WO2013129744A1 - High-calorific hybrid coal coated with biomass-derived carbon component, high-concentration hybrid coal slurry, and method for manufacturing same - Google Patents

High-calorific hybrid coal coated with biomass-derived carbon component, high-concentration hybrid coal slurry, and method for manufacturing same Download PDF

Info

Publication number
WO2013129744A1
WO2013129744A1 PCT/KR2012/006565 KR2012006565W WO2013129744A1 WO 2013129744 A1 WO2013129744 A1 WO 2013129744A1 KR 2012006565 W KR2012006565 W KR 2012006565W WO 2013129744 A1 WO2013129744 A1 WO 2013129744A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
biomass
hybrid
calorific value
water
Prior art date
Application number
PCT/KR2012/006565
Other languages
French (fr)
Korean (ko)
Inventor
이동욱
최영찬
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120021413A external-priority patent/KR101195416B1/en
Priority claimed from KR1020120022985A external-priority patent/KR101195417B1/en
Priority claimed from KR1020120086727A external-priority patent/KR101195418B1/en
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to JP2014559809A priority Critical patent/JP2015513593A/en
Priority to AU2012359295A priority patent/AU2012359295B2/en
Priority to CN201280004466.8A priority patent/CN103429718B/en
Publication of WO2013129744A1 publication Critical patent/WO2013129744A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • C10L5/442Wood or forestry waste
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/32Liquid carbonaceous fuels consisting of coal-oil suspensions or aqueous emulsions or oil emulsions
    • C10L1/326Coal-water suspensions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/04Raw material of mineral origin to be used; Pretreatment thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/26After-treatment of the shaped fuels, e.g. briquettes
    • C10L5/32Coating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • C10L5/447Carbonized vegetable substances, e.g. charcoal, or produced by hydrothermal carbonization of biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/08Treating solid fuels to improve their combustion by heat treatments, e.g. calcining
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • C10J2300/0906Physical processes, e.g. shredding, comminuting, chopping, sorting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/08Drying or removing water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/20Coating of a fuel as a whole or of a fuel component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to a hybrid coal in which the hydrophilic surface of coal is coated with a biomass-derived carbon component, and to a method for producing the same. More specifically, the hydrophilic surface existing in the raw or dry coal containing water contains a biomass-derived carbon component.
  • the present invention relates to a high calorific value hybrid coal mixed with natural carbon components inherent in carbon and artificial carbon components derived from biomass, in which resorption of moisture is suppressed even after drying by coating with hydrophobically modified and a method for producing the same.
  • the present invention is a high calorific value hybrid coal in which the natural carbon component of the coal and the artificial carbon component derived from biomass is mixed into any one dispersion medium selected from water / alcohol, water / surfactant or water / alcohol / surfactant.
  • one of the most important problems to be solved in order to promote the use and dissemination of low-grade coal is to develop a technology that maintains calorific value and suppresses spontaneous ignition by preventing water from being resorbed to the dried low-carbon I will.
  • the most popular technology is to remove intrinsic moisture of coal by heating low-grade coal in a high pressure atmosphere using a high temperature organic solvent.
  • this technology has the disadvantage that the organic solvent must be separated and recovered, and the process is relatively complicated and another energy cost is required. Therefore, there is an urgent need for a technology for suppressing water resorption of dry coal.
  • renewable energy sources in order to promote the use and dissemination of renewable energy and comply with the mandatory quota system of renewable energy, it is essential to develop and use renewable energy sources.
  • biomass has no concern of depletion and technology as energy source. It is easy to develop and is of interest compared to other renewable energy sources.
  • the renewable energy source the production of electric power by burning biomass-derived materials such as wood pellets or wood chips has a high weight policy, and thus it is expected to increase demand because it can be mixed with coal and used as fuel. It is very difficult to receive wood pellets or wood chips stably.
  • coal is wet gas to produce a combustible gas (syngas), the electricity production through IGCC (Integrated Gasification Combined Cycle), through the CTL (Coal To Liquid) Synthetic oil production and the manufacture of various chemicals are possible, which requires maintaining a high concentration of coal slurry.
  • IGCC Integrated Gasification Combined Cycle
  • CTL Coal To Liquid
  • the present invention has been made in view of the above problems, the first object of the present invention is to coat the hydrophilic surface present in the low-carbon coal with a carbon component to modify the hydrophobic by drying the coal inherent, even after drying is suppressed
  • the present invention provides a high calorific value hybrid coal mixed with natural carbon and artificial carbon components, and a method for producing the same, to efficiently utilize low-grade coal.
  • the second object of the present invention is to produce a renewable energy source by using a biomass-derived material as a carbon component in coating hydrophilic surfaces existing in coal such as high-grade coal as well as low-grade coal with hydrophobic properties.
  • a third object of the present invention is to produce a high calorific value hybrid coal in which natural carbon components and artificial carbon components of coal are mixed into any one of a dispersion medium selected from water / alcohol, water / surfactant, or water / alcohol / surfactant. It is to provide a method for producing a high concentration hybrid coal slurry by addition and a high concentration hybrid coal slurry produced thereby.
  • the present invention for achieving the object as described above provides a high calorific value hybrid coal in which the natural carbon component and artificial carbon component of the coal is mixed by coating the hydrophilic surface present in the coal with the carbon component of the biomass-derived material .
  • the hydrophilic surface is characterized in that it is a ash surface of coal.
  • the hydrophilic surface is characterized in that the fixed carbon and volatile surface of the coal having -COOH (carboxyl group), -NH 2 (amine group), -OH (hydroxyl group) functional group.
  • the coal is characterized in that any one selected from peat, lignite, sub-bituminous coal, bituminous coal, anthracite coal.
  • the coal is characterized in that the natural water content of raw coal of 5 to 70% by weight.
  • the coal is characterized in that the intrinsic moisture content of the dried coal of less than 5% by weight.
  • the biomass-derived material is characterized in that the sugar cane stock or molasses.
  • the biomass-derived material may include a saccharide obtained by enzymatic decomposition of a saccharide or starch system converted from lignocellulosic cellulose.
  • the biomass-derived material is characterized in that any one selected from monosaccharides, disaccharides or polysaccharides.
  • the monosaccharide is characterized in that any one selected from glucose, fructose or galactose.
  • the disaccharide is characterized in that any one selected from sucrose, maltose or lactose.
  • the polysaccharide is characterized in that any one selected from starch or lignocellulose.
  • the high calorific value of the high calorific value hybrid coal is characterized in that more than 4000 kcal / kg.
  • the present invention also includes the steps of i) kneading coal with a solution of biomass-derived material to form a paste, and ii) simultaneously drying and carbonizing the biomass-derived material by injecting the paste into a carbonization furnace.
  • the present invention provides a method for producing a high calorific value hybrid coal coated with a biomass-derived carbon component on a hydrophilic surface of coal.
  • the biomass-derived material in step i) is characterized in that the addition of 0.1 to 50% by weight relative to the weight of coal.
  • the solution of the biomass-derived material in step i) is characterized in that using water or an organic solvent.
  • the weight ratio of water or organic solvent / coal is maintained in the range of 0.1 to 5.
  • the organic solvent in step i) is characterized in that any one selected from methanol, ethanol or propanol.
  • step ii) the drying and carbonization of the biomass-derived material is performed at 150 to 900 ° C. for 0.1 to 10 hours.
  • the aging time of the paste aging step is characterized in that 5 to 240 hours.
  • the biomass-derived material is characterized in that it performs the function of a binder for hybrid coal molding.
  • the present invention as another solution for controlling the moisture resorption rate of the high calorific value hybrid coal to a lower state i) kneading coal with a solution of biomass-derived material to form a paste; ii) aging the paste at room temperature and atmospheric pressure for 5 to 240 hours; iii) predrying the aged paste; And iv) subjecting the pre-dried paste to a carbonization furnace to simultaneously dry and carbonize the biomass-derived material, wherein the biomass-derived carbon component is coated on the hydrophilic surface of the coal using a two-step drying process.
  • a method for producing a high calorific value hybrid coal and a high calorific value hybrid coal produced thereby are provided.
  • the present invention includes the step of forming a hybrid coal slurry by adding the hybrid coal obtained by the above production method to any one of a dispersion medium selected from water / alcohol, water / surfactant or water / alcohol / surfactant, It provides a method for producing a high concentration hybrid coal slurry.
  • the water / alcohol dispersion medium is characterized in that the weight ratio of alcohol / water is 0.01 ⁇ 0.99.
  • the alcohol of the water / alcohol dispersion medium is characterized in that one selected from methanol, ethanol or propanol.
  • the surfactant may be formed of CWM1002 (formaldehyde condensate of sodium naphthalene sulfonate), CWM1001 (polymer sulfonate), Na-CMC (carboxymethyl cellulose), Na-DBS (Alkylbenzene sulfate), Na-LS (alkylsulfate sodium salt), NP1020 (alkylphenol ethyleneoxide (NP1020) 10)), NP1060 (alkylphenol ethyleneoxide (50)), CA1053 (casteroil ethyleneoxide (50)), ATLOX4913 (methyl methacrylate graft copolymer), characterized in that any one selected from cetyltrimethylammonium brimide or cetyltrimethylammonium chloride.
  • the present invention also provides a high concentration hybrid coal slurry prepared by the method for producing a high concentration hybrid coal slurry.
  • the biomass-derived hybrid coal produced by the present invention is carbonized by infiltrating the hydrophilic surface of the coal with a hydrophobic carbon, and the high calorific value of the dry coal is significantly suppressed by the adsorption of moisture. It can be maintained as it can be used as a differential fuel for power plants, and thus can improve the power generation efficiency compared to mixing low-grade coal containing natural water, there is an effect that can reduce the CO 2 emissions of the power plant. In addition, additional CO 2 emissions can be reduced by the biomass added to produce hybrid coal. In addition, it is possible to relieve the burden on the energy provider to secure biomass fuel due to the new renewable energy mandate.
  • a biomass-derived hybrid coal having a hydrophobic carbon coated with a hydrophobic carbon on the hydrophilic surface of the biomass-derived material is carbonized with water / alcohol, water / surfactant or water / alcohol / surfactant.
  • the high concentration hybrid coal slurry prepared by adding to any one of the dispersion medium selected from among the significantly higher than the slurry made of coal or dry coal, the coal concentration of the slurry.
  • the gasification performance such as coal conversion rate, cold gas efficiency, etc. can be increased, and thus CO 2 emission of the gasification process can be expected to be reduced. Since it is possible to manufacture a high concentration slurry using low-grade coal having a high water content, the competitiveness of the wet gasifier for the dry gasifier of a complicated structure may be further strengthened.
  • the biomass-derived material is added in an amount of 0.1 to 50% by weight relative to the weight of coal when the high calorific value hybrid coal is used to prepare the high concentration hybrid coal slurry, the high concentration hybrid coal slurry of the present invention is used in a wet coal gasifier. Additional reduction of the effects of the CO 2 is fundamentally the biomass used is expected when used as a.
  • FIG. 1 is a conceptual diagram of a high-concentration hybrid coal slurry in which low-grade coal according to the present invention is advanced using a biomass-derived material.
  • FIG. 2 is a hydrophobic experiment photograph of hybrid coal and simple dry coal prepared from Example 1 and Comparative Example 1.
  • FIG. 1 is a hydrophobic experiment photograph of hybrid coal and simple dry coal prepared from Example 1 and Comparative Example 1.
  • Example 4 is a change in slurry calorific value with respect to the viscosity change of the hybrid coal slurry according to Example 1 and the dried coal and raw coal slurry according to Comparative Examples 1 and 2.
  • Example 5 is a result of hydrophobicity evaluation (contact angle measurement) of hybrid coal and simple dry coal produced from Example 3 and Comparative Example 3.
  • FIG. 6 is a pore size distribution diagram of hybrid coals prepared from Example 3 and Comparative Example 4.
  • FIG. 6 is a pore size distribution diagram of hybrid coals prepared from Example 3 and Comparative Example 4.
  • a high calorific value hybrid coal mixed with natural carbon components and artificial carbon components of coal according to the present invention is added to any one of a dispersion medium selected from water / alcohol, water / surfactant, or water / alcohol / surfactant to have a high concentration.
  • a method for producing a hybrid coal slurry will be described in detail with the accompanying drawings.
  • FIG. 1 is a conceptual diagram of a high-concentration hybrid coal slurry in which low-grade coal according to the present invention is advanced using a biomass-derived material.
  • the coal hydrophilic surface is a ash surface of coal, and is a fixed carbon and volatile surface of coal having a -COOH (carboxyl group), -NH 2 (amine group), and -OH (hydroxyl group) functional group.
  • the coal may be any one selected from peat, lignite, sub-bituminous coal, bituminous coal or anthracite coal.
  • the hybrid coal production method of the present invention may be a high-grade coal.
  • the coal is characterized in that the high water content of raw coal or 5 to 70% by weight of the dry coal of the high water content or less.
  • the biomass-derived material is characterized in that the sugarcane stock solution or molasses, the biomass-derived material may be any one selected from monosaccharides, disaccharides or polysaccharides.
  • the reason for coating the carbon component using the biomass-derived material is because of the saccharides contained in the biomass-derived material. It may also contain sugars obtained by enzymatic digestion of starch systems such as corn.
  • Monosaccharide is selected from glucose, fructose or galactose
  • disaccharide is selected from sucrose, maltose or lactose
  • polysaccharide is characterized in that any one selected from starch or lignocellulose.
  • the high calorific value of the hybrid coal is characterized in that more than 4000 kcal / kg.
  • the biomass-derived material is preferably formed by adding 0.1 to 50% by weight relative to the weight of coal using water or an alcohol-based organic solvent selected from methanol, ethanol or propanol. If the amount of biomass-derived material added to the weight of coal is less than 0.1% by weight, the amount of biomass-derived material penetrating into the hydrophilic surface of coal is insignificant, so that the hydrophilic surface of coal cannot be sufficiently coated so that the hydrophilic surface of coal is hydrophobically modified. If it is difficult, if it exceeds 50% by weight, it is difficult to obtain paste properties, resulting in poor workability.
  • the weight ratio of water or organic solvent / coal is maintained in the range of 0.1 to 5. If the weight ratio of water or organic solvent / coal is less than 0.1, it is difficult for the biomass-derived material to penetrate into the hydrophilic surface of coal, making hydrophobic modification of the hydrophilic surface difficult. If the weight ratio of water or organic solvent / coal is 5 or more, drying and There is a disadvantage in that energy consumption increases in the carbonization process.
  • the formed paste is added to a carbonization furnace to simultaneously perform a drying and carbonization process, preferably at 0.1 to 10 hours at 150 to 900 ° C. If the temperature of the drying and carbonization process is less than 150 ° C. and less than 0.1 hour, it is difficult to completely dry organic solvents such as water, but the biomass-derived material is not completely carbonized. Efficiency is hampered by an increase in the energy costs of doing so.
  • the aging time of the aging step is characterized in that 5 to 240 hours.
  • biomass-derived material used to modify the hydrophilic surface of the coal to hydrophobic in the present invention improves the moldability by performing the function of the binder in the hybrid coal molding.
  • the present invention provides a method for controlling the moisture resorption rate of the high calorific value hybrid coal to a lower state, i) kneading coal with a solution of biomass-derived material to form a paste; ii) aging the paste at room temperature and atmospheric pressure for 5 to 240 hours; iii) predrying the aged paste; And iv) subjecting the pre-dried paste to a carbonization furnace to simultaneously dry and carbonize the biomass-derived material, wherein the biomass-derived carbon component is present on the hydrophilic surface of the coal using a two-step drying process. Coated high calorific value hybrid coal is produced.
  • the paste is aged, the paste is aged for 5 to 240 hours at room temperature and atmospheric pressure to improve penetration of the biomass-derived material into the hydrophilic surface of the coal, and the dried paste is preliminarily dried. It may be referred to as a characteristic technical idea.
  • the hybrid coal is homogeneous because the biomass-derived material penetrates into the pores of the coal and is physically chemically combined with the coal, as compared with the conventional non-uniform combustion characteristics by simply physically mixing the biomass and the coal.
  • the degree of resorption of moisture after drying is lowered by blocking the pores of coal. Therefore, the more effectively the pores of coal are blocked, the less the resorption rate of water.
  • the predrying is preferably carried out at 50 ⁇ 150 °C 0.1 ⁇ 24 hours. If the pre-drying temperature is less than 0.1 ° C for 50 ° C, it is difficult to completely dry organic solvents such as water, but the pore-filling effect of blocking pores of coal is insignificant. If it exceeds 150 ° C for 24 hours, Another increase in energy costs hinders efficiency.
  • a method for producing a high calorific value hybrid coal using the two-stage drying process has the same conditions as those of the above-described embodiment of the present invention except for introducing a preliminary drying process. .
  • the high calorific value hybrid coal manufactured using the two-stage drying process shows a takeover calorific value of 4,000 kcal / kg or more.
  • the high calorific value of the hybrid coal produced according to the embodiment of the present invention is selected from water / alcohol, water / surfactant or water / alcohol / surfactant.
  • a high concentration hybrid coal slurry was produced.
  • the weight ratio of alcohol / water was set to 0.01 to 0.99.
  • the weight ratio of alcohol / water is less than 0.01, it is difficult to form a slurry, and if the weight ratio of alcohol / water exceeds 0.99, the wet gasification reaction does not occur, so it is preferable to maintain the weight ratio of alcohol / water in the range of 0.01 to 0.99.
  • a dispersion medium of water / surfactant may be used by using a surfactant instead of alcohol, and the surfactant used at this time is usually used for the purpose of improving dispersibility in slurry production.
  • CWM1002 (formaldehyde condensate of sodium naphthalene sulfonate), CWM1001 (polymer sulfonate), Na-CMC (carboxymethyl cellulose), Na-DBS (Alkylbenzene sulfate), Alkylsulfate sodium salt (Na-LS), alkylphenol ethyleneoxide (10) (NP1020), alkylphenol ethyleneoxide (50) (NP1060), CA1053 (casteroil ethyleneoxide (50)), ATLOX4913 (methyl methacrylate graft copolymer), cetyltrimethylammonium brimide or cetyltrimethylammonium chloride, etc.
  • This is preferable, and the addition amount is suitably according to the kind of surfactant, if it is in the range in which a slurry is formed favorable. Clauses are possible.
  • a dispersion medium of water / alcohol / surfactant may be used to further improve the dispersibility of the slurry.
  • the alcohol of the water / alcohol dispersion medium is characterized in that one selected from methanol, ethanol or propanol.
  • Sibeobu raw coal from Mongolia was prepared 100g of coal dried for 12 hours in an 110 °C oven.
  • An aqueous sucrose solution was prepared in which 25 g of sucrose was dissolved in 100 g of water.
  • Sucrose aqueous solution was added to the dried sibeobu coal to knead, and a composite of the sibeobu coal and the sucrose aqueous solution was obtained in the form of a paste.
  • the obtained paste was placed in a reactor at 250 ° C. under a nitrogen atmosphere, and then dried and carbonized to prepare hybrid coal.
  • Table 1 below shows the industrial analysis results and calorific value of Sibeobu raw coal and hybrid coal according to the preparation example.
  • the hybrid coal had a lower calorific value (when considering the latent heat of high moisture content) of 570 kcal / kg and a higher calorific value of 350 kcal / kg, compared to Sibeobu raw coal. It can be seen that the calorific value is improved when manufactured with hybrid coal. In addition, since hybrid coal additionally contains artificial carbon formed from biomass-derived materials, the fixed carbon was found to be about 14.2 wt% higher than that of Sibeobu raw coal. More importantly than the fact that hybrid coal has a higher calorific value than Sibero coal, it is possible to maintain the calorific value of the hybrid coal for a long time because moisture is not resorbed.
  • a viscosity and concentration measuring method through slurry production is generally used as a method for measuring the amount of water adsorbed on coal.
  • the coal concentration of the slurry at an arbitrary viscosity is inversely proportional to the amount of water adsorption of coal. It is known that the lower the coal concentration in the slurry, the higher the water adsorption amount of coal. Therefore, the moisture of the hybrid coal of Examples 1 and 2 and the Sibeobu dry coal and Sibeobu raw coal of Comparative Examples 1 and 2 below. Adsorption amount could be confirmed by measuring the viscosity of the slurry prepared in the following examples, the results can be seen from FIG.
  • the obtained paste was placed in a reactor at 250 ° C. under a nitrogen atmosphere, and then dried and carbonized to prepare hybrid coal.
  • Hybrid coals of 75 micrometers or less are collected by sieveing the prepared hybrid coal with 200 mesh.
  • Hybrid coals of 75 micrometers or less are added to the ethanol / water mixed solvent having a weight ratio of 0.1, so that the concentration of the hybrid coal is 28%, 30%, 32%, 34%, 36%, 38% by weight based on dry coal. %, 40% by weight, and 42% by weight of slurry were prepared, respectively.
  • Slurry was prepared in the same manner as in Example 1 except that the paste obtained in Example 1 was placed in a reactor at 350 ° C. under a nitrogen atmosphere, and dried for 5 hours to produce hybrid coal.
  • Sibeobu coal of Mongolia was prepared 500g of dried coal at 110 °C oven for 12 hours.
  • the sibeobu dry coal was sieveed at 200 mesh to collect only samples of 75 micrometers or less.
  • Sibeobu dry carbon of 75 micrometers or less is added to the ethanol / water mixed solvent having a weight ratio of 0.1, so that the concentration of coal is 28%, 30%, 32%, 34%, 36%, 38% based on the dry coal.
  • Slurry amounts of 40% by weight, 42% by weight were prepared, respectively.
  • a slurry was prepared in the same manner as in Comparative Example 1 except that the sibeobu dry coal of Comparative Example 1 was replaced with the sibeobu raw coal.
  • Sibeobu raw coal from Mongolia was prepared 500g of coal dried for 12 hours in a 105 °C oven.
  • a molasses aqueous solution in which 32 g of molasses was dissolved in 280 g of water was prepared.
  • a molasses aqueous solution was added to the dried Sibeobu coal to knead to obtain a composite of Sibeobu coal and molasses aqueous solution in the form of a paste.
  • the obtained paste was aged at room temperature and atmospheric pressure for 24 hours.
  • the aged paste was subjected to predrying at 105 ° C. for 12 hours.
  • the pre-dried paste was placed in a reactor at 250 ° C. under a nitrogen atmosphere to prepare hybrid coal by drying and carbonizing for 2 hours.
  • Sibeobu raw coal from Mongolia was simply dried in an oven at 105 ° C. for 2 hours to obtain 500g of Sibeobu coal.
  • the step of performing the preliminary drying step of Example 3 was omitted, and the aged paste was put in a reactor at 250 ° C. under a nitrogen atmosphere to prepare hybrid coal by drying and carbonizing for 2 hours.
  • the Sibeobu simple dry coal was easily dispersed while absorbing water due to amphipathy, but in the case of hybrid coal after reforming, most of them were floating on the water despite strong stirring due to hydrophobicity. It could be observed. From this, it was confirmed that the hydrophilic pore surface of the hybrid coal was hydrophobically modified, and the resorption of moisture was suppressed.
  • the coal concentration at the same slurry viscosity was higher in the order of hybrid coal> dry coal> raw coal, in particular, in the case of the hybrid coal according to the present invention, the coal concentration of the slurry was markedly high.
  • the coal slurry concentration was 3000 cP
  • the hybrid coal prepared in Example 1 showed a slurry concentration of 9.4 wt% higher than that of Sibeobu coal and 5.5 wt% higher than that of Sibeobu dry coal.
  • the hybrid coal prepared in Example 2 showed a slurry concentration of 8.1 wt% as compared to Sibeobu raw coal and 4.2 wt% as compared to Sibeobu dry coal.
  • the water added in the process of preparing the slurry is coated with the carbon component of the biomass-derived material and is inhibited from penetrating into the hydrophobicly modified hydrophilic surface.
  • the artificial carbon component of the biomass-derived material filling the hydrophilic surface such as the ash hole, reduces the effective volume in which water can be absorbed, the absorption of water is reduced.
  • Figure 4 shows the slurry calorific value change behavior according to the slurry viscosity change for each sample of Example 1, Comparative Examples 1 and 2. It was confirmed that the hybrid coal of Example 1 showed an extremely high slurry calorific value under the same viscosity condition as compared to the Sibeobu dry coal of Comparative Example 1 and the Sibeobu raw coal of Comparative Example 2. Therefore, when the hybrid coal slurry is used for the wet fractionation layer gasification, the gasification performance can be improved than when raw coal or dry coal slurry is used.
  • Example 3 In order to evaluate the hydrophobicity of hybrid coal and simple dry coal prepared in Example 3 and Comparative Example 3, a disk of each coal sample was prepared and a contact angle measurement of water droplets on the surface of the disk was performed. Hybrid coal and simple dry coal are sieved with a powder of 100 ⁇ m or less and compressed to 50 atm to produce a disc having a diameter of 3 cm. Water droplets were dropped on the disks of the hybrid coal and the simple dry coal prepared in Example 3 and Comparative Example 3 to measure the contact angle with the disk surface, and the photograph is shown in FIG. 5. As shown in FIG. 5, the contact angle of the simple dry coal is 78.1 degrees, whereas the contact angle of the hybrid coal is significantly increased to 132.3 degrees.
  • the hybrid coal of the present invention had a true calorific value (when considering the latent heat of high moisture content) of about 1450 kcal / kg, compared to Sibeobu raw coal, and the takeover calorific value generally used in power plants. It can be seen that about 1300 kcal / kg is higher, and the calorific value is greatly improved when manufactured with the hybrid coal of the present invention.
  • the hybrid coal of the present invention additionally contains artificial carbon formed from the biomass-derived material, the fixed carbon was found to be about 13.4wt% higher than that of Sibeobu coal. More important than the fact that the hybrid coal produced in the present invention has a higher calorific value than the Sibeo raw coal, the resorption degree of moisture is significantly reduced, so that the calorific value of the hybrid coal can be maintained for a long time.
  • Example 6 is Graph showing the pore size distribution of the hybrid coal prepared from Example 3 using a two-step drying step and Comparative Example 4 using a one-step drying step without the pre-drying step by introducing a predrying step of a paste containing a biomass-derived material. to be.
  • the pore volume in the mesopore region of the hybrid coal of Comparative Example 4 is larger than the pore volume of the hybrid coal prepared from Example 3.
  • Example 3 The coal prepared in Example 3 and Comparative Examples 3 and 4 was soaked in excess water to allow water to be adsorbed into the pores while stirring for 10 minutes, and then filtered for 20 minutes to remove external moisture and weighed. Moisture resorption rate was calculated as follows.
  • Moisture resorption rate (wt%) (C wet -C dry ) / C dry * 100
  • the hybrid coal produced from Example 3 using the two-step drying process had a resorbency rate of 30.74 wt% of water, and the moisture resorption rate of Sibeobu raw coal, which was simply dried at 105 ° C of Comparative Example 3 It can be seen that the re-adsorption rate of the hybrid coal prepared from Comparative Example 4 using 44.55 wt% and the one-step drying process showed a significantly lower value than 34.93 wt%.
  • the hybrid coal manufactured by using the two-stage drying process of the present invention can maintain the high calorific value of the dry coal as it is, can be used as a fine fuel for power plants, and the generation efficiency compared to mixing low-grade coal containing intrinsic moisture There is an advantage that can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Development (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Wood Science & Technology (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

The present invention relates to high-calorific hybrid coal in which a coal-specific natural carbon component and an artificial carbon component are mixed together, and the re-adsorption of moisture is reduced even after drying by coating the hydrophilic surface of low-grade coal with the coal component of a biomass-derived material and reforming the resulting product such that is hydrophobic, and to a method for manufacturing same. Also provided is high-calorific hybrid coal in which the re-adsorption of moisture is substantially reduced using a two-stage drying process. Also provided are a method for manufacturing high-concentration hybrid coal slurry, which includes a step of forming hybrid coal slurry by adding hybrid coal to a dispersion medium selected from among water and alcohol, water and surfactant, and water, alcohol, and surfactant, and the high concentration hybrid coal slurry manufactured thereby.

Description

바이오매스 유래 탄소성분이 코팅된 고발열량 하이브리드 석탄, 고농도 하이브리드 석탄 슬러리 및 그들의 제조방법High calorific value hybrid coal, high concentration hybrid coal slurry coated with biomass-derived carbon and their manufacturing method
본 발명은 석탄의 친수성 표면이 바이오매스 유래 탄소 성분으로 코팅된 하이브리드 석탄 및 그의 제조방법에 관한 것으로, 보다 상세하게는 수분을 포함하고 있는 원탄 또는 건조탄에 존재하는 친수성 표면을 바이오매스 유래 탄소성분으로 코팅하여 소수성으로 개질함으로써 건조 후에도 수분의 재흡착이 억제된, 석탄 고유의 천연 탄소성분과 바이오매스 유래 인공 탄소성분이 혼성된 고발열량의 하이브리드 석탄 및 그를 제조하는 방법에 관한 것이다. The present invention relates to a hybrid coal in which the hydrophilic surface of coal is coated with a biomass-derived carbon component, and to a method for producing the same. More specifically, the hydrophilic surface existing in the raw or dry coal containing water contains a biomass-derived carbon component. The present invention relates to a high calorific value hybrid coal mixed with natural carbon components inherent in carbon and artificial carbon components derived from biomass, in which resorption of moisture is suppressed even after drying by coating with hydrophobically modified and a method for producing the same.
또한, 본 발명은 상기 석탄 고유의 천연 탄소성분과 바이오매스 유래 인공 탄소성분이 혼성된 고발열량의 하이브리드 석탄을 물/알코올, 물/계면활성제 또는 물/알코올/계면활성제 중에서 선택된 어느 하나의 분산매에 첨가하여 고농도 하이브리드 석탄 슬러리를 제조하는 방법 및 그에 의하여 제조되는 고농도 하이브리드 석탄 슬러리에 관한 것이다. In addition, the present invention is a high calorific value hybrid coal in which the natural carbon component of the coal and the artificial carbon component derived from biomass is mixed into any one dispersion medium selected from water / alcohol, water / surfactant or water / alcohol / surfactant. A method for producing a high concentration hybrid coal slurry by addition and a high concentration hybrid coal slurry produced thereby.
최근 지속적으로 상승하는 유가와 원자력 에너지의 안정성에 대한 불신 등의 원인으로 에너지원으로서의 석탄에 대한 관심이 다시 고조되고 있다. 2007년 기준으로 전체 화석연료 가채매장량은 현재의 화석연료소비 수준으로 고려할 때 향후 약100년을 더 소비할 수 있는 수준이며 그 중 약 60%를 차지하는 화석연료가 바로 석탄이다. 특히 갈탄과 아역청탄과 같은 저급탄이 차지하는 매장량은 전체 석탄 매장량의 50%에 달하여 저급탄 고부가가치화 기술이 절실히 요구되고 있다.[Yvonne Traa, Chem. Commun., 2010, 46, 2175] 그러나 저급탄을 효율적으로 이용하기 위해서는 극복해야 할 일부 중요한 문제가 상존하고 있다.Recently, interest in coal as an energy source is rising again due to rising oil prices and distrust of nuclear energy stability. As of 2007, the total fossil fuel reserves can be consumed for another 100 years, considering the current level of fossil fuel consumption. Fossil fuels, which account for about 60% of them, are coal. In particular, low-carbon coals such as lignite and sub-bituminous coal account for 50% of the total coal reserves, and low-carbon high value-adding technology is urgently needed. [Yvonne Traa, Chem. Commun. , 2010, 46, 2175] However, there are some important issues to overcome in order to make effective use of low-grade coal.
실제로 석탄화력 발전소의 경우에는 고급탄 공급의 어려움을 해결하기 위해 저급탄을 혼소하고 있는데, 저급탄의 높은 고유수분함량(20-65wt%) 때문에 발전효율이 감소되고 이에 따른 CO2 발생량이 고급탄에 비해 20%이상 증가한다는 문제점을 갖고 있다.[X. Li et al., Energy Fuels, 2010, 24, 160] 이를 해결하기 위해서 저급탄을 단순건조, 열수를 이용한 고압건조, 또는 고온의 유기용매를 이용한 건조 등의 저급탄 건조에 관한 연구가 활발히 진행 중에 있지만, 공정이 복잡하다는 문제점 및 건조 후에 수분이 재흡착되어 발전효율이 떨어지는 문제점을 여전히 안고 있다. 또한, 건조된 석탄에 수분이 재흡착되면서 자연발화가 발생하고 이로 인해 저장된 석탄이 손실되는 문제점도 있다.[M. Morimoto et al., Energy Fuels, 2009, 23, 4533; D.J. Allardice et al., Fuel, 2003, 82, 661] In fact, the coal-fired power plants There are a dual fuel lower carbon to solve the difficulties of high carbon supply, the power generation efficiency is reduced due to the high inherent moisture content (20-65wt%) the lower carbon is CO 2 emissions accordingly advanced Tan It has a problem of more than 20% increase compared to [X. Li et al., Energy Fuels , 2010, 24, 160] In order to solve this problem, studies on low-carbon coal drying such as simple drying of low coal, high pressure drying using hot water, or high temperature organic solvents are underway. However, there are still problems in that the process is complicated and problems in that power generation efficiency is lowered due to moisture absorption after drying. In addition, there is also a problem that spontaneous ignition occurs as the moisture is resorbed to the dried coal and the stored coal is lost. Morimoto et al., Energy Fuels , 2009, 23, 4533; DJ Allardice et al., Fuel , 2003, 82, 661]
따라서 저급탄의 이용 및 보급을 촉진하기 위하여 해결해야 할 가장 중요한 문제점 중의 하나는 건조처리된 저급탄에 수분이 재흡착되는 것을 방지하여 발열량도 유지하고 자연발화도 억제하는 기술을 개발하는 것이라 할 수 있겠다. 현재 이러한 문제점을 개선할 수 있는 기술들 중 상용화가 유력한 기술로는 저급탄을 고압의 분위기에서 고온의 유기용매를 이용해 가열함으로써 석탄의 고유수분을 제거하는 방법을 꼽을 수 있다. 하지만, 이 기술은 유기용매를 분리 회수해야 하고, 공정이 비교적 복잡하여 또 다른 에너지 비용이 필요하다는 단점을 가지고 있어 이보다 더 간단하고 효과적인 건조탄의 수분 재흡착 억제 기술이 절실히 요구되고 있다. Therefore, one of the most important problems to be solved in order to promote the use and dissemination of low-grade coal is to develop a technology that maintains calorific value and suppresses spontaneous ignition by preventing water from being resorbed to the dried low-carbon I will. Among the technologies that can be used to solve these problems, the most popular technology is to remove intrinsic moisture of coal by heating low-grade coal in a high pressure atmosphere using a high temperature organic solvent. However, this technology has the disadvantage that the organic solvent must be separated and recovered, and the process is relatively complicated and another energy cost is required. Therefore, there is an urgent need for a technology for suppressing water resorption of dry coal.
한편, 에너지원으로서 세계적으로 이슈화 되고 있는 것 중에 신재생에너지의 이용 및 보급을 들 수 있는데, 이는 기존의 석유, 석탄 등 화석연료에 비하여 이산화탄소의 배출이 저감되어 지구온난화 및 기후변화에 대응할 수 있는 에너지원으로서 각광받고 있기 때문이다. 그러나 국내에서는 아직까지 태양광 또는 풍력 등의 신재생에너지원을 발전용 또는 난방용으로 사용하는 경우에는 화석연료와 비교하면 발전단가 등의 차이로 인하여 획기적인 이용 및 보급이 제한적인 상황이었다.On the other hand, among the issues that are being issued globally as energy sources, the use and dissemination of new and renewable energy sources can be used to cope with global warming and climate change by reducing carbon dioxide emissions compared to fossil fuels such as oil and coal. It is because it is attracting attention as energy source. However, in Korea, when renewable energy sources such as solar or wind power are used for power generation or heating, breakthroughs in use and dissemination have been limited due to differences in generation cost compared to fossil fuels.
우리나라도 화석연료의 고갈과 더불어 국제조약인 기후변화협약 대응에 따른 온실가스 감축이 대두되면서 신재생에너지 의무할당제가 거론되기 시작한 이래 2012년부터 신재생에너지 의무할당제[Renewable Portfolio Standard(RPS)]가 도입됨으로써 에너지 사업자들에게는 부담으로 작용하는 것이 사실이다.In Korea, the new renewable energy mandatory quota system [Renewable Portfolio Standard (RPS)] has been introduced since 2012. It is true that this is a burden for energy providers.
그러므로 신재생에너지의 이용 및 보급을 촉진하고, 신재생에너지 의무할당제를 따르기 위하여는 신재생에너지원의 개발 및 사용이 필수적이라 할 것인데, 그 중에서도 최근 바이오매스는 고갈의 염려가 없고 에너지원으로서의 기술개발이 용이하여 기타 신재생에너지원에 비하여 관심의 대상이 되고 있다.Therefore, in order to promote the use and dissemination of renewable energy and comply with the mandatory quota system of renewable energy, it is essential to develop and use renewable energy sources. Among them, biomass has no concern of depletion and technology as energy source. It is easy to develop and is of interest compared to other renewable energy sources.
특히, 최근 신재생에너지원으로서 우드 펠릿 또는 우드 칩 등의 바이오매스 유래 물질을 연소하여 전력을 생산하면 정책적으로 높은 가중치를 받는데 힘입어 석탄 등과 혼합하여 연료로 사용할 수 있으므로 수요가 증가하리라 예상되나, 우드 펠릿 또는 우드 칩 등을 안정적으로 공급받기가 매우 어려운 실정이다.In particular, as the renewable energy source, the production of electric power by burning biomass-derived materials such as wood pellets or wood chips has a high weight policy, and thus it is expected to increase demand because it can be mixed with coal and used as fuel. It is very difficult to receive wood pellets or wood chips stably.
따라서 석탄 발전소의 CO2 배출저감을 목적으로 혼합해야만 하는 바이오매스 연료의 공급 안정성을 확보하기 위하여 다양한 바이오매스 유래 물질을 석탄 발전에 이용할 수 있는 획기적인 기술개발에 대한 요구가 대두되고 있다. [E.D. Larson et al., Energy Environ. Sci., 2010, 3, 28]Therefore, in order to secure supply stability of biomass fuel that must be mixed for the purpose of reducing CO 2 emission of coal power plants, there is a demand for a breakthrough technology development that can use various biomass-derived materials for coal power generation. ED Larson et al., Energy Environ. Sci. , 2010, 3, 28]
또한, 최근에 환경친화적이며 효율이 높아 각광받고 있는 것으로서 석탄을 습식가스화하여 가연성 가스인 합성가스(Syngas)를 생산하고 IGCC(Integrated Gasification Combined Cycle)를 통한 전기 생산, CTL(Coal To Liquid)을 통한 합성석유 생산 및 다양한 화학원료(chemicals)를 제조하는 것이 가능한데, 이를 위해서는 고농도의 석탄 슬러리 상태를 유지하지 않으면 안된다.In addition, recently, the environmentally friendly and high efficiency has been in the spotlight, and the coal is wet gas to produce a combustible gas (syngas), the electricity production through IGCC (Integrated Gasification Combined Cycle), through the CTL (Coal To Liquid) Synthetic oil production and the manufacture of various chemicals are possible, which requires maintaining a high concentration of coal slurry.
한편, 아직까지 습식석탄 가스화의 경우에는 고농도의 슬러리 제조가 어렵다는 문제가 남아 있다. 분류층 석탄 가스화는 건식 분류층과 습식 분류층으로 구분되는데, 습식 분류층 가스화는 건식에 비해 장치건설 비용이 저렴하고, 장치구조와 운전방법이 간단하며, 석탄 슬러리의 공급이 고압에서도 용이하다는 장점을 가지고 있으나, 이러한 여러 가지 장점에도 불구하고 습식의 경우 습식가스화 원료로 사용되는 슬러리 제조에 물이 추가적으로 포함됨으로서 석탄 슬러리의 발열량이 원탄을 사용하는 건식의 경우보다 낮아 가스화 효율이 낮다는 단점이 있다. 따라서 이러한 단점을 보완하기 위해 고농도의 석탄 슬러리를 제조하기 위한 노력을 기울이고 있음에도 불구하고 저급탄의 경우에는 고유수분 함량이 높아 석탄 슬러리의 농도가 낮은 것이 더 심각한 문제로 알려져 있다.On the other hand, in the case of wet coal gasification, there remains a problem that it is difficult to manufacture a high concentration of slurry. The fractionation bed coal gasification is divided into dry fractionation layer and wet fractionation layer. Wet fractionation layer gasification has the advantages of lower equipment construction cost, simpler structure and operation method, and easy supply of coal slurry at high pressure. However, in spite of these various advantages, in the case of wet, since the water is additionally included in the manufacture of the slurry used as the wet gasification raw material, the calorific value of the coal slurry is lower than that of the dry using the coal, thereby lowering the gasification efficiency. . Therefore, despite efforts to produce a high concentration of coal slurry to compensate for this disadvantage, low coal is known to be a more serious problem because of the high water content of low coal slurry.
본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 본 발명의 제1목적은 저급탄에 존재하는 친수성 표면을 탄소성분으로 코팅하여 소수성으로 개질함으로써 건조 후에도 수분의 재흡착이 억제된, 석탄 고유의 천연 탄소성분과 인공 탄소성분이 혼성된 고발열량의 하이브리드 석탄 및 그를 제조하는 방법을 제공하여 저급탄의 효율적 이용을 도모하고자 하는데 있다.The present invention has been made in view of the above problems, the first object of the present invention is to coat the hydrophilic surface present in the low-carbon coal with a carbon component to modify the hydrophobic by drying the coal inherent, even after drying is suppressed The present invention provides a high calorific value hybrid coal mixed with natural carbon and artificial carbon components, and a method for producing the same, to efficiently utilize low-grade coal.
또한, 본 발명의 제2목적은 저급탄 뿐만 아니라 고급탄 등의 석탄에 존재하는 친수성 표면을 탄소성분으로 코팅하여 소수성으로 개질함에 있어서, 그 탄소성분으로 바이오매스 유래 물질을 사용함으로써 신재생에너지원의 이용 및 보급을 촉진시키고자 하는데 있다.In addition, the second object of the present invention is to produce a renewable energy source by using a biomass-derived material as a carbon component in coating hydrophilic surfaces existing in coal such as high-grade coal as well as low-grade coal with hydrophobic properties. To promote the use and dissemination of
또한, 본 발명의 제3목적은 석탄 고유의 천연 탄소성분과 인공 탄소성분이 혼성된 고발열량의 하이브리드 석탄을 물/알코올, 물/계면활성제 또는 물/알코올/계면활성제 중에서 선택된 어느 하나의 분산매에 첨가하여 고농도 하이브리드 석탄 슬러리를 제조하는 방법 및 그에 의하여 제조된 고농도 하이브리드 석탄 슬러리를 제공하고자 하는데 있다.In addition, a third object of the present invention is to produce a high calorific value hybrid coal in which natural carbon components and artificial carbon components of coal are mixed into any one of a dispersion medium selected from water / alcohol, water / surfactant, or water / alcohol / surfactant. It is to provide a method for producing a high concentration hybrid coal slurry by addition and a high concentration hybrid coal slurry produced thereby.
상기한 바와 같은 목적을 달성하기 위한 본 발명은 석탄에 존재하는 친수성 표면을 바이오매스 유래 물질의 탄소성분으로 코팅하여 석탄 고유의 천연 탄소성분과 인공 탄소성분이 혼성된 고발열량의 하이브리드 석탄을 제공한다.The present invention for achieving the object as described above provides a high calorific value hybrid coal in which the natural carbon component and artificial carbon component of the coal is mixed by coating the hydrophilic surface present in the coal with the carbon component of the biomass-derived material .
상기 친수성 표면은 석탄의 회분 표면인 것을 특징으로 한다.The hydrophilic surface is characterized in that it is a ash surface of coal.
상기 친수성 표면은 -COOH (카르복실기), -NH2(아민기), -OH(하이드록실기) 기능기를 갖는 석탄의 고정탄소 및 휘발분 표면인 것을 특징으로 한다.The hydrophilic surface is characterized in that the fixed carbon and volatile surface of the coal having -COOH (carboxyl group), -NH 2 (amine group), -OH (hydroxyl group) functional group.
상기 석탄은 이탄, 갈탄, 아역청탄, 역청탄, 또는 무연탄 중에서 선택된 어느 하나의 것을 특징으로 한다.The coal is characterized in that any one selected from peat, lignite, sub-bituminous coal, bituminous coal, anthracite coal.
상기 석탄은 고유수분함량이 5~70 중량%의 원탄인 것을 특징으로 한다.The coal is characterized in that the natural water content of raw coal of 5 to 70% by weight.
상기 석탄은 고유수분함량이 5 중량% 이하의 건조탄인 것을 특징으로 한다.The coal is characterized in that the intrinsic moisture content of the dried coal of less than 5% by weight.
상기 바이오매스 유래 물질은 사탕수수 원액 또는 당밀인 것을 특징으로 한다. The biomass-derived material is characterized in that the sugar cane stock or molasses.
상기 바이오매스 유래 물질은 목질계의 리그노셀룰로오스로부터 전환된 당류 또는 전분계를 효소분해 하여 얻게 되는 당류를 포함할 수도 있다.The biomass-derived material may include a saccharide obtained by enzymatic decomposition of a saccharide or starch system converted from lignocellulosic cellulose.
상기 바이오매스 유래 물질은 단당류, 이당류 또는 다당류 중에서 선택된 어느 하나의 것을 특징으로 한다.The biomass-derived material is characterized in that any one selected from monosaccharides, disaccharides or polysaccharides.
상기 단당류는 글루코스, 프럭토스 또는 갈락토스 중에서 선택된 어느 하나의 것을 특징으로 한다.The monosaccharide is characterized in that any one selected from glucose, fructose or galactose.
상기 이당류는 슈크로스, 말토스 또는 락토스 중에서 선택된 어느 하나의 것을 특징으로 한다.The disaccharide is characterized in that any one selected from sucrose, maltose or lactose.
상기 다당류는 녹말 또는 리그노셀룰로오스 중에서 선택된 어느 하나의 것을 특징으로 한다.The polysaccharide is characterized in that any one selected from starch or lignocellulose.
상기 고발열량 하이브리드 석탄의 고위발열량은 4000 kcal/kg 이상인 것을 특징으로 한다. The high calorific value of the high calorific value hybrid coal is characterized in that more than 4000 kcal / kg.
또한, 본 발명은 i) 석탄을 바이오매스 유래 물질의 용액으로 반죽하여 페이스트를 형성하는 단계, ii) 상기 페이스트를 탄화로에 투입하여 바이오매스 유래 물질의 건조 및 탄화를 동시에 수행하는 단계를 포함하는, 석탄의 친수성 표면에 바이오매스 유래 탄소성분이 코팅된 고발열량의 하이브리드 석탄을 제조하는 방법을 제공한다.The present invention also includes the steps of i) kneading coal with a solution of biomass-derived material to form a paste, and ii) simultaneously drying and carbonizing the biomass-derived material by injecting the paste into a carbonization furnace. The present invention provides a method for producing a high calorific value hybrid coal coated with a biomass-derived carbon component on a hydrophilic surface of coal.
상기 i) 단계에서 바이오매스 유래 물질은 석탄 중량 대비 0.1~50 중량% 첨가되는 것을 특징으로 한다.The biomass-derived material in step i) is characterized in that the addition of 0.1 to 50% by weight relative to the weight of coal.
상기 i) 단계에서 바이오매스 유래 물질의 용액은 물 또는 유기 용매를 사용하는 것을 특징으로 한다. The solution of the biomass-derived material in step i) is characterized in that using water or an organic solvent.
상기 물 또는 유기용매를 이용한 바이오매스 유래 물질 용액 제조시 물 또는 유기용매/석탄의 중량비를 0.1~5의 범위로 유지하는 것을 특징으로 한다.In preparing the biomass-derived material solution using the water or organic solvent, the weight ratio of water or organic solvent / coal is maintained in the range of 0.1 to 5.
상기 i) 단계에서 유기용매는 메탄올, 에탄올 또는 프로판올 중에서 선택된 어느 하나의 것을 특징으로 한다.The organic solvent in step i) is characterized in that any one selected from methanol, ethanol or propanol.
상기 ii) 단계에서 바이오매스 유래 물질의 건조 및 탄화는 150~900℃, 0.1~10 시간 수행하는 것을 특징으로 한다.In step ii), the drying and carbonization of the biomass-derived material is performed at 150 to 900 ° C. for 0.1 to 10 hours.
또한, 바이오매스 유래 물질이 석탄의 친수성 표면으로 침투되는 것을 향상시키기 위해 상기 ii) 단계를 수행하기 전에 상온, 상압 분위기에서 상기 페이스트를 숙성하는 단계를 포함하는 것을 특징으로 한다.In addition, to improve the penetration of the biomass-derived material to the hydrophilic surface of the coal, characterized in that it comprises the step of aging the paste at room temperature, atmospheric pressure before performing step ii).
상기 페이스트 숙성단계의 숙성시간은 5~240 시간인 것을 특징으로 한다.The aging time of the paste aging step is characterized in that 5 to 240 hours.
상기 바이오매스 유래 물질은 하이브리드 석탄 성형을 위한 바인더의 기능을 수행하는 것을 특징으로 한다.The biomass-derived material is characterized in that it performs the function of a binder for hybrid coal molding.
또한, 본 발명은 고발열량 하이브리드 석탄의 수분 재흡착률을 더욱 낮은 상태로 제어하기 위한 또 다른 해결수단으로서 i) 석탄을 바이오매스 유래 물질의 용액으로 반죽하여 페이스트를 형성하는 단계; ii) 상기 페이스트를 상온, 상압 분위기에서 5~240 시간 숙성하는 단계; iii) 상기 숙성된 페이스트를 예비 건조하는 단계; 및 iv) 상기 예비 건조된 페이스트를 탄화로에 투입하여 바이오매스 유래 물질의 건조 및 탄화를 동시에 수행하는 단계;를 포함하는, 2단계 건조공정을 이용한 석탄의 친수성 표면에 바이오매스 유래 탄소성분이 코팅된 고발열량 하이브리드 석탄을 제조하는 방법 및 그에 의하여 제조된 고발열량 하이브리드 석탄을 제공한다.In addition, the present invention as another solution for controlling the moisture resorption rate of the high calorific value hybrid coal to a lower state i) kneading coal with a solution of biomass-derived material to form a paste; ii) aging the paste at room temperature and atmospheric pressure for 5 to 240 hours; iii) predrying the aged paste; And iv) subjecting the pre-dried paste to a carbonization furnace to simultaneously dry and carbonize the biomass-derived material, wherein the biomass-derived carbon component is coated on the hydrophilic surface of the coal using a two-step drying process. A method for producing a high calorific value hybrid coal and a high calorific value hybrid coal produced thereby are provided.
또한, 본 발명은 상기 제조방법들에 의하여 얻어진 하이브리드 석탄을 물/알코올, 물/계면활성제 또는 물/알코올/계면활성제 중에서 선택된 어느 하나의 분산매에 첨가하여 하이브리드 석탄 슬러리를 형성하는 단계를 포함하는, 고농도 하이브리드 석탄 슬러리의 제조방법을 제공한다.In addition, the present invention includes the step of forming a hybrid coal slurry by adding the hybrid coal obtained by the above production method to any one of a dispersion medium selected from water / alcohol, water / surfactant or water / alcohol / surfactant, It provides a method for producing a high concentration hybrid coal slurry.
상기 물/알코올 분산매는 알코올/물의 중량비가 0.01~0.99인 것을 특징으로 한다.The water / alcohol dispersion medium is characterized in that the weight ratio of alcohol / water is 0.01 ~ 0.99.
상기 물/알코올 분산매의 알코올은 메탄올, 에탄올 또는 프로판올 중에서 선택된 하나의 것을 특징으로 한다.The alcohol of the water / alcohol dispersion medium is characterized in that one selected from methanol, ethanol or propanol.
상기 계면활성제는 CWM1002(formaldehyde condensate of sodium naphthalene sulfonate), CWM1001(polymer sulfonate), Na-CMC(carboxymethyl cellulose), Na-DBS(Alkylbenzene sulfate), Na-LS(alkylsulfate sodium salt), NP1020(alkylphenol ethyleneoxide(10)), NP1060(alkylphenol ethyleneoxide(50)), CA1053(casteroil ethyleneoxide(50)), ATLOX4913(methyl methacrylate graft copolymer), cetyltrimethylammonium brimide 또는 cetyltrimethylammonium chloride 중에서 선택된 어느 하나의 것을 특징으로 한다.The surfactant may be formed of CWM1002 (formaldehyde condensate of sodium naphthalene sulfonate), CWM1001 (polymer sulfonate), Na-CMC (carboxymethyl cellulose), Na-DBS (Alkylbenzene sulfate), Na-LS (alkylsulfate sodium salt), NP1020 (alkylphenol ethyleneoxide (NP1020) 10)), NP1060 (alkylphenol ethyleneoxide (50)), CA1053 (casteroil ethyleneoxide (50)), ATLOX4913 (methyl methacrylate graft copolymer), characterized in that any one selected from cetyltrimethylammonium brimide or cetyltrimethylammonium chloride.
또한, 본 발명은 상기 고농도 하이브리드 석탄 슬러리의 제조방법에 의하여 제조된 고농도 하이브리드 석탄 슬러리를 제공한다.The present invention also provides a high concentration hybrid coal slurry prepared by the method for producing a high concentration hybrid coal slurry.
본 발명에 의하여 제조되는, 바이오매스 유래 물질을 석탄의 친수성 표면에 침투시켜 탄화하여 친수성 표면에 소수성인 탄소가 코팅된 고발열량의 하이브리드 석탄은 수분의 재흡착이 현저하게 억제되어 건조석탄의 높은 발열량을 그대로 유지할 수 있어 발전소용 미분연료로 그대로 사용할 수 있고, 따라서 고유수분을 포함한 저급탄을 혼소하는 것에 비해 발전효율을 향상시킬 수 있으며, 발전소의 CO2 배출량을 저감할 수 있는 효과가 있다. 또한, 하이브리드 석탄을 제조하기 위해 첨가된 바이오매스에 의해서도 추가적인 CO2 배출저감이 가능하다. 아울러, 신재생에너지 의무할당제로 인한 에너지 사업자의 바이오매스 연료 확보에 대한 부담감을 해소할 수 있다.The biomass-derived hybrid coal produced by the present invention is carbonized by infiltrating the hydrophilic surface of the coal with a hydrophobic carbon, and the high calorific value of the dry coal is significantly suppressed by the adsorption of moisture. It can be maintained as it can be used as a differential fuel for power plants, and thus can improve the power generation efficiency compared to mixing low-grade coal containing natural water, there is an effect that can reduce the CO 2 emissions of the power plant. In addition, additional CO 2 emissions can be reduced by the biomass added to produce hybrid coal. In addition, it is possible to relieve the burden on the energy provider to secure biomass fuel due to the new renewable energy mandate.
또한, 본 발명에 의하여 바이오매스 유래 물질을 석탄의 친수성 표면에 침투시켜 탄화하여 친수성 표면에 소수성인 탄소가 코팅된 고발열량의 하이브리드 석탄을 물/알코올, 물/계면활성제 또는 물/알코올/계면활성제 중에서 선택된 어느 하나의 분산매에 첨가하여 제조된 고농도 하이브리드 석탄 슬러리는 슬러리의 석탄농도가 원탄 또는 건조탄을 이용해 만든 슬러리에 비하여 현저하게 높다.In addition, according to the present invention, a biomass-derived hybrid coal having a hydrophobic carbon coated with a hydrophobic carbon on the hydrophilic surface of the biomass-derived material is carbonized with water / alcohol, water / surfactant or water / alcohol / surfactant. The high concentration hybrid coal slurry prepared by adding to any one of the dispersion medium selected from among the significantly higher than the slurry made of coal or dry coal, the coal concentration of the slurry.
따라서 본 발명에 의하여 제조된 고농도 하이브리드 석탄 슬러리를 습식 분류층 가스화에 적용할 경우 석탄전환율, 냉가스효율 등 가스화 성능이 증가되고 그로 인해 가스화 공정의 CO2 배출량은 저감되리라 기대할 수 있으며, 기존에 불가능하다고 여겨지던 수분 함량이 높은 저급탄을 이용한 고농도 슬러리 제조가 가능해지므로 복잡한 구조의 건식 가스화기에 대한 습식 가스화기의 경쟁력이 더욱 강화될 수 있을 것이다. 뿐만 아니라, 고농도 하이브리드 석탄 슬러리를 제조하는데 사용하는 고발열량의 하이브리드 석탄 제조시 바이오매스 유래 물질을 석탄 중량 대비 0.1~50 중량%를 첨가하기 때문에 습식 석탄가스화 장치에 본 발명의 고농도 하이브리드 석탄 슬러리를 원료로 사용하는 경우 원천적인 바이오매스 사용에 따른 CO2의 추가적인 저감 효과가 예상된다.Therefore, when the high concentration hybrid coal slurry prepared by the present invention is applied to the wet fractionation bed gasification, the gasification performance such as coal conversion rate, cold gas efficiency, etc. can be increased, and thus CO 2 emission of the gasification process can be expected to be reduced. Since it is possible to manufacture a high concentration slurry using low-grade coal having a high water content, the competitiveness of the wet gasifier for the dry gasifier of a complicated structure may be further strengthened. In addition, since the biomass-derived material is added in an amount of 0.1 to 50% by weight relative to the weight of coal when the high calorific value hybrid coal is used to prepare the high concentration hybrid coal slurry, the high concentration hybrid coal slurry of the present invention is used in a wet coal gasifier. additional reduction of the effects of the CO 2 is fundamentally the biomass used is expected when used as a.
도 1은 본 발명에 따른 저급탄을 바이오매스 유래 물질을 이용하여 고급화한 고농도 하이브리드 석탄 슬러리의 개념도.1 is a conceptual diagram of a high-concentration hybrid coal slurry in which low-grade coal according to the present invention is advanced using a biomass-derived material.
도 2는 실시예 1 및 비교예 1로부터 제조된 하이브리드 석탄과 단순 건조탄의 소수성 실험 사진.2 is a hydrophobic experiment photograph of hybrid coal and simple dry coal prepared from Example 1 and Comparative Example 1. FIG.
도 3은 실시예 1 및 2에 따른 하이브리드 석탄 슬러리와 비교예 1 및 2에 따른 건조탄과 원탄 슬러리의 점도 측정 결과.3 is a result of measuring the viscosity of the hybrid coal slurry according to Examples 1 and 2 and the dried coal and raw coal slurry according to Comparative Examples 1 and 2.
도 4는 실시예 1에 따른 하이브리드 석탄 슬러리와 비교예 1 및 2에 따른 건조탄과 원탄 슬러리의 점도변화에 대한 슬러리 발열량의 변화.4 is a change in slurry calorific value with respect to the viscosity change of the hybrid coal slurry according to Example 1 and the dried coal and raw coal slurry according to Comparative Examples 1 and 2.
도 5는 실시예 3 및 비교예 3으로부터 제조된 하이브리드 석탄과 단순 건조탄의 소수성 평가(접촉각 측정) 결과.5 is a result of hydrophobicity evaluation (contact angle measurement) of hybrid coal and simple dry coal produced from Example 3 and Comparative Example 3.
도 6은 실시예 3 및 비교예 4로부터 제조된 하이브리드 석탄의 기공 크기 분포도.6 is a pore size distribution diagram of hybrid coals prepared from Example 3 and Comparative Example 4. FIG.
이하에서는 본 발명에 따른 바이오매스 유래 물질을 이용하여 저급탄에 존재하는 친수성 표면을 탄소성분으로 코팅, 소수성으로 개질함으로써 건조 후에도 수분의 재흡착이 억제된, 석탄 고유의 천연 탄소성분과 인공 탄소성분이 혼성된 고발열량의 하이브리드 석탄을 제조함에 의하여 저급탄을 고급화하는 기술에 관하여 상세히 설명하기로 한다.By using the biomass-derived material according to the present invention, by coating the hydrophilic surface present in the lower coal with a carbon component and modifying it with hydrophobicity, natural carbon and artificial carbon components inherent to coal are suppressed after adsorption of moisture. The technology for upgrading low coal by producing the hybrid high calorific value hybrid coal will be described in detail.
또한, 본 발명에 따른 석탄 고유의 천연 탄소성분과 인공 탄소성분이 혼성된 고발열량의 하이브리드 석탄을 물/알코올, 물/계면활성제 또는 물/알코올/계면활성제 중에서 선택된 어느 하나의 분산매에 첨가하여 고농도의 하이브리드 석탄 슬러리를 제조하는 방법에 관하여 첨부된 도면과 함께 상세히 설명하기로 한다.In addition, a high calorific value hybrid coal mixed with natural carbon components and artificial carbon components of coal according to the present invention is added to any one of a dispersion medium selected from water / alcohol, water / surfactant, or water / alcohol / surfactant to have a high concentration. A method for producing a hybrid coal slurry will be described in detail with the accompanying drawings.
도 1은 본 발명에 따른 저급탄을 바이오매스 유래 물질을 이용하여 고급화한 고농도 하이브리드 석탄 슬러리의 개념도이다.1 is a conceptual diagram of a high-concentration hybrid coal slurry in which low-grade coal according to the present invention is advanced using a biomass-derived material.
도 1에 도시된 바와 같이, 본 발명의 일 실시양태로서 i) 석탄을 바이오매스 유래 물질의 용액으로 반죽하여 페이스트를 형성하는 단계, ii) 상기 페이스트를 탄화로에 투입하여 바이오매스 유래 물질의 건조 및 탄화를 동시에 수행하는 단계로부터 석탄 친수성 표면에 바이오매스 유래 탄소성분이 코팅된 고발열량의 하이브리드 석탄을 얻었다.As shown in FIG. 1, as one embodiment of the present invention, i) kneading coal with a solution of biomass-derived material to form a paste, ii) putting the paste into a carbonization furnace to dry the biomass-derived material And a high calorific value hybrid coal coated with a biomass-derived carbon component on a coal hydrophilic surface from the step of simultaneously carbonizing.
상기 석탄 친수성 표면은 석탄의 회분 표면인 것으로서, -COOH (카르복실기), -NH2(아민기), -OH(하이드록실기) 기능기를 갖는 석탄의 고정탄소 및 휘발분 표면인 것을 특징으로 한다. The coal hydrophilic surface is a ash surface of coal, and is a fixed carbon and volatile surface of coal having a -COOH (carboxyl group), -NH 2 (amine group), and -OH (hydroxyl group) functional group.
여기서 석탄은 이탄, 갈탄, 아역청탄, 역청탄 또는 무연탄 중에서 선택된 어느 하나의 것일 수 있다. 본 발명에서는 기본적으로 저급탄을 대상으로 석탄 친수성 표면에 바이오매스 유래 탄소성분이 코팅된 고발열량의 하이브리드 석탄을 제조하는 것이나, 본 발명의 하이브리드 석탄 제조방법은 고급탄을 대상으로 하여도 무방하다.The coal may be any one selected from peat, lignite, sub-bituminous coal, bituminous coal or anthracite coal. In the present invention, to produce a low calorie coal, a high calorific value hybrid coal coated with a biomass-derived carbon component on the coal hydrophilic surface, the hybrid coal production method of the present invention may be a high-grade coal.
또한, 석탄은 고유수분함량이 5~70 중량%의 원탄 또는 고유수분함량이 5 중량% 이하의 건조탄인 것을 특징으로 한다.In addition, the coal is characterized in that the high water content of raw coal or 5 to 70% by weight of the dry coal of the high water content or less.
한편, 바이오매스 유래 물질은 사탕수수 원액 또는 당밀인 것을 특징으로 하고, 상기 바이오매스 유래 물질은 단당류, 이당류 또는 다당류 중에서 선택된 어느 하나의 것일 수도 있다.On the other hand, the biomass-derived material is characterized in that the sugarcane stock solution or molasses, the biomass-derived material may be any one selected from monosaccharides, disaccharides or polysaccharides.
상기 바이오매스 유래 물질을 이용하여 탄소성분을 코팅할 수 있는 이유는 바이오매스 유래 물질에 포함된 당류 때문이므로 상기 바이오매스 유래 물질은 사탕수수 원액 또는 당밀외에도 목질계의 리그노셀룰로오스로부터 전환된 당류나 옥수수와 같은 전분계를 효소분해하여 얻게되는 당류를 포함할 수도 있다.The reason for coating the carbon component using the biomass-derived material is because of the saccharides contained in the biomass-derived material. It may also contain sugars obtained by enzymatic digestion of starch systems such as corn.
단당류는 글루코스, 프럭토스 또는 갈락토스 중에서 선택되고, 이당류는 슈크로스, 말토스 또는 락토스 중에서 선택되며, 다당류는 녹말 또는 리그노셀룰로오스 중에서 선택된 어느 하나의 것을 특징으로 한다. Monosaccharide is selected from glucose, fructose or galactose, disaccharide is selected from sucrose, maltose or lactose, polysaccharide is characterized in that any one selected from starch or lignocellulose.
상기 하이브리드 석탄의 고위발열량은 4000 kcal/kg 이상인 것을 특징으로 한다.The high calorific value of the hybrid coal is characterized in that more than 4000 kcal / kg.
바이오매스 유래 물질은 물 또는 메탄올, 에탄올 또는 프로판올 중에서 선택된 어느 하나의 알코올계 유기용매를 사용하여 석탄 중량 대비 0.1~50 중량% 첨가함으로써 페이스트를 형성하는 것이 바람직하다. 석탄 중량 대비 바이오매스 유래 물질의 첨가량이 0.1 중량% 미만이면 석탄의 친수성 표면 내에 침투하는 바이오매스 유래 물질의 양이 미미하여 석탄의 친수성 표면을 충분하게 코팅할 수 없어 석탄의 친수성 표면을 소수성으로 개질하기 어렵고, 50 중량%를 초과하면 페이스트 성상을 얻기 어려워 가공성이 떨어진다. The biomass-derived material is preferably formed by adding 0.1 to 50% by weight relative to the weight of coal using water or an alcohol-based organic solvent selected from methanol, ethanol or propanol. If the amount of biomass-derived material added to the weight of coal is less than 0.1% by weight, the amount of biomass-derived material penetrating into the hydrophilic surface of coal is insignificant, so that the hydrophilic surface of coal cannot be sufficiently coated so that the hydrophilic surface of coal is hydrophobically modified. If it is difficult, if it exceeds 50% by weight, it is difficult to obtain paste properties, resulting in poor workability.
상기 물 또는 유기용매를 이용한 바이오매스 유래 물질 용액 제조시 물 또는 유기용매/석탄의 중량비를 0.1~5의 범위로 유지하는 것을 특징으로 한다. 물 또는 유기용매/석탄의 중량비가 0.1미만이면 바이오매스 유래물질이 석탄의 친수성 표면으로 침투되기가 어려워 친수성 표면의 소수성 개질이 어려워지고, 물 또는 유기용매/석탄의 중량비가 5 이상이 되면 건조 및 탄화공정에서 에너지 소비가 많아지는 단점이 있다.In preparing the biomass-derived material solution using the water or organic solvent, the weight ratio of water or organic solvent / coal is maintained in the range of 0.1 to 5. If the weight ratio of water or organic solvent / coal is less than 0.1, it is difficult for the biomass-derived material to penetrate into the hydrophilic surface of coal, making hydrophobic modification of the hydrophilic surface difficult. If the weight ratio of water or organic solvent / coal is 5 or more, drying and There is a disadvantage in that energy consumption increases in the carbonization process.
페이스트가 형성되면, 그 형성된 페이스트를 탄화로에 투입하여 건조 및 탄화 공정을 동시에 수행하는데, 150~900℃에서 0.1~10 시간 동안 수행하는 것이 바람직하다. 건조 및 탄화 공정의 온도가 150℃, 0.1시간 미만이면 물 등의 유기용매를 완전히 건조하기도 어렵거니와 바이오매스 유래물질이 완전히 탄화되지 않고, 900℃, 10 시간을 초과하면 고온에서 장시간 건조 및 탄화 공정을 수행함에 따른 에너지 비용의 증대로 효율성이 저해된다. When the paste is formed, the formed paste is added to a carbonization furnace to simultaneously perform a drying and carbonization process, preferably at 0.1 to 10 hours at 150 to 900 ° C. If the temperature of the drying and carbonization process is less than 150 ° C. and less than 0.1 hour, it is difficult to completely dry organic solvents such as water, but the biomass-derived material is not completely carbonized. Efficiency is hampered by an increase in the energy costs of doing so.
또한, 바이오매스 유래 물질이 석탄의 친수성 표면으로 침투되는 것을 향상시키기 위해 상기 ii) 단계를 수행하기 전에 상온, 상압 분위기에서 숙성하는 단계를 포함하는 것을 특징으로 한다.In addition, to improve the penetration of the biomass-derived material to the hydrophilic surface of the coal, characterized in that it comprises the step of aging in a room temperature, atmospheric pressure before performing step ii).
상기 숙성단계의 숙성시간은 5~240 시간인 것을 특징으로 한다.The aging time of the aging step is characterized in that 5 to 240 hours.
한편, 본 발명에서 석탄의 친수성 표면을 소수성으로 개질하기 위하여 사용된 바이오매스 유래 물질은 하이브리드 석탄 성형시 바인더의 기능도 수행함으로써 성형가공성을 향상시킨다.On the other hand, the biomass-derived material used to modify the hydrophilic surface of the coal to hydrophobic in the present invention improves the moldability by performing the function of the binder in the hybrid coal molding.
또한, 본 발명은 고발열량 하이브리드 석탄의 수분 재흡착률을 더욱 낮은 상태로 제어하기 위한 또 다른 실시양태로서 i) 석탄을 바이오매스 유래 물질의 용액으로 반죽하여 페이스트를 형성하는 단계; ii) 상기 페이스트를 상온, 상압 분위기에서 5~240 시간 숙성하는 단계; iii) 상기 숙성된 페이스트를 예비 건조하는 단계; 및 iv) 상기 예비 건조된 페이스트를 탄화로에 투입하여 바이오매스 유래 물질의 건조 및 탄화를 동시에 수행하는 단계;를 포함하는, 2단계 건조공정을 이용하여 석탄의 친수성 표면에 바이오매스 유래 탄소성분이 코팅된 고발열량 하이브리드 석탄을 제조한다.In another aspect, the present invention provides a method for controlling the moisture resorption rate of the high calorific value hybrid coal to a lower state, i) kneading coal with a solution of biomass-derived material to form a paste; ii) aging the paste at room temperature and atmospheric pressure for 5 to 240 hours; iii) predrying the aged paste; And iv) subjecting the pre-dried paste to a carbonization furnace to simultaneously dry and carbonize the biomass-derived material, wherein the biomass-derived carbon component is present on the hydrophilic surface of the coal using a two-step drying process. Coated high calorific value hybrid coal is produced.
상기 또 다른 실시양태에서는 페이스트가 형성되면, 바이오매스 유래 물질이 석탄의 친수성 표면으로 침투되는 것을 향상시키기 위해 페이스트를 상온, 상압 분위기에서 5~240 시간 숙성시키고, 그 숙성된 페이스트를 예비 건조하는 공정을 포함하는 것으로 특징적인 기술적 사상이라 할 수 있다. In another embodiment, the paste is aged, the paste is aged for 5 to 240 hours at room temperature and atmospheric pressure to improve penetration of the biomass-derived material into the hydrophilic surface of the coal, and the dried paste is preliminarily dried. It may be referred to as a characteristic technical idea.
한편, 본 발명에서처럼 하이브리드 석탄은 종래 바이오매스와 석탄을 단순히 물리적으로 혼합함으로써 불균일한 연소 특성을 보이는 것과 비교하여 바이오매스 유래 물질이 석탄의 기공 내로 침투해서 석탄과 물리화학적으로 결합되어 있음으로써 균일한 연소 특성을 나타냄과 아울러, 석탄의 기공을 막음으로써 건조 후에 수분의 재흡착 정도가 낮아지는 것이다. 따라서 석탄의 기공을 더 효율적으로 막을수록 수분의 재흡착률도 감소되는 셈이다.On the other hand, as in the present invention, the hybrid coal is homogeneous because the biomass-derived material penetrates into the pores of the coal and is physically chemically combined with the coal, as compared with the conventional non-uniform combustion characteristics by simply physically mixing the biomass and the coal. In addition to exhibiting combustion characteristics, the degree of resorption of moisture after drying is lowered by blocking the pores of coal. Therefore, the more effectively the pores of coal are blocked, the less the resorption rate of water.
그러므로 본 발명에서 채택한 석탄과 바이오매스 유래 물질의 페이스트를 예비 건조하는 단계를 통하여 석탄의 기공을 더 효과적으로 막아 기공의 부피를 더욱 작게 함으로써 후속 건조 및 탄화공정을 거친 하이브리드 석탄의 수분 재흡착률을 현저히 감소시킬 수 있게 되는 것이다.Therefore, through the step of pre-drying the paste of coal and biomass-derived material adopted in the present invention to prevent the pores of the coal more effectively to reduce the volume of the pores to significantly reduce the moisture resorption rate of the hybrid coal undergoing subsequent drying and carbonization process It can be reduced.
상기 예비 건조는 50~150℃에서 0.1~24 시간 수행하는 것이 바람직하다. 예비 건조의 온도가 50℃, 0.1 시간 미만이면 물 등의 유기용매를 완전히 건조하기도 어렵거니와 석탄의 기공을 막는 pore-filling 효과가 미미하며, 150℃, 24 시간을 초과하면 장시간의 예비 건조에 따른 또 다른 에너지 비용의 증대로 효율성이 저해된다.The predrying is preferably carried out at 50 ~ 150 ℃ 0.1 ~ 24 hours. If the pre-drying temperature is less than 0.1 ° C for 50 ° C, it is difficult to completely dry organic solvents such as water, but the pore-filling effect of blocking pores of coal is insignificant. If it exceeds 150 ° C for 24 hours, Another increase in energy costs hinders efficiency.
본 발명의 또 다른 실시양태로서 상기 2단계 건조공정을 이용하여 고발열량의 하이브리드 석탄을 제조하는 방법은 예비 건조 공정을 도입한 것 이외에는 전술한 본 발명의 일 실시양태와 제조공정상의 조건이 동일하다.As another embodiment of the present invention, a method for producing a high calorific value hybrid coal using the two-stage drying process has the same conditions as those of the above-described embodiment of the present invention except for introducing a preliminary drying process. .
상기 2단계 건조공정을 이용하여 제조된 고발열량 하이브리드 석탄은 인수식 발열량이 4,000kcal/kg 이상을 나타낸다.The high calorific value hybrid coal manufactured using the two-stage drying process shows a takeover calorific value of 4,000 kcal / kg or more.
또한, 본 발명에서는 상기 도 1에 도시된 개념도에서 보는 것처럼 본 발명의 실시양태에 따라 제조된 고발열량의 하이브리드 석탄을 물/알코올, 물/계면활성제 또는 물/알코올/계면활성제 중에서 선택된 어느 하나의 분산매에 첨가함으로써 고농도 하이브리드 석탄 슬러리를 제조하는 것으로, 물/알코올을 분산매로 사용하는 경우에는 알코올/물의 중량비는 0.01~0.99가 되도록 하였다. In addition, in the present invention, as shown in the conceptual diagram shown in FIG. 1, the high calorific value of the hybrid coal produced according to the embodiment of the present invention is selected from water / alcohol, water / surfactant or water / alcohol / surfactant. By adding to the dispersion medium, a high concentration hybrid coal slurry was produced. When water / alcohol was used as the dispersion medium, the weight ratio of alcohol / water was set to 0.01 to 0.99.
알코올/물의 중량비가 0.01 미만이면 분산성이 떨어져 슬러리 형성이 어렵고,알코올/물의 중량비가 0.99를 초과하면 습식가스화 반응이 발생하지 않으므로 알코올/물의 중량비는 0.01~0.99 범위로 유지하는 것이 바람직하다.If the weight ratio of alcohol / water is less than 0.01, it is difficult to form a slurry, and if the weight ratio of alcohol / water exceeds 0.99, the wet gasification reaction does not occur, so it is preferable to maintain the weight ratio of alcohol / water in the range of 0.01 to 0.99.
또한, 분산성을 향상시킬 목적으로는 알코올 대신에 계면활성제를 사용함으로써 물/계면활성제의 분산매를 사용할 수도 있는데, 이 때 사용되는 계면활성제는 통상적으로 슬러리 제조시 분산성을 향상시킬 목적으로 사용되는 것이면 어느 것이든 무방하나, 본 발명에 따른 하이브리드 석탄 슬러리를 제조함에 있어서는 CWM1002(formaldehyde condensate of sodium naphthalene sulfonate), CWM1001(polymer sulfonate), Na-CMC(carboxymethyl cellulose), Na-DBS(Alkylbenzene sulfate), Na-LS(alkylsulfate sodium salt), NP1020(alkylphenol ethyleneoxide(10)), NP1060(alkylphenol ethyleneoxide(50)), CA1053(casteroil ethyleneoxide(50)), ATLOX4913(methyl methacrylate graft copolymer), cetyltrimethylammonium brimide 또는 cetyltrimethylammonium chloride 등이 바람직하며, 그 첨가량은 슬러리가 양호하게 형성되는 범위 내에서라면 계면활성제의 종류에 따라서 적절히 조절이 가능하다.In addition, for the purpose of improving dispersibility, a dispersion medium of water / surfactant may be used by using a surfactant instead of alcohol, and the surfactant used at this time is usually used for the purpose of improving dispersibility in slurry production. Any of these may be used, but in preparing the hybrid coal slurry according to the present invention, CWM1002 (formaldehyde condensate of sodium naphthalene sulfonate), CWM1001 (polymer sulfonate), Na-CMC (carboxymethyl cellulose), Na-DBS (Alkylbenzene sulfate), Alkylsulfate sodium salt (Na-LS), alkylphenol ethyleneoxide (10) (NP1020), alkylphenol ethyleneoxide (50) (NP1060), CA1053 (casteroil ethyleneoxide (50)), ATLOX4913 (methyl methacrylate graft copolymer), cetyltrimethylammonium brimide or cetyltrimethylammonium chloride, etc. This is preferable, and the addition amount is suitably according to the kind of surfactant, if it is in the range in which a slurry is formed favorable. Clauses are possible.
아울러, 슬러리의 분산성을 더욱 향상시키고자 물/알코올/계면활성제의 분산매를 사용할 수도 있다.In addition, a dispersion medium of water / alcohol / surfactant may be used to further improve the dispersibility of the slurry.
상기 물/알코올 분산매의 알코올은 메탄올, 에탄올 또는 프로판올 중에서 선택된 하나의 것을 특징으로 한다.The alcohol of the water / alcohol dispersion medium is characterized in that one selected from methanol, ethanol or propanol.
이하 구체적인 실시예를 상세히 설명한다. Hereinafter, specific embodiments will be described in detail.
(하이브리드 석탄의 제조예)(Production example of hybrid coal)
몽골지역의 시베오부 원탄을 110℃ 오븐에서 12 시간 건조한 석탄 100g을 준비하였다. 슈크로스 25g을 물 100g에 용해시킨 슈크로스 수용액을 준비하였다. 상기 건조된 시베오부 석탄에 슈크로스 수용액을 첨가하여 반죽하고 시베오부 석탄과 슈크로스 수용액의 복합체를 페이스트 형태로 얻었다.Sibeobu raw coal from Mongolia was prepared 100g of coal dried for 12 hours in an 110 ℃ oven. An aqueous sucrose solution was prepared in which 25 g of sucrose was dissolved in 100 g of water. Sucrose aqueous solution was added to the dried sibeobu coal to knead, and a composite of the sibeobu coal and the sucrose aqueous solution was obtained in the form of a paste.
상기 얻어진 페이스트를 질소 분위기하에서 250℃의 반응기에 넣고 5 시간 건조 및 탄화 과정을 거쳐 하이브리드 석탄을 제조하였다.The obtained paste was placed in a reactor at 250 ° C. under a nitrogen atmosphere, and then dried and carbonized to prepare hybrid coal.
아래 표 1에 시베오부 원탄과 상기 제조예에 따른 하이브리드 석탄의 공업분석 결과와 발열량을 나타내었다.Table 1 below shows the industrial analysis results and calorific value of Sibeobu raw coal and hybrid coal according to the preparation example.
표 1
분석항목/시료명 공업분석(wt%) 고위발열량(kcal/kg) 저위발열량(kcal/kg)
수분(M) 휘발분(VM) 회분(Ash) 고정탄소(FC)
시베오부 원탄 35.10 25.23 15.78 23.89 4,420 3,990
하이브리드 석탄 3.25 37.27 21.40 38.08 4,770 4,560
Table 1
Analysis item / sample name Industrial analysis (wt%) High calorific value (kcal / kg) Low calorific value (kcal / kg)
Moisture (M) Volatile Powder (VM) Ash Fixed Carbon (FC)
Shibeobu Wontan 35.10 25.23 15.78 23.89 4,420 3,990
Hybrid coal 3.25 37.27 21.40 38.08 4,770 4,560
상기 표 1에서 보는 것처럼 하이브리드 석탄은 시베오부 원탄에 비해 저위발열량(고유수분의 증발잠열을 고려한 경우)은 570 kcal/kg이 더 높았고, 고위발열량의 경우는 350 kcal/kg가 더 높은 것으로 확인되어 하이브리드 석탄으로 제조될 경우 발열량이 향상됨을 알 수 있다. 아울러, 하이브리드 석탄은 바이오매스 유래물질로부터 형성된 인공탄소를 추가적으로 포함하고 있기 때문에 고정탄소가 시베오부 원탄에 비해 약 14.2wt%가 높은 것으로 나타났다. 하이브리드 석탄이 시베오부 원탄에 비해 발열량이 높다는 사실보다 더 중요한 것은 수분이 재흡착되지 않아 하이브리드 석탄의 발열량을 장시간 유지할 수 있다는 것이다.As shown in Table 1, the hybrid coal had a lower calorific value (when considering the latent heat of high moisture content) of 570 kcal / kg and a higher calorific value of 350 kcal / kg, compared to Sibeobu raw coal. It can be seen that the calorific value is improved when manufactured with hybrid coal. In addition, since hybrid coal additionally contains artificial carbon formed from biomass-derived materials, the fixed carbon was found to be about 14.2 wt% higher than that of Sibeobu raw coal. More importantly than the fact that hybrid coal has a higher calorific value than Sibero coal, it is possible to maintain the calorific value of the hybrid coal for a long time because moisture is not resorbed.
한편, 석탄분야에서는 통상적으로 석탄에 흡착되는 수분량을 측정하기 위한 방법으로 슬러리 제조를 통한 점도와 농도 측정방법을 이용하고 있는데, 일반적으로 임의의 점도에서 슬러리의 석탄 농도는 석탄의 수분 흡착량과 반비례하는 것으로 알려져 있는 바, 슬러리의 석탄 농도가 낮을수록 석탄의 수분 흡착량이 높은 것을 의미한다고 할 것이므로 아래 실시예 1, 2의 하이브리드 석탄과 비교예 1, 2의 시베오부 건조탄 및 시베오부 원탄의 수분 흡착량을 아래 실시예들에서 제조된 슬러리의 점도 측정을 통하여 확인할 수 있었고, 그 결과는 도 3으로부터 알 수 있다.Meanwhile, in the coal field, a viscosity and concentration measuring method through slurry production is generally used as a method for measuring the amount of water adsorbed on coal. In general, the coal concentration of the slurry at an arbitrary viscosity is inversely proportional to the amount of water adsorption of coal. It is known that the lower the coal concentration in the slurry, the higher the water adsorption amount of coal. Therefore, the moisture of the hybrid coal of Examples 1 and 2 and the Sibeobu dry coal and Sibeobu raw coal of Comparative Examples 1 and 2 below. Adsorption amount could be confirmed by measuring the viscosity of the slurry prepared in the following examples, the results can be seen from FIG.
[실시예1]Example 1
몽골지역의 시베오부 원탄 500g을 준비하였다. 당밀 32g을 물 280g에 용해시킨 당밀 수용액을 준비하였다. 시베오부 원탄에 당밀 수용액을 첨가하여 반죽하고 시베오부 원탄과 당밀 수용액의 복합체를 페이스트 형태로 얻었다. 500g of Sibeobu raw coal from Mongolia was prepared. A molasses aqueous solution in which 32 g of molasses was dissolved in 280 g of water was prepared. A molasses aqueous solution was added to the Sibeobu raw coal and kneaded to obtain a composite of Sibeobu raw coal and molasses aqueous solution in the form of a paste.
상기 얻어진 페이스트를 질소 분위기하에서 250℃의 반응기에 넣고 5 시간 건조 및 탄화 과정을 거쳐 하이브리드 석탄을 제조하였다.The obtained paste was placed in a reactor at 250 ° C. under a nitrogen atmosphere, and then dried and carbonized to prepare hybrid coal.
제조된 하이브리드 석탄을 200 mesh로 시빙으로 하여 75 마이크로미터 이하의 샘플만을 수집한다. 75 마이크로미터 이하 하이브리드 석탄을 중량비가 0.1인 에탄올/물의 혼합용매에 첨가하여 하이브리드 석탄의 농도가 건조탄 기준으로 28 중량%, 30 중량%, 32 중량%, 34 중량%, 36 중량%, 38 중량%, 40 중량%, 42 중량%가 되는 슬러리를 각각 제조하였다. Samples of 75 micrometers or less are collected by sieveing the prepared hybrid coal with 200 mesh. Hybrid coals of 75 micrometers or less are added to the ethanol / water mixed solvent having a weight ratio of 0.1, so that the concentration of the hybrid coal is 28%, 30%, 32%, 34%, 36%, 38% by weight based on dry coal. %, 40% by weight, and 42% by weight of slurry were prepared, respectively.
[실시예2]Example 2
실시예 1에서 얻어진 페이스트를 질소 분위기하에서 350℃의 반응기에 넣고 5 시간 건조 및 탄화 과정을 거쳐 하이브리드 석탄을 제조한 것 이외에는 실시예 1과 같은 방법으로 슬러리를 각각 제조하였다.Slurry was prepared in the same manner as in Example 1 except that the paste obtained in Example 1 was placed in a reactor at 350 ° C. under a nitrogen atmosphere, and dried for 5 hours to produce hybrid coal.
[비교예1]Comparative Example 1
몽골지역의 시베오부 석탄을 110℃오븐에서 12 시간 건조한 석탄 500g을 준비하였다. 상기 시베오부 건조탄을 200 mesh로 시빙으로 하여 75 마이크로미터 이하의 샘플만을 수집한다. 75 마이크로미터 이하 시베오부 건조탄을 중량비가 0.1인 에탄올/물의 혼합용매에 첨가하여 석탄의 농도가 건조탄 기준으로 28 중량%, 30 중량%, 32 중량%, 34 중량%, 36 중량%, 38 중량%, 40 중량%, 42 중량%가 되는 슬러리를 각각 제조하였다.Sibeobu coal of Mongolia was prepared 500g of dried coal at 110 ℃ oven for 12 hours. The sibeobu dry coal was sieveed at 200 mesh to collect only samples of 75 micrometers or less. Sibeobu dry carbon of 75 micrometers or less is added to the ethanol / water mixed solvent having a weight ratio of 0.1, so that the concentration of coal is 28%, 30%, 32%, 34%, 36%, 38% based on the dry coal. Slurry amounts of 40% by weight, 42% by weight were prepared, respectively.
[비교예2]Comparative Example 2
비교예 1의 시베오부 건조탄을 시베오부 원탄으로 대체한 것 이외에는 비교예 1과 같은 방법으로 슬러리를 각각 제조하였다.A slurry was prepared in the same manner as in Comparative Example 1 except that the sibeobu dry coal of Comparative Example 1 was replaced with the sibeobu raw coal.
[실시예3]Example 3
몽골지역의 시베오부 원탄을 105℃ 오븐에서 12 시간 건조한 석탄 500g을 준비하였다. 당밀 32g을 물 280g에 용해시킨 당밀 수용액을 준비하였다. 상기 건조된 시베오부 석탄에 당밀 수용액을 첨가하여 반죽하고 시베오부 석탄과 당밀 수용액의 복합체를 페이스트 형태로 얻었다. Sibeobu raw coal from Mongolia was prepared 500g of coal dried for 12 hours in a 105 ℃ oven. A molasses aqueous solution in which 32 g of molasses was dissolved in 280 g of water was prepared. A molasses aqueous solution was added to the dried Sibeobu coal to knead to obtain a composite of Sibeobu coal and molasses aqueous solution in the form of a paste.
상기 얻어진 페이스트를 상온, 상압 분위기에서 24 시간 숙성하였다. 상기 숙성된 페이스트를 105℃에서 12 시간 예비 건조를 수행하였다. 상기 예비 건조된 페이스트를 질소 분위기하에서 250℃의 반응기에 넣고 2 시간 건조 및 탄화 과정을 거쳐 하이브리드 석탄을 제조하였다.The obtained paste was aged at room temperature and atmospheric pressure for 24 hours. The aged paste was subjected to predrying at 105 ° C. for 12 hours. The pre-dried paste was placed in a reactor at 250 ° C. under a nitrogen atmosphere to prepare hybrid coal by drying and carbonizing for 2 hours.
[비교예3]Comparative Example 3
몽골지역의 시베오부 원탄을 105℃ 오븐에서 2 시간 단순 건조하여 시베오부 석탄 500g을 얻었다.Sibeobu raw coal from Mongolia was simply dried in an oven at 105 ° C. for 2 hours to obtain 500g of Sibeobu coal.
[비교예4]Comparative Example 4
상기 실시예 3의 예비 건조공정을 수행하는 단계를 생략하고, 숙성된 페이스트를 질소 분위기하에서 250℃의 반응기에 넣고 2 시간 건조 및 탄화 과정을 거쳐 하이브리드 석탄을 제조하였다.The step of performing the preliminary drying step of Example 3 was omitted, and the aged paste was put in a reactor at 250 ° C. under a nitrogen atmosphere to prepare hybrid coal by drying and carbonizing for 2 hours.
[실험예1]Experimental Example 1
상기 실시예 1 및 비교예 1로부터 석탄 슬러리를 제조하기 전 상태인 하이브리드 석탄과 단순 건조탄의 소수성을 평가하기 위한 간단한 실험을 수행하였다. 물 50g에 하이브리드 석탄 3g을 첨가하고 spatular를 이용해서 강하게 교반한다. 비교를 위해서 물 50g에 시베오부 건조탄 3g을 첨가하고 spatular를 이용해서 강하게 교반한 시료도 준비한다. 교반 후 각각의 시료의 사진을 도 2 에 나타냈다.Simple experiments were performed to evaluate the hydrophobicity of hybrid coal and simple dry coal before the coal slurry was prepared from Example 1 and Comparative Example 1. Add 3 g of hybrid coal to 50 g of water and stir vigorously using spatular. For comparison, add 3 g of Sibeobu dry carbon to 50 g of water, and prepare a sample with vigorous stirring using spatular. The photograph of each sample after stirring is shown in FIG.
도 2에서 보는 바와 같이 개질 전 시베오부 단순 건조탄의 경우에는 양친성 때문에 쉽게 물을 흡수하면서 분산이 되었지만, 개질 후 하이브리드 석탄의 경우에는 소수성에 의해 강한 교반에도 불구하고 대부분이 수면위에 떠 있는 것을 관찰할 수 있었다. 이로부터 하이브리드 석탄의 친수성 기공 표면이 소수성으로 개질되었음을 확인하였고, 수분의 재흡착이 억제된 것을 알 수 있다.As shown in FIG. 2, the Sibeobu simple dry coal was easily dispersed while absorbing water due to amphipathy, but in the case of hybrid coal after reforming, most of them were floating on the water despite strong stirring due to hydrophobicity. It could be observed. From this, it was confirmed that the hydrophilic pore surface of the hybrid coal was hydrophobically modified, and the resorption of moisture was suppressed.
본 발명의 실시예 1 및 2에 따라 제조된 하이브리드 석탄 슬러리의 석탄 농도를 알아보기 위하여 석탄 슬러리의 점도를 측정하였고, 또한 비교예 1 및 2의 시베오부 단순 건조탄과 원탄으로부터 제조한 슬러리를 이용하여서도 점도를 측정하였으며, 도 3에 그 결과를 나타내었다.In order to determine the coal concentration of the hybrid coal slurry prepared according to Examples 1 and 2 of the present invention, the viscosity of the coal slurry was measured, and the slurry prepared from Sibeobu simple dry coal and raw coal of Comparative Examples 1 and 2 was used. The viscosity was also measured, and the results are shown in FIG. 3.
도 3에서 보는 바와 같이 동일 슬러리 점도에서 석탄농도는 하이브리드 석탄>건조탄>원탄 순으로 높게 나타났으며, 특히 본 발명에 따른 하이브리드 석탄의 경우에는 슬러리의 석탄농도가 현저하게 높은 것으로 나타났다. 석탄 슬러리의 농도를 3000 cP를 기준으로 했을 때, 실시예 1에서 제조한 하이브리드 석탄은 시베오부 원탄과 비교했을 때는 9.4 wt%, 시베오부 건조탄과 비교했을 때는 5.5 wt% 높은 슬러리 농도를 보여주었고, 실시예 2에서 제조한 하이브리드 석탄은 시베오부 원탄과 비교했을 때는 8.1 wt%, 시베오부 건조탄과 비교했을 때는 4.2 wt% 높은 슬러리 농도를 보여주었다. 이는 슬러리를 제조하는 과정에서 첨가한 물이 바이오매스 유래 물질의 탄소성분으로 코팅되어 소수성으로 개질된 친수성 표면으로 스며드는 것이 억제되어 있기 때문이다. 또한, 회분기공과 같은 친수성 표면을 채우고 있는 바이오매스 유래 물질의 인공 탄소성분이 물이 흡수될 수 있는 유효부피를 감소시키기 때문에 물의 흡수량이 감소되는 것이라 할 수 있다.As shown in Figure 3, the coal concentration at the same slurry viscosity was higher in the order of hybrid coal> dry coal> raw coal, in particular, in the case of the hybrid coal according to the present invention, the coal concentration of the slurry was markedly high. When the coal slurry concentration was 3000 cP, the hybrid coal prepared in Example 1 showed a slurry concentration of 9.4 wt% higher than that of Sibeobu coal and 5.5 wt% higher than that of Sibeobu dry coal. The hybrid coal prepared in Example 2 showed a slurry concentration of 8.1 wt% as compared to Sibeobu raw coal and 4.2 wt% as compared to Sibeobu dry coal. This is because the water added in the process of preparing the slurry is coated with the carbon component of the biomass-derived material and is inhibited from penetrating into the hydrophobicly modified hydrophilic surface. In addition, since the artificial carbon component of the biomass-derived material filling the hydrophilic surface, such as the ash hole, reduces the effective volume in which water can be absorbed, the absorption of water is reduced.
도 4는 실시예 1, 비교예 1 및 2 각각의 샘플에 대한 슬러리 점도변화에 따른 슬러리 발열량 변화거동을 나타낸 것이다. 실시예 1의 하이브리드 석탄이 비교예 1의 시베오부 건조탄 및 비교예 2의 시베오부 원탄에 비해서 같은 점도조건에서 월등히 높은 슬러리 발열량을 보여주는 것을 확인하였다. 따라서 습식 분류층 가스화에 하이브리드 석탄 슬러리를 이용하면 원탄이나 건조탄 슬러리를 이용했을 때보다 가스화 성능을 향상시킬 수 있다.Figure 4 shows the slurry calorific value change behavior according to the slurry viscosity change for each sample of Example 1, Comparative Examples 1 and 2. It was confirmed that the hybrid coal of Example 1 showed an extremely high slurry calorific value under the same viscosity condition as compared to the Sibeobu dry coal of Comparative Example 1 and the Sibeobu raw coal of Comparative Example 2. Therefore, when the hybrid coal slurry is used for the wet fractionation layer gasification, the gasification performance can be improved than when raw coal or dry coal slurry is used.
[실험예2]Experimental Example 2
상기 실시예 3 및 비교예 3으로부터 제조된 하이브리드 석탄과 단순 건조탄의 소수성을 평가하기 위해 각 석탄 샘플의 디스크를 제조하고 그 디스크 표면에서의 물방울의 접촉각 측정을 수행하였다. 하이브리드 석탄과 단순 건조탄을 100㎛ 이하의 분말로 체를 친 후 50 기압으로 압축하여 지름 3 cm의 디스크를 제조한다. 실시예 3 및 비교예 3으로부터 제조된 하이브리드 석탄과 단순 건조탄의 디스크에 물방울을 떨어뜨려 디스크 표면과의 접촉각을 측정하였고, 그 사진을 도 5에 나타냈다. 도 5에서 보는 바와 같이 단순 건조탄의 접촉각이 78.1도인데 반해 하이브리드 석탄의 접촉각은 132.3도로 크게 증가한 것을 알 수 있다. 물의 접촉각이 클수록 시료의 소수성이 높은 것을 의미하며, 일반적으로 접촉각이 120도가 넘으면 시료의 소수성이 높다고 판단하는 바, 하이브리드 석탄의 소수성은 매우 높은 것으로 확인되었다. 이로부터 하이브리드 석탄의 친수성 기공 표면이 소수성으로 개질되었음을 확인하였고, 하이브리드 석탄의 소수성으로부터 수분의 재흡착률이 현저하게 낮아질 수 있음을 알 수 있다.In order to evaluate the hydrophobicity of hybrid coal and simple dry coal prepared in Example 3 and Comparative Example 3, a disk of each coal sample was prepared and a contact angle measurement of water droplets on the surface of the disk was performed. Hybrid coal and simple dry coal are sieved with a powder of 100 μm or less and compressed to 50 atm to produce a disc having a diameter of 3 cm. Water droplets were dropped on the disks of the hybrid coal and the simple dry coal prepared in Example 3 and Comparative Example 3 to measure the contact angle with the disk surface, and the photograph is shown in FIG. 5. As shown in FIG. 5, the contact angle of the simple dry coal is 78.1 degrees, whereas the contact angle of the hybrid coal is significantly increased to 132.3 degrees. The larger the contact angle of water, the higher the hydrophobicity of the sample. In general, when the contact angle is more than 120 degrees, it is determined that the hydrophobicity of the sample is high. From this, it was confirmed that the hydrophilic pore surface of the hybrid coal was hydrophobically modified, and it can be seen that the resorption rate of water from the hydrophobicity of the hybrid coal can be significantly lowered.
또한, 시베오부 원탄과 실시예 3에 따른 하이브리드 석탄의 공업분석 결과와 발열량을 아래 표 2에 나타내었다. In addition, the industrial analysis results and calorific value of Sibeo raw coal and hybrid coal according to Example 3 are shown in Table 2 below.
표 2
분석항목/시료명 공업분석(wt%) 인수식 발열량(kcal/kg) 참 발열량(kcal/kg)
수분(M) 휘발분(VM) 회분(Ash) 고정탄소(FC)
시베오부 원탄 34.44 25.22 18.91 21.43 2,786 2,466
하이브리드 석탄(실시예3) 1.14 33.89 30.14 34.83 4,083 3,914
TABLE 2
Analysis item / sample name Industrial analysis (wt%) Takeover calorific value (kcal / kg) True calorific value (kcal / kg)
Moisture (M) Volatile Powder (VM) Ash Fixed Carbon (FC)
Shibeobu Wontan 34.44 25.22 18.91 21.43 2,786 2,466
Hybrid Coal (Example 3) 1.14 33.89 30.14 34.83 4,083 3,914
상기 표 2에서 보는 것처럼 본 발명의 하이브리드 석탄은 시베오부 원탄에 비해 참 발열량(고유수분의 증발잠열을 고려한 경우)은 약 1450 kcal/kg이 더 높았고, 발전소에서 일반적으로 사용하는 인수식 발열량의 경우는 약 1300 kcal/kg가 더 높은 것으로 확인되어 본 발명의 하이브리드 석탄으로 제조될 경우 발열량이 크게 향상됨을 알 수 있다. 아울러, 본 발명의 하이브리드 석탄은 바이오매스 유래물질로부터 형성된 인공탄소를 추가적으로 포함하고 있기 때문에 고정탄소가 시베오부 원탄에 비해 약 13.4wt%가 높은 것으로 나타났다. 본 발명에서 제조된 하이브리드 석탄이 시베오부 원탄에 비해 발열량이 높다는 사실보다 더 중요한 것은 수분의 재흡착 정도가 현저하게 감소되어 하이브리드 석탄의 발열량을 장시간 유지할 수 있다는 것이다.As shown in Table 2, the hybrid coal of the present invention had a true calorific value (when considering the latent heat of high moisture content) of about 1450 kcal / kg, compared to Sibeobu raw coal, and the takeover calorific value generally used in power plants. It can be seen that about 1300 kcal / kg is higher, and the calorific value is greatly improved when manufactured with the hybrid coal of the present invention. In addition, since the hybrid coal of the present invention additionally contains artificial carbon formed from the biomass-derived material, the fixed carbon was found to be about 13.4wt% higher than that of Sibeobu coal. More important than the fact that the hybrid coal produced in the present invention has a higher calorific value than the Sibeo raw coal, the resorption degree of moisture is significantly reduced, so that the calorific value of the hybrid coal can be maintained for a long time.
도 6은 바이오매스 유래 물질을 포함하는 페이스트의 예비 건조공정을 도입하여 2단계 건조공정을 이용한 실시예 3과 예비 건조공정 없이 1단계 건조공정을 이용한 비교예 4로부터 제조된 하이브리드 석탄의 기공 크기 분포도를 나타낸 그래프이다.6 is Graph showing the pore size distribution of the hybrid coal prepared from Example 3 using a two-step drying step and Comparative Example 4 using a one-step drying step without the pre-drying step by introducing a predrying step of a paste containing a biomass-derived material. to be.
도 6에서 알 수 있는 바와 같이 비교예 4의 하이브리드 석탄의 메조기공 영역에서의 기공부피가 실시예 3으로부터 제조된 하이브리드 석탄의 기공부피보다 크다. 다시 말하면, 하이브리드 석탄에서는 페이스트의 예비 건조공정을 도입함으로써 기공을 막는 pore-filling 효과를 극대화하여 기공부피를 더 감소시킬 수 있는 것이다.As can be seen in Figure 6 the pore volume in the mesopore region of the hybrid coal of Comparative Example 4 is larger than the pore volume of the hybrid coal prepared from Example 3. In other words, in the hybrid coal, it is possible to further reduce the pore volume by maximizing the pore-filling effect of blocking pores by introducing a preliminary drying process of the paste.
[실험예3]Experimental Example 3
실시예 3 및 비교예 3, 4로부터 제조된 석탄을 과량의 물에 담가 10분간 교반하면서 기공내로 물이 흡착되게 한 후, 20분간 여과하여 외부 수분을 제거하고 무게를 측정한다. 수분 재흡착률은 아래와 같이 계산하였다.The coal prepared in Example 3 and Comparative Examples 3 and 4 was soaked in excess water to allow water to be adsorbed into the pores while stirring for 10 minutes, and then filtered for 20 minutes to remove external moisture and weighed. Moisture resorption rate was calculated as follows.
수분 재흡착률(wt%) = (Cwet - Cdry)/Cdry * 100Moisture resorption rate (wt%) = (C wet -C dry ) / C dry * 100
[상기 Cwet 는 수분 제거 전 석탄의 무게, Cdry는 수분 제거 후 석탄의 무게][C wet is the weight of coal before water removal, C dry is the weight of coal after water removal]
아래 표 3에 실험예 2의 측정결과를 나타내었다.Table 3 shows the measurement results of Experimental Example 2.
표 3
샘플 시베오부 단순 건조탄 (비교예 3) 1단계 건조공정하이브리드 석탄 (비교예 4) 2단계 건조공정 하이브리드 석탄 (실시예 3)
수분 재흡착률 (wt%) 44.55 34.93 30.74
TABLE 3
Sample Shibeobu simple dry coal (Comparative Example 3) First Step Drying Process Hybrid Coal (Comparative Example 4) Two stage drying process hybrid coal (Example 3)
Moisture Resorption Rate (wt%) 44.55 34.93 30.74
표 3에서 알 수 있는 바와 같이 2단계 건조공정을 이용한 실시예 3으로부터 제조된 하이브리드 석탄은 수분의 재흡착률이 30.74 wt%로서 비교예 3의 105℃에서 단순 건조한 시베오부 원탄의 수분 재흡착률 44.55 wt% 및 1단계 건조공정을 이용한 비교예 4로부터 제조된 하이브리드 석탄의 수분 재흡착률 34.93 wt%에 비하여 현저하게 낮은 값을 나타냄을 확인 할 수 있다.As can be seen in Table 3, the hybrid coal produced from Example 3 using the two-step drying process had a resorbency rate of 30.74 wt% of water, and the moisture resorption rate of Sibeobu raw coal, which was simply dried at 105 ° C of Comparative Example 3 It can be seen that the re-adsorption rate of the hybrid coal prepared from Comparative Example 4 using 44.55 wt% and the one-step drying process showed a significantly lower value than 34.93 wt%.
따라서 본 발명의 2단계 건조공정을 이용하여 제조된 하이브리드 석탄은 건조 석탄의 높은 발열량을 그대로 유지할 수 있어 발전소용 미분연료로 그대로 사용할 수 있고, 고유 수분을 포함한 저급탄을 혼소하는 것에 비해 발전효율을 향상시킬 수 있는 장점이 있다. Therefore, the hybrid coal manufactured by using the two-stage drying process of the present invention can maintain the high calorific value of the dry coal as it is, can be used as a fine fuel for power plants, and the generation efficiency compared to mixing low-grade coal containing intrinsic moisture There is an advantage that can be improved.

Claims (30)

  1. 석탄의 친수성 표면이 바이오매스 유래 물질의 탄소성분으로 코팅된 고발열량의 하이브리드 석탄.A high calorific value hybrid coal in which the hydrophilic surface of the coal is coated with the carbon component of the biomass-derived material.
  2. 제1항에 있어서, 상기 친수성 표면은 석탄의 회분 표면인 것을 특징으로 하는 고발열량의 하이브리드 석탄.The high calorific value hybrid coal according to claim 1, wherein the hydrophilic surface is an ash surface of coal.
  3. 제1항에 있어서, 상기 친수성 표면은 -COOH (카르복실기), -NH2(아민기), -OH(하이드록실기) 기능기를 갖는 석탄의 고정탄소 및 휘발분 표면인 것을 특징으로 하는 고발열량의 하이브리드 석탄.The high calorific value hybrid according to claim 1, wherein the hydrophilic surface is a fixed carbon and volatile surface of coal having a -COOH (carboxyl group), -NH 2 (amine group), and -OH (hydroxyl group) functional group. Coal.
  4. 제1항에 있어서, 상기 석탄은 이탄, 갈탄, 아역청탄, 역청탄 또는 무연탄 중에서 선택된 어느 하나의 것을 특징으로 하는 고발열량의 하이브리드 석탄.The method of claim 1, wherein the coal is a high calorific value hybrid coal, characterized in that any one selected from peat, lignite, sub-bituminous coal, bituminous coal or anthracite coal.
  5. 제1항에 있어서, 상기 석탄은 고유수분함량이 5~70 중량%의 원탄인 것을 특징으로 하는 고발열량의 하이브리드 석탄.The method of claim 1, wherein the coal is a high calorific value hybrid coal, characterized in that the natural water content of 5 to 70% by weight of raw coal.
  6. 제1항에 있어서, 상기 석탄은 고유수분함량이 5 중량% 이하의 건조탄인 것을 특징으로 하는 고발열량의 하이브리드 석탄.The high-calorie hybrid coal of claim 1, wherein the coal is dry coal having a high moisture content of 5 wt% or less.
  7. 제1항에 있어서, 상기 바이오매스 유래 물질은 사탕수수 원액 또는 당밀인 것을 특징으로 하는 고발열량의 하이브리드 석탄.The method of claim 1, wherein the biomass-derived material is a high calorific value hybrid coal, characterized in that the sugar cane stock or molasses.
  8. 제1항에 있어서, 상기 바이오매스 유래 물질은 목질계의 리그노셀룰로오스로부터 전환된 당류 또는 전분계를 효소분해 하여 얻게 되는 당류인 것을 특징으로 하는 고발열량의 하이브리드 석탄.The high calorific value hybrid coal according to claim 1, wherein the biomass-derived material is a saccharide obtained by enzymatic decomposition of a saccharide or starch system converted from lignocellulosic cellulose.
  9. 제1항에 있어서, 상기 바이오매스 유래 물질은 단당류, 이당류 또는 다당류 중에서 선택된 어느 하나의 것을 특징으로 하는 고발열량의 하이브리드 석탄.The method of claim 1, wherein the biomass-derived material is a high calorific value hybrid coal, characterized in that any one selected from monosaccharides, disaccharides or polysaccharides.
  10. 제9항에 있어서, 상기 단당류는 글루코스, 프럭토스 또는 갈락토스 중에서 선택된 어느 하나의 것을 특징으로 하는 고발열량의 하이브리드 석탄.The high calorific value hybrid coal according to claim 9, wherein the monosaccharide is one selected from glucose, fructose or galactose.
  11. 제9항에 있어서, 상기 이당류는 슈크로스, 말토스 또는 락토스 중에서 선택된 어느 하나의 것을 특징으로 하는 고발열량의 하이브리드 석탄.The high calorific value hybrid coal according to claim 9, wherein the disaccharide is one selected from sucrose, maltose or lactose.
  12. 제9항에 있어서, 상기 다당류는 녹말 또는 리그노셀룰로오스 중에서 선택된 어느 하나의 것을 특징으로 하는 고발열량의 하이브리드 석탄.10. The method of claim 9, wherein the polysaccharide is high calorific value hybrid coal, characterized in that any one selected from starch or lignocellulose.
  13. 제1항에 있어서, 상기 고발열량 하이브리드 석탄의 고위발열량이 4000 kcal/kg 이상인 것을 특징으로 하는 고발열량의 하이브리드 석탄.The high calorific value hybrid coal of claim 1, wherein the high calorific value of the high calorific value hybrid coal is 4000 kcal / kg or more.
  14. i) 석탄을 바이오매스 유래 물질의 용액으로 반죽하여 페이스트를 형성하는 단계, ii) 상기 페이스트를 탄화로에 투입하여 바이오매스 유래 물질의 건조 및 탄화를 동시에 수행하는 단계를 포함하는, 석탄의 친수성 표면에 바이오매스 유래 탄소성분이 코팅된 고발열량의 하이브리드 석탄을 제조하는 방법.i) kneading coal with a solution of biomass-derived material to form a paste; ii) simultaneously injecting the paste into a carbonization furnace to dry and carbonize the biomass-derived material. Method for producing a high calorific value hybrid coal coated with a biomass-derived carbon component.
  15. 제14항에 있어서, 바이오매스 유래 물질은 석탄 중량 대비 0.1~50 중량% 첨가되는 것을 특징으로 하는 고발열량의 하이브리드 석탄을 제조하는 방법.15. The method of claim 14, wherein the biomass-derived material is added in an amount of 0.1 to 50% by weight based on the weight of coal.
  16. 제14항에 있어서, 바이오매스 유래 물질의 용액은 물 또는 유기 용매를 사용하는 것을 특징으로 하는 고발열량의 하이브리드 석탄을 제조하는 방법.15. The method of claim 14, wherein the solution of biomass-derived material uses water or an organic solvent.
  17. 제16항에 있어서, 유기 용매는 메탄올, 에탄올 또는 프로판올 중에서 선택된 어느 하나의 것을 특징으로 하는 고발열량의 하이브리드 석탄을 제조하는 방법.The method of claim 16, wherein the organic solvent is any one selected from methanol, ethanol or propanol.
  18. 제16항에 있어서, 상기 물 또는 유기용매를 이용한 바이오매스 유래 물질 용액 제조시 물 또는 유기용매/석탄의 중량비는 0.1~5인 것을 특징으로 하는 고발열량의 하이브리드 석탄을 제조하는 방법.The method of claim 16, wherein the weight ratio of water or organic solvent / coal in the preparation of a biomass-derived material solution using water or an organic solvent is 0.1-5.
  19. 제14항에 있어서, 상기 ii) 단계를 수행하기 전에 상온, 상압 분위기에서 페이스트를 숙성하는 단계를 포함하는 것을 특징으로 하는 고발열량의 하이브리드 석탄을 제조하는 방법.15. The method of claim 14, comprising the step of aging the paste at room temperature, atmospheric pressure before performing step ii).
  20. 제19항에 있어서, 상기 숙성단계의 숙성시간은 5~240 시간인 것을 특징으로 하는 고발열량의 하이브리드 석탄을 제조하는 방법.20. The method of claim 19, wherein the aging time of the aging step is 5 to 240 hours.
  21. 제14항에 있어서, 바이오매스 유래 물질의 건조 및 탄화는 150~900℃, 0.1~10 시간 수행하는 것을 특징으로 하는 고발열량의 하이브리드 석탄을 제조하는 방법.The method of claim 14, wherein the drying and carbonization of the biomass-derived material is performed at 150 to 900 ° C for 0.1 to 10 hours.
  22. 제14항에 있어서, 바이오매스 유래 물질이 하이브리드 석탄 성형을 위한 바인더의 기능을 수행하는 것을 특징으로 하는 고발열량의 하이브리드 석탄을 제조하는 방법.15. The method of claim 14, wherein the biomass-derived material performs the function of a binder for forming hybrid coal.
  23. i) 석탄을 바이오매스 유래 물질의 용액으로 반죽하여 페이스트를 형성하는 단계; i) kneading coal with a solution of biomass derived material to form a paste;
    ii) 상기 페이스트를 상온, 상압 분위기에서 5~240 시간 숙성하는 단계; ii) aging the paste at room temperature and atmospheric pressure for 5 to 240 hours;
    iii) 상기 숙성된 페이스트를 예비 건조하는 단계; 및 iii) predrying the aged paste; And
    iv) 상기 예비 건조된 페이스트를 탄화로에 투입하여 바이오매스 유래 물질의 건조 및 탄화를 동시에 수행하는 단계;를 포함하는, 2단계 건조공정을 이용한 석탄의 친수성 표면에 바이오매스 유래 탄소성분이 코팅된 고발열량의 하이브리드 석탄을 제조하는 방법.iv) adding the pre-dried paste to a carbonization furnace to simultaneously dry and carbonize the biomass-derived material, wherein the biomass-derived carbon component is coated on the hydrophilic surface of the coal using a two-step drying process Method for producing high calorific value hybrid coal.
  24. 제23항에 있어서, 상기 고발열량 하이브리드 석탄의 인수식 발열량이 4,000 kcal/kg 이상인 것을 특징으로 하는 고발열량의 하이브리드 석탄을 제조하는 방법.24. The method of claim 23, wherein the high calorific value hybrid coal takes over the calorific value of 4,000 kcal / kg.
  25. 제23항에 있어서, 상기 iii) 단계의 예비 건조는 50~150℃에서 0.1~24 시간 수행하는 것을 특징으로 하는 고발열량의 하이브리드 석탄을 제조하는 방법.The method of claim 23, wherein the preliminary drying of step iii) is performed at 50 to 150 ° C for 0.1 to 24 hours.
  26. 제14항 또는 제23항의 방법으로 제조된 하이브리드 석탄을 물/알코올, 물/계면활성제 또는 물/알코올/계면활성제 중에서 선택된 어느 하나의 분산매에 첨가하여 하이브리드 석탄 슬러리를 형성하는 단계를 포함하는, 고농도 하이브리드 석탄 슬러리의 제조방법.A high concentration comprising the step of adding a hybrid coal prepared by the method of claim 14 or 23 to a dispersion medium selected from water / alcohol, water / surfactant or water / alcohol / surfactant to form a hybrid coal slurry. Method for producing a hybrid coal slurry.
  27. 제26항에 있어서, 물/알코올 분산매는 알코올/물의 중량비가 0.01~0.99인 것을 특징으로 하는 고농도 하이브리드 석탄 슬러리의 제조방법.27. The method of claim 26, wherein the water / alcohol dispersion medium has a weight ratio of alcohol to water of 0.01 to 0.99.
  28. 제26항에 있어서, 물/알코올 분산매의 알코올은 메탄올, 에탄올 또는 프로판올 중에서 선택된 하나의 것을 특징으로 하는 고농도 하이브리드 석탄 슬러리의 제조방법.27. The method of claim 26, wherein the alcohol of the water / alcohol dispersion medium is one selected from methanol, ethanol or propanol.
  29. 제26항에 있어서, 계면활성제는 CWM1002(formaldehyde condensate of sodium naphthalene sulfonate), CWM1001(polymer sulfonate), Na-CMC(carboxymethyl cellulose), Na-DBS(Alkylbenzene sulfate), Na-LS(alkylsulfate sodium salt), NP1020(alkylphenol ethyleneoxide(10)), NP1060(alkylphenol ethyleneoxide(50)), CA1053(casteroil ethyleneoxide(50)), ATLOX4913(methyl methacrylate graft copolymer), cetyltrimethylammonium brimide 또는 cetyltrimethylammonium chloride 중에서 선택된 어느 하나의 것을 특징으로 하는 고농도 하이브리드 석탄 슬러리의 제조방법.The method of claim 26, wherein the surfactant is formaldehyde condensate of sodium naphthalene sulfonate (CWM1002), polymer sulfonate (CWM1001), carboxymethyl cellulose (Na-CMC), alkylbenzene sulfate (Na-DBS), alkylsulfate sodium salt (Na-LS), High concentrations characterized by any one selected from NP1020 (alkylphenol ethyleneoxide (10)), NP1060 (alkylphenol ethyleneoxide (50)), CA1053 (casteroil ethyleneoxide (50)), ATLOX4913 (methyl methacrylate graft copolymer), cetyltrimethylammonium brimide or cetyltrimethylammonium chloride Method for producing a hybrid coal slurry.
  30. 제26항의 방법으로 제조된 고농도 하이브리드 석탄 슬러리.A high concentration hybrid coal slurry prepared by the method of claim 26.
PCT/KR2012/006565 2012-02-29 2012-08-17 High-calorific hybrid coal coated with biomass-derived carbon component, high-concentration hybrid coal slurry, and method for manufacturing same WO2013129744A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014559809A JP2015513593A (en) 2012-02-29 2012-08-17 High calorific value hybrid coal coated with biomass-derived carbon component, high-concentration hybrid coal slurry, and production method thereof
AU2012359295A AU2012359295B2 (en) 2012-02-29 2012-08-17 High-calorific hybrid coal coated with biomass-derived carbon source, high concentration hybrid coal slurry, and fabrication methods thereof
CN201280004466.8A CN103429718B (en) 2012-02-29 2012-08-17 It is coated with the hot mixing coal occurred frequently of the carbon component of biomass derived, high concentration Mixture Density Networks slurry and preparation method thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2012-0021413 2012-02-29
KR1020120021413A KR101195416B1 (en) 2012-02-29 2012-02-29 High caloric hybrid coal coated with carbon derived from biomass and manufacturing method thereof
KR1020120022985A KR101195417B1 (en) 2012-03-06 2012-03-06 Method for manufacturing high-concentration hybrid coal slurry and high-concentration hybrid coal slurry manufactured thereby
KR10-2012-0022985 2012-03-06
KR1020120086727A KR101195418B1 (en) 2012-08-08 2012-08-08 Method for preparation of high caloric hybrid coal coated with carbon derived from biomass using two-step drying process and high caloric hybrid coal prepared thereby
KR10-2012-0086727 2012-08-08

Publications (1)

Publication Number Publication Date
WO2013129744A1 true WO2013129744A1 (en) 2013-09-06

Family

ID=49082909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/006565 WO2013129744A1 (en) 2012-02-29 2012-08-17 High-calorific hybrid coal coated with biomass-derived carbon component, high-concentration hybrid coal slurry, and method for manufacturing same

Country Status (4)

Country Link
JP (1) JP2015513593A (en)
CN (1) CN103429718B (en)
AU (1) AU2012359295B2 (en)
WO (1) WO2013129744A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115404106A (en) * 2021-05-29 2022-11-29 中国石油化工股份有限公司 Method for co-gasifying oily wastewater and inferior heavy oil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180759A (en) * 1997-09-09 1999-03-26 Daicel Chem Ind Ltd Stabilizer for coal/water slurry and the slurry
JP2010222517A (en) * 2009-03-25 2010-10-07 Central Res Inst Of Electric Power Ind Gasification system and gasification method
JP2011093998A (en) * 2009-10-29 2011-05-12 Jfe Steel Corp Process for modifying coal using biomass
JP2011205933A (en) * 2010-03-29 2011-10-20 Aichi Prefecture Method for producing high-concentration saccharified liquid

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527332A (en) * 1978-08-16 1980-02-27 Kao Corp Binder for manufacturing briquette for metallurgical coke
JPS61271394A (en) * 1985-05-25 1986-12-01 Nippon Bureen Kk Slurry dispersion of coal powder or the like
FR2648146B1 (en) * 1989-06-09 1994-02-11 Roquette Freres PROCESS FOR THE PREPARATION OF WATER-RESISTANT FUEL AGGLOMERATOR
JP2951854B2 (en) * 1994-09-30 1999-09-20 株式会社神戸製鋼所 Pulverized coal transportability improver
US20110197501A1 (en) * 2010-02-12 2011-08-18 Darrell Neal Taulbee Method for producing fuel briquettes from high moisture fine coal or blends of high moisture fine coal and biomass

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180759A (en) * 1997-09-09 1999-03-26 Daicel Chem Ind Ltd Stabilizer for coal/water slurry and the slurry
JP2010222517A (en) * 2009-03-25 2010-10-07 Central Res Inst Of Electric Power Ind Gasification system and gasification method
JP2011093998A (en) * 2009-10-29 2011-05-12 Jfe Steel Corp Process for modifying coal using biomass
JP2011205933A (en) * 2010-03-29 2011-10-20 Aichi Prefecture Method for producing high-concentration saccharified liquid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115404106A (en) * 2021-05-29 2022-11-29 中国石油化工股份有限公司 Method for co-gasifying oily wastewater and inferior heavy oil
CN115404106B (en) * 2021-05-29 2024-04-02 中国石油化工股份有限公司 Co-gasification method of oily wastewater and inferior heavy oil

Also Published As

Publication number Publication date
AU2012359295A1 (en) 2013-09-19
CN103429718B (en) 2016-12-14
AU2012359295B2 (en) 2015-08-20
JP2015513593A (en) 2015-05-14
CN103429718A (en) 2013-12-04

Similar Documents

Publication Publication Date Title
KR101195416B1 (en) High caloric hybrid coal coated with carbon derived from biomass and manufacturing method thereof
KR101195418B1 (en) Method for preparation of high caloric hybrid coal coated with carbon derived from biomass using two-step drying process and high caloric hybrid coal prepared thereby
KR101195417B1 (en) Method for manufacturing high-concentration hybrid coal slurry and high-concentration hybrid coal slurry manufactured thereby
CN111994907B (en) Method for preparing boron-doped porous carbon material with high specific surface area from biomass
Liu et al. Comparison of the characteristics of hydrothermal carbons derived from holocellulose and crude biomass
WO2014046368A1 (en) Method for preparing glycerol-impregnated hybrid coal with high calorific value, and glycerol-impregnated hybrid coal with higher calorific value prepared thereby
Martín‐Sampedro et al. Biorefinery of Lignocellulosic Biomass from an Elm Clone: Production of Fermentable Sugars and Lignin‐Derived Biochar for Energy and Environmental Applications
JP2008037931A (en) Solid fuel and method for producing the same
CN114671654B (en) High-performance energy-saving foam concrete and preparation method thereof
CN112265990A (en) Preparation method and application of furfural residue porous activated carbon material
WO2013129744A1 (en) High-calorific hybrid coal coated with biomass-derived carbon component, high-concentration hybrid coal slurry, and method for manufacturing same
CN113603075B (en) Enzymatic hydrolysis lignin-based hard carbon material and preparation method thereof
CN108315354B (en) Method for preparing biochar by utilizing straw saccharification residues and application of biochar prepared by same
Yunos et al. Structural transformation of agricultural waste/coke blends and their implications during high temperature processes
CN111054310B (en) Active coke for flue gas desulfurization and preparation method thereof
CN111204831B (en) CNF-based homologous heterogeneous photothermal material for seawater desalination and preparation method thereof
CN109879282A (en) A kind of method that thermal field argon-arc plasma field double-field coupled prepares biomass-based active carbon
CN113800517A (en) Preparation method of water-resistant rice hull-based granular activated carbon
CN113666355B (en) Preparation method of tomato skin residue derived porous carbon material
Yue et al. Carbon derived from treated rice husk as fuel for direct carbon fuel cells
CN114686284B (en) Method for preparing briquette coal by using fly ash of coal-fired boiler
KR102028451B1 (en) System for high concentration bio-liquid using 2nd generation biomass
CN116190686B (en) Preparation method and application of in-situ activated furfural residue and nitrogen-sulfur co-doped porous carbon catalyst
CN107142130A (en) A kind of maize straw makes solid fuel method
CN117416957B (en) Method for preparing activated carbon and activated carbon

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012359295

Country of ref document: AU

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870302

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014559809

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12870302

Country of ref document: EP

Kind code of ref document: A1