WO2013131392A1 - 直流电源动态模拟仿真系统和直流电源试验系统 - Google Patents

直流电源动态模拟仿真系统和直流电源试验系统 Download PDF

Info

Publication number
WO2013131392A1
WO2013131392A1 PCT/CN2012/086786 CN2012086786W WO2013131392A1 WO 2013131392 A1 WO2013131392 A1 WO 2013131392A1 CN 2012086786 W CN2012086786 W CN 2012086786W WO 2013131392 A1 WO2013131392 A1 WO 2013131392A1
Authority
WO
WIPO (PCT)
Prior art keywords
cabinet
power supply
test
power
tested
Prior art date
Application number
PCT/CN2012/086786
Other languages
English (en)
French (fr)
Inventor
秦睿
郑伟
张忠元
王维洲
智勇
马超
杨勇
崔力心
安亮亮
拜润卿
梁琛
Original Assignee
甘肃省电力公司电力科学研究院
甘肃省电力公司
国家电网公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 甘肃省电力公司电力科学研究院, 甘肃省电力公司, 国家电网公司 filed Critical 甘肃省电力公司电力科学研究院
Priority to CA2866400A priority Critical patent/CA2866400A1/en
Publication of WO2013131392A1 publication Critical patent/WO2013131392A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source

Definitions

  • the present invention relates to the field of power equipment protection, and in particular to a DC power source dynamic simulation system and a DC power source test system.
  • BACKGROUND A DC power supply system is an important device for ensuring safe and stable operation of a power grid.
  • the DC system provides the closing power supply for the circuit breaker, and provides DC power for relay protection, automatic devices, communication devices, etc.; in case of failure, especially in the case of AC power interruption, the DC system is relay protection and automatic device.
  • the circuit breaker control device and accident lighting provide a safe and reliable DC power supply.
  • the DC system is the basic guarantee for the relay protection of the power system, the automatic device and the correct operation of the circuit breaker.
  • the circuit breaker that operates in this range is specified. Or the fuse operates, while the other circuit breakers or fuses do not operate, thereby keeping the number of loads affected by the fault to a minimum.
  • Different power supply departments have different technical requirements for the selection of substation battery capacity, DC screen, power supply mode of measurement and control protection screen, connection mode of DC circuit and importance of load, and their distribution positions are different, resulting in the cross-sectional area and length of wires and conductors. Different, the difference of these factors will change the DC loop resistance value, and the change of the resistance value will cause the short-circuit current value to change accordingly, so that the short-circuit current of each substation is different.
  • One method is to use a one-to-one circuit breaker on the feeder screen (or the distribution screen) in the DC system and the circuit breaker on the measurement and control protection screen.
  • the power supply method the problem caused by this method is: There are two wires between each pair of circuit breakers, and the distance between the feed screen (or the distribution screen) and the measurement and control protection screen is less than ten meters, and more than one hundred meters.
  • Another way is to blindly increase the rated current of the upper circuit breaker, and increase the difference between the instantaneous setting values of the upper and lower circuit breakers to ensure the selectivity requirement. This will not only cause the sensitivity of the upper circuit breaker. Not enough, causing the circuit breaker to refuse to move, and the high-capacity switching device is costly and economical;
  • a DC power supply dynamic simulation and simulation system including a battery, a charging cabinet, a control cabinet, a test cabinet, a resistance cabinet, a feeder cabinet, an accident lighting cabinet, a communication power cabinet, and an AC distribution.
  • the electric cabinet, the communication power cabinet and the accident lighting cabinet are electrically connected to the AC power distribution cabinet, and the charging cabinet converts the alternating current of the alternating current power distribution cabinet into direct current, and saves the direct current electricity to the battery, and the battery and the charging cabinet pass the selection switch as the test cabinet.
  • the feeder cabinet provides DC power.
  • the sliding resistor in the resistor cabinet adjusts the current in the test cabinet circuit.
  • the control cabinet controls the test cabinet through the control switch.
  • the feeder cabinet is electrically connected to the battery.
  • the batteries are two sets.
  • the test cabinet is a circuit breaker and fuse differential fit test platform.
  • the system is coupled to a computer that controls the entire system.
  • a multi-channel recorder is connected to the circuit of the resistor cabinet and the test cabinet, and the multi-channel recorder separately obtains current waveforms of the adjustable resistance loop and the test loop for real-time recording of the range matching The trend of current change during the test provides a basis for analyzing the extremely poor coordination of DC power system protection components.
  • a DC power supply test system is also provided.
  • the DC power supply test system comprises: a test cabinet for arranging a circuit breaker to be tested and a fuse to be tested, the test cabinet comprising a plurality of control switches for controlling connection of the circuit breaker to be tested and the fuse to be tested.
  • the resistor cabinet is used for arranging the resistor, and the resistor is connected to the DC circuit in which the circuit breaker to be tested and the fuse to be tested are located to adjust the DC test current;
  • the control cabinet is connected to the test cabinet and is used to send to the plurality of control switches. control signal.
  • the DC power supply test system further includes: a battery, respectively connected to the test cabinet and the resistor cabinet, for supplying DC power to the test cabinet and the resistor cabinet; and a charging cabinet connected to the battery for charging the battery.
  • the DC power supply test system further includes: a multi-channel recorder, wherein each channel of the recorder is used to acquire and save a current waveform of the DC circuit.
  • the DC power supply test system further includes: an analysis check module, connected to the test cabinet, configured to acquire action data of the circuit breaker to be tested and the fuse to be tested, and analyze the circuit breaker to be tested and the fuse to be tested according to the action data. Protection sensitivity of the device.
  • the above analysis and verification module is further configured to obtain equipment parameters of the DC power supply test system, and analyze whether the equipment in the DC power supply test system meets the requirements of the power design specification according to the equipment parameters.
  • the device parameter includes a parameter of the wire
  • the analysis check module is further configured to analyze whether the cross-sectional size of the wire meets the requirements of the power design specification.
  • the analysis and verification module is further configured to analyze the selectivity of the upper and lower protection devices in the DC power supply test system according to the motion data.
  • the DC power supply test system further includes: a result output module, connected to the analysis check module, configured to output an analysis result of the analysis check module.
  • FIG. 1 is a schematic diagram showing the electrical structure of a DC power supply dynamic simulation system according to an embodiment of the present invention. Among them: 1- breaker test sample; 2-fuse test sample. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The preferred embodiments of the present invention are described with reference to the accompanying drawings. As shown in FIG.
  • the DC power supply dynamic simulation simulation system in this embodiment includes a battery, a charging cabinet, a control cabinet, a test cabinet, a resistance cabinet, a feeder cabinet, an accident lighting cabinet, a communication power cabinet, and an AC power distribution cabinet, and communication.
  • the power cabinet and the accident lighting cabinet are electrically connected to the AC power distribution cabinet.
  • the charging cabinet converts the AC power of the AC power distribution cabinet into DC power, and saves the DC power into the battery.
  • the battery and the charging cabinet provide the test cabinet and the feeder cabinet through the selection switch.
  • the DC power supply, the sliding resistor in the resistance cabinet adjusts the current in the circuit of the test cabinet, and the control cabinet controls the test cabinet through the control switch, and the feeder cabinet is electrically connected to the battery.
  • the battery is two sets, which are reserved for each other.
  • the test cabinet is a test bench for the circuit breaker and the fuse.
  • the system is connected to a computer that controls the entire system.
  • a multi-channel recorder is connected to the circuit of the resistor cabinet and the test cabinet.
  • the multi-channel recorder obtains the current waveform of the adjustable resistance loop and the test loop respectively, and is used for real-time recording of the current variation trend during the range matching test. It provides a basis for analyzing the extremely poor cooperation of DC power system protection components.
  • the DC power feeding system uses a radiating power supply network. That is, the DC load of each level of the DC system is generally two-way DC power supply. Under normal conditions, the next working mode is in the hot standby state.
  • the standby power supply branch can be automatically put into operation.
  • the system records the event name, action time, event content and other related contents in a sequence of event sequence (SOE), which is convenient for analysis and judgment of faults.
  • SOE sequence of event sequence
  • the system communication function is strong, and it can realize communication of various protocols and different communication media, and can realize communication with other systems.
  • DC grounding detection Real-time detection or display of the grounding branch, grounding resistance value and polarity of the DC power system bus and the branches of each level, and real-time detection of the faulty branch.
  • the feeder short-circuit protection device can correctly distinguish the impact closing current of the AC high-voltage circuit breaker closing circuit and the short-circuit current of the DC system, and can quickly identify and selectively remove the short-circuit fault of the DC power system, and can adjust the system in time. In the operation mode, the DC backup power is automatically input.
  • the circuit breaker can realize local and remote operation.
  • the circuit breaker control device can correctly reflect the short circuit fault of the DC system, and quickly remove the faulty branch road and put in the corresponding standby branch to improve the operational reliability of the system.
  • the operation mode of the DC power feeder realizes real-time monitoring of the computer, that is, the remote or local control of the DC feeder operation mode can be realized, and the DC feeder backup power supply branch is automatically input or cut off, and the state parameters of the DC system bus and each branch are performed.
  • the system is equipped with DC system automatic control and protection device, which can monitor the load current, ground current and grounding resistance of each circuit and control each circuit breaker. It can also perform on-line monitoring of the operating status and operating parameters of the entire DC system, which can realize the "four remote" function.
  • the DC system closing power supply branch and the control power supply branch circuit breaker adopt ABB or equivalent imported products with electric operating mechanism, and the capacity is configured according to the loop parameters.
  • the operation feeder circuit breaker adopts the DC circuit breaker with automatic delay section of Beijing People's Electric Appliance Factory; the DC system should have the automatic switching function of accident lighting.
  • the invention also has a grounding detection function: The automatic real-time detection of the DC system insulation is completed, and the detection process does not cause fluctuations in the voltage of the DC bus to the ground. One-pole grounding and multi-pole grounding line selection, and automatic detection of the feeder branch string. To realize the multi-point ground fault identification, display and alarm in time on the screen, indicating the grounding branch and polarity. Real-time detection of state parameters such as bus voltage and branch current of the DC system.
  • the short circuit protection function of the embodiment of the invention the protection device has the requirements of selectivity, quick action, sensitivity and reliability.
  • the device can classify the two-pole short-circuit faults in the same ground or off-site, and the short-circuit at each level can realize the requirements of stage protection. It can correctly distinguish the high voltage switch, especially the electromagnetic operating mechanism closing circuit, the impact closing current and the short circuit current.
  • the device can realize the setting of the retraction or reclosing time of the branch reclosing.
  • remote computer control can be performed, and the standby power switch is set to soft push plate to retreat.
  • the standby power supply branch automatically inputs the function: After the working branch DC circuit breaker protection action trips, the device can automatically adjust the power supply operation mode of the system in real time, and automatically input the standby branch circuit.
  • the present invention can also be equipped with a flash device on the DC bus as needed.
  • the device can realize automatic generation of data reports and accident recall.
  • Embodiments of the present invention also provide a DC power supply test system.
  • the DC power supply test system comprises: a test cabinet for arranging a circuit breaker to be tested and a fuse to be tested, the test cabinet comprising a plurality of control switches for controlling connection of the circuit breaker to be tested and the fuse to be tested.
  • the resistor cabinet is used for arranging the resistor, and the resistor is connected to the DC circuit in which the circuit breaker to be tested and the fuse to be tested are located to adjust the DC test current;
  • the control cabinet is connected to the test cabinet and is used to send to the plurality of control switches. control signal.
  • the control cabinet can change the connection mode of the components to be tested, such as the circuit breaker and the fuse, and change the resistance value of the resistance in the DC circuit, and finally realize the change of the circuit current, complete the circuit breaker to be tested and test The test work of the fuse.
  • the DC power test system may further include: a battery, respectively connected to the test cabinet and the resistor cabinet, for supplying DC power to the test cabinet and the resistor cabinet; and a charging cabinet connected to the battery for charging the battery.
  • the battery can be two sets, which are reserved for each other.
  • the AC power is supplied by changing the AC power supply to DC power through the battery and the charging cabinet.
  • the DC power supply test system may further include: a multi-channel recorder, wherein each channel of the recorder is used to acquire and save a current waveform of the DC circuit. Recording recorded data provides the basis for further analysis.
  • the DC power supply test system may further include: an analysis check module, connected to the test cabinet, configured to acquire action data of the circuit breaker to be tested and the fuse to be tested, and analyze the circuit breaker to be tested and the fuse to be tested according to the action data. Protection sensitivity.
  • the analysis check module acquires the current and voltage values in the circuit at the same time, and records the action data of the circuit breaker to be tested and the fuse to be tested, and the above action data may include the action content and the action time, thereby correspondingly calculating the original to be tested. Protection sensitivity.
  • the above analysis and verification module can also be used to obtain the equipment parameters of the DC power supply test system, and analyze whether the equipment in the DC power supply test system meets the requirements of the power design specification according to the equipment parameters.
  • the above device parameters can Including the parameters of the wire, the above analysis check module can also be used to analyze whether the cross-sectional size of the wire meets the requirements of the power design specification.
  • the analysis check module can also verify the configuration scheme by data such as the capacity of the battery and the rated value of the switch.
  • the above analysis and verification module can also be used to analyze the selectivity of the upper and lower protection devices in the DC power supply test system based on the motion data.
  • the selectivity of the upper and lower protection devices can be analyzed by using the action data of the circuit breaker to be tested and the fuse to be tested.
  • the DC power supply test system may further include: a result output module, connected to the analysis check module, for outputting an analysis result of the analysis check module.
  • the DC power supply test system of the embodiment of the present invention can only collect, save, and analyze data by the computer, and issue control commands to the entire system.
  • the software part of the computer in the embodiment of the invention can be divided into five major functional modules: a database module, a line configuration module, a protection appliance selection module, a protection appliance analysis check module, a result output module, and the like.
  • the protection electrical analysis check module includes: wire/cable voltage drop check, protection device sensitivity check, rated current check, working voltage check and selective protection check of the upper and lower circuit breakers.
  • the software adopts the concept of modular design, which is convenient for management and maintenance, and lays a foundation for future software upgrades.
  • Database module The database part is the basis of the whole system. It plays the role of providing basic data for line layout and component selection and providing criteria parameters for calibration calculation.
  • the design of the library structure is based on the requirements of the three paradigms of database design, and is planned according to actual needs, to ensure that the addition, modification, deletion and maintenance of the database is simple and easy, and the scalability is good; the data input has validity judgment.
  • Line configuration module According to the structure of the actual DC power system, the line configuration module is divided into four parts: the battery, the feeder screen, the distribution screen and the measurement and control protection screen.
  • the battery module includes a battery and an outlet protection component, a charging device, and a charging circuit switch and a discharging device;
  • the feeding screen includes a feeding screen cable and a feed screen protection switch;
  • the distribution screen includes a distribution screen cable and a distribution screen protection The switch;
  • the test screen includes a test screen cable, a test screen protection switch and a load.
  • Protection appliance selection module After the line is configured, the load current should be set first, and then the components in the DC system should be selected, including protection component selection and wire/cable selection.
  • protection electrical analysis calibration module DC power system selection of the rationality of each component is the main function of the software, the main check content includes wire / cable pressure drop check, protection component sensitivity check, and upper and lower protection components Selective check.
  • Wire/cable voltage drop check The wire/cable voltage drop analysis is mainly due to the fact that in general DC systems, the choice of wire/cable cross-section size is less important, and the pressure drop is too large due to too small cross-section selection. fulfil requirements.
  • the main test of wire/cable voltage drop is based on DL /T 5044-2004 "Technical Regulations for Design of DC System for Power Engineering". Protection component sensitivity check The rated current specification of the protection component should be selected according to the actual working current of the DC system.
  • the so-called sensitivity analysis refers to the check of the single-level protection elemental component, that is, the analysis of whether the protection component will refuse when the fault current occurs in the DC system.
  • To check the sensitivity of the protection components first calculate the amount of short-circuit current throughout the DC power system. After obtaining the short-circuit current values in the DC power supply system, it is necessary to determine the position where the sensitivity of the protection component is the most demanding, that is, the position with the lowest sensitivity. In actual analysis, it is used here as a criterion for checking whether the sensitivity of the protection component meets the requirements.
  • the protective element meets the sensitivity requirements under the most demanding conditions, it proves that the protective element does not have the possibility of refusal.
  • the end of the wire/cable connecting the protection component is used as a criterion. This is because the short-circuit current at the end of the wire/cable is the smallest, and the sensitivity of the protection element is relatively low, which is the most demanding position for judging sensitivity. After determining the sensitivity position, the sensitivity of the protection component can be determined.
  • the protection component is divided into two categories: circuit breaker and fuse.
  • the circuit breaker is divided into two types: protection and three-stage protection.
  • the selective analysis of the upper and lower protection components can be used to check the selectivity of the upper and lower protection components in the software, and the current limiting characteristic can be introduced, so that the judgment result is closer to the actual situation.
  • the most severe position at this time refers to the position where the short-circuit current is the largest, which is because the short-circuit current is higher. Bigger is more likely to cause the upper protection element to malfunction. Therefore, in the selective judgment, the lower part of the lower stage switch is taken as the most severe condition position, where the short-circuit current is the largest. 5.
  • the output content mainly includes the line configuration diagram output and the analysis report output.
  • the circuit configuration diagram can be a picture format for visually displaying the layout of the entire DC power system, component selection and calibration of the level difference;
  • the analysis report is an Excel format file, recording component selection information and checking conclusions, technology Personnel can use this information as a reference to aid in the design process of the DC power system.
  • the present invention has the following effects:
  • Data processing uses algorithms such as breadth-first, depth-first, and topological sorting to improve the control accuracy and increase the millisecond conversion time.
  • CDT and 103 stipulations are adopted for remote signaling. Increased compatibility with other devices in the centralized control center;
  • the three-stage protection circuit breaker is added to the terminal current identification to improve the reliability of hardware and software.
  • the technical scheme of the invention realizes the test of the breaking characteristics of the commonly used DC circuit breakers and fuses of different specifications of different manufacturers by simulating the actual operating environment of the distribution DC system, and realizes the step difference coordination between the above circuit breakers and the fuses. Test of the scheme; set up the DC system level difference matching test station, through the large-scale differential matching test of the DC circuit breaker and the fuse under the DC short-circuit condition, to master the domestic and imported different models of different manufacturers commonly used in the power engineering DC power supply system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

本发明公开了一种直流电源动态模拟仿真系统和直流电源试验系统。该直流电源动态模拟仿真系统包括蓄电池、充电柜、控制柜、试验柜、电阻柜、馈线柜、事故照明柜、通信电源柜和交流配电柜,通信电源柜、事故照明柜电连接在交流配电柜上,充电柜将交流配电柜的交流电转换为直流电,并将该直流电储存到蓄电池中,蓄电池和充电柜通过选择开关为试验柜、馈线柜提供直流电源,电阻柜中的滑动电阻调节试验柜电路中的电流大小,控制柜通过控制开关对试验柜进行控制,馈线柜电连接在蓄电池上。为直流系统保护元件的配置推荐合理的具有选择性保护的方案。以达到在电力应用中实现安全、实用和精确的目的。

Description

直流电源动态模拟仿真系统和直流电源试验系统 技术领域 本发明涉及电力设备保护领域, 具体地, 涉及一种直流电源动态模拟仿真系统和 直流电源试验系统。 背景技术 直流电源系统是保证电网安全稳定运行的重要设备。 正常运行时, 直流系统为断 路器提供合闸电源, 为继电保护及自动装置、 通讯装置等提供直流电源; 故障时, 特 别是交流电源中断的情况下, 直流系统为继电保护及自动装置、 断路器的控制装置、 事故照明提供安全可靠的直流电源。 直流系统是电力系统继电保护、 自动装置和断路 器正确动作的基本保证。 但如果直流回路保护设备选择不当、 级差配合不合理, 在故障情况下保护设备越 级动作或不能正确切除短路故障, 会导致引发或扩大电网事故。 由于发电厂和变电所 直流系统的供电内容多, 回路分布广, 在一个直流网络中往往有许多支路需要设置断 路器或熔断器来进行保护, 并往往分成三至四级串联, 这就存在着保护电器如何正确 选型及上、 下级之间选择性保护的配合问题。 所谓选择性保护是指配电系统中两个或几个断路器或熔断器之间的电流一时间特 性的配合, 当在给定范围内出现过电流故障时, 指定在这个范围动作的断路器或熔断 器动作, 而其它的断路器或熔断器不动作, 从而将受故障影响的负载数目保持在最小 程度。 不同供电部门对变电站蓄电池容量的选取、 直流屏及测控保护屏供电方式、 直 流电路的连接方式和负载重要程度等技术要求不同, 其分布位置就相应不同, 导致导 线、 导体选取的截面积、 长度都不一样, 这些因素的差异, 都会使直流回路电阻值产 生变化, 电阻值的变化使短路电流值也随之产生变化, 致使每个变电站的短路电流都 不一样。 为满足级差配合的选择性要求, 主要采取以下三种方法: ( 1 )一种方法是直流系统中馈电屏(或分电屏)上断路器与测控保护屏上断路器 采用一对一的供电方式, 该方式导致的问题是: 每对断路器之间都有二根导线, 馈电 屏 (或分电屏) 与测控保护屏之间的距离小则十几米, 多则上百米, 这又多又长的导 线捆在一起, 经过多年的运行使用会产生复杂而又混乱问题, 如: 导线与断路器连接 松动; 导线的绝缘下降; 意外的破损; 交织在一起的导线隐藏着多路相互短路或电弧 放电着火等危害, 将会导致测控保护屏全面失电的重大隐患;
(2)另一种方式是盲目加大上级断路器的额定电流, 通过加大上、下级断路器瞬 动整定值的差值来保证选择性要求,这样做不仅有可能会造成上级断路器灵敏度不够, 导致断路器拒动, 且大容量开关器件成本高, 经济性较差;
(3 )为提高级差配合的选择性要求,还有一种方式是为了跟上级主电屏或分电屏 上的具有 C型脱扣器特性的小型直流断路器实现选择性保护, 测控保护屏选用具有 B 型脱扣特性的小型直流断路器, 此种方式存在着误动的风险。 基于以上原因,直流系统的保护的选择性对直流系统的正常运行有着重要的意义, 但是现有技术中缺少对直流电源系统的测试手段, 造成了直流电源系统建设缺少测试 进行验证。 针对现有技术中缺少针对直流电源系统的试验环境的问题, 目前尚未提出 有效的解决手段。 发明内容 本发明针对上述问题, 提出一种直流电源动态模拟仿真系统, 从而为不同型号的 断路器与断路器、 断路器与熔断器的级差配合提供试验平台, 使其在电力应用中实现 安全、 实用和精确的优点。 为实现上述目的, 本发明采用的技术方案是: 一种直流电源动态模拟仿真系统, 包括蓄电池、 充电柜、 控制柜、 试验柜、 电阻 柜、 馈线柜、 事故照明柜、 通信电源柜和交流配电柜, 通信电源柜、 事故照明柜电连 接在交流配电柜上, 充电柜将交流配电柜的交流电转换为直流电, 并将该直流电储蓄 到蓄电池中, 蓄电池和充电柜通过选择开关为试验柜、 馈线柜提供直流电源, 电阻柜 中的滑动电阻调节试验柜电路中的电流大小,控制柜通过控制开关对试验柜进行控制, 馈线柜电连接在蓄电池上。 根据本发明的优选实施例, 蓄电池为两套。 根据本发明的优选实施例, 试验柜为断路器和熔断器极差配合试验平台。 根据本发明的优选实施例, 系统连接有控制整个系统的计算机。 根据本发明的优选实施例, 电阻柜和试验柜的电路中连接有多通道录波仪, 该多 通道录波仪分别获取可调电阻回路和试验回路的电流波形, 用于实时记录极差配合试 验过程中的电流变化趋势, 为分析直流电源系统保护元件极差配合提供依据。 根据本发明的另一个方面, 还提供了一种直流电源试验系统。 该直流电源试验系 统包括: 试验柜, 用于布置待测断路器和待测熔断器, 试验柜包括多个控制开关, 该 多个控制开关用于控制待测断路器和待测熔断器的连接方式; 电阻柜,用于布置电阻, 上述电阻连接待测断路器和待测熔断器所在的直流电路中, 以调整直流试验电流; 控 制柜, 与试验柜连接, 用于向多个控制开关发送控制信号。 进一步地, 上述直流电源试验系统还包括: 蓄电池, 与试验柜和电阻柜分别连接, 用于向试验柜和电阻柜提供直流电源; 充电柜, 与蓄电池连接, 用于为蓄电池充电。 进一步地, 上述直流电源试验系统还包括: 多通道录波仪, 该录波仪的各通道分 别用于获取并保存直流电路的电流波形。 进一步地, 上述直流电源试验系统还包括: 分析校核模块, 与试验柜连接, 用于 获取待测断路器和待测熔断器的动作数据, 并根据动作数据分析待测断路器和待测熔 断器的保护灵敏度。 进一步地, 上述分析校核模块, 还用于获取直流电源试验系统的设备参数, 并根 据设备参数分析直流电源试验系统中设备是否满足电力设计规程的要求。 进一步地, 上述设备参数包括导线的参数, 分析校核模块还用于分析导线的截面 大小是否满足电力设计规程的要求。 进一步地, 上述分析校核模块, 还用于根据动作数据分析直流电源试验系统中上 下级保护器件的选择性。 进一步地, 上述直流电源试验系统还包括: 结果输出模块, 与分析校核模块连接, 用于输出分析校核模块的分析结果。 本发明的技术方案通过模拟配电直流系统的实际运行环境, 实现对常用的不同厂 家不同规格的直流断路器和熔断器的分断特性的测试, 以及实现以上断路器和熔断器 之间的级差配合方案的测试; 搭建直流系统级差配合试验站, 通过对直流断路器和熔 断器在直流短路条件下的大量级差配合试验, 以掌握在电力工程直流电源系统中常用 的不同厂家不同型号的国产、 进口断路器和熔断器在多种组合下的级差配合特性, 探 讨实现直流系统各级保护元件的选择性动作的条件, 为直流系统保护元件的配置推荐 合理的具有选择性保护的方案。 以达到在电力应用中实现安全、 实用和精确的目的。 本发明的其它特征和优点将在随后的说明书中阐述, 并且, 部分地从说明书中变 得显而易见, 或者通过实施本发明而了解。 本发明的目的和其他优点可通过在所写的 说明书、 权利要求书、 以及附图中所特别指出的结构来实现和获得。 下面通过附图和实施例, 对本发明的技术方案做进一步的详细描述。 附图说明 附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本发明的实 施例一起用于解释本发明, 并不构成对本发明的限制。 在附图中: 图 1为本发明实施例所述的直流电源动态模拟仿真系统的电气结构示意图。 其中: 1-断路器试品; 2-熔断器试品。 具体实施方式 以下结合附图对本发明的优选实施例进行说明, 应当理解, 此处所描述的优选实 施例仅用于说明和解释本发明, 并不用于限定本发明。 如图 1所示, 本实施例中的直流电源动态模拟仿真系统, 包括蓄电池、 充电柜、 控制柜、 试验柜、 电阻柜、 馈线柜、 事故照明柜、 通信电源柜和交流配电柜, 通信电 源柜、 事故照明柜电连接在交流配电柜上, 充电柜将交流配电柜的交流电转换为直流 电, 并将该直流电储蓄到蓄电池中, 蓄电池和充电柜通过选择开关为试验柜、 馈线柜 提供直流电源, 电阻柜中的滑动电阻调节试验柜电路中的电流大小, 控制柜通过控制 开关对试验柜进行控制, 馈线柜电连接在蓄电池上。 其中, 蓄电池为两套, 互为备用。 试验柜为断路器和熔断器极差配合试验平台。 系统连接有控制整个系统的计算机。 电阻柜和试验柜的电路中连接有多通道录波仪, 该多通道录波仪分别获取可调电 阻回路和试验回路的电流波形, 用于实时记录极差配合试验过程中的电流变化趋势, 为分析直流电源系统保护元件极差配合提供依据。 直流电源馈电系统采用辐射型供电网络。 即直流系统各级的直流负荷一般由两路 直流电源, 在正常情况下一路工作, 另一路处于热备用状态; 若工作支路出现短路跳 闸等异常情况下, 备用供电支路能够自动的投入运行; 系统以事件顺序记录 (SOE) 方式详尽记录事件名称、 动作时间、 事件内容等相 关内容, 便于进行故障的分析、 判断。 系统通讯功能强, 可以实现多种规约、 不同通 讯介质的通讯, 可以实现同其它系统的通讯。 直流接地检测: 对直流电源系统母线及各级支路的接地支路、 接地电阻值、 极性 等进行实时检测或显示, 并对故障支路情况进行实时检测。 馈线短路保护装置由能够正确区分交流高压断路器合闸回路的冲击合闸电流和直 流系统的短路电流, 能够实现对直流电源系统短路故障的快速识别与有选择地切除, 并能及时调整系统的运行方式, 将直流备用电源自动投入。 断路器可实现本地、远方操作, 断路器控制装置能正确反映直流系统的短路故障, 并快速切除故障支路, 投入相应的备用支路, 以提高系统的运行可靠性。 直流电源馈线的运行方式实现计算机实时监控, 即能够实现远方或就地对直流馈 线运行方式的控制, 将直流馈线备用电源支路自动投入或切除, 对直流系统母线及各 支路的状态参量进行监视。 系统配置直流系统自动控制与保护装置, 能监测各个回路的负荷电流、接地电流、 接地电阻, 并控制各回路断路器。 还能对整个直流系统的运行状态及运行参数实施在 线监测, 可以实现 "四遥"功能。 直流系统合闸电源支路和控制电源支路断路器采用 ABB或同等进口产品,带电动 操作机构, 容量按回路参数配置。 操作馈电支路断路器采用北京人民电器厂带自动延 时分段的直流断路器; 直流系统应具备事故照明自动切换功能。 本发明还具有接地检测功能: 完成直流系统绝缘的自动实时检测, 检测过程不造 成对直流母线对地电压的波动。 一极接地和多极接地选线, 并能够实现馈电支路串线 的自动检测。 实现多点接地故障的判别, 在画面中及时显示和报警, 指出接地支路及 极性。 实现直流系统母线电压、 支路电流等状态参数的实时检测。 本发明实施例具有的短路保护功能: 保护装置具备选择性、 速动性、 灵敏性、 可 靠性的要求。 能够分级切除同地或异地两极短路故障, 各级短路能实现阶段式保护的 要求。能够正确区分高压开关尤其是电磁操动机构合闸回路冲击合闸电流和短路电流。 直流支路短路跳闸后, 装置能够实现该支路重合闸的投退或重合闸时间的整定。 对直 流系统断路器状态能进行远方计算机控制, 备用电源开关均设置软压板投退。 备用电 源支路自动投入功能: 工作支路直流断路器保护动作跳闸后, 装置能自动实时调整系 统的供电运行方式, 将备用支路自动投入。 本发明还可以根据需要在直流母线加装闪光装置。 装置能实现数据报表的自动生 成和事故追忆。 本发明的实施例还提供了一种直流电源试验系统。 该直流电源试验系统包括: 试 验柜, 用于布置待测断路器和待测熔断器, 试验柜包括多个控制开关, 该多个控制开 关用于控制待测断路器和待测熔断器的连接方式; 电阻柜, 用于布置电阻, 上述电阻 连接待测断路器和待测熔断器所在的直流电路中, 以调整直流试验电流; 控制柜, 与 试验柜连接, 用于向多个控制开关发送控制信号。 控制柜通过对控制开关的操作,可以改变待测元件如断路器、熔断器的连接方式, 同时改变直流电路中电阻的阻值, 最终实现对电路电流的改变, 完成对待测断路器和 待测熔断器的试验工作。 上述直流电源试验系统还可以包括: 蓄电池, 与试验柜和电阻柜分别连接, 用于 向试验柜和电阻柜提供直流电源; 充电柜, 与蓄电池连接, 用于为蓄电池充电。 蓄电 池可以为两套, 互为备用。 通过蓄电池和充电柜, 将交流供电变更为直流供电, 从而 提供了直流电源。 上述直流电源试验系统还可以包括: 多通道录波仪, 该录波仪的各通道分别用于 获取并保存直流电路的电流波形。 录波已记录的数据, 为进一步分析提供了基础。 上述直流电源试验系统还可以包括: 分析校核模块, 与试验柜连接, 用于获取待 测断路器和待测熔断器的动作数据, 并根据动作数据分析待测断路器和待测熔断器的 保护灵敏度。 该分析校核模块, 同时获取电路中电流电压的数值, 通过记录待测断路 器和待测熔断器的动作数据, 以上动作数据可以包括动作内容和动作时间, 从而对应 计算得出待测原件的保护灵敏度。 上述分析校核模块, 还可以用于获取直流电源试验系统的设备参数, 并根据设备 参数分析直流电源试验系统中设备是否满足电力设计规程的要求。 上述设备参数可以 包括导线的参数, 上述分析校核模块还可以用于分析导线的截面大小是否满足电力设 计规程的要求。 除此以外, 分析校核模块还可以蓄电池的容量、 开关的额定数值等数 据对配置方案进行校验。 上述分析校核模块, 还可以用于根据动作数据分析直流电源试验系统中上下级保 护器件的选择性。 利用待测断路器和待测熔断器的动作数据可以对上下级保护器件的 选择性进行分析。 上述直流电源试验系统还可以包括: 结果输出模块, 与分析校核模块连接, 用于 输出分析校核模块的分析结果。 本发明的实施例的直流电源试验系统, 可以由计算机仅数据采集、 保存、 分析, 并对整个系统下发控制命令。 本发明实施例中计算机的软件部分可以分为五大功能模块: 数据库模块、 线路配 置模块、 保护电器选型模块、 保护电器分析校核模块、 结果输出模块等。 其中保护电 器分析校核模块包括: 导线 /电缆压降校核、 保护电器灵敏度校核、 额定电流校核、 工 作电压校核及上下级断路器选择性保护校核。 该软件采用模块化设计的理念, 方便管 理与维护, 为以后软件的升级打下基础。
1、 数据库模块 数据库部分是整个系统的基础, 起着为线路布置和元件选型提供基础数据、 为校 核计算提供准则参数的作用。 库结构的设计以数据库设计三大范式的要求为准则, 并 根据实际需要进行规划, 确保数据库的增加、 修改、 删除及维护简便易行, 可扩展性 好;数据输入具有有效性判定。
2、 线路配置模块 根据实际直流电源系统的结构,现将线路配置模块分为 4个部分: 依次为蓄电池、 馈电屏、 分电屏与测控保护屏。 其中, 蓄电池模块中包括蓄电池及出口保护元件、 充 电装置及充电回路开关与放电装置; 馈电屏包括馈电屏电缆与馈电屏保护开关; 分电 屏包括分电屏电缆与分电屏保护开关; 测保屏包括测保屏电缆、 测保屏保护开关与负 载。
3、 保护电器选型模块 线路配置完毕后, 应首先设置负载电流, 然后对直流系统中元件进行选型设置, 主要包括保护元件选型与导线 /电缆选型。
4、 保护电器分析校核模块 直流电源系统中各元件选择合理性校核是该软件的主要功能, 主要校核内容包括 导线 /电缆压降校核、 保护元件灵敏度校核、 及上下级保护元件选择性校核。 导线 /电缆压降校核 对于导线 /电缆压降分析主要是由于在一般的直流系统中,对于导线 /电缆截面大小 的选择不太看重, 往往会由于截面选择过小导致压降过大, 不满足要求。 导线 /电缆压 降校核的主要依据 DL /T 5044— 2004 《电力工程直流系统设计技术规程》 而定。 保护元件灵敏度校核 保护元件的额定电流规格应根据实际直流系统正常工作电流大小选择, 不应过大 (易造成拒动), 也不应过小 (易造成误动)。 所谓的灵敏度分析, 指的是单级保护元 级件的校核, 即分析当直流系统中出现故障电流时保护元件是否会拒动的判断。 若需校核保护元件的灵敏度, 首先要计算直流电源系统中各处的短路电流大小。 得到直流电源系统中各处短路电流值后, 需确定对于保护元件灵敏度要求最为苛刻的 位置, 即灵敏度最低的位置, 实际分析时, 即以此处作为校核保护元件灵敏度是否满 足要求的标准。 若保护元件在最苛刻的条件下均能满足灵敏度要求, 则证明此保护元 件不存在拒动的可能性。 该软件中分析保护元件灵敏度时, 以连接保护元件的导线 / 电缆的最末端作为判断标准。 这是由于导线 /电缆最末端短路电流最小, 相对来讲保护 元件的灵敏度最低, 此处为判断灵敏度的最苛刻的位置。 判定灵敏度位置确定后, 即可对保护元件灵敏度进行判定, 保护元件分为断路器 和熔断器两大类, 其中断路器分为两段保护与三段保护两类。 上下级保护元件选择性分析校核 该软件中校核上下级保护元件选择性时可以引入限流特性, 这样判断结果与实际 情况更加接近。 在进行选择性分析时, 也需找到一个系统中条件最为苛刻的位置用于 判断选择性是否满足要求, 此时的条件最为苛刻的位置指的是短路电流最大的位置, 这是由于短路电流越大越容易导致上级保护元件误动作。 因此, 选择性判断时, 取下 级开关下部作为最为苛刻条件位置, 此处短路电流最大。 5、 结果输出模块 校核分析完成后, 即可将计算结果输出, 输出内容主要包括线路配置图输出和分 析报告输出。线路配置图可以为图片格式,用于直观显示整个直流电源系统结构布局、 元件选型及级差配合的校核情况;分析报告为 Excel格式文件,记录元件选型信息及校 核的评判结论, 技术人员可以将这些信息为参考, 辅助直流电源系统的设计进程。 综上, 本发明还有以下效果:
1、 交流电源和直流电源分层、 屏蔽布线。 从而提高数据传输中的精度;
2、 小型电器集中装配在箱体, 从而节约空间、 使布线更为合理、 整齐美观;
3、 数据处理方面采用广度优先、 深度优先、 拓扑排序等算法, 提高操控精度、 提 高毫秒级换算时间;
4、 遥信方面采用 CDT、 103规约。 增加了与集控中心其他设备的兼容性;
5、 末端电流鉴别方面增加三段式保护断路器, 提高了软硬件的可靠性。 本发明的技术方案通过模拟配电直流系统的实际运行环境, 实现对常用的不同厂 家不同规格的直流断路器和熔断器的分断特性的测试, 以及实现以上断路器和熔断器 之间的级差配合方案的测试; 搭建直流系统级差配合试验站, 通过对直流断路器和熔 断器在直流短路条件下的大量级差配合试验, 以掌握在电力工程直流电源系统中常用 的不同厂家不同型号的国产、 进口断路器和熔断器在多种组合下的级差配合特性, 探 讨实现直流系统各级保护元件的选择性动作的条件, 为直流系统保护元件的配置推荐 合理的具有选择性保护的方案。 以达到在电力应用中实现安全、 实用和精确的目的。 以上所述仅为本发明的优选实施例而己, 并不用于限制本发明, 对于本领域的技术人 员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种直流电源动态模拟仿真系统, 其特征在于, 包括蓄电池、 充电柜、控制柜、 试验柜、 电阻柜、 馈线柜、 事故照明柜、 通信电源柜和交流配电柜, 所述通信 电源柜、 事故照明柜电连接在交流配电柜上, 所述充电柜将交流配电柜的交流 电转换为直流电, 并将该直流电储蓄到蓄电池中, 所述蓄电池和充电柜通过选 择开关为试验柜、 馈线柜提供直流电源, 所述电阻柜中的滑动电阻调节试验柜 电路中的电流大小, 所述控制柜通过控制开关对试验柜进行控制, 所述馈线柜 电连接在蓄电池上。
2. 根据权利要求 1所述的直流电源动态模拟仿真系统, 其特征在于, 所述蓄电池 为两套。
3. 根据权利要求 1或 2所述的直流电源动态模拟仿真系统, 其特征在于, 所述试 验柜为断路器和熔断器极差配合试验平台。
4. 根据权利要求 3所述的直流电源动态模拟仿真系统, 其特征在于, 所述系统连 接有控制整个系统的计算机。
5. 根据权利要求 3所述的直流电源动态模拟仿真系统, 其特征在于, 所述电阻柜 和试验柜的电路中连接有多通道录波仪。
6. 一种直流电源试验系统, 其特征在于, 包括:
试验柜, 用于布置待测断路器和待测熔断器, 所述试验柜包括多个控制开 关, 所述多个控制开关用于控制所述待测断路器和待测熔断器的连接方式; 电阻柜, 用于布置电阻, 所述电阻连接在所述待测断路器和待测熔断器所 在的直流电路中;
控制柜, 与所述试验柜连接, 用于向所述多个控制开关发送控制信号。
7. 根据权利要求 6所述的直流电源试验系统, 其特征在于, 还包括:
蓄电池, 与所述试验柜和所述电阻柜分别连接, 用于向所述试验柜和所述 电阻柜提供直流电源;
充电柜, 与所述蓄电池连接, 用于为所述蓄电池充电。
8. 根据权利要求 6所述的直流电源试验系统, 其特征在于, 还包括:
多通道录波仪, 该录波仪的各通道分别用于获取并保存所述直流电路的电 流波形。
9. 根据权利要求 6所述的直流电源试验系统, 其特征在于, 还包括:
分析校核模块, 与所述试验柜连接, 用于获取所述待测断路器和所述待测 熔断器的动作数据, 并根据所述动作数据分析所述待测断路器和待测熔断器的 保护灵敏度。
10. 根据权利要求 9所述的直流电源试验系统, 其特征在于,
所述分析校核模块, 还用于获取所述直流电源试验系统的设备参数, 并根 据所述设备参数分析所述直流电源试验系统中设备是否满足电力设计规程的要 求。
11. 根据权利要求 10所述的直流电源试验系统,其特征在于,所述设备参数包括导 线的参数, 所述分析校核模块, 还用于分析所述导线的截面大小是否满足电力 设计规程的要求。
12. 根据权利要求 9所述的直流电源试验系统, 其特征在于,
所述分析校核模块, 还用于根据所述动作数据分析所述直流电源试验系统 中上下级保护器件的选择性。
13. 根据权利要求 9至 12中任一项所述的直流电源试验系统,其特征在于,还包括:
结果输出模块, 与所述分析校核模块连接, 用于输出所述分析校核模块的 分析结果。
PCT/CN2012/086786 2012-03-07 2012-12-17 直流电源动态模拟仿真系统和直流电源试验系统 WO2013131392A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA2866400A CA2866400A1 (en) 2012-03-07 2012-12-17 Dc power dynamic analog simulation system and dc power test system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012100583631A CN102590743B (zh) 2012-03-07 2012-03-07 直流电源动态模拟仿真系统
CN201210058363.1 2012-03-07

Publications (1)

Publication Number Publication Date
WO2013131392A1 true WO2013131392A1 (zh) 2013-09-12

Family

ID=46479663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086786 WO2013131392A1 (zh) 2012-03-07 2012-12-17 直流电源动态模拟仿真系统和直流电源试验系统

Country Status (3)

Country Link
CN (2) CN202486287U (zh)
CA (1) CA2866400A1 (zh)
WO (1) WO2013131392A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106786498A (zh) * 2016-11-10 2017-05-31 中国电力科学研究院 一种主站‑变电站数据协同辨识方法及其装置
CN107966652A (zh) * 2016-10-20 2018-04-27 国网新疆电力公司疆南供电公司 一种变电站直流电源回路级差配合测试装置
CN109541352A (zh) * 2018-11-29 2019-03-29 国网江西省电力有限公司电力科学研究院 一种非车载充电机检测装置总线并联式负载调度方法及其装置
CN109884456A (zh) * 2019-04-02 2019-06-14 山西汾西重工有限责任公司 功率模块及直流熔断器短路试验平台
CN112329911A (zh) * 2020-10-20 2021-02-05 上海钧正网络科技有限公司 一种充电异常确定方法和装置
CN113381500A (zh) * 2021-06-08 2021-09-10 北京百度网讯科技有限公司 电力切换方法、装置、系统及电子设备
CN114415644A (zh) * 2020-11-26 2022-04-29 重庆科凯前卫风电设备有限责任公司 一种风机控制系统柔性测试平台及测试方法
CN115203977A (zh) * 2022-08-24 2022-10-18 国网信息通信产业集团有限公司 电网仿真系统
CN117805607A (zh) * 2024-02-29 2024-04-02 山西漳电科学技术研究院(有限公司) 发电厂直流系统直流级差配合试验方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202486287U (zh) * 2012-03-07 2012-10-10 甘肃电力科学研究院 直流电源动态模拟仿真系统
CN107947332B (zh) * 2017-09-13 2020-02-07 浙江时通电气制造有限公司 一种车载式移动直流应急电源箱
CN112180247B (zh) * 2020-09-11 2022-09-16 上海二十冶建设有限公司 成列高压柜真空断路器操作机构集中在线试验方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003235181A (ja) * 2002-02-08 2003-08-22 Toshiba Corp 発変電所システム
CN201540354U (zh) * 2009-03-26 2010-08-04 四川电力试验研究院 直流断路器特性参数自动测试系统
CN201774301U (zh) * 2010-06-24 2011-03-23 甘肃省电力公司兰州供电公司 一种变电站用高频开关直流电源系统
CN102590743A (zh) * 2012-03-07 2012-07-18 甘肃电力科学研究院 直流电源动态模拟仿真系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61237066A (ja) * 1985-04-12 1986-10-22 Mitsubishi Electric Corp 配電盤の試験回路
CN2430806Y (zh) * 2000-01-20 2001-05-16 烟台东方电子信息产业集团有限公司 一种智能型变电站相控直流电源装置
US8355234B2 (en) * 2004-01-30 2013-01-15 Abb Technology Ltd. Condition monitor for an electrical distribution device
CN2845273Y (zh) * 2005-08-03 2006-12-06 苏州市苏开电气成套有限公司 触屏式程序控制相控式直流电源装置
CN101581763A (zh) * 2008-05-17 2009-11-18 陈书欣 直流断路器动作特性测试仪
CN201466696U (zh) * 2009-06-02 2010-05-12 河北德普电器有限公司 一种直流系统级差保护及接地综合监测装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003235181A (ja) * 2002-02-08 2003-08-22 Toshiba Corp 発変電所システム
CN201540354U (zh) * 2009-03-26 2010-08-04 四川电力试验研究院 直流断路器特性参数自动测试系统
CN201774301U (zh) * 2010-06-24 2011-03-23 甘肃省电力公司兰州供电公司 一种变电站用高频开关直流电源系统
CN102590743A (zh) * 2012-03-07 2012-07-18 甘肃电力科学研究院 直流电源动态模拟仿真系统
CN202486287U (zh) * 2012-03-07 2012-10-10 甘肃电力科学研究院 直流电源动态模拟仿真系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FAN, RUIFENG: "Stepped Coordination Testing and Research of Air - blast Circuit Beaker and Fusible Cut - out in the Direct Current System", ELECTRICAL EQUIPMENT, vol. 6, no. 9, September 2005 (2005-09-01), pages 11 - 16 *
TANG, ZHIJUN ET AL.: "Development of Verifying System for Stage Difference Coordination of Breaker in DC System", ELECTRIC POWER AND ELECTRICAL ENGINEERING, vol. 31, no. 3, September 2011 (2011-09-01), pages 31 - 34 *
ZHUANG, BO ET AL.: "Discussion on System Distribution of Intelligent DC Source in Substation", ELECTRIC POWER SURVEY, no. 3, June 2005 (2005-06-01), pages 71 - 74 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107966652A (zh) * 2016-10-20 2018-04-27 国网新疆电力公司疆南供电公司 一种变电站直流电源回路级差配合测试装置
CN106786498A (zh) * 2016-11-10 2017-05-31 中国电力科学研究院 一种主站‑变电站数据协同辨识方法及其装置
CN109541352A (zh) * 2018-11-29 2019-03-29 国网江西省电力有限公司电力科学研究院 一种非车载充电机检测装置总线并联式负载调度方法及其装置
CN109541352B (zh) * 2018-11-29 2023-12-05 国网江西省电力有限公司电力科学研究院 一种非车载充电机检测装置总线并联式负载调度方法及其装置
CN109884456A (zh) * 2019-04-02 2019-06-14 山西汾西重工有限责任公司 功率模块及直流熔断器短路试验平台
CN109884456B (zh) * 2019-04-02 2023-10-13 山西汾西重工有限责任公司 功率模块及直流熔断器短路试验平台
CN112329911B (zh) * 2020-10-20 2023-04-07 上海钧正网络科技有限公司 一种充电异常确定方法和装置
CN112329911A (zh) * 2020-10-20 2021-02-05 上海钧正网络科技有限公司 一种充电异常确定方法和装置
CN114415644A (zh) * 2020-11-26 2022-04-29 重庆科凯前卫风电设备有限责任公司 一种风机控制系统柔性测试平台及测试方法
CN114489018A (zh) * 2020-11-26 2022-05-13 重庆科凯前卫风电设备有限责任公司 一种风机系统柔性测试平台及测试方法
CN113381500A (zh) * 2021-06-08 2021-09-10 北京百度网讯科技有限公司 电力切换方法、装置、系统及电子设备
CN113381500B (zh) * 2021-06-08 2024-03-19 北京百度网讯科技有限公司 电力切换方法、装置、系统及电子设备
CN115203977B (zh) * 2022-08-24 2023-03-24 国网信息通信产业集团有限公司 电网仿真系统
CN115203977A (zh) * 2022-08-24 2022-10-18 国网信息通信产业集团有限公司 电网仿真系统
CN117805607A (zh) * 2024-02-29 2024-04-02 山西漳电科学技术研究院(有限公司) 发电厂直流系统直流级差配合试验方法

Also Published As

Publication number Publication date
CN102590743A (zh) 2012-07-18
CN102590743B (zh) 2013-11-20
CN202486287U (zh) 2012-10-10
CA2866400A1 (en) 2013-09-12

Similar Documents

Publication Publication Date Title
WO2013131392A1 (zh) 直流电源动态模拟仿真系统和直流电源试验系统
CN106251747B (zh) 一种配电网模拟系统
CN106571688B (zh) 一种直流系统运行方式及隔离开关运行状态监视的方法
CN103051065A (zh) 一种配电自动化分布式fa联动测试方法及系统
KR102145266B1 (ko) 전력계통 모니터링 시스템 및 그 방법
CN104281982A (zh) 一种基于电网拓扑结构的变电站设备状态评估方法
CN107843800A (zh) 供电网络监控方法、装置及系统
CN106597181B (zh) 一种高压电力变压器运行监测系统及方法
CN203135572U (zh) 变电站直流装置状态监测系统
CN207069551U (zh) 一种新型压板
JP3229238U (ja) 直流スイッチボックス及びその監視システム
CN109708687A (zh) 一种柱上开关的监控系统
CN107394895A (zh) 一种变电站保护硬压板远程监视装置
CN109521311B (zh) 继电保护多出口压板测量仪
Babu et al. Reliability evaluation of distribution structures considering the presence of false trips
CN201774175U (zh) 一种智能型高压开关设备
CN207518284U (zh) 一种小电源并网的事故解列装置
CN115980438A (zh) 变电站双母线电能计量电压获取方法及系统
CN201860172U (zh) 基于重合器的自动化环网型配电网
CN205544591U (zh) 触摸屏配电站监控系统
CN204462283U (zh) 一种直流馈线级差配合测试装置
CN114089010A (zh) 一种高稳定性可测试泄漏电流的电度表及其测试系统
CN207069699U (zh) 一种变电站保护硬压板远程监视装置
CN206431221U (zh) 一种高压电力变压器运行监测系统
CN110504756A (zh) 一种环网柜保护装置控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870379

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2866400

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12870379

Country of ref document: EP

Kind code of ref document: A1