WO2013131739A2 - Fahrzeug mit elektrischer maschine und verfahren zum betreiben dieser - Google Patents

Fahrzeug mit elektrischer maschine und verfahren zum betreiben dieser Download PDF

Info

Publication number
WO2013131739A2
WO2013131739A2 PCT/EP2013/053232 EP2013053232W WO2013131739A2 WO 2013131739 A2 WO2013131739 A2 WO 2013131739A2 EP 2013053232 W EP2013053232 W EP 2013053232W WO 2013131739 A2 WO2013131739 A2 WO 2013131739A2
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
side switches
low
switch
sub
Prior art date
Application number
PCT/EP2013/053232
Other languages
English (en)
French (fr)
Other versions
WO2013131739A3 (de
Inventor
Daniel FINDEISEN
Matthias GORKA
Dominik Hecker
Original Assignee
Bayerische Motoren Werke Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke Aktiengesellschaft filed Critical Bayerische Motoren Werke Aktiengesellschaft
Priority to CN201380012652.0A priority Critical patent/CN104159779B/zh
Priority to EP13706222.0A priority patent/EP2822807B1/de
Publication of WO2013131739A2 publication Critical patent/WO2013131739A2/de
Publication of WO2013131739A3 publication Critical patent/WO2013131739A3/de
Priority to US14/478,337 priority patent/US10439541B2/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/12Buck converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • B60L2220/54Windings for different functions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • B60L2220/56Structural details of electrical machines with switched windings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • B60L2220/58Structural details of electrical machines with more than three phases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the invention relates to a vehicle having a polyphase electrical machine, having a first sub-board network, which has a first nominal DC voltage position, and with a second sub-board network, which has a second nominal DC voltage position, wherein the electric
  • Machine comprises a rotor, a first stator system and a second stator system
  • the first sub-electrical system comprises a first inverter with a first DC link capacitor
  • the second sub-board network comprises a second inverter with a second DC link capacitor
  • the second stator system associated with the second inverter.
  • components representing electrical energy consumers are supplied by an energy on-board network with a nominal voltage position of 14 volts.
  • a secondary 12 V energy storage which takes over the function of an energy source or the function of an energy sink in the electrical system depending on the operating situation, and a 14 V generator are designed to provide an electrical power of 2-3 kW in the vehicle.
  • the electrical system can have two sub-systems. Then transfer one
  • the electric machine which can also be operated by a motor in a vehicle with an electrified drive train, has, in addition to at least one energy store per sub-board network, the function as an electrical energy source or sink in the vehicle.
  • a vehicle electrical system topology is shown for example in the document DE 102 44 229 A1.
  • the first stator system is in a star connection and the second one
  • Stator system is executed in a star connection or triangular circuit and a
  • Transfer circuit connects the star point of the first stator with the higher potential of the second sub-board network.
  • the transfer circuit comprises a first diode and a second diode, which are connected in opposite directions and in series. Furthermore, the transfer circuit comprises a first switch which is connected in parallel with the first diode or alternatively a second switch which is connected in parallel with the first diode.
  • the transfer circuit comprises the first switch, which is connected in parallel with the first diode, and the second switch, which is connected in parallel with the second diode.
  • the counter-rotating diode ensure that when the first switch is open and / or the second switch is open, the direct electrical coupling between the neutral point of the first stator system and the higher potential of the second sub-electrical system is ineffective.
  • the first switch is closed and / or the second switch is closed, there is a direct electrical connection between the star point of the first stator system and the higher potential of the second sub-electrical system in the form of a very low-resistance connection through a series connection of two closed switches or a series connection of a switch and a diode ,
  • a further variant of the invention consists in that the first inverter has three high-side switches and three low-side switches, the second inverter has three high-side switches and three low-side switches, the three high-side Switch of the first inverter and the three low-side switches of the first inverter are pulse width modulated controllable, the three high-side switches of the second inverter and the three low-side switches of the second inverter are controlled pulse width modulated, the electric machine with open first switch and, when the second switch is open, by pulse-width modulated control of the high-side Switch and the low-side switch of the first inverter and the second inverter can be operated by a motor or generator or in a mixed operation.
  • the low-side switches and high-side switches each have a low-side diode or a high-side diode connected in parallel.
  • the machine can be used with respect to both electrical systems as a generator or as a motor - regardless of whether the machine of the other electrical system is used at the given time of operation as a motor or as a generator.
  • electrical energy is supplied to the respective vehicle electrical system via the respective stator system as a result of a torque applied to the rotor from the outside (for example, by an internal combustion engine of the vehicle).
  • electrical energy is taken from the respective vehicle electrical system via the respective stator system and converted into rotational energy of the rotor which is driven from the outside by the rotor (for example, by a belt-driven motor)
  • DC buck converter is operable between the first sub-board network and the second sub-board network.
  • the electric machine is thereby operable as a DC-buck converter that the low-side switches of the second inverter are opened, the high-side switches of the second inverter are opened, the low-side switches of the first inverter are opened, and the High-side switches of the first inverter are controlled pulse width modulated.
  • the low-side switches of the first inverter can also be controlled in a pulse-width-modulated manner complementary to the high-side switches of the first inverter. In this case, to avoid a bridge short circuit between high and low-side switches provide a dead time in which both high-side and low-side switches are open.
  • the exciter winding of the rotor can be closed electrically short.
  • the high-side switches of the first inverter are closed, the voltage difference between the first sub-electrical system and the second is above the effective inductance, which is formed by the three parallel-connected inductors of the first stator system
  • the current in the inductance increases linearly and its mean value can be tapped as direct current from a load.
  • the inductance reduces the energy content, while the link capacitor of the second sub-electrical system is charged.
  • the low-side switches of the first inverter can either be closed or remain open. In the latter case, the low-side diodes of the first inverter conduct.
  • the electric machine can thereby be operated as a DC voltage step-up converter so that the low-side switches of the second inverter are opened, the high-side switches of the second inverter are opened, the high-side switches of the first inverter are opened, and the low-side switches of the second inverter are opened.
  • Side switches of the first inverter are controlled pulse width modulated.
  • the high-side switches of the first inverter can also be controlled in a pulse-width-modulated manner complementary to the low-side switches of the first inverter.
  • the high-side switches of the first inverter can also be controlled in a pulse-width-modulated manner complementary to the low-side switches of the first inverter.
  • the exciter winding of the rotor can be closed electrically short.
  • Part-board network is equalizable. During the off phase, the inductance builds the
  • the high-side switches of the first inverter can either be switched on or remain switched off. In the latter case, the high-side diodes of the first inverter conduct.
  • Fig. 2 vehicle with electric machine, two sub-board networks and with a
  • Fig. 4 vehicle with electric machine, two sub-board networks and with a
  • Transfer circuit suitable for buck operation and boost operation and with the electric machine in normal operation
  • Fig. 5 vehicle with electric machine, two sub-board networks and with a
  • Fig. 6 vehicle with electric machine, two sub-board networks and with a
  • Fig. 7 vehicle with electric machine, two sub-board networks and with a
  • Transfer circuit suitable for buck operation and boost operation with the electric machine in normal operation and with two stator systems in star connection
  • the same reference numerals denote the same technical features.
  • a two-voltage vehicle electrical system of the vehicle essentially at least four components are required in addition to the two on-board networks, see FIG. 1. These are an electric machine (1), a DC voltage divider (2) between the two on-board networks (BN1, BN2) and an energy storage in each of the two electrical systems (3,4).
  • the electric machine can consist of two 3-phase stator systems, which are in the
  • the two stator systems can also be connected to one another at a certain electrical angle.
  • the electrical system (BN2) for example, be a conventional 12 V electrical system and the electrical system (BN1) an electrical system with a higher rated voltage.
  • the on-board electrical system (BN1) and the vehicle electrical system (BN2) can have a comparable rated voltage position of e.g. 400V, when different energy stores, e.g. a lithium-ion battery and a double-layer capacitor are combined with each other. Both electrical systems have a higher electrical potential, which is essentially due to the two
  • Nominal voltage levels of the two electrical systems differ.
  • the DC voltage divider enables the unidirectional or bidirectional transfer of power or energy between the two on-board networks, regardless of the state of the electrical machine.
  • a multi-phase electric machine e.g. a 6-phase machine with two three-phase windings in each case
  • Star connection (5,6) are used.
  • the stator is operated via an inverter system (30) and an intermediate circuit capacitor (40), whereby a DC voltage
  • AC voltage converter (41a, 41b) is associated with one of the two 3-phase coil systems.
  • Figs. 2 to 6 It is an electric machine with a first 3-phase coil systems (U1 ', V2', W2 ') in star connection (5) and a second 3-phase coil system (U2 ", V2", W2 ") in delta connection (15) and
  • the second stator system can also be arranged in a star connection according to an alternative embodiment (see Fig.
  • both vehicle electrical systems have at least one electrical circuit
  • both vehicle electrical systems have a higher electrical potential, which is essentially determined by the two nominal voltage positions, and a lower electrical potential, which is common to both on-board networks and possibly connected to the mass of the vehicle
  • the actual voltage levels of the respective higher electrical potentials of the two electrical systems can be changed to any desired
  • the star point of the coil system (5) is connected via an electric wheel (16) with the higher potential of the electrical system ( ⁇ 2 '), wherein the electrical path two counter-current, in series connected diode (17,18) and one of the diode (17) (see Fig. 2) or one of the diode (18) connected in parallel switch (18a) (see Fig. 3).
  • Fig. 4 shows a configuration with two switches (17a, 18a), each of which is connected in parallel to one of the diodes (17, 18).
  • the diodes (17, 18) and the switches (17a, 18a) can be implemented as MOSFETs, the diodes (17, 18) being formed by the substrate diodes of the MOSFET.
  • the electrical path (16) is designed such that it is designed for the transmission of electrical power up to a predetermined height. This can, for example, via a suitable
  • Cable cross-section can be ensured.
  • a plurality of electric rakes wherein an electric wheel corresponds to the configuration of the electric wheel (16), can be connected in parallel in order to increase the current carrying capacity.
  • the two 3-phase coil systems are each driven via a parallel circuit of an intermediate circuit capacitor (11, 12) and an inverter (13,14).
  • the BN1 ' is connected via the intermediate circuit capacitor (11) and the converter (13) to the stator system (5), the BN2' via the intermediate circuit capacitor (12) and the inverter (14) with the stator system (6 ).
  • the DC link capacitors (11, 12) provide the high-frequency alternating component of the machine currents and smooth the output voltage of the machine in generator mode. As a result, harmonics can be reduced in both on-board networks.
  • the two inverters (13, 14) each comprise six switches with parallel shaded inverter diodes (HS1, HS2, HS3, LS1, LS2, LS3, HS4, HS5, HS6, LS4, LS5, LS6).
  • the switch-free wheeling diode combinations are designed as MOSFETs, which are also referred to as power switches.
  • IGBTs with freewheeling diode are also used in on-board networks with a high rated voltage position (in particular »100 V).
  • the switches are connected in a half-bridge circuit of an inverter known to those skilled in the art with the respective coil system.
  • the inverter (13) comprises three half bridges, wherein the first half bridge is formed by the MOSFETs (HS1, LS1), the second half bridge is formed by the MOSFETs (HS2.LS2) and the third half bridge is formed by the MOSFETs (HS3.LS3) becomes.
  • the inverter (14) comprises three half bridges, wherein the first half bridge is formed by the MOSFETs (HS4.LS4), the second half bridge is formed by the MOSFETs (HS5.LS5) and the third half bridge is formed by the MOSFETs (HS6.LS6) becomes.
  • circuit-breakers which are connected to the higher potential of the respective electrical system (HS1, HS2, HS3, HS4, HS5, HS6) are called high-side switches. Those circuit-breakers which are connected to the higher potential of the respective electrical system (HS1, HS2, HS3, HS4, HS5, HS6) are called high-side switches. Those circuit-breakers which are connected to the higher potential of the respective electrical system (HS1, HS2, HS3, HS4, HS5, HS6) are called high-side switches. Those circuit-breakers which are connected to the higher potential of the respective electrical system (HS1, HS2, HS3, HS4, HS5, HS6) are called high-side switches. Those circuit-breakers which are connected to the higher potential of the respective electrical system (HS1, HS2, HS3, HS4, HS5, HS6) are called high-side switches. Those circuit-breakers which are connected to the higher potential of the respective electrical system (HS1, HS2, HS3, HS4, HS5, HS6) are called high-side
  • Circuit-breakers which are connected to the lower potential of the respective electrical system (LS1, LS2, LS3, LS4, LS5, LS6) are called low-side switches.
  • the coil sides of the coil system (5) facing away from the neutral point are each provided with a half bridge of the
  • Inverters (13) connected, ie, the coils of the coil system (5) are connected at this coil side to the electrical potential, which is in each case between the line switches of a half-bridge.
  • the coil (WV) with the lower potential of the electrical system ( ⁇ 1 ') connectable and at Closing the switch (HS5) of the inverter (13), the coil (V1 ') with the higher potential of the electrical system (BN1') connectable.
  • the triangular points of the coil system (15) in delta connection are each with a
  • Half-bridge of the inverter (14) connected i. the triangular points of the coil system (15) are connected to the electrical potential which exists in each case between the circuit breakers of a half-bridge.
  • the coil sides facing away from the neutral point are each provided with a star connection
  • Coil sides of the coil system (15) are connected to the electrical potential which exists in each case between the circuit breakers of a half-bridge.
  • the switches and freewheeling diodes have sufficient reverse voltage capability, e.g. the double value of the nominal voltage position of the electrical system corresponds to which the inverter is assigned.
  • the BN2 ' is without limitation of
  • the energy store (4) can be approximately a lead-acid battery in AGM technology with 12 V nominal voltage.
  • the BN1 ' is located on a 48 V higher energy level compared to the BN2' with a 48 V energy storage, which can be implemented in lithium-ion technology, for example.
  • the voltage levels of BN1 'and BN2' as well as the respective energy store, any configurations are conceivable, the rated voltage position of BN1 - the
  • the two 3-phase stator systems (5, 15) are the rated voltage positions of the two vehicle electrical systems ( ⁇ 1 ', BN2'), for example via a different number of windings of the coils (U2 “, V2", W2 ") compared to the coils (U1 ', This means that the coil system (U2 “, V2", W2 ") has a lower impedance than the coil system (U1 ', V1', W1 ') in order to achieve an average power output at comparable power conversion lower voltage level and on average increased currents to reduce the power loss.
  • the electric machine with opened switches (17a, 18a) is operable. No power is transferred between the on-board networks BN1 'and BN2'. Due to the blocking effect of the two substrate diodes (17,18) of the MOSFETs is between the two Spuiensystemen on the wheel (16) no direct electrical coupling.
  • the electric machine with opened switches (17a, 18) is operable. No power is transferred between the on-board networks
  • Machine can be operated by motor or generator. The control of the two
  • Stator systems for example, by a 3-phase, pulse width modulated control of the inverter (13,14) by means of field-oriented control and e.g. Space vector modulation of the switching positions of the low-side switches and the high-side switches of the inverters.
  • the pulse-width-controlled switching position of the line switch is indicated in FIGS. 1 to 4 by dashed representations of the switching positions.
  • the control can
  • Parameter values e.g. of torque, speed, voltage or power, for example, by a control unit of the vehicle.
  • the electric machine can also be operated in mixed operation, i. for example, with regard to the electrical system (BN1)) in motor operation and with respect to the electrical system BN2 'in generator mode. This means that in this case power is transferred from the vehicle electrical system ( ⁇ 1 ') to the vehicle electrical system ( ⁇ 2').
  • Torque is impressed by a motor. If the rotor from the outside a
  • Torque is applied torque is applied, is transferred with the electric machine running only energy between the two sub-board networks.
  • the switches (HS1, HS2, HS3) are controlled synchronously with pulse width modulation. Since the inductances of the individual phases of the stator systems at standstill depending on the rotor position due to residual magnetization by possibly existing magnets or remanence in the stator can be different sizes, also the pulse width modulated duty cycle of the switch (HS1, HS2, HS3) can be different.
  • the switches (LS1, LS2, LS3) are permanently opened or operated complementary to the switches (HS1, HS2, HS3).
  • the control of the inverter (13) can be done for example by a microprocessor or an FPGA, the specification of voltage, current or power can for example be done by a control unit of the vehicle.
  • the duty ratio D BUCK is the ratio
  • the switching frequency F BUCK designates the inverse of the period P BUCK , the on-time T BUCK reaches the maximum
  • Complementary switching means that in a half-bridge high-side and low-side switches are switched on alternately, eg when the high-side switch is closed, the low-side switch is open and vice versa. Complementary switching causes lower forward losses. By pass losses is to be understood that a current through a non-ideal, causing power losses
  • a pulse-width-modulated control offset by a specific angle is possible, which is referred to as an interieaved mode.
  • the high-side switches (HS1, HS2, HS3) are switched by 120 ° out of phase in a 3-phase stator system. On the coil system (UV, VT, WT) this can set a rotating field. It is advantageous that through this
  • Actuation method of the current ripple on the DC link capacitor (12) can be reduced.
  • the 12 V AGM battery of the BN2 ' is close to it
  • the electric machine of Fig. 3 and 4 is operable as a boost converter, i. for the transfer of electrical power of BN2 'to BN1'. This operation is called Boost réelle and is shown in Fig. 6.
  • boost mode for the embodiment of Fig. 3 the switch (18a) is permanently closed.
  • All switches of the inverter (14) are permanently open.
  • the excitation circuit can be short-circuited to ensure that the rotor always remains motionless in boost mode.
  • the switches (HS1, HS2, HS3) are permanently opened or complementarily controlled to the switches (LS1, LS2, LS3).
  • the switches (LS1, LS2, LS3) are simultaneously controlled with pulse width modulation. Since the inductances of the individual phases of the stator systems at standstill, depending on the rotor position due to residual magnetization by possibly existing magnets or remanence in the stator can be different sizes, also the pulse-modulated
  • Duty cycle of the switches (LS1, LS2, LS3) be different sizes.
  • the duty cycle D BOOST is the ratio of the ON time T BOOST and the period P BOOST .
  • the switching frequency F BOOST denotes the inverse of the period P BOOST , the ON time T BOOST reaches a maximum of the period P BOOST .
  • boost mode results in the electrical system BN1 'a voltage
  • a pulse-width-modulated control offset by a specific angle is possible, which is referred to as an interleaved mode.
  • the low-side switches (LS1, LS2, LS3) are switched by 120 ° out of phase in a 3-phase stator system.
  • On the coil system (U1 ', V1', W1 ') can thereby set a rotating field. It is advantageous that through this
  • Actuation method of the current ripple on the DC link capacitor (11) can be reduced.
  • the Li-ion storage can be charged by the AGM battery is set by setting a predetermined, controllable duty ratio of 0.8, a target charging voltage of 60 V at the Li-ion memory. If the Li ion storage device has a high charge absorption and thus a high power consumption, the machine control unit must control the starting from 0.8 duty cycle to a higher value in order to simultaneously decrease the voltage of the AGM battery to the setpoint charging voltage of 60V at the Li ion storage.
  • Buck In Buck plante or in boost mode of the electric machine of Fig. 5 and Fig. 6 are in the function of the electric machine as a buck converter or as boost converter the
  • Boost mode is thus adjustable via the parameter duty cycle.
  • the advantage of the invention is that via the electric machine and the inverter used for the operation of the electric machine can be transferred with simple means in the vehicle integrated circuit power between the two on-board networks.
  • This offers the advantage that, without the use of a DC adjuster (2) as in FIG. 1, energy can be transferred from one vehicle's on-board network to the other vehicle's onboard power supply without the need for the electrical machine to be in operation.
  • Another particular advantage is the adjustability of an energy transfer direction (buck and / or boost mode) based on the configuration of the transfer circuit with either one switch or two switches, which are connected in parallel to each of the first and / or second diode.
  • bidirectional operation buck and boost operation
  • two switches (17a and 18a) are used (see Fig. 4).
  • a current flow via the two closed switches (9a and 10a) in both directions from the on-board electrical system (BN1 ') to the on-board network ( ⁇ 2') or from the on-board network ( ⁇ 2 ') to the on-board network (BN1') is possible.
  • the second stator system (15) is implemented in a star connection of the coils (U2 ", V2", W2 ") (see Figure 7)
  • the delta connection in Figures 2 to 6 is without restriction of generality for the

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Fahrzeug mit einer mehrphasigen elektrischen Maschine, mit einem ersten Teilbordnetz, das eine erste Nenngleichspannungslage aufweist, und mit einem zweiten Teilbordnetz, das eine zweite Nenngleichspannungslage aufweist, wobei die elektrische Maschine einen Rotor, ein erstes Statorsystem und ein zweites Statorsystem umfasst, das erste Teilbordnetz einen ersten Inverter mit einem ersten Zwischenkreiskondensator umfasst, das erste Statorsystem dem ersten Inverter zugeordnet ist, das zweite Teilbordnetz einen zweiten Inverter mit einem zweiten Zwischenkreiskondensator umfasst, das zweite Statorsystem dem zweiten Inverter zugeordnet ist, das erste Statorsystem in einer Sternschaltung ausgeführt ist, das zweite Statorsystem in einer Sternschaltung oder in einer Dreiecksschaltung ausgeführt ist, und eine Transferschaltung den Sternpunkt des ersten Statorsystems mit dem höheren Potential des zweiten Teilbordnetzes verbindet.

Description

Fahrzeug mit elektrischer Maschine und Verfahren zum Betreiben dieser
Die Erfindung betrifft ein Fahrzeug mit einer mehrphasigen elektrischen Maschine, mit einem ersten Teilbordnetz, das eine erste Nenngleichspannungslage aufweist, und mit einem zweiten Teilbordnetz, das eine zweite Nenngleichspannungslage aufweist, wobei die elektrische
Maschine einen Rotor, ein erstes Statorsystem und ein zweites Statorsystem umfasst, das erste Teilbordnetz einen ersten Inverter mit einem ersten Zwischenkreiskondensator umfasst, das erste Statorsystem dem ersten Inverter zugeordnet ist, das zweite Teilbordnetz einen zweiten Inverter mit einem zweiten Zwischenkreiskondensator umfasst, und das zweite Statorsystem dem zweiten Inverter zugeordnet ist.
Üblicherweise werden in einem Fahrzeug Komponenten, die elektrische Energieverbraucher darstellen, von einem Energiebordnetz mit einer Nennspannungslage von 14 Volt versorgt. Ein sekundärer 12 V-Energiespeicher, der im Bordnetz je nach Betriebssituation die Funktion einer Energiequelle oder die Funktion einer Energiesenke übernimmt, und ein 14 V-Generator werden darauf ausgelegt, eine elektrische Leistung von 2-3 kW im Fahrzeug bereitzustellen.
Falls in das Bordnetz des Fahrzeugs mehrere Verbraucher mit höherem Leistungsbedarf integriert sind, kann das Bordnetz zwei Teilbordnetze aufweisen. Dann transferiert ein
Gleichstromsteller elektrische Leistung zwischen den beiden Teilbordnetzen. Die elektrische Maschine, die bei einem Fahrzeug mit elektrifiziertem Antriebsstrang auch motorisch betreibbar sein kann, weist neben jeweils zumindest einem Energiespeicher je Teilbordnetz die Funktion als elektrische Energiequelle oder -senke im Fahrzeug auf. Eine solche Bordnetz-Topologie ist beispielsweise in der Schrift DE 102 44 229 A1 dargestellt.
Es ist eine Aufgabe der Erfindung, ein verbessertes Fahrzeug mit einer elektrischen Maschine und zwei Teilbordnetzen und ein Verfahren zum Betreiben der elektrischen Maschine zu beschreiben. Gelöst wird diese Aufgabe durch ein Fahrzeug gemäß Anspruch 1. Vorteilhafte
Ausführungsformen und Weiterbildungen der Erfindung ergeben sich aus den abhängigen Ansprüchen. Erfindungsgemäß ist das erste Statorsystem in einer Sternschaltung und das zweite
Statorsystem in einer Sternschaltung oder Dreiecksschaltung ausgeführt ist und eine
Transferschaltung verbindet den Sternpunkt des ersten Statorsystems mit dem höheren Potential des zweiten Teilbordnetzes.
Dies bedeutet, dass der Sternpunkt des ersten Statorsystems mit dem höheren Potential des zweiten Teilbordnetzes direkt elektrisch koppelbar ist.
Nach einer bevorzugten Ausführungsform der Erfindung umfasst die Transferschaltung eine erste Diode und eine zweite Diode, die gegenläufig und in Reihe geschaltet sind. Weiterhin umfasst die Transferschaltung einen ersten Schalter, der der ersten Diode parallel geschaltet ist oder alternativ einen zweiten Schalter, der der ersten Diode parallel geschaltet ist.
Es ist auch besonders vorteilhaft, wenn die Transferschaltung den ersten Schalter, der der ersten Diode parallel geschaltet ist, und den zweiten Schalter, der der zweiten Diode parallel geschaltet ist, umfasst.
Die gegenläufig geschalteten Diode stellen sicher, dass bei geöffnetem ersten Schalter und/oder bei geöffnetem zweiten Schalter die direkte elektrische Kopplung zwischen dem Sternpunkt des ersten Statorsystems und dem höheren Potential des zweiten Teilbordnetzes unwirksam ist. Bei geschlossenem ersten Schalter und/oder bei geschlossenem zweiten Schalter besteht eine direkte elektrische Verbindung zwischen dem Sternpunkt des ersten Statorsystems und dem höheren Potential des zweiten Teilbordnetzes in Form einer sehr niederohmigen Verbindung durch eine Reihenschaltung von zwei geschlossenen Schalter oder eine Reihenschaltung eines Schalters und einer Diode.
Eine weitere Variante der Erfindung besteht darin, dass der erste Inverter drei High-Side- Schalter und drei Low-Side-Schalter aufweist, der zweite Inverter drei High-Side-Schalter und drei Low-Side-Schalter aufweist, die drei High-Side-Schalter des ersten Inverters und die drei Low-Side-Schalter des ersten Inverters pulsweitenmoduliert ansteuerbar sind, die drei High- Side-Schalter des zweiten Inverters und die drei Low-Side-Schalter des zweiten Inverters pulsweitenmoduliert ansteuerbar sind, die elektrische Maschine bei geöffnetem ersten Schalter und bei geöffnetem zweiten Schalter durch pulsweitenmodulierte Ansteuerung der High-Side- Schalter und der Low-Side-Schalter des ersten Inverters und des zweiten Inverters motorisch oder generatorisch oder in einem Mischbetrieb betreibbar ist. Den Low-Side-Schaltern und High-Side-Schaltern ist jeweils eine Low-Side-Diode bzw. eine High-Side-Diode parallel geschaltet.
Dies bedeutet, dass die Maschine bezüglich beider Bordnetze als Generator oder als Motor einsetzbar ist - unabhängig davon, ob die Maschine des jeweils anderen Bordnetzes zu dem gegebenen Betriebszeitpunkt als Motor oder als Generator eingesetzt ist. Bei dem Betrieb als Generator wird dem jeweiligen Bordnetz über das jeweilige Statorsystem elektrische Energie infolge eines dem Rotor von außen (z.B. von einem Verbrennungsmotor des Fahrzeugs) aufgeprägten Drehmoments zugeführt. Bei dem Betrieb als Motor wird dem jeweiligen Bordnetz über das jeweilige Statorsystem elektrische Energie entnommen und in Rotationsenergie des Rotors gewandelt, die von dem Rotor von außen (z.B. von einem riemengetriebenen
Verbraucher des Fahrzeugs) als Drehmoment abgegriffen wird.
Besonders vorteilhaft ist es, wenn die erste Nennspannungslage die zweite
Nennspannungslage in Richtung Spannungslage gegenüber eine Referenzspannung im Fahrzeug, z.B. einer den beiden Teilbordnetzen gemeinsamen elektrischen Masse des Fahrzeugs, übersteigt, und die elektrische Maschine bei stillstehendem Rotor als
Gleichspannungs-Tiefsetzsteller zwischen von dem ersten Teilbordnetz und zu dem zweiten Teilbordnetz betreibbar ist. Die elektrische Maschine ist dadurch als Gleichspannungs-Tiefsetzsteller betreibbar, dass die Low-Side-Schalter des zweiten Inverters geöffnet werden, die High-Side-Schalter des zweiten Inverters geöffnet werden, die Low-Side-Schalter des ersten Inverters geöffnet werden, und die High-Side-Schalter des ersten Inverters pulsweitenmoduliert gesteuert werden. Zur Reduzierung von Durchlassverlusten können die Low-Side-Schalter des ersten Inverters auch komplementär zu den High-Side-Schaltern des ersten Inverters pulsweitenmoduliert gesteuert werden. Hierbei ist zur Vermeidung eines Brückenkurzschlusses zwischen High- und Low-Side-Schalter eine Totzeit vorzusehen, in der beide High-Side- und Low-Side-Schalter geöffnet sind.
Zusätzlich kann die Erregerwicklung des Rotors elektrisch kurz geschlossen werden. Wenn die High-Side-Schalter des ersten Inverters geschlossen sind, liegt über der wirksamen Induktivität, welche durch die 3 parallel geschalteten Induktivitäten des ersten Statorsystems gebildet wird, die Spannungsdifferenz zwischen dem ersten Teilbordnetz und dem zweiten
Teilbordnetz an. Während dieser Einschaltzeit steigt der Strom in der Induktivität linear an und dessen Mittelwert ist als Gleichstrom von einer Last abgreifbar. Während der Ausschaltphase baut die Induktivität den Energieinhalt ab, während der Zwischenkreiskondensator des zweiten Teilbordnetzes aufgeladen wird. Damit ein Freilauf für den Strom gebildet wird, können die Low- Side-Schalter des ersten Inverters entweder geschlossen werden oder geöffnet bleiben. In letzterem Fall leiten die Low-Side-Dioden des ersten Inverters.
Besonders vorteilhaft ist es zusätzlich, wenn die erste Nennspannungslage die zweite
Nennspannungslage in Richtung höherer Nennspannungslage übersteigt, und die elektrische Maschine bei stillstehendem Rotor als Gleichspannungs-Hochsetzsteller von dem zweiten Teilbordnetz zu dem ersten Teilbordnetz betreibbar ist.
Die elektrische Maschine ist dadurch als Gleichspannungshochsetzsteller betreibbar, dass die Low-Side-Schalter des zweiten Inverters geöffnet werden, die High-Side-Schalter des zweiten Inverters geöffnet werden, die High-Side-Schalter des ersten Inverters geöffnet werden, und die Low-Side-Schalter des ersten Inverters pulsweitenmoduliert gesteuert werden.
Zur Reduzierung der Durchlassverluste können die High-Side-Schalter des ersten Inverters auch komplementär zu den Low-Side-Schaltern des ersten Inverters pulsweitenmoduliert gesteuert werden. Hierbei ist zur Vermeidung eines Brückenkurzschlusses zwischen High- und Low-Side-Schalter eine Totzeit vorzusehen, in der High-Side- und Low-Side-Schalter geöffnet sind.
Zusätzlich kann die Erregerwicklung des Rotors elektrisch kurz geschlossen werden.
Wenn die Low-Side-Schalter des ersten Inverters geschlossen werden, liegt über der wirksamen Induktivität, welche von den 3 parallel geschalteten Induktivitäten des ersten Statorsystems gebildet wird, die Spannung des zweiten Teilbordnetzes an. Während dieser Einschaltzeit steigt der Strom linear an und die Induktivität baut Energieinhalt auf. Gleichzeitig sperren die High-Side-Dioden des ersten Inverters, so dass die Spannung am Zwischenkreiskondensator des ersten Teilbordnetzes nicht der Spannung des zweiten
Teilbordnetzes angleichbar ist. Während der Ausschaltphase baut die Induktivität den
Energieinhalt ab und der Zwischenkreiskondensator des ersten Teilbordnetzes wird aufgeladen. Dabei können die High-Side-Schalter des ersten Inverters entweder eingeschaltet werden oder ausgeschaltet bleiben. In letzterem Fall leiten die High-Side-Dioden des ersten Inverters.
Im Folgenden wird anhand der beigefügten Zeichnungen ein bevorzugtes Ausführungsbeispiel der Erfindung beschrieben. Daraus ergeben sich weitere Details, bevorzugte
Ausführungsformen und Weiterbildungen der Erfindung.
Im Einzelnen zeigen schematisch
Fig. 1 Fahrzeug mit elektrischer Maschine und zwei Teilbordnetzen nach dem Stand der Technik
Fig. 2 Fahrzeug mit elektrischer Maschine, zwei Teilbordnetzen und mit einer
Transferschaltung geeignet für Buckbetrieb und mit der elektrischen Maschine in Normalbetrieb Fig. 3 Fahrzeug mit elektrischer Maschine, zwei Teilbordnetzen und mit einer
Transferschaltung geeignet für Boostbetrieb und mit der elektrischen Maschine im
Normalbetrieb
Fig. 4 Fahrzeug mit elektrischer Maschine, zwei Teilbordnetzen und mit einer
Transferschaltung geeignet für Buckbetrieb und Boostbetrieb und mit der elektrischen Maschine im Normalbetrieb
Fig. 5 Fahrzeug mit elektrischer Maschine, zwei Teilbordnetzen und mit einer
Transferschaltung geeignet für Buckbetrieb und Boostbetrieb und mit der elektrischen Maschine im Buckbetrieb
Fig. 6 Fahrzeug mit elektrischer Maschine, zwei Teilbordnetzen und mit einer
Transferschaltung geeignet für Buckbetrieb und Boostbetrieb und mit der elektrischen Maschine im Boostbetrieb
Fig. 7 Fahrzeug mit elektrischer Maschine, zwei Teilbordnetzen und mit einer
Transferschaltung geeignet für Buckbetrieb und Boostbetrieb, mit der elektrischen Maschine im Normalbetrieb und mit zwei Statorsystemen in Sternschaltung
Gleiche Bezugszeichen kennzeichnen gleiche technische Merkmale. Für ein Zweispannungs-Bordnetz eines Fahrzeugs sind nach dem Stand der Technik im Wesentlichen zumindest vier Komponenten neben den beiden Bordnetzen erforderlich, siehe Fig. 1. Dies sind eine elektrische Maschine (1), ein Gleichspannungssteiler (2) zwischen den beiden Bordnetzen (BN1, BN2) und ein Energiespeicher in jedem der beiden Bordnetze (3,4). Die elektrische Maschine kann aus zwei 3-phasigen Statorsystemen bestehen, die im
Wesentlichen identisch aufgebaut sein können. Die beiden Statorsysteme können auch um einen gewissen elektrischen Winkel zueinander verschaltet sein.
Das Bordnetz (BN2) kann beispielsweise ein konventionelles 12 V-Bordnetz sein und das Bordnetz (BN1) ein Bordnetz mit höherer Nennspannungslage. Alternativ können das Bordnetz (BN1) und das Bordnetz (BN2) eine vergleichbare Nennspannungslage von z.B. 400 V aufweisen, wenn etwa unterschiedliche Energiespeicher, z.B. eine Lithium-Ionen-Batterie und einen Doppelschichtkondensator, miteinander kombiniert werden. Beide Bordnetze weisen ein höheres elektrisches Potential auf, das im Wesentlichen jeweils durch die beiden
Nennspannungslagen bestimmt ist, und ein niedrigeres elektrisches Potential, das beiden Bordnetzen gemeinsam ist und ggf. mit der Masse des Fahrzeugs verbunden ist. Die tatsächlichen Spannungslagen der jeweils höheren elektrischen Potentiale der beiden
Bordnetze können zu einem beliebigen Betriebszeitpunkt von den jeweiligen
Nennspannungslagen der beiden Bordnetze abweichen.
Der Gleichspannungssteiler ermöglicht den uni- oder bidirektionalen Transfer von Leistung bzw. Energie zwischen den beiden Bordnetzen unabhängig vom Zustand der elektrischen Maschine.
Als elektrische Maschine kann nach dem Stand der Technik eine mehrphasige elektrische Maschine, z.B. eine 6-phasige Maschine mit zwei jeweils dreiphasigen Wicklungen in
Sternschaltung (5,6), zum Einsatz kommen. Der Stator wird über ein Umrichtersystem (30) und einen Zwischenkreiskondensator (40) betrieben, wobei ein Gleichspannungs-
Wechselspannungs-Wandler (41a,41b) einem der beiden 3-phasigen Spulensysteme zugeordnet ist. Der Rotor (7) kann je nach Maschinenart entweder ausschließlich mit
Permanentmagneten bestückt sein, eine Erregerwicklung mit induktivem Überträger und rotierendem Gleichrichter oder einem Schleifringsystem aufweisen oder als Kurzschluss- Käfigläufer ausgeführt sein. Die elektrische Maschine ist generatorisch (E-Betrieb) oder motorisch (M-Betrieb) betreibbar. Ausführungsbeispiele der Erfindung gehen aus den Fig. 2 bis 6 hervor. Es wird eine elektrische Maschine mit einem ersten 3-phasigen Spulensystemen (U1',V2',W2') in Sternschaltung (5) und einem zweiten 3-phasigen Spulensystem (U2",V2",W2") in Dreieckschaltung (15) und einem Rotor (7) in ein Fahrzeug mit zumindest zwei Teilbordnetzen (BN1 ', BN2') integriert. Das zweite Statorsystem kann nach einer alternativen Ausführungsform auch in einer Sternschaltung angeordnet sein (siehe Fig. 7). Beide Teilbordnetze verfügen über jeweils zumindest einen elektrischen Energiespeicher (3',4'). Ferner weisen beide Bordnetze ein höheres elektrisches Potential auf, das im Wesentlichen jeweils durch die beiden Nennspannungslagen bestimmt ist, und ein niedrigeres elektrisches Potential, das beiden Bordnetzen gemeinsam ist und ggf. mit der Masse des Fahrzeugs verbunden ist. Die tatsächlichen Spannungslagen der jeweils höheren elektrischen Potentiale der beiden Bordnetze können zu einem beliebigen
Betriebszeitpunkt von den jeweiligen Nennspannungslagen der beiden Bordnetze abweichen.
Ohne Beschränkung der Allgemeinheit ist das Teilbordnetz (ΒΝ2') mit dem kleineren
Nennspannungsbereich dem zweiten Spulensystem in Stern- oder Dreieckschaltung zugeordnet und das Teilbordnetz mit dem höheren Nennspannungsbereich (BN1 ') dem ersten Spulensystem in Sternschaltung zugeordnet, wobei der Transferschaltung an den Sternpunkt des ersten Statorsystems angebunden ist.
Der Sternpunkt des Spulensystems (5) ist über einen elektrischen Rad (16) mit dem höheren Potential des Bordnetzes (ΒΝ2') verbunden, wobei der elektrische Pfad zwei gegenläufig, in Reihe verschaltete Diode (17,18) und einen der Diode (17) (siehe Fig. 2) oder einen der Diode (18) parallel geschalteten Schalter (18a) (siehe Fig. 3) aufweist. Fig. 4 zeigt eine Konfiguration mit zwei Schaltern (17a,18a), die jeweils einer der Dioden(17,18) parallel geschaltet sind.
Die Dioden (17,18) und die Schalter (17a, 18a) können als MOSFETs ausgeführt sein, wobei die Dioden (17,18) durch die Substratdioden des MOSFET gebildet werden. Der elektrische Pfad (16) ist derartig ausgestaltet, dass er zur Übertragung von elektrischer Leistung bis zu einer vorbestimmten Höhe ausgelegt ist. Dies kann beispielsweise über einen geeigneten
Leitungsquerschnitt gewährleistet werden. Alternativ können auch mehrere elektrische Rade, wobei ein elektrischer Rad der Ausgestaltung des elektrischen Rades (16) entspricht, parallel geschaltet werden, um die Stromträgfähigkeit zu erhöhen. Die beiden 3-phasigen Spulensysteme werden jeweils über eine Parallelschaltung aus einem Zwischenkreiskondensator (11 ,12) und einem Umrichter (13,14) angesteuert.
In Fig. 2 bis 6 ist das BN1 ' über den Zwischenkreiskondensator (11 ) und den Umrichter (13) mit dem Statorsystem (5) verbunden, das BN2' über den Zwischenkreiskondensator (12) und den Umrichter (14) mit dem Statorsystem (6).
Die Zwischenkreiskondensatoren (11 ,12) liefern den hochfrequenten Wechselanteil der Maschinenströme und glätten die Ausgangsspannung der Maschine im generatorischen Betrieb. Dadurch können Oberwell igkeiten in beiden Bordnetzen reduziert werden.
Die beiden Umrichter (13,14) umfassen jeweils sechs Schalter mit parallel geschatteten Inverterdioden (HS1 , HS2, HS3, LS1 , LS2, LS3, HS4, HS5, HS6, LS4, LS5, LS6). Ohne Beschränkung der Allgemeinheit sind die Schalter-Freilaufdioden-Kombinationen als MOSFETs ausgeführt, die auch als Leistungsschalter bezeichnet werden. Bevorzugt werden auch IGBTs mit Freilaufdiode bei Bordnetzen mit hoher Nennspannungslage (insbesondere » 100 V) eingesetzt. Die Schalter sind in einer dem Fachmann bekannten Halbbrückenschaltung eines Wechselrichters mit dem jeweiligen Spulensystem verbunden. Der Inverter (13) umfasst drei Halbbrücken, wobei die erste Halbbrücke von den MOSFETs (HS1 ,LS1) gebildet wird, die zweite Halbbrücke von den MOSFETs (HS2.LS2) gebildet wird und die dritte Halbbrücke von den MOSFETs (HS3.LS3) gebildet wird. Der Inverter (14) umfasst drei Halbbrücken, wobei die erste Halbbrücke von den MOSFETs (HS4.LS4) gebildet wird, die zweite Halbbrücke von den MOSFETs (HS5.LS5) gebildet wird und die dritte Halbbrücke von den MOSFETs (HS6.LS6) gebildet wird.
Jene Leistungsschalter die mit dem höheren Potential des jeweiligen Bordnetzes verbunden sind (HS1 , HS2, HS3, HS4, HS5, HS6), werden High-Side-Schalter genannt. Jene
Leistungsschalter die mit dem niedrigeren Potential des jeweiligen Bordnetzes verbunden sind (LS1 , LS2, LS3, LS4, LS5, LS6), werden Low-Side-Schalter genannt. Die dem Sternpunkt abgewandten Spulenseiten des Spulensystems (5) sind jeweils mit einer Halbbrücke des
Inverters (13) verbunden, d.h. die Spulen des Spulensystems (5) sind an dieser Spulenseite mit dem elektrischen Potential verbunden, das jeweils zwischen den Leitungsschaltern einer Halbbrücke besteht. Beispielsweise ist beim Schließen des Schalters (LS3) des Inverters (13) die Spule (WV) mit dem niedrigeren Potential des Bordnetzes (ΒΝ1') verbindbar und beim Schließen des Schalters (HS5) des Inverters (13) die Spule (V1 ') mit dem höheren Potential des Bordnetzes (BN1 ') verbindbar.
Die Dreieckspunkte des Spulensystems (15) in Dreieckschaltung sind jeweils mit einer
Halbbrücke des Inverters (14) verbunden, d.h. die Dreieckspunkte des Spulensystems (15) sind mit dem elektrischen Potential verbunden, das jeweils zwischen den Leistungsschaltern einer Halbbrücke besteht.
In einer weiteren Ausführungsform, bei der das Spulensystem (15) in einer Sternschaltung ausgebildet ist, sind die dem Sternpunkt abgewandten Spulenseiten jeweils mit einer
Halbbrücke des Inverters (14) verbunden, d.h. die die dem Sternpunkt abgewandten
Spulenseiten des Spulensystems (15) sind mit dem elektrischen Potential verbunden, das jeweils zwischen den Leistungsschaltern einer Halbbrücke besteht.
Die Schalter und Freilaufdioden verfügen über eine ausreichende Sperrspannungsfestigkeit, die z.B. dem doppelten Wert der Nennspannungslage des Bordnetzes entspricht, welchem der Inverter zugeordnet ist.
In den Ausführungsbeispielen nach Fig. 2 bis 6 ist das BN2' ohne Beschränkung der
Allgemeinheit als konventionelles 14 V-Bordnetz ausgeführt. Der Energiespeicher (4) kann etwa eine Blei-Säure-Batterie in AGM-Technologie mit 12 V Nennspannungslage sein. Das BN1 ' befindet sich auf einer im Vergleich zum BN2' höheren Nennspannungslage von 48 V mit einem 48 V-Energiespeicher, der beispielsweise in Lithium-Ionen-Technologie ausgeführt sein kann. Bezüglich der Spannungslagen von BN1 ' und BN2' sowie der jeweiligen Energiespeicher sind beliebige Konfigurationen denkbar, wobei die Nennspannungslage von BN1 - die
Nennspannungslage von BN2' übersteigt.
Die beiden 3-phasigen Statorsysteme (5,15) sind den Nennspannungslagen der beiden Bordnetze (ΒΝ1', BN2') beispielsweise über eine unterschiedliche Wicklungszahl der Spulen (U2",V2",W2") im Vergleich zu den Spulen (U1 ',V1 ',W1 ') auslegungsgemäß angepasst. Dies bedeutet, dass das Spulensystem (U2",V2",W2") im Vergleich zum Spulensystem (U1 ',V1 ',W1 ') niederohmiger ausgeführt ist, um bei vergleichbarem Leistungsumsatz bei im Mittel geringerer Spannungslage und im Mittel erhöhten Strömen die Verlustleistung zu reduzieren. Gemäß Fig. 2 bis 4 ist die elektrische Maschine bei geöffneten Schaltern (17a,18a) betreibbar. Dabei wird keine Leistung zwischen den Bordnetzen BN1 ' und BN2' transferiert. Aufgrund der Sperrwirkung der beiden Substratdioden (17,18) der MOSFETs besteht zwischen den beiden Spuiensystemen über den Rad (16) keine direkte elektrische Kopplung. Die elektrische
Maschine ist motorisch oder generatorisch betreibbar. Die Ansteuerung der beiden
Statorsysteme erfolgt beispielsweise durch eine 3-phasige, pulsweitenmodulierte Ansteuerung der Inverter (13,14) mittels feldorientierter Regelung und z.B. Raumzeigermodulation der Schaltstellungen der Low-Side-Schalter und der High-Side-Schalter der Inverter. Die pulsweitengesteuerte Schaltstellung der Leitungsschalter ist in den Fig. 1 bis 4 durch gestrichelte Darstellungen der Schaltstellungen angedeutet. Die Ansteuerung kann
beispielsweise durch einen Mikroprozessor oder FPGA erfolgen. Die Vorgabe von
Parameterwerten wie z.B. von Drehmoment, Drehzahl, Spannung oder Leistung erfolgt beispielsweise durch einem Steuergerät des Fahrzeugs.
Bei geöffneten Schaltern (17a, 18a) ist die elektrische Maschine auch im Mischbetrieb betreibbar, d.h. beispielsweise bezüglich des Bordnetzes (BN1 )) in motorischem Betrieb und bezüglich des Bordnetzes BN2' in generatorischem Betrieb. Dies bedeutet, dass in diesem Fall Leistung vom Bordnetz (ΒΝ1') zum Bordnetz (ΒΝ2') transferiert wird. Dieser
Leistungstransferbetrieb ist unabhängig davon durchführbar, ob an der Welle des Rotors ein Drehmoment von einem mechanischen Verbraucher abgegriffen oder der Welle ein
Drehmoment von einem Motor aufgeprägt wird. Falls dem Rotor weder von außen ein
Drehmoment entnommen noch ein Drehmoment aufgeprägt wird, wird bei laufender elektrischer Maschine ausschließlich Energie zwischen den beiden Teilbordnetzen transferiert.
Falls die elektrische Maschine etwa bezüglich des BN1 ' in motorischem Betrieb und bezüglich des Bordnetzes BN2' in generatorischem Betrieb läuft, wird Leistung vom Bordnetz (BN1 ') zum Bordnetz (ΒΝ2') transferiert. Dieser Leistungstransferbetrieb ist unabhängig davon
durchführbar, ob an der Welle des Rotors ein Drehmoment von einem mechanischen
Verbraucher abgegriffen oder der Welle ein Drehmoment von einem Motor aufgeprägt wird. Falls dem Rotor weder von außen ein Drehmoment entnommen noch ein Drehmoment aufgeprägt wird, wird bei laufender elektrischer Maschine ausschließlich Energie zwischen den beiden Teilbordnetzen transferiert. Nach einem weiteren Betriebszustand der elektrischen Maschine in Fig. 2 und 4 bei stillstehendem und unerregtem Rotor, d.h. ohne anliegende Erregerspannung am Rotor, die elektrische Maschine als Tiefsetzsteller betreibbar, d.h. zum Transfer elektrischer Leistung des BN1' zum BN2'. Dieser Betrieb wird Buckbetrieb genannt und ist in Fig. 5 dargestellt.
Im Buckbetrieb sind gem. Fig. 5 die beiden Schalter (17a, 18a) dauerhaft geschlossen. Im Buckbetrieb für die Ausführungsform nach Fig. 2 ist der Schalter (17a) dauerhaft geschlossen. Dies bedeutet, dass im Buckbetrieb der Sternpunkt des Statorsystems (5) auf dem höheren elektrischen Potential des Bordnetzes (ΒΝ2') liegt. Alle Schalter des Inverters (14) sind permanent geöffnet. Zusätzlich kann der Erregerstromkreis des Rotors kurzgeschlossen werden, um sicherzustellen, dass der Rotor im Buckbetrieb stets bewegungsfrei verbleibt. Eine Bewegung des Rotors durch im induktiven System des Rotors elektromagnetisch induzierten Kräfte bedeutet einen unnötigen Energieverlust. Bei einer starren Verbindung der Rotorwelle mit beispielsweise der Kurbelwelle des Fahrzeugs oder einer Getriebewelle würden solche Induktionsbewegungen überdies ein in diesem Betriebszustand unerwünschtes
Antriebsmoment des Fahrzeugs bedeuten.
Die Schalter (HS1 , HS2, HS3) werden synchron pulsweitenmoduliert angesteuert. Da die Induktivitäten der einzelnen Phasen der Statorsysteme im Stillstand je nach Rotorlage aufgrund von Restmagnetisierung durch ggfs. vorhandene Magnete oder Remanenz im Statorblech unterschiedlich groß sein können, kann auch das pulsweitenmodulierte Tastverhältnis der Schalter (HS1 , HS2, HS3) unterschiedlich groß sein. Die Schalter (LS1 ,LS2, LS3) werden permanent geöffnet oder komplementär zu den Schaltern (HS1 , HS2, HS3) betrieben. Die Ansteuerung des Inverters (13) kann beispielsweise durch einen Mikroprozessor oder ein FPGA erfolgen, die Vorgabe von Spannung, Strom oder Leistung kann beispielsweise von einem Steuergerät des Fahrzeugs erfolgen. Als Tastverhältnis DBUCK wird das Verhältnis aus
Einschaltzeit TBUCK und Periodendauer PBUCK bezeichnet. Die Schaltfrequenz FBUCK bezeichnet die Inverse der Periodendauer PBUCK, die Einschaltzeit TBUCK erreicht maximal die
Periodendauer PBUCK. Im Buckbetrieb resultiert im Bordnetz BN2' eine Spannung UBUCK,BNZ' mit
Figure imgf000012_0001
Komplementäres Schalten bedeutet, dass in einer Halbbrücke High-Side- und Low-Side- Schalter wechselseitig eingeschaltet werden, z.B. wenn der High Side Schalter geschlossen ist, ist der Low Side Schalter geöffnet und umgekehrt. Komplementäres Schalten bewirkt geringere Durchlassverluste. Unter Durchlassverlusten ist zu verstehen, dass ein Strom durch eine nicht ideale, Leistungsverluste bewirkende
Halbleiterstruktur fließt. Bei der Diode ergeben sich Verluste nach dem Produkt der
Vorwärtsspannung der Halbleiterstruktur und dem durchfließenden Strom sowie nach dem Produkt aus dem temperaturabhängigen, differentiellen Bahnwiderstand und dem
durchfließenden Strom im Quadrat. Beim Einsatz des MOSFETs als Schalter entstehen die Durchlassverluste nur durch das Produkt des Stroms im Quadrat und des
temperaturabhängigen Durchlasswiderstands des MOSFETs im eingeschalteten Zustand. Bei Stromfluss durch den MOSFET statt durch die Diode ist der Gesamtdurchlassverlust somit geringer.
Alternativ ist neben einer synchronen pulsweitenmodulierten Ansteuerung auch eine um einen bestimmten Winkel versetzte pulsweitenmodulierte Ansteuerung möglich, die als Interieaved- Modus bezeichnet wird. Dabei werden die High-Side-Schalter (HS1 , HS2, HS3) bei einem 3- phasigen Statorsystem um 120° phasenversetzt geschaltet. Am Spulensystem (UV, VT, WT) kann sich dadurch ein Drehfeld einstellen. Vorteilhaft ist, dass sich durch diese
Ansteuermethode der Stromrippel am Zwischenkreiskondensator (12) reduzierbar ist. Ist in dem gewählten Beispiel etwa die 12 V-AGM-Batterie des BN2' nahe ihrer
Entiadeschlussspannung von 10,5 V und der Li-Ionen-Speicher bei einer Spannungslage von nahe der seiner Nennspannungslage von 48 V ist die AGM-Batterie über den Li-Ionen-Speicher ladbar, indem durch Einstellung eines vorgegebenen, regelbaren Tastverhältnisses von 0,3 eine Soll-Ladespannung von 14,4 V an der AGM-Batterie eingestellt wird.
Bei stillstehendem und unerregtem Rotor, d.h. ohne anliegende Erregerspannung am Rotor, ist die elektrische Maschine nach Fig. 3 und 4 als Hochsetzsteller betreibbar, d.h. zum Transfer elektrischer Leistung des BN2' zum BN1 '. Dieser Betrieb wird Boostbetrieb genannt und ist in Fig. 6 dargestellt.
Im Boostbetrieb sind gem. Fig. 6 die beiden Schalter (17a, 18a) dauerhaft geschlossen. Im Boostbetrieb für die Ausführungsform nach Fig. 3 ist der Schalter (18a) dauerhaft geschlossen. Dies bedeutet, dass im Boostbetrieb der Sternpunkt des Statorsystems (5) auf dem höheren elektrischen Potential des Bordnetzes (ΒΝ2') liegt. Alle Schalter des Inverters (14) sind permanent geöffnet. Zusätzlich kann der Erregerstromkreis kurzgeschlossen werden, um sicherzustellen, dass der Rotor im Boostbetrieb stets bewegungsfrei verbleibt. Die Schalter (HS1 ,HS2, HS3) werden permanent geöffnet oder komplementär zu den Schaltern (LS1 , LS2, LS3) angesteuert. Die Schalter (LS1 , LS2, LS3) werden simultan pulsweitenmoduliert angesteuert. Da die Induktivitäten der einzelnen Phasen der Statorsysteme im Stillstand je nach Rotorlage aufgrund von Restmagnetisierung durch ggf. vorhandene Magnete oder Remanenz im Statorblech unterschiedlich groß sein können, kann auch das pulsweltenmodulierte
Tastverhältnis der Schalter (LS1 , LS2, LS3) unterschiedlich groß sein.
Als Tastverhältnis DBOOST wird das Verhältnis aus Einschaltzeit TBOOST und Periodendauer PBOOST bezeichnet. Die Schaltfrequenz FBOOST bezeichnet die Inverse der Periodendauer PBOOST, die Einschaltzeit TBOOST erreicht maximal die Periodendauer PBOOST. Im Boostbetrieb resultiert im Bordnetz BN1' eine Spannung Die den
Figure imgf000014_0001
geöffneten Schaltern (HS1 ,HS2, HS3) parallel geschalteten Inverterdioden verhindern einen Spannungsverlust des Bordnetzes (ΒΝ1') zum Zeitpunkt geschlossener Schalter
(LS1 ,LS2,LS3).
Alternativ ist neben einer synchronen pulsweitenmodulierten Ansteuerung auch eine um einen bestimmten Winkel versetzte pulsweitenmodulierte Ansteuerung möglich, die als Interleaved- Modus bezeichnet wird. Dabei werden die Low-Side-Schalter (LS1 , LS2, LS3) bei einem 3- phasigen Statorsystem um 120° phasenversetzt geschaltet. Am Spulensystem (U1 ', V1 ', W1')kann sich dadurch ein Drehfeld einstellen. Vorteilhaft ist, dass sich durch diese
Ansteuermethode der Stromrippel am Zwischenkreiskondensator (11 ) reduzierbar ist.
Ist in dem gewählten Beispiel etwa der 48 V-Li- Ionen-Speicher stark entladen und die AGM- Batterie zum gleichen Zeitpunkt mit einer Spannung von 12 V ausreichend geladen, ist der Li- lonen-Speicher von der die AGM-Batterie ladbar, indem durch Einstellung eines vorgegebenen, regelbaren Tastverhältnisses von 0,8 eine Soll-Ladespannung von 60 V an dem Li-Ionen- Speicher eingestellt wird. Falls der Li- Ionen-Speicher Ober eine hohe Ladungsaufnahme und dadurch über eine hohe Leistungsaufnahme verfügt, ist über das Maschinensteuergerät das ausgehend von 0,8 Tastverhältnis auf einen höheren Wert zu regeln, um bei zugleich sinkender Spannung der AGM-Batterie die Soll-Ladespannung von 60 V an dem Li- Ionen-Speicher aufrecht zu erhalten. Im Buckbetrieb bzw. im Boostbetrieb der elektrischen Maschine nach Fig. 5 bzw. Fig. 6 sind bei der Funktion der elektrischen Maschine als Tiefsetzsteller bzw. als Hochsetzsteller die
Wicklungen (U2", V2", W2") elektrisch inaktiv. Dies bedeutet, dass die insgesamt nutzbare Induktivität für jeglichen Spannungsstellbetrieb bei stehendem Rotor in Fig. 5 und Fig. 6 auf die Induktivitäten (U1', V1', W1 ') beschränkt ist. Pro Zeiteinheit ist mit steigendem Tastverhältnis DBUCK bzw. Tastverhältnis DBOOST bei konstanter Schaltfrequenz FBUCK oder Schaltfrequenz FBOOST mehr elektrische Energie von einem Bordnetz zum anderen Bordnetz übertragbar. Die am jeweils anderen Bordnetz anzulegende Spannung und damit auch die Übertragungsleistung im Buckbetrieb bzw.
Boostbetrieb ist also über den Parameter Tastverhältnis regelbar.
Der Vorteil der Erfindung besteht darin, dass über die elektrische Maschine und die zum Betrieb der elektrischen Maschine genutzten Inverter eine mit einfachen Mitteln in das Fahrzeug integrierbaren Schaltung Leistung zwischen den beiden Bordnetzen transferierbar ist. Dies bietet den Vorteil, dass ohne Nutzung eines Gleichstromstellers (2) wie in Fig. 1 Energie von einem Teilbordnetz des Fahrzeugs in das andere Teilbordnetz des Fahrzeugs transferierbar ist, ohne dass die Notwendigkeit besteht, dass die elektrische Maschine in Betrieb befindlich ist.
Ein weiterer besonderer Vorteil ist die Einstellbarkeit einer Energietransferrichtung (Buck- und/oder Boostbetrieb) basierend auf der Ausgestaltung der Transferschaltung mit entweder einem Schalter oder zwei Schaltern, die jeweils der ersten und/oder zweiten Diode parallel geschaltet sind.
Ist bidirektionaler Betrieb (Buck- und Boostbetrieb) erwünscht, werden zwei Schalter (17a und 18a) verwendet (siehe Fig. 4). Damit ist ein Stromfluss über die beiden geschlossenen Schalter (9a und 10a) in beide Richtungen von Bordnetz (BN1 ') zum Bordnetz (ΒΝ2') oder von Bordnetz (ΒΝ2') zum Bordnetz (BN1 ') möglich.
Falls lediglich ein Energietransfer von Bordnetz (BNV) zum Bordnetz (BN2') durchführbar sein soll, ist allein der Schalter (17a) ausreichend (siehe Fig. 2), der zur ersten Diode (17) parallel geschaltet ist. Damit ist ein Stromfluss über den geschlossenen Schalter (17a) und die in Flussrichtung gepolte Diode (18) von Bordnetz (ΒΝ1') zum Bordnetz (ΒΝ2') möglich. Falls nur ein Energietransfer von Bordnetz (ΒΝ2') nach zum Bordnetz (BN1 ') durchführbar sein soll, ist allein der Schalter (18a) ausreichend (siehe Fig. 3), der zur zweiten Diode (18) parallel geschaltet ist. Damit ist ein Stromfluss über den geschlossenen Schalter (18a) und die in Flussrichtung gepolte Diode (17) von Bordnetz (ΒΝ2') nach Bordnetz (ΒΝ1 ') möglich.
Nach einer weiteren Ausführungsform der Ausführungsformen in Fig. 2 bis 6 ist das zweite Statorsystem (15) in einer Sternschaltung der Spulen (U2",V2",W2") ausgeführt (siehe Fig. 7). Die Dreieckschaltung in den Fig. 2 bis 6 ist ohne Beschränkung der Allgemeinheit für den
Normalbetrieb, den Buckbetrieb und den Boostbetrieb durch ein Statorsystem in Sternschaltung ersetzbar.

Claims

Patentansprüche
1. Fahrzeug mit einer mehrphasigen elektrischen Maschine, mit einem ersten Teilbordnetz (ΒΝ1 '), das eine erste Nenngleichspannungslage aufweist, und mit einem zweiten Teilbordnetz (ΒΝ2'), das eine zweite Nenngleichspannungslage aufweist, wobei die elektrische Maschine einen Rotor (7), ein erstes Statorsystem (5) und ein zweites Statorsystem (15) umfasst, das erste Teilbordnetz einen ersten Inverter (13) mit einem ersten Zwischenkreiskondensator (11) umfasst, das erste Statorsystem dem ersten Inverter zugeordnet ist, das zweite Teilbordnetz einen zweiten Inverter (14) mit einem zweiten Zwischenkreiskondensator (12) umfasst, und das zweite Statorsystem dem zweiten Inverter zugeordnet ist,
dadurch gekennzeichnet, dass
- das erste Statorsystem in einer Sternschaltung ausgeführt ist,
- das zweite Statorsystem in einer Sternschaltung oder einer Dreiecksschaltung
ausgeführt ist,
- eine Transferschaltung den Sternpunkt des ersten Statorsystems mit dem höheren Potential des zweiten Teilbordnetzes elektrisch verbindet.
2. Fahrzeug nach Anspruch 1 ,
dadurch gekennzeichnet, dass
die Transferschaltung eine erste Diode (17) und eine zweite Diode (18) umfasst, und die erste Diode und die zweite Diode gegenläufig, in Reihe geschaltet sind.
3. Fahrzeug nach Anspruch 2,
dadurch gekennzeichnet, dass
die Transferschaltung einen ersten Schalter (17) umfasst, der der ersten Diode parallel geschaltet ist.
4. Fahrzeug nach Anspruch 2,
dadurch gekennzeichnet, dass
die Transferschaltung einen zweiten Schalter (18) umfasst, der der ersten Diode parallel geschaltet ist.
5. Fahrzeug nach Anspruch 2,
dadurch gekennzeichnet, dass
- die Transferschaltung einen ersten Schalter (17) umfasst, der der ersten Diode (17a) parallel geschaltet Ist, und
- die Transferschaltung einen zweiten Schalter (18) umfasst, der der zweiten Diode (18a) parallel geschaltet ist.
6. Fahrzeug nach Anspruch 3 oder 4,
dadurch gekennzeichnet, dass
der erste Inverter drei High-Side-Schalter (HS1 , HS2, HS3) und drei Low-Side-Schalter (LS1. LS2. LS3) aufweist,
der zweite Inverter drei High-Side-Schalter (HS4, HS5, HS6) und drei Low-Side-Schalter (LS4, LS5, LS6) aufweist,
die drei High-Side-Schalter des ersten Inverters und die drei Low-Side-Schalter des ersten Inverters pulsweitenmodullert ansteuerbar sind,
die drei High-Side-Schalter des zweiten Inverters und die drei Low-Side-Schalter des zweiten Inverters pulsweitenmoduliert ansteuerbar sind,
die elektrische Maschine bei geöffnetem ersten Schalter (17a) oder bei geöffnetem zweiten Schalter (18a) motorisch oder generatorisch oder in einem Mischbetrieb durch pulsweitenmodulierte Ansteuerung High-Side-Schalter und Low-Side-Schalter des ersten Inverters und des zweiten Inverters betreibbar ist,
7. Fahrzeug nach Anspruch 5,
dadurch gekennzeichnet, dass
- der erste Inverter drei High-Side-Schalter (HS1 , HS2, HS3) und drei Low-Side-Schalter (LS1 , LS2, LS3) aufweist,
- der zweite Inverter drei High-Side-Schalter (HS4, HS5, HS6) und drei Low-Side-Schalter (LS4, LS5, LS6) aufweist,
- die drei High-Side-Schalter des ersten Inverters und die drei Low-Side-Schalter des ersten Inverters pulsweitenmoduliert ansteuerbar sind,
- die drei High-Side-Schalter des zweiten Inverters und die drei Low-Side-Schalter des zweiten Inverters pulsweitenmoduliert ansteuerbar sind,
- die elektrische Maschine bei geöffnetem ersten Schalter (17a) und bei geöffnetem
zweiten Schalter (18a) motorisch oder generatorisch oder in einem Mischbetrieb durch pulsweitenmodulierte Ansteuerung der High-Side-Schalter und Low-Side-Schalter des ersten Inverters und des zweiten Inverters betreibbar ist.
8. Fahrzeug nach Anspruch 3 oder 5,
dadurch gekennzeichnet, dass
die erste Nennspannungslage die zweite Nennspannungslage in Richtung höherer Nennspannungslage übersteigt,
die elektrische Maschine bei stillstehendem Rotor als Gleichstrom-Tiefsetzsteller zwischen von dem ersten Teilbordnetz und zu dem zweiten Teilbordnetz betreibbar ist.
9. Fahrzeug nach Anspruch 4 oder 5,
dadurch gekennzeichnet, dass
- die erste Nennspannungslage die zweite Nennspannungslage in Richtung höherer Nennspannungslage übersteigt, und
- die elektrische Maschine bei stillstehendem Rotor als Gleichstrom-Hochsetzsteller von dem zweiten Teilbordnetz zu dem ersten Teilbordnetz betreibbar ist.
10. Verfahren für ein Fahrzeug nach Anspruch 8, bei welchem
- die Low-Side-Schalter des zweiten Inverters geöffnet werden,
- die High-Side-Schaiter des zweiten Inverters geöffnet werden,
- die Low-Side-Schalter des ersten Inverters geöffnet werden, und
- die High-Side-Schalter des ersten Inverters pulsweitenmoduliert gesteuert werden.
1 1. Verfahren für ein Fahrzeug nach Anspruch 9, bei welchem
die Low-Side-Schalter des zweiten Inverters geöffnet werden,
die High-Side-Schalter des zweiten Inverters geöffnet werden,
die High-Side-Schalter des ersten Inverters geöffnet werden, und
die Low-Side-Schalter des ersten Inverters pulsweitenmoduliert gesteuert werden.
12. Verfahren nach Anspruch 10 oder 11 ,
dadurch gekennzeichnet, dass
der Rotor kurzgeschlossen ist.
PCT/EP2013/053232 2012-03-06 2013-02-19 Fahrzeug mit elektrischer maschine und verfahren zum betreiben dieser WO2013131739A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380012652.0A CN104159779B (zh) 2012-03-06 2013-02-19 具有电机的车辆和用于运行该电机的方法
EP13706222.0A EP2822807B1 (de) 2012-03-06 2013-02-19 Fahrzeug mit elektrischer maschine und verfahren zum betreiben dieser
US14/478,337 US10439541B2 (en) 2012-03-06 2014-09-05 Vehicle with electrical machine and method for operating the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012203528A DE102012203528A1 (de) 2012-03-06 2012-03-06 Fahrzeug mit elektrischer Maschine und Verfahren zum Betreiben dieser
DE102012203528.1 2012-03-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/478,337 Continuation US10439541B2 (en) 2012-03-06 2014-09-05 Vehicle with electrical machine and method for operating the same

Publications (2)

Publication Number Publication Date
WO2013131739A2 true WO2013131739A2 (de) 2013-09-12
WO2013131739A3 WO2013131739A3 (de) 2013-11-21

Family

ID=47750655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/053232 WO2013131739A2 (de) 2012-03-06 2013-02-19 Fahrzeug mit elektrischer maschine und verfahren zum betreiben dieser

Country Status (5)

Country Link
US (1) US10439541B2 (de)
EP (1) EP2822807B1 (de)
CN (1) CN104159779B (de)
DE (1) DE102012203528A1 (de)
WO (1) WO2013131739A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9518427B2 (en) 2013-10-02 2016-12-13 Sandvik Mining And Construction Oy Mining vehicle and method for its energy supply

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013204255A1 (de) * 2013-03-12 2014-09-18 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zum Betreiben eines Bordnetzes
DE102013205869B4 (de) * 2013-04-03 2024-03-07 Bayerische Motoren Werke Aktiengesellschaft Fahrzeug mit einer mehrphasigen Maschine
DE102013205870A1 (de) 2013-04-03 2014-10-09 Bayerische Motoren Werke Aktiengesellschaft Ansteuerverfahren für elektrische Maschine
DE102013205969B4 (de) * 2013-04-04 2024-07-11 Bayerische Motoren Werke Aktiengesellschaft Fahrzeug mit einer elektrischen Maschine mit zwei Spannungslagen und Verfahren zum Betreiben dieser
DE102014204662A1 (de) * 2014-03-13 2015-09-17 Robert Bosch Gmbh Anordnung zum Versorgen eines Kraftfahrzeugs mit elektrischer Energie
FR3038789B1 (fr) 2015-07-08 2017-07-07 Valeo Equip Electr Moteur Machine electrique tournante comportant deux bobinages de deux tensions distinctes sur un meme stator
US9705440B2 (en) * 2015-07-16 2017-07-11 Hamilton Sundstrand Corporation Fault tolerant electric power generating system
FR3039018B1 (fr) * 2015-07-17 2017-07-21 Valeo Equip Electr Moteur Machine electrique tournante double tension polyphasee reversible de vehicule automobile, et reseau electrique a double sous-reseaux correspondant
DE102015114640A1 (de) * 2015-09-02 2017-03-02 Rwth Aachen Schaltungsanordnung zur Verknüpfung verschiedener elektrischer Spannungsebenen sowie Steuerungsverfahren
FR3043285B1 (fr) * 2015-11-02 2019-07-12 Valeo Equipements Electriques Moteur Procede et dispositif de commande d'une machine electrique tournante de vehicule automobile, et machine correspondante
DE102016204843B3 (de) * 2016-03-23 2017-05-18 Bayerische Motoren Werke Aktiengesellschaft Antriebseinrichtung für ein Kraftfahrzeug, insbesondere ein Elektro- oder Hybridfahrzeug
FR3049408B1 (fr) * 2016-03-24 2018-03-16 Valeo Equipements Electriques Moteur Procede et systeme de conversion electrique continu-continu entre reseaux d'alimentation electrique relies a une machine electrique tournante de vehicule automobile
DE102016113610A1 (de) * 2016-07-22 2018-01-25 Rupprecht Gabriel Vereinfachter Starter oder Generator für zweispannungs-versorgte Fahrzeuge
EP3558744B1 (de) * 2016-12-22 2021-10-13 ABB Schweiz AG Hybridantriebssystem für ein triebfahrzeug
EP3560096B1 (de) 2016-12-22 2022-06-08 ABB Schweiz AG Hybridantriebssystem für triebfahrzeug
JP7057574B2 (ja) * 2017-06-13 2022-04-20 ザ ガバニング カウンシル オブ ザ ユニバーシティ オブ トロント 内蔵型高速充電器のためのシステムおよび方法
DE102018103709A1 (de) * 2018-02-20 2019-08-22 stoba e-Systems GmbH Antriebsstrang mit zwei unterschiedlich Spannung abgebenden Batterien, Elektro-Antriebs-System mit Niedervoltstäbe umgebende Hochvolt-Wicklungen, Elektromotor mit separatem Hochvolt-Pulswechselrichter und Verfahren zum Betreiben eines Elektromotors
DE102018211968A1 (de) * 2018-07-18 2020-01-23 Robert Bosch Gmbh Schalteinrichtung zum Ansteuern einer elektrischen Maschine, elektrische Maschine, Antriebsanordnung, Verfahren zum Betreiben einer elektrischen Maschine
DE102018211967A1 (de) * 2018-07-18 2020-01-23 Robert Bosch Gmbh Schalteinrichtung zum Ansteuern einer elektrischen Maschine, elektrische Maschine, Antriebsanordnung
JP7048469B2 (ja) * 2018-09-28 2022-04-05 株式会社日立製作所 回転機駆動システムおよび車両
GB2586040B (en) 2019-07-31 2023-04-26 Delphi Automotive Systems Lux Method of controlling braking of an multi-phase electrical motor
FR3105641B1 (fr) 2019-12-19 2021-12-17 Moving Magnet Tech Machine électrique double triphasée et procédé de commande d’une telle machine
US11381103B2 (en) 2019-12-20 2022-07-05 Brunswick Corporation Variable voltage charging system and method for a vehicle
WO2021163839A1 (zh) * 2020-02-17 2021-08-26 大连理工大学 基于双源电机的燃料电池汽车动力系统
DE102020105365A1 (de) * 2020-02-28 2021-09-02 Airstier Technology GmbH Elektrische Maschine
PL4057495T3 (pl) * 2021-03-12 2024-04-22 Hyper Poland Electro S.A. Liniowy silnik elektryczny zawierający stojan
US20230114289A1 (en) * 2021-10-11 2023-04-13 Tula eTechnology, Inc. Pulsed control of multiple electric machines

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10244229A1 (de) 2001-09-25 2003-04-17 Toyota Motor Co Ltd Stromversorgungssystem und Stromversorgungsverfahren

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608616A (en) * 1993-12-07 1997-03-04 Nippondenso Co., Ltd. Power converter
TW396673B (en) * 1995-12-22 2000-07-01 Satake Eng Co Ltd Induction motor driving device and the method for its starting operation
EP1508955A4 (de) * 2002-05-29 2006-03-15 Matsushita Electric Ind Co Ltd Motorgenerator
US7548035B2 (en) * 2003-11-26 2009-06-16 Nsk Ltd. Control apparatus of electric power steering apparatus
JP4679891B2 (ja) * 2004-11-30 2011-05-11 トヨタ自動車株式会社 交流電圧発生装置および動力出力装置
US7154237B2 (en) * 2005-01-26 2006-12-26 General Motors Corporation Unified power control method of double-ended inverter drive systems for hybrid vehicles
DE102005015658A1 (de) * 2005-04-06 2007-01-11 Bayerische Motoren Werke Ag Schalteinrichtung zur Verknüpfung verschiedener elektrischer Spannungsebenen in einem Kraftfahrzeug
CN1949655B (zh) * 2005-10-10 2010-05-12 贺雷 电动-发电复用控制方法及其系统
JP4925181B2 (ja) * 2006-03-09 2012-04-25 国立大学法人長岡技術科学大学 電力システム
JP4211806B2 (ja) * 2006-06-07 2009-01-21 トヨタ自動車株式会社 車両駆動システムおよびそれを備える車両
US7579792B2 (en) * 2007-04-23 2009-08-25 Gm Global Technology Operations, Inc. Hybrid motor boost system and methods
US7956563B2 (en) * 2007-07-30 2011-06-07 GM Global Technology Operations LLC System for using a multi-phase motor with a double-ended inverter system
US8102142B2 (en) * 2007-07-30 2012-01-24 GM Global Technology Operations LLC Double ended inverter system for a vehicle having two energy sources that exhibit different operating characteristics
JP4609474B2 (ja) * 2007-10-10 2011-01-12 株式会社デンソー 回転電機装置
US8115433B2 (en) * 2008-09-23 2012-02-14 GM Global Technology Operations LLC Electrical system for pulse-width modulated control of a power inverter using phase-shifted carrier signals and related operating methods
CN101630850B (zh) * 2009-08-07 2011-07-13 深圳市禾望电气有限公司 一种双馈型感应发电机穿越电网故障的装置及方法
DE102010001250B4 (de) 2010-01-27 2022-09-15 Seg Automotive Germany Gmbh Elektrisches Bordnetz sowie Verfahren zum Betreiben eines elektrischen Bordnetzes
DE102010002318A1 (de) * 2010-02-25 2011-08-25 Siemens Aktiengesellschaft, 80333 Schaltungsanordnung zum Laden von Fahrzeugbatterien in einem Fahrzeug und zugehöriges Verfahren

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10244229A1 (de) 2001-09-25 2003-04-17 Toyota Motor Co Ltd Stromversorgungssystem und Stromversorgungsverfahren

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9518427B2 (en) 2013-10-02 2016-12-13 Sandvik Mining And Construction Oy Mining vehicle and method for its energy supply

Also Published As

Publication number Publication date
WO2013131739A3 (de) 2013-11-21
CN104159779A (zh) 2014-11-19
US20140375232A1 (en) 2014-12-25
US10439541B2 (en) 2019-10-08
DE102012203528A1 (de) 2013-09-12
EP2822807B1 (de) 2017-06-28
CN104159779B (zh) 2016-09-14
EP2822807A2 (de) 2015-01-14

Similar Documents

Publication Publication Date Title
EP2822807B1 (de) Fahrzeug mit elektrischer maschine und verfahren zum betreiben dieser
EP2822806B1 (de) Fahrzeug mit elektrischer maschine und verfahren zum betreiben dieser
DE102015208747A1 (de) Fahrzeugseitige Ladeschaltung für ein Fahrzeug mit elektrischem Antrieb und Verfahren zum Betreiben eines fahrzeugseitigen Stromrichters sowie Verwenden zumindest einer Wicklung einer fahrzeugseitigen elektrischen Maschine zum Zwischenspeichern
EP3481664B1 (de) Fahrzeugbordnetz, ladesystem, ladestation und verfahren zur übertragung von elektrischer energie
EP1710115B1 (de) Schaltungsanordnung und Ansteuerverfahren für ein Elektro- oder Hybridfahrzeug mit zwei Gleichstromquellen
EP2049356B1 (de) Dieselelektrisches antriebssystem
EP3507129B1 (de) Antriebssystem, insbesondere für ein fahrzeug, und verfahren zum aufheizen eines antriebssystems
DE112009001695B4 (de) Stromversorgungsvorrichtung
EP2673160B1 (de) System zum laden eines energiespeichers und verfahren zum betrieb des ladesystems
DE102017104983A1 (de) Dynamischer igbt-gate-treiber zur reduzierung von schaltverlust
WO2013064486A2 (de) Elektrisches system
DE102016222163B3 (de) Kraftfahrzeug-Bordnetz und Verfahren zum Betrieb eines Kraftfahrzeug-Bordnetzes
DE102013112147B4 (de) Schaltungsanordnungen und verfahren zum betreiben einer elektromaschine
EP2541755A1 (de) Antriebsvorrichtung für ein Fahrzeug
DE102018101830A1 (de) Hybridantriebssystem mit mehreren wechselrichtern
EP2885853B1 (de) Schaltbare energiespeichervorrichtung sowie verfahren zum betreiben einer schaltbaren energiespeichervorrichtung
DE102018122454A1 (de) Antriebsstrang Hybridfahrzeug mit isoliertem Doppelbus
DE102013205869B4 (de) Fahrzeug mit einer mehrphasigen Maschine
DE102016215762A1 (de) Elektrische Antriebsanordnung
WO2012066045A2 (de) Ladesystem zum laden einer batterie eines fahrzeuges mit einem zwei-weg-laderegler
WO2016012300A1 (de) Elektrische maschine zur energieversorgung eines kraftfahrzeugbordnetzes
DE102017115506A1 (de) Steuervorrichtung für einen Inverter
WO2017125207A1 (de) Verfahren zum regeln der zwischenkreisspannung eines hybrid- oder elektro-fahrzeugs nach abtrennen der hochvoltbatterie
DE102013206296A1 (de) Verfahren zum Betreiben einer Energieversorgungseinheit für ein Kraftfahrzeugbordnetz
EP0583328B1 (de) Elektronische steuerschaltung für die speisung von ohmisch-induktiven lasten durch gleichstromimpulse

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2013706222

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013706222

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13706222

Country of ref document: EP

Kind code of ref document: A2