WO2013132895A1 - 酸化触媒及びそれを用いた排ガス浄化方法 - Google Patents

酸化触媒及びそれを用いた排ガス浄化方法 Download PDF

Info

Publication number
WO2013132895A1
WO2013132895A1 PCT/JP2013/050827 JP2013050827W WO2013132895A1 WO 2013132895 A1 WO2013132895 A1 WO 2013132895A1 JP 2013050827 W JP2013050827 W JP 2013050827W WO 2013132895 A1 WO2013132895 A1 WO 2013132895A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
oxide
titania
oxidation catalyst
mass
Prior art date
Application number
PCT/JP2013/050827
Other languages
English (en)
French (fr)
Inventor
将嗣 菊川
山崎 清
優一 祖父江
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to EP13757647.6A priority Critical patent/EP2823887B1/en
Publication of WO2013132895A1 publication Critical patent/WO2013132895A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/103Oxidation catalysts for HC and CO only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to an oxidation catalyst and an exhaust gas purification method using the same.
  • Diesel engines are one of internal combustion engines that are expected to be spread not only in Europe but around the world because of their excellent energy efficiency (fuel consumption) and low CO 2 generation.
  • various oxidation catalysts have been studied for oxidizing and purifying components contained in gas discharged from such an internal combustion engine or the like.
  • an oxidation catalyst for example, an oxidation catalyst using a noble metal such as Pt or Pd as an active species is known as a catalyst capable of oxidizing carbon monoxide (CO) or hydrocarbon (HC). It has been.
  • Patent Document 1 a substrate formed from a compound containing alumina and ceria and platinum, palladium, and rhodium supported on the surface of the substrate are selected.
  • a catalyst is disclosed that is formed from an oxide of at least one metal selected from Co, Ni, Fe, Cu, Sn, Mn, Ce, and Zr. Further, in Japanese Patent Application Laid-Open No.
  • Patent Document 2 a noble metal, a transition metal compound partially or entirely forming a composite with the noble metal, and the composite are contacted, and the electronegativity is 1
  • a porous carrier that supports a third component element that is less than or equal to 5 and the noble metal, the transition metal compound, and the third component element, and part or all of which forms a composite oxide with the third component element And a catalyst is disclosed.
  • Patent Document 3 a catalyst obtained by mixing and combining at least one copper-based catalyst and a noble metal-based catalyst, wherein the copper-based catalyst is aluminum oxide.
  • a carrier comprising at least one oxide of cerium oxide, zirconium oxide, zinc oxide, lead oxide, manganese oxide, nickel oxide, titanium oxide, iron oxide, vanadium oxide, cobalt oxide, chromium oxide, and metal silicate; and It is disclosed that it comprises an active component made of supported metal copper or copper oxide.
  • these catalysts as described in Patent Documents 1 to 3 are not necessarily sufficient from the viewpoint of sufficiently exhibiting both high temperature durability and resistance to sulfur poisoning. In either case of exposure or exposure to a gas containing sulfur components (SOx), it is not necessarily sufficient in terms of maintaining sufficient oxidation activity for carbon monoxide (CO) and hydrocarbons. There wasn't.
  • the present invention has been made in view of the above-described problems of the prior art, and has a sufficiently high level of high-temperature durability capable of sufficiently suppressing deterioration of catalyst performance due to high temperatures, and a catalyst due to sulfur poisoning. It has excellent resistance to sulfur poisoning that can sufficiently suppress deterioration of performance, either when exposed to a high temperature of about 800 ° C. or when it is exposed to a gas containing sulfur components (SOx) It is an object of the present invention to provide an oxidation catalyst capable of having sufficiently high oxidation activity and an exhaust gas purification method using the oxidation catalyst.
  • the present inventors contain 25% by mass or more of titania as an oxidation catalyst for oxidizing and removing carbon monoxide and / or hydrocarbons contained in exhaust gas.
  • a catalyst (A) comprising a first oxide carrier and copper oxide supported on the first oxide carrier and one or more oxides selected from alumina, ceria and zirconia
  • a sufficiently high level capable of sufficiently suppressing deterioration of the catalyst performance due to high temperature
  • High-level durability and resistance to sulfur poisoning that can sufficiently suppress degradation of catalyst performance due to sulfur poisoning, and when exposed to high temperatures of about 800 ° C and sulfur components Including Also found that it is possible to have a sufficiently high oxidation activity in both when exposed to (SOx), and completed the present invention.
  • the oxidation catalyst of the present invention is an oxidation catalyst for oxidizing and removing carbon monoxide and / or hydrocarbons contained in exhaust gas,
  • a catalyst (A) comprising a first oxide support containing 25% by mass or more of titania and copper oxide supported on the first oxide support;
  • a catalyst (B) comprising a second oxide support containing at least 80% by mass of one or more oxides selected from alumina, ceria and zirconia, and a noble metal supported on the second oxide support; It consists of a mixture of
  • the first oxide carrier is titania, a composite metal oxide having a titania content of 50% by mass or more, and a ratio of 25% by mass or more of titania to the metal oxide. It is preferable to consist of at least one of the supported titania supported materials.
  • the composite metal oxide is preferably a composite metal oxide containing titania and at least one of zirconia, ceria, tin oxide and niobium oxide, and a composite metal oxide containing titania and zirconia. Is particularly preferred.
  • the metal oxide in the titania-carrying product is preferably at least one of alumina, silica, ceria, and zirconia, and is particularly preferably alumina.
  • the mixing ratio of the catalyst (A) and the catalyst (B) in the mixture is 1: 9 to 9: 1 in mass ratio ((A) :( B)). Preferably there is.
  • the copper oxide is supported on the first oxide carrier in the catalyst (A) at a ratio of 1 to 30% by mass.
  • the noble metal is supported on the second oxide support in a ratio of 0.01 to 10% by mass in the catalyst (B).
  • the exhaust gas purification method of the present invention is a method of oxidizing and removing carbon monoxide and / or hydrocarbons contained in the exhaust gas by bringing the exhaust gas from the internal combustion engine into contact with the oxidation catalyst of the present invention. .
  • the oxidation catalyst of the present invention can sufficiently suppress the deterioration of the catalyst performance due to high temperatures and sufficiently suppress the deterioration of the catalyst performance due to sulfur poisoning. It has excellent resistance to sulfur poisoning and has sufficiently high oxidation activity both when exposed to a high temperature of about 800 ° C. and when exposed to a gas containing sulfur components (SOx). The reason why this is possible is not necessarily clear, but the present inventors infer as follows. That is, first, in the catalyst (A) in which copper oxide (CuO) is the active species, the copper oxide is supported on the first oxide carrier containing titania (TiO 2 ) in a proportion of 25% by mass or more.
  • CuO copper oxide
  • TiO 2 titania
  • an oxidation catalyst consists of a mixture of a catalyst (A) and a catalyst (B), and the copper oxide contained in the catalyst (A) exists in the vicinity of a noble metal.
  • Such copper oxide is easily reduced by titania in the first oxide carrier as described above, and oxygen is generated by the reduction. And such oxygen is easily supplied with respect to the noble metal which exists in the vicinity of copper oxide. Therefore, in the oxidation catalyst of the present invention comprising a mixture of the catalyst (A) and the catalyst (B), carbon monoxide and hydrocarbon adsorbed and poisoned on the noble metal are utilized using oxygen supplied from copper oxide. It can be easily oxidized and removed. Therefore, even when the amount of noble metal supported is reduced, the present inventors have been able to sufficiently maintain the active sites due to the noble metal in the catalyst, and maintain a high degree of catalytic activity, as compared with the conventional catalyst. Guess.
  • the noble metal is supported on a second oxide support containing at least 80% by mass of one or more oxides selected from alumina, ceria and zirconia, and titania ( Copper oxide is supported on the first oxide support containing TiO 2 ) in a proportion of 25% by mass or more.
  • the present inventors speculate that it is possible to achieve high temperature durability.
  • SOx sulfur-containing gas
  • a noble metal or copper oxide which is an active species
  • sulfur component accumulates to reduce the activity of the catalyst (sulfur poisoning).
  • TiO 2 having an acid point is sufficiently contained in the first oxide support, so that the adsorption power of the acidic substance of copper oxide on the first oxide support is sufficiently low. It has become. Therefore, the adsorption of SOx on the copper oxide is sufficiently suppressed, and the function of supplying oxygen to the noble metal of copper oxide as described above is sufficiently maintained. Therefore, in the present invention, the present inventors have a sufficiently high resistance against sulfur poisoning and can exhibit a sufficiently high oxidation activity even when exposed to a gas (SOx) containing a sulfur component. Et al.
  • a sufficiently high level of high-temperature durability capable of sufficiently suppressing deterioration of catalyst performance due to high temperature, and excellent capable of sufficiently suppressing deterioration of catalyst performance due to sulfur poisoning. It has a high resistance to sulfur poisoning and can have sufficiently high oxidation activity when exposed to high temperatures of about 800 ° C or when it is exposed to gas containing sulfur components (SOx). It is possible to provide a simple oxidation catalyst and an exhaust gas purification method using the oxidation catalyst.
  • the oxidation catalyst of the present invention is an oxidation catalyst for oxidizing and removing carbon monoxide and / or hydrocarbons contained in exhaust gas,
  • a catalyst (A) comprising a first oxide support containing 25% by mass or more of titania and copper oxide supported on the first oxide support;
  • a catalyst (B) comprising a second oxide support containing at least 80% by mass of one or more oxides selected from alumina, ceria and zirconia, and a noble metal supported on the second oxide support; It consists of a mixture of
  • the catalyst (A) used for the oxidation catalyst of the present invention will be described.
  • the catalyst (A) includes a first oxide support containing 25% by mass or more of titania and copper oxide supported on the first oxide support.
  • Such a first oxide support contains 25% by mass or more of titania based on the total amount of the first oxide support.
  • the content of titania is less than the lower limit, characteristics derived from titania cannot be sufficiently obtained in the support, and copper oxide is sufficiently reduced by interaction with titania when copper oxide is supported on the support. It becomes difficult to obtain sufficient heat resistance and resistance to sulfur poisoning.
  • the preferred range of such titania content is the form of the support (for example, the form containing the titania as a support or the form of a complex oxide with other oxides). However, it is more preferably 30% by mass or more, and still more preferably 40% by mass or more, based on the total amount of the first oxide support. 50% by mass or more is particularly preferable.
  • titania having a titania content of 100% by mass
  • a titania-supported material supported at a ratio of mass% or more is preferable.
  • carrier of such a form may be used independently, or 2 or more types of these may be used in combination.
  • carrier You may utilize a commercially available thing suitably.
  • the composite metal oxide used for such a first oxide support has a titania content of 50 mass% or more and less than 100 mass%.
  • the content of titania in such a composite metal oxide is less than the lower limit, when copper oxide is supported, not only the copper oxide cannot be sufficiently reduced, but also the acid sites in the support are reduced and sulfur coverage is reduced. Resistance to poisons also tends to decrease.
  • the titania content is preferably 50% by mass or more, more preferably 70% by mass or more, further preferably 80% by mass or more, and 90% It is particularly preferable that the content is at least mass%.
  • the oxide other than titania that can be contained in such a composite metal oxide is not particularly limited as long as it can be used for an oxidation catalyst.
  • zirconia, ceria, tin oxide can be used.
  • Niobium oxide is preferable, zirconia and tin oxide are more preferable, and zirconia is still more preferable.
  • the “composite metal oxide” is a concept including a state in which a plurality of metal oxides are in a solid solution at least in part or a mixture in which a plurality of metal oxides are mixed.
  • a composite metal oxide one in which a plurality of metal oxides are in a state of forming a solid solution in at least a part thereof is preferable, and it can be obtained by firing after obtaining a coprecipitate as described below. More preferred are composites.
  • the method for producing such a composite metal oxide is not particularly limited, and for example, the following method can be employed. That is, first, an aqueous solution or a solution containing water in which a titanium salt and a metal salt for forming the other oxide are dissolved is prepared. In the case of preparing such an aqueous solution or a solution containing water, a pH adjusting agent (for example, hydrogen peroxide) or a surfactant may be added in some cases. Next, with sufficient stirring so that the aqueous solution or solution becomes more uniform, an alkaline solution is added to the aqueous solution or solution, and the titania precursor and the metal oxide (other oxides) Are deposited as precipitates.
  • a pH adjusting agent for example, hydrogen peroxide
  • a surfactant may be added in some cases.
  • an alkaline solution is added to the aqueous solution or solution, and the titania precursor and the metal oxide (other oxides) Are deposited as precipitates.
  • the obtained precipitate is fired to obtain a composite oxide.
  • the titania precursor and the metal oxide precursor are simultaneously deposited as a precipitate (precursor precipitate), and then co-precipitated.
  • a solid solution can be formed at least in part of titania and part of metal oxide.
  • metal salts for forming titanium and other oxides used in such methods include phosphates, sulfates, nitrates, acetates, chlorides, organic acid salts (acrylic acid salts, etc.) ), Alkoxides having 1 to 4 carbon atoms (for example, methoxide, ethoxide, propoxide, butoxide) and the like can be used. Moreover, water and alcohol are mentioned as a solvent which melt
  • these salts may be a solvent composed of water or a solvent composed of water and alcohol. What was melt
  • dissolved in is used suitably.
  • the preparation method of such aqueous solution or solution is not restrict
  • the precipitate of the titania precursor and the other oxide precursor is added to the aqueous solution or the solution containing water to add an alkaline solution to adjust the pH of the aqueous solution or the solution containing water. To precipitate.
  • Examples of such an alkaline solution include ammonia water, an aqueous solution or an alcohol solution in which ammonium carbonate, sodium hydroxide, potassium hydroxide, sodium carbonate and the like are dissolved.
  • ammonia water, an aqueous solution of ammonium carbonate, or an alcohol solution is more preferable because it is easy to volatilize and remove the composite oxide when firing.
  • the pH of the alkaline solution is preferably adjusted to 9 or more.
  • the pH of the aqueous solution or the solution may be adjusted by adding a pH adjuster (hydrogen peroxide solution or the like) to the aqueous solution or the solution in advance before adding the alkaline solution. It is preferable to adjust to the starting pH. Thus, it becomes possible to precipitate a precipitate more efficiently by adding a pH adjuster in advance before adding an alkaline solution.
  • a pH adjuster hydrogen peroxide solution or the like
  • titanium ions and zirconium ions become complex ions, and the pH at which both precipitate is close, so the coprecipitates tend to be mixed at the atomic level. It is in.
  • the aqueous solution or the solution is sufficiently stirred so that the precipitates of the precursors are deposited in a more uniformly dispersed state. It is preferable to add an alkaline solution.
  • a stirring method is not particularly limited, and a known method can be used as appropriate. For example, a method in which propeller stirring and a homogenizer are used in combination so that the aqueous solution or the solution becomes more uniform can be appropriately used. May be.
  • the precipitate is fired.
  • firing may be performed in the air.
  • firing is preferably performed at a temperature of 300 to 800 ° C. (more preferably 400 to 500 ° C.) for 3 to 20 hours.
  • the calcination temperature or calcination time is less than the lower limit, the heat stability of the support tends to decrease, and when the upper limit is exceeded, the specific surface area of the resulting composite metal oxide tends to decrease.
  • a step of drying the precursor precipitate may be performed before such a firing step, and in this case, a drying condition of 30 to 150 ° C. for 1 to 24 hours may be adopted. Is preferred.
  • the titania-supported material that can be used as the first oxide carrier is a metal oxide in which titania is supported at a ratio of 25% by mass or more. If the amount of titania supported is less than the lower limit, the amount of titania that comes into contact with copper oxide is not sufficient when copper oxide is supported on the carrier (titania-supported product). Not only is it difficult to sufficiently reduce the oxidation activity of the entire catalyst, it is also difficult to sufficiently suppress sulfur poisoning. Further, as such a titania-supported product, the titania-supported amount is preferably 25% by mass or more, more preferably 30% by mass or more, and 40 to 90% by mass from the same viewpoint as the above reason. It is particularly preferred that
  • the metal oxide used for supporting titania is preferably alumina, silica, ceria, or zirconia from the viewpoint of maintaining a high specific surface area even at high temperatures, and alumina and zirconia are preferred. More preferred is alumina.
  • the manufacturing method in particular of such a metal oxide is not restrict
  • the method for producing the titania-supported material is not particularly limited as long as it is a method capable of supporting a predetermined amount of titania on the metal oxide. It is possible to employ a method in which the solution contained in is brought into contact with and supported by the metal oxide and then baked. In the case of adopting such a method, the amount and concentration of the solution to be used are appropriately changed so that the amount of titania supported becomes a value within the predetermined range, or the supporting step is appropriately repeated, A titania-carrying material having a predetermined carrying amount can be produced.
  • the titanium salt used for supporting the metal oxide is not particularly limited.
  • alkoxides having 1 to 4 carbon atoms for example, methoxide, ethoxide, propoxide, butoxide
  • the drying condition is 30 to 150 ° C. for 1 to 24 hours. It is preferable.
  • the firing step for producing such a titania-carrying product it is preferable to fire at a temperature of 500 to 900 ° C.
  • the average particle diameter of the powder particles is:
  • the thickness is preferably from 0.01 to 100 ⁇ m, more preferably from 0.1 to 10 ⁇ m.
  • the average particle size is less than the lower limit, the support tends to be easily sintered under high temperature conditions.
  • the upper limit is exceeded, CO and hydrocarbons hardly diffuse and oxidation catalyst activity decreases. Tend to.
  • the specific surface area of such a first oxide carrier is preferably 15 m 2 / g or more, and preferably 30 to 300 m 2 / g.
  • the specific surface area is less than the lower limit, it tends to be difficult to disperse and carry copper oxide sufficiently.
  • the specific surface area exceeds the upper limit the specific surface area due to thermal deterioration of the support is likely to be reduced. The amount of decrease tends to increase.
  • Such a specific surface area can be measured by a so-called BET one-point method.
  • the catalyst (A) includes copper oxide as a catalyst component.
  • the supported amount of copper oxide is preferably 1 to 30% by mass, and particularly preferably 3 to 10% by mass in the catalyst (A). If the amount of copper oxide supported is less than the lower limit, sufficient activity may not be imparted to the resulting oxidation catalyst. On the other hand, if the amount exceeds the upper limit, it is supported on the first oxide support. Coarse CuO particles that are not formed are generated, and it tends to be difficult to effectively use copper oxide.
  • a method for supporting copper oxide for example, a solution containing a predetermined amount of a copper compound by bringing a solution containing a copper (Cu) compound at a predetermined concentration into contact with the first oxide carrier. It is possible to adopt a method in which the carrier is baked after being supported on the carrier.
  • copper compounds used for supporting copper oxide include copper phosphates, sulfates, nitrates, acetates, chlorides, organic acid salts (such as acrylates), alkoxides having 1 to 4 carbon atoms ( For example, methoxide, ethoxide, propoxide, butoxide) and the like can be appropriately used.
  • the firing step in such a method for supporting copper oxide may be performed in the air.
  • the firing temperature in such a firing step is preferably 200 to 700 ° C.
  • the copper compound is not sufficiently thermally decomposed, and it becomes difficult to support copper oxide on the support, and there is a tendency that sufficient oxidation activity of the oxidation catalyst cannot be obtained.
  • the specific surface area of the first oxide carrier tends to decrease, which tends to decrease the oxidation activity.
  • the firing time is preferably from 0.1 to 100 hours.
  • the calcination time is less than the lower limit, the copper compound is not sufficiently thermally decomposed, it becomes difficult to support copper oxide, and the oxidation activity of the resulting oxidation catalyst tends to be reduced. Even if the upper limit is exceeded, no further effect is obtained, and the cost for preparing the catalyst tends to increase.
  • the catalyst (B) used for the oxidation catalyst of the present invention includes a second oxide support containing 80% by mass or more of one or more oxides selected from alumina, ceria and zirconia, and a noble metal supported on the second oxide support. .
  • Such a second oxide support contains at least 80% by mass of one or more oxides selected from alumina, ceria and zirconia.
  • the content of such an oxide is less than the lower limit, the noble metal is hardly supported in a highly dispersed state, and the oxidation activity in the oxidation catalyst is lowered.
  • content of such an oxide it is more preferable that it is 85 mass% or more from the same reason, It is more preferable that it is 90 mass% or more, It is 95 mass% or more and 100 mass% or less It is particularly preferred.
  • alumina, ceria and zirconia in such a second oxide support may be contained as a composite thereof, for example, ceria-zirconia (composite oxide) or alumina in addition to alumina, ceria and zirconia.
  • -It may be contained in the second oxide carrier as ceria-zirconia (composite oxide) or the like.
  • carrier 1 type can be used individually or in combination of 2 or more types.
  • examples of other oxides that can be contained in the second oxide carrier include oxides of lanthanum, barium, strontium, calcium, and magnesium.
  • alumina, ceria, zirconia, ceria-zirconia (composite oxide) and alumina-ceria-zirconia are supported from the viewpoint that noble metals are supported in a highly dispersed state and hardly aggregate.
  • Those containing at least one of (complex oxide) are preferred, those containing at least one of alumina and ceria-zirconia are more preferred, and those containing alumina are particularly preferred.
  • carrier is not restrict
  • as such a second oxide carrier a commercially available one may be used as appropriate.
  • a second oxide carrier when such a second oxide carrier is in the form of powder, particles of the powder (in the case where the carrier contains a complex oxide, secondary particles when the complex oxide is an aggregate of primary particles)
  • the average particle diameter is preferably from 0.01 to 100 ⁇ m, more preferably from 0.1 to 10 ⁇ m.
  • the support tends to be easily sintered under high temperature conditions.
  • the upper limit when the upper limit is exceeded, CO and hydrocarbons hardly diffuse and oxidation catalyst activity decreases. Tend to.
  • the specific surface area of such a second oxide support is preferably 15 m 2 / g or more, and preferably 30 to 300 m 2 / g.
  • the specific surface area is less than the lower limit, it is difficult to sufficiently disperse and carry the noble metal, and it tends to be difficult to obtain sufficient oxidation activity, while when the upper limit is exceeded. Tends to increase the amount of decrease in specific surface area due to thermal degradation in the carrier.
  • a noble metal is supported on the second oxide support.
  • noble metals include platinum, rhodium, palladium, osmium, iridium, and gold.
  • platinum, rhodium and palladium are more preferable, and platinum is more preferable because higher catalytic activity can be obtained.
  • the amount of such noble metal supported is preferably 0.01 to 10% by mass, particularly preferably 0.1 to 5% by mass in the catalyst (B). If the amount of noble metal supported is less than the lower limit, it tends to be difficult to obtain sufficient oxidation activity for carbon monoxide and hydrocarbons in the exhaust gas. There is a tendency that the effect obtained by using a noble metal is saturated while the amount is excessively increased and the economic efficiency is lowered.
  • the method for supporting such a noble metal is not particularly limited.
  • a solution prepared by dissolving a noble metal salt (nitrate, chloride, acetate, etc.) or a noble metal complex in a solvent such as water or alcohol is used as the second oxide carrier.
  • a method in which the solution is supported on the carrier and calcined after being loaded on the carrier it is preferable to carry out a drying step in order to remove the solvent after supporting the solution on the carrier.
  • the drying condition is 30 to 150 ° C. at 1 to 1 ° C. It is preferable to adopt the condition of 24 hours.
  • the firing conditions in the method for supporting the noble metal are preferably about 30 to 60 minutes at 250 to 300 ° C. in an oxidizing atmosphere (for example, air). Further, such a method of supporting a noble metal may be repeatedly performed until a desired amount is supported.
  • the oxidation catalyst of the present invention comprises a mixture of the catalyst (A) and the catalyst (B) as described above.
  • different carriers are used, and different components (copper oxide and noble metal) are supported on the carriers, whereby the copper oxide and the noble metal are supported. It is possible to improve the high-temperature heat resistance and the resistance to sulfur poisoning by using the interaction between the two more efficiently.
  • the mixing ratio of the catalyst (A) and the catalyst (B) in the mixture is preferably 1: 9 to 9: 1 in mass ratio ((A) :( B)). More preferably, the ratio is 1: 4 to 4: 1.
  • the mass ratio of the catalyst (A) is less than the lower limit, oxygen derived from copper oxide in the catalyst (A) cannot be sufficiently utilized, and sufficient catalytic activity and resistance to sulfur poisoning are obtained.
  • the mass ratio of the catalyst (A) exceeds the upper limit, the amount of noble metal derived from the catalyst (B) is relatively reduced, and sufficient catalytic activity can be obtained. It tends to be impossible.
  • the total content of noble metals is preferably 0.01 to 10% by mass, more preferably 0.1 to 5% by mass, based on the total amount of the catalyst. If the total amount of such noble metals is less than the lower limit, it tends to be difficult to obtain sufficient oxidation activity.On the other hand, if the upper limit is exceeded, the amount of noble metal used increases, resulting in a decrease in economy and The obtained effect tends to be saturated.
  • the total content of copper oxide is preferably 1 to 30% by mass, more preferably 3 to 10% by mass, based on the total amount of the catalyst. If the content of such copper oxide is less than the lower limit, oxygen derived from copper oxide cannot be fully utilized, and it tends to be difficult to obtain sufficient catalytic activity and resistance to sulfur poisoning, On the other hand, when the upper limit is exceeded, copper oxide aggregates, and there is a tendency for copper oxide that does not sufficiently function as active species to increase.
  • the form of the oxidation catalyst of the present invention is not particularly limited, and can be used by appropriately forming into various forms according to the application, for example, various forms such as pellets, monoliths, honeycombs or foams You may use as a shape
  • the average particle size of the particles of the mixture is:
  • the thickness is preferably from 0.01 to 100 ⁇ m, more preferably from 0.1 to 10 ⁇ m.
  • the average particle size is less than the lower limit, the carriers in the mixture tend to be easily sintered under high temperature conditions.
  • the upper limit is exceeded, CO and hydrocarbons hardly diffuse and are oxidized. The catalytic activity tends to decrease.
  • the specific surface area is preferably 15 m 2 / g or more, and preferably 30 to 300 m 2 / g.
  • active species Pt, Cu
  • the entire catalyst tends to aggregate, The activity tends to decrease.
  • Such an oxidation catalyst of the present invention is an exhaust gas in an oxygen-excess atmosphere (an atmosphere in which the chemical equivalent ratio of oxygen to the reducing gas component is 1 or more) in which excess oxygen is present relative to the reducing gas. Since even carbon oxides and hydrocarbons can be sufficiently oxidized and purified, for example, from automobile internal combustion engines (particularly preferably diesel engines, lean burn engines with low fuel consumption) It is particularly useful as a catalyst for oxidizing and removing carbon monoxide and hydrocarbons in exhaust gas.
  • the exhaust gas purification method of the present invention is a method of oxidizing and removing carbon monoxide and / or hydrocarbons contained in exhaust gas by bringing exhaust gas from an internal combustion engine into contact with the oxidation catalyst of the present invention. .
  • the method of bringing such exhaust gas into contact is not particularly limited.
  • the oxidation catalyst of the present invention is disposed in an exhaust pipe, and a gasoline engine, a diesel engine, a lean combustion type with a low fuel consumption rate (lean burn) )
  • a method of bringing the exhaust gas into contact with the oxidation catalyst of the present invention by passing exhaust gas discharged from an internal combustion engine such as an engine through the exhaust pipe may be adopted.
  • the exhaust gas purification method of the present invention can be particularly suitably used as a method for purifying carbon monoxide and / or hydrocarbons by contacting exhaust gas containing carbon monoxide and / or hydrocarbons in an oxygen-excess atmosphere.
  • oxygen-excess atmosphere refers to an atmosphere in which the chemical equivalent ratio of oxygen to the reducing gas component is 1 or more.
  • the oxidation catalyst of the present invention may be used alone or together with other materials supported on a base material.
  • a substrate is not particularly limited, and a known substrate that can be used for supporting a catalyst for exhaust gas purification can be appropriately used.
  • the oxidation catalyst of the present invention may be used in combination with another catalyst from the viewpoint of more efficiently purifying the exhaust gas.
  • Such other catalysts are not particularly limited, and known catalysts (for example, NOx reduction catalyst, NOx occlusion reduction type (NSR catalyst), NOx selective reduction catalyst (SCR catalyst), etc.) can be appropriately used.
  • Example 1 First, 10 g of titania (TiO 2 ) powder (trade name “P25” manufactured by Evonik Co., Ltd., specific surface area 40 m 2 / g) was impregnated with an aqueous solution in which 2.3 g of copper nitrate trihydrate was dissolved, and evaporated to dryness. After solidification, the catalyst (A-1) was produced by supporting copper oxide on titania by drying at 110 ° C. overnight (16 hours) and then calcining at 500 ° C. for 3 hours. The amount of copper oxide supported in such a catalyst (A-1) was 7.0% by mass.
  • alumina (Al 2 O 3 ) powder (trade name “TN4” manufactured by JGC Universal Co., Ltd., specific surface area 200 m 2 / g)
  • the supported amount of platinum is 1.0 mass%.
  • impregnated with an aqueous solution of dinitrodiammine platinum complex concentration of dinitrodiammine platinum complex: 0.2 mol / L
  • a catalyst (B-1) having platinum supported on alumina was obtained.
  • the amount of platinum supported in such a catalyst (B-1) was 1.0% by mass.
  • Example 2 Mass ratio of titania and zirconia mixed metal oxide (TiO 2 : ZrO 2) obtained by adopting the following preparation method instead of using 10 g of titania (TiO 2 ) powder in the production process of catalyst (A-1) However, instead of producing the catalyst (A-1) using 10 g of the catalyst, it was carried out except that the catalyst (A-2) in which copper oxide was supported on the composite metal oxide of titania and zirconia was produced. An oxidation catalyst was produced in the same manner as in Example 1.
  • the oxidation catalyst thus obtained was a mixture of 10 g of the catalyst (A-2) and 10 g of the catalyst (B-1) (in the form of pellets having a diameter of 0.5 to 1.0 mm, specific surface area: 135 m 2 / G), and the final copper oxide content in the oxidation catalyst was 3.5% by mass, and the platinum content was 0.5% by mass.
  • the specific surface area of such zirconia composite metal oxide powder was 70 m 2 / g.
  • Example 3 Instead of using 10 g of titania (TiO 2 ) powder in the production process of the catalyst (A-1), using 10 g of titania supported material having a titania supported amount of 30% by mass obtained by employing the following preparation method, An oxidation catalyst was produced in the same manner as in Example 1 except that instead of producing the catalyst (A-1), a catalyst (A-3) in which copper oxide was supported on the titania support was produced.
  • the oxidation catalyst thus obtained was a mixture of 10 g of the catalyst (A-3) and 10 g of the catalyst (B-1) (in the form of pellets having a diameter of 0.5 to 1.0 mm, specific surface area: 150 m 2 / G), and the final copper oxide content in the oxidation catalyst was 3.5% by mass, and the platinum content was 0.5% by mass.
  • ⁇ Method for preparing titania carrier First, a solution obtained by dissolving 380.4 g of citric acid in 365 g of ion-exchanged water was heated to 80 ° C., and then 179.7 g of titanium tetraisopropoxide was added to the solution and stirred for 8 hours, thereby containing titanium tetraisopropoxide. A solution was obtained. Next, after impregnating and supporting 50 g of the obtained titanium tetraisopropoxide-containing solution in alumina (Al 2 O 3 ) powder (trade name “TN4” manufactured by JGC Universal, specific surface area 200 m 2 / g) , Dried at 110 ° C.
  • alumina (Al 2 O 3 ) powder trade name “TN4” manufactured by JGC Universal, specific surface area 200 m 2 / g
  • titania supporting step was repeated until the titania supporting amount reached 30% by mass so that the mass ratio of titania and alumina (TiO 2 : Al 2 O 3 ) was 30:70. Thereafter, it was calcined at 800 ° C. for 5 hours to obtain a titania-supported product (a carrier in which titania was supported on alumina at a ratio of 30% by mass).
  • the specific surface area of such titania-supported powder was 100 m 2 / g.
  • the catalyst (C-1) is crushed and formed into pellets having a diameter of 0.5 to 1.0 mm.
  • An oxidation catalyst (specific surface area: 200 m 2 / g) was obtained.
  • content of platinum in such an oxidation catalyst was 1.0 mass%.
  • Comparative Example 2 A comparative catalyst (C-2) having 0.5% by mass of platinum supported on alumina was prepared in the same manner as Comparative Example 1 except that the supported amount of platinum was changed from 1.0% by mass to 0.5% by mass. Thereafter, a comparative oxidation catalyst (pellet shape having a diameter of 0.5 to 1.0 mm, specific surface area: 200 m 2 / g) composed of the catalyst (C-2) was obtained. In addition, content of platinum in such an oxidation catalyst was 0.5 mass%.
  • Comparative Example 3 Instead of using 10 g of titania (TiO 2 ) powder in the production process of the catalyst (A-1), alumina (Al 2 O 3 ) powder (trade name “TN4” manufactured by JGC Universal Co., Ltd., specific surface area 200 m 2 / g) 10 g was used for comparison in the same manner as in Example 1 except that a comparative catalyst (C-3) in which copper oxide was supported on alumina was produced instead of producing the catalyst (A-1). An oxidation catalyst was produced.
  • alumina (Al 2 O 3 ) powder (trade name “TN4” manufactured by JGC Universal Co., Ltd., specific surface area 200 m 2 / g) 10 g was used for comparison in the same manner as in Example 1 except that a comparative catalyst (C-3) in which copper oxide was supported on alumina was produced instead of producing the catalyst (A-1). An oxidation catalyst was produced.
  • the oxidation catalyst thus obtained was a mixture of 10 g of the catalyst (C-3) and 10 g of the catalyst (B-1) (in the form of pellets having a diameter of 0.5 to 1.0 mm, specific surface area: 200 m 2 / G), and the final copper oxide content in the oxidation catalyst was 3.5% by mass, and the platinum content was 0.5% by mass.
  • Comparative Example 4 In the production process of the catalyst (A-1), instead of using 10 g of titania (TiO 2 ) powder, 10 g of ceria (CeO 2 ) powder (manufactured by Anan Kasei Co., Ltd., specific surface area 60 m 2 / g) was used. A comparative oxidation catalyst was produced in the same manner as in Example 1 except that instead of producing -1), a comparative catalyst (C-4) in which copper oxide was supported on the ceria was produced.
  • the oxidation catalyst thus obtained was a mixture of 10 g of the catalyst (C-4) and 10 g of the catalyst (B-1) (in the form of pellets having a diameter of 0.5 to 1.0 mm, specific surface area: 130 m 2 / G), and the final copper oxide content in the oxidation catalyst was 3.5% by mass, and the platinum content was 0.5% by mass.
  • the oxidation catalyst thus obtained was a mixture of 10 g of the catalyst (A-1) and 10 g of the catalyst (C-5) (pellet shape having a diameter of 0.5 to 1.0 mm, specific surface area: 40 m 2 / G), and the final copper oxide content in the oxidation catalyst was 3.5% by mass, and the platinum content was 0.5% by mass.
  • Comparative Example 6 In place of 10 g of the catalyst (A-1), 10 g of a catalyst (C-3) for comparison in which copper oxide was supported on alumina obtained by adopting the same method as described in Comparative Example 3 was used. In place of 10 g of the catalyst (B-1), 10 g of a catalyst (C-5) for comparison in which platinum was supported on the titania obtained by adopting the same method as described in Comparative Example 5 was used. A comparative oxidation catalyst was produced in the same manner as in Example 1 except that.
  • the oxidation catalyst thus obtained was a mixture of 10 g of the catalyst (C-3) and 10 g of the catalyst (C-5) (in the form of pellets having a diameter of 0.5 to 1.0 mm, specific surface area: 120 m 2 / G), and the final copper oxide content in the oxidation catalyst was 3.5% by mass, and the platinum content was 0.5% by mass.
  • a comparative catalyst C-6
  • the comparative catalyst (C-6) was compacted by a conventional method (CIP method), then crushed and formed into pellets having a diameter of 0.5 to 1.0 mm to obtain the catalyst (C-6).
  • a comparative oxidation catalyst (specific surface area: 200 m 2 / g) was obtained.
  • content of the copper oxide in such an oxidation catalyst was 3.5 mass%, and content of platinum was 0.5 mass%.
  • Comparative Example 8 10 g of titania (TiO 2 ) powder (trade name “P25” manufactured by Evonik, specific surface area 40 m 2 / g) is impregnated with an aqueous solution in which 2.3 g of copper nitrate trihydrate is dissolved and evaporated to dryness. After being solidified, it was dried at 110 ° C. overnight (16 hours), and then calcined at 500 ° C. for 3 hours, whereby a comparative oxidation catalyst comprising a catalyst (C-7) supporting copper oxide on titania (diameter) 0.5-1.0 mm pellets, specific surface area: 40 m 2 / g) were obtained. In addition, content of the copper oxide in such an oxidation catalyst was 7.0 mass%.
  • oxidation activity of oxidation catalyst after heat resistance test was measured as follows. That is, in the measurement test of the oxidation activity, first, using a fixed bed flow reactor, a quartz reaction tube having an inner diameter of 15 mm was filled with 1.0 g of the oxidation catalyst after the heat resistance test, and CO (1000 ppm), C 3 H 6 (500 ppm C: volume ratio in terms of carbon), NO (100 ppm), O 2 (10% by volume), CO 2 (10% by volume), H 2 O (10% by volume), and N 2 (balance) The mixture was heated at 500 ° C.
  • the CO concentration and C 3 H 6 concentration in the gas emitted from the catalyst during such temperature rise are measured using a continuous gas analyzer, model gas (incoming gas) CO concentration and C 3 H 6 concentration in the, and a CO concentration and C 3 H 6 concentration of the outgoing gas, calculates the CO conversion and C 3 H 6 conversion, CO conversion And the temperature at which the C 3 H 6 conversion reached 50%, respectively, was determined as the 50% conversion temperature of CO and C 3 H 6 .
  • the obtained results are shown in FIG.
  • the sulfur poisoning regeneration test A was performed as follows on the oxidation catalysts obtained in Examples 1 and 3 and Comparative Examples 1, 2, 4, 6, and 7 after the heat resistance test. That is, first, using a fixed bed flow reactor, a quartz reaction tube having an inner diameter of 15 mm was filled with 1.0 g of an oxidation catalyst (after a heat test), and CO (1000 ppm), C 3 H was added to 1.0 g of the catalyst. 6 (500 ppm C: volume ratio in terms of carbon), NO (100 ppm), O 2 (10% by volume), CO 2 (10% by volume), H 2 O (10% by volume) and N 2 (remainder) 7000 ml / min The mixture was heated at 500 ° C.
  • the model gas containing no SO 2 was supplied to the oxidation catalyst after supplying the sulfur component-containing gas in this way for 10 minutes under the conditions of 7000 ml / min and 620 ° C.
  • the supply amount of the sulfur component with respect to each oxidation catalyst by supplying such a sulfur component-containing gas was 2 g per 120 g of catalyst in terms of sulfur (S).
  • the oxidation catalyst after performing the sulfur poisoning regeneration test A and the oxidation catalyst after performing the sulfur poisoning regeneration test B The same method as in the above-mentioned “Measurement of the oxidation activity of the oxidation catalyst after being subjected to the heat resistance test” was employed except that each was used.
  • the 50% conversion temperature of the oxidation catalyst CO and C 3 H 6 after the sulfur poisoning regeneration test A is shown in FIG. 2
  • the oxidation catalyst CO and C 3 H after the sulfur poisoning regeneration test B is shown in FIG. 50% conversion temperature for 6 shown in FIG.
  • the oxidation catalysts obtained in Examples 1 to 3 are substantially the same as or equivalent to the oxidation catalyst obtained in Comparative Example 1 (a catalyst in which platinum is supported on alumina) in which the amount of platinum supported is doubled. It was confirmed that the above oxidation activity was exhibited. Based on these results, a mixture of any one of the catalysts (A-1) to (A-3) supporting copper oxide on a titania-containing support and the catalyst (B-1) supporting platinum on alumina is used. As a result, it was found that the heat resistance was improved and a sufficiently high oxidation activity was exhibited as compared with the case where only the catalyst having platinum supported on alumina was used.
  • the oxidation catalysts obtained in Examples 1 to 3 were obtained in Comparative Examples 5 to 6 including a catalyst (C-5) having platinum supported on titania. Compared with the oxidation catalyst, it was confirmed that the oxidation activity of CO and C 3 H 6 was sufficiently high even after the heat test. From these results, it was found that sufficient heat resistance could not be obtained when platinum was supported on titania. With respect to such a result, the present inventors presume that when platinum is supported on titania, the specific surface area of the carrier is reduced at a high temperature, thereby reducing the activity.
  • the oxidation catalyst obtained in Examples 1 to 3 was more effective after the heat test than the oxidation catalyst obtained in Comparative Example 8 comprising a catalyst (C-7) in which copper oxide was supported on titania. It was confirmed that it exhibited sufficiently high CO and C 3 H 6 oxidation activities. From these results, it was found that by using a catalyst in which copper oxide was supported on a support containing titania and a catalyst in which platinum was supported on alumina, a sufficiently high oxidation activity was exhibited even after the heat resistance test.
  • the 50% conversion temperature of CO is higher than 210 ° C. after the heat resistance test, and C 3 H Since the 50% conversion temperature of No. 6 is higher than 215 ° C., the oxidation catalyst obtained in Comparative Example 7 comprising a catalyst (C-6) in which copper oxide and platinum are co-supported on alumina and In comparison, it was confirmed that the oxidation catalysts obtained in Examples 1 to 3 exhibited higher CO and C 3 H 6 oxidation activities after the heat test.
  • the carrier for supporting copper oxide is a carrier containing titania
  • the carrier for supporting a noble metal is a carrier containing alumina, so that copper oxide and noble metal are formed on the same carrier.
  • the oxidation catalysts obtained in Examples 1 and 3 all had a CO 50% conversion temperature of 210 ° C. or less after the sulfur poisoning regeneration test A.
  • the 50% conversion temperature of C 3 H 6 is 215 ° C. or lower, whereas in the oxidation catalysts obtained in Comparative Examples 1, 2, 4, 6, and 7, all sulfur poisoning regeneration After the test A, the 50% conversion temperature of CO was higher than 210 ° C, and the 50% conversion temperature of C 3 H 6 was higher than 215 ° C.
  • all of the oxidation catalysts obtained in Examples 1 to 3 had a CO 50% conversion temperature of 205 ° C. or less after the sulfur poisoning regeneration test B.
  • the configurations of the oxidation catalysts obtained in Comparative Examples 3 to 4 are basically the same as those in Examples 1 to 3, except that alumina (Comparative Example 3) and ceria (Comparative Example 4) are used as carriers for supporting copper oxide, respectively. It was found that the resistance to sulfur poisoning is improved by using a support containing titania as a support for supporting copper oxide, because it has the same configuration as the oxidation catalyst obtained in 3.
  • a sufficiently high level of high-temperature durability capable of sufficiently suppressing deterioration of catalyst performance due to high temperatures and sufficiently suppressing deterioration of catalyst performance due to sulfur poisoning. It has an excellent resistance to sulfur poisoning and can be oxidized sufficiently when exposed to a high temperature of about 800 ° C. or when it is exposed to a gas containing sulfur components (SOx). It is possible to provide an oxidation catalyst capable of having an activity and an exhaust gas purification method using the oxidation catalyst.
  • the oxidation catalyst of the present invention is a catalyst for oxidizing and purifying carbon monoxide and hydrocarbons in exhaust gas from an internal combustion engine of an automobile (particularly preferably exhaust gas from a diesel engine (gas in an oxidizing atmosphere)). As particularly useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

 排ガス中に含まれる一酸化炭素及び/又は炭化水素を酸化除去するための酸化触媒であって、 チタニアを25質量%以上含有する第一酸化物担体及び該第一酸化物担体に担持された酸化銅を備える触媒(A)と、 アルミナ、セリア及びジルコニアの中から選択される1種以上の酸化物を80質量%以上含有する第二酸化物担体及び該第二酸化物担体に担持された貴金属を備える触媒(B)と、 の混合物からなる、酸化触媒。

Description

酸化触媒及びそれを用いた排ガス浄化方法
 本発明は、酸化触媒並びにそれを用いた排ガス浄化方法に関する。
 ディーゼルエンジンは、エネルギー効率(燃費)に優れ、COの発生量が少ないことから、欧州だけでなく世界中で今後の普及が予想される内燃機関のうちの一つである。今日では、このような内燃機関等から排出されるガス中に含まれる成分等を酸化して浄化するために種々の酸化触媒が研究されている。そして、このような酸化触媒としては、例えば、一酸化炭素(CO)や炭化水素(HC)を酸化することが可能な触媒として、活性種にPtやPdなどの貴金属を使用した酸化触媒が知られている。
 しかしながら、このような貴金属を使用した酸化触媒は、硫黄成分を含むガス(SOx)に曝されると、活性種にSOxの吸着が起こり、硫黄成分が蓄積して触媒の活性が著しく低下してしまうという問題があった(硫黄被毒)。そのため、貴金属を使用した酸化触媒においては硫黄被毒に対する耐性の向上が求められており、特に、硫黄成分が多く含まれた燃料が内燃機関用の燃料として流通しているアジア地域において、その対策が強く求められている。また、このような貴金属を使用した酸化触媒においては、貴金属粒子が微細で且つ高度に分散されている場合に活性点がより多くなって高度な触媒活性を示すものとなるが、800℃程度の高温に晒されると貴金属の粒子が容易に凝集して粒成長(シンタリング)して活性が低下してしまうという問題もあった。更に、近年では、貴金属を用いた触媒の分野において、希少金属の危機管理の観点や価格の面から、PtやPdなどの貴金属の使用量を減少させることも要求されてきている。
 このような状況の下、近年では、貴金属の使用量を低減するという観点から、貴金属とともに卑金属などの安価な材料を触媒成分として利用した触媒が提案されている。例えば、特開2008-221217号公報(特許文献1)においては、アルミナ及びセリアを含む化合物から形成される基材と、前記基材の表面に担持された白金、パラジウム及びロジウムの中から選択される少なくとも一種以上の貴金属元素から形成される貴金属粒子と、前記貴金属粒子の表面又は前記貴金属粒子の表面の一部に被覆されている金属酸化物の層と、を備え、前記金属酸化物層がCo、Ni、Fe、Cu、Sn、Mn、Ce及びZrの中から選択される少なくとも一種以上の金属の酸化物から形成されている触媒が開示されている。また、特開2006-043634号公報(特許文献2)においては、貴金属と、一部又は全てが前記貴金属と複合物を形成する遷移金属化合物と、前記複合物と接触し、電気陰性度が1.5以下である第三成分元素と、前記貴金属、前記遷移金属化合物及び前記第三成分元素を担持し、かつ、一部又は全てが前記第三成分元素と複合酸化物を形成する多孔質担体と、を有する触媒が開示されている。更に、特開2008-272614号公報(特許文献3)においては、少なくとも一種類以上の銅系触媒と、貴金属系触媒とを混合して組み合わせてなる触媒であって、前記銅系触媒が酸化アルミニウム、酸化セリウム、酸化ジルコニウム、酸化亜鉛、酸化鉛、酸化マンガン、酸化ニッケル、酸化チタン、酸化鉄、酸化バナジウム、酸化コバルト、酸化クロム、メタルシリケートの少なくとも一種以上の酸化物からなる担体と前記担体に担持された金属銅又は酸化銅からなる活性成分とからなることが開示されている。しかしながら、これらの特許文献1~3に記載のような触媒においても、高温耐久性と硫黄被毒に対する耐性の両方を十分に発揮するという観点では必ずしも十分なものではなく、800℃程度の高温に晒された場合や硫黄成分を含むガス(SOx)に曝された場合のいずれの場合においても一酸化炭素(CO)や炭化水素に対する酸化活性を十分に維持するという点においては必ずしも十分なものではなかった。
特開2008-221217号公報 特開2006-043634号公報 特開2008-272614号公報
 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、高温による触媒性能の劣化を十分に抑制することが可能な十分に高度な水準の高温耐久性と、硫黄被毒による触媒性能の劣化を十分に抑制することが可能な優れた硫黄被毒に対する耐性とを有し、800℃程度の高温に晒された場合や硫黄成分を含むガス(SOx)に曝された場合のいずれにおいても十分に高度な酸化活性を有することが可能な酸化触媒、及び、その酸化触媒を用いた排ガス浄化方法を提供することを目的とする。
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、排ガス中に含まれる一酸化炭素及び/又は炭化水素を酸化除去するための酸化触媒を、チタニアを25質量%以上含有する第一酸化物担体及び該第一酸化物担体に担持された酸化銅を備える触媒(A)と、アルミナ、セリア及びジルコニアの中から選択される1種以上の酸化物を80質量%以上含有する第二酸化物担体及び該第二酸化物担体に担持された貴金属を備える触媒(B)との混合物からなるものとすることにより、高温による触媒性能の劣化を十分に抑制することが可能な十分に高度な水準の高温耐久性と、硫黄被毒による触媒性能の劣化を十分に抑制することが可能な優れた硫黄被毒に対する耐性とを有し、800℃程度の高温に晒された場合や硫黄成分を含むガス(SOx)に曝された場合のいずれにおいても十分に高度な酸化活性を有することが可能となることを見出し、本発明を完成するに至った。
 すなわち、本発明の酸化触媒は、排ガス中に含まれる一酸化炭素及び/又は炭化水素を酸化除去するための酸化触媒であって、
 チタニアを25質量%以上含有する第一酸化物担体及び該第一酸化物担体に担持された酸化銅を備える触媒(A)と、
 アルミナ、セリア及びジルコニアの中から選択される1種以上の酸化物を80質量%以上含有する第二酸化物担体及び該第二酸化物担体に担持された貴金属を備える触媒(B)と、
の混合物からなるものである。
 上記本発明の酸化触媒においては、前記第一酸化物担体が、チタニア、チタニアの含有量が50質量%以上である複合金属酸化物、及び、金属酸化物にチタニアが25質量%以上の割合で担持されたチタニア担持物のうちの少なくとも1種からなることが好ましい。また、前記複合金属酸化物としては、チタニアと、ジルコニア、セリア、酸化スズ及び酸化ニオブのうちの少なくとも1種とを含有する複合金属酸化物が好ましく、チタニアとジルコニアとを含有する複合金属酸化物が特に好ましい。また、前記チタニア担持物としては、前記チタニア担持物中の前記金属酸化物が、アルミナ、シリカ、セリア及びジルコニアのうちの少なくとも1種であることが好ましく、アルミナであることが特に好ましい。
 また、上記本発明の酸化触媒においては、前記混合物中の触媒(A)と触媒(B)との混合比が、質量比((A):(B))で1:9~9:1であることが好ましい。
 また、上記本発明の酸化触媒においては、前記触媒(A)において前記第一酸化物担体に前記酸化銅が1~30質量%の割合で担持されていることが好ましい。
 更に、上記本発明の酸化触媒においては、前記触媒(B)において前記第二酸化物担体に前記貴金属が0.01~10質量%の割合で担持されていることが好ましい。
 また、本発明の排ガス浄化方法は、上記本発明の酸化触媒に対して、内燃機関からの排ガスを接触せしめて、排ガス中に含まれる一酸化炭素及び/又は炭化水素を酸化除去する方法である。
 なお、本発明の酸化触媒によって、高温による触媒性能の劣化を十分に抑制することが可能な十分に高度な水準の高温耐久性と、硫黄被毒による触媒性能の劣化を十分に抑制することが可能な優れた硫黄被毒に対する耐性とを有し、800℃程度の高温に晒された場合や硫黄成分を含むガス(SOx)に曝された場合のいずれにおいても十分に高度な酸化活性を有することが可能となる理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、先ず、酸化銅(CuO)が活性種となる触媒(A)においては、酸化銅がチタニア(TiO)を25質量%以上の割合で含有する第一酸化物担体に担持されているため、担体中のTiOと相互作用して容易に還元される(特に、TiO上に直接CuOが担持されている場合にはCuOはより効率よく還元される傾向にある。)。このようにしてCuOが還元されると、CuOは、Cuの価数が1価であるCuOやCu(メタル)となって、これにより酸素を遊離することが可能となる。そして、この遊離した酸素が一酸化炭素や炭化水素の酸化に使われる。
 一方、貴金属が活性種となる触媒(B)においては、貴金属上で酸素が乖離吸着され、その酸素と一酸化炭素及び炭化水素が反応することで酸化反応が進行する。ここで、貴金属を活性種とする従来の触媒においては、一酸化炭素(CO)と炭化水素が共存する排ガスに晒された場合、貴金属表面が一酸化炭素や炭化水素を容易に吸着してしまい、これにより触媒活性が低下していた。しかしながら、本発明においては、酸化触媒が触媒(A)と触媒(B)の混合物からなり、貴金属の近傍に触媒(A)中に含まれた酸化銅が存在する。このような酸化銅は、前述のように第一酸化物担体中のチタニアにより容易に還元されて、その還元によって酸素が発生する。そして、このような酸素は酸化銅の近傍に存在する貴金属に対して容易に供給される。そのため、触媒(A)と触媒(B)の混合物からなる本発明の酸化触媒においては、貴金属上に吸着被毒された一酸化炭素や炭化水素を、酸化銅から供給される酸素を利用して容易に酸化して除去できる。そのため、貴金属の担持量を低減した場合においても、従来の触媒と比較して、触媒中に貴金属による活性点を十分に維持することができ、高度な触媒活性を維持できるものと本発明者らは推察する。
 また、チタニアを担体として用い、その活性種として貴金属を担持した触媒は、高温に晒されると、その担体に担持された触媒成分の比表面積が容易に低下し、活性点が容易に減少する傾向にあるものと本発明者らは推察する。このような観点から、本発明においては、貴金属はアルミナ、セリア及びジルコニアの中から選択される1種以上の酸化物を80質量%以上含有する第二酸化物担体上に担持しており、チタニア(TiO)を25質量%以上の割合で含有する第一酸化物担体には酸化銅を担持している。そして、このように貴金属と酸化銅とを担持するための担体の種類を分けることで、一酸化炭素と炭化水素に対する主たる活性種である貴金属の比表面積の低下を十分に抑制して、十分に高度な高温耐久性を達成することが可能となっているものと本発明者らは推察する。
 また、一般に、触媒が硫黄成分を含むガス(SOx)に曝されると活性種である貴金属や酸化銅にSOxの吸着が起こり、硫黄成分が蓄積して触媒の活性が低下する(硫黄被毒)。しかしながら、本発明においては、第一酸化物担体中に酸点を有するTiOを十分に含有させているため、第一酸化物担体上の酸化銅の酸性物質の吸着力が十分に低いものとなっている。そのため、酸化銅にSOxの吸着が生じることが十分に抑制され、上述のような酸化銅の貴金属に酸素を供給する機能が十分に維持される。そのため、本発明においては、硫黄被毒に対する十分に高度な耐性を有し、硫黄成分を含むガス(SOx)に曝された場合においても、十分に高度な酸化活性を発揮できるものと本発明者らは推察する。
 本発明によれば、高温による触媒性能の劣化を十分に抑制することが可能な十分に高度な水準の高温耐久性と、硫黄被毒による触媒性能の劣化を十分に抑制することが可能な優れた硫黄被毒に対する耐性とを有し、800℃程度の高温に晒された場合や硫黄成分を含むガス(SOx)に曝された場合のいずれにおいても十分に高度な酸化活性を有することが可能な酸化触媒、及び、その酸化触媒を用いた排ガス浄化方法を提供することが可能となる。
耐熱試験後の実施例1~3及び比較例1~8で得られた各酸化触媒のCOとCの50%転化温度をそれぞれ示すグラフである。 硫黄被毒再生試験A後の実施例1、3及び比較例1、2、4、6、7で得られた各酸化触媒のCOとCの50%転化温度をそれぞれ示すグラフである。 硫黄被毒再生試験B後の実施例1、3及び比較例1、3で得られた各酸化触媒のCOとCの50%転化温度をそれぞれ示すグラフである。
 以下、本発明をその好適な実施形態に即して詳細に説明する。
 先ず、本発明の酸化触媒について説明する。すなわち、本発明の酸化触媒は、排ガス中に含まれる一酸化炭素及び/又は炭化水素を酸化除去するための酸化触媒であって、
 チタニアを25質量%以上含有する第一酸化物担体及び該第一酸化物担体に担持された酸化銅を備える触媒(A)と、
 アルミナ、セリア及びジルコニアの中から選択される1種以上の酸化物を80質量%以上含有する第二酸化物担体及び該第二酸化物担体に担持された貴金属を備える触媒(B)と、
の混合物からなるものである。
 ここで、先ず、本発明の酸化触媒に用いる触媒(A)について説明する。触媒(A)は、上述のように、チタニアを25質量%以上含有する第一酸化物担体と、前記第一酸化物担体に担持された酸化銅とを備えるものである。
 このような第一酸化物担体は、チタニアを第一酸化物担体の全量に対して25質量%以上含有するものである。このようなチタニアの含有量が前記下限未満では、担体においてチタニアに由来する特性が十分に得られず、担体に酸化銅を担持した場合にチタニアとの相互作用により酸化銅を十分に還元することが困難となって、十分な耐熱性及び硫黄被毒に対する耐性が得られなくなる。また、このようなチタニアの含有量の好適な範囲は、担体の形態(例えば、チタニアを担持物として含有している形態の担体である場合や他の酸化物との複合酸化物の形態として含有している形態の担体である場合など)によっても異なるものではあるが、第一酸化物担体の全量に対して30質量%以上であることがより好ましく、40質量%以上であることが更に好ましく、50質量%以上であることが特に好ましい。
 また、このような第一酸化物担体としては、チタニア(チタニアの含有量が100質量%のもの)、チタニアの含有量が50質量%以上である複合金属酸化物、金属酸化物にチタニアが25質量%以上の割合で担持されたチタニア担持物が好ましい。また、このような第一酸化物担体としては、このような形態の担体のうちの1種を単独で用いてもよく、あるいは、これらのうちの2種以上を組み合わせて利用してもよい。なお、このような第一酸化物担体に用いるチタニア(チタニアの含有量が100質量%のもの)としては特に制限されず、市販のものを適宜利用してもよい。
 また、このような第一酸化物担体に用いる複合金属酸化物は、チタニアの含有量が50質量%以上100質量%未満のものである。このような複合金属酸化物におけるチタニアの含有量が前記下限未満では、酸化銅を担持した場合に、酸化銅を十分に還元することができないばかりか、担体中の酸点が減少して硫黄被毒に対する耐性も低下する傾向にある。また、このような複合金属酸化物としては、チタニアの含有量が50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが更に好ましく、90質量%以上であることが特に好ましい。
 また、このような複合金属酸化物に含有することが可能なチタニア以外の他の酸化物としては、酸化触媒に用いることが可能なものであればよく特に制限されないが、ジルコニア、セリア、酸化スズ、酸化ニオブであることが好ましく、ジルコニア、酸化スズであることがより好ましく、ジルコニアであることが更に好ましい。なお、ここにおいて「複合金属酸化物」とは、複数の金属酸化物が少なくともその一部において固溶した状態にあるものや、複数の金属酸化物を混合した混合物を含む概念である。このような複合金属酸化物としては、複数の金属酸化物が少なくともその一部において固溶体を形成した状態にあるものが好ましく、後述のようにして共沈殿物を得た後に焼成して得られるような複合化物がより好ましい。
 このような複合金属酸化物を製造する方法も特に制限されず、例えば、以下の方法を採用することができる。すなわち、先ず、チタンの塩と、前記他の酸化物を形成させるための金属の塩とを溶解した水溶液又は水を含む溶液を調製する。なお、このような水溶液又は水を含む溶液を調製する場合においては、場合によりpH調整剤(例えば過酸化水素など)や界面活性剤を添加してもよい。次いで、かかる水溶液又は溶液がより均一なものとなるように十分に撹拌しながら、その水溶液又は溶液中にアルカリ性溶液を添加して、チタニアの前駆体と前記金属の酸化物(他の酸化物)の前駆体を沈殿物として析出させる。その後、得られた沈殿物(前駆体の沈殿物)を焼成し、複合酸化物を得る。このような複合金属酸化物を製造するための方法においては、チタニアの前駆体と前記金属の酸化物の前駆体を、沈殿物(前駆体の沈殿物)として同時に析出させた後に、その共沈殿物を焼成するため、少なくとも、チタニアの一部と金属の酸化物の一部に固溶体を形成させることもできる。
 このような方法に用いられるチタンや前記他の酸化物を形成するための金属の塩としては、例えば、リン酸塩、硫酸塩、硝酸塩、酢酸塩、塩化物、有機酸塩(アクリル酸塩など)、炭素数1~4のアルコキシド(例えば、メトキシド、エトキシド、プロポキシド、ブトキシド)等をそれぞれ用いることができる。また、このような塩を溶解する溶媒としては水及びアルコール類が挙げられる。なお、このようなチタンの塩又は前記金属の塩の使用量は、得られる担体中におけるチタニアと前記他の酸化物の含有比の目的の設計に応じて、その使用量を適宜変更すればよい。なお、チタニアの単体を利用する場合においては市販のチタニア粒子を利用してもよい。
 また、前記チタンの塩と、前記他の酸化物を形成するための金属の塩とを溶解した水溶液又は水を含む溶液としては、これらの塩を、水からなる溶媒又は水及びアルコールからなる溶媒に溶解したもの等が好適に用いられる。また、このような水溶液又は溶液の調製方法は特に制限されず、公知の方法を適宜利用することができる。また、このような水溶液には、必要に応じて、pH調整剤や界面活性剤(例えば、ノニオン系界面活性剤)等を添加してもよい。
 また、前記チタニアの前駆体と前記他の酸化物の前駆体の沈殿物は、前記水溶液又は水を含む溶液に対して、アルカリ性溶液を添加して、前記水溶液又は水を含む溶液のpHを調節することによって析出させる。
 このようなアルカリ性溶液としては、アンモニア水や、炭酸アンモニウム、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム等が溶解した水溶液又はアルコール溶液が挙げられる。このようなアルカリ性溶液の中でも、複合酸化物を焼成する際に揮発させて除去することが容易であることから、アンモニア水、炭酸アンモニウムの水溶液又はアルコール溶液がより好ましい。また、前記前駆体の沈殿物の析出反応を促進させるという観点から、アルカリ性溶液のpHは9以上に調整することが好ましい。
 また、前記水溶液又は前記溶液のpHは、アルカリ性溶液を添加する前に、前記水溶液又は前記溶液に対してpH調整剤(過酸化水素水等)等を予め添加して、各前駆体が沈殿し始めるpHに調節しておくことが好ましい。このようにして、アルカリ性溶液を添加する前に予めpH調整剤を添加することにより、より効率よく沈殿物を析出させることが可能となる。例えば、前記金属がジルコニウムの場合、pH調整剤を添加することにより、チタニウムイオン及びジルコニウムイオンが錯イオンとなり、両者の沈殿するpHが近くなるため、共沈物の混合が原子レベルで行われる傾向にある。
 また、このような担体を製造する方法において、前記沈殿物を析出させる際には、各前駆体の沈殿物がより均一に分散した状態で析出するように、水溶液又は溶液を十分に撹拌しながらアルカリ性溶液を添加することが好ましい。このような撹拌の方法は特に制限されず、公知の方法を適宜利用でき、例えば、水溶液又は溶液がより均一なものとなるように、プロペラ撹拌とホモジナイザーを併用して撹拌する方法等を適宜利用してもよい。
 さらに、このような担体を製造する方法においては、前記前駆体の沈殿物を得た後に、その沈殿物を焼成する。このような焼成は大気中で行なってもよい。また、このような焼成工程においては、300~800℃(より好ましくは400~500℃)の温度条件で3~20時間焼成することが好ましい。かかる焼成温度や焼成時間が前記下限未満になると、担体の熱に対する安定性が低下する傾向にあり、他方、前記上限を超えると、得られる複合金属酸化物の比表面積が低下する傾向にある。また、このような焼成工程の前に前記前駆体の沈殿物を乾燥する工程を実施してもよく、この場合には、乾燥条件として30~150℃で1~24時間の条件を採用することが好ましい。
 また、前記第一酸化物担体として利用し得るチタニア担持物は、金属酸化物にチタニアが25質量%以上の割合で担持されたものである。このようなチタニアの担持量が前記下限未満では、その担体(チタニア担持物)に酸化銅を担持した場合に、酸化銅と接触するチタニアの量が十分なものとならず、使用時に酸化銅を十分に還元して触媒全体の酸化活性を十分に向上させることが困難となるばかりか、硫黄被毒を十分に抑制することも困難となる傾向にある。また、このようなチタニア担持物としては、上記理由と同様の観点から、チタニアの担持量が25質量%以上であることが好ましく、30質量%以上であることがより好ましく、40~90質量%であることが特に好ましい。
 また、このようなチタニア担持物において、チタニアを担持するために利用する金属酸化物としては、高温でも高比表面積を維持するという観点から、アルミナ、シリカ、セリア、ジルコニアが好ましく、アルミナ、ジルコニアがより好ましく、アルミナが特に好ましい。なお、このような金属酸化物の製造方法は特に制限されず、公知の方法を適宜利用することができる。また、このような金属酸化物としては市販のものを適宜利用してもよい。
 また、前記チタニア担持物を製造するための方法としては、前記金属酸化物にチタニアを所定量担持することが可能な方法であればよく、特に制限されず、例えば、チタンの塩を所定の濃度で含有する溶液を前記金属酸化物に接触せしめて担持させた後、これを焼成する方法を採用することができる。このような方法を採用する場合においては、チタニアの担持量が前記所定の範囲内の値となるように、利用する溶液の量や濃度を適宜変更したり、担持工程を適宜繰り返すことにより、前記所定の担持量のチタニア担持物を製造することができる。また、このような金属酸化物に担持するために用いるチタンの塩としては特に制限されないが、例えば、リン酸塩、硫酸塩、硝酸塩、酢酸塩、塩化物、有機酸塩(アクリル酸塩など)、炭素数1~4のアルコキシド(例えば、メトキシド、エトキシド、プロポキシド、ブトキシド)等を適宜利用することができる。また、前記金属酸化物に前記溶液を担持した後に溶媒を除去するために乾燥工程を実施することが好ましく、この場合には、乾燥条件として30~150℃で1~24時間の条件を採用することが好ましい。また、このようなチタニア担持物を製造する際の焼成工程においては、500~900℃(より好ましくは550~800℃)の温度条件で1~20時間焼成することが好ましい。かかる焼成温度や焼成時間が前記下限未満になると、原料中の炭素が十分に除去できなくなる傾向にあり、他方、前記上限を超えると、比表面積が小さくなる傾向にある。
 さらに、このような第一酸化物担体が粉末状である場合には、その粉末の粒子(前記複合金属酸化物が一次粒子の凝集体である場合には二次粒子)の平均粒子径は、0.01~100μmであることが好ましく、0.1~10μmであることがより好ましい。このような平均粒子径が前記下限未満では、高温条件下において担体が焼結し易くなる傾向にあり、他方、前記上限を超えると、COや炭化水素が拡散し難くなって酸化触媒活性が低下する傾向にある。
 また、このような第一酸化物担体の比表面積としては15m/g以上であることが好ましく、30~300m/gであることが好ましい。前記比表面積が前記下限未満である場合には、酸化銅を十分に分散させて担持せしめることが困難となる傾向にあり、他方、前記上限を超える場合には、担体の熱劣化による比表面積の減少量が大きくなる傾向にある。このような比表面積はいわゆるBET1点法により測定できる。
 また、本発明にかかる触媒(A)においては、前述のような第一酸化物担体に酸化銅が担持されている。このように触媒(A)においては触媒成分として酸化銅を備える。このような酸化銅の担持量は、触媒(A)中において1~30質量%であることが好ましく、3~10質量%であることが特に好ましい。このような酸化銅の担持量が前記下限未満では、得られる酸化触媒に十分な活性を付与することができなくなる傾向にあり、他方、前記上限を超えると、第一酸化物担体の上に担持されていない粗大なCuO粒子が生成されてしまい、酸化銅を有効に利用することが困難になる傾向にある。
 このような酸化銅の担持方法としては、例えば、銅(Cu)の化合物を所定の濃度で含有する溶液を、前記第一酸化物担体に接触させることにより、所定量の銅の化合物を含む溶液を前記担体に担持させた後、これを焼成する方法を採用することができる。このような酸化銅の担持に用いる銅の化合物としては、銅のリン酸塩、硫酸塩、硝酸塩、酢酸塩、塩化物、有機酸塩(アクリル酸塩など)、炭素数1~4のアルコキシド(例えば、メトキシド、エトキシド、プロポキシド、ブトキシド)等を適宜利用することができる。
 また、このような酸化銅の担持方法における焼成工程は大気中で実施してもよい。また、このような焼成工程における焼成温度としては200~700℃が好ましい。このような焼成温度が前記下限未満になると、前記銅の化合物が十分に熱分解せず、担体に酸化銅を担持することが困難となり、酸化触媒の十分な酸化活性が得られなくなる傾向にあり、他方、前記上限を超えると、第一酸化物担体の比表面積の低下が起こり易くなり、これにより酸化活性が低下してしまう傾向にある。また、焼成時間としては0.1~100時間が好ましい。このような焼成時間が前記下限未満になると前記銅の化合物が十分に熱分解されず、酸化銅を担持することが困難となり、得られる酸化触媒の酸化活性が低下する傾向にあり、他方、前記上限を超えても、それ以上の効果は得られず、触媒を調製するためのコストの増大に繋がる傾向にある。
 なお、このような触媒(A)においては、その効果を損なわない限りにおいて、酸化触媒の分野において用いることが可能な公知の他の成分を適宜利用してもよい。
 次に、本発明の酸化触媒に用いる触媒(B)について説明する。触媒(B)は、アルミナ、セリア及びジルコニアの中から選択される1種以上の酸化物を80質量%以上含有する第二酸化物担体及び該第二酸化物担体に担持された貴金属を備えるものである。
 このような第二酸化物担体は、アルミナ、セリア及びジルコニアの中から選択される1種以上の酸化物を80質量%以上含有するものである。このような酸化物の含有量が前記下限未満では、貴金属が高い分散状態で担持され難くなり、酸化触媒における酸化活性が低下する。また、このような酸化物の含有量としては、同様の理由から、85質量%以上であることがより好ましく、90質量%以上であることがより好ましく、95質量%以上100質量%以下であることが特に好ましい。
 また、このような第二酸化物担体においてアルミナ、セリア及びジルコニアは、それらの複合化物として含有させてもよく、例えば、アルミナ、セリア、ジルコニアの他、セリア-ジルコニア(複合酸化物)、又は、アルミナ-セリア-ジルコニア(複合酸化物)等として第二酸化物担体中に含有させてもよい。また、このような第二酸化物担体としては、1種を単独であるいは2種以上を組み合わせて利用することができる。更に、第二酸化物担体中に含有させることが可能な他の酸化物としては、例えば、ランタン、バリウム、ストロンチウム、カルシウム、マグネシウムの酸化物を挙げることができる。
 また、このような第二酸化物担体においては、貴金属が高い分散状態で担持され、かつ、凝集し難いという観点から、アルミナ、セリア、ジルコニア、セリア-ジルコニア(複合酸化物)及びアルミナ-セリア-ジルコニア(複合酸化物)のいずれか1種以上を含有するものが好ましく、アルミナ、セリア-ジルコニアのうちのいずれか1種以上を含有するものがより好ましく、アルミナを含有するものが特に好ましい。なお、このような第二酸化物担体の製造方法は特に制限されず、公知の方法を適宜利用することができる。また、このような第二酸化物担体としては市販のものを適宜利用してもよい。
 さらに、このような第二酸化物担体が粉末状である場合には、その粉末の粒子(担体が複合酸化物を含む場合において複合酸化物が一次粒子の凝集体である場合には二次粒子)の平均粒子径は、0.01~100μmであることが好ましく、0.1~10μmであることがより好ましい。このような平均粒子径が前記下限未満では、高温条件下において担体が焼結し易くなる傾向にあり、他方、前記上限を超えると、COや炭化水素が拡散し難くなって酸化触媒活性が低下する傾向にある。
 また、このような第二酸化物担体の比表面積としては15m/g以上であることが好ましく、30~300m/gであることが好ましい。前記比表面積が前記下限未満である場合には、貴金属を十分に分散させて担持せしめることが困難となり、十分な酸化活性を得ることが困難となる傾向にあり、他方、前記上限を超える場合には、担体における熱劣化による比表面積の減少量が大きくなる傾向にある。
 また、本発明にかかる触媒(B)においては、前記第二酸化物担体に貴金属が担持されている。このような貴金属としては、白金、ロジウム、パラジウム、オスミウム、イリジウム、金が挙げられる。このような貴金属の中でも、より高度な触媒活性が得られることから、白金、ロジウム、パラジウムがより好ましく、白金を用いることが更に好ましい。
 また、このような貴金属の担持量としては、触媒(B)中において0.01~10質量%であることが好ましく、0.1~5質量%であることが特に好ましい。このような貴金属の担持量が前記下限未満では排ガス中の一酸化炭素及び炭化水素に対して十分な酸化活性を得ることが困難になる傾向にあり、他方、前記上限を超えると、貴金属の使用量が多くなり過ぎて経済性が低下するとともに貴金属を使用することにより得られる効果が飽和する傾向にある。
 このような貴金属を担持させる方法は特に制限されないが、例えば、貴金属の塩(硝酸塩、塩化物、酢酸塩等)又は貴金属の錯体を水、アルコール等の溶媒に溶解した溶液を前記第二酸化物担体に接触させて、該担体に前記溶液を担持した後に焼成する方法を好適に用いることができる。このような貴金属を担持させる方法においては、該担体に前記溶液を担持した後に溶媒を除去するために乾燥工程を実施することが好ましく、この場合には、乾燥条件として30~150℃で1~24時間の条件を採用することが好ましい。また、貴金属を担持させる方法における焼成条件としては、酸化雰囲気(例えば、空気)中において250~300℃で30~60分程度が好ましい。また、所望の担持量になるまで、このような貴金属を担持させる方法を繰り返し実施してもよい。
 なお、このような触媒(B)においては、その効果を損なわない限りにおいて、酸化触媒の分野において用いることが可能な公知の他の成分を適宜利用してもよい。
 以上、触媒(A)及び触媒(B)について説明したが、次に、これらの混合物からなる本発明の酸化触媒についてより詳細に説明する。
 本発明の酸化触媒は、前述の通り、前記触媒(A)及び前記触媒(B)の混合物からなるものである。本発明においては、前記触媒(A)及び前記触媒(B)において、それぞれ異なる担体を用い、且つ、それらの担体にそれぞれ異なる成分(酸化銅と貴金属)を担持することにより、酸化銅と貴金属との間の相互作用をより効率よく利用して、高温耐熱性及び硫黄被毒に対する耐性をより高度なものとすることを可能としている。
 本発明の酸化触媒において、前記混合物中の触媒(A)と触媒(B)との混合比は、質量比((A):(B))で1:9~9:1であることが好ましく、1:4~4:1であることがより好ましい。このような触媒(A)の質量比が前記下限未満では、触媒(A)中の酸化銅に由来する酸素を十分に利用することができず、十分な触媒活性及び硫黄被毒に対する耐性を得ることが困難となる傾向にあり、他方、触媒(A)の質量比が前記上限を超えると、触媒(B)に由来する貴金属量が相対的に少なくなって、十分な触媒活性を得ることができなくなる傾向にある。
 また、本発明の酸化触媒においては貴金属の全含有量が触媒の全量に対して0.01~10質量%であることが好ましく、0.1~5質量%であることがより好ましい。このような貴金属の全量が前記下限未満では十分な酸化活性を得ることが困難となる傾向にあり、他方、前記上限を超えると、貴金属の使用量が多くなって経済性が低下するとともに貴金属により得られる効果が飽和する傾向にある。
 また、本発明の酸化触媒においては酸化銅の全含有量が触媒の全量に対して1~30質量%であることが好ましく、3~10質量%であることがより好ましい。このような酸化銅の含有量が前記下限未満では酸化銅に由来する酸素を十分に利用することができず、十分な触媒活性及び硫黄被毒に対する耐性を得ることが困難となる傾向にあり、他方、前記上限を超えると、酸化銅が凝集し、活性種として十分に働かない酸化銅が増える傾向にある。
 また、本発明の酸化触媒の形態は特に制限されず、用途に応じて各種の形態に適宜成形して用いることができ、例えば、ペレット状、モノリス状、ハニカム状またはフォーム状等の各種形態に成形した形態として用いてもよく、コージェライト製ハニカム基材等の公知の基材に担持した形態として用いてもよい。このような成形の方法や基材への担持方法としては公知の方法を適宜利用することができる。
 さらに、本発明の酸化触媒が粒子状である場合(ペレット状の場合も含む。)には、その混合物の粒子(一次粒子の凝集体である場合には二次粒子)の平均粒子径は、0.01~100μmであることが好ましく、0.1~10μmであることがより好ましい。このような平均粒子径が前記下限未満では、高温条件下において混合物中の各担体が焼結し易くなる傾向にあり、他方、前記上限を超えると、COや炭化水素が拡散し難くなって酸化触媒活性が低下する傾向にある。
 また、本発明の酸化触媒が粒子状である場合には、比表面積が15m/g以上であることが好ましく、30~300m/gであることが好ましい。前記比表面積が前記下限未満である場合には、活性種(Pt、Cu)が凝集し易く、活性が低下する傾向にあり、他方、前記上限を超える場合には、触媒全体が凝集し易く、活性が低下する傾向にある。
 このような本発明の酸化触媒は、還元性ガスに対して過剰の酸素が存在するような酸素過剰雰囲気(酸素の還元性ガス成分に対する化学当量比が1以上である雰囲気)の排ガス中の一酸化炭素や炭化水素であっても十分に酸化して浄化することができるため、例えば、自動車の内燃機関(特に好ましくはディーゼルエンジン、燃料消費率の低い希薄燃焼式(リーンバーン)エンジン)からの排ガス中の一酸化炭素や炭化水素を酸化除去するための触媒として特に有用である。
 次に、上記本発明の酸化触媒を利用する本発明の排ガス浄化方法を説明する。すなわち、本発明の排ガス浄化方法は、上記本発明の酸化触媒に対して、内燃機関からの排ガスを接触せしめて、排ガス中に含まれる一酸化炭素及び/又は炭化水素を酸化除去する方法である。
 このような排ガスを接触せしめる方法としては特に制限されず、例えば、排ガス管中に上記本発明の酸化触媒を配置し、ガソリン車のエンジン、ディーゼルエンジン、燃料消費率の低い希薄燃焼式(リーンバーン)エンジン等の内燃機関から排出される排ガスを排ガス管中に流通させることにより、前記排ガスを上記本発明の酸化触媒に接触させる方法等を採用してもよい。
 本発明の排ガス浄化方法は、酸素過剰雰囲気下において、一酸化炭素及び/又は炭化水素を含む排ガスを接触せしめて、一酸化炭素及び/又は炭化水素を浄化するための方法として特に好適に利用できる。ここにいう「酸素過剰雰囲気」とは酸素の還元性ガス成分に対する化学当量比が1以上である雰囲気をいう。このように、本発明によれば、ディーゼルエンジン、燃料消費率の低い希薄燃焼式(リーンバーン)エンジンから排出される酸素過剰雰囲気の排ガスであっても、効率よく浄化することができる。
 また、このようにして排ガスを浄化させる際に、本発明の酸化触媒を単独であるいは他の材料とともに、基材等に担持せしめて利用してもよい。このような基材としては特に制限されず、排ガス浄化用の触媒を担持するために用いることが可能な公知の基材を適宜利用することができる。また、このようにして内燃機関からの排ガスを浄化させる際には、より効率よく排ガスを浄化するという観点から、上記本発明の酸化触媒を他の触媒と組み合わせて用いてもよい。このような他の触媒としては、特に制限されず、公知の触媒(例えば、NOx還元触媒、NOx吸蔵還元型(NSR触媒)、NOx選択還元触媒(SCR触媒)等)を適宜用いることができる。
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 (実施例1)
 先ず、チタニア(TiO)の粉末(エボニック社製の商品名「P25」、比表面積40m/g)10gに、硝酸銅三水和物2.3gを溶解させた水溶液を含浸させ、蒸発乾固した後、110℃で一晩(16時間)乾燥させ、次いで、500℃で3時間焼成することにより、チタニアに酸化銅を担持して触媒(A-1)を製造した。なお、このような触媒(A-1)中における酸化銅の担持量は7.0質量%であった。
 次に、アルミナ(Al)の粉末(日揮ユニバーサル社製の商品名「TN4」、比表面積200m/g)10gに対して、白金の担持量が1.0質量%となるようにして、ジニトロジアンミン白金錯体水溶液(ジニトロジアンミン白金錯体の濃度:0.2mol/L)を含浸させ、蒸発乾固した後、110℃で一晩(16時間)乾燥させ、次いで、500℃で3時間焼成することにより、アルミナに白金を担持した触媒(B-1)を得た。なお、このような触媒(B-1)中における白金の担持量は1.0質量%であった。
 次いで、前記触媒(A-1)10g及び前記触媒(B-1)10gの各粉末を乳鉢にて混合し、定法(CIP法)により圧粉成形した後、破砕して直径0.5~1.0mmのペレット状に成形して、本発明の酸化触媒(比表面積:120m/g)を得た。このような酸化触媒中の最終的な酸化銅の含有量は3.5質量%であり、白金の含有量は0.5質量%であった。
 (実施例2)
 触媒(A-1)の製造工程においてチタニア(TiO)の粉末10gを用いる代わりに以下の調製方法を採用して得られたチタニアとジルコニアの複合金属酸化物(TiO:ZrOの質量比が80:20)10gを用いて、触媒(A-1)を製造する代わりに、前記チタニアとジルコニアの複合金属酸化物に酸化銅を担持した触媒(A-2)を製造した以外は、実施例1と同様にして酸化触媒を製造した。すなわち、このようにして得られた酸化触媒は、前記触媒(A-2)10gと前記触媒(B-1)10gの混合物(直径0.5~1.0mmのペレット状、比表面積:135m/g)であり、その酸化触媒中の最終的な酸化銅の含有量は3.5質量%であり、白金の含有量は0.5質量%であった。
 〈チタニアとジルコニアの複合金属酸化物の調製方法〉
 先ず、チタニア(TiO)換算で27.5質量%濃度の四塩化チタンを含有する四塩化チタン水溶液174.4gと、ZrO換算で18質量%濃度のオキシ硝酸ジルコニウムを含有するオキシ硝酸ジルコニウム水溶液66.7gとをイオン交換水500gに溶解して水溶液を得た後に、その水溶液に30質量%濃度の過酸化水素水80g及びノニオン系界面活性剤(ライオン社製の商品名「レオコン1020H」)12gを更に添加して原料水溶液を調製した。次いで、前記原料水溶液をプロペラ撹拌と併用してホモジェナイザー(回転速度:11000min-1)を用いて均一に撹拌しながら、その原料水溶液に対して、25質量%濃度のアンモニア水溶液228gをイオン交換水500gで希釈したアンモニア水溶液を、添加し、沈殿を生成させた。次に、このようにして得られた沈殿を回収して150℃で7時間乾燥した。次いで、乾燥後の沈殿に対して、昇温速度50℃/hの条件で150℃から400℃まで昇温して400℃で5時間焼成する処理を施した後、更に、昇温速度50℃/hの条件で500℃まで昇温して500℃で5時間焼成する処理を施し、チタニアとジルコニアの質量比(TiO:ZrO)が80:20であるチタニアとジルコニアの複合金属酸化物を得た。なお、このようなジルコニアの複合金属酸化物の粉末の比表面積は70m/gであった。
 (実施例3)
 触媒(A-1)の製造工程においてチタニア(TiO)の粉末10gを用いる代わりに以下の調製方法を採用して得られたチタニアの担持量が30質量%のチタニア担持物10gを用いて、触媒(A-1)を製造する代わりに前記チタニア担持物に酸化銅を担持した触媒(A-3)を製造した以外は、実施例1と同様にして酸化触媒を製造した。すなわち、このようにして得られた酸化触媒は、前記触媒(A-3)10gと前記触媒(B-1)10gの混合物(直径0.5~1.0mmのペレット状、比表面積:150m/g)であり、その酸化触媒中の最終的な酸化銅の含有量は3.5質量%であり、白金の含有量は0.5質量%であった。
 〈チタニア担持物の調製方法〉
 先ず、クエン酸380.4gをイオン交換水365gに溶かした溶液を80℃まで昇温した後、前記溶液にチタンテトライソプロポキシド179.7gを加えて8時間攪拌してチタンテトライソプロポキシド含有溶液を得た。次に、得られたチタンテトライソプロポキシド含有溶液をアルミナ(Al)の粉末(日揮ユニバーサル社製の商品名「TN4」、比表面積200m/g)50gに含浸して担持した後、110℃で一晩(16時間)乾燥させ、550℃で5時間焼成してアルミナに対してチタニアを担持した(チタニア担持工程)。そして、このようなチタニア担持工程を、チタニアの担持量が30質量%となるまで繰り返し実施して、チタニアとアルミナの質量比(TiO:Al)が30:70となるようにした後、800℃で5時間焼成して、チタニア担持物(アルミナにチタニアが30質量%の割合で担持された担体)を得た。なお、このようなチタニア担持物の粉末の比表面積は100m/gであった。
 (比較例1)
 アルミナ(Al)の粉末(日揮ユニバーサル社製の商品名「TN4」、比表面積200m/g)10gに対して、白金の担持量が1.0質量%となるようにして、ジニトロジアンミン白金錯体水溶液(ジニトロジアンミン白金錯体の濃度:0.2mol/L)を含浸させ、蒸発乾固した後、110℃で一晩(16時間)乾燥させ、次いで、500℃で3時間焼成することにより、アルミナに白金を1.0質量%担持した比較用の触媒(C-1)を得た。そして、触媒(C-1)を定法(CIP法)により圧粉成形した後、破砕して直径0.5~1.0mmのペレット状に成形することにより、触媒(C-1)からなる比較用の酸化触媒(比表面積:200m/g)を得た。なお、このような酸化触媒中における白金の含有量は1.0質量%であった。
 (比較例2)
 白金の担持量を1.0質量%から0.5質量%に変更した以外は比較例1と同様にして、アルミナに白金を0.5質量%担持した比較用の触媒(C-2)を得た後、触媒(C-2)からなる比較用の酸化触媒(直径0.5~1.0mmのペレット状、比表面積:200m/g)を得た。なお、このような酸化触媒中における白金の含有量は0.5質量%であった。
 (比較例3)
 触媒(A-1)の製造工程においてチタニア(TiO)の粉末10gを用いる代わりにアルミナ(Al)の粉末(日揮ユニバーサル社製の商品名「TN4」、比表面積200m/g)10gを用いて、触媒(A-1)を製造する代わりに前記アルミナに酸化銅を担持した比較のための触媒(C-3)を製造した以外は、実施例1と同様にして比較用の酸化触媒を製造した。すなわち、このようにして得られた酸化触媒は、前記触媒(C-3)10gと前記触媒(B-1)10gの混合物(直径0.5~1.0mmのペレット状、比表面積:200m/g)であり、その酸化触媒中の最終的な酸化銅の含有量は3.5質量%であり、白金の含有量は0.5質量%であった。
 (比較例4)
 触媒(A-1)の製造工程においてチタニア(TiO)の粉末10gを用いる代わりにセリア(CeO)の粉末(阿南化成社製、比表面積60m/g)10gを用いて、触媒(A-1)を製造する代わりに前記セリアに酸化銅を担持した比較のための触媒(C-4)を製造した以外は、実施例1と同様にして比較用の酸化触媒を製造した。すなわち、このようにして得られた酸化触媒は、前記触媒(C-4)10gと前記触媒(B-1)10gの混合物(直径0.5~1.0mmのペレット状、比表面積:130m/g)であり、その酸化触媒中の最終的な酸化銅の含有量は3.5質量%であり、白金の含有量は0.5質量%であった。
 (比較例5)
 触媒(B-1)の製造工程においてアルミナ(Al)の粉末10gを用いる代わりにチタニア(TiO)の粉末(エボニック社製の商品名「P25」、比表面積40m/g)10gを用いて、触媒(B-1)を製造する代わりに前記チタニアに白金を担持した比較のための触媒(C-5)を製造した以外は、実施例1と同様にして比較用の酸化触媒を製造した。すなわち、このようにして得られた酸化触媒は、前記触媒(A-1)10gと前記触媒(C-5)10gの混合物(直径0.5~1.0mmのペレット状、比表面積:40m/g)であり、その酸化触媒中の最終的な酸化銅の含有量は3.5質量%であり、白金の含有量は0.5質量%であった。
 (比較例6)
 前記触媒(A-1)10gの代わりに比較例3に記載の方法と同様の方法を採用して得られたアルミナに酸化銅を担持した比較のための触媒(C-3)10gを用いるとともに、前記触媒(B-1)10gの代わりに比較例5に記載の方法と同様の方法を採用して得られた前記チタニアに白金を担持した比較のための触媒(C-5)10gを用いた以外は、実施例1と同様にして比較用の酸化触媒を製造した。すなわち、このようにして得られた酸化触媒は、前記触媒(C-3)10gと前記触媒(C-5)10gの混合物(直径0.5~1.0mmのペレット状、比表面積:120m/g)であり、その酸化触媒中の最終的な酸化銅の含有量は3.5質量%であり、白金の含有量は0.5質量%であった。
 (比較例7)
 アルミナ(Al)の粉末(日揮ユニバーサル社製の商品名「TN4」、比表面積200m/g)10gに対して、硝酸銅三水和物1.2gを溶解させた水溶液を含浸させた後、ジニトロジアンミン白金錯体水溶液(ジニトロジアンミン白金錯体の濃度:0.2mol/L)を含浸させ、蒸発乾固した後、更に110℃で一晩(16時間)乾燥させ、次いで、500℃で3時間焼成することにより、アルミナに酸化銅3.5質量%と白金0.5質量%とを担持して比較用の触媒(C-6)を得た。次いで、比較用の触媒(C-6)を定法(CIP法)により圧粉成形した後、破砕して直径0.5~1.0mmのペレット状に成形することにより、触媒(C-6)からなる比較用の酸化触媒(比表面積:200m/g)を得た。なお、このような酸化触媒中における酸化銅の含有量は3.5質量%であり、白金の含有量は0.5質量%であった。
 (比較例8)
 チタニア(TiO)の粉末(エボニック社製の商品名「P25」、比表面積40m/g)10gに対して、硝酸銅三水和物2.3gを溶解させた水溶液を含浸させ、蒸発乾固した後、110℃で一晩(16時間)乾燥させ、次いで、500℃で3時間焼成することにより、チタニアに酸化銅を担持した触媒(C-7)からなる比較用の酸化触媒(直径0.5~1.0mmのペレット状、比表面積:40m/g)を得た。なお、このような酸化触媒中における酸化銅の含有量は7.0質量%であった。
 [実施例1~3及び比較例1~8で得られた酸化触媒の特性の評価]
 〈耐熱試験〉
 実施例1~3及び比較例1~8で得られた酸化触媒に対して、以下のようにして耐熱試験を実施した。すなわち、耐熱試験として、酸化触媒(初期状態)2.5gを15mlの磁性るつぼに入れ、空気を1000ml/分で供給しながら800℃の温度条件で5時間加熱する処理を施す方法を採用した。なお、ここにいう「初期状態」とは触媒の製造後において耐熱試験や後述する硫黄被毒再生試験のいずれも施していない状態をいう。
 〈耐熱試験を施した後の酸化触媒の酸化活性の測定〉
 上記耐熱試験後の実施例1~3及び比較例1~8で得られた酸化触媒をそれぞれ用いて、以下のようにして酸化活性を測定した。すなわち、酸化活性の測定試験においては、先ず、固定床流通式反応装置を用い、内径15mmの石英反応管に耐熱試験後の酸化触媒1.0gを充填し、CO(1000ppm)、C(500ppmC:炭素換算における容量比)、NO(100ppm)、O(10容量%)、CO(10容量%)、HO(10容量%)およびN(残部)からなるモデルガスを7000ml/分の条件で前記酸化触媒に供給しながら500℃で10分間加熱した後、70℃となるまで冷却する処理(前処理)を施した。次いで、前記前処理後の前記酸化触媒に対して前記モデルガスを7000ml/分で供給しながら、触媒への入りガス温度を10℃/分の昇温速度で70℃から520℃まで昇温した。そして、このような昇温中における触媒からの出ガス(触媒に接触した後に石英反応管から排出されるガス)中のCO濃度及びC濃度を連続ガス分析計を用いて測定し、モデルガス(入りガス)中のCO濃度及びC濃度と、出ガス中のCO濃度及びC濃度とから、CO転化率及びC転化率を算出し、CO転化率及びC転化率が、それぞれ50%に到達したときの温度をCOとCの50%転化温度としてそれぞれ求めた。得られた結果を図1に示す。
 〈硫黄被毒再生試験A〉
 上記耐熱試験後の実施例1、3及び比較例1、2、4、6、7で得られた酸化触媒に対して、以下のようにして硫黄被毒再生試験Aを実施した。すなわち、先ず、固定床流通式反応装置を用い、内径15mmの石英反応管に酸化触媒(耐熱試験後)1.0gを充填し、触媒1.0gに対して、CO(1000ppm)、C(500ppmC:炭素換算における容量比)、NO(100ppm)、O(10容量%)、CO(10容量%)、HO(10容量%)およびN(残部)を7000ml/分の条件で前記酸化触媒に供給しながら500℃で10分間加熱した後、更に、前記酸化触媒に対して、前記モデルガスにSO(30ppm)添加した硫黄成分含有ガスを7000ml/分、500℃の条件で55.5分間供給した。次に、このようにして硫黄成分含有ガスを供給した後の前記酸化触媒に対して、SOを含まない前記モデルガスを7000ml/分、620℃の条件で10分間供給した。なお、このような硫黄成分含有ガスの供給による各酸化触媒に対する硫黄成分の供給量は硫黄(S)換算で触媒120gあたり2gであった。
 〈硫黄被毒再生試験B〉
 上記耐熱試験後の実施例1~3及び比較例1、3で得られた酸化触媒(硫黄被毒再生試験Aは未実施のもの)に対して、硫黄被毒再生試験Bを実施した。このような硫黄被毒再生試験Bは、前記硫黄成分含有ガスへのSOの添加量を30ppmから120ppmに変更した以外は上述の「硫黄被毒再生試験A」と同様の試験とした。なお、硫黄被毒再生試験Bにおいては、硫黄成分含有ガスの供給による各酸化触媒に対する硫黄成分の供給量は、硫黄(S)換算で触媒120gあたり8gであった。
 〈硫黄被毒再生試験A又はBを施した後の酸化触媒の酸化活性の測定〉
 硫黄被毒再生試験Aを施した後の酸化触媒(実施例1、3及び比較例1、2、4、6、7)及び硫黄被毒再生試験Bを施した後の酸化触媒(実施例1~3及び比較例1、3)をそれぞれ用いて、酸化活性を測定した。なお、このような酸化活性の測定においては、耐熱試験後の酸化触媒を用いる代わりに、硫黄被毒再生試験Aを施した後の酸化触媒及び硫黄被毒再生試験Bを施した後の酸化触媒をそれぞれ用いた以外は、上述の「耐熱試験を施した後の酸化触媒の酸化活性の測定」と同様の方法を採用した。硫黄被毒再生試験Aを施した後の酸化触媒のCOとCの50%転化温度を図2に示し、硫黄被毒再生試験Bを施した後の酸化触媒のCOとCの50%転化温度を図3に示す。
 図1に示す結果からも明らかなように、実施例1~3で得られた酸化触媒はいずれも、耐熱試験後においてCOの50%転化温度が210℃以下で且つCの50%転化温度が215℃以下となっているのに対して、比較例2で得られた酸化触媒においては耐熱試験後においてCOの50%転化温度が235℃となっており且つCの50%転化温度が240℃となっていた。このように、実施例1~3で得られた酸化触媒は白金の担持量が同量となる比較例2で得られた酸化触媒(アルミナに白金を担持した触媒)と比較して、COとCの50%転化温度が共に十分に低い値となっており、耐熱試験後においても十分に高度なCOとCの酸化活性を示すことが確認された。また、実施例1~3で得られた酸化触媒は、白金の担持量が2倍となる比較例1で得られた酸化触媒(アルミナに白金を担持した触媒)に対してもほぼ同等又はそれ以上の酸化活性を示すことが確認された。このような結果から、チタニアを含む担体に酸化銅を担持した触媒(A-1)~(A-3)のいずれかと、アルミナに白金を担持した触媒(B-1)との混合物を利用することにより、アルミナに白金を担持した触媒のみを利用した場合と比較して耐熱性が向上し、十分に高度な酸化活性を示すことが分かった。
 また、図1に示す結果からも明らかなように、実施例1~3で得られた酸化触媒は、チタニアに白金を担持した触媒(C-5)を含む比較例5~6で得られた酸化触媒と比較して、耐熱試験後においても十分に高度なCOとCの酸化活性を示すことが確認された。このような結果から、チタニアに白金を担持した場合には十分な耐熱性が得られないことが分かった。なお、このような結果に関して、本発明者らは、白金がチタニア上に担持されている場合には高温により担体の比表面積が低下し、これにより活性が低下したものと推察する。
 また、実施例1~3で得られた酸化触媒は、チタニアに酸化銅を担持させた触媒(C-7)からなる比較例8で得られた酸化触媒と比較して、耐熱試験後においても十分に高度なCOとCの酸化活性を示すことが確認された。このような結果から、チタニアを含む担体に酸化銅を担持した触媒とともに、アルミナに白金を担持した触媒を利用することにより、耐熱試験後においても十分に高度な酸化活性を示すことが分かった。
 更に、図1に示す結果からも明らかなように、比較例7で得られた酸化触媒においては耐熱試験後においてCOの50%転化温度が210℃よりも高い温度となっており且つCの50%転化温度が215℃よりも高い温度となっていることから、アルミナに酸化銅と白金とを共担持させた触媒(C-6)からなる比較例7で得られた酸化触媒と比較して、実施例1~3で得られた酸化触媒は、耐熱試験後において、より高度なCOとCの酸化活性を示すことが確認された。このような結果から、酸化銅を担持するための担体をチタニアを含有する担体とし、且つ、貴金属を担持するための担体をアルミナを含有する担体とすることにより、同一の担体に酸化銅と貴金属を共に担持した場合と比較して、より高度な高温耐久性を有するものとなることが分かった。
 また、図2に示す結果からも明らかなように、実施例1、3で得られた酸化触媒はいずれも、硫黄被毒再生試験Aを施した後においてCOの50%転化温度が210℃以下で且つCの50%転化温度が215℃以下となっているのに対して、比較例1、2、4、6、7で得られた酸化触媒においてはいずれも、硫黄被毒再生試験Aを施した後においてCOの50%転化温度が210℃よりも高い温度となっており且つCの50%転化温度が215℃よりも高い温度となっていた。また、図3に示す結果からも明らかなように、実施例1~3で得られた酸化触媒はいずれも、硫黄被毒再生試験Bを施した後においてCOの50%転化温度が205℃以下で且つCの50%転化温度が205℃以下となっているのに対して、比較例1、3で得られた酸化触媒においてはいずれも、硫黄被毒再生試験Bを施した後においてCOの50%転化温度が205℃よりも高い温度となっており且つCの50%転化温度が205℃よりも高い温度となっていた。このような図2及び図3に示す結果からも明らかなように、実施例1~3で得られた酸化触媒はいずれも、比較例1~4及び比較例6~7で得られた酸化触媒と比較して、硫黄被毒後においても十分に高度なCOとCの酸化活性を示すことが確認され、十分に高い硫黄被毒に対する耐性を有することが確認された。特に、高温耐久性の点においては十分な結果を示していた比較例3~4で得られた酸化触媒(図1参照)においても、硫黄被毒後においてはCOとCの酸化活性が低下しており、十分な酸化活性が得られなかった。比較例3~4で得られた酸化触媒の構成が、酸化銅を担持するための担体としてそれぞれアルミナ(比較例3)、セリア(比較例4)を利用した以外は基本的に実施例1~3で得られた酸化触媒と同様の構成のであることから、酸化銅を担持するための担体としてチタニアを含有する担体を利用することによって硫黄被毒に対する耐性が向上することが分かった。
 このような結果から、酸化銅を担持するための担体をチタニアを含有する担体とし、且つ、貴金属を担持するための担体をアルミナを含有する担体とすることにより、十分に高度な高温耐久性と、優れた硫黄被毒に対する耐性とを両立することが可能であることが確認された。
 以上説明したように、本発明によれば、高温による触媒性能の劣化を十分に抑制することが可能な十分に高度な水準の高温耐久性と、硫黄被毒による触媒性能の劣化を十分に抑制することが可能な優れた硫黄被毒に対する耐性とを有し、800℃程度の高温に晒された場合や硫黄成分を含むガス(SOx)に曝された場合のいずれにおいても十分に高度な酸化活性を有することが可能な酸化触媒、及び、その酸化触媒を用いた排ガス浄化方法を提供することが可能となる。
 従って、本発明の酸化触媒は、自動車の内燃機関からの排ガス(特に好ましくはディーゼルエンジンからの排ガス(酸化雰囲気のガス))中の一酸化炭素や炭化水素を酸化して浄化するための触媒等として特に有用である。

Claims (10)

  1.  排ガス中に含まれる一酸化炭素及び/又は炭化水素を酸化除去するための酸化触媒であって、
     チタニアを25質量%以上含有する第一酸化物担体及び該第一酸化物担体に担持された酸化銅を備える触媒(A)と、
     アルミナ、セリア及びジルコニアの中から選択される1種以上の酸化物を80質量%以上含有する第二酸化物担体及び該第二酸化物担体に担持された貴金属を備える触媒(B)と、
    の混合物からなる、酸化触媒。
  2.  前記第一酸化物担体が、チタニア、チタニアの含有量が50質量%以上である複合金属酸化物、及び、金属酸化物にチタニアが25質量%以上の割合で担持されたチタニア担持物のうちの少なくとも1種からなる、請求項1に記載の酸化触媒。
  3.  前記複合金属酸化物が、チタニアと、ジルコニア、セリア、酸化スズ及び酸化ニオブのうちの少なくとも1種とを含有する複合金属酸化物である、請求項2に記載の酸化触媒。
  4.  前記複合金属酸化物が、チタニアとジルコニアとを含有する複合金属酸化物である、請求項2又は3に記載の酸化触媒。
  5.  前記チタニア担持物中の前記金属酸化物がアルミナ、シリカ、セリア及びジルコニアのうちの少なくとも1種である、請求項2~4のうちのいずれか一項に記載の酸化触媒。
  6.  前記チタニア担持物中の前記金属酸化物がアルミナである、請求項2~5のうちのいずれか一項に記載の酸化触媒。
  7.  前記混合物中の触媒(A)と触媒(B)との混合比が、質量比((A):(B))で1:9~9:1である、請求項1~6のうちのいずれか一項に記載の酸化触媒。
  8.  前記触媒(A)において前記第一酸化物担体に前記酸化銅が1~30質量%の割合で担持されている、請求項1~7のうちのいずれか一項に記載の酸化触媒。
  9.  前記触媒(B)において前記第二酸化物担体に前記貴金属が0.01~10質量%の割合で担持されている、請求項1~8のうちのいずれか一項に記載の酸化触媒。
  10.  請求項1~9のうちのいずれか一項に記載の酸化触媒に対して、内燃機関からの排ガスを接触せしめて、排ガス中に含まれる一酸化炭素及び/又は炭化水素を酸化除去する、排ガス浄化方法。
PCT/JP2013/050827 2012-03-05 2013-01-17 酸化触媒及びそれを用いた排ガス浄化方法 WO2013132895A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13757647.6A EP2823887B1 (en) 2012-03-05 2013-01-17 Oxidation catalyst and exhaust gas purification method using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012047985A JP5616382B2 (ja) 2012-03-05 2012-03-05 酸化触媒及びそれを用いた排ガス浄化方法
JP2012-047985 2012-03-05

Publications (1)

Publication Number Publication Date
WO2013132895A1 true WO2013132895A1 (ja) 2013-09-12

Family

ID=49116382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050827 WO2013132895A1 (ja) 2012-03-05 2013-01-17 酸化触媒及びそれを用いた排ガス浄化方法

Country Status (3)

Country Link
EP (1) EP2823887B1 (ja)
JP (1) JP5616382B2 (ja)
WO (1) WO2013132895A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016540144A (ja) * 2013-10-03 2016-12-22 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフトUmicore AG & Co.KG 排気後処理システム
CN114181031A (zh) * 2020-09-14 2022-03-15 中国石油化工股份有限公司 一种从甲烷氧化偶联制备乙烯废气中回收甲烷的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10821423B2 (en) * 2015-11-06 2020-11-03 Basf Corporation Diesel oxidation catalyst combining platinum group metal with base metal oxide
CN114645761B (zh) * 2022-03-31 2023-03-21 潍柴动力股份有限公司 一种doc硫中毒判断方法及车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08131778A (ja) * 1994-11-10 1996-05-28 Agency Of Ind Science & Technol 排ガス浄化材及び排ガス浄化方法
JPH08168650A (ja) * 1994-12-15 1996-07-02 Riken Corp 排ガス浄化材及び排ガス浄化方法
JP2006043634A (ja) 2004-08-06 2006-02-16 Nissan Motor Co Ltd 排ガス浄化用触媒及び排ガス浄化用触媒の製造方法
JP2008221217A (ja) 2008-06-06 2008-09-25 Nissan Motor Co Ltd 排ガス浄化用触媒及びその製造方法
JP2008272614A (ja) 2007-04-25 2008-11-13 Mitsubishi Heavy Ind Ltd Co除去触媒、燃料改質装置、燃料電池システム及びco除去方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3364798D1 (en) * 1982-04-21 1986-09-04 Bridgestone Tire Co Ltd Use of a catalyst for cleaning exhaust gas particulates
US8575054B2 (en) * 2004-07-15 2013-11-05 Nikki-Universal Co., Ltd. Catalyst for purifying organic nitrogen compound-containing exhaust gas and method for purifying the exhaust gas
US7569510B2 (en) * 2006-02-27 2009-08-04 Philip Morris Usa Inc. Catalysts to reduce carbon monoxide such as in the mainstream smoke of a cigarette
US8765625B2 (en) * 2009-12-10 2014-07-01 Shubin, Inc. Engine exhaust catalysts containing copper-ceria

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08131778A (ja) * 1994-11-10 1996-05-28 Agency Of Ind Science & Technol 排ガス浄化材及び排ガス浄化方法
JPH08168650A (ja) * 1994-12-15 1996-07-02 Riken Corp 排ガス浄化材及び排ガス浄化方法
JP2006043634A (ja) 2004-08-06 2006-02-16 Nissan Motor Co Ltd 排ガス浄化用触媒及び排ガス浄化用触媒の製造方法
JP2008272614A (ja) 2007-04-25 2008-11-13 Mitsubishi Heavy Ind Ltd Co除去触媒、燃料改質装置、燃料電池システム及びco除去方法
JP2008221217A (ja) 2008-06-06 2008-09-25 Nissan Motor Co Ltd 排ガス浄化用触媒及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2823887A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016540144A (ja) * 2013-10-03 2016-12-22 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフトUmicore AG & Co.KG 排気後処理システム
CN114181031A (zh) * 2020-09-14 2022-03-15 中国石油化工股份有限公司 一种从甲烷氧化偶联制备乙烯废气中回收甲烷的方法

Also Published As

Publication number Publication date
EP2823887A4 (en) 2015-12-30
JP5616382B2 (ja) 2014-10-29
JP2013180283A (ja) 2013-09-12
EP2823887A1 (en) 2015-01-14
EP2823887B1 (en) 2020-12-02

Similar Documents

Publication Publication Date Title
JP3858625B2 (ja) 複合酸化物とその製造方法及び排ガス浄化用触媒とその製造方法
US8057745B2 (en) Catalyst system for vehicle exhaust gas purification devices, exhaust gas purification device using the same, and method for purification of exhaust gases
US8053388B2 (en) Catalyst support particle, exhaust gas purifying catalyst, and production processes thereof
US20160129430A1 (en) Oxidation catalyst for exhaust gas purification, method for producing the same, and exhaust gas purification method using the same
JP5327048B2 (ja) 排ガス浄化触媒担体の製造方法および排ガス浄化触媒担体
WO2014041984A1 (ja) 排気ガス浄化用触媒担体
JPWO2017203863A1 (ja) ガソリンエンジン排気ガスの浄化用三元触媒
WO2012161091A1 (ja) 排気ガス浄化用触媒及び担体
JP5616382B2 (ja) 酸化触媒及びそれを用いた排ガス浄化方法
JP5078125B2 (ja) 排ガス浄化用触媒及びその再生方法
US9084967B2 (en) Oxygen adsorbent based on lanthanoide oxysulfate, method for producing it, and exhaust gas purifying catalyst containing it
JP4794834B2 (ja) 排ガス浄化用触媒
JP3766568B2 (ja) 排ガス浄化用触媒および排ガス浄化方法
JP4483348B2 (ja) 触媒
JP2007301471A (ja) 排ガス浄化用触媒
JP5019019B2 (ja) 排ガス浄化用触媒担体、それを用いた排ガス浄化用触媒及び排ガス浄化方法
JP4775953B2 (ja) 排ガス浄化用触媒及びその再生方法
JP2008279319A (ja) 排ガス浄化用触媒及びそれに用いられる酸性酸化物担持アルミナの製造方法
JP2016043310A (ja) 窒素酸化物吸蔵材及び排ガス浄化用触媒
JP3885376B2 (ja) 排気ガス浄化用触媒及びその使用方法
JP5051009B2 (ja) NOx吸蔵還元型触媒
JP2001058131A (ja) 排ガス浄化用触媒
JP2007084391A (ja) 自動車用排ガス浄化装置及び水素製造触媒
JPH09122492A (ja) 排気ガス浄化用触媒及びその製造方法
JP4534749B2 (ja) NOx吸蔵材とその担持方法及びNOx吸蔵還元型触媒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13757647

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013757647

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE