WO2013131433A1 - 一种确定邻道选择性的方法及装置 - Google Patents
一种确定邻道选择性的方法及装置 Download PDFInfo
- Publication number
- WO2013131433A1 WO2013131433A1 PCT/CN2013/071849 CN2013071849W WO2013131433A1 WO 2013131433 A1 WO2013131433 A1 WO 2013131433A1 CN 2013071849 W CN2013071849 W CN 2013071849W WO 2013131433 A1 WO2013131433 A1 WO 2013131433A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- interference
- adjacent frequency
- determining
- frequency region
- adjacent
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03821—Inter-carrier interference cancellation [ICI]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J11/00—Orthogonal multiplex systems, e.g. using WALSH codes
- H04J11/0023—Interference mitigation or co-ordination
- H04J11/005—Interference mitigation or co-ordination of intercell interference
Definitions
- the present invention relates to communication technologies, and in particular, to a method and apparatus for determining adjacent channel selectivity. Background technique
- TD-LTE Time Division-Long Term Evolution
- TD-SCDMA time division synchronization code division multiple access
- GSM Global System for Mobile communication
- WLAN Wireless Local Area Network
- the mutual interference between the two systems mainly includes various forms of interference such as adjacent frequency interference, spur interference, blocking interference and intermodulation interference.
- adjacent-frequency interference the isolation of the two systems is characterized by the Adjacent Channel Interference Ratio (ACIR), and the ACIR is the leakage power ratio through the adjacent channel (Adjacent Channel Leakage). Ratio, ACLR) and Adjacent Channel Selectivity (ACS) are jointly determined.
- ACIR Adjacent Channel Interference Ratio
- ACLR Adjacent Channel Leakage
- ACS Adjacent Channel Selectivity
- the ACS is a measure of the ability of a receiver to receive a wanted signal at its assigned channel frequency in the presence of a channel jamming signal with a certain frequency offset for a given assigned channel center frequency.
- the ACS is primarily defined as the attenuation of the receive filter over the specified channel frequency and the ratio of attenuation on adjacent channels.
- each system When coexisting networking between two systems, each system has its own frequency characteristics. For example, the frequency bands used by each system are different, and the occupied bandwidth is different.
- the main frequency For the TD-LTE system, the main frequency is 2570MHz-2620MHz, the bandwidth is 5MHz, 10MHz, 20MHz, etc., which can be configured.
- the main frequency For the TD-SCDMA system, the main frequency is 1880MHz-1920MHz, and the bandwidth is 1.6MHz;
- the main frequency band is near 700MHz, and the bandwidth is 8MHz. This complex system format results in a diversity of frequencies when the two systems coexist.
- the adjacent frequency interference refers to the interference caused by the ACIR indicator, including the adjacent channel leakage ratio and the adjacent channel selectivity. It is the result of the ACLR indicator of the transmitter and the ACS indicator of the receiver. .
- the ACIR indicator is often used to measure the level of mutual interference between the two systems.
- the larger the ACIR value that is, the greater the attenuation, the lighter the level of interference received by the interference system, and the smaller the impact on the system being disturbed;
- the smaller the ACIR value that is, the less the attenuation, the more the level of disturbance received by the interference system, and the greater the impact on the system being disturbed. Therefore, the ACS parameter is very important for the calculation of adjacent frequency interference.
- the first adjacent ACS, the second adjacent ACS, or the third adjacent ACS indicator lacks the ACS indicator characteristics in different bandwidth configurations.
- a large bandwidth is small, a small bandwidth, a small bandwidth, a large bandwidth, or a system bandwidth, and a system is not in close proximity to another system. Is a certain frequency interval with another system. Due to the limitation of the first adjacent frequency, the second adjacent frequency, or the third adjacent frequency, the existing ACS indicator cannot meet the mutual interference calculation or simulation requirements of various complex networking scenarios.
- an 8 MHz bandwidth broadcast system interferes with a 5 MHz bandwidth LTE system
- the 8 MHz bandwidth broadcast system and the LTE system have a frequency interval of X MHz.
- a large bandwidth interferes with a small bandwidth
- the bandwidth of the interference system falls into the first adjacent frequency and the second adjacent frequency of the interference system
- only the center frequency of the interference system is judged to be in the interference system.
- the second adjacent frequency is calculated using the ACS indicator corresponding to the second adjacent frequency.
- This method of calculating ACS is very inaccurate, because this method only considers the influence of the Nth adjacent frequency, and ignores the neighbors of the N+1 adjacent frequency, the N-1 adjacent frequency, and the bandwidth of the interference system.
- the effect of the frequency ACS also ignores the characteristics of the bandwidth of the interference system.
- the current ACS metrics do not reflect the mutual interference problem between two systems with different bandwidths or distances from a certain frequency.
- the current ACS determination method only considers the adjacent frequency position of the victim system in which the center frequency of the interference system is located, and determines the ACS indicator according to this, thus ignoring other adjacent frequency ACSs that intersect with the bandwidth of the interference system. At the same time, the method also ignores the effect of the bandwidth of the interference system, so that the calculated result will result in the same ACS index of the bandwidth of different interference systems, which is not consistent with the actual system performance; therefore, Determining the method will result in very inaccurate ACS calculation results, directly affecting the assessment of adjacent-frequency interference, affecting the correct assessment of mutual interference between the two systems; and because mutual interference cannot be correctly evaluated, it will lead to two systems. The calculation of the required isolation is inaccurate, affecting the conclusion that the last two systems can coexist, and thus affecting whether the two systems can work normally if they coexist. Summary of the invention
- Embodiments of the present invention provide a method and apparatus for determining adjacent channel selectivity, so as to improve the accuracy of adjacent channel selectivity parameters and improve the accuracy of adjacent channel interference estimation.
- a method of determining the selectivity of adjacent channels including: Determining a channel bandwidth of the interference system, a channel bandwidth of the interfered system, and a frequency interval between the two systems; determining an ACS indicator of each adjacent frequency region of the interfered system and each adjacent frequency region;
- the adjacent channel selectivity is determined based on the total interference power received by the interference system.
- a device for determining the selectivity of adjacent channels comprising:
- a bandwidth and frequency interval determining unit configured to determine a channel bandwidth of the interference system, a channel bandwidth of the interfered system, and a frequency interval between the two systems;
- an adjacent frequency region determining unit configured to determine an ACS indicator of each adjacent frequency region of the interfered system and each adjacent frequency region
- a power spectral density determining unit configured to determine a spectral radiation characteristic and a power spectral density of the interference system in each adjacent frequency region of the interfered system
- a total interference power determining unit configured to determine a total interference power received by the interference system according to a power spectral density in each adjacent frequency region and an ACS indicator of each adjacent frequency region;
- an adjacent channel selectivity determining unit configured to determine adjacent channel selectivity according to the total interference power received by the interference system.
- Embodiments of the present invention provide a method and apparatus for determining adjacent channel selectivity, and after determining each adjacent frequency region of a jammer system, respectively determining spectrum radiation characteristics of the interference system in each adjacent frequency region of the interference system and The power spectral density is further accurately determined by the total interference power received by the interference system, and the adjacent channel selectivity is determined according to the total interference power, thereby improving the accuracy of the adjacent channel selectivity parameter and improving the adjacent frequency interference estimation. The accuracy. DRAWINGS
- FIG. 1 is a schematic diagram of a ACS calculation method in the prior art
- FIG. 2 is a flowchart of a method for determining adjacent channel selectivity according to an embodiment of the present invention
- FIG. 3 is a schematic diagram of channel bandwidth definition and channel edge definition of an LTE system according to an embodiment of the present invention
- FIG. 4 is a schematic diagram of frequency spacing provided by an embodiment of the present invention
- FIG. 5 is a schematic diagram of a first neighbor frequency definition according to an embodiment of the present invention.
- FIG. 6 is a schematic diagram of a second adjacent frequency definition according to an embodiment of the present invention.
- FIG. 7 is a schematic diagram of an ACS calculation method under the condition of non-ideal spectral characteristics according to an embodiment of the present invention.
- FIG. 8 is a schematic diagram of an ACS calculation method under the condition of ideal spectral characteristics according to an embodiment of the present invention.
- FIG. 9 is a schematic structural diagram of an apparatus for determining adjacent channel selectivity according to an embodiment of the present invention.
- Embodiments of the present invention provide a method and apparatus for determining adjacent channel selectivity, and after determining each adjacent frequency region of a jammer system, respectively determining spectrum radiation characteristics of the interference system in each adjacent frequency region of the interference system and The power spectral density is further accurately determined by the total interference power received by the interference system, and the adjacent channel selectivity is determined according to the total interference power, thereby improving the accuracy of the adjacent channel selectivity parameter and improving the adjacent frequency interference estimation. The accuracy.
- the method proposed in the embodiment of the present invention has a bandwidth larger than that of the interfered system, and the bandwidth of the interference system is equal to the bandwidth of the interfered system, and the bandwidth of the interference system is smaller than the bandwidth of the interfered system.
- the equivalent ACS between the two systems can be calculated under the above three bandwidth configuration conditions, and then the mutual size between the two systems can be calculated and calculated. .
- the method for determining adjacent channel selectivity includes:
- Step S201 determining a channel bandwidth of the interference system, a channel bandwidth of the interfered system, and a frequency interval between the two systems;
- Step S202 Determine an ACS indicator of each adjacent frequency region of the interference system and each adjacent frequency region.
- Step S203 determining spectral radiation characteristics and power spectral density of the interference system in each adjacent frequency region of the interference system
- Step S204 Determine, according to a power spectral density in each adjacent frequency region and an ACS indicator of each adjacent frequency region, a total interference power received by the interference system.
- Step S205 Determine adjacent channel selectivity according to the total interference power received by the interference system.
- the spectral radiation characteristics and power spectrum of the interference system in each adjacent frequency region of the interference system are separately determined first. Density, and then the total interference power received by the interference system is determined according to the power spectral density in each adjacent frequency region. Therefore, the total interference power received by the interference system is more accurate, and the determined ACS is more accurate.
- the channel bandwidth of the interference system can be determined according to the characteristics of the specific system, for example, for the Evolved UMTS Terrestrial Radio Access (Evolved UMTS Terrestrial Radio Access)
- the network E-UTRAN; Universal Mobile Telecommunications System (UMTS) system, its channel bandwidth and the number of resource blocks (RBs) that can be transmitted under each bandwidth are shown in Table 1.
- UMTS Universal Mobile Telecommunications System
- Table 1 RB configuration within E-UTRA system operating bandwidth and transmit bandwidth 3 is a schematic diagram showing the relationship between the channel bandwidth BWChannel and the RB configuration in the transmission bandwidth.
- the frequency interval between the two systems specifically refers to the difference between the frequencies of the two systems from the nearest channel edge, where the channel edge is specifically the highest or lowest frequency of one RF carrier, for example,
- the channel edge is at FC ⁇ BWChannel / 2, where the carrier width is equal to the channel bandwidth, and FC is the center carrier frequency of the channel or the frequency of the center subcarrier frequency.
- the interference system bandwidth BW_I, the interference system bandwidth BW_V, and the frequency interval between the two systems can be easily obtained.
- step S202 determining each adjacent frequency region of the interfered system includes:
- the Nth adjacent frequency region of the interference system is an area of the system bandwidth of the N-1 interfered systems from the interfered system, and the bandwidth of each adjacent frequency region is the same as the system bandwidth of the interfered system.
- the first adjacent frequency region is determined to be the same frequency region as the system operating bandwidth when the system frequency is separated from the system frequency by 0 MHz.
- the second adjacent frequency region refers to a frequency region that is the same as the operating bandwidth of the system when the system frequency is isolated from the operating bandwidth BW_V of the interference system.
- the third adjacent frequency region and the next adjacent frequency region can be determined.
- the determined number of adjacent frequency regions needs to make the adjacent frequency region cover the entire interference system bandwidth.
- the ACS indicator of each adjacent frequency region is further determined, and the ACS indicator can be obtained through actual testing or radio frequency protocol.
- the ACS indicator can be obtained through actual testing or radio frequency protocol.
- the ACS indicator on the terminal side is defined in the 3GPP TS 36.101 protocol, and the ACS indicator on the base station side is defined in the 3GPP TS 36.104 protocol.
- the terminal is defined in the 3GPP TS 25.102 protocol.
- the ACS indicator on the side, the ACS indicator on the base station side is defined in the 3GPP TS 25.105 protocol;
- the ACS indicator ACS1 in the first adjacent frequency region, the ACS indicator ACS2 in the second adjacent frequency region, and the ACS indicator ACS3 in the third adjacent frequency region may be finally determined.
- step 203 the spectral radiation characteristics and the power spectral density of the interference system in each adjacent frequency region of the interference system are determined, which specifically includes:
- the power value of the interference system falling into each sub-area is determined; and the power spectral density of the interference system in each sub-area is determined.
- the spectral radiation characteristics of the interference system within the working bandwidth can be obtained by means of testing means, protocol specifications, and the like.
- the embodiment of the present invention assumes two cases, which are ideal spectral radiation characteristics and non-ideal spectral radiation characteristics, respectively.
- the bandwidth of the interference system can be divided into several sub-areas according to the bandwidth of the interference system across the adjacent frequency region of the interference system.
- the principle of segmentation is that the operating bandwidth of the interference system spans one adjacent frequency region. , will work
- the portion of the bandwidth that belongs to the adjacent frequency region is labeled as a sub-region.
- the radiation area of the interference system can be divided into two sub-areas: sub-area 1 and sub-area 2, and the bandwidth of the j-th sub-area is determined to be BW-I-j, respectively.
- the interference system falls into the jth adjacent frequency power value of the interfered system, and the value can be calculated by integrating the spectrum radiation pattern of the transmitter, and the combined power is calculated.
- the path loss between the transmitter of the disturbance system and the receiver of the disturbance system is obtained as follows:
- TxPowerJ is the transmit power value in the jth sub-area and Pathloss is the path loss between the jammer system transmitter and the victim system receiver.
- the power spectral density of each sub-area is ⁇ _ 3 ⁇ 4 « ⁇ _ ⁇ , and its calculation method can be expressed as:
- BW _I _j where P" is the power value in the jth sub-area of the interference system, and BW_I" is the bandwidth of the j-th sub-area.
- P is the power value in the jth sub-area of the interference system
- BW_I is the bandwidth of the j-th sub-area.
- TxPower is the transmit power value and Pathloss is the path loss between the interference system transmitter and the victim system receiver.
- step S204 the total interference power received by the interference system is determined according to the power spectral density in each adjacent frequency region and the ACS index of each adjacent frequency region, which specifically includes:
- the total interference power received by the interference system is determined based on the interference power actually received by the interference system on each of the adjacent frequency regions.
- the actual received power of the interference system on each adjacent frequency region can be calculated by the following formula:
- ACS _j where P_density is the power spectral density of the interference system in the jth sub-area, ACS" is the ACS indicator of the adjacent frequency region where the j-th sub-region is located, and BW_IJ is the bandwidth of the j-th sub-region.
- the actual received total power of the interference system is aggregated by the interference power actually received by the interference system on all sub-areas.
- the calculation formula is as follows:
- P_density is the power spectral density of the interference system in the jth sub-area
- ACS is the ACS indicator of the adjacent frequency region where the jth sub-region is located
- BW_IJ is the bandwidth of the j-th sub-region.
- step S205 the equivalent ACS can be expressed as the ratio of the total transmit power of the interference system to the total power received by the interference system outside the system, and is calculated by the following formula:
- P_density is the power spectral density of the interference system in the jth sub-region
- BW_I is the bandwidth of the j-th sub-region
- P_r is the total received interference power of the interference system.
- the ACS can be calculated as:
- an apparatus for determining adjacent channel selectivity is also provided in the embodiment of the present invention. Since the principle of solving the problem is similar to the method for determining adjacent channel selectivity in the embodiment of the present invention, the implementation of the apparatus may be See the implementation of the method, and the repetition will not be repeated.
- the embodiment of the present invention further provides a device for determining the selectivity of the adjacent channel.
- the method includes: a bandwidth and frequency interval determining unit 901, configured to determine a channel bandwidth of the interference system, and a channel bandwidth of the interfered system. And the frequency separation between the two systems;
- the adjacent frequency region determining unit 902 is configured to determine ACS indicators of each adjacent frequency region and each adjacent frequency region of the interference system;
- the power spectral density determining unit 903 is configured to determine a spectral radiation characteristic and a power spectral density of the interference system in each adjacent frequency region of the interference system;
- the total interference power determining unit 904 is configured to determine, according to a power spectral density in each adjacent frequency region and an ACS indicator of each adjacent frequency region, a total interference power received by the interference system;
- the adjacent channel selectivity determining unit 905 is configured to determine the adjacent channel selectivity according to the total interference power received by the interference system.
- the frequency interval between the two systems is specifically:
- the adjacent frequency area determining unit 902 is specifically configured to:
- the Nth adjacent frequency region of the interference system is an area of the system bandwidth of the N-1 interfered systems from the interfered system, and the bandwidth of each adjacent frequency region is the same as the system bandwidth of the interfered system.
- the power spectral density determining unit 903 is specifically configured to:
- the power value of the interference system falling into each sub-area is determined; and the power spectral density of the interference system in each sub-area is determined.
- the total interference power determining unit 904 is specifically configured to:
- the total interference power received by the interference system is determined based on the interference power actually received by the interference system on each of the adjacent frequency regions.
- Embodiments of the present invention provide a method and apparatus for determining adjacent channel selectivity, and after determining each adjacent frequency region of a jammer system, respectively determining spectrum radiation characteristics of the interference system in each adjacent frequency region of the interference system and
- the power spectral density is further accurately determined by the total interference power received by the interference system, and the adjacent channel selectivity is determined according to the total interference power, thereby improving the accuracy of the adjacent channel selectivity parameter and improving the adjacent frequency interference estimation. The accuracy.
- embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the present invention is in the form of a computer program product embodied on one or more computer-usable storage interfaces (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer usable program code.
- the present invention has been described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (system), and computer program products according to embodiments of the invention. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
- These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
- the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
- the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
- These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
- the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Power Engineering (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请公开了一种确定邻道选择性的方法及装置,涉及通信技术,本申请在确定被干扰系统的各个邻频区域后,分别确定干扰系统在被干扰系统的各个邻频区域中的频谱辐射特性及功率谱密度;进而较准确的确定出被干扰系统接收的总干扰功率,根据该总干扰功率确定邻道选择性,进而提高邻道选择性参数的准确性,提高邻频干扰评估的准确性。
Description
一种确定邻道选择性的方法及装置 本申请要求在 2012年 3月 6 日提交中国专利局、 申请号为 201210057406.4、 发明名 称为"一种确定邻道选择性的方法及装置 "的中国专利申请的优先权, 其全部内容通过引用 结合在本申请中。 技术领域
本发明涉及通信技术, 尤其涉及一种确定邻道选择性的方法及装置。 背景技术
由于系统制式的多样化, 目前两个系统共存场景较多, 例如, 比较常见的有时分 -长期 演进(Time Division-Long Term Evolution, TD-LTE ) 系统与时分同步的码分多址(Time Division Synchronous Code Division Multiple Access, TD-SCDMA )系统共存组网、 TD-LTE 系统与全球移动通信系统 ( Global System for Mobile communication, GSM )共存组网、 TD-LTE系统与无线局域网 ( Wireless Local Area Network, WLAN ) 系统室内共存组网等 多种场景。
由于系统工作频率和千扰起因的不同, 两个系统之间的互千扰主要有邻频千扰、 杂散 千扰、 阻塞千扰和互调千扰等多种千扰形式。 对于邻频千扰来说, 主要是通过邻道千扰功 率比(Adjacent Channel Interference Ratio, ACIR )来表征两个系统在频率上的隔离度, 而 ACIR是通过邻道泄露功率比 (Adjacent Channel Leakage Ratio, ACLR )和邻道选择性 ( Adjacent Channel Selectivity, ACS ) 来共同决定的。
ACS是用来衡量接收机在其分配信道频率上, 面对给定分配信道中心频率有一定频偏 的相邻信道千扰信号时, 接收有用信号的能力。 ACS主要定义为接收滤波器在指定信道频 率上的衰减和在相邻信道上衰减的比值。
在两个系统之间共存组网时, 每个系统有其各自的频率特点, 例如, 每个系统所使用 的频段不同, 所占用的带宽不同等。 对于 TD-LTE 系统来说, 主要占用的是 2570MHz-2620MHz 频段, 带宽为 5MHz、 10MHz、 20MHz 等, 是可以配置的; 对于 TD-SCDMA系统来说, 主要占用的是 1880MHz -1920MHz频段, 带宽为 1.6MHz; 对于广 播系统来说, 主要占用的是 700MHz附近的频段, 带宽为 8MHz。 这种复杂的系统制式就 会导致两个系统共存组网时在频率上具有多样性。
当两个系统邻频共存的时候, 其互千扰类型主要以邻频千扰为主。 这里的邻频千扰指 的是由于 ACIR指标所带来的千扰, 包含邻道泄漏比和邻道选择性这两个参数, 是发射机 的 ACLR指标和接收机的 ACS指标共同作用的结果。 ACLR、 ACS与 ACIR之间有如下的 计算关系:
1 _ 1 1
ACIR ~ ACLR + ACS 当被千扰系统处于千扰系统的带外辐射范围之内时, 常常用 ACIR指标来衡量两个系 统之间的互千扰水平的大小。 对于千扰系统发射功率一定的情况下, ACIR值越大, 即衰 减越大, 则被千扰系统受到的千扰水平也就越轻, 对被千扰系统的影响也就越小; 反之, ACIR值越小, 即衰减越少, 则被千扰系统受到的千扰水平也就越重, 对被千扰系统的影 响也就越大。 因此 ACS这个参数对于邻频千扰的计算是非常重要的。
目前设备规范在定义的时候, 只有第一邻频 ACS, 第二邻频 ACS或者第三邻频 ACS 指标, 缺乏不同带宽配置下的 ACS指标特性。 而在实际系统组网中, 经常会遇到大带宽千 扰小带宽、 小带宽千扰大带宽或者等系统带宽的千扰, 同时也会遇到一个系统并不是和另 一个系统紧邻频, 而是和另一个系统有一定的频率间隔。现有的 ACS指标由于其只有第一 邻频、 第二邻频或第三邻频的限制, 已经无法满足当前各种复杂组网场景的互千扰计算或 仿真需求。
具体的, 如图 1所示, 一个 8MHz带宽的广播系统千扰一个 5MHz带宽的 LTE系统, 8MHz带宽的广播系统与 LTE系统的频率间隔为 X MHz。 一个大带宽千扰小带宽的时候, 当千扰系统带宽落入被千扰系统的第 1邻频以及第 2邻频的时候, 只判断千扰系统的中心 频点是在被千扰系统的第 2邻频, 就用对应第 2邻频的 ACS指标来计算。 这种计算 ACS 的方法十分不准确, 因为这种方法只考虑第 N个邻频的影响, 而忽略了第 N+1邻频、 第 N-1邻频等与千扰系统带宽有交集的邻频 ACS的影响, 也忽略了千扰系统带宽的特性。
因此,目前的 ACS指标无法体现出不同带宽或者距离一定频率间隔的两个系统之间的 互千扰问题。
该目前的 ACS确定方法只考虑了千扰系统的中心频率所处的被千扰系统的邻频位置, 根据这个来确定 ACS指标, 这样忽略了与千扰系统带宽有交集的其他邻频 ACS的影响; 同时该方法也忽略了千扰系统带宽的作用, 这样计算出来的结果会导致不同千扰系统带宽 的等效 ACS指标是一样的, 这样是不符合实际系统性能的特点的; 因此, 该确定方法会导 致 ACS计算结果很不准确,直接影响到邻频千扰的评估,影响到两个系统之间互千扰的正 确评估; 而由于互千扰无法正确评估, 会导致两个系统之间所需隔离度的计算不准确, 影 响到最后两个系统是否能够共存的结论, 进而影响到两个系统如果共存时是否能够正常工 作等问题。 发明内容
本发明实施例提供一种确定邻道选择性的方法及装置, 以提高邻道选择性参数的准确 性, 提高邻频千扰评估的准确性。
一种确定邻道选择性的方法, 包括:
确定千扰系统信道带宽、 被千扰系统信道带宽以及两个系统之间的频率间隔; 确定所述被千扰系统的各个邻频区域及各个邻频区域的 ACS指标;
确定所述千扰系统在所述被千扰系统的各个邻频区域中的频谱辐射特性及功率谱密 度;
根据各个邻频区域中的功率谱密度及各个邻频区域的 ACS 指标确定所述被千扰系统 接收的总千扰功率;
根据所述被千扰系统接收的总千扰功率确定邻道选择性。
一种确定邻道选择性的装置, 包括:
带宽及频率间隔确定单元, 用于确定千扰系统信道带宽、 被千扰系统信道带宽以及两 个系统之间的频率间隔;
邻频区域确定单元,用于确定所述被千扰系统的各个邻频区域及各个邻频区域的 ACS 指标;
功率谱密度确定单元, 用于确定所述千扰系统在所述被千扰系统的各个邻频区域中的 频谱辐射特性及功率谱密度;
总千扰功率确定单元,用于根据各个邻频区域中的功率谱密度及各个邻频区域的 ACS 指标确定所述被千扰系统接收的总千扰功率;
邻道选择性确定单元, 用于根据所述被千扰系统接收的总千扰功率确定邻道选择性。 本发明实施例提供一种确定邻道选择性的方法及装置, 确定被千扰系统的各个邻频区 域后 , 分别确定千扰系统在被千扰系统的各个邻频区域中的频谱辐射特性及功率谱密度; 进而较准确的确定出被千扰系统接收的总千扰功率, 根据该总千扰功率确定邻道选择性, 进而提高邻道选择性参数的准确性, 提高邻频千扰评估的准确性。 附图说明
图 1为现有技术中 ACS计算方法示意图;
图 2为本发明实施例提供的确定邻道选择性的方法流程图;
图 3为本发明实施例提供的 LTE系统的信道带宽定义及信道边缘定义示意图; 图 4为本发明实施例提供的频率间隔示意图;
图 5为本发明实施例提供的第一邻频定义示意图;
图 6为本发明实施例提供的第二邻频定义示意图;
图 7为本发明实施例提供的非理想频谱特性条件下 ACS计算方法示意图;
图 8为本发明实施例提供的理想频谱特性条件下 ACS计算方法示意图;
图 9为本发明实施例提供的确定邻道选择性的装置结构示意图。 具体实施方式
本发明实施例提供一种确定邻道选择性的方法及装置, 确定被千扰系统的各个邻频区 域后 , 分别确定千扰系统在被千扰系统的各个邻频区域中的频谱辐射特性及功率谱密度; 进而较准确的确定出被千扰系统接收的总千扰功率, 根据该总千扰功率确定邻道选择性, 进而提高邻道选择性参数的准确性, 提高邻频千扰评估的准确性。
在进行两个系统之间互千扰仿真或者互千扰确定性分析的时候, 当两个系统邻频共存 的时候,就需要通过 ACS这个参数计算两个系统之间的互千扰大小。本发明实施例提出的 方法, 适用于千扰系统的带宽大于被千扰系统的带宽, 千扰系统的带宽等于被千扰系统的 带宽, 千扰系统的带宽小于被千扰系统的带宽这三种情形, 通过本发明实施例中提出的方 法, 可以计算出上述三种带宽配置条件下, 两个系统之间的等效 ACS , 进而可以计算求得 两个系统之间的互千■½大小。
如图 2所示, 本发明实施例提供的确定邻道选择性的方法包括:
步骤 S201、确定千扰系统信道带宽、被千扰系统信道带宽以及两个系统之间的频率间 隔;
步骤 S202、 确定被千扰系统的各个邻频区域及各个邻频区域的 ACS指标;
步骤 S203、确定千扰系统在被千扰系统的各个邻频区域中的频谱辐射特性及功率谱密 度;
步骤 S204、 根据各个邻频区域中的功率谱密度及各个邻频区域的 ACS指标确定被千 扰系统接收的总千扰功率;
步骤 S205、 根据被千扰系统接收的总千扰功率确定邻道选择性。
由于不再根据千扰系统的中心频率点来确定千扰系统对被千扰系统的功率, 而是先分 别确定千扰系统在被千扰系统的各个邻频区域中的频谱辐射特性及功率谱密度, 再根据各 个邻频区域中的功率谱密度确定被千扰系统接收的总千扰功率, 因此, 该被千扰系统接收 的总千扰功率更加准确, 进而确定的 ACS也更加准确。
具体的, 在步骤 S201 中, 千扰系统的信道带宽可以根据具体的系统的特性确定, 例 如, 对于演进通用移动通信系统陆地无线接入网 ( Evolved UMTS Terrestrial Radio Access
Network, E-UTRAN; Universal Mobile Telecommunications System, UMTS )系统, 其信道 带宽以及每种带宽下可以发射的资源块( Resource Block, RB )数目如表 1所示。
表 1 : E-UTRA系统工作带宽及发射带宽内 RB配置
图 3为信道带宽 BWChannel和发射带宽内 RB配置之间的关系示意图。
如图 4所示, 两个系统之间的频率间隔具体指两个系统距离最近的信道边缘的频率之 间的差值, 其中, 信道边缘具体为一个射频载波的最高或最低频率处, 例如, 如图 3所示, 信道边缘在 FC ± BWChannel / 2处, 其中, 载波宽度等于信道带宽, FC为信道的中心载频 或中心子载频的频率。
在实际应用时, 根据系统配置参数和本发明实施例提供的方法, 可以容易的获取千扰 系统带宽 BW_I、 被千扰系统带宽 BW_V以及两个系统之间的频率间隔。
在步骤 S202中, 确定被千扰系统的各个邻频区域, 具体包括:
确定被千扰系统的第 N个邻频区域为与被千扰系统距离 N-1个被千扰系统的系统带宽 的区域, 每个邻频区域的带宽与被千扰系统的系统带宽相同。
例如, 若确定被千扰系统两端各三个邻频区域, 则如图 5所示, 确定第一邻频区域为 与系统频率隔离为 0MHz时, 与系统工作带宽相同的频率区域。
如图 6所示,第二邻频区域指的是与系统频率隔离为被千扰系统的工作带宽 BW_V时, 与系统工作带宽相同的频率区域。 同理, 可以确定第三邻频区域及接下来的邻频区域。
通常, 确定的邻频区域个数需要使得邻频区域覆盖整个千扰系统带宽。
再进一步确定每个邻频区域的 ACS指标, ACS指标可以通过实际测试或者射频协议 来获取。 一般来说, 对于终端侧和基站侧, 分别有不同的 ACS指标。
对于 E-UTRA系统来说, 3GPP TS 36.101协议中定义了终端侧的 ACS指标, 3GPP TS 36.104协议中定义了基站侧的 ACS指标; 对于 TD-SCDMA系统来说, 3GPP TS 25.102协 议中定义了终端侧的 ACS指标, 3GPP TS 25.105协议中定义了基站侧的 ACS指标;
通过该步骤, 可以最终确定第一邻频区域的 ACS指标 ACS1 , 第二邻频区域的 ACS 指标 ACS2, 第三邻频区域的 ACS指标 ACS3等。
在步骤 203中, 确定千扰系统在被千扰系统的各个邻频区域中的频谱辐射特性及功率 谱密度, 具体包括:
将千扰系统的带宽按照所落入的邻频区域划分为至少一个子区域;
确定千扰系统的频谱辐射特性;
根据千扰系统的频谱辐射特性, 确定千扰系统落入每个子区域中的功率值; 确定每个子区域中千扰系统的功率谱密度。
具体的, 在确定千扰系统的频谱辐射特性时, 可以通过测试的手段、 协议规范等方法 获取千扰系统在工作带宽内的频谱辐射特性。
本发明实施例假定两种情况进行说明, 分别为理想频谱辐射特性和非理想频谱辐射特 性。
在系统工作带宽内, 可以根据千扰系统带宽横跨被千扰系统的邻频区域, 将千扰系统 带宽分割成几个子区域, 分割的原则是千扰系统工作带宽每横跨一个邻频区域, 则将工作
带宽中属于该邻频区域的部分标记为一个子区域。 如图 7所示, 图 7中可以将千扰系统的 辐射区域划分为两个子区域: 子区域 1 和子区域 2, 并确定第 j 个子区域的带宽分别为 BW— I— j。
计算出在被千扰系统天线口处, 千扰系统落入被千扰系统第 j邻频功率值为 P j , 该 值可以通过积分发射机频谱辐射模板的方法计算出发射功率值, 结合千扰系统发射机与被 千扰系统接收机之间的路径损耗求得, 计算方法如下:
„ TxPower /'
P j =
― Pathloss 其中, TxPowerJ为第 j个子区域中的发射功率值, Pathloss为千扰系统发射机与被千 扰系统接收机之间的路径损耗。
每个子区域的功率谱密度分别为 Ρ_ ¾«· _ · , 其计算方法可以表示为:
P density j = ρ」
BW _I _j 其中, P」为千扰系统第 j个子区域中的功率值, BW_I」为第 j个子区域的带宽。 当频谱辐射特性是理想情况时, 如图 8所示, 频谱辐射模板在工作带宽内是平的, 此 时, 系统功率谱密度可以计算为:
P density = 尸
BW I 其中 _ /为千扰系统的工作带宽, P为千扰系统在系统工作带宽内的总发射功率在 到达被千扰系统天线口处的实际功率, 该值可以通过积分发射机频谱辐射模板的方法确定 出发射功率值, 结合千扰系统发射机与被千扰系统接收机之间的路径损耗求得, 计算方法 如下:
p _ TxPower
Pathloss 其中, TxPower为发射功率值, Pathloss 为千扰系统发射机与被千扰系统接收机之间 的路径损耗。
在步骤 S204中, 根据各个邻频区域中功率谱密度及各个邻频区域的 ACS指标确定被 千扰系统接收的总千扰功率, 具体包括:
根据各个邻频区域中功率谱密度及各个邻频区域的 ACS 指标确定被千扰系统在每个 邻频区域上实际接收的千扰功率;
根据被千扰系统在每个邻频区域上实际接收的千扰功率确定被千扰系统接收的总千 扰功率。
具体的, 在没有千扰系统子区域的邻频区域中, 确定该邻频区域上被千扰系统实际接
收功率为 0, 在具有千扰系统子区域的邻频区域中, 每个邻频区域上被千扰系统实际接收 功率可以通过下面公式计算得到:
„ . P density j DTT, τ .
Ρ r ^-^- BW I j
ACS _j 其中, P_density」为千扰系统在第 j个子区域中的功率谱密度, ACS」为第 j个子区 域所在的邻频区域的 ACS指标, BW_IJ为第 j个子区域的带宽。
被千扰系统实际接收千扰总功率是将所有子区域上被千扰系统实际接收千扰功率汇 总起来, 计算公式如下:
P r = Y(P -dmSlty -J BW I j)
- ACS J 其中, P_density」为千扰系统在第 j个子区域中的功率谱密度, ACS」为第 j个子区 域所在的邻频区域的 ACS指标, BW_IJ为第 j个子区域的带宽。
在步骤 S205中, 等效 ACS可以表示为千扰系统总的发射功率和被千扰系统接收到系 统外千扰的总功率之比, 用如下的计算公式进行计算:
H density _j "BW_I _j)
ACS =
P r 其中, P_density」为千扰系统在第 j个子区域中的功率谱密度, BW_I」为第 j个子区 域的带宽, P_r是被千扰系统实际接收千扰总功率。
当频谱辐射特性是理想情况时, 即频谱辐射模板在工作带宽内是平的, 此时, 千扰系 统发射功率为 P , 则 ACS可以计算为:
ACS
P r 其中, P_r是被千扰系统实际接收千扰总功率。
通过上述的推导可以知道, 如果以被千扰系统天线口处的接收功率为参考点, 那所有 接收功率都需要由发射功率除以相同的路径损耗。 那么, 如果以发射天线口处的功率为参 考点, ACS的计算方法和上面的计算过程一致, 区别是不需要用发射功率除以相同的路径 损耗。 因此, 以千扰系统发射功率来计算 ACS和以千扰系统信号到达被千扰系统接收天线 口处的发射功率来计算 ACS是一致的。
基于同一发明构思, 本发明实施例中还提供了一种确定邻道选择性的装置, 由于该装 置解决问题的原理与本发明实施例确定邻道选择性的方法相似, 因此该装置的实施可以参 见方法的实施, 重复之处不再赘述。
本发明实施例还相应提供一种确定邻道选择性的装置, 如图 9所示, 包括: 带宽及频率间隔确定单元 901 , 用于确定千扰系统信道带宽、 被千扰系统信道带宽以
及两个系统之间的频率间隔;
邻频区域确定单元 902, 用于确定被千扰系统的各个邻频区域及各个邻频区域的 ACS 指标;
功率谱密度确定单元 903 , 用于确定千扰系统在被千扰系统的各个邻频区域中的频谱 辐射特性及功率谱密度;
总千扰功率确定单元 904, 用于根据各个邻频区域中的功率谱密度及各个邻频区域的 ACS指标确定被千扰系统接收的总千扰功率;
邻道选择性确定单元 905 , 用于根据被千扰系统接收的总千扰功率确定邻道选择性。 其中, 两个系统之间的频率间隔, 具体为:
两个系统距离最近的信道边缘的频率之间的差值, 信道边缘具体为一个射频载波的最 高或最低频率处。
邻频区域确定单元 902具体用于:
确定被千扰系统的第 N个邻频区域为与被千扰系统距离 N-1个被千扰系统的系统带宽 的区域, 每个邻频区域的带宽与被千扰系统的系统带宽相同。
功率谱密度确定单元 903具体用于:
将千扰系统的带宽按照所落入的邻频区域划分为至少一个子区域;
确定千扰系统的频谱辐射特性;
根据千扰系统的频谱辐射特性, 确定千扰系统落入每个子区域中的功率值; 确定每个子区域中千扰系统的功率谱密度。
总千扰功率确定单元 904具体用于:
根据各个邻频区域中功率谱密度及各个邻频区域的 ACS 指标确定被千扰系统在每个 邻频区域上实际接收的千扰功率;
根据被千扰系统在每个邻频区域上实际接收的千扰功率确定被千扰系统接收的总千 扰功率。
本发明实施例提供一种确定邻道选择性的方法及装置, 确定被千扰系统的各个邻频区 域后 , 分别确定千扰系统在被千扰系统的各个邻频区域中的频谱辐射特性及功率谱密度; 进而较准确的确定出被千扰系统接收的总千扰功率, 根据该总千扰功率确定邻道选择性, 进而提高邻道选择性参数的准确性, 提高邻频千扰评估的准确性。
本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或计算机程序产 品。 因此, 本发明可釆用完全硬件实施例、 完全软件实施例、 或结合软件和硬件方面的实 施例的形式。 而且, 本发明可釆用在一个或多个其中包含有计算机可用程序代码的计算机 可用存储介盾 (包括但不限于磁盘存储器、 CD-ROM、 光学存储器等)上实施的计算机程 序产品的形式。
本发明是参照根据本发明实施例的方法、 设备(系统)、 和计算机程序产品的流程图 和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图和 /或方框图中的每一流 程和 /或方框、 以及流程图和 /或方框图中的流程和 /或方框的结合。 可提供这些计算机 程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器 以产生一个机器, 使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用 于实现在流程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方 式工作的计算机可读存储器中, 使得存储在该计算机可读存储器中的指令产生包括指令装 置的制造品, 该指令装置实现在流程图一个流程或多个流程和 /或方框图一个方框或多个 方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机 或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理, 从而在计算机或其他 可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和 /或方框图一个 方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了基本创造性概 念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权利要求意欲解释为包括优选 实施例以及落入本发明范围的所有变更和修改。
显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和 范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。
Claims
1、 一种确定邻道选择性的方法, 其特征在于, 包括:
确定千扰系统信道带宽、 被千扰系统信道带宽以及两个系统之间的频率间隔; 确定所述被千扰系统的各个邻频区域及各个邻频区域的 ACS指标;
确定所述千扰系统在所述被千扰系统的各个邻频区域中的频谱辐射特性及功率谱密 度;
根据各个邻频区域中的功率谱密度及各个邻频区域的 ACS 指标确定所述被千扰系统 接收的总千扰功率;
根据所述被千扰系统接收的总千扰功率确定邻道选择性。
2、 如权利要求 1所述的方法, 其特征在于, 所述两个系统之间的频率间隔, 具体为: 两个系统距离最近的信道边缘的频率之间的差值, 所述信道边缘具体为一个射频载波 的最高或最低频率处。
3、 如权利要求 1 所述的方法, 其特征在于, 所述确定所述被千扰系统的各个邻频区 域, 具体包括:
确定所述被千扰系统的第 N个邻频区域为与所述被千扰系统距离 N-1个被千扰系统的 系统带宽的区域, 每个邻频区域的带宽与所述被千扰系统的系统带宽相同。
4、 如权利要求 1 所述的方法, 其特征在于, 所述确定所述千扰系统在所述被千扰系 统的各个邻频区域中的频谱辐射特性及功率语密度, 具体包括:
将所述千扰系统的带宽按照所落入的邻频区域划分为至少一个子区域;
确定所述千扰系统的频谱辐射特性;
根据所述千扰系统的频谱辐射特性, 确定所述千扰系统落入每个子区域中的功率值; 确定每个子区域中千扰系统的功率谱密度。
5、 如权利要求 1 所述的方法, 其特征在于, 所述根据各个邻频区域中功率谱密度及 各个邻频区域的 ACS指标确定所述被千扰系统接收的总千扰功率, 具体包括:
根据各个邻频区域中功率谱密度及各个邻频区域的 ACS 指标确定所述被千扰系统在 每个邻频区域上实际接收的千扰功率;
根据所述被千扰系统在每个邻频区域上实际接收的千扰功率确定所述被千扰系统接 收的总千扰功率。
6、 一种确定邻道选择性的装置, 其特征在于, 包括:
带宽及频率间隔确定单元, 用于确定千扰系统信道带宽、 被千扰系统信道带宽以及两 个系统之间的频率间隔;
邻频区域确定单元,用于确定所述被千扰系统的各个邻频区域及各个邻频区域的 ACS 功率谱密度确定单元, 用于确定所述千扰系统在所述被千扰系统的各个邻频区域中的 频谱辐射特性及功率谱密度;
总千扰功率确定单元,用于根据各个邻频区域中的功率谱密度及各个邻频区域的 ACS 指标确定所述被千扰系统接收的总千扰功率;
邻道选择性确定单元, 用于根据所述被千扰系统接收的总千扰功率确定邻道选择性。
7、 如权利要求 6所述的装置, 其特征在于, 所述两个系统之间的频率间隔, 具体为: 两个系统距离最近的信道边缘的频率之间的差值, 所述信道边缘具体为一个射频载波 的最高或最低频率处。
8、 如权利要求 6 所述的装置, 其特征在于, 所述邻频区域确定单元确定所述被千扰 系统的各个邻频区域, 具体包括:
确定所述被千扰系统的第 N个邻频区域为与所述被千扰系统距离 N-1个被千扰系统的 系统带宽的区域, 每个邻频区域的带宽与所述被千扰系统的系统带宽相同。
9、 如权利要求 6所述的装置, 其特征在于, 所述功率谱密度确定单元具体用于: 将所述千扰系统的带宽按照所落入的邻频区域划分为至少一个子区域;
确定所述千扰系统的频谱辐射特性;
根据所述千扰系统的频谱辐射特性, 确定所述千扰系统落入每个子区域中的功率值; 确定每个子区域中千扰系统的功率谱密度。
10、 如权利要求 6所述的装置, 其特征在于, 所述总千扰功率确定单元具体用于: 根据各个邻频区域中功率谱密度及各个邻频区域的 ACS 指标确定所述被千扰系统在 每个邻频区域上实际接收的千扰功率;
根据所述被千扰系统在每个邻频区域上实际接收的千扰功率确定所述被千扰系统接 收的总千扰功率。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210057406.4 | 2012-03-06 | ||
CN201210057406.4A CN102611654B (zh) | 2012-03-06 | 2012-03-06 | 一种确定邻道选择性的方法及装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013131433A1 true WO2013131433A1 (zh) | 2013-09-12 |
Family
ID=46528814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/071849 WO2013131433A1 (zh) | 2012-03-06 | 2013-02-25 | 一种确定邻道选择性的方法及装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102611654B (zh) |
WO (1) | WO2013131433A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102611654B (zh) * | 2012-03-06 | 2014-11-12 | 电信科学技术研究院 | 一种确定邻道选择性的方法及装置 |
CN104185205B (zh) * | 2014-08-15 | 2017-12-05 | 大唐移动通信设备有限公司 | 一种宽频干扰信号带宽检测方法及装置 |
US9876659B2 (en) * | 2015-06-25 | 2018-01-23 | Intel Corporation | Interference estimation |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1770669A (zh) * | 2004-11-03 | 2006-05-10 | 展讯通信(上海)有限公司 | Td-scdma射频系统接收部分性能监测方法 |
JP2010239330A (ja) * | 2009-03-31 | 2010-10-21 | Nec Corp | 妨害波除去装置及びそれを用いた受信機及び妨害波除去方法 |
CN102137499A (zh) * | 2011-04-14 | 2011-07-27 | 电信科学技术研究院 | 一种进行干扰协调的方法、系统和设备 |
CN102611654A (zh) * | 2012-03-06 | 2012-07-25 | 电信科学技术研究院 | 一种确定邻道选择性的方法及装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7418269B2 (en) * | 2003-07-03 | 2008-08-26 | Nortel Networks Limited | Uplink interference reduction in wireless communications systems |
US7995529B2 (en) * | 2007-03-27 | 2011-08-09 | Clear Wireless Llc | System and method for cell planning in a wireless communication network |
-
2012
- 2012-03-06 CN CN201210057406.4A patent/CN102611654B/zh active Active
-
2013
- 2013-02-25 WO PCT/CN2013/071849 patent/WO2013131433A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1770669A (zh) * | 2004-11-03 | 2006-05-10 | 展讯通信(上海)有限公司 | Td-scdma射频系统接收部分性能监测方法 |
JP2010239330A (ja) * | 2009-03-31 | 2010-10-21 | Nec Corp | 妨害波除去装置及びそれを用いた受信機及び妨害波除去方法 |
CN102137499A (zh) * | 2011-04-14 | 2011-07-27 | 电信科学技术研究院 | 一种进行干扰协调的方法、系统和设备 |
CN102611654A (zh) * | 2012-03-06 | 2012-07-25 | 电信科学技术研究院 | 一种确定邻道选择性的方法及装置 |
Non-Patent Citations (1)
Title |
---|
XU, WANLI ET AL.: "Coexistence Interference Analysis of IEEE 802.11 and LTE", MOBILE COMMUNICATIONS, no. 22, 31 October 2010 (2010-10-31), pages 39 - 44 * |
Also Published As
Publication number | Publication date |
---|---|
CN102611654B (zh) | 2014-11-12 |
CN102611654A (zh) | 2012-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11064366B2 (en) | Mechanisms for LAA/LTE-U detection to mitigate impact on Wi-Fi performance | |
US9544105B2 (en) | Enhanced receiver adaptation based on relation between signals from aggressor and victim cells | |
US9351185B2 (en) | LTE carrier aggregation configuration on TV white space bands | |
WO2015106715A1 (zh) | 信号传输方法和装置 | |
EP3843314A1 (en) | In-device coexistence with other technologies in lte license assisted access operation | |
EP3353940B1 (en) | Communication terminal, system node and methods therein | |
CN103947272B (zh) | 终端设备、终端设备处实施的方法和计算机可读介质 | |
WO2017028899A1 (en) | Multi-channel listen-before-talk arrangements for licensed-assisted access in lte | |
JP2014527380A (ja) | 複数の無線通信技術の共存のための、不要な干渉のタイプによって特徴づけられる周波数帯域の使用 | |
CN112889303A (zh) | 用于无线通信的电子设备和方法、计算机可读存储介质 | |
CN115088314B (zh) | 基于mac-ce的路径损耗参考信号(pl rs)更新的可应用的时间 | |
US11956185B2 (en) | Time-division duplexing (TDD) detection in wireless distributed communications systems (DCS) to synchronize TDD downlink and uplink communications, and related methods | |
WO2013131433A1 (zh) | 一种确定邻道选择性的方法及装置 | |
US20200366438A1 (en) | Adaptation Of On/Off Mask For NR With Different Numerologies | |
US9357554B2 (en) | Method and apparatus for coexistence of multiple operating entity systems | |
US9877289B2 (en) | User apparatus, mobile communication system, and signaling value application method | |
US20230073106A1 (en) | Information transmission method, network device, and terminal device | |
WO2013060016A1 (en) | Methods and apparatuses for provision of an effective pathloss offset calculation mechanism for a communication system | |
WO2021259239A1 (zh) | 驻波比计算方法、装置、网络设备和存储介质 | |
CN107113275A (zh) | 一种数据传输方法、装置和系统 | |
Wicaksono et al. | Scanner based load estimation for LTE networks | |
WO2023283755A1 (en) | Systems and methods for downlink positioning | |
CN106688262B (zh) | 无线系统中消除邻带干扰的处理方法和装置 | |
CN102378194A (zh) | 一种链路传输方法和装置 | |
WO2019027494A1 (en) | WI-FI ACTIVATION ACCORDING TO THE PRECISION OF GEOLOCATION |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13757633 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13757633 Country of ref document: EP Kind code of ref document: A1 |