechanism 22 Sample 23 Imaging tube 24 Metal housing 25 Sample exchange Door 26 Observation window 27 Vacuum exhaust pipe 28 Gas introduction pipe 30 Fuel cell 31 Fuel cell main body 32, 33 Metal cover 34, 35 Polymer film 100 X-ray microscope 101 Stage mechanism 102 Sample 103 Imaging tube 110 Open X-ray tube 111 X-ray target 112 Thermionic emission cathode 113 Grid 114 Anode 115 Electron lens
Claims (7)
The fuel cell for X-ray observation according to claim 6, wherein the polymer film has mechanical strength and is easy to transmit long wavelength X-rays.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008052874A JP2009210371A (en) | 2008-03-04 | 2008-03-04 | Low acceleration voltage x-ray microscope device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008052874A JP2009210371A (en) | 2008-03-04 | 2008-03-04 | Low acceleration voltage x-ray microscope device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009210371A true JP2009210371A (en) | 2009-09-17 |
Family
ID=41183688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008052874A Pending JP2009210371A (en) | 2008-03-04 | 2008-03-04 | Low acceleration voltage x-ray microscope device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009210371A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011209118A (en) * | 2010-03-30 | 2011-10-20 | Jeol Ltd | X-ray microscope and microscopic method using x rays |
KR101145628B1 (en) * | 2009-11-26 | 2012-05-15 | 기아자동차주식회사 | Pinhole detection system of fuel cell |
CN102486464A (en) * | 2010-12-02 | 2012-06-06 | 现代自动车株式会社 | System for detecting pin hole of fuel cell stack parts |
JP2012159311A (en) * | 2011-01-29 | 2012-08-23 | Rigaku Corp | X-ray measurement battery structure and support device therefor |
CN104237237A (en) * | 2014-09-29 | 2014-12-24 | 中国科学院上海应用物理研究所 | Synchrotron radiation x-ray micro-CT imaging sample table |
JP2015052576A (en) * | 2013-09-09 | 2015-03-19 | 住友電気工業株式会社 | Analytical cell, analyzer, and analysis method |
JP2016003952A (en) * | 2014-06-17 | 2016-01-12 | アンリツインフィビス株式会社 | X-ray inspection device |
CN111024732A (en) * | 2019-12-31 | 2020-04-17 | 安徽微宇仪器科技有限公司 | Dynamic in-situ gas phase reaction tank for soft X-ray spectroscopy experiment |
CN113327832A (en) * | 2020-02-28 | 2021-08-31 | 中国石油天然气股份有限公司 | X-ray generation device, core accommodating assembly, oil displacement experiment system and method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001519022A (en) * | 1997-04-08 | 2001-10-16 | エックス−レイ・テクノロジーズ・プロプライエタリー・リミテッド | High-resolution X-ray imaging method for minute objects |
JP2001307669A (en) * | 2000-04-21 | 2001-11-02 | Shimadzu Corp | Soft x-ray generator and x-ray inspection apparatus |
JP2003131000A (en) * | 2001-10-26 | 2003-05-08 | Japan Science & Technology Corp | Projection type x-ray microscope |
JP2003207466A (en) * | 2002-01-16 | 2003-07-25 | Shimadzu Corp | Fluorescent x-ray analyzer |
JP2004138460A (en) * | 2002-10-17 | 2004-05-13 | Tohken Co Ltd | X-ray microinspection apparatus |
JP2005091107A (en) * | 2003-09-16 | 2005-04-07 | Hamamatsu Photonics Kk | Vacuum closed vessel and method for manufacturing it |
JP2006220640A (en) * | 2005-01-14 | 2006-08-24 | Beamsense Co Ltd | X-ray stereo fluoroscopic apparatus and stereo observation method using it |
-
2008
- 2008-03-04 JP JP2008052874A patent/JP2009210371A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001519022A (en) * | 1997-04-08 | 2001-10-16 | エックス−レイ・テクノロジーズ・プロプライエタリー・リミテッド | High-resolution X-ray imaging method for minute objects |
JP2001307669A (en) * | 2000-04-21 | 2001-11-02 | Shimadzu Corp | Soft x-ray generator and x-ray inspection apparatus |
JP2003131000A (en) * | 2001-10-26 | 2003-05-08 | Japan Science & Technology Corp | Projection type x-ray microscope |
JP2003207466A (en) * | 2002-01-16 | 2003-07-25 | Shimadzu Corp | Fluorescent x-ray analyzer |
JP2004138460A (en) * | 2002-10-17 | 2004-05-13 | Tohken Co Ltd | X-ray microinspection apparatus |
JP2005091107A (en) * | 2003-09-16 | 2005-04-07 | Hamamatsu Photonics Kk | Vacuum closed vessel and method for manufacturing it |
JP2006220640A (en) * | 2005-01-14 | 2006-08-24 | Beamsense Co Ltd | X-ray stereo fluoroscopic apparatus and stereo observation method using it |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101145628B1 (en) * | 2009-11-26 | 2012-05-15 | 기아자동차주식회사 | Pinhole detection system of fuel cell |
US9170216B2 (en) | 2009-11-26 | 2015-10-27 | Hyundai Motor Company | Pinhole detection system of fuel cell |
JP2011209118A (en) * | 2010-03-30 | 2011-10-20 | Jeol Ltd | X-ray microscope and microscopic method using x rays |
CN102486464A (en) * | 2010-12-02 | 2012-06-06 | 现代自动车株式会社 | System for detecting pin hole of fuel cell stack parts |
CN102486464B (en) * | 2010-12-02 | 2016-08-03 | 现代自动车株式会社 | The system of the pin hole in detection fuel cell stack parts |
JP2012159311A (en) * | 2011-01-29 | 2012-08-23 | Rigaku Corp | X-ray measurement battery structure and support device therefor |
JP2015052576A (en) * | 2013-09-09 | 2015-03-19 | 住友電気工業株式会社 | Analytical cell, analyzer, and analysis method |
JP2016003952A (en) * | 2014-06-17 | 2016-01-12 | アンリツインフィビス株式会社 | X-ray inspection device |
CN104237237A (en) * | 2014-09-29 | 2014-12-24 | 中国科学院上海应用物理研究所 | Synchrotron radiation x-ray micro-CT imaging sample table |
CN111024732A (en) * | 2019-12-31 | 2020-04-17 | 安徽微宇仪器科技有限公司 | Dynamic in-situ gas phase reaction tank for soft X-ray spectroscopy experiment |
CN111024732B (en) * | 2019-12-31 | 2022-08-16 | 安徽微宇仪器科技有限公司 | Dynamic in-situ gas phase reaction tank for soft X-ray spectroscopy experiment |
CN113327832A (en) * | 2020-02-28 | 2021-08-31 | 中国石油天然气股份有限公司 | X-ray generation device, core accommodating assembly, oil displacement experiment system and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009210371A (en) | Low acceleration voltage x-ray microscope device | |
JP2003007237A (en) | X-ray generator | |
JP5634030B2 (en) | Environmental cell for particle optics | |
JP2004138461A (en) | X-ray microinspection apparatus | |
JP5317120B2 (en) | Sample storage cell for X-ray microscope, X-ray microscope, and observation method of X-ray microscope image | |
Kolmakov et al. | Recent approaches for bridging the pressure gap in photoelectron microspectroscopy | |
CN107731645B (en) | Transmission-type target, the radioactive ray generator tube with the transmission-type target, radioactive ray generator and radiation imaging apparatus | |
US20080308731A1 (en) | Specimen Holder, Specimen Inspection Apparatus, Specimen Inspection Method, and Method of Fabricating Specimen Holder | |
EP0523566B1 (en) | Apparatus for solid surface analysis using x-ray spectroscopy | |
CN101042975B (en) | X-ray generating method and X-ray generating apparatus | |
US9484178B2 (en) | Target and X-ray generating tube including the same, X-ray generating apparatus, X-ray imaging system | |
JP5925219B2 (en) | Radiation target, radiation generator tube, radiation generator, radiation imaging system, and manufacturing method thereof | |
Bi et al. | Sodium peroxide dihydrate or sodium superoxide: the importance of the cell configuration for sodium–oxygen batteries | |
US10229808B2 (en) | Transmission-type target for X-ray generating source, and X-ray generator and radiography system including transmission-type target | |
JP4826632B2 (en) | X-ray microscope and X-ray microscope method | |
JP2008536255A (en) | Monochromatic X-ray source and X-ray microscope using such an X-ray source | |
Jungjohann et al. | In situ and operando | |
JP2015023031A (en) | X-ray testing device for material testing and method for generation of high-resolution projection of test object by means of x-ray beam | |
JP5522347B2 (en) | X-ray image inspection device | |
JP2002352754A (en) | Transmission type x-ray target | |
JP5182864B2 (en) | Sample holder for electron microscope and electron microscope | |
JP2004138460A (en) | X-ray microinspection apparatus | |
JP3561294B2 (en) | Imaging X-ray microscope | |
JP2007212468A (en) | X-ray microscopic inspection apparatus with high-resolution capability | |
JP2001307669A (en) | Soft x-ray generator and x-ray inspection apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110210 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20120327 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120426 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121113 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121115 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130402 |