WO2013132717A1 - 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム - Google Patents

超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム Download PDF

Info

Publication number
WO2013132717A1
WO2013132717A1 PCT/JP2012/082231 JP2012082231W WO2013132717A1 WO 2013132717 A1 WO2013132717 A1 WO 2013132717A1 JP 2012082231 W JP2012082231 W JP 2012082231W WO 2013132717 A1 WO2013132717 A1 WO 2013132717A1
Authority
WO
WIPO (PCT)
Prior art keywords
attenuation rate
unit
ultrasonic
observation apparatus
parameter
Prior art date
Application number
PCT/JP2012/082231
Other languages
English (en)
French (fr)
Inventor
浩仲 宮木
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Publication of WO2013132717A1 publication Critical patent/WO2013132717A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/085Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating body or organic structures, e.g. tumours, calculi, blood vessels, nodules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation

Definitions

  • the present invention relates to an ultrasonic observation apparatus that observes a tissue of a specimen using ultrasonic waves, an operation method of the ultrasonic observation apparatus, and an operation program of the ultrasonic observation apparatus.
  • Ultrasonic elastography is known as an inspection technique for breast cancer using ultrasonic waves (see, for example, Patent Document 1).
  • Ultrasonic elastography is a technique that utilizes the fact that the hardness of cancer and tumor tissue in a living body varies depending on the progress of the disease and the living body.
  • the amount of strain and elastic modulus of a living tissue at an examination location are measured using ultrasound while the examination location is pressed from the outside, and the measurement result is displayed as a tomographic image.
  • the attenuation rate of the ultrasonic wave in the subject is calculated from the change in the phase of the ultrasonic wave in the depth direction of the subject using the phase information of the ultrasonic echo.
  • the phase change from which the speckle component (interference component) is removed is used.
  • the present invention has been made in view of the above, and an ultrasonic observation apparatus, an operation method of the ultrasonic observation apparatus, and an ultrasonic observation apparatus capable of accurately and easily obtaining an attenuation rate accompanying propagation of ultrasonic waves.
  • the purpose is to provide an operating program.
  • an ultrasonic observation apparatus transmits and receives ultrasonic waves to a specimen to be observed and receives ultrasonic waves reflected by the specimen.
  • a frequency analysis unit that calculates a frequency spectrum by analyzing frequencies of at least two depths with respect to the received ultrasonic wave, and a frequency spectrum of at least two depths calculated by the frequency analysis unit.
  • a parameter extraction unit that extracts a predetermined parameter of the approximate expression of the frequency spectrum obtained by performing the approximation process in association with the depth, a parameter extracted by the parameter extraction unit, and a depth corresponding to the parameter.
  • Attenuation rate calculation for calculating the attenuation rate of the ultrasonic wave by using at least two sets consisting of When, characterized in that and a decay rate display image data generating unit that generates an attenuation factor display image data including information about attenuation factor the attenuation rate calculating unit is calculated.
  • the approximate expression is a polynomial whose frequency is a variable, and the parameter is a first-order coefficient of the polynomial.
  • the polynomial is a linear expression.
  • the attenuation rate may be calculated by dividing the difference between the first-order coefficients of the polynomial at two locations constituting one set by the difference in depth at the two locations. It is characterized by the amount.
  • the parameter extraction unit extracts the parameter from frequency spectra of 2N places (N is an integer of 2 or more) having different depths
  • the attenuation factor calculation unit calculates N attenuation factors using two different sets.
  • the difference in depth included in the two sets used when the attenuation rate calculation unit calculates the attenuation rate is the difference between the ultrasonic waves transmitted by the transmission / reception unit. It is characterized by being approximately equal to the wavelength.
  • the ultrasonic observation apparatus is characterized in that, in the above-described invention, the ultrasonic observation apparatus further includes a display unit for displaying information on the attenuation rate calculated by the attenuation rate calculation unit.
  • an operation method of the ultrasonic observation apparatus is an ultrasonic method for observing received ultrasonic waves by transmitting ultrasonic waves to a specimen to be observed and receiving ultrasonic waves reflected by the specimen.
  • a method for operating a sound wave observation device comprising: a frequency analysis step of calculating a frequency spectrum by a frequency analysis unit by analyzing frequencies of at least two depths with respect to received ultrasonic waves; and the frequency analysis step A parameter extraction step of extracting a predetermined parameter of the approximate expression of the frequency spectrum obtained by performing an approximation process on the calculated frequency spectra of at least two depths in association with the depth by a parameter extraction unit; , The parameter extracted in the parameter extraction step and the parameter An attenuation rate display image including an attenuation rate calculating step of calculating an attenuation rate of the ultrasonic wave by an attenuation rate calculating unit using two sets of corresponding depths, and information on the attenuation rate calculated in the attenuation rate calculating step An at
  • the operation program of the ultrasonic observation apparatus is an ultrasonic program for observing received ultrasonic waves by transmitting ultrasonic waves to a specimen to be observed and receiving ultrasonic waves reflected by the specimen.
  • a frequency analysis step for calculating the frequency spectrum by the frequency analysis unit by analyzing the frequency of at least two depths of the received ultrasonic wave, respectively, in the operation program of the ultrasonic observation apparatus to be executed by the ultrasonic observation apparatus
  • a parameter extraction unit that associates a predetermined parameter of the approximate expression of the frequency spectrum obtained by performing approximation processing with respect to the frequency spectrum of at least two depths calculated in the frequency analysis step with the depth.
  • An attenuation factor display image data generation step of generating attenuation factor display image data including information by an attenuation factor display image data generation unit is performed.
  • the frequency spectrum is calculated by analyzing the frequencies of at least two depths with respect to the received ultrasonic wave, and the approximation processing is performed on the calculated frequency spectra of at least two depths.
  • the predetermined parameter of the approximate expression obtained by performing
  • the attenuation rate associated with the propagation of ultrasonic waves can be obtained accurately and easily.
  • FIG. 1 is a block diagram showing a configuration of an ultrasonic observation apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart showing an outline of processing of the ultrasonic observation apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram showing a display example of the B-mode image on the display unit of the ultrasonic observation apparatus according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram schematically illustrating a setting example of a region of interest in the ultrasonic observation apparatus according to Embodiment 1 of the present invention.
  • FIG. 5 is a flowchart showing an outline of processing performed by the frequency analysis unit of the ultrasonic observation apparatus according to Embodiment 1 of the present invention.
  • FIG. 1 is a block diagram showing a configuration of an ultrasonic observation apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart showing an outline of processing of the ultrasonic observation apparatus according to Embodiment
  • FIG. 6 is a diagram schematically showing a data array of one sound ray to be processed by the ultrasonic observation apparatus according to Embodiment 1 of the present invention.
  • FIG. 7 is a diagram illustrating an example of a frequency spectrum calculated by the frequency analysis unit of the ultrasonic observation apparatus according to Embodiment 1 of the present invention.
  • FIG. 8 is a diagram showing a display example of the attenuation rate display image displayed by the display unit of the ultrasonic observation apparatus according to Embodiment 1 of the present invention.
  • FIG. 9 is a diagram schematically illustrating a setting example of a region of interest in the ultrasonic observation apparatus according to Embodiment 2 of the present invention.
  • FIG. 10 is a flowchart showing an outline of frequency analysis processing performed by the frequency analysis unit of the ultrasonic observation apparatus according to Embodiment 2 of the present invention.
  • FIG. 11 is a diagram schematically showing a data array of one sound ray to be processed by the ultrasonic observation apparatus according to Embodiment 2 of the present invention.
  • FIG. 12 is a diagram illustrating a display example of the attenuation rate display image displayed by the display unit of the ultrasonic observation apparatus according to the second embodiment of the present invention.
  • FIG. 13 is a diagram showing a frequency spectrum curve calculated by an ultrasonic observation apparatus according to another embodiment of the present invention and an approximate curve thereof.
  • FIG. 1 is a block diagram showing a configuration of an ultrasonic observation apparatus according to Embodiment 1 of the present invention.
  • An ultrasonic observation apparatus 1 shown in FIG. 1 is an apparatus for observing a specimen that is a diagnosis target using ultrasonic waves.
  • the ultrasonic observation apparatus 1 transmits and receives electrical signals between the ultrasonic probe 2 that outputs an ultrasonic pulse to the outside and receives an ultrasonic echo reflected from the outside, and the ultrasonic probe 2. Transmitting / receiving unit 3 for performing the calculation, calculation unit 4 for performing a predetermined calculation on the electrical echo signal converted from the ultrasonic echo, and generation of image data corresponding to the electrical echo signal converted from the ultrasonic echo An image processing unit 5 to be performed, an interface such as a keyboard, a mouse, a touch panel, and the like.
  • the image processing unit 5 is realized by using an input unit 6 that receives input of various information and a display panel made of liquid crystal or organic EL 5, a display unit 7 for displaying various types of information including images generated, a storage unit 8 for storing various types of information including window functions used in frequency analysis, and a control unit for controlling the operation of the ultrasound observation apparatus 1. And, equipped with a.
  • the ultrasonic probe 2 converts an electrical pulse signal received from the transmission / reception unit 3 into an ultrasonic pulse (acoustic pulse signal), and converts an ultrasonic echo reflected by an external specimen into an electrical echo signal.
  • a signal conversion unit 21 for conversion is included.
  • the ultrasonic probe 2 may be one that mechanically scans an ultrasonic transducer, or one that electronically scans a plurality of ultrasonic transducers.
  • the transmitting / receiving unit 3 is electrically connected to the ultrasonic probe 2, transmits a pulse signal to the ultrasonic probe 2, and receives an echo signal from the ultrasonic probe 2. Specifically, the transmission / reception unit 3 generates a pulse signal based on a preset waveform and transmission timing, and transmits the generated pulse signal to the ultrasound probe 2. Further, the transmission / reception unit 3 performs processing such as amplification and filtering on the received echo signal, and then performs A / D conversion to generate and output a digital RF signal.
  • the transmission / reception unit 3 has a multi-channel circuit for beam synthesis corresponding to the plurality of ultrasonic transducers.
  • the calculation unit 4 includes a frequency analysis unit 41 that performs frequency analysis of the echo signal by performing fast Fourier transform (FFT) on the digital RF signal output from the transmission / reception unit 3, and at least two depths calculated by the frequency analysis unit 41.
  • a predetermined parameter of an approximate expression obtained by performing an approximation process on each frequency spectrum (power spectrum) of the distance (distance from the ultrasonic transducer of the ultrasonic probe 2) is extracted in association with the depth.
  • an attenuation rate calculation unit 43 that calculates the attenuation rate of the ultrasonic wave using the coefficient and depth of the approximate expression extracted by the parameter extraction unit 42.
  • the frequency analysis unit 41 calculates a frequency spectrum by performing a fast Fourier transform on an FFT data group including a predetermined amount of data for each sound ray (line data) to be processed.
  • the frequency spectrum shows different tendencies depending on the tissue properties of the specimen. This is because the frequency spectrum has a correlation with the size, density, acoustic impedance, and the like of the specimen as a scatterer that scatters ultrasonic waves.
  • the parameter extraction unit 42 extracts a first order coefficient (hereinafter referred to as a slope) of the approximated primary expression by approximating the frequency spectrum with a linear expression by regression analysis.
  • the inclination correlates with the magnitude of the ultrasonic attenuation rate, and the change in the inclination with respect to the propagation distance of the ultrasonic wave increases as the attenuation rate increases.
  • Attenuation rate calculating section 43 when the first-order equation of the slope of the frequency spectrum at the depth D 1 a 1, the slope of the linear equation of the frequency spectrum at the depth D 2 and a 2, the depth D 1, D
  • the attenuation rate ⁇ between 2 (> D 1 ) is given by the following equation (1).
  • (a 1 ⁇ a 2 ) / (D 2 ⁇ D 1 ) (1)
  • the attenuation rate ⁇ corresponds to the average attenuation rate between two points.
  • the depths D 1 and D 2 in Equation (1) can be calculated based on the reception timing of the echo signal.
  • the difference D 2 -D 1 between the two depths is more preferably about the wavelength of an ultrasonic wave (for example, about several mm).
  • the image processing unit 5 includes a B-mode image data generation unit 51 that generates B-mode image data from the echo signal, and an attenuation rate display that generates attenuation rate display image data including information related to the attenuation rate calculated by the attenuation rate calculation unit 43.
  • An image data generation unit 52 An image data generation unit 52.
  • the B-mode image data generation unit 51 performs signal processing using a known technique such as a bandpass filter, logarithmic conversion, gain processing, contrast processing, and the like on the digital signal, and also according to the image display range on the display unit 7.
  • B-mode image data is generated by thinning out data in accordance with the data step width determined in advance.
  • the attenuation rate display image data generation unit 52 generates, as the attenuation rate display image data, data including, for example, a point used for calculating the attenuation rate on a preset region of interest and the attenuation rate that is the calculation result. .
  • the storage unit 8 includes a window function storage unit 81 that stores at least one of window functions such as Hamming, Hanning, and Blackman as window functions used in the frequency analysis processing performed by the frequency analysis unit 41.
  • the attenuation rate information storage unit 82 stores the attenuation rate ⁇ calculated by the attenuation rate calculation unit 43 together with the slopes a 1 and a 2 and the depths D 1 and D 2 in the above equation (1).
  • the storage unit 8 includes a ROM in which an operation program for the ultrasonic observation apparatus according to the first embodiment, a program for starting a predetermined OS, and the like are stored in advance, and a RAM in which calculation parameters and data for each process are stored. To be realized.
  • Components other than the ultrasound probe 2 of the ultrasound observation apparatus 1 having the above functional configuration are realized using a computer having a CPU having a calculation and control function.
  • the CPU provided in the ultrasound observation apparatus 1 reads out various programs including information stored and stored in the storage unit 8 and the above-described operation program of the ultrasound observation apparatus from the storage unit 8, so that the ultrasound according to the first embodiment is obtained. Arithmetic processing related to the operation method of the sound wave observation apparatus is executed.
  • the operation program of the ultrasonic observation apparatus may be recorded on a computer-readable recording medium such as a hard disk, a flash memory, a CD-ROM, a DVD-ROM, or a flexible disk and widely distributed. Is possible.
  • FIG. 2 is a flowchart showing an outline of processing of the ultrasonic observation apparatus 1 having the above configuration.
  • the ultrasound observation apparatus 1 first measures a new specimen with the ultrasound probe 2 (step S1). Thereafter, the B mode image data generation unit 51 generates B mode image data (step S2).
  • FIG. 3 is a diagram illustrating a display example of the B-mode image on the display unit 7.
  • a B-mode image 100 shown in the figure is a grayscale image in which values of R (red), G (green), and B (blue), which are variables when the RGB color system is adopted as a color space, are matched. .
  • FIG. 4 is a diagram schematically illustrating a setting example of a region of interest in a B-mode image.
  • the region of interest 201 is a rectangular region having the sound ray LD as the central axis in the radial direction.
  • Two points P 1 and P 2 in the region of interest 201 are points having depths D 1 and D 2 from the ultrasound probe 2, respectively.
  • the entire area of the image can be set as the region of interest.
  • step S4: No when an instruction to end the process is input by the input unit 6 (step S6: Yes), the ultrasound observation apparatus 1 ends the process. .
  • step S4: No when the region of interest is not set (step S4: No), when the instruction to end the process is not input by the input unit 6 (step S6: No), the ultrasound observation apparatus 1 goes to step S4. Return.
  • step S5 the process (step S5) performed by the frequency analysis unit 41 will be described in detail with reference to the flowchart shown in FIG.
  • FIG. 6 is a diagram schematically showing a data array of one sound ray.
  • a white or black rectangle means one piece of data.
  • the sound ray LD is discretized at a time interval corresponding to a sampling frequency (for example, 50 MHz) in A / D conversion performed by the transmission / reception unit 3.
  • frequency analysis is performed on two points P 1 (data position Z 1 ) and P 2 (data position Z 2 ) in the region of interest 201.
  • the frequency analysis unit 41 acquires the FFT data group at the data position Z i (step S23), and applies the window function stored in the window function storage unit 81 to the acquired FFT data group (step S24). In this way, by applying the window function to the FFT data group, it is possible to avoid the FFT data group from becoming discontinuous at the boundary and to prevent the occurrence of artifacts.
  • the frequency analysis unit 41 determines whether or not the FFT data group at the data position Z i is a normal data group (step S25).
  • the FFT data group needs to have a power number of 2 data.
  • the number of data in the FFT data group is 2 n (n is a positive integer). That the FFT data group is normal means that the data position Z i is the 2 n-1 th position from the front in the FFT data group.
  • the FFT data groups F 1 and F 2 are both normal.
  • step S25 when the FFT data group at the data position Z i is normal (step S25: Yes), the frequency analysis unit 41 proceeds to step S27 described later.
  • step S25 If the result of determination in step S25 is that the FFT data group at the data position Z i is not normal (step S25: No), the frequency analysis unit 41 generates a normal FFT data group by inserting zero data for the shortage. (Step S26).
  • the FFT function group determined to be not normal in step S25 is subjected to a window function before adding zero data. For this reason, discontinuity of data does not occur even if zero data is inserted into the FFT data group.
  • step S26 the frequency analysis unit 41 proceeds to step S27 described later.
  • step S27 the frequency analysis unit 41 obtains a frequency spectrum by performing an FFT operation using the FFT data group (step S27).
  • the frequency analysis unit 41 sets the counter i to i + 1 (step S28).
  • the storage unit 8 stores in advance a step width D corresponding to incrementing the counter i by one.
  • the frequency analysis unit 41 determines whether or not the counter i is greater than 2 (step S29).
  • step S29: Yes the frequency analysis unit 41 ends the series of processes and returns to the main routine shown in FIG.
  • step S29: No the frequency analysis unit 41 returns to step S22 and repeats the process.
  • FIG. 7 is a diagram illustrating an example of a frequency spectrum calculated by the frequency analysis unit 41.
  • the horizontal axis f is frequency and the vertical axis I is intensity.
  • the frequency spectrum curve C 2 having a relatively deep depth is more attenuated as the frequency increases than the frequency spectrum curve C 1 .
  • the straight lines L 1 and L 2 shown in FIG. 7 will be described in the parameter extraction process described later.
  • the curve and the straight line are composed of a set of discrete points. This also applies to the embodiments described later.
  • the parameter extraction unit 42 extracts parameters of the approximate expression by performing regression analysis on the two frequency spectra calculated by the frequency analysis unit 41 (step S7). Specifically, the parameter extraction unit 42 calculates a linear equation that approximates the frequency spectrum of the frequency band f 1 ⁇ f ⁇ f 2 by regression analysis, thereby obtaining a slope of the linear equation (a linear coefficient) as a parameter. ) Extract a.
  • the straight lines L 1 and L 2 shown in FIG. 7 are regression lines obtained by performing approximation processing in parameter extraction processing on the frequency spectrum curves C 1 and C 2 in step S7, respectively.
  • the attenuation rate calculation unit 43 calculates the attenuation rate ⁇ according to the above-described equation (1) (step S8).
  • the attenuation rate ⁇ calculated in step S8 is recorded in the attenuation rate information storage unit 82 together with the slopes a 1 and a 2 and the depths D 1 and D 2 in the equation (1).
  • the attenuation rate display image data generation unit 52 generates attenuation rate display image data based on the attenuation rate ⁇ calculated by the attenuation rate calculation unit 43 (step S9).
  • FIG. 8 is a diagram illustrating a display example of the attenuation rate display image displayed on the display unit 7.
  • the attenuation rate display image 300 shown in the figure includes an information display unit 301 that displays specimen identification information and information about the attenuation rate between two points, and a region of interest 201 and an attenuation rate calculation on the B-mode image 100 shown in FIG.
  • An image display unit 302 that displays a superimposed image in which the two points P 1 and P 2 of interest are superimposed.
  • the information display unit 301 in addition to the specimen identification information (name, ID number, etc.), information on the attenuation rate ⁇ and the depths of the two points P 1 and P 2 are displayed.
  • the display unit 7 displays the attenuation rate display image 300 having the above configuration, the operator can more accurately grasp the information regarding the attenuation rate of the region of interest.
  • the frequency spectrum is calculated by analyzing the frequencies of at least two depths with respect to the received ultrasonic waves, and the calculated at least two depths are calculated.
  • Predetermined parameters of approximation formulas obtained by performing approximation processing on frequency spectra are extracted in association with depths, and ultrasonic waves are extracted using two sets of extracted parameters and depths corresponding to the parameters. Therefore, the attenuation rate of the ultrasonic wave can be obtained without using the phase information and the reference amplitude spectrum. Therefore, it is possible to accurately and easily determine the attenuation rate associated with the propagation of ultrasonic waves.
  • the attenuation rate is calculated using two points on one sound ray and within the region of interest.
  • the attenuation rate is calculated using a plurality of points on one sound ray and within the region of interest. It may be calculated. For example, when three points are used, there are three combinations of two of the three points. In this case, after calculating the attenuation rate between two adjacent points based on Equation (1), the attenuation rate calculation unit 43 may calculate the average value of the two calculated attenuation rates as the final attenuation rate. . When three points are used, it is possible to calculate the attenuation rate for all combinations of two points after the three points, and use the average value as the final attenuation rate.
  • the ultrasonic observation apparatus according to Embodiment 2 of the present invention is characterized in that it calculates a plurality of attenuation rates in a region of interest.
  • the configuration of the ultrasonic observation apparatus according to the second embodiment is the same as the configuration of the ultrasonic observation apparatus 1 described above.
  • the outline of the processing of the ultrasonic observation apparatus according to the second embodiment is the same as the flowchart of FIG. 2, but details of the frequency analysis processing (step S5) performed by the frequency analysis unit 41 are the same as those of the first embodiment. Different.
  • FIG. 9 is a diagram schematically illustrating a setting example of a region of interest in a B-mode image.
  • FIG. 9 illustrates two sound rays LD i and LD j (i, j ⁇ k). Of these, four points P i1 , P i2 , P i3 , and P i4 are to be calculated for the attenuation rate on the sound ray LD i . On the other hand, on the sound ray LD j , two points P j1 and P j2 are the calculation targets of the attenuation rate.
  • the attenuation rate is calculated using two adjacent points. Therefore, in the case of the sound ray LD i , the attenuation rate calculation unit 43 sets the attenuation rate for the three sets (P i1 , P i2 ), (P i2 , P i3 ), (P i3 , P i4 ) using the above formula (1). ) To calculate. On the other hand, in the case of the sound ray LD j , the attenuation rate calculation unit 43 calculates the attenuation rate for one set (P j1 , P j2 ) using Expression (1).
  • the number of attenuation rates calculated by the attenuation rate calculation unit 43 differs depending on the sound ray passing through the region of interest 401.
  • the attenuation rate calculation unit 43 may calculate the attenuation rate related to the following two sets (P i1 , P i3 ) and (P i2 , P i4 ).
  • P i1 , P i3 the attenuation rate calculation unit 43 may calculate the attenuation rate related to the following two sets (P i1 , P i3 ) and (P i2 , P i4 ).
  • FIG. 10 is a flowchart showing an overview of frequency analysis processing performed by the frequency analysis unit 41 of the ultrasonic observation apparatus 1 according to the second embodiment.
  • the frequency analysis unit 41 sounds the first analysis target line sound ray number k (sound rays passing through the region of interest 401) an initial value k 1 (step S31).
  • the initial value k 1 may be given, for example, to the sound ray that the transmission / reception unit 3 receives first, or to the sound ray corresponding to one of the left and right boundary positions of the region of interest set by the input unit 6. May be given.
  • FIG. 11 is a diagram schematically showing a data array of one sound ray.
  • a white or black rectangle means one piece of data.
  • the sound ray LD k is discretized at time intervals corresponding to the sampling frequency in the A / D conversion performed by the transmission / reception unit 3.
  • the frequency analysis unit 41 acquires the FFT data group at the data position Z (k) (step S33), and applies the window function stored in the window function storage unit 81 to the acquired FFT data group (step S34). ).
  • the frequency analysis unit 41 determines whether or not the FFT data group at the data position Z (k) is a normal data group (step S35).
  • the configuration of the FFT data group and the method for determining whether or not the FFT data group is a normal data group are the same as those described in the first embodiment. Therefore, in the case shown in FIG. 10, the FFT data groups F 2 (k), F 3 (k), and F K-1 (k) are normal, while the FFT data groups F 1 (k), F K (k) Is abnormal.
  • step S35 If the result of determination in step S35 is that the FFT data group at the data position Z (k) is normal (step S35: Yes), the frequency analysis unit 41 proceeds to step S37 described later.
  • step S35 if the FFT data group at the data position Z (k) is not normal (step S35: No), the frequency analysis unit 41 inserts zero data for the shortage to insert a normal FFT data group. Generate (step S36).
  • the FFT function group determined to be not normal in step S35 is subjected to a window function before adding zero data. For this reason, discontinuity of data does not occur even if zero data is inserted into the FFT data group.
  • step S36 the frequency analysis unit 41 proceeds to step S37 described later.
  • step S37 the frequency analysis unit 41 obtains a frequency spectrum by performing an FFT operation using the acquired FFT data group (step S37).
  • the frequency analysis unit 41 adds a predetermined data step width D to the data position Z (k) to calculate the data position Z (k) of the next FFT data group to be analyzed (step S38).
  • the data step width D here is stored in the storage unit 8.
  • the data step width D is desirably matched with the data step width used when the B-mode image data generation unit 51 generates B-mode image data. However, when the amount of calculation in the frequency analysis unit 41 is desired to be reduced. A value larger than the data step width used by the B-mode image data generation unit 51 may be set.
  • the frequency analysis unit 41 determines whether or not the data position Z (k) is larger than the final data position Z max (k) on the same sound ray LD k in the region of interest 401 (step S39). If the data position Z (k) is larger than the final data position Z max (k) as a result of the determination (step S39: Yes), the frequency analysis unit 41 increments the sound ray number k by 1 (step S40). ). On the other hand, when the data position Z (k) is equal to or less than the final data position Z max (k) (step S39: No), the frequency analysis unit 41 returns to step S33.
  • the frequency analysis unit 41 performs an FFT operation on [ ⁇ (Z max (k) ⁇ Z 1 (k)) / D ⁇ +1] FFT data groups for the sound ray LD k .
  • [X] represents the maximum integer not exceeding X.
  • step S41: Yes When the sound ray number k after incrementing the sound ray number k by 1 in step S40 is larger than the final sound ray number k max (step S41: Yes), the frequency analysis unit 41 returns to the main routine shown in FIG. On the other hand, when the sound ray number k after the increment in step S40 is equal to or less than the final sound ray number k max (step S41: No), the frequency analysis unit 41 returns to step S32.
  • FIG. 12 is a diagram showing a display example of the attenuation rate display image displayed by the display unit 7.
  • the attenuation rate display image 500 shown in the figure includes an information display unit 501 that displays specimen information and attenuation rate information, a B-mode image display unit 502 that displays a B-mode image, and an attenuation rate distribution in a region of interest.
  • the attenuation rate distribution image 600 displayed by the attenuation rate distribution image display unit 503 represents the distribution of the magnitude of the attenuation rate in the region of interest 401 in a shade pattern.
  • the range of the attenuation rate corresponding to the degree of shading is displayed on the information display unit 501.
  • the attenuation rate distribution image 600 displays the attenuation rate distribution two-dimensionally
  • the attenuation rate distribution may be displayed three-dimensionally using a three-dimensional image.
  • the outside of the region of interest 401 may be displayed as a B-mode image.
  • the attenuation rate associated with the propagation of ultrasonic waves can be accurately and easily obtained as in the first embodiment.
  • the distribution of the attenuation rates in the tissue can be grasped more accurately. Therefore, when the target is a living tissue, it is possible to make use of the distribution of attenuation rate in the determination of tissue properties.
  • FIG. 13 is a diagram showing a frequency spectrum curve calculated by an ultrasonic observation apparatus according to another embodiment of the present invention and an approximate curve thereof.
  • a curve C 31 is an approximate curve (depth D 3 ) of the frequency spectrum curve C 3
  • a curve C 41 is a frequency spectrum curve C 4 (depth D 4 (> D 3 )). It is an approximate curve.
  • the formula I 3 of the spectral curve C 3 (f) a c 30 + c 31 f + c 32 f 2 + ⁇
  • the first order term is dominant as in the following formula (2).
  • (c 31 ⁇ c 41 ) / (D 4 ⁇ D 3 ) (3)
  • the attenuation rate can be calculated accurately and simply by performing a more general polynomial approximation.
  • the tissue property of the living tissue may be determined using the attenuation rate calculated by the attenuation rate calculation unit.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Vascular Medicine (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

 超音波観測装置は、受信した超音波に対して少なくとも2箇所の深さの周波数をそれぞれ解析することによって周波数スペクトルを算出する周波数解析部と、算出した少なくとも2箇所の深さの周波数スペクトルに対してそれぞれ近似処理を行うことによって得られる近似式の所定のパラメータを深さと対応付けて抽出するパラメータ抽出部と、抽出したパラメータおよび該パラメータと対応する深さからなる組を2組用いて超音波の減衰率を算出する減衰率算出部と、算出した減衰率に関する情報を含む減衰率表示画像データを生成する減衰率表示画像データ生成部と、を備える。

Description

超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
 本発明は、超音波を用いて検体の組織を観測する超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラムに関する。
 超音波を用いた乳がん等の検査技術として、超音波エラストグラフィという技術が知られている(例えば、特許文献1を参照)。超音波エラストグラフィは、生体内の癌や腫瘍組織の硬さが病気の進行状況や生体によって異なることを利用する技術である。この技術では、外部から検査箇所を圧迫した状態で、超音波を用いてその検査箇所における生体組織の歪量や弾性率を計測し、この計測結果を断層像として画像表示している。
 ところで、超音波は生体内で減衰するため、この減衰量または減衰率を知ることは検査する上でも重要である。従来、減衰率を求める方法として、受信した超音波エコーの位相情報を利用する方法が知られている(例えば、特許文献2を参照)。この方法では、超音波エコーの位相情報を用いて、被検体の深さ方向における超音波の位相の変化から被検体内の超音波の減衰率を算出する。この減衰率を算出する際には、スペックル成分(干渉成分)を取り除いた位相変化を用いている。
 また、対象物の特性を決定するために超音波の減衰量を用いる技術も知られている(例えば、特許文献3を参照)。この技術では、対象物を通過した超音波の周波数スペクトル(振幅スペクトル)を、予め定められた基準振幅スペクトルと比較し、その差分をもとに減衰量を算出し、算出した減衰量に基づいて対象物の材料の特性を計算する。
国際公開第2005/122906号 特開2010-82230号公報 特表2008-545123号公報
 しかしながら、上述した特許文献2に記載の技術では、干渉波の位相情報の方が支配的であるため、位相情報からスペックル成分を取り除くことがきわめて難しかった。
 また、上述した特許文献3に記載の技術では、既知の基準振幅スペクトルを予め生成して記憶しておかなければならず、簡便さに欠けるという問題があった。
 本発明は、上記に鑑みてなされたものであって、超音波の伝播に伴う減衰率を正確かつ容易に求めることができる超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラムを提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る超音波観測装置は、観察対象の検体に対して超音波を送信するとともに前記検体によって反射された超音波を受信する送受信部と、受信した超音波に対して少なくとも2箇所の深さの周波数をそれぞれ解析することによって周波数スペクトルを算出する周波数解析部と、前記周波数解析部が算出した少なくとも2箇所の深さの周波数スペクトルに対してそれぞれ近似処理を行うことによって得られる前記周波数スペクトルの近似式の所定のパラメータを前記深さと対応付けて抽出するパラメータ抽出部と、前記パラメータ抽出部が抽出したパラメータおよび該パラメータと対応する深さからなる組を少なくとも2組用いることによって前記超音波の減衰率を算出する減衰率算出部と、前記減衰率算出部が算出した減衰率に関する情報を含む減衰率表示画像データを生成する減衰率表示画像データ生成部と、を備えたことを特徴とする。
 また、本発明に係る超音波観測装置は、上記発明において、前記近似式は周波数を変数とする多項式であり、前記パラメータは前記多項式の1次の係数であることを特徴とする。
 また、本発明に係る超音波観測装置は、上記発明において、前記多項式は1次式であることを特徴とする。
 また、本発明に係る超音波観測装置は、上記発明において、前記減衰率は、一つの組を構成する2箇所における前記多項式の1次の係数の差を該2箇所における深さの差で除した量であることを特徴とする。
 また、本発明に係る超音波観測装置は、上記発明において、前記パラメータ抽出部は、互いに深さが異なる2N箇所(Nは2以上の整数)の周波数スペクトルに対して前記パラメータを抽出し、前記減衰率算出部は、互いに異なる2組を用いてN個の減衰率を算出することを特徴とする。
 また、本発明に係る超音波観測装置は、上記発明において、前記減衰率算出部が減衰率を算出する際に用いる2組に含まれる深さの差は、前記送受信部が送信する超音波の波長と略等しいことを特徴とする。
 また、本発明に係る超音波観測装置は、上記発明において、前記減衰率算出部が算出した減衰率に関する情報を表示する表示部をさらに備えたことを特徴とする。
 また、本発明に係る超音波観測装置の作動方法は、観察対象の検体に対して超音波を送信するとともに前記検体によって反射された超音波を受信することにより、受信した超音波を観測する超音波観測装置の作動方法であって、受信した超音波に対して少なくとも2箇所の深さの周波数をそれぞれ解析することによって周波数スペクトルを周波数解析部により算出する周波数解析ステップと、前記周波数解析ステップで算出した少なくとも2箇所の深さの周波数スペクトルに対してそれぞれ近似処理を行うことによって得られる前記周波数スペクトルの近似式の所定のパラメータを前記深さと対応付けてパラメータ抽出部により抽出するパラメータ抽出ステップと、前記パラメータ抽出ステップで抽出したパラメータおよび該パラメータと対応する深さからなる組を2組用いて前記超音波の減衰率を減衰率算出部により算出する減衰率算出ステップと、前記減衰率算出ステップで算出した減衰率に関する情報を含む減衰率表示画像データを減衰率表示画像データ生成部により生成する減衰率表示画像データ生成ステップと、を有することを特徴とする。
 また、本発明に係る超音波観測装置の作動プログラムは、観察対象の検体に対して超音波を送信するとともに前記検体によって反射された超音波を受信することにより、受信した超音波を観測する超音波観測装置に実行させる超音波観測装置の作動プログラムであって、受信した超音波に対して少なくとも2箇所の深さの周波数をそれぞれ解析することによって周波数スペクトルを周波数解析部により算出する周波数解析ステップと、前記周波数解析ステップで算出した少なくとも2箇所の深さの周波数スペクトルに対してそれぞれ近似処理を行うことによって得られる前記周波数スペクトルの近似式の所定のパラメータを前記深さと対応付けてパラメータ抽出部により抽出するパラメータ抽出ステップと、前記パラメータ抽出ステップで抽出したパラメータおよび該パラメータと対応する深さからなる組を2組用いて前記超音波の減衰率を減衰率算出部により算出する減衰率算出ステップと、前記減衰率算出ステップで算出した減衰率に関する情報を含む減衰率表示画像データを減衰率表示画像データ生成部により生成する減衰率表示画像データ生成ステップと、を実行させることを特徴とする。
 本発明によれば、受信した超音波に対して少なくとも2箇所の深さの周波数をそれぞれ解析することによって周波数スペクトルを算出し、算出した少なくとも2箇所の深さの周波数スペクトルに対してそれぞれ近似処理を行うことによって得られる近似式の所定のパラメータを深さと対応付けて抽出し、抽出したパラメータおよび該パラメータと対応する深さからなる組を2組用いて前記超音波の減衰率を算出するため、超音波の伝播に伴う減衰率を正確かつ容易に求めることができる。
図1は、本発明の実施の形態1に係る超音波観測装置の構成を示すブロック図である。 図2は、本発明の実施の形態1に係る超音波観測装置の処理の概要を示すフローチャートである。 図3は、本発明の実施の形態1に係る超音波観測装置の表示部におけるBモード画像の表示例を示す図である。 図4は、本発明の実施の形態1に係る超音波観測装置における関心領域の設定例を模式的に示す図である。 図5は、本発明の実施の形態1に係る超音波観測装置の周波数解析部が行う処理の概要を示すフローチャートである。 図6は、本発明の実施の形態1に係る超音波観測装置が処理対象とする一つの音線のデータ配列を模式的に示す図である。 図7は、本発明の実施の形態1に係る超音波観測装置の周波数解析部が算出した周波数スペクトルの例を示す図である。 図8は、本発明の実施の形態1に係る超音波観測装置の表示部が表示する減衰率表示画像の表示例を示す図である。 図9は、本発明の実施の形態2に係る超音波観測装置における関心領域の設定例を模式的に示す図である。 図10は、本発明の実施の形態2に係る超音波観測装置の周波数解析部が行う周波数解析処理の概要を示すフローチャートである。 図11は、本発明の実施の形態2に係る超音波観測装置が処理対象とする一つの音線のデータ配列を模式的に示す図である。 図12は、本発明の実施の形態2に係る超音波観測装置の表示部が表示する減衰率表示画像の表示例を示す図である。 図13は、本発明の別の実施の形態に係る超音波観測装置が算出する周波数スペクトル曲線およびその近似曲線を示す図である。
 以下、添付図面を参照して、本発明を実施するための形態(以下、「実施の形態」という)を説明する。
(実施の形態1)
 図1は、本発明の実施の形態1に係る超音波観測装置の構成を示すブロック図である。同図に示す超音波観測装置1は、超音波を用いて診断対象である検体を観測するための装置である。
 超音波観測装置1は、外部へ超音波パルスを出力するとともに、外部で反射された超音波エコーを受信する超音波探触子2と、超音波探触子2との間で電気信号の送受信を行う送受信部3と、超音波エコーを変換した電気的なエコー信号に対して所定の演算を施す演算部4と、超音波エコーを変換した電気的なエコー信号に対応する画像データの生成を行う画像処理部5と、キーボード、マウス、タッチパネル等のインタフェースを用いて実現され、各種情報の入力を受け付ける入力部6と、液晶または有機EL等からなる表示パネルを用いて実現され、画像処理部5が生成した画像を含む各種情報を表示する表示部7と、周波数解析の際に使用する窓関数を含む各種情報を記憶する記憶部8と、超音波観測装置1の動作制御を行う制御部9と、を備える。
 超音波探触子2は、送受信部3から受信した電気的なパルス信号を超音波パルス(音響パルス信号)に変換するとともに、外部の検体で反射された超音波エコーを電気的なエコー信号に変換する信号変換部21を有する。超音波探触子2は、超音波振動子をメカ的に走査させるものであってもよいし、複数の超音波振動子を電子的に走査させるものであってもよい。
 送受信部3は、超音波探触子2と電気的に接続され、パルス信号を超音波探触子2へ送信するとともに、超音波探触子2からエコー信号を受信する。具体的には、送受信部3は、予め設定された波形および送信タイミングに基づいてパルス信号を生成し、この生成したパルス信号を超音波探触子2へ送信する。また、送受信部3は、受信したエコー信号に増幅、フィルタリング等の処理を施した後、A/D変換することによってデジタルRF信号を生成して出力する。なお、超音波探触子2が複数の超音波振動子を電子的に走査させるものである場合、送受信部3は、複数の超音波振動子に対応したビーム合成用の多チャンネル回路を有する。
 演算部4は、送受信部3が出力したデジタルRF信号に高速フーリエ変換(FFT)を施すことによってエコー信号の周波数解析を行う周波数解析部41と、周波数解析部41が算出した少なくとも2箇所の深さ(超音波探触子2が有する超音波振動子からの距離)の周波数スペクトル(パワースペクトル)に対してそれぞれ近似処理を行うことによって得られる近似式の所定のパラメータを深さと対応付けて抽出するパラメータ抽出部42と、パラメータ抽出部42が抽出した近似式の係数と深さとを用いて超音波の減衰率を算出する減衰率算出部43と、を有する。
 周波数解析部41は、処理対象の各音線(ラインデータ)に対し、所定のデータ量からなるFFTデータ群を高速フーリエ変換することによって周波数スペクトルを算出する。周波数スペクトルは、検体の組織性状によって異なる傾向を示す。これは、周波数スペクトルが、超音波を散乱する散乱体としての検体の大きさ、密度、音響インピーダンス等と相関を有しているためである。
 パラメータ抽出部42は、回帰分析によって周波数スペクトルを1次式で近似することにより、この近似した1次式の1次の係数(以下、傾きという)を抽出する。傾きは、超音波の減衰率の大きさと相関を有しており、減衰率が大きいほど超音波の伝搬距離に対する傾きの変化は大きくなる。
 減衰率算出部43は、深さD1における周波数スペクトルの1次式の傾きをa1、深さD2における周波数スペクトルの1次式の傾きをa2とするとき、深さD1、D2(>D1)間の減衰率αは、次の式(1)で与えられる。
  α=(a1-a2)/(D2-D1)   ・・・(1)
式(1)からも明らかなように、減衰率αは、2点間の平均減衰率に相当している。ここで、式(1)における深さD1、D2は、エコー信号の受信タイミングに基づいて算出することができる。なお、二つの深さの差D2-D1は、超音波の波長程度(例えば数mm程度)であればより好ましい。
 画像処理部5は、エコー信号からBモード画像データを生成するBモード画像データ生成部51と、減衰率算出部43が算出した減衰率に関する情報を含む減衰率表示画像データを生成する減衰率表示画像データ生成部52と、を有する。
 Bモード画像データ生成部51は、デジタル信号に対してバンドパスフィルタ、対数変換、ゲイン処理、コントラスト処理等の公知の技術を用いた信号処理を行うとともに、表示部7における画像の表示レンジに応じて定まるデータステップ幅に応じたデータの間引き等を行うことによってBモード画像データを生成する。
 減衰率表示画像データ生成部52は、減衰率表示画像データとして、例えば予め設定した関心領域上で減衰率を算出するのに使用した点と、算出結果である減衰率とを含むデータを生成する。
 記憶部8は、周波数解析部41が行う周波数解析処理の際に使用する窓関数として、Hamming, Hanning, Blackmanなどの窓関数のうち少なくともいずれか一つの窓関数を記憶する窓関数記憶部81と、減衰率算出部43が算出した減衰率αを、上記式(1)における傾きa1、a2、深さD1、D2とともに記憶する減衰率情報記憶部82と、を有する。
 記憶部8は、本実施の形態1に係る超音波観測装置の作動プログラムや所定のOSを起動するプログラム等が予め記憶されたROM、および各処理の演算パラメータやデータ等を記憶するRAM等を用いて実現される。
 以上の機能構成を有する超音波観測装置1の超音波探触子2以外の構成要素は、演算および制御機能を有するCPUを備えたコンピュータを用いて実現される。超音波観測装置1が備えるCPUは、記憶部8が記憶、格納する情報および上述した超音波観測装置の作動プログラムを含む各種プログラムを記憶部8から読み出すことにより、本実施の形態1に係る超音波観測装置の作動方法に関連した演算処理を実行する。
 なお、本実施の形態1に係る超音波観測装置の作動プログラムは、ハードディスク、フラッシュメモリ、CD-ROM、DVD-ROM、フレキシブルディスク等のコンピュータ読み取り可能な記録媒体に記録して広く流通させることも可能である。
 図2は、以上の構成を有する超音波観測装置1の処理の概要を示すフローチャートである。図2において、超音波観測装置1は、まず超音波探触子2によって新規の検体の測定を行う(ステップS1)。その後、Bモード画像データ生成部51がBモード画像データを生成する(ステップS2)。
 続いて、制御部9は、Bモード画像データ生成部51が生成したBモード画像データに対応するBモード画像を表示部7に表示させる制御を行う(ステップS3)。図3は、表示部7におけるBモード画像の表示例を示す図である。同図に示すBモード画像100は、色空間としてRGB表色系を採用した場合の変数であるR(赤)、G(緑)、B(青)の値を一致させたグレースケール画像である。
 その後、入力部6を介して関心領域の設定がなされた場合(ステップS4:Yes)、周波数解析部41は、FFT演算による周波数解析を行うことによって周波数スペクトルを算出する(ステップS5)。図4は、Bモード画像における関心領域の設定例を模式的に示す図である。同図に示す模式図200において、関心領域201は、音線LDを径方向の中心軸とする矩形領域である。関心領域201内の2点P1、P2は、超音波探触子2からの深さがそれぞれD1、Dの点である。なお、ステップS5では、画像の全領域を関心領域として設定することも可能である。
 一方、関心領域の設定がなされていない場合(ステップS4:No)において、処理を終了する指示が入力部6によって入力されたとき(ステップS6:Yes)、超音波観測装置1は処理を終了する。これに対し、関心領域の設定がなされていない場合(ステップS4:No)において、処理を終了する指示が入力部6によって入力されないとき(ステップS6:No)、超音波観測装置1はステップS4へ戻る。
 ここで、周波数解析部41が行う処理(ステップS5)について、図5に示すフローチャートを参照して詳細に説明する。まず、周波数解析部41は、解析対象の点を識別するカウンタiを1とする(ステップS21)。図4に示す場合、i=1,2である。
 続いて、周波数解析部41は、FFT演算用に取得するデータ位置Ziを設定する(ステップS22)。図6は、一つの音線のデータ配列を模式的に示す図である。同図に示す音線LDにおいて、白または黒の長方形は、一つのデータを意味している。音線LDは、送受信部3が行うA/D変換におけるサンプリング周波数(例えば50MHz)に対応した時間間隔で離散化されている。図4では、関心領域201内にある二つの点P1(データ位置Z1)、P2(データ位置Z2)について周波数解析を行う。
 その後、周波数解析部41は、データ位置ZiのFFTデータ群を取得し(ステップS23)、取得したFFTデータ群に対し、窓関数記憶部81が記憶する窓関数を作用させる(ステップS24)。このようにFFTデータ群に対して窓関数を作用させることにより、FFTデータ群が境界で不連続になることを回避し、アーチファクトが発生するのを防止することができる。
 続いて、周波数解析部41は、データ位置ZiのFFTデータ群が正常なデータ群であるか否かを判定する(ステップS25)。ここで、FFTデータ群は、2のべき乗のデータ数を有している必要がある。以下、FFTデータ群のデータ数を2n(nは正の整数)とする。FFTデータ群が正常であるとは、データ位置ZiがFFTデータ群で前から2n-1番目の位置であること意味する。換言すると、FFTデータ群が正常であるとは、データ位置Ziの前方に2n-1-1(=Nとする)個のデータがあり、データ位置Ziの後方に2n-1(=Mとする)個のデータがあることを意味する。図6に示す場合、FFTデータ群F1、F2はともに正常である。ただし、図6ではn=4(N=7,M=8)としている。
 ステップS25における判定の結果、データ位置ZiのFFTデータ群が正常である場合(ステップS25:Yes)、周波数解析部41は、後述するステップS27へ移行する。
 ステップS25における判定の結果、データ位置ZiのFFTデータ群が正常でない場合(ステップS25:No)、周波数解析部41は、不足分だけゼロデータを挿入することによって正常なFFTデータ群を生成する(ステップS26)。ステップS25において正常でないと判定されたFFTデータ群は、ゼロデータを追加する前に窓関数が作用されている。このため、FFTデータ群にゼロデータを挿入してもデータの不連続は生じない。ステップS26の後、周波数解析部41は、後述するステップS27へ移行する。
 ステップS27において、周波数解析部41は、FFTデータ群を用いてFFT演算を行うことにより、周波数スペクトルを得る(ステップS27)。
 続いて、周波数解析部41は、カウンタiをi+1とする(ステップS28)。ここで、記憶部8は、カウンタiを1増やすことに対応するステップ幅Dを予め記憶しているものとする。
 その後、周波数解析部41は、カウンタiが2より大きいか否かを判定する(ステップS29)。カウンタiが2より大きい場合(ステップS29:Yes)、周波数解析部41は一連の処理を終了し、図2に示すメインルーチンへ戻る。一方、カウンタiが2より大きくない場合(ステップS29:No)、周波数解析部41はステップS22に戻って処理を繰り返す。
 図7は、周波数解析部41が算出した周波数スペクトルの例を示す図である。図7では、横軸fが周波数であり、縦軸Iが強度である。図7に示す周波数スペクトル曲線C1およびC2は、それぞれZ=Z1およびZ=Z2における周波数スペクトルを与えている。深さが相対的に深い周波数スペクトル曲線C2の方が、周波数スペクトル曲線C1よりも周波数の増加に伴う減衰が大きい。周波数スペクトルの下限周波数f1および上限周波数f2は、超音波探触子2の周波数帯域、送受信部3が送信するパルス信号の周波数帯域などをもとに決定されるパラメータであり、例えばf1=3MHz、f2=10MHzである。なお、図7に示す直線L1およびL2については、後述するパラメータ抽出処理で説明する。本実施の形態1において、曲線および直線は、離散的な点の集合からなる。この点については、後述する実施の形態においても同様である。
 以上説明したステップS5の周波数解析処理に続いて、パラメータ抽出部42は、周波数解析部41が算出した2個の周波数スペクトルを回帰分析することによって近似式のパラメータを抽出する(ステップS7)。具体的には、パラメータ抽出部42は、周波数帯域f1<f<f2の周波数スペクトルを近似する1次式を回帰分析によって算出することにより、パラメータとして1次式の傾き(1次の係数)aを抽出する。
 図7に示す直線L1およびL2は、このステップS7において、周波数スペクトル曲線C1およびC2に対してパラメータ抽出処理における近似処理をそれぞれ行うことによって得られる回帰直線である。
 以上説明したステップS7の後、減衰率算出部43は、上述した式(1)にしたがって減衰率αを算出する(ステップS8)。このステップS8で算出した減衰率αは、式(1)における傾きa1、a2、深さD1、D2とともに減衰率情報記憶部82に記録される。
 続いて、減衰率表示画像データ生成部52は、減衰率算出部43が算出した減衰率αに基づいて減衰率表示画像データを生成する(ステップS9)。
 その後、表示部7は、減衰率表示画像データ生成部52が生成した減衰率表示画像を表示する(ステップS10)。図8は、表示部7が表示する減衰率表示画像の表示例を示す図である。同図に示す減衰率表示画像300は、検体の識別情報や2点間の減衰率に関する情報を表示する情報表示部301と、図3に示すBモード画像100に関心領域201および減衰率の算出対象の2点P1、P2を重畳した重畳画像を表示する画像表示部302とを有する。
 情報表示部301には、検体の識別情報(名前、ID番号等)に加えて、減衰率α、2点P1、P2の深さの情報が表示される。
 以上の構成を有する減衰率表示画像300を表示部7が表示することにより、操作者はより正確に関心領域の減衰率に関する情報を把握することが可能となる。
 以上説明した本発明の実施の形態1によれば、受信した超音波に対して少なくとも2箇所の深さの周波数をそれぞれ解析することによって周波数スペクトルを算出し、算出した少なくとも2箇所の深さの周波数スペクトルに対してそれぞれ近似処理を行うことによって得られる近似式の所定のパラメータを深さと対応付けて抽出し、抽出したパラメータおよび該パラメータと対応する深さからなる組を2組用いて超音波の減衰率を算出するため、位相情報や基準振幅スペクトルを用いずに超音波の減衰率を求めることができる。したがって、超音波の伝播に伴う減衰率を正確かつ容易に求めることができる。
 以上の説明では、一つの音線上であって関心領域内の2点を用いて減衰率を算出したが、一般には一つの音線上であって関心領域内の複数の点を用いて減衰率を算出してもよい。例えば、3点を用いる場合には、3点のうち2点の組み合わせは3通りある。この場合、減衰率算出部43は、隣接する2点間の減衰率を式(1)に基づいて算出した後、算出した二つの減衰率の平均値を最終的な減衰率として算出すればよい。なお、3点を用いる場合、3点のちの2点の全ての組み合わせに対して減衰率を算出し、その平均値を最終的な減衰率とすることも可能である。
(実施の形態2)
 本発明の実施の形態2に係る超音波観測装置は、関心領域における複数の減衰率を算出することを特徴とする。本実施の形態2に係る超音波観測装置の構成は、上述した超音波観測装置1の構成と同じである。また、本実施の形態2に係る超音波観測装置の処理の概要は、図2のフローチャートと同様であるが、周波数解析部41が行う周波数解析処理(ステップS5)の詳細が実施の形態1と異なる。
 図9は、Bモード画像における関心領域の設定例を模式的に示す図である。同図に示す模式図400において、関心領域401は、超音波探触子2を中心として超音波が伝播する深さ方向へ放射状に広がる矩形領域であり、複数の音線LDk(k=1,2,・・・,N)が通過している。図9では、二つの音線LDi、LDj(i,j∈k)を例示している。このうち、音線LDi上では、4点Pi1、Pi2、Pi3、Pi4が減衰率の算出対象となる。これに対して、音線LDj上では、2点Pj1、Pj2が減衰率の算出対象となる。
 本実施の形態2において、減衰率は、隣接する2点を用いて算出する。したがって、音線LDiの場合、減衰率算出部43は、3組(Pi1、Pi2)、(Pi2、Pi3)、(Pi3、Pi4)に対する減衰率を上述した式(1)を用いて算出する。これに対し、音線LDjの場合、減衰率算出部43は、1組(Pj1、Pj2)に対する減衰率を式(1)を用いて算出する。このように、本実施の形態2では、関心領域401を通過する音線に応じて、減衰率算出部43が算出する減衰率の数が異なる。なお、例えば音線LDiにおいて、減衰率算出部43が、次の2組(Pi1、Pi3)、(Pi2、Pi4)に関する減衰率を算出するようにしてもよい。このように、本実施の形態2においては、減衰率を算出するペアが互いに異なっていればよく、必ずしも隣接している必要はない。
 図10は、本実施の形態2に係る超音波観測装置1の周波数解析部41が行う周波数解析処理の概要を示すフローチャートである。まず、周波数解析部41は、最初に解析対象とする音線(関心領域401を通過する音線)の音線番号kを初期値k1とする(ステップS31)。初期値k1は、例えば送受信部3が最初に受信する音線に対して付与してもよいし、入力部6によって設定される関心領域の左右の一方の境界位置に対応する音線に対して付与してもよい。
 続いて、周波数解析部41は、FFT演算用に取得する一連のデータ群(FFTデータ群)を代表するデータ位置Zの初期値Z1(k)を設定する(ステップS32)。図11は、一つの音線のデータ配列を模式的に示す図である。同図に示す音線LDkにおいて、白または黒の長方形は、一つのデータを意味している。音線LDkは、送受信部3が行うA/D変換におけるサンプリング周波数に対応した時間間隔で離散化されている。
 その後、周波数解析部41は、データ位置Z(k)のFFTデータ群を取得し(ステップS33)、取得したFFTデータ群に対し、窓関数記憶部81が記憶する窓関数を作用させる(ステップS34)。
 続いて、周波数解析部41は、データ位置Z(k)のFFTデータ群が正常なデータ群であるか否かを判定する(ステップS35)。ここで、FFTデータ群の構成およびFFTデータ群が正常なデータ群であるか否かの判定方法は、実施の形態1で説明したのと同じである。したがって、図10に示す場合、FFTデータ群F2(k)、F3(k)、FK-1(k)は正常である一方、FFTデータ群F1(k)、FK(k)は異常である。
 ステップS35における判定の結果、データ位置Z(k)のFFTデータ群が正常である場合(ステップS35:Yes)、周波数解析部41は、後述するステップS37へ移行する。
 ステップS35における判定の結果、データ位置Z(k)のFFTデータ群が正常でない場合(ステップS35:No)、周波数解析部41は、不足分だけゼロデータを挿入することによって正常なFFTデータ群を生成する(ステップS36)。ステップS35において正常でないと判定されたFFTデータ群は、ゼロデータを追加する前に窓関数が作用されている。このため、FFTデータ群にゼロデータを挿入してもデータの不連続は生じない。ステップS36の後、周波数解析部41は、後述するステップS37へ移行する。
 ステップS37において、周波数解析部41は、取得したFFTデータ群を用いてFFT演算を行うことにより、周波数スペクトルを得る(ステップS37)。
 続いて、周波数解析部41は、データ位置Z(k)に所定のデータステップ幅Dを加算して次の解析対象のFFTデータ群のデータ位置Z(k)を算出する(ステップS38)。ここでのデータステップ幅Dは記憶部8が記憶している。このデータステップ幅Dは、Bモード画像データ生成部51がBモード画像データを生成する際に利用するデータステップ幅と一致させることが望ましいが、周波数解析部41における演算量を削減したい場合には、Bモード画像データ生成部51が利用するデータステップ幅より大きい値を設定してもよい。図11では、D=15の場合を示している。
 その後、周波数解析部41は、データ位置Z(k)が関心領域401内における同一音線LDk上の最終データ位置Zmax(k)より大きいか否かを判定する(ステップS39)。ここで、判定の結果、データ位置Z(k)が最終データ位置Zmax(k)より大きい場合(ステップS39:Yes)、周波数解析部41は、音線番号kを1だけインクリメントする(ステップS40)。一方、データ位置Z(k)が最終データ位置Zmax(k)以下である場合(ステップS39:No)、周波数解析部41はステップS33へ戻る。このようにして、周波数解析部41は、音線LDkに対して、[{(Zmax(k)-Z1(k))/D}+1]個のFFTデータ群に対するFFT演算を行う。ここで、[X]は、Xを超えない最大の整数を表す。
 ステップS40で音線番号kを1だけインクリメントした後の音線番号kが最終音線番号kmaxより大きい場合(ステップS41:Yes)、周波数解析部41は図2に示すメインルーチンへ戻る。一方、ステップS40でインクリメントした後の音線番号kが最終音線番号kmax以下である場合(ステップS41:No)、周波数解析部41はステップS32へ戻る。
 図12は、表示部7が表示する減衰率表示画像の表示例を示す図である。同図に示す減衰率表示画像500は、検体の情報および減衰率の情報を表示する情報表示部501と、Bモード画像を表示するBモード画像表示部502と、関心領域における減衰率の分布を示す減衰率分布画像を表示する減衰率分布画像表示部503とを有する。
 減衰率分布画像表示部503が表示する減衰率分布画像600は、関心領域401における減衰率の大きさの分布を濃淡模様で表現している。ここで、濃淡の度合いに応じた減衰率の範囲は、情報表示部501に表示されている。
 なお、減衰率分布画像600では、減衰率の分布を2次元的に表示しているが、3次元画像を用いて立体的に減衰率の分布を表示するようにしてもよい。
 また、減衰率分布画像600において、関心領域401の外側をBモード画像で表示するようにしてもよい。
 以上説明した本発明の実施の形態2によれば、上述した実施の形態1と同様、超音波の伝播に伴う減衰率を正確かつ容易に求めることができる。
 また、本実施の形態2によれば、複数の減衰率を算出して算出結果の分布を表示するため、減衰率の組織内での分布をより的確に把握することができる。したがって、生体組織を対象とする場合には、減衰率の分布を組織性状の判定に活かすことも可能となる。
(その他の実施の形態)
 図13は、本発明の別の実施の形態に係る超音波観測装置が算出する周波数スペクトル曲線およびその近似曲線を示す図である。図13において、曲線C31は周波数スペクトル曲線C3の近似曲線(深さD3とする)であり、曲線C41は周波数スペクトル曲線C4(深さD4(>D3)とする)の近似曲線である。
 超音波の伝播に伴う減衰が深さおよび周波数にそれぞれ比例すると仮定すると、スペクトル曲線C3の式I3(f)=c30+c31f+c322+・・・と、スペクトル曲線C4の式I4(f)=c40+c41f+c422+・・・との差は、以下に示す式(2)のように1次の項が支配的となる。
  I3(f)-I4(f)~(c31-c41)f  ・・・(2)
 したがって、深さD3と深さD4との間の減衰率αは、次のように定義することができる。
  α=(c31-c41)/(D4-D3)  ・・・(3)
 このように、本発明においては、周波数スペクトルを1次式で近似できない場合であっても、より一般的な多項式近似を行うことによって減衰率を正確かつ簡便に算出することができる。
 なお、観測対象が生体組織である場合、超音波の減衰率は、その生体組織の組織性状と関連性を有することが知られている。このため、本発明において、減衰率算出部が算出した減衰率を用いて生体組織の組織性状を判定するようにしてもよい。
 以上の説明からも明らかなように、本発明は、特許請求の範囲に記載した技術的思想を逸脱しない範囲内において、様々な実施の形態等を含みうるものである。
 1 超音波観測装置
 2 超音波探触子
 3 送受信部
 4 演算部
 5 画像処理部
 6 入力部
 7 表示部
 8 記憶部
 9 制御部
 21 信号変換部
 41 周波数解析部
 42 パラメータ抽出部
 43 減衰率算出部
 51 Bモード画像データ生成部
 52 減衰率表示画像データ生成部
 81 窓関数記憶部
 82 減衰率情報記憶部
 100 Bモード画像
 200、400 模式図
 201、401 関心領域
 300、500 減衰率表示画像
 301、501 情報表示部
 302 画像表示部
 502 Bモード画像表示部
 503 減衰率分布画像表示部
 600 減衰率分布画像

Claims (9)

  1.  観察対象の検体に対して超音波を送信するとともに前記検体によって反射された超音波を受信する送受信部と、
     受信した超音波に対して少なくとも2箇所の深さの周波数をそれぞれ解析することによって周波数スペクトルを算出する周波数解析部と、
     前記周波数解析部が算出した少なくとも2箇所の深さの周波数スペクトルに対してそれぞれ近似処理を行うことによって得られる前記周波数スペクトルの近似式の所定のパラメータを前記深さと対応付けて抽出するパラメータ抽出部と、
     前記パラメータ抽出部が抽出したパラメータおよび該パラメータと対応する深さからなる組を少なくとも2組用いることによって前記超音波の減衰率を算出する減衰率算出部と、
     前記減衰率算出部が算出した減衰率に関する情報を含む減衰率表示画像データを生成する減衰率表示画像データ生成部と、
     を備えたことを特徴とする超音波観測装置。
  2.  前記近似式は周波数を変数とする多項式であり、
     前記パラメータは前記多項式の1次の係数であることを特徴とする請求項1に記載の超音波観測装置。
  3.  前記多項式は1次式であることを特徴とする請求項2に記載の超音波観測装置。
  4.  前記減衰率は、一つの組を構成する2箇所における前記多項式の1次の係数の差を該2箇所における深さの差で除した量であることを特徴とする請求項2または3に記載の超音波観測装置。
  5.  前記パラメータ抽出部は、互いに深さが異なる2N箇所(Nは2以上の整数)の周波数スペクトルに対して前記パラメータを抽出し、
     前記減衰率算出部は、互いに異なる2組を用いてN個の減衰率を算出することを特徴とする請求項1~4のいずれか一項に記載の超音波観測装置。
  6.  前記減衰率算出部が減衰率を算出する際に用いる2組に含まれる深さの差は、前記送受信部が送信する超音波の波長と略等しいことを特徴とする請求項1~5のいずれか一項に記載の超音波観測装置。
  7.  前記減衰率表示画像データ生成部が生成した減衰率表示画像データを含む情報を表示する表示部をさらに備えたことを特徴とする請求項1~6のいずれか一項に記載の超音波観測装置。
  8.  観察対象の検体に対して超音波を送信するとともに前記検体によって反射された超音波を受信することにより、受信した超音波を観測する超音波観測装置の作動方法であって、
     受信した超音波に対して少なくとも2箇所の深さの周波数をそれぞれ解析することによって周波数スペクトルを周波数解析部により算出する周波数解析ステップと、
     前記周波数解析ステップで算出した少なくとも2箇所の深さの周波数スペクトルに対してそれぞれ近似処理を行うことによって得られる前記周波数スペクトルの近似式の所定のパラメータを前記深さと対応付けてパラメータ抽出部により抽出するパラメータ抽出ステップと、
     前記パラメータ抽出ステップで抽出したパラメータおよび該パラメータと対応する深さからなる組を2組用いて前記超音波の減衰率を減衰率算出部により算出する減衰率算出ステップと、
     前記減衰率算出ステップで算出した減衰率に関する情報を含む減衰率表示画像データを減衰率表示画像データ生成部により生成する減衰率表示画像データ生成ステップと、
     を有することを特徴とする超音波観測装置の作動方法。
  9.  観察対象の検体に対して超音波を送信するとともに前記検体によって反射された超音波を受信することにより、受信した超音波を観測する超音波観測装置に実行させる超音波観測装置の作動プログラムであって、
     受信した超音波に対して少なくとも2箇所の深さの周波数をそれぞれ解析することによって周波数スペクトルを周波数解析部により算出する周波数解析ステップと、
     前記周波数解析ステップで算出した少なくとも2箇所の深さの周波数スペクトルに対してそれぞれ近似処理を行うことによって得られる前記周波数スペクトルの近似式の所定のパラメータを前記深さと対応付けてパラメータ抽出部により抽出するパラメータ抽出ステップと、
     前記パラメータ抽出ステップで抽出したパラメータおよび該パラメータと対応する深さからなる組を2組用いて前記超音波の減衰率を減衰率算出部により算出する減衰率算出ステップと、
     前記減衰率算出ステップで算出した減衰率に関する情報を含む減衰率表示画像データを減衰率表示画像データ生成部により生成する減衰率表示画像データ生成ステップと、
     を実行させることを特徴とする超音波観測装置の作動プログラム。
PCT/JP2012/082231 2012-03-05 2012-12-12 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム WO2013132717A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012048523 2012-03-05
JP2012-048523 2012-03-05

Publications (1)

Publication Number Publication Date
WO2013132717A1 true WO2013132717A1 (ja) 2013-09-12

Family

ID=49116214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082231 WO2013132717A1 (ja) 2012-03-05 2012-12-12 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム

Country Status (1)

Country Link
WO (1) WO2013132717A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016002208A (ja) * 2014-06-16 2016-01-12 日立アロカメディカル株式会社 超音波診断装置
WO2017110756A1 (ja) * 2015-12-24 2017-06-29 オリンパス株式会社 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01268544A (ja) * 1988-04-21 1989-10-26 Fujitsu Ltd 超音波診断装置
JP2005046192A (ja) * 2003-07-29 2005-02-24 Toshiba Medical System Co Ltd 医用情報システム、医用データベースシステム、超音波診断装置、及び医用データ供給方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01268544A (ja) * 1988-04-21 1989-10-26 Fujitsu Ltd 超音波診断装置
JP2005046192A (ja) * 2003-07-29 2005-02-24 Toshiba Medical System Co Ltd 医用情報システム、医用データベースシステム、超音波診断装置、及び医用データ供給方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016002208A (ja) * 2014-06-16 2016-01-12 日立アロカメディカル株式会社 超音波診断装置
WO2017110756A1 (ja) * 2015-12-24 2017-06-29 オリンパス株式会社 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
CN108472018A (zh) * 2015-12-24 2018-08-31 奥林巴斯株式会社 超声波观测装置、超声波观测装置的工作方法以及超声波观测装置的工作程序
JPWO2017110756A1 (ja) * 2015-12-24 2018-10-11 オリンパス株式会社 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
CN108472018B (zh) * 2015-12-24 2021-01-05 奥林巴斯株式会社 超声波观测装置、超声波观测装置的工作方法以及超声波观测装置的工作程序
US11176640B2 (en) 2015-12-24 2021-11-16 Olympus Corporation Ultrasound observation device, method of operating ultrasound observation device, and computer-readable recording medium

Similar Documents

Publication Publication Date Title
JP5433097B2 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP5307939B2 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP5054254B2 (ja) 超音波診断装置、超音波診断装置の作動方法および超音波診断装置の作動プログラム
JP5642910B1 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
US9427208B2 (en) Ultrasonic observation apparatus, operation method of the same, and computer readable recording medium
JP5659324B1 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP5430809B1 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP5079177B2 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
US20160074015A1 (en) Ultrasonic observation apparatus, method for operating ultrasonic observation apparatus, and computer readable recording medium
JP5054253B2 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP5974210B2 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP5788624B2 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
WO2013132717A1 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP6138402B2 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12870671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP