WO2013132722A1 - Rubber-reinforced thermoplastic resin composition and resin molded article - Google Patents

Rubber-reinforced thermoplastic resin composition and resin molded article Download PDF

Info

Publication number
WO2013132722A1
WO2013132722A1 PCT/JP2012/083301 JP2012083301W WO2013132722A1 WO 2013132722 A1 WO2013132722 A1 WO 2013132722A1 JP 2012083301 W JP2012083301 W JP 2012083301W WO 2013132722 A1 WO2013132722 A1 WO 2013132722A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
weight
parts
monomer
resin composition
Prior art date
Application number
PCT/JP2012/083301
Other languages
French (fr)
Japanese (ja)
Inventor
眞彰 岡田
篤史 橋本
義明 高田
Original Assignee
日本エイアンドエル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本エイアンドエル株式会社 filed Critical 日本エイアンドエル株式会社
Publication of WO2013132722A1 publication Critical patent/WO2013132722A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5435Silicon-containing compounds containing oxygen containing oxygen in a ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/18Homopolymers or copolymers of nitriles
    • C08L33/20Homopolymers or copolymers of acrylonitrile

Definitions

  • the present invention relates to a rubber-reinforced thermoplastic resin composition and a resin molded product.
  • styrenic resins have a good balance of molding processability and mechanical properties, and are excellent in electrical insulation, so they have been used in a wide range of fields such as the electrical / electronic equipment field and OA equipment field. Yes.
  • the molded product obtained by molding the resin is transported to the assembly line, for example, when the molded product is packed one by one with a soft nonwoven fabric or the like for the purpose of preventing fine scratches Therefore, a great deal of labor and cost are required.
  • the coating process has a problem that the production yield is likely to decrease due to poor coating.
  • the design can be colored with a vivid color or deep color, or have a metallic or pearly appearance, etc., with as little coating as possible. Resins that are easy to impart properties and are not easily damaged are desired.
  • Patent Document 1 A method for improving the scratch resistance by adding an appropriate amount of polyethylene wax or silicone oil to a styrene resin having a specific structure is known (Patent Document 1).
  • the color developability is not suitable for applications requiring a high-quality appearance.
  • silicone oil bleeds out and is inferior in mold contamination.
  • Patent Document 2 a method is disclosed in which the scratch resistance can be improved by adding a specific nitrogen-containing compound to a rubber-reinforced styrene resin having a specific particle size distribution.
  • Patent Document 2 a method for improving the scratch resistance is still insufficient.
  • An object of the present invention is to provide a rubber-reinforced thermoplastic resin composition excellent not only in color developability and scratch resistance but also in mold property contamination, impact resistance and fluidity balance.
  • the inventors of the present invention have limited the rubber particle diameter and the graft ratio of the rubber-like polymer constituting the graft copolymer to a specific range.
  • the inventors have found that the above object can be achieved without using an additive which is a compound of the present invention, and reached the present invention.
  • the invention includes an aromatic vinyl monomer, a vinyl cyanide monomer, a (meth) acrylic acid ester monomer, and other monomers in the presence of the rubber-like polymer (a).
  • a graft copolymer (A) obtained by graft copolymerization of at least one monomer (b) selected from the group consisting of copolymerizable monomers has a dispersed phase, an aromatic vinyl monomer, At least one monomer (b) selected from the group consisting of vinyl cyanide monomers, (meth) acrylic acid ester monomers and other copolymerizable monomers was (co) polymerized.
  • the graft ratio of the graft copolymer (A) is 70 to 150%, and the rubber-like polymer (a) is contained in 5 to 24 parts by weight in 100 parts by weight of the rubber-reinforced thermoplastic resin composition.
  • a resin molded product obtained from the rubber-reinforced thermoplastic resin composition is obtained from the rubber-reinforced thermoplastic resin composition.
  • the present inventors have used a graft copolymer in which the rubber particle diameter and graft ratio of the rubber-like polymer are limited to a specific range, and further The present inventors have found that the above object can be achieved by using a rubber-reinforced thermoplastic resin composition using a silicone compound having a structure.
  • the invention according to another aspect of the present invention is a rubber-reinforced thermoplastic resin composition
  • a rubber-reinforced thermoplastic resin composition comprising a graft copolymer (A), a (co) polymer (B), and a silicon-containing compound (C).
  • the polymer (A) has a rubbery weight having a weight fraction of 50 to 90% by weight of particles having a particle size of 0.05 ⁇ m or more and less than 0.2 ⁇ m, and 10 to 50% by weight of particles having a particle size of 0.2 ⁇ m or more.
  • the (co) polymer (B) is an aromatic vinyl monomer. , Vinyl cyanide monomer, (meth) acrylic acid ester A (co) polymer obtained by (co) polymerizing at least one monomer (b) selected from the group consisting of a monomer and other copolymerizable monomers, and the silicon-containing compound (C) is A silicon-containing compound in which a silicone-based compound is supported on silica powder, and 5 to 24 parts by weight of a rubber-like polymer (a) is contained in 100 parts by weight of a rubber-reinforced thermoplastic resin composition, and a graft copolymer ( A rubber-reinforced thermoplastic resin composition characterized by using 0.01 to 10 parts by weight of the silicon-containing compound (C) with respect to a total of 100 parts by weight of A) and (co) polymer (B),
  • thermoplastic resin composition excellent not only in color developability and scratch resistance but also in mold contamination, impact resistance and fluidity balance.
  • the rubber-reinforced thermoplastic resin composition according to the first embodiment of the present invention is characterized in that the graft copolymer (A) constitutes a dispersed phase and the (co) polymer (B) constitutes a continuous phase.
  • This is a rubber-reinforced thermoplastic resin composition.
  • a rubber-reinforced thermoplastic resin composition according to a second embodiment of the present invention contains a graft copolymer (A), a (co) polymer (B), and a silicon-containing compound (C). It is a reinforced thermoplastic resin composition.
  • the graft copolymer (A) used in the present invention is an aromatic vinyl monomer, vinyl cyanide monomer, (meth) acrylic acid ester monomer in the presence of the rubbery polymer (a). And at least one monomer (b) selected from the group consisting of other copolymerizable monomers.
  • the rubber-like polymer (a) used for the graft copolymer (A) is not particularly limited, but polybutadiene rubber, styrene-butadiene rubber (SBR), styrene-butadiene-styrene (SBS) block copolymer, styrene- (Ethylene-butadiene) -styrene (SEBS) block copolymer, acrylonitrile-butadiene rubber (NBR), diene rubbers such as butyl acrylate-butadiene, butyl acrylate rubber, butadiene-butyl acrylate rubber, 2-ethylhexyl acrylate-butyl acrylate rubber Acrylic rubbers such as 2-ethylhexyl methacrylate-butyl acrylate rubber, stearyl acrylate-butyl acrylate rubber, polyorganosiloxane-butyl acrylate composite rubber, ethylene-propy
  • the rubber-like polymer (a) used in the graft copolymer (A) has 50 to 90% by weight of particles having a particle size of 0.05 ⁇ m or more and less than 0.2 ⁇ m, and 10 to 50 particles having a particle size of 0.2 ⁇ m or more. It is necessary to have a weight fraction of particles that would be weight percent. When the particle size is 0.05 ⁇ m or more and less than 0.2 ⁇ m is less than 50% by weight, the color developability is inferior.
  • the particle size of 0.05 ⁇ m or more and less than 0.2 ⁇ m is preferably 55 to 85% by weight, and more preferably 60 to 80% by weight. When the amount of particles of 0.2 ⁇ m or more is less than 10% by weight, the impact resistance is inferior.
  • the particle size of 0.2 ⁇ m or more is preferably 15 to 45% by weight, more preferably 20 to 40% by weight. Further, with respect to particles having a particle diameter of 0.2 ⁇ m or more, from the viewpoint of scratch resistance, the particles having a particle diameter of 0.2 ⁇ m or more and less than 0.4 ⁇ m are preferably 10 to 50% by weight, and 15 to 45% by weight. Is more preferable, and 20 to 40% by weight is particularly preferable.
  • the weight fraction of the particles of the rubber-like polymer (a) was determined by dyeing the rubber-like polymer with osmium tetroxide or the like, taking a transmission photograph using a transmission electron microscope, and measuring 500 to 1,000 rubber-like dispersed particles. It can be determined by measuring the particles.
  • Rubbery weight having a particle weight fraction such that particles having a particle size of 0.05 ⁇ m or more and less than 0.2 ⁇ m are 50 to 90% by weight, and particles having a particle size of 0.2 ⁇ m or more are 10 to 50% by weight.
  • the coalescence (a) can be obtained by appropriately adjusting the polymerization conditions and the like, but by mixing rubber-like polymers having different particle weight fractions, the desired particle weight fraction is obtained. An adjusted rubber-like polymer may be used.
  • aromatic vinyl monomer used in the graft copolymer (A) examples include styrene, ⁇ -methyl styrene, p-methyl styrene, t-butyl styrene, dimethyl styrene, and the like. Can be used. Styrene is particularly preferable as the aromatic vinyl monomer.
  • Examples of the vinyl cyanide monomer used in the graft copolymer (A) include acrylonitrile, methacrylonitrile, ethacrylonitrile, and fumaronitrile, and one or more of them can be used.
  • acrylonitrile is particularly preferable.
  • Examples of the (meth) acrylic acid ester monomer used in the graft copolymer (A) include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl.
  • phenyl (meth) acrylate 4-t-butylphenyl (meth) acrylate, bromophenyl (meth) acrylate, dibromophenyl (meth) acrylate, 2,4,6-tribromophenyl (meth) acrylate, monochlorophenyl ( A meth) acrylate, a dichlorophenyl (meth) acrylate, a trichlorophenyl (meth) acrylate etc. can be illustrated and it can use 1 type (s) or 2 or more types.
  • the (meth) acrylic acid ester monomer methyl methacrylate is particularly preferable.
  • Examples of other copolymerizable monomers used in the graft copolymer (A) include maleimide monomers (for example, N-phenylmaleimide, N-cyclohexylmaleimide, etc.), unsaturated carboxylic acids or their Anhydrides (for example, acrylic acid, methacrylic acid and maleic acid anhydride), amide monomers (for example, acrylamide and methacrylamide) and the like can be used, and one or a combination of two or more can be used. Can be used.
  • maleimide monomers for example, N-phenylmaleimide, N-cyclohexylmaleimide, etc.
  • unsaturated carboxylic acids or their Anhydrides for example, acrylic acid, methacrylic acid and maleic acid anhydride
  • amide monomers for example, acrylamide and methacrylamide
  • the graft copolymer (A) is obtained by graft copolymerization of the monomer (b) in the presence of the rubbery polymer (a).
  • the graft ratio of the graft copolymer (A) is 70 to It is necessary to be 150%. When the graft ratio is less than 70%, the color developability and scratch resistance are poor, and when it exceeds 150%, the impact resistance and fluidity are poor.
  • the graft ratio of the graft copolymer (A) is preferably 80 to 130%, more preferably 90 to 110%.
  • the graft ratio of the graft copolymer (A) can be determined by measuring the infrared absorption spectrum of the graft copolymer. Specifically, removing the acetone-soluble content of the graft copolymer, creating a film composed of the insoluble content of the graft copolymer, and measuring the infrared absorption spectrum of the film using an infrared spectrometer Thus, the constituent material and the constituent ratio of the graft copolymer can be obtained. When the composition ratio of the graft copolymer is obtained, the graft ratio can be obtained by calculating with the following formula.
  • Graft rate (%) (component (% by weight) relating to monomer (b) / component (% by weight) relating to rubbery polymer (a)) ⁇ 100
  • the total of the component relating to the monomer (b) and the component relating to the rubber-like polymer (a) is 100% by weight.
  • the graft ratio of the graft copolymer in the rubber-reinforced thermoplastic resin composition for the measurement of the graft ratio of the graft copolymer, the acetone-insoluble content of the rubber-reinforced thermoplastic resin composition corresponds to the graft copolymer. Therefore, by measuring the infrared absorption spectrum of the acetone-insoluble matter, the graft ratio of the graft copolymer (A) present in the rubber-reinforced thermoplastic resin can be determined by the same method as described above.
  • the polymerization method of the graft copolymer (A) is not particularly limited and can be produced by emulsion polymerization, suspension polymerization, bulk polymerization, solution polymerization, or a combination thereof, but it is preferable to carry out the production by emulsion polymerization.
  • the (co) polymer (B) used in the present invention comprises an aromatic vinyl monomer, a vinyl cyanide monomer, a (meth) acrylic acid ester monomer, and other copolymerizable monomers.
  • the (co) polymer obtained by polymerizing one or more monomers (b) selected from the group containing the body is used in the graft copolymer (A).
  • the thing similar to each monomer described as an example can be used. What is necessary is just to adjust suitably according to the physical property requested
  • the (co) polymer (B) is a monomer (co) polymer that was not (co) polymerized with the rubbery polymer (a) during the graft copolymerization of the graft copolymer (A). May be included.
  • the polymerization method of the (co) polymer (B) is not particularly limited, and can be produced by known emulsion polymerization, suspension polymerization, bulk polymerization, solution polymerization, or a combination thereof.
  • the rubber-reinforced thermoplastic resin composition according to the first embodiment of the present invention is composed of a graft copolymer (A) that is a dispersed phase and a (co) polymer (B) that is a continuous phase.
  • a graft copolymer (A) that is a dispersed phase
  • a (co) polymer (B) that is a continuous phase.
  • the proportion of the graft copolymer (A) and (co) polymer (B) used is There is no limit. That is, when the (co) polymer by-produced during the graft copolymerization of the graft copolymer (A) becomes a continuous phase, the (co) polymer (B) may not be used.
  • the amount of the rubbery polymer is less than 5 parts by weight, the impact resistance is inferior.
  • the rubbery polymer is preferably contained in an amount of 7 to 20 parts by weight, and more preferably 10 to 17 parts by weight.
  • the rubber-reinforced thermoplastic resin composition according to the first embodiment is obtained by graft-polymerizing two or more kinds of rubber-like polymers having different weight fractions to obtain two or more kinds of graft copolymers. It may be a rubber-reinforced thermoplastic resin composition prepared and melt-mixed with these graft copolymers and (co) polymers. However, in that case, the graft ratio of each individual graft copolymer needs to be 70 to 150%.
  • the reduced viscosity (measured at 30 ° C. as an N, N dimethylformamide solution) of the continuous phase (acetone soluble part) of the rubber-reinforced thermoplastic resin composition according to the first embodiment.
  • Any value can be used depending on the required performance, but from the viewpoint of balance of physical properties, it is preferably 0.2 to 2.0 dl / g, and preferably 0.3 to 1.5 dl / g. More preferred.
  • the rubber-reinforced thermoplastic resin composition according to the second embodiment of the present invention includes the graft copolymer (A) and the (co) polymer (B), but 100 weights of the rubber-reinforced thermoplastic resin composition.
  • the rubbery polymer (a) As long as 5 to 24 parts by weight of the rubbery polymer (a) is contained in the part, there is no limitation on the use ratio of the graft copolymer (A) and the (co) polymer (B). That is, when the (co) polymer by-produced in the graft copolymerization of the graft copolymer (A) has the same role as the (co) polymer (B), the (co) polymer (B) May not be used.
  • the rubber-like polymer (a) is preferably contained in an amount of 7 to 20 parts by weight, and more preferably 10 to 17 parts by weight.
  • the rubber-reinforced thermoplastic resin composition according to the second embodiment is obtained by graft-polymerizing two or more kinds of rubber-like polymers having different weight fractions, thereby obtaining two or more kinds of graft copolymers. It may be a rubber-reinforced thermoplastic resin composition prepared and melt-mixed with these graft copolymer and (co) polymer (B).
  • the reduced viscosity (measured at 30 ° C. as an N, N dimethylformamide solution) of the acetone soluble part of the rubber-reinforced thermoplastic resin composition according to the second embodiment, depending on the required performance.
  • any value can be used, it is preferably 0.2 to 2.0 dl / g, more preferably 0.3 to 1.5 dl / g from the viewpoint of balance of physical properties.
  • the silicon-containing compound (C) used in the present invention is a compound in which a silicone compound is supported on silica powder. Specifically, it is a silicon-containing compound in which a silicone compound is supported on the surface of silica powder.
  • silicone compound used for the silicon-containing compound (C) examples include silicone oil, silicone rubber or an intermediate thereof, silicone resin or an intermediate thereof.
  • silicone compound those containing, for example, an epoxy group, an acryloxy group, a methacryloxy group, a vinyl group, a phenyl group, a hydroxyl group or the like as a reactive functional group in the molecule or at the molecular end can be used.
  • those containing a methacryloxy group can be preferably used.
  • the silica powder used for the silicon-containing compound (C) functions to support (absorb, adsorb or hold) the silicone compound, and fumed silica, precipitated silica, finely pulverized silica, or the like is used.
  • the surface area of these silicas is preferably in the range of 50 to 400 m 2 / g. When the surface area is in this range, it becomes easy to support the silicone compound.
  • the volume average particle diameter of the silicon-containing compound (C) is preferably in the range of 5 to 250 ⁇ m.
  • the bulk specific gravity of the silicon-containing compound (C) is preferably in the range of 0.1 to 0.7.
  • the amount of the silicon-containing compound (C) used is 0.1 to 10 parts by weight with respect to 100 parts by weight as a total of the graft copolymer (A) and the (co) polymer (B). If it is less than 0.1 part by weight, the scratch resistance is insufficient, and if it exceeds 10 parts by weight, the color developability is poor.
  • the amount is preferably 0.1 to 3 parts by weight.
  • the rubber-reinforced thermoplastic resin composition of the present invention may contain various additives as necessary, for example, known antioxidants, light stabilizers, lubricants, plasticizers, antistatic agents, colorants, flame retardants, matting agents, A filler, glass fiber, etc. can be added suitably.
  • the rubber-reinforced thermoplastic resin composition of the present invention can be used alone, but can also be used by mixing with other thermoplastic resins as necessary.
  • other thermoplastic resins include acrylic resins such as polymethyl methacrylate, polycarbonate resins, polybutylene terephthalate resins, polyethylene terephthalate resins, polyamide resins, and polylactic acid resins.
  • the rubber-reinforced thermoplastic resin composition of the present invention can be obtained by mixing the above-described components.
  • well-known kneading apparatuses such as an extruder, a roll, a Banbury mixer, a kneader, can be used, for example.
  • the graft copolymer (A) and the (co) polymer ( A resin composition may be obtained by mixing a silicon-containing compound (C) with a resin composition obtained by melt-kneading B), or a graft copolymer (A) or (co) polymer (B). ), A silicon-containing compound (C) may be mixed in advance and then melt kneaded to obtain a resin composition.
  • the rubber-reinforced thermoplastic resin composition of the present invention can be molded by known molding methods such as extrusion molding, injection molding, blow molding and press molding, and various molded products can be produced.
  • Examples A1 to A10 and Comparative Examples A1 to A6 1.0 part of Sumiplast Black HB (manufactured by Sumitomo Chemical Co., Ltd.) was mixed as a colorant with respect to the graft copolymers (A) and copolymers (B) having the composition ratios shown in Tables 3 and 4.
  • a vented 50 mm single-screw extruder manufactured by ON Machinery
  • the mixture was melt-mixed at a cylinder temperature of 210 ° C. and pelletized to obtain black colored pellets.
  • Examples B1 to B12 and Comparative Examples B1 to B9 For the graft copolymer (A), copolymer (B), and silicon-containing compound (C) having the composition ratios shown in Tables 5 and 6, Sumiplast Black HB (manufactured by Sumitomo Chemical Co., Ltd.) is used as a colorant. 0.0 parts mixed. Using a vented 50 mm single-screw extruder (manufactured by ON Machinery), the mixture was melt-mixed at a cylinder temperature of 210 ° C. and pelletized to obtain black colored pellets.
  • Sumiplast Black HB manufactured by Sumitomo Chemical Co., Ltd.
  • each component shown in Table 1 and Table 2 is as follows.
  • Rubber polymer (a-1) 93 parts 1,3-butadiene, 7 parts styrene, 0.5 parts n-dodecyl mercaptan, 0.24 parts potassium persulfate, 1.5 parts sodium rosinate in a pressure vessel Then, 0.1 part of sodium hydroxide and 150 parts of deionized water were charged, reacted at 70 ° C. for 15 hours, and then cooled to terminate the reaction, thereby obtaining a styrene-butadiene rubber latex (a-1). .
  • the obtained styrene-butadiene rubber latex (a-1) was dyed with osmium tetroxide (OsO 4 ), dried, and photographed with a transmission electron microscope. Using an image analysis processor (apparatus name: IP-1000PC manufactured by Asahi Kasei Co., Ltd.), the area of 1000 rubber particles was measured and the equivalent circle diameter (diameter) was obtained. The weight average particle diameter of styrene-butadiene rubber And the weight fraction was calculated. Table 1 shows the weight average particle diameter and the weight fraction.
  • OsO 4 osmium tetroxide
  • Rubbery polymers (a-2) to (a-4) The styrene-butadiene rubber latex (a-1) obtained above was used to subject the rubber particles to a cohesive enlargement treatment. 270 parts of styrene-butadiene rubber latex (a-1) was added to a stirring tank and 0.09 part of a 10% aqueous sodium dodecylbenzenesulfonate solution was stirred for 10 minutes, and then 0.8 part of a 5% aqueous phosphoric acid solution was added for 10 minutes. Was added over a period of time.
  • Rubbery polymers (a-5) to (a-9) By mixing the styrene-butadiene rubber latexes (a-1) to (a-4) in the composition ratios shown in Table 1, rubbery polymers ( a-5) to (a-9) were obtained.
  • Graft copolymer (A-1) 30 parts (solid content) of styrene-butadiene rubber latex (a-5), 160 parts of water, 0.1 part of ethylenediaminetetraacetic acid disodium salt, sulfuric acid 1 part 0.001 part of iron and 0.3 part of sodium formaldehyde sulfoxylate are added, heated to 60 ° C., 49 parts of styrene, 21 parts of acrylonitrile, 0.3 part of t-dodecyl mercaptan and 0.2 part of cumene hydroperoxide And a mixture of 1.5 parts of potassium oleate and 15 parts of water was added continuously over 4 hours. After completion of the addition, polymerization was further performed at 60 ° C. for 2 hours. Thereafter, the graft copolymer (A-1) was obtained by salting out, dehydrating and drying.
  • a certain amount of the graft copolymer (A-1) was put into acetone and shaken for 2 hours with a shaker to immerse the graft copolymer.
  • This solution was centrifuged at 15,000 rpm for 30 minutes using a centrifuge, and then dried at room temperature for a whole day and night by vacuum drying to obtain an acetone insoluble matter.
  • the obtained acetone-insoluble matter was formed into a film, and the weight ratio of styrene-butadiene rubber, styrene, and acrylonitrile was identified from the infrared absorption spectrum using an infrared spectroscopic analyzer (apparatus name: Spectrum One Perkin Elmer).
  • the graft ratio was calculated from the weight ratio of each component.
  • the acetone-soluble matter obtained above is dried and then dissolved in N, N-dimethylformamide to obtain a solution having a concentration of 0.4 g / 100 cc.
  • the reduced viscosity was determined by measuring the time.
  • the graft ratio of the obtained graft copolymer (A-1) and the reduced viscosity of the acetone-soluble component were 91% and 0.40 dl / g, respectively.
  • Graft copolymer (A-2) 30 parts (solid content) of styrene-butadiene rubber latex (a-6), 160 parts of water, 0.1 part of ethylenediaminetetraacetic acid disodium salt, sulfuric acid 1 part 0.001 part of iron and 0.3 part of sodium formaldehyde sulfoxylate are added, heated to 60 ° C., 49 parts of styrene, 21 parts of acrylonitrile, 0.3 part of t-dodecyl mercaptan and 0.2 part of cumene hydroperoxide And a mixture of 1.5 parts of potassium oleate and 15 parts of water was added continuously over 4 hours. After completion of the addition, polymerization was further performed at 60 ° C.
  • graft copolymer (A-2) The graft ratio of the obtained graft copolymer (A-2) and the reduced viscosity of the acetone-soluble component were measured by the above-mentioned method. As a result, the graft ratio was 89% and the reduced viscosity was 0.39 dl / g. .
  • Graft copolymer (A-3) 30 parts (solid content) of styrene-butadiene rubber latex (a-5), 160 parts of water, 0.1 part of ethylenediaminetetraacetic acid disodium salt, sulfuric acid 1 iron 0.001 part, sodium formaldehyde sulfoxylate 0.3 part, and after heating to 60 ° C., a mixture of 49 parts of styrene, 21 parts of acrylonitrile and 0.2 part of cumene hydroperoxide and potassium oleate 1 A mixture consisting of .5 parts and 15 parts of water was added continuously over 4 hours. After completion of the addition, polymerization was further performed at 60 ° C. for 2 hours.
  • Graft copolymer (A-4) 30 parts (solid content) of styrene-butadiene rubber latex (a-5), 160 parts of water, 0.1 part of disodium ethylenediaminetetraacetate, sulfuric acid 1 part 0.001 part of iron and 0.3 part of sodium formaldehyde sulfoxylate were added and heated to 60 ° C., then 21 parts of styrene, 49 parts of methyl methacrylate, 0.3 part of t-dodecyl mercaptan and 0. A mixture consisting of 2 parts and a mixture consisting of 1.5 parts of potassium oleate and 15 parts of water was added continuously over 4 hours. After completion of the addition, polymerization was further performed at 60 ° C.
  • graft copolymer (A-4) The graft ratio of the obtained graft copolymer (A-4) and the reduced viscosity of the acetone-soluble component were measured by the above-mentioned method. As a result, the graft ratio was 81% and the reduced viscosity was 0.37 dl / g. .
  • Graft copolymer (A-5) 20 parts (solid content) of styrene-butadiene rubber latex (a-5), 160 parts of water, 0.1 part of disodium ethylenediaminetetraacetate, sulfuric acid 1 part 0.001 part of iron and 0.3 part of sodium formaldehyde sulfoxylate are added, heated to 60 ° C., 56 parts of styrene, 24 parts of acrylonitrile, 0.4 part of t-dodecyl mercaptan and 0.2 part of cumene hydroperoxide And a mixture of 1.5 parts of potassium oleate and 15 parts of water was added continuously over 4 hours. After completion of the addition, polymerization was further performed at 60 ° C.
  • graft copolymer (A-5) As a result of measuring the graft ratio of the obtained graft copolymer (A-5) and the reduced viscosity of the acetone-soluble component by the above method, the graft ratio was 75% and the reduced viscosity was 0.36 dl / g. .
  • Graft copolymer (A-6) 48 parts (solid content) of styrene-butadiene rubber latex (a-5) in a nitrogen-substituted reactor, 140 parts of water, 0.1 part of ethylenediaminetetraacetic acid disodium salt, sulfuric acid Add 1 part 0.001 part iron, 0.3 part sodium formaldehyde sulfoxylate, heat to 60 ° C, 39 parts styrene, 13 parts acrylonitrile, 0.6 parts t-dodecyl mercaptan and 0.2 parts cumene hydroperoxide And a mixture of 1.5 parts of potassium oleate and 15 parts of water was added continuously over 4 hours.
  • the graft copolymer (A-6) was obtained by salting out, dehydrating and drying.
  • the graft ratio was 40% and the reduced viscosity was 0.39 dl / g. .
  • Graft copolymer (A-7) 20 parts (solid content) of styrene-butadiene rubber latex (a-5), 160 parts of water, 0.1 part of ethylenediaminetetraacetic acid disodium salt, sulfuric acid 1 iron 0.001 part, sodium formaldehyde sulfoxylate 0.3 part, heated to 60 ° C., mixture of styrene 56 parts, acrylonitrile 24 parts, cumene hydroperoxide 0.2 parts and potassium oleate 1 A mixture consisting of .5 parts and 15 parts of water was added continuously over 4 hours. After completion of the addition, polymerization was further performed at 60 ° C. for 2 hours.
  • the graft copolymer (A-7) was obtained by salting out, dehydrating and drying.
  • the graft ratio was 170% and the reduced viscosity was 0.44 dl / g. .
  • Graft copolymer (A-8) 30 parts (solid content) of styrene-butadiene rubber latex (a-7), 160 parts of water, 0.1 part of ethylenediaminetetraacetic acid disodium salt, sulfuric acid 1 part 0.001 part of iron and 0.3 part of sodium formaldehyde sulfoxylate are added, heated to 60 ° C., 49 parts of styrene, 21 parts of acrylonitrile, 0.3 part of t-dodecyl mercaptan and 0.2 part of cumene hydroperoxide And a mixture of 1.5 parts of potassium oleate and 15 parts of water was added continuously over 4 hours. After completion of the addition, polymerization was further performed at 60 ° C.
  • graft copolymer (A-8) As a result of measuring the graft ratio of the obtained graft copolymer (A-8) and the reduced viscosity of the acetone-soluble component by the above method, the graft ratio was 95% and the reduced viscosity was 0.41 dl / g. .
  • Graft copolymer (A-9) 30 parts (solid content) of styrene-butadiene rubber latex (a-8), 160 parts of water, 0.1 part of ethylenediaminetetraacetic acid disodium salt, sulfuric acid 1 part 0.001 part of iron and 0.3 part of sodium formaldehyde sulfoxylate are added, heated to 60 ° C., 49 parts of styrene, 21 parts of acrylonitrile, 0.3 part of t-dodecyl mercaptan and 0.2 part of cumene hydroperoxide And a mixture of 1.5 parts of potassium oleate and 15 parts of water was added continuously over 4 hours. After completion of the addition, polymerization was further performed at 60 ° C.
  • graft copolymer (A-9) As a result of measuring the graft ratio of the obtained graft copolymer (A-9) and the reduced viscosity of the acetone-soluble component by the above method, the graft ratio was 87% and the reduced viscosity was 0.38 dl / g. .
  • Graft copolymer (A-10) 30 parts (solid content) of styrene-butadiene rubber latex (a-9), 160 parts of water, 0.1 part of ethylenediaminetetraacetic acid disodium salt, sulfuric acid 1 part 0.001 part of iron and 0.3 part of sodium formaldehyde sulfoxylate are added, heated to 60 ° C., 49 parts of styrene, 21 parts of acrylonitrile, 0.3 part of t-dodecyl mercaptan and 0.2 part of cumene hydroperoxide And a mixture of 1.5 parts of potassium oleate and 15 parts of water was added continuously over 4 hours. After completion of the addition, polymerization was further performed at 60 ° C.
  • graft copolymer (A-10) As a result of measuring the graft ratio of the obtained graft copolymer (A-10) and the reduced viscosity of the acetone-soluble component by the above method, the graft ratio was 98% and the reduced viscosity was 0.41 dl / g. .
  • Graft copolymer (A-11) 30 parts (solid content) of styrene-butadiene rubber latex (a-1), 160 parts of water, 0.1 part of ethylenediaminetetraacetic acid disodium salt, sulfuric acid 1 part 0.001 part of iron and 0.3 part of sodium formaldehyde sulfoxylate are added, heated to 60 ° C., 49 parts of styrene, 21 parts of acrylonitrile, 0.3 part of t-dodecyl mercaptan and 0.2 part of cumene hydroperoxide And 1.5 parts of potassium oleate were continuously added over 4 hours and further polymerized at 60 ° C. for 2 hours.
  • a graft copolymer (A-11) was obtained.
  • the graft ratio was 93% and the reduced viscosity was 0.40 dl / g.
  • Graft copolymer (A-12) 30 parts (solid content) of styrene-butadiene rubber latex (a-2), 160 parts of water, 0.1 part of ethylenediaminetetraacetic acid disodium salt, sulfuric acid 1 part 0.001 part of iron and 0.3 part of sodium formaldehydesulfoxylate are added, heated to 60 ° C., 49 parts of styrene, 21 parts of acrylonitrile, 0.28 part of t-dodecyl mercaptan and 0.2 part of cumene hydroperoxide And 1.5 parts of potassium oleate were continuously added over 4 hours and further polymerized at 60 ° C. for 2 hours.
  • a graft copolymer (A-12) was obtained.
  • the graft ratio was 89% and the reduced viscosity was 0.39 dl / g.
  • Graft copolymer (A-13) 30 parts (solid content) of styrene-butadiene rubber latex (a-2), 160 parts of water, 0.1 part of ethylenediaminetetraacetic acid disodium salt, sulfuric acid 1 part 0.001 part of iron and 0.3 part of sodium formaldehyde sulfoxylate are added, heated to 60 ° C., 49 parts of styrene, 21 parts of acrylonitrile, 0.3 part of t-dodecyl mercaptan and 0.2 part of cumene hydroperoxide And 1.5 parts of potassium oleate were continuously added over 4 hours and further polymerized at 60 ° C. for 2 hours.
  • a graft copolymer (A-13) was obtained.
  • the graft ratio was 93% and the reduced viscosity was 0.40 dl / g.
  • Copolymer (B) A copolymer (B-1) comprising 70 parts by weight of styrene and 30 parts by weight of acrylonitrile was obtained by a known bulk polymerization method. As a result of measuring the reduced viscosity of the obtained copolymer (B-1) by the above-mentioned method, the reduced viscosity was 0.60 dl / g.
  • Copolymer (B-2) A copolymer (B-2) comprising 30 parts by weight of styrene and 70 parts by weight of methyl methacrylate was obtained by a known bulk polymerization method. As a result of measuring the reduced viscosity of the obtained copolymer (B-2) by the above method, the reduced viscosity was 0.58 dl / g.
  • Silicon-containing compound (C) Silicon-containing compound (C-1): DC4-7081 (manufactured by Dow Corning Toray) A silicon-containing compound in which 60 parts of a silicone compound containing a methacryloxy functional group is supported on 40 parts of silica powder. Bulk specific gravity: 0.3 to 0.5, particle size: 10 to 200 ⁇ m Silicon-containing compound (C-2): SH200-100CS (manufactured by Dow Corning Toray) Dimethyl silicone oil.
  • Viscosity 100 mm 2 / s Silicon-containing compound (C-3): BY27-007 (manufactured by Dow Corning Toray) Pellets made by melt-kneading ultrahigh molecular weight dimethyl silicone polymer and ABS resin (silicone content 50%).
  • melt volume flow rate was measured under the conditions of 220 ° C. and 10 kg load according to ISO1133. Unit; cm 3/10 minutes
  • Mold fouling property Using colored pellets obtained in each example and comparative example, using J-150EP manufactured by Nippon Steel Works, cylinder set temperature 240 ° C, mold temperature 50 ° C, molding cycle 30 seconds A flat plate test piece (length 150 mm, width 150 mm, thickness 3 mm) was subjected to 1000 shot injection molding, and the mold contamination was evaluated by the following judgment. No change on mold surface: ⁇ The mold surface is cloudy: ⁇ The mold surface is extremely dirty and the appearance of the molded product is poor: ⁇
  • the rubber-reinforced thermoplastic resin composition of the present invention not only has excellent scratch resistance and color developability, but also has excellent balance of physical properties of impact resistance and fluidity.
  • the weight fraction of the rubber-like polymer when the particles having a particle size of 0.2 ⁇ m or more and less than 0.4 ⁇ m are in the range of 10 to 50% by weight, excellent scratch resistance results.
  • Examples A9 and A10 even when two or more kinds of rubbery polymers are separately graft-polymerized and two or more kinds of graft copolymers are used, the graft ratio and the weight fraction of the particles As long as the regulations are satisfied, the object of the present application can be achieved.
  • Comparative Example A4 using the graft copolymer (A-7) having a graft ratio exceeding 150% was inferior in impact resistance and fluidity.
  • the rubber-reinforced thermoplastic resin composition of the present invention not only has excellent scratch resistance and color developability, but also has excellent properties of mold contamination, impact resistance and fluidity.
  • the weight fraction of the rubber-like polymer when the particles having a size of 0.2 ⁇ m or more and less than 0.4 ⁇ m are in the range of 10 to 50% by weight, the result is particularly excellent in scratch resistance.
  • Examples B9 and B10 even when two or more kinds of rubber-like polymers are separately graft-polymerized and two or more kinds of graft copolymers are used, the graft ratio and particles defined in the present invention are used. As long as the weight fraction is satisfied, the object of the present application can be achieved.
  • Comparative Example B1 in which no silicon-containing compound was used resulted in poor scratch resistance.
  • Comparative Example B2 in which the rubber content in the rubber-reinforced thermoplastic resin composition is less than 5 parts by weight resulted in poor impact resistance.
  • Comparative Example B3 having a rubber content greater than 24 parts by weight resulted in poor color development, scratch resistance, and fluidity.
  • Comparative Example B4 using the graft copolymer (A-6) having a graft ratio of less than 70% resulted in inferior color developability and scratch resistance.
  • Comparative Example B5 using the graft copolymer (A-7) having a graft ratio exceeding 150% resulted in inferior impact resistance and fluidity.
  • the rubber-reinforced thermoplastic resin composition of the present invention can be used in a wide range of fields including the electric / electronic equipment field and the OA equipment field by utilizing the above-described excellent characteristics. It is particularly suitable for applications in which both excellent physical property balance, color developability and scratch resistance are achieved.

Abstract

A rubber-reinforced thermoplastic resin composition having: a dispersed phase that is composed of a graft copolymer (A) produced by the graft copolymerization of at least one monomer (b) selected from the group consisting of an aromatic vinyl monomer, a vinyl cyanide monomer, a (meth)acrylic acid ester monomer and other copolymerizable monomers in the presence of a rubbery polymer (a); and a continuous phase that is composed of a (co)polymer (B) produced by the (co)polymerization of at least one monomer (b) selected from the group consisting of an aromatic vinyl monomer, a vinyl cyanide monomer, a (meth)acrylic acid ester monomer and other copolymerizable monomers. The rubber-reinforced thermoplastic resin composition is characterized in that the rubbery polymer (a) has such weight fractions that particles each having a particle diameter of 0.05 μm or more and less than 0.2 μm are contained in an amount of 50 to 90 wt% and particles each having a particle diameter of 0.2 μm or more are contained in an amount of 10 to 50 wt%, the graft rate of the graft copolymer (A) is 70 to 150%, and the rubbery polymer (a) is contained in an amount of 5 to 24 parts by weight relative to 100 parts by weight of the rubber-reinforced thermoplastic resin composition.

Description

ゴム強化熱可塑性樹脂組成物及び樹脂成形品Rubber-reinforced thermoplastic resin composition and resin molded product
 本発明は、ゴム強化熱可塑性樹脂組成物及び樹脂成形品に関する。 The present invention relates to a rubber-reinforced thermoplastic resin composition and a resin molded product.
 従来より、スチレン系樹脂は、良好な成形加工性と機械的特性バランスを有し、電気絶縁性に優れていることから、電気・電子機器分野、OA機器分野などの広範な分野で用いられている。しかしながら、製品化の段階において、樹脂を成形して得られた成形品を、例えば組み立てラインまで輸送する際、細かな擦過傷を防止する目的で柔らかい不織布等で前記成形品を一つずつ梱包する場合があるため、多大な手間とコストが必要とされる。 Conventionally, styrenic resins have a good balance of molding processability and mechanical properties, and are excellent in electrical insulation, so they have been used in a wide range of fields such as the electrical / electronic equipment field and OA equipment field. Yes. However, at the stage of commercialization, when the molded product obtained by molding the resin is transported to the assembly line, for example, when the molded product is packed one by one with a soft nonwoven fabric or the like for the purpose of preventing fine scratches Therefore, a great deal of labor and cost are required.
 また、樹脂製品に様々な意匠を付与したり、使用時の製品の傷付きを防止する目的で、製品に全塗装又は部分塗装を施す場合がある。しかしながら、塗装処理は塗装不良による生産の歩留まり低下を生じやすいという問題点がある。また、近年のVOC排出抑制の流れから、できるだけ塗装処理を施すことなく、鮮やかな色又は深みのある色に着色したり、金属調又はパール調の外観を持たせること等ができるように、意匠性を付与しやすく、且つ傷の付きにくい樹脂が望まれている。 Also, there are cases where the product is fully or partially painted for the purpose of giving various designs to the resin product or preventing the product from being damaged during use. However, the coating process has a problem that the production yield is likely to decrease due to poor coating. In addition, from the recent trend of suppressing VOC emissions, the design can be colored with a vivid color or deep color, or have a metallic or pearly appearance, etc., with as little coating as possible. Resins that are easy to impart properties and are not easily damaged are desired.
 特定の構造を持つスチレン系樹脂にポリエチレンワックス又はシリコーンオイルを適量添加することにより、耐傷付き性を向上させる方法が知られている(特許文献1)。しかしながら、近年、高品位な外観を必要とする用途には、発色性が悪く適さない。さらに、シリコーンオイルがブリードアウトし、金型汚染性に劣るという問題がある。また、特定の粒子径分布を有するゴム強化スチレン系樹脂に、特定の窒素含有化合物を添加することで、傷付き性を改善できる方法が開示されている(特許文献2)。しかし、耐傷付き性が未だ不十分という問題がある。 A method for improving the scratch resistance by adding an appropriate amount of polyethylene wax or silicone oil to a styrene resin having a specific structure is known (Patent Document 1). However, in recent years, the color developability is not suitable for applications requiring a high-quality appearance. Furthermore, there is a problem that silicone oil bleeds out and is inferior in mold contamination. In addition, a method is disclosed in which the scratch resistance can be improved by adding a specific nitrogen-containing compound to a rubber-reinforced styrene resin having a specific particle size distribution (Patent Document 2). However, there is a problem that the scratch resistance is still insufficient.
特開2000-119477号公報JP 2000-119477 A 特開2000-191866号公報JP 2000-191866 A
 本発明の目的は、発色性、耐傷付き性だけでなく、金型汚染性、耐衝撃性と流動性の物性バランスに優れたゴム強化熱可塑性樹脂組成物を提供することにある。 An object of the present invention is to provide a rubber-reinforced thermoplastic resin composition excellent not only in color developability and scratch resistance but also in mold property contamination, impact resistance and fluidity balance.
 本発明者らは、従来技術の問題点を解決するために鋭意検討した結果、グラフト共重合体を構成するゴム状重合体のゴム粒子径とグラフト率を特定範囲に限定することにより、シリコーン系の化合物である添加剤などを用いることなく、上記目的を達成できることを見出し本発明に到達した。 As a result of intensive investigations to solve the problems of the prior art, the inventors of the present invention have limited the rubber particle diameter and the graft ratio of the rubber-like polymer constituting the graft copolymer to a specific range. The inventors have found that the above object can be achieved without using an additive which is a compound of the present invention, and reached the present invention.
 本発明の一側面に係る発明は、ゴム状重合体(a)の存在下に芳香族ビニル系単量体、シアン化ビニル系単量体、(メタ)アクリル酸エステル系単量体及びその他の共重合可能な単量体からなる群より選ばれる少なくとも一種の単量体(b)をグラフト共重合して得られるグラフト共重合体(A)が分散相を、芳香族ビニル系単量体、シアン化ビニル系単量体、(メタ)アクリル酸エステル系単量体及びその他の共重合可能な単量体からなる群より選ばれる少なくとも一種の単量体(b)を(共)重合させた(共)重合体(B)が連続相を構成するゴム強化熱可塑性樹脂組成物であって、ゴム状重合体(a)は粒子径0.05μm以上0.2μm未満の粒子が50~90重量%、粒子径0.2μm以上の粒子が10~50重量%である重量分率を有し、グラフト共重合体(A)のグラフト率が70~150%であり、ゴム強化熱可塑性樹脂組成物100重量部中にゴム状重合体(a)が5~24重量部含まれることを特徴とするゴム強化熱可塑性樹脂組成物、及び該ゴム強化熱可塑性樹脂組成物から得られた樹脂成形品に関する。 The invention according to one aspect of the present invention includes an aromatic vinyl monomer, a vinyl cyanide monomer, a (meth) acrylic acid ester monomer, and other monomers in the presence of the rubber-like polymer (a). A graft copolymer (A) obtained by graft copolymerization of at least one monomer (b) selected from the group consisting of copolymerizable monomers has a dispersed phase, an aromatic vinyl monomer, At least one monomer (b) selected from the group consisting of vinyl cyanide monomers, (meth) acrylic acid ester monomers and other copolymerizable monomers was (co) polymerized. A rubber-reinforced thermoplastic resin composition in which the (co) polymer (B) constitutes a continuous phase, and the rubber-like polymer (a) contains 50 to 90 weight particles having a particle diameter of 0.05 μm or more and less than 0.2 μm. %, And the weight fraction of particles having a particle diameter of 0.2 μm or more is 10 to 50% by weight The graft ratio of the graft copolymer (A) is 70 to 150%, and the rubber-like polymer (a) is contained in 5 to 24 parts by weight in 100 parts by weight of the rubber-reinforced thermoplastic resin composition. And a resin molded product obtained from the rubber-reinforced thermoplastic resin composition.
 また、本発明者らは、従来技術の問題点を解決するために鋭意検討した結果、ゴム状重合体のゴム粒子径とグラフト率を特定範囲に限定したグラフト共重合体を用い、さらに特定の構造を有するシリコーン系の化合物を用いたゴム強化熱可塑性樹脂組成物とすることで、上記目的を達成できることを見出し本発明に到達した。 Further, as a result of intensive studies to solve the problems of the prior art, the present inventors have used a graft copolymer in which the rubber particle diameter and graft ratio of the rubber-like polymer are limited to a specific range, and further The present inventors have found that the above object can be achieved by using a rubber-reinforced thermoplastic resin composition using a silicone compound having a structure.
 すなわち、本発明の別側面に係る発明は、グラフト共重合体(A)、(共)重合体(B)及びケイ素含有化合物(C)を含むゴム強化熱可塑性樹脂組成物であって、グラフト共重合体(A)は、粒子径0.05μm以上0.2μm未満の粒子が50~90重量%、粒子径0.2μm以上の粒子が10~50重量%である重量分率を有するゴム状重合体(a)の存在下に芳香族ビニル系単量体、シアン化ビニル系単量体、(メタ)アクリル酸エステル系単量体及びその他の共重合可能な単量体からなる群より選ばれる少なくとも一種の単量体(b)をグラフト共重合して得られ、グラフト率が70~150%であるグラフト共重合体であり、(共)重合体(B)は芳香族ビニル系単量体、シアン化ビニル系単量体、(メタ)アクリル酸エステル系単量体及びその他の共重合可能な単量体からなる群より選ばれる少なくとも一種の単量体(b)を(共)重合させた(共)重合体であり、ケイ素含有化合物(C)はシリコーン系化合物をシリカ粉末に担持させたケイ素含有化合物であって、ゴム強化熱可塑性樹脂組成物100重量部中にゴム状重合体(a)が5~24重量部含まれ、グラフト共重合体(A)と(共)重合体(B)の合計100重量部に対して、ケイ素含有化合物(C)を0.01~10重量部用いることを特徴とするゴム強化熱可塑性樹脂組成物、及び該ゴム強化熱可塑性樹脂組成物から得られた樹脂成形品に関する。 That is, the invention according to another aspect of the present invention is a rubber-reinforced thermoplastic resin composition comprising a graft copolymer (A), a (co) polymer (B), and a silicon-containing compound (C). The polymer (A) has a rubbery weight having a weight fraction of 50 to 90% by weight of particles having a particle size of 0.05 μm or more and less than 0.2 μm, and 10 to 50% by weight of particles having a particle size of 0.2 μm or more. Selected from the group consisting of aromatic vinyl monomers, vinyl cyanide monomers, (meth) acrylic acid ester monomers and other copolymerizable monomers in the presence of the coalescence (a). A graft copolymer obtained by graft copolymerization of at least one monomer (b) and having a graft ratio of 70 to 150%. The (co) polymer (B) is an aromatic vinyl monomer. , Vinyl cyanide monomer, (meth) acrylic acid ester A (co) polymer obtained by (co) polymerizing at least one monomer (b) selected from the group consisting of a monomer and other copolymerizable monomers, and the silicon-containing compound (C) is A silicon-containing compound in which a silicone-based compound is supported on silica powder, and 5 to 24 parts by weight of a rubber-like polymer (a) is contained in 100 parts by weight of a rubber-reinforced thermoplastic resin composition, and a graft copolymer ( A rubber-reinforced thermoplastic resin composition characterized by using 0.01 to 10 parts by weight of the silicon-containing compound (C) with respect to a total of 100 parts by weight of A) and (co) polymer (B), and The present invention relates to a resin molded product obtained from a rubber-reinforced thermoplastic resin composition.
 本発明により、発色性、耐傷付き性だけでなく、金型汚染性、耐衝撃性と流動性の物性バランスに優れたゴム強化熱可塑性樹脂組成物を得ることが出来る。 According to the present invention, it is possible to obtain a rubber-reinforced thermoplastic resin composition excellent not only in color developability and scratch resistance but also in mold contamination, impact resistance and fluidity balance.
 以下、本発明を詳しく説明する。 Hereinafter, the present invention will be described in detail.
 本発明の第1の実施形態に係るゴム強化熱可塑性樹脂組成物は、グラフト共重合体(A)が分散相を、(共)重合体(B)が連続相を構成することを特徴とするゴム強化熱可塑性樹脂組成物である。 The rubber-reinforced thermoplastic resin composition according to the first embodiment of the present invention is characterized in that the graft copolymer (A) constitutes a dispersed phase and the (co) polymer (B) constitutes a continuous phase. This is a rubber-reinforced thermoplastic resin composition.
 本発明の第2の実施形態に係るゴム強化熱可塑性樹脂組成物は、グラフト共重合体(A)、(共)重合体(B)及びケイ素含有化合物(C)を含むことを特徴とするゴム強化熱可塑性樹脂組成物である。 A rubber-reinforced thermoplastic resin composition according to a second embodiment of the present invention contains a graft copolymer (A), a (co) polymer (B), and a silicon-containing compound (C). It is a reinforced thermoplastic resin composition.
 本発明で用いられるグラフト共重合体(A)はゴム状重合体(a)の存在下に芳香族ビニル系単量体、シアン化ビニル系単量体、(メタ)アクリル酸エステル系単量体及びその他の共重合可能な単量体からなる群より選ばれる少なくとも一種の単量体(b)をグラフト共重合して得られる。 The graft copolymer (A) used in the present invention is an aromatic vinyl monomer, vinyl cyanide monomer, (meth) acrylic acid ester monomer in the presence of the rubbery polymer (a). And at least one monomer (b) selected from the group consisting of other copolymerizable monomers.
 グラフト共重合体(A)に用いられるゴム状重合体(a)としては、特に制限はないが、ポリブタジエンゴム、スチレン-ブタジエンゴム(SBR)、スチレン-ブタジエン-スチレン(SBS)ブロックコポリマー、スチレン-(エチレン-ブタジエン)-スチレン(SEBS)ブロックコポリマー、アクリロニトリル-ブタジエンゴム(NBR)、ブチルアクリレート-ブタジエン等のジエン系ゴム、アクリル酸ブチルゴム、ブタジエン-アクリル酸ブチルゴム、アクリル酸2-エチルヘキシル-アクリル酸ブチルゴム、メタクリル酸2-エチルヘキシル-アクリル酸ブチルゴム、アクリル酸ステアリル-アクリル酸ブチルゴム、ポリオルガノシロキサン-アクリル酸ブチル複合ゴム等のアクリル系ゴム、エチレン-プロピレンゴム、エチレン-プロピレン-ジエンゴム等のポリオレフィン系ゴム重合体、ポリオルガノシロキサン系ゴム等のシリコン系ゴム重合体が挙げられ、これらは、1種又は2種以上用いることができる。特に、ポリブタジエンゴム、スチレン-ブタジエンゴム、アクリル酸ブチルゴム、エチレン-プロピレン-ジエンゴムが好ましい。 The rubber-like polymer (a) used for the graft copolymer (A) is not particularly limited, but polybutadiene rubber, styrene-butadiene rubber (SBR), styrene-butadiene-styrene (SBS) block copolymer, styrene- (Ethylene-butadiene) -styrene (SEBS) block copolymer, acrylonitrile-butadiene rubber (NBR), diene rubbers such as butyl acrylate-butadiene, butyl acrylate rubber, butadiene-butyl acrylate rubber, 2-ethylhexyl acrylate-butyl acrylate rubber Acrylic rubbers such as 2-ethylhexyl methacrylate-butyl acrylate rubber, stearyl acrylate-butyl acrylate rubber, polyorganosiloxane-butyl acrylate composite rubber, ethylene-propylene rubber, Styrene - propylene - polyolefin rubber polymer such as diene rubber, silicone rubber polymers such as polyorganosiloxane rubber and the like, which may be used singly or in combination. In particular, polybutadiene rubber, styrene-butadiene rubber, butyl acrylate rubber, and ethylene-propylene-diene rubber are preferable.
 グラフト共重合体(A)に用いられるゴム状重合体(a)は、粒子径0.05μm以上0.2μm未満の粒子が50~90重量%、粒子径0.2μm以上の粒子が10~50重量%となるような粒子の重量分率を有している必要がある。0.05μm以上0.2μm未満の粒子が50重量%未満の場合は発色性に劣り、90重量%を超えると耐衝撃性に劣る。0.05μm以上0.2μm未満の粒子は55~85重量%であることが好ましく、60~80重量%であることがより好ましい。0.2μm以上の粒子が10重量%未満の場合は耐衝撃性に劣り、50重量%以上の場合は耐傷付き性、発色性に劣る。発色性と耐衝撃性のバランスの観点から0.2μm以上の粒子は15~45重量%であることが好ましく、20~40重量%であることがより好ましい。また、粒子径が0.2μm以上の粒子に関して、耐傷付き性の観点から、0.2μm以上0.4μm未満の粒子が10~50重量%であることが好ましく、15~45重量%であることがより好ましく、20~40重量%であることが特に好ましい。 The rubber-like polymer (a) used in the graft copolymer (A) has 50 to 90% by weight of particles having a particle size of 0.05 μm or more and less than 0.2 μm, and 10 to 50 particles having a particle size of 0.2 μm or more. It is necessary to have a weight fraction of particles that would be weight percent. When the particle size is 0.05 μm or more and less than 0.2 μm is less than 50% by weight, the color developability is inferior. The particle size of 0.05 μm or more and less than 0.2 μm is preferably 55 to 85% by weight, and more preferably 60 to 80% by weight. When the amount of particles of 0.2 μm or more is less than 10% by weight, the impact resistance is inferior. From the viewpoint of the balance between color developability and impact resistance, the particle size of 0.2 μm or more is preferably 15 to 45% by weight, more preferably 20 to 40% by weight. Further, with respect to particles having a particle diameter of 0.2 μm or more, from the viewpoint of scratch resistance, the particles having a particle diameter of 0.2 μm or more and less than 0.4 μm are preferably 10 to 50% by weight, and 15 to 45% by weight. Is more preferable, and 20 to 40% by weight is particularly preferable.
 ゴム状重合体(a)の粒子の重量分率は、ゴム状重合体を四酸化オスミウム等によって染色し、透過型電子顕微鏡を用いて透過写真を撮影し、ゴム状分散粒子500~1000個の粒子を測定することで求めることができる。 The weight fraction of the particles of the rubber-like polymer (a) was determined by dyeing the rubber-like polymer with osmium tetroxide or the like, taking a transmission photograph using a transmission electron microscope, and measuring 500 to 1,000 rubber-like dispersed particles. It can be determined by measuring the particles.
 粒子径0.05μm以上0.2μm未満の粒子が50~90重量%、粒子径0.2μm以上の粒子が10~50重量%となるような粒子の重量分率を有しているゴム状重合体(a)は、重合条件などを適宜調節することで得ることが出来るが、異なる粒子の重量分率を有するゴム状重合体を混合することで、目的の粒子の重量分率となるように調整したゴム状重合体であっても良い。 Rubbery weight having a particle weight fraction such that particles having a particle size of 0.05 μm or more and less than 0.2 μm are 50 to 90% by weight, and particles having a particle size of 0.2 μm or more are 10 to 50% by weight. The coalescence (a) can be obtained by appropriately adjusting the polymerization conditions and the like, but by mixing rubber-like polymers having different particle weight fractions, the desired particle weight fraction is obtained. An adjusted rubber-like polymer may be used.
 グラフト共重合体(A)に用いられる芳香族ビニル系単量体としては、スチレン、α-メチルスチレン、p-メチルスチレン、t-ブチルスチレン及びジメチルスチレン等を例示でき、1種又は2種以上用いることができる。芳香族ビニル系単量体として、特にスチレンが好ましい。 Examples of the aromatic vinyl monomer used in the graft copolymer (A) include styrene, α-methyl styrene, p-methyl styrene, t-butyl styrene, dimethyl styrene, and the like. Can be used. Styrene is particularly preferable as the aromatic vinyl monomer.
 グラフト共重合体(A)に用いられるシアン化ビニル系単量体としては、アクリロニトリル、メタクリロニトリル、エタクリロニトリル、フマロニトリル等を例示でき、1種又は2種以上用いることができる。シアン化ビニル系単量体として、特にアクリロニトリルが好ましい。 Examples of the vinyl cyanide monomer used in the graft copolymer (A) include acrylonitrile, methacrylonitrile, ethacrylonitrile, and fumaronitrile, and one or more of them can be used. As the vinyl cyanide monomer, acrylonitrile is particularly preferable.
 グラフト共重合体(A)に用いられる(メタ)アクリル酸エステル系単量体としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシルアクリレート、フェニル(メタ)アクリレート、4-t-ブチルフェニル(メタ)アクリレート、ブロモフェニル(メタ)アクリレート、ジブロモフェニル(メタ)アクリレート、2,4,6-トリブロモフェニル(メタ)アクリレート、モノクロルフェニル(メタ)アクリレート、ジクロルフェニル(メタ)アクリレート、トリクロルフェニル(メタ)アクリレート等を例示でき、1種又は2種以上用いることができる。(メタ)アクリル酸エステル系単量体として、特にメチルメタアクリレートが好ましい。 Examples of the (meth) acrylic acid ester monomer used in the graft copolymer (A) include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl. Acrylate, phenyl (meth) acrylate, 4-t-butylphenyl (meth) acrylate, bromophenyl (meth) acrylate, dibromophenyl (meth) acrylate, 2,4,6-tribromophenyl (meth) acrylate, monochlorophenyl ( A meth) acrylate, a dichlorophenyl (meth) acrylate, a trichlorophenyl (meth) acrylate etc. can be illustrated and it can use 1 type (s) or 2 or more types. As the (meth) acrylic acid ester monomer, methyl methacrylate is particularly preferable.
 グラフト共重合体(A)に用いられるその他の共重合可能な単量体としては、例えば、マレイミド系単量体(例えば、N-フェニルマレイミド、N-シクロヘキシルマレイミド等)、不飽和カルボン酸またはその無水物(例えば、アクリル酸、メタクリル酸及びマレイン酸無水物等)、及びアミド系単量体(例えば、アクリルアミド及びメタクリルアミド等)等を使用することができ、それぞれ1種又は2種以上を組み合わせて用いることができる。 Examples of other copolymerizable monomers used in the graft copolymer (A) include maleimide monomers (for example, N-phenylmaleimide, N-cyclohexylmaleimide, etc.), unsaturated carboxylic acids or their Anhydrides (for example, acrylic acid, methacrylic acid and maleic acid anhydride), amide monomers (for example, acrylamide and methacrylamide) and the like can be used, and one or a combination of two or more can be used. Can be used.
 グラフト共重合体(A)は、ゴム状重合体(a)の存在下で単量体(b)をグラフト共重合することで得られるが、グラフト共重合体(A)のグラフト率は70~150%であることが必要である。グラフト率が70%未満の場合は発色性、耐傷付き性に劣り、150%を超えると耐衝撃性、流動性に劣る。グラフト共重合体(A)のグラフト率は80~130%であることが好ましく、90~110%であることがより好ましい。 The graft copolymer (A) is obtained by graft copolymerization of the monomer (b) in the presence of the rubbery polymer (a). The graft ratio of the graft copolymer (A) is 70 to It is necessary to be 150%. When the graft ratio is less than 70%, the color developability and scratch resistance are poor, and when it exceeds 150%, the impact resistance and fluidity are poor. The graft ratio of the graft copolymer (A) is preferably 80 to 130%, more preferably 90 to 110%.
 グラフト共重合体(A)のグラフト率は、グラフト共重合体の赤外吸収スペクトルを測定することで求めることが出来る。具体的にはグラフト共重合体のアセトン可溶分を除去して、グラフト共重合体の不溶分から構成されるフィルムを作成し、赤外分光装置を用いてフィルムの赤外吸収スペクトルを測定することで、グラフト共重合体の構成物質及び構成比率を求めることが出来る。グラフト共重合体の構成比率が得られると、下記式にて計算を行うことでグラフト率を求めることが出来る。
グラフト率(%)=(単量体(b)に関する成分(重量%)/ゴム状重合体(a)に関する成分(重量%))×100
 ただし、単量体(b)に関する成分とゴム状重合体(a)に関する成分の合計を100重量%とする。
The graft ratio of the graft copolymer (A) can be determined by measuring the infrared absorption spectrum of the graft copolymer. Specifically, removing the acetone-soluble content of the graft copolymer, creating a film composed of the insoluble content of the graft copolymer, and measuring the infrared absorption spectrum of the film using an infrared spectrometer Thus, the constituent material and the constituent ratio of the graft copolymer can be obtained. When the composition ratio of the graft copolymer is obtained, the graft ratio can be obtained by calculating with the following formula.
Graft rate (%) = (component (% by weight) relating to monomer (b) / component (% by weight) relating to rubbery polymer (a)) × 100
However, the total of the component relating to the monomer (b) and the component relating to the rubber-like polymer (a) is 100% by weight.
 グラフト共重合体のグラフト率の測定に関して、ゴム強化熱可塑性樹脂組成物中のグラフト共重合体のグラフト率を求める場合は、ゴム強化熱可塑性樹脂組成物のアセトン不溶分がグラフト共重合体に相当するため、アセトン不溶分の赤外吸収スペクトルを測定することで、上記と同様の方法により、ゴム強化熱可塑性樹脂中に存在するグラフト共重合体(A)のグラフト率を求めることが出来る。 When determining the graft ratio of the graft copolymer in the rubber-reinforced thermoplastic resin composition for the measurement of the graft ratio of the graft copolymer, the acetone-insoluble content of the rubber-reinforced thermoplastic resin composition corresponds to the graft copolymer. Therefore, by measuring the infrared absorption spectrum of the acetone-insoluble matter, the graft ratio of the graft copolymer (A) present in the rubber-reinforced thermoplastic resin can be determined by the same method as described above.
 グラフト共重合体(A)の重合方法については特に制限はなく、乳化重合、懸濁重合、塊状重合、溶液重合またはこれらの組み合わせにより製造することができるが乳化重合により製造を行う事が好ましい。 The polymerization method of the graft copolymer (A) is not particularly limited and can be produced by emulsion polymerization, suspension polymerization, bulk polymerization, solution polymerization, or a combination thereof, but it is preferable to carry out the production by emulsion polymerization.
 本発明で用いられる(共)重合体(B)は、芳香族ビニル系単量体、シアン化ビニル系単量体、(メタ)アクリル酸エステル系単量体及びその他の共重合可能な単量体を含む群から選択される1種以上の単量体(b)を重合することで得られる(共)重合体であるが、用いられる単量体はグラフト共重合体(A)で用いられる例として述べられている各単量体と同様のものを用いることが出来る。用いられる単量体の種類や使用比率に関しては、求められる物性に応じて適宜調節をすれば良い。また、(共)重合体(B)はグラフト共重合体(A)のグラフト共重合の際に、ゴム状重合体(a)に(共)重合しなかった単量体の(共)重合体を含んでいても良い。 The (co) polymer (B) used in the present invention comprises an aromatic vinyl monomer, a vinyl cyanide monomer, a (meth) acrylic acid ester monomer, and other copolymerizable monomers. The (co) polymer obtained by polymerizing one or more monomers (b) selected from the group containing the body is used in the graft copolymer (A). The thing similar to each monomer described as an example can be used. What is necessary is just to adjust suitably according to the physical property requested | required regarding the kind and usage ratio of the monomer to be used. The (co) polymer (B) is a monomer (co) polymer that was not (co) polymerized with the rubbery polymer (a) during the graft copolymerization of the graft copolymer (A). May be included.
 (共)重合体(B)の重合方法については特に制限はなく、公知の乳化重合、懸濁重合、塊状重合、溶液重合またはこれらの組み合わせにより製造することができる。 The polymerization method of the (co) polymer (B) is not particularly limited, and can be produced by known emulsion polymerization, suspension polymerization, bulk polymerization, solution polymerization, or a combination thereof.
 本発明の第1の実施形態に係るゴム強化熱可塑性樹脂組成物は、分散相であるグラフト共重合体(A)と連続相である(共)重合体(B)から構成されるが、ゴム強化熱可塑性樹脂組成物100重量部中にゴム状重合体(a)が5~24重量部含まれている限り、グラフト共重合体(A)と(共)重合体(B)の使用割合に制限は無い。つまり、グラフト共重合体(A)のグラフト共重合の際に副生成される(共)重合体が連続相となる場合は(共)重合体(B)を用いなくても良い。ゴム状重合体が5重量部未満では耐衝撃性に劣り、24重量部を超えると発色性、耐傷付き性、流動性に劣る。物性バランスの観点から、ゴム状重合体は7~20重量部含まれていることが好ましく、10~17重量部含まれていることがより好ましい。 The rubber-reinforced thermoplastic resin composition according to the first embodiment of the present invention is composed of a graft copolymer (A) that is a dispersed phase and a (co) polymer (B) that is a continuous phase. As long as 5 to 24 parts by weight of the rubber-like polymer (a) is contained in 100 parts by weight of the reinforced thermoplastic resin composition, the proportion of the graft copolymer (A) and (co) polymer (B) used is There is no limit. That is, when the (co) polymer by-produced during the graft copolymerization of the graft copolymer (A) becomes a continuous phase, the (co) polymer (B) may not be used. When the amount of the rubbery polymer is less than 5 parts by weight, the impact resistance is inferior. From the viewpoint of balance of physical properties, the rubbery polymer is preferably contained in an amount of 7 to 20 parts by weight, and more preferably 10 to 17 parts by weight.
 また、第1の実施形態に係るゴム強化熱可塑性樹脂組成物は、重量分率の異なる2種以上のゴム状重合体をそれぞれ別々にグラフト重合することで、2種以上のグラフト共重合体を作成し、これらグラフト共重合体と(共)重合体とを溶融混連させることで得られたゴム強化熱可塑性樹脂組成物であってもよい。ただし、その場合は個々のグラフト共重合体のグラフト率が70~150%である必要がある。 Moreover, the rubber-reinforced thermoplastic resin composition according to the first embodiment is obtained by graft-polymerizing two or more kinds of rubber-like polymers having different weight fractions to obtain two or more kinds of graft copolymers. It may be a rubber-reinforced thermoplastic resin composition prepared and melt-mixed with these graft copolymers and (co) polymers. However, in that case, the graft ratio of each individual graft copolymer needs to be 70 to 150%.
 第1の実施形態に係るゴム強化熱可塑性樹脂組成物の連続相(アセトン可溶部)の還元粘度(0.4g/100cc、N,Nジメチルホルムアミド溶液として30℃で測定)に特に制限はなく、要求性能によって任意の値のものを使用することができるが、物性バランスの観点から0.2~2.0dl/gであることが好ましく、0.3~1.5dl/gであることがより好ましい。 There is no particular limitation on the reduced viscosity (measured at 30 ° C. as an N, N dimethylformamide solution) of the continuous phase (acetone soluble part) of the rubber-reinforced thermoplastic resin composition according to the first embodiment. Any value can be used depending on the required performance, but from the viewpoint of balance of physical properties, it is preferably 0.2 to 2.0 dl / g, and preferably 0.3 to 1.5 dl / g. More preferred.
 また、本発明の第2の実施形態に係るゴム強化熱可塑性樹脂組成物は、グラフト共重合体(A)と(共)重合体(B)を含むが、ゴム強化熱可塑性樹脂組成物100重量部中にゴム状重合体(a)が5~24重量部含まれている限り、グラフト共重合体(A)と(共)重合体(B)の使用割合に制限は無い。つまり、グラフト共重合体(A)のグラフト共重合の際に副生成される(共)重合体が(共)重合体(B)と同様の役割を有する場合は(共)重合体(B)を用いなくても良い。ゴム状重合体(a)が5重量部未満では耐衝撃性に劣り、24重量部を超えると発色性、耐傷付き性、流動性に劣る。物性バランスの観点から、ゴム状重合体(a)は7~20重量部含まれていることが好ましく、10~17重量部含まれていることがより好ましい。 In addition, the rubber-reinforced thermoplastic resin composition according to the second embodiment of the present invention includes the graft copolymer (A) and the (co) polymer (B), but 100 weights of the rubber-reinforced thermoplastic resin composition. As long as 5 to 24 parts by weight of the rubbery polymer (a) is contained in the part, there is no limitation on the use ratio of the graft copolymer (A) and the (co) polymer (B). That is, when the (co) polymer by-produced in the graft copolymerization of the graft copolymer (A) has the same role as the (co) polymer (B), the (co) polymer (B) May not be used. When the amount of the rubbery polymer (a) is less than 5 parts by weight, the impact resistance is inferior, and when it exceeds 24 parts by weight, the color developability, scratch resistance and fluidity are inferior. From the viewpoint of balance of physical properties, the rubber-like polymer (a) is preferably contained in an amount of 7 to 20 parts by weight, and more preferably 10 to 17 parts by weight.
 また、第2の実施形態に係るゴム強化熱可塑性樹脂組成物は、重量分率の異なる2種以上のゴム状重合体をそれぞれ別々にグラフト重合することで、2種以上のグラフト共重合体を作成し、これらグラフト共重合体と(共)重合体(B)とを溶融混連させることで得られたゴム強化熱可塑性樹脂組成物であってもよい。 In addition, the rubber-reinforced thermoplastic resin composition according to the second embodiment is obtained by graft-polymerizing two or more kinds of rubber-like polymers having different weight fractions, thereby obtaining two or more kinds of graft copolymers. It may be a rubber-reinforced thermoplastic resin composition prepared and melt-mixed with these graft copolymer and (co) polymer (B).
 第2の実施形態に係るゴム強化熱可塑性樹脂組成物のアセトン可溶部の還元粘度(0.4g/100cc、N,Nジメチルホルムアミド溶液として30℃で測定)に特に制限はなく、要求性能によって任意の値のものを使用することができるが、物性バランスの観点から0.2~2.0dl/gであることが好ましく、0.3~1.5dl/gであることがより好ましい。 There is no particular limitation on the reduced viscosity (measured at 30 ° C. as an N, N dimethylformamide solution) of the acetone soluble part of the rubber-reinforced thermoplastic resin composition according to the second embodiment, depending on the required performance. Although any value can be used, it is preferably 0.2 to 2.0 dl / g, more preferably 0.3 to 1.5 dl / g from the viewpoint of balance of physical properties.
 本発明で用いられるケイ素含有化合物(C)はシリコーン系化合物をシリカ粉末に担持させた化合物である。詳しくはシリカ粉末の表面に、シリコーン系化合物を担持させたケイ素含有化合物のことである。 The silicon-containing compound (C) used in the present invention is a compound in which a silicone compound is supported on silica powder. Specifically, it is a silicon-containing compound in which a silicone compound is supported on the surface of silica powder.
 ケイ素含有化合物(C)に用いられる、シリコーン系化合物としてはシリコーンオイル、シリコーンゴムまたはその中間体、シリコーン樹脂またはその中間体等が例示される。 Examples of the silicone compound used for the silicon-containing compound (C) include silicone oil, silicone rubber or an intermediate thereof, silicone resin or an intermediate thereof.
 シリコーン系化合物はさらに、分子中あるいは分子末端に反応性の官能基として、例えばエポキシ基、アクリロキシ基、メタクリロキシ基、ビニル基、フェニル基、ヒドロキシル基等を含有したものを使用することが出来る。なかでもメタクリロキシ基を含有したものを好ましく使用することが出来る。 As the silicone compound, those containing, for example, an epoxy group, an acryloxy group, a methacryloxy group, a vinyl group, a phenyl group, a hydroxyl group or the like as a reactive functional group in the molecule or at the molecular end can be used. Among these, those containing a methacryloxy group can be preferably used.
 ケイ素含有化合物(C)に用いられるシリカ粉末はシリコーン系化合物を担持(吸収、吸着または保持)するように機能するもので、フュームドシリカ、沈殿シリカ、または微粉砕シリカ等が用いられる。これらシリカの表面積は50~400m/gの範囲のものが好ましい。表面積がこの範囲にあると、シリコーン系化合物を担持させやすくなる。 The silica powder used for the silicon-containing compound (C) functions to support (absorb, adsorb or hold) the silicone compound, and fumed silica, precipitated silica, finely pulverized silica, or the like is used. The surface area of these silicas is preferably in the range of 50 to 400 m 2 / g. When the surface area is in this range, it becomes easy to support the silicone compound.
 ケイ素含有化合物(C)のシリコーン系化合物の含有量に特に制限は無いが、耐傷付き性及び発色性の観点からケイ素含有化合物(C)100重量部中に40~80重量部含まれていることが好ましい。また、樹脂組成物への分散のしやすさから、ケイ素含有化合物(C)の体積平均粒子径は5~250μmの範囲にあることが好ましい。また、ケイ素含有化合物(C)の嵩比重は0.1~0.7の範囲にあることが好ましい。 Although there is no restriction | limiting in particular in the content of the silicone type compound of a silicon containing compound (C), 40-80 weight part is contained in 100 weight part of silicon containing compounds (C) from a viewpoint of scratch resistance and coloring property. Is preferred. Further, in view of ease of dispersion in the resin composition, the volume average particle diameter of the silicon-containing compound (C) is preferably in the range of 5 to 250 μm. The bulk specific gravity of the silicon-containing compound (C) is preferably in the range of 0.1 to 0.7.
 ケイ素含有化合物(C)の使用量はグラフト共重合体(A)と(共)重合体(B)の合計100重量部に対して、0.1~10重量部である。0.1重量部よりも少ないと耐傷付き性が不十分であり、10重量部を超えると発色性に劣る結果となる。好ましくは0.1~3重量部である。 The amount of the silicon-containing compound (C) used is 0.1 to 10 parts by weight with respect to 100 parts by weight as a total of the graft copolymer (A) and the (co) polymer (B). If it is less than 0.1 part by weight, the scratch resistance is insufficient, and if it exceeds 10 parts by weight, the color developability is poor. The amount is preferably 0.1 to 3 parts by weight.
 本発明のゴム強化熱可塑性樹脂組成物は、必要に応じて各種添加剤、例えば公知の酸化防止剤、光安定剤、滑剤、可塑剤、帯電防止剤、着色剤、難燃剤、艶消し剤、充填剤、ガラス繊維等を適宜添加することができる。 The rubber-reinforced thermoplastic resin composition of the present invention may contain various additives as necessary, for example, known antioxidants, light stabilizers, lubricants, plasticizers, antistatic agents, colorants, flame retardants, matting agents, A filler, glass fiber, etc. can be added suitably.
 本発明のゴム強化熱可塑性樹脂組成物は単独で使用できるが、必要に応じて他の熱可塑性樹脂と混合して使用することもできる。このような他の熱可塑性樹脂として、例えば、ポリメチルメタクリレートなどのアクリル系樹脂、ポリカーボネート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンテレフタレート樹脂、ポリアミド樹脂、ポリ乳酸樹脂等を使用することができる。 The rubber-reinforced thermoplastic resin composition of the present invention can be used alone, but can also be used by mixing with other thermoplastic resins as necessary. Examples of such other thermoplastic resins that can be used include acrylic resins such as polymethyl methacrylate, polycarbonate resins, polybutylene terephthalate resins, polyethylene terephthalate resins, polyamide resins, and polylactic acid resins.
 本発明のゴム強化熱可塑性樹脂組成物は、上述の成分を混合することで得ることができる。混合するために、例えば、押出し機、ロール、バンバリーミキサー、ニーダー等の公知の混練装置を用いることができる。 The rubber-reinforced thermoplastic resin composition of the present invention can be obtained by mixing the above-described components. In order to mix, well-known kneading apparatuses, such as an extruder, a roll, a Banbury mixer, a kneader, can be used, for example.
 また、上述の成分の混合方法や順序に特に制限はなく、本発明の第2の実施形態に係るゴム強化熱可塑性樹脂組成物の場合、グラフト共重合体(A)と(共)重合体(B)を溶融混練して得られた樹脂組成物にケイ素含有化合物(C)を混合することで樹脂組成物を得てもよいし、グラフト共重合体(A)、(共)重合体(B)、ケイ素含有化合物(C)を予め混合してから溶融混練して樹脂組成物を得ても良い。 Moreover, there is no restriction | limiting in particular in the mixing method and order of the above-mentioned component. In the case of the rubber-reinforced thermoplastic resin composition according to the second embodiment of the present invention, the graft copolymer (A) and the (co) polymer ( A resin composition may be obtained by mixing a silicon-containing compound (C) with a resin composition obtained by melt-kneading B), or a graft copolymer (A) or (co) polymer (B). ), A silicon-containing compound (C) may be mixed in advance and then melt kneaded to obtain a resin composition.
 さらに、本発明のゴム強化熱可塑性樹脂組成物は、公知の成形方法、例えば押出成型、射出成形、ブロー成形及びプレス成形等により成形することができ、種々の成形品を製造することができる。 Furthermore, the rubber-reinforced thermoplastic resin composition of the present invention can be molded by known molding methods such as extrusion molding, injection molding, blow molding and press molding, and various molded products can be produced.
 以下に実施例を示して本発明を具体的に説明するが、本発明はこれらによって何ら制限されるものではない。なお、実施例中にて示す「部」及び「%」は重量に基づくものである。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In the examples, “parts” and “%” are based on weight.
<試験例>
(実施例A1~A10、及び比較例A1~A6)
 表3及び表4に示す組成割合のグラフト共重合体(A)及び共重合体(B)に対して、着色剤としてSumiplast Black HB(住友化学株式会社製)を1.0部混合した。ベント付50mm単軸押出機(オーエヌ機械製)を用い、シリンダー温度210℃にて溶融混合し、ペレット化することによって、黒色に着色されたペレットを得た。
<Test example>
(Examples A1 to A10 and Comparative Examples A1 to A6)
1.0 part of Sumiplast Black HB (manufactured by Sumitomo Chemical Co., Ltd.) was mixed as a colorant with respect to the graft copolymers (A) and copolymers (B) having the composition ratios shown in Tables 3 and 4. Using a vented 50 mm single-screw extruder (manufactured by ON Machinery), the mixture was melt-mixed at a cylinder temperature of 210 ° C. and pelletized to obtain black colored pellets.
(実施例B1~B12、及び比較例B1~B9)
 表5及び表6に示す組成割合のグラフト共重合体(A)、共重合体(B)及びケイ素含有化合物(C)に対して、着色剤としてSumiplast Black HB(住友化学株式会社製)を1.0部混合した。ベント付50mm単軸押出機(オーエヌ機械製)を用い、シリンダー温度210℃にて溶融混合し、ペレット化することによって、黒色に着色されたペレットを得た。
(Examples B1 to B12 and Comparative Examples B1 to B9)
For the graft copolymer (A), copolymer (B), and silicon-containing compound (C) having the composition ratios shown in Tables 5 and 6, Sumiplast Black HB (manufactured by Sumitomo Chemical Co., Ltd.) is used as a colorant. 0.0 parts mixed. Using a vented 50 mm single-screw extruder (manufactured by ON Machinery), the mixture was melt-mixed at a cylinder temperature of 210 ° C. and pelletized to obtain black colored pellets.
 なお、表1及び表2で示す各成分は以下の通りである。 In addition, each component shown in Table 1 and Table 2 is as follows.
[ゴム状重合体(a)の製造]
 ゴム状重合体(a-1):耐圧容器に、1,3-ブタジエン93部、スチレン7部、n-ドデシルメルカプタン0.5部、過硫酸カリウム0.24部、ロジン酸ナトリウム1.5部、水酸化ナトリウム0.1部及び脱イオン水150部を仕込み、70℃で15時間反応させた後、冷却して反応を終了させることで、スチレン-ブタジエンゴムラテックス(a-1)を得た。得られたスチレン-ブタジエンゴムラテックス(a-1)を、四酸化オスミウム(OsO)で染色し、乾燥後に透過型電子顕微鏡で写真撮影をした。画像解析処理装置(装置名:旭化成(株)製 IP-1000PC)を用いて1000個のゴム粒子の面積を計測し、その円相当径(直径)を求め、スチレン-ブタジエンゴムの重量平均粒子径及び重量分率を算出した。重量平均粒子径及び重量分率を表1に示す。
[Production of rubber-like polymer (a)]
Rubber polymer (a-1): 93 parts 1,3-butadiene, 7 parts styrene, 0.5 parts n-dodecyl mercaptan, 0.24 parts potassium persulfate, 1.5 parts sodium rosinate in a pressure vessel Then, 0.1 part of sodium hydroxide and 150 parts of deionized water were charged, reacted at 70 ° C. for 15 hours, and then cooled to terminate the reaction, thereby obtaining a styrene-butadiene rubber latex (a-1). . The obtained styrene-butadiene rubber latex (a-1) was dyed with osmium tetroxide (OsO 4 ), dried, and photographed with a transmission electron microscope. Using an image analysis processor (apparatus name: IP-1000PC manufactured by Asahi Kasei Co., Ltd.), the area of 1000 rubber particles was measured and the equivalent circle diameter (diameter) was obtained. The weight average particle diameter of styrene-butadiene rubber And the weight fraction was calculated. Table 1 shows the weight average particle diameter and the weight fraction.
 ゴム状重合体(a-2)~(a-4):上記で得られたスチレン-ブタジエンゴムラテックス(a-1)を用いてゴム粒子の凝集肥大化処理を行った。撹拌槽にスチレン-ブタジエンゴムラテックス(a-1)270部、10%ドデシルベンゼンスルホン酸ナトリウム水溶液0.09部を添加して10分間撹拌した後、5%リン酸水溶液0.8部を10分間に亘り添加した。その後、10%水酸化カリウム水溶液1部を添加することで、重量平均粒子径が0.25μmであるゴム状重合体(a-2)を得た。ドデシルベンゼンスルホン酸ナトリウムの使用量を調節することで、スチレン-ブタジエンゴムラテックス(a-3)~(a-4)を得た。上述の方法で、得られたスチレン-ブタジエンゴムラテックスの重量平均粒子径と重量分率を測定した。測定結果を表1に示す。 Rubbery polymers (a-2) to (a-4): The styrene-butadiene rubber latex (a-1) obtained above was used to subject the rubber particles to a cohesive enlargement treatment. 270 parts of styrene-butadiene rubber latex (a-1) was added to a stirring tank and 0.09 part of a 10% aqueous sodium dodecylbenzenesulfonate solution was stirred for 10 minutes, and then 0.8 part of a 5% aqueous phosphoric acid solution was added for 10 minutes. Was added over a period of time. Thereafter, 1 part of a 10% aqueous potassium hydroxide solution was added to obtain a rubber-like polymer (a-2) having a weight average particle diameter of 0.25 μm. By adjusting the amount of sodium dodecylbenzenesulfonate, styrene-butadiene rubber latexes (a-3) to (a-4) were obtained. The weight average particle diameter and weight fraction of the obtained styrene-butadiene rubber latex were measured by the method described above. The measurement results are shown in Table 1.
 ゴム状重合体(a-5)~(a-9):表1に示す構成比でスチレン-ブタジエンゴムラテックス(a-1)~(a-4)を混合することにより、ゴム状重合体(a-5)~(a-9)を得た。 Rubbery polymers (a-5) to (a-9): By mixing the styrene-butadiene rubber latexes (a-1) to (a-4) in the composition ratios shown in Table 1, rubbery polymers ( a-5) to (a-9) were obtained.
[グラフト共重合体(A)の製造]
 グラフト共重合体(A-1):窒素置換した反応器にスチレン-ブタジエンゴムラテックス(a-5)30部(固形分)、水160部、エチレンジアミン四酢酸二ナトリウム塩0.1部、硫酸第1鉄0.001部、ナトリウムホルムアルデヒドスルホキシレート0.3部を入れ、60℃に加熱後、スチレン49部、アクリロニトリル21部、t-ドデシルメルカプタン0.3部及びキュメンハイドロパーオキサイド0.2部からなる混合物とオレイン酸カリウム1.5部及び水15部からなる混合物を4時間に亘り連続的に添加した。添加終了後さらに60℃で2時間重合した。その後、塩析・脱水・乾燥することでグラフト共重合体(A-1)を得た。
[Production of Graft Copolymer (A)]
Graft copolymer (A-1): 30 parts (solid content) of styrene-butadiene rubber latex (a-5), 160 parts of water, 0.1 part of ethylenediaminetetraacetic acid disodium salt, sulfuric acid 1 part 0.001 part of iron and 0.3 part of sodium formaldehyde sulfoxylate are added, heated to 60 ° C., 49 parts of styrene, 21 parts of acrylonitrile, 0.3 part of t-dodecyl mercaptan and 0.2 part of cumene hydroperoxide And a mixture of 1.5 parts of potassium oleate and 15 parts of water was added continuously over 4 hours. After completion of the addition, polymerization was further performed at 60 ° C. for 2 hours. Thereafter, the graft copolymer (A-1) was obtained by salting out, dehydrating and drying.
 グラフト共重合体(A-1)の一定量をアセトン中に投入し、振とう機で2時間振とうし、グラフト共重合体を浸漬させた。遠心分離器を用いて、この溶液を15,000rpmで30分間、遠心分離した後に、真空乾燥により常温で一昼夜乾燥し、アセトン不溶分を得た。得られたアセトン不溶分をフィルム化して赤外分光分析装置(装置名:Spectrum One Perkin Elmer社製)を用いて、赤外吸収スペクトルからスチレン-ブタジエンゴム、スチレン、アクリロニトリルの重量比率を同定した。各成分の重量比率からグラフト率を算出した。
 また、上記で得られたアセトン可溶分を乾燥後、N,N-ジメチルホルムアミドに溶解し、0.4g/100ccの濃度の溶液としたのち、キャノンフェンスケ型粘度管を用い30℃の流下時間を測定することにより還元粘度を求めた。
 得られたグラフト共重合体(A-1)のグラフト率及びアセトン可溶分の還元粘度はそれぞれ91%及び0.40dl/gであった。
A certain amount of the graft copolymer (A-1) was put into acetone and shaken for 2 hours with a shaker to immerse the graft copolymer. This solution was centrifuged at 15,000 rpm for 30 minutes using a centrifuge, and then dried at room temperature for a whole day and night by vacuum drying to obtain an acetone insoluble matter. The obtained acetone-insoluble matter was formed into a film, and the weight ratio of styrene-butadiene rubber, styrene, and acrylonitrile was identified from the infrared absorption spectrum using an infrared spectroscopic analyzer (apparatus name: Spectrum One Perkin Elmer). The graft ratio was calculated from the weight ratio of each component.
The acetone-soluble matter obtained above is dried and then dissolved in N, N-dimethylformamide to obtain a solution having a concentration of 0.4 g / 100 cc. The reduced viscosity was determined by measuring the time.
The graft ratio of the obtained graft copolymer (A-1) and the reduced viscosity of the acetone-soluble component were 91% and 0.40 dl / g, respectively.
 グラフト共重合体(A-2):窒素置換した反応器にスチレン-ブタジエンゴムラテックス(a-6)30部(固形分)、水160部、エチレンジアミン四酢酸二ナトリウム塩0.1部、硫酸第1鉄0.001部、ナトリウムホルムアルデヒドスルホキシレート0.3部を入れ、60℃に加熱後、スチレン49部、アクリロニトリル21部、t-ドデシルメルカプタン0.3部及びキュメンハイドロパーオキサイド0.2部からなる混合物とオレイン酸カリウム1.5部及び水15部からなる混合物を4時間に亘り連続的に添加した。添加終了後さらに60℃で2時間重合した。その後、塩析・脱水・乾燥することでグラフト共重合体(A-2)を得た。上述の方法により、得られたグラフト共重合体(A-2)のグラフト率及びアセトン可溶分の還元粘度を測定した結果、グラフト率は89%、還元粘度は0.39dl/gであった。 Graft copolymer (A-2): 30 parts (solid content) of styrene-butadiene rubber latex (a-6), 160 parts of water, 0.1 part of ethylenediaminetetraacetic acid disodium salt, sulfuric acid 1 part 0.001 part of iron and 0.3 part of sodium formaldehyde sulfoxylate are added, heated to 60 ° C., 49 parts of styrene, 21 parts of acrylonitrile, 0.3 part of t-dodecyl mercaptan and 0.2 part of cumene hydroperoxide And a mixture of 1.5 parts of potassium oleate and 15 parts of water was added continuously over 4 hours. After completion of the addition, polymerization was further performed at 60 ° C. for 2 hours. Thereafter, salting out, dehydration, and drying were performed to obtain a graft copolymer (A-2). The graft ratio of the obtained graft copolymer (A-2) and the reduced viscosity of the acetone-soluble component were measured by the above-mentioned method. As a result, the graft ratio was 89% and the reduced viscosity was 0.39 dl / g. .
 グラフト共重合体(A-3):窒素置換した反応器にスチレン-ブタジエンゴムラテックス(a-5)30部(固形分)、水160部、エチレンジアミン四酢酸二ナトリウム塩0.1部、硫酸第1鉄0.001部、ナトリウムホルムアルデヒドスルホキシレート0.3部を入れ、60℃に加熱後、スチレン49部、アクリロニトリル21部、及びキュメンハイドロパーオキサイド0.2部からなる混合物とオレイン酸カリウム1.5部及び水15部からなる混合物を4時間に亘り連続的に添加した。添加終了後さらに60℃で2時間重合した。その後、塩析・脱水・乾燥することでグラフト共重合体(A-3)を得た。上述の方法により、得られたグラフト共重合体(A-3)のグラフト率及びアセトン可溶分の還元粘度を測定した結果、グラフト率は130%、還元粘度は0.39dl/gであった。 Graft copolymer (A-3): 30 parts (solid content) of styrene-butadiene rubber latex (a-5), 160 parts of water, 0.1 part of ethylenediaminetetraacetic acid disodium salt, sulfuric acid 1 iron 0.001 part, sodium formaldehyde sulfoxylate 0.3 part, and after heating to 60 ° C., a mixture of 49 parts of styrene, 21 parts of acrylonitrile and 0.2 part of cumene hydroperoxide and potassium oleate 1 A mixture consisting of .5 parts and 15 parts of water was added continuously over 4 hours. After completion of the addition, polymerization was further performed at 60 ° C. for 2 hours. Thereafter, salt grafting, dehydration and drying were performed to obtain a graft copolymer (A-3). As a result of measuring the graft ratio of the obtained graft copolymer (A-3) and the reduced viscosity of the acetone-soluble component by the above method, the graft ratio was 130% and the reduced viscosity was 0.39 dl / g. .
 グラフト共重合体(A-4):窒素置換した反応器にスチレン-ブタジエンゴムラテックス(a-5)30部(固形分)、水160部、エチレンジアミン四酢酸二ナトリウム塩0.1部、硫酸第1鉄0.001部、ナトリウムホルムアルデヒドスルホキシレート0.3部を入れ、60℃に加熱後、スチレン21部、メタクリル酸メチル49部、t-ドデシルメルカプタン0.3部及びキュメンハイドロパーオキサイド0.2部からなる混合物とオレイン酸カリウム1.5部及び水15部からなる混合物を4時間に亘り連続的に添加した。添加終了後さらに60℃で2時間重合した。その後、塩析・脱水・乾燥することでグラフト共重合体(A-4)を得た。上述の方法により、得られたグラフト共重合体(A-4)のグラフト率及びアセトン可溶分の還元粘度を測定した結果、グラフト率は81%、還元粘度は0.37dl/gであった。 Graft copolymer (A-4): 30 parts (solid content) of styrene-butadiene rubber latex (a-5), 160 parts of water, 0.1 part of disodium ethylenediaminetetraacetate, sulfuric acid 1 part 0.001 part of iron and 0.3 part of sodium formaldehyde sulfoxylate were added and heated to 60 ° C., then 21 parts of styrene, 49 parts of methyl methacrylate, 0.3 part of t-dodecyl mercaptan and 0. A mixture consisting of 2 parts and a mixture consisting of 1.5 parts of potassium oleate and 15 parts of water was added continuously over 4 hours. After completion of the addition, polymerization was further performed at 60 ° C. for 2 hours. Thereafter, salting out, dehydration and drying were performed to obtain a graft copolymer (A-4). The graft ratio of the obtained graft copolymer (A-4) and the reduced viscosity of the acetone-soluble component were measured by the above-mentioned method. As a result, the graft ratio was 81% and the reduced viscosity was 0.37 dl / g. .
 グラフト共重合体(A-5):窒素置換した反応器にスチレン-ブタジエンゴムラテックス(a-5)20部(固形分)、水160部、エチレンジアミン四酢酸二ナトリウム塩0.1部、硫酸第1鉄0.001部、ナトリウムホルムアルデヒドスルホキシレート0.3部を入れ、60℃に加熱後、スチレン56部、アクリロニトリル24部、t-ドデシルメルカプタン0.4部及びキュメンハイドロパーオキサイド0.2部からなる混合物とオレイン酸カリウム1.5部及び水15部からなる混合物を4時間に亘り連続的に添加した。添加終了後さらに60℃で2時間重合した。その後、塩析・脱水・乾燥することでグラフト共重合体(A-5)を得た。上述の方法により、得られたグラフト共重合体(A-5)のグラフト率及びアセトン可溶分の還元粘度を測定した結果、グラフト率は75%、還元粘度は0.36dl/gであった。 Graft copolymer (A-5): 20 parts (solid content) of styrene-butadiene rubber latex (a-5), 160 parts of water, 0.1 part of disodium ethylenediaminetetraacetate, sulfuric acid 1 part 0.001 part of iron and 0.3 part of sodium formaldehyde sulfoxylate are added, heated to 60 ° C., 56 parts of styrene, 24 parts of acrylonitrile, 0.4 part of t-dodecyl mercaptan and 0.2 part of cumene hydroperoxide And a mixture of 1.5 parts of potassium oleate and 15 parts of water was added continuously over 4 hours. After completion of the addition, polymerization was further performed at 60 ° C. for 2 hours. Thereafter, salt grafting, dehydration and drying were performed to obtain a graft copolymer (A-5). As a result of measuring the graft ratio of the obtained graft copolymer (A-5) and the reduced viscosity of the acetone-soluble component by the above method, the graft ratio was 75% and the reduced viscosity was 0.36 dl / g. .
 グラフト共重合体(A-6):窒素置換した反応器にスチレン-ブタジエンゴムラテックス(a-5)48部(固形分)、水140部、エチレンジアミン四酢酸二ナトリウム塩0.1部、硫酸第1鉄0.001部、ナトリウムホルムアルデヒドスルホキシレート0.3部を入れ、60℃に加熱後、スチレン39部、アクリロニトリル13部、t-ドデシルメルカプタン0.6部及びキュメンハイドロパーオキサイド0.2部からなる混合物とオレイン酸カリウム1.5部及び水15部からなる混合物を4時間に亘り連続的に添加した。添加終了後さらに60℃で2時間重合した。その後、塩析・脱水・乾燥することでグラフト共重合体(A-6)を得た。上述の方法により、得られたグラフト共重合体(A-6)のグラフト率及びアセトン可溶分の還元粘度を測定した結果、グラフト率は40%、還元粘度は0.39dl/gであった。 Graft copolymer (A-6): 48 parts (solid content) of styrene-butadiene rubber latex (a-5) in a nitrogen-substituted reactor, 140 parts of water, 0.1 part of ethylenediaminetetraacetic acid disodium salt, sulfuric acid Add 1 part 0.001 part iron, 0.3 part sodium formaldehyde sulfoxylate, heat to 60 ° C, 39 parts styrene, 13 parts acrylonitrile, 0.6 parts t-dodecyl mercaptan and 0.2 parts cumene hydroperoxide And a mixture of 1.5 parts of potassium oleate and 15 parts of water was added continuously over 4 hours. After completion of the addition, polymerization was further performed at 60 ° C. for 2 hours. Thereafter, the graft copolymer (A-6) was obtained by salting out, dehydrating and drying. As a result of measuring the graft ratio of the obtained graft copolymer (A-6) and the reduced viscosity of the acetone-soluble component by the above method, the graft ratio was 40% and the reduced viscosity was 0.39 dl / g. .
 グラフト共重合体(A-7):窒素置換した反応器にスチレン-ブタジエンゴムラテックス(a-5)20部(固形分)、水160部、エチレンジアミン四酢酸二ナトリウム塩0.1部、硫酸第1鉄0.001部、ナトリウムホルムアルデヒドスルホキシレート0.3部を入れ、60℃に加熱後、スチレン56部、アクリロニトリル24部、及びキュメンハイドロパーオキサイド0.2部からなる混合物とオレイン酸カリウム1.5部及び水15部からなる混合物を4時間に亘り連続的に添加した。添加終了後さらに60℃で2時間重合した。その後、塩析・脱水・乾燥することでグラフト共重合体(A-7)を得た。上述の方法により、得られたグラフト共重合体(A-7)のグラフト率及びアセトン可溶分の還元粘度を測定した結果、グラフト率は170%、還元粘度は0.44dl/gであった。 Graft copolymer (A-7): 20 parts (solid content) of styrene-butadiene rubber latex (a-5), 160 parts of water, 0.1 part of ethylenediaminetetraacetic acid disodium salt, sulfuric acid 1 iron 0.001 part, sodium formaldehyde sulfoxylate 0.3 part, heated to 60 ° C., mixture of styrene 56 parts, acrylonitrile 24 parts, cumene hydroperoxide 0.2 parts and potassium oleate 1 A mixture consisting of .5 parts and 15 parts of water was added continuously over 4 hours. After completion of the addition, polymerization was further performed at 60 ° C. for 2 hours. Thereafter, the graft copolymer (A-7) was obtained by salting out, dehydrating and drying. As a result of measuring the graft ratio of the obtained graft copolymer (A-7) and the reduced viscosity of the acetone-soluble component by the above method, the graft ratio was 170% and the reduced viscosity was 0.44 dl / g. .
 グラフト共重合体(A-8):窒素置換した反応器にスチレン-ブタジエンゴムラテックス(a-7)30部(固形分)、水160部、エチレンジアミン四酢酸二ナトリウム塩0.1部、硫酸第1鉄0.001部、ナトリウムホルムアルデヒドスルホキシレート0.3部を入れ、60℃に加熱後、スチレン49部、アクリロニトリル21部、t-ドデシルメルカプタン0.3部及びキュメンハイドロパーオキサイド0.2部からなる混合物とオレイン酸カリウム1.5部及び水15部からなる混合物を4時間に亘り連続的に添加した。添加終了後さらに60℃で2時間重合した。その後、塩析・脱水・乾燥することでグラフト共重合体(A-8)を得た。上述の方法により、得られたグラフト共重合体(A-8)のグラフト率及びアセトン可溶分の還元粘度を測定した結果、グラフト率は95%、還元粘度は0.41dl/gであった。 Graft copolymer (A-8): 30 parts (solid content) of styrene-butadiene rubber latex (a-7), 160 parts of water, 0.1 part of ethylenediaminetetraacetic acid disodium salt, sulfuric acid 1 part 0.001 part of iron and 0.3 part of sodium formaldehyde sulfoxylate are added, heated to 60 ° C., 49 parts of styrene, 21 parts of acrylonitrile, 0.3 part of t-dodecyl mercaptan and 0.2 part of cumene hydroperoxide And a mixture of 1.5 parts of potassium oleate and 15 parts of water was added continuously over 4 hours. After completion of the addition, polymerization was further performed at 60 ° C. for 2 hours. Thereafter, salting out, dehydration, and drying were performed to obtain a graft copolymer (A-8). As a result of measuring the graft ratio of the obtained graft copolymer (A-8) and the reduced viscosity of the acetone-soluble component by the above method, the graft ratio was 95% and the reduced viscosity was 0.41 dl / g. .
 グラフト共重合体(A-9):窒素置換した反応器にスチレン-ブタジエンゴムラテックス(a-8)30部(固形分)、水160部、エチレンジアミン四酢酸二ナトリウム塩0.1部、硫酸第1鉄0.001部、ナトリウムホルムアルデヒドスルホキシレート0.3部を入れ、60℃に加熱後、スチレン49部、アクリロニトリル21部、t-ドデシルメルカプタン0.3部及びキュメンハイドロパーオキサイド0.2部からなる混合物とオレイン酸カリウム1.5部及び水15部からなる混合物を4時間に亘り連続的に添加した。添加終了後さらに60℃で2時間重合した。その後、塩析・脱水・乾燥することでグラフト共重合体(A-9)を得た。上述の方法により、得られたグラフト共重合体(A-9)のグラフト率及びアセトン可溶分の還元粘度を測定した結果、グラフト率は87%、還元粘度は0.38dl/gであった。 Graft copolymer (A-9): 30 parts (solid content) of styrene-butadiene rubber latex (a-8), 160 parts of water, 0.1 part of ethylenediaminetetraacetic acid disodium salt, sulfuric acid 1 part 0.001 part of iron and 0.3 part of sodium formaldehyde sulfoxylate are added, heated to 60 ° C., 49 parts of styrene, 21 parts of acrylonitrile, 0.3 part of t-dodecyl mercaptan and 0.2 part of cumene hydroperoxide And a mixture of 1.5 parts of potassium oleate and 15 parts of water was added continuously over 4 hours. After completion of the addition, polymerization was further performed at 60 ° C. for 2 hours. Thereafter, salt grafting, dehydration and drying were performed to obtain a graft copolymer (A-9). As a result of measuring the graft ratio of the obtained graft copolymer (A-9) and the reduced viscosity of the acetone-soluble component by the above method, the graft ratio was 87% and the reduced viscosity was 0.38 dl / g. .
 グラフト共重合体(A-10):窒素置換した反応器にスチレン-ブタジエンゴムラテックス(a-9)30部(固形分)、水160部、エチレンジアミン四酢酸二ナトリウム塩0.1部、硫酸第1鉄0.001部、ナトリウムホルムアルデヒドスルホキシレート0.3部を入れ、60℃に加熱後、スチレン49部、アクリロニトリル21部、t-ドデシルメルカプタン0.3部及びキュメンハイドロパーオキサイド0.2部からなる混合物とオレイン酸カリウム1.5部及び水15部からなる混合物を4時間に亘り連続的に添加した。添加終了後さらに60℃で2時間重合した。その後、塩析・脱水・乾燥することでグラフト共重合体(A-10)を得た。上述の方法により、得られたグラフト共重合体(A-10)のグラフト率及びアセトン可溶分の還元粘度を測定した結果、グラフト率は98%、還元粘度は0.41dl/gであった。 Graft copolymer (A-10): 30 parts (solid content) of styrene-butadiene rubber latex (a-9), 160 parts of water, 0.1 part of ethylenediaminetetraacetic acid disodium salt, sulfuric acid 1 part 0.001 part of iron and 0.3 part of sodium formaldehyde sulfoxylate are added, heated to 60 ° C., 49 parts of styrene, 21 parts of acrylonitrile, 0.3 part of t-dodecyl mercaptan and 0.2 part of cumene hydroperoxide And a mixture of 1.5 parts of potassium oleate and 15 parts of water was added continuously over 4 hours. After completion of the addition, polymerization was further performed at 60 ° C. for 2 hours. Thereafter, salt grafting, dehydration and drying were performed to obtain a graft copolymer (A-10). As a result of measuring the graft ratio of the obtained graft copolymer (A-10) and the reduced viscosity of the acetone-soluble component by the above method, the graft ratio was 98% and the reduced viscosity was 0.41 dl / g. .
 グラフト共重合体(A-11):窒素置換した反応器にスチレン-ブタジエンゴムラテックス(a-1)30部(固形分)、水160部、エチレンジアミン四酢酸二ナトリウム塩0.1部、硫酸第1鉄0.001部、ナトリウムホルムアルデヒドスルホキシレート0.3部を入れ、60℃に加熱後、スチレン49部、アクリロニトリル21部、t-ドデシルメルカプタン0.3部およびキュメンハイドロパーオキサイド0.2部からなる混合物とオレイン酸カリウム1.5部を4時間に亘り連続的に添加し、更に60℃で2時間重合した。その後、塩析・脱水・乾燥後、グラフト共重合体(A-11)を得た。得られたグラフト共重合体(A-11)のグラフト率およびアセトン可溶成分の還元粘度を測定した結果、グラフト率は93%、還元粘度は0.40dl/gであった。 Graft copolymer (A-11): 30 parts (solid content) of styrene-butadiene rubber latex (a-1), 160 parts of water, 0.1 part of ethylenediaminetetraacetic acid disodium salt, sulfuric acid 1 part 0.001 part of iron and 0.3 part of sodium formaldehyde sulfoxylate are added, heated to 60 ° C., 49 parts of styrene, 21 parts of acrylonitrile, 0.3 part of t-dodecyl mercaptan and 0.2 part of cumene hydroperoxide And 1.5 parts of potassium oleate were continuously added over 4 hours and further polymerized at 60 ° C. for 2 hours. Thereafter, after salting out, dehydration and drying, a graft copolymer (A-11) was obtained. As a result of measuring the graft ratio of the obtained graft copolymer (A-11) and the reduced viscosity of the acetone-soluble component, the graft ratio was 93% and the reduced viscosity was 0.40 dl / g.
 グラフト共重合体(A-12):窒素置換した反応器にスチレン-ブタジエンゴムラテックス(a-2)30部(固形分)、水160部、エチレンジアミン四酢酸二ナトリウム塩0.1部、硫酸第1鉄0.001部、ナトリウムホルムアルデヒドスルホキシレート0.3部を入れ、60℃に加熱後、スチレン49部、アクリロニトリル21部、t-ドデシルメルカプタン0.28部およびキュメンハイドロパーオキサイド0.2部からなる混合物とオレイン酸カリウム1.5部を4時間に亘り連続的に添加し、更に60℃で2時間重合した。その後、塩析・脱水・乾燥後、グラフト共重合体(A-12)を得た。得られたグラフト共重合体(A-12)のグラフト率およびアセトン可溶成分の還元粘度を測定した結果、グラフト率は89%、還元粘度は0.39dl/gであった。 Graft copolymer (A-12): 30 parts (solid content) of styrene-butadiene rubber latex (a-2), 160 parts of water, 0.1 part of ethylenediaminetetraacetic acid disodium salt, sulfuric acid 1 part 0.001 part of iron and 0.3 part of sodium formaldehydesulfoxylate are added, heated to 60 ° C., 49 parts of styrene, 21 parts of acrylonitrile, 0.28 part of t-dodecyl mercaptan and 0.2 part of cumene hydroperoxide And 1.5 parts of potassium oleate were continuously added over 4 hours and further polymerized at 60 ° C. for 2 hours. Thereafter, after salting out, dehydration and drying, a graft copolymer (A-12) was obtained. As a result of measuring the graft ratio of the obtained graft copolymer (A-12) and the reduced viscosity of the acetone-soluble component, the graft ratio was 89% and the reduced viscosity was 0.39 dl / g.
 グラフト共重合体(A-13):窒素置換した反応器にスチレン-ブタジエンゴムラテックス(a-2)30部(固形分)、水160部、エチレンジアミン四酢酸二ナトリウム塩0.1部、硫酸第1鉄0.001部、ナトリウムホルムアルデヒドスルホキシレート0.3部を入れ、60℃に加熱後、スチレン49部、アクリロニトリル21部、t-ドデシルメルカプタン0.3部およびキュメンハイドロパーオキサイド0.2部からなる混合物とオレイン酸カリウム1.5部を4時間に亘り連続的に添加し、更に60℃で2時間重合した。その後、塩析・脱水・乾燥後、グラフト共重合体(A-13)を得た。得られたグラフト共重合体(A-13)のグラフト率およびアセトン可溶成分の還元粘度を測定した結果、グラフト率は93%、還元粘度は0.40dl/gであった。 Graft copolymer (A-13): 30 parts (solid content) of styrene-butadiene rubber latex (a-2), 160 parts of water, 0.1 part of ethylenediaminetetraacetic acid disodium salt, sulfuric acid 1 part 0.001 part of iron and 0.3 part of sodium formaldehyde sulfoxylate are added, heated to 60 ° C., 49 parts of styrene, 21 parts of acrylonitrile, 0.3 part of t-dodecyl mercaptan and 0.2 part of cumene hydroperoxide And 1.5 parts of potassium oleate were continuously added over 4 hours and further polymerized at 60 ° C. for 2 hours. Thereafter, after salting out, dehydration and drying, a graft copolymer (A-13) was obtained. As a result of measuring the graft ratio of the obtained graft copolymer (A-13) and the reduced viscosity of the acetone-soluble component, the graft ratio was 93% and the reduced viscosity was 0.40 dl / g.
[共重合体(B)の製造]
 共重合体(B-1):公知の塊状重合法により、スチレン70重量部、アクリロニトリル30重量部からなる共重合体(B-1)を得た。上述の方法により、得られた共重合体(B-1)の還元粘度を測定した結果、還元粘度は0.60dl/gであった。
[Production of copolymer (B)]
Copolymer (B-1): A copolymer (B-1) comprising 70 parts by weight of styrene and 30 parts by weight of acrylonitrile was obtained by a known bulk polymerization method. As a result of measuring the reduced viscosity of the obtained copolymer (B-1) by the above-mentioned method, the reduced viscosity was 0.60 dl / g.
 共重合体(B-2):公知の塊状重合法により、スチレン30重量部、メタクリル酸メチル70重量部からなる共重合体(B-2)を得た。上述の方法により、得られた共重合体(B-2)の還元粘度を測定した結果、還元粘度は0.58dl/gであった。 Copolymer (B-2): A copolymer (B-2) comprising 30 parts by weight of styrene and 70 parts by weight of methyl methacrylate was obtained by a known bulk polymerization method. As a result of measuring the reduced viscosity of the obtained copolymer (B-2) by the above method, the reduced viscosity was 0.58 dl / g.
ケイ素含有化合物(C)
ケイ素含有化合物(C-1):DC4-7081(東レ・ダウコーニング株式会社製)
メタクリロキシ官能基を含有するシリコーン系化合物60部をシリカ粉末40部に担持させたケイ素含有化合物。嵩比重:0.3~0.5、粒子径:10~200μm
ケイ素含有化合物(C-2):SH200-100CS(東レ・ダウコーニング株式会社製)
ジメチルシリコーンオイル。粘度:100mm/s
ケイ素含有化合物(C-3):BY27-007(東レ・ダウコーニング株式会社製)
超高分子量ジメチルシリコーンポリマーとABS樹脂を溶融混練することによって作られたペレット(シリコーン含有量50%)。
Silicon-containing compound (C)
Silicon-containing compound (C-1): DC4-7081 (manufactured by Dow Corning Toray)
A silicon-containing compound in which 60 parts of a silicone compound containing a methacryloxy functional group is supported on 40 parts of silica powder. Bulk specific gravity: 0.3 to 0.5, particle size: 10 to 200 μm
Silicon-containing compound (C-2): SH200-100CS (manufactured by Dow Corning Toray)
Dimethyl silicone oil. Viscosity: 100 mm 2 / s
Silicon-containing compound (C-3): BY27-007 (manufactured by Dow Corning Toray)
Pellets made by melt-kneading ultrahigh molecular weight dimethyl silicone polymer and ABS resin (silicone content 50%).
(1)発色性
 JIS-Z8729に準拠した色相測定により成形品の明度(L*)を測定し発色性の尺度とした。(成形品の明度(L*)が小さい方が成形品の漆黒性が優れているため、結果として同一着色剤を同量添加した際の発色性に優れる)上記成形品としては、各実施例及び比較例で得られた着色ペレットを用い、射出成形機(日本製鋼所製 J-150EP シリンダー温度:200℃ 金型温度:80℃)にて成形された成形品(150mm×120mm×3mm)を用いた。分光光度計は、(株)村上色彩研究所社製 CMS-35SPを用いた。
(1) Color developability The lightness (L *) of the molded product was measured by hue measurement according to JIS-Z8729 and used as a measure of color developability. (Since the lightness (L *) of the molded product is smaller, the jetness of the molded product is better, and as a result, the color develops when the same colorant is added in the same amount.) Using the colored pellets obtained in the comparative example, a molded product (150 mm × 120 mm × 3 mm) molded by an injection molding machine (J-150EP, manufactured by Nippon Steel Works, cylinder temperature: 200 ° C., mold temperature: 80 ° C.) Using. As a spectrophotometer, CMS-35SP manufactured by Murakami Color Research Co., Ltd. was used.
(2)耐傷付き性
 往復磨耗試験機(新東科学株式会社製、製品名 トライボギア TYPE:30S)を用い、先端部が直径27mmの圧子にかなきん3号の綿布をセットし、実施例A1~A10及び比較例A1~A6については500gの一定荷重下で、成形品表面を20往復(速度600mm/分)摩擦し、実施例B1~B12及び比較例B1~B9については1kgの一定荷重下で、成形品表面を50往復(速度600mm/分)摩擦した。上記成形品としては、前記(1)で用いた成形品と同じものを使用した。試験後、目視にて成形品の表面の傷を確認し、下記の判定により耐傷付き性の評価を行った。
傷が全く見られない:◎
傷がほとんど見られない:○
傷がかすかに見られる:△
傷が明確に見られる:×
(2) Scratch resistance Using a reciprocating abrasion tester (manufactured by Shinto Kagaku Co., Ltd., product name: Tribogear TYPE: 30S), a cotton cloth No. 3 is set on an indenter having a tip of 27 mm in diameter. For A10 and Comparative Examples A1 to A6, the surface of the molded product was rubbed 20 times (speed: 600 mm / min) under a constant load of 500 g, and for Examples B1 to B12 and Comparative Examples B1 to B9, a constant load of 1 kg was used. The surface of the molded product was rubbed 50 times (speed: 600 mm / min). As the molded product, the same molded product as used in (1) was used. After the test, scratches on the surface of the molded product were visually confirmed, and scratch resistance was evaluated by the following judgment.
No scratches are seen: ◎
Scratches are hardly seen: ○
Scratches are slightly visible:
Scratches are clearly seen: ×
(3)耐衝撃性
 各実施例及び比較例で得られた着色ペレットを用いISO試験方法294に準拠して各種試験片を成形し、耐衝撃性を測定した。
 耐衝撃性はISO179に準拠し、4mm厚みで、ノッチ付きシャルピー衝撃値を測定した。単位:kJ/m
(3) Impact resistance Various test pieces were molded in accordance with ISO test method 294 using the colored pellets obtained in each Example and Comparative Example, and impact resistance was measured.
The impact resistance was in conformity with ISO 179, and a Charpy impact value with a notch was measured at a thickness of 4 mm. Unit: kJ / m 2
(4)流動性
 各実施例及び比較例で得られた着色ペレットを用い、ISO1133に準拠して、220℃、10kg荷重の条件でメルトボリュームフローレイトを測定した。単位;cm/10分
(4) Fluidity Using the colored pellets obtained in each Example and Comparative Example, melt volume flow rate was measured under the conditions of 220 ° C. and 10 kg load according to ISO1133. Unit; cm 3/10 minutes
(5)金型汚染性
 各実施例及び比較例で得られた着色ペレットを用い、日本製鋼所製J-150EPを用い、シリンダー設定温度240℃、金型温度50℃、成形サイクル30秒にて、平板試験片(縦150mm、横150mm、厚さ3mm)を1000ショット射出成形後、下記の判定により金型汚染性の評価を行った。
金型表面に変化が見られない:○
金型表面に曇りが見られる:△
金型表面が極めて汚れ、成形品の外観が悪い:×
(5) Mold fouling property Using colored pellets obtained in each example and comparative example, using J-150EP manufactured by Nippon Steel Works, cylinder set temperature 240 ° C, mold temperature 50 ° C, molding cycle 30 seconds A flat plate test piece (length 150 mm, width 150 mm, thickness 3 mm) was subjected to 1000 shot injection molding, and the mold contamination was evaluated by the following judgment.
No change on mold surface: ○
The mold surface is cloudy: △
The mold surface is extremely dirty and the appearance of the molded product is poor: ×
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
 表3に示すように、本発明のゴム強化熱可塑性樹脂組成物は、耐傷付き性、発色性に優れるだけでなく、耐衝撃性、流動性の物性バランスに優れることが分かる。特に、ゴム状重合体の重量分率に関して、0.2μm以上0.4μm未満の粒子が10~50重量%の範囲である場合は耐傷付き性に優れる結果となる。また、実施例A9及びA10で示すように、2種以上のゴム状重合体を別々にグラフト重合し、2種以上のグラフト共重合体を用いた場合でも、グラフト率や粒子の重量分率の規定を満たしている限り、本願の目的を達成することができる。 As shown in Table 3, it can be seen that the rubber-reinforced thermoplastic resin composition of the present invention not only has excellent scratch resistance and color developability, but also has excellent balance of physical properties of impact resistance and fluidity. In particular, with respect to the weight fraction of the rubber-like polymer, when the particles having a particle size of 0.2 μm or more and less than 0.4 μm are in the range of 10 to 50% by weight, excellent scratch resistance results. In addition, as shown in Examples A9 and A10, even when two or more kinds of rubbery polymers are separately graft-polymerized and two or more kinds of graft copolymers are used, the graft ratio and the weight fraction of the particles As long as the regulations are satisfied, the object of the present application can be achieved.
 表4に示すように、ゴム強化熱可塑性樹脂組成物中のゴム含有量が5重量部よりも少ない比較例A1は耐衝撃性に劣った。ゴム含有量が24重量部よりも多い比較例A2は発色性、耐傷付き性、流動性に劣った。グラフト率が70%未満であるグラフト共重合体(A-6)を用いた比較例A3は発色性、耐傷付き性に劣った。グラフト率が150%を超えたグラフト共重合体(A-7)を用いた比較例A4は耐衝撃性と流動性に劣った。0.05μm以上0.2μm未満の粒子が50重量%未満であり、0.2μm以上の粒子が50重量%以上であるゴム状重合体(a-8)、(a-9)を用いた比較例A5及びA6は発色性に劣った。 As shown in Table 4, Comparative Example A1 in which the rubber content in the rubber-reinforced thermoplastic resin composition was less than 5 parts by weight was inferior in impact resistance. Comparative Example A2 having a rubber content greater than 24 parts by weight was inferior in color development, scratch resistance and fluidity. Comparative Example A3 using the graft copolymer (A-6) having a graft ratio of less than 70% was inferior in color developability and scratch resistance. Comparative Example A4 using the graft copolymer (A-7) having a graft ratio exceeding 150% was inferior in impact resistance and fluidity. Comparison using rubbery polymers (a-8) and (a-9) in which particles of 0.05 μm or more and less than 0.2 μm are less than 50% by weight and particles of 0.2 μm or more are 50% by weight or more Examples A5 and A6 were inferior in color developability.
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000006
 
 表5に示すように、本発明のゴム強化熱可塑性樹脂組成物は、耐傷付き性、発色性に優れるだけでなく、金型汚染性、耐衝撃性と流動性の物性バランスに優れることが分かる。ゴム状重合体の重量分率に関して、0.2μm以上0.4μm未満の粒子が10~50重量%の範囲である場合は、特に耐傷付き性に優れる結果となる。また、実施例B9及びB10で示すように、2種以上のゴム状重合体を別々にグラフト重合し、2種以上のグラフト共重合体を用いた場合でも、本発明で規定するグラフト率や粒子の重量分率を満たしている限り、本願の目的を達成することができる。 As shown in Table 5, it can be seen that the rubber-reinforced thermoplastic resin composition of the present invention not only has excellent scratch resistance and color developability, but also has excellent properties of mold contamination, impact resistance and fluidity. . With respect to the weight fraction of the rubber-like polymer, when the particles having a size of 0.2 μm or more and less than 0.4 μm are in the range of 10 to 50% by weight, the result is particularly excellent in scratch resistance. Further, as shown in Examples B9 and B10, even when two or more kinds of rubber-like polymers are separately graft-polymerized and two or more kinds of graft copolymers are used, the graft ratio and particles defined in the present invention are used. As long as the weight fraction is satisfied, the object of the present application can be achieved.
 表6に示すように、ケイ素含有化合物を用いていない比較例B1は耐傷付き性に劣る結果となった。ゴム強化熱可塑性樹脂組成物中のゴム含有量が5重量部よりも少ない比較例B2は耐衝撃性に劣る結果となった。ゴム含有量が24重量部よりも多い比較例B3は発色性、耐傷付き性、流動性に劣る結果となった。グラフト率が70%未満であるグラフト共重合体(A-6)を用いた比較例B4は発色性、耐傷付き性に劣る結果となった。グラフト率が150%を超えたグラフト共重合体(A-7)を用いた比較例B5は耐衝撃性、流動性に劣る結果となった。0.05μm以上0.2μm未満の粒子が50重量%未満であり、0.2μm以上の粒子が50重量%以上であるゴム状重合体(a-8)、(a-9)を用いた比較例B6及びB7は発色性、耐傷付き性に劣る結果となった。シリコーンオイルを用いた比較例B8は耐傷付き性、金型汚染性に劣る結果となった。シリコーン系化合物をシリカ粉末に担持させていないケイ素含有化合物を用いた比較例B9は発色性、耐傷付き性、金型汚染性に劣る結果となった。 As shown in Table 6, Comparative Example B1 in which no silicon-containing compound was used resulted in poor scratch resistance. Comparative Example B2 in which the rubber content in the rubber-reinforced thermoplastic resin composition is less than 5 parts by weight resulted in poor impact resistance. Comparative Example B3 having a rubber content greater than 24 parts by weight resulted in poor color development, scratch resistance, and fluidity. Comparative Example B4 using the graft copolymer (A-6) having a graft ratio of less than 70% resulted in inferior color developability and scratch resistance. Comparative Example B5 using the graft copolymer (A-7) having a graft ratio exceeding 150% resulted in inferior impact resistance and fluidity. Comparison using rubbery polymers (a-8) and (a-9) in which particles of 0.05 μm or more and less than 0.2 μm are less than 50% by weight and particles of 0.2 μm or more are 50% by weight or more Examples B6 and B7 were inferior in color developability and scratch resistance. Comparative Example B8 using silicone oil resulted in inferior scratch resistance and mold contamination. Comparative Example B9 using a silicon-containing compound in which a silicone compound was not supported on silica powder resulted in inferior color developability, scratch resistance and mold contamination.
 本発明のゴム強化熱可塑性樹脂組成物は、上記の優れた特性を活かして、電気・電子機器分野、OA機器分野などをはじめとした広範な分野で利用することができる。特に優れた物性バランスと発色性、耐傷付き性を両立させる用途に好適である。 The rubber-reinforced thermoplastic resin composition of the present invention can be used in a wide range of fields including the electric / electronic equipment field and the OA equipment field by utilizing the above-described excellent characteristics. It is particularly suitable for applications in which both excellent physical property balance, color developability and scratch resistance are achieved.

Claims (5)

  1.  ゴム状重合体(a)の存在下に芳香族ビニル系単量体、シアン化ビニル系単量体、(メタ)アクリル酸エステル系単量体及びその他の共重合可能な単量体からなる群より選ばれる少なくとも一種の単量体(b)をグラフト共重合して得られるグラフト共重合体(A)が分散相を、芳香族ビニル系単量体、シアン化ビニル系単量体、(メタ)アクリル酸エステル系単量体及びその他の共重合可能な単量体からなる群より選ばれる少なくとも一種の単量体(b)を(共)重合させた(共)重合体(B)が連続相を構成するゴム強化熱可塑性樹脂組成物であって、ゴム状重合体(a)は粒子径0.05μm以上0.2μm未満の粒子が50~90重量%、粒子径0.2μm以上の粒子が10~50重量%である重量分率を有し、グラフト共重合体(A)のグラフト率が70~150%であり、ゴム強化熱可塑性樹脂組成物100重量部中にゴム状重合体(a)が5~24重量部含まれることを特徴とするゴム強化熱可塑性樹脂組成物。 Group consisting of aromatic vinyl monomer, vinyl cyanide monomer, (meth) acrylic acid ester monomer and other copolymerizable monomers in the presence of rubbery polymer (a) The graft copolymer (A) obtained by graft copolymerizing at least one monomer (b) selected from the group consisting of an aromatic vinyl monomer, a vinyl cyanide monomer, (meta A continuous (co) polymer (B) obtained by (co) polymerizing at least one monomer (b) selected from the group consisting of acrylate monomers and other copolymerizable monomers A rubber-reinforced thermoplastic resin composition constituting a phase, wherein the rubber-like polymer (a) has a particle size of 50 to 90% by weight and a particle size of 0.2 μm or more. Having a weight fraction of 10 to 50% by weight, and a graft copolymer ( The rubber-reinforced thermoplastic resin composition is characterized in that 5 to 24 parts by weight of the rubber-like polymer (a) is contained in 100 parts by weight of the rubber-reinforced thermoplastic resin composition. object.
  2.  グラフト共重合体(A)、(共)重合体(B)及びケイ素含有化合物(C)を含むゴム強化熱可塑性樹脂組成物であって、グラフト共重合体(A)は、粒子径0.05μm以上0.2μm未満の粒子が50~90重量%、粒子径0.2μm以上の粒子が10~50重量%である重量分率を有するゴム状重合体(a)の存在下に芳香族ビニル系単量体、シアン化ビニル系単量体、(メタ)アクリル酸エステル系単量体及びその他の共重合可能な単量体からなる群より選ばれる少なくとも一種の単量体(b)をグラフト共重合して得られ、グラフト率が70~150%であるグラフト共重合体であり、(共)重合体(B)は芳香族ビニル系単量体、シアン化ビニル系単量体、(メタ)アクリル酸エステル系単量体及びその他の共重合可能な単量体からなる群より選ばれる少なくとも一種の単量体(b)を(共)重合させた(共)重合体であり、ケイ素含有化合物(C)はシリコーン系化合物をシリカ粉末に担持させたケイ素含有化合物であって、ゴム強化熱可塑性樹脂組成物100重量部中にゴム状重合体(a)が5~24重量部含まれ、グラフト共重合体(A)と(共)重合体(B)の合計100重量部に対して、ケイ素含有化合物(C)を0.01~10重量部用いることを特徴とするゴム強化熱可塑性樹脂組成物。 A rubber-reinforced thermoplastic resin composition comprising a graft copolymer (A), a (co) polymer (B) and a silicon-containing compound (C), the graft copolymer (A) having a particle size of 0.05 μm In the presence of the rubbery polymer (a) having a weight fraction of 50 to 90% by weight of particles less than 0.2 μm and 10 to 50% by weight of particles having a particle diameter of 0.2 μm or more At least one monomer (b) selected from the group consisting of a monomer, a vinyl cyanide monomer, a (meth) acrylate monomer, and other copolymerizable monomers is grafted. A graft copolymer obtained by polymerization and having a graft ratio of 70 to 150%. (Co) polymer (B) is an aromatic vinyl monomer, vinyl cyanide monomer, (meth) Acrylic acid ester monomers and other copolymerizable monomers A (co) polymer obtained by (co) polymerizing at least one monomer (b) selected from the group consisting of: a silicon-containing compound (C) having a silicone compound supported on silica powder And 5 to 24 parts by weight of the rubber-like polymer (a) is contained in 100 parts by weight of the rubber-reinforced thermoplastic resin composition, and the total of the graft copolymer (A) and the (co) polymer (B). A rubber-reinforced thermoplastic resin composition, wherein 0.01 to 10 parts by weight of the silicon-containing compound (C) is used with respect to 100 parts by weight.
  3. ケイ素含有化合物(C)の体積平均粒子径が5~250μmであり、嵩比重が0.1~0.7であることを特徴とする請求項2に記載のゴム強化熱可塑性樹脂組成物 The rubber-reinforced thermoplastic resin composition according to claim 2, wherein the silicon-containing compound (C) has a volume average particle diameter of 5 to 250 µm and a bulk specific gravity of 0.1 to 0.7.
  4. ケイ素含有化合物(C)に含まれるシリコーン系化合物が分子中もしくは分子末端にメタクリロキシ基を含み、ケイ素含有化合物100重量部中にシリコーン化合物が40~80重量部含むことを特徴とする請求項2又は3に記載のゴム強化熱可塑性樹脂組成物。 3. The silicone compound contained in the silicon-containing compound (C) contains a methacryloxy group in the molecule or at the molecular terminal, and the silicone compound contains 40 to 80 parts by weight in 100 parts by weight of the silicon-containing compound. 4. A rubber-reinforced thermoplastic resin composition as described in 3.
  5. 請求項1~4のいずれかに記載のゴム強化熱可塑性樹脂組成物から得られることを特徴とする樹脂成形品。 A resin molded product obtained from the rubber-reinforced thermoplastic resin composition according to any one of claims 1 to 4.
PCT/JP2012/083301 2012-03-05 2012-12-21 Rubber-reinforced thermoplastic resin composition and resin molded article WO2013132722A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012047522A JP5950627B2 (en) 2012-03-05 2012-03-05 Rubber-reinforced thermoplastic resin composition and resin molded product
JP2012-047522 2012-03-05

Publications (1)

Publication Number Publication Date
WO2013132722A1 true WO2013132722A1 (en) 2013-09-12

Family

ID=49116219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083301 WO2013132722A1 (en) 2012-03-05 2012-12-21 Rubber-reinforced thermoplastic resin composition and resin molded article

Country Status (3)

Country Link
JP (1) JP5950627B2 (en)
TW (1) TW201339233A (en)
WO (1) WO2013132722A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2889329A1 (en) * 2013-12-31 2015-07-01 Samsung SDI Co., Ltd. Low gloss thermoplastic resin composition having improved scratch resistance

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015189964A (en) * 2014-03-31 2015-11-02 日本エイアンドエル株式会社 thermoplastic resin composition
JP6166240B2 (en) * 2014-11-13 2017-07-19 トヨタ自動車株式会社 Separator for fuel cell, fuel cell and method for manufacturing separator
KR102007976B1 (en) * 2015-11-30 2019-08-06 주식회사 엘지화학 Method for preparing thermoplastic resin, thermoplastic resin and thermoplastic resin composition comprising the resin

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61233044A (en) * 1985-04-09 1986-10-17 Denki Kagaku Kogyo Kk Thermoplastic resin composition
JPH09310003A (en) * 1996-03-19 1997-12-02 Toray Ind Inc Thermoplastic resin composition
JP2001131369A (en) * 1999-11-01 2001-05-15 Techno Polymer Co Ltd Styrene-based resin composition
JP2003292816A (en) * 2002-04-01 2003-10-15 Asahi Kasei Corp Inorganic function-adding agent
JP2012158623A (en) * 2011-01-28 2012-08-23 Nippon A&L Inc Thermoplastic resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61233044A (en) * 1985-04-09 1986-10-17 Denki Kagaku Kogyo Kk Thermoplastic resin composition
JPH09310003A (en) * 1996-03-19 1997-12-02 Toray Ind Inc Thermoplastic resin composition
JP2001131369A (en) * 1999-11-01 2001-05-15 Techno Polymer Co Ltd Styrene-based resin composition
JP2003292816A (en) * 2002-04-01 2003-10-15 Asahi Kasei Corp Inorganic function-adding agent
JP2012158623A (en) * 2011-01-28 2012-08-23 Nippon A&L Inc Thermoplastic resin composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2889329A1 (en) * 2013-12-31 2015-07-01 Samsung SDI Co., Ltd. Low gloss thermoplastic resin composition having improved scratch resistance
US9353253B2 (en) 2013-12-31 2016-05-31 Samsung Sdi Co., Ltd. Low gloss thermoplastic resin composition having improved scratch resistance

Also Published As

Publication number Publication date
TW201339233A (en) 2013-10-01
JP2013181151A (en) 2013-09-12
JP5950627B2 (en) 2016-07-13

Similar Documents

Publication Publication Date Title
CN107075214B (en) Thermoplastic resin composition and molded article using the same
BR112013025003B1 (en) grafted copolymer based on acrylic rubber, thermoplastic resin composition, and article
WO2015151853A1 (en) Thermoplastic resin composition and molded article of same
JP6261957B2 (en) Jet black parts and automotive interior parts made of thermoplastic resin composition
JP5687920B2 (en) Thermoplastic resin composition
JP5950627B2 (en) Rubber-reinforced thermoplastic resin composition and resin molded product
JP5851142B2 (en) Rubber reinforced thermoplastic resin composition
KR20130074427A (en) Thermoplastic resin composition with excellent flowability and transparency
JP5519336B2 (en) Thermoplastic resin composition
JP5756269B2 (en) Thermoplastic resin composition and molded body
JP5620835B2 (en) Thermoplastic resin composition
JP2014031490A (en) Graft copolymer, thermoplastic resin composition, and method for manufacturing graft copolymer
JP5547585B2 (en) Thermoplastic resin composition and resin molded product
JP6290578B2 (en) Thermoplastic resin composition for metallic tone molded article and molded article
JP2008174683A (en) Resin composition containing rubbery material
JP5651489B2 (en) Thermoplastic resin composition
JP2006045337A (en) Thermoplastic resin composition and its molded product
CN108137899B (en) Thermoplastic resin composition
JP6547352B2 (en) Thermoplastic resin composition
JP6707817B2 (en) Thermoplastic resin composition and method for producing the same
JP2012046648A (en) Thermoplastic resin composition and resin molded article
WO2014192766A1 (en) Rubber-reinforced thermoplastic resin composition and resin molded article
JP2013087257A (en) Transparent thermoplastic resin composition and molded product thereof
KR20130066114A (en) Thermoplastic resin composition with reduced cold stress whitening and method for reduciing cold stress whitening in resin composition
JP2013245284A (en) Thermoplastic resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12870774

Country of ref document: EP

Kind code of ref document: A1