WO2013129477A1 - Wavelength conversion member and semiconductor light-emitting device using same - Google Patents

Wavelength conversion member and semiconductor light-emitting device using same Download PDF

Info

Publication number
WO2013129477A1
WO2013129477A1 PCT/JP2013/055140 JP2013055140W WO2013129477A1 WO 2013129477 A1 WO2013129477 A1 WO 2013129477A1 JP 2013055140 W JP2013055140 W JP 2013055140W WO 2013129477 A1 WO2013129477 A1 WO 2013129477A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
conversion member
wavelength conversion
diffusing element
light diffusing
Prior art date
Application number
PCT/JP2013/055140
Other languages
French (fr)
Japanese (ja)
Inventor
覚成 勝本
敏明 横尾
弘也 樹神
宏之 伊村
政巳 鈴木
山本 大輔
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Publication of WO2013129477A1 publication Critical patent/WO2013129477A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body

Definitions

  • the present invention relates to a wavelength conversion member that converts the wavelength of at least part of incident light and emits outgoing light having a wavelength different from that of the incident light, and a semiconductor light emitting device using the wavelength conversion member and a semiconductor light emitting element.
  • Incandescent bulbs and fluorescent lamps have been widely used as light sources for light-emitting devices.
  • semiconductor light-emitting devices that use semiconductor light-emitting elements such as light-emitting diodes (LEDs) and organic ELs (OLEDs) as light sources have been developed and used. Since these semiconductor light emitting elements can obtain various emission colors, a plurality of semiconductor light emitting elements having different emission colors are combined, and the respective emission colors are combined to obtain a combined light of a desired color. Such semiconductor light emitting devices have been developed and used.
  • a red LED using an LED chip whose emission color is red, a green LED using an LED chip whose emission color is green, and a blue LED using an LED chip whose emission color is blue are combined and supplied to each LED.
  • Japanese Patent Application Laid-Open No. 2004-151867 discloses a semiconductor light emitting device that emits desired white light by adjusting the driving current to be synthesized and combining the light emitted from each LED.
  • a transparent resin is provided so as to cover an LED chip that emits blue light while being in contact with it, and a yellow phosphor is contained inside the transparent resin. That is, the semiconductor light emitting device disclosed in Patent Document 2 is provided with a wavelength conversion member so as to directly cover the LED chip.
  • variations in luminance and color unevenness of the semiconductor light emitting device are large.
  • a semiconductor light emitting device having such a structure is disclosed in Patent Document 3, for example.
  • the structure in which the wavelength conversion member is provided apart from the LED chip is larger in the size of the wavelength conversion member than the structure in which the wavelength conversion member is provided so as to cover the LED chip so as to cover the LED chip.
  • the amount of phosphor produced is increased.
  • a phosphor several times more than the conventional phosphor is required to obtain the same light emission efficiency as when the LED chip is directly covered with the wavelength conversion member. It becomes. Therefore, it is required to reduce the amount of phosphor used for the wavelength conversion member.
  • the semiconductor light emitting device having a structure in which the wavelength conversion member is provided apart from the LED chip, there is a problem that the amount of the phosphor is increased as compared with the conventional case, and the cost of the wavelength conversion member and the semiconductor light emitting device is increased. .
  • the product cost has increased.
  • the present invention has been made in view of such problems, and the object of the present invention is to provide a phosphor content without reducing the light emission efficiency of the semiconductor light emitting device when provided in the semiconductor light emitting device. It is providing the wavelength conversion member which can aim at cost reduction by reducing, and the semiconductor light-emitting device using the said wavelength conversion member.
  • the wavelength conversion member of the present invention is a wavelength conversion member that emits outgoing light having a wavelength different from that of the incident light by converting the wavelength of at least part of the incident light.
  • a phosphor that absorbs at least a portion and emits outgoing light having a wavelength different from that of the incident light; a light diffusion element that diffuses the incident light and the outgoing light; and a base material that holds the light diffusion element; Including 0.01 ⁇
  • in the above formula is preferably 0.07 or more.
  • the phosphor content concentration [wt%] when a wavelength conversion member that does not include the light diffusing element and emits emitted light of the same chromaticity is created as a reference.
  • the decreasing rate of the phosphor concentration (wt%) may be 3.0% to 86%.
  • the wavelength conversion member described above is 28 ⁇ dy / dx ⁇ 447 x:
  • the phosphor and the light diffusing element may be mixed in the base material.
  • the phosphor and the light diffusing element may be separately contained in the base material, and may form a phosphor layer and a light diffusing layer.
  • the phosphor layer and the light diffusion layer may be laminated while being in contact with each other, or the base material has a void layer that separates the phosphor layer and the light diffusion layer. It may be.
  • a refractive index of the light diffusing element is 1.0 or more and 1.9 or less, and a refractive index of the base material is 1.3 or more and 1.7 or less.
  • the light diffusing element is preferably an inorganic light diffusing material or an organic light diffusing material containing at least one element of the group consisting of silicon, aluminum, titanium, and zirconium.
  • the organic light diffusing material is more preferably an organic light diffusing material containing silicon as an element or an acrylic light diffusing material.
  • the light diffusing element may be formed of bubbles.
  • the base material is made of resin or glass.
  • the resin is at least one resin selected from the group consisting of a polycarbonate resin, a polyester resin, an acrylic resin, an epoxy resin, and a silicone resin.
  • the base material is polycarbonate resin and the light diffusion element is polymethylsilsesquioxane particles.
  • a semiconductor light emitting device of the present invention includes a wiring board, a semiconductor light emitting element disposed on a mounting surface of the wiring board, and wavelength conversion of at least a part of incident light.
  • a semiconductor light emitting device including a wavelength conversion member that emits emitted light of different wavelengths, The wavelength conversion member includes a phosphor that absorbs at least a part of incident light and emits outgoing light having a wavelength different from that of the incident light, a light diffusion element that diffuses the incident light and the outgoing light, and the light.
  • in the above formula is preferably 0.07 or more.
  • the light emission efficiency (lm / W) maintenance rate is 90% or more on the basis of the light emission efficiency (lm / W) when the light diffusion element is not included, and the light diffusion element
  • the content concentration [wt%] of the phosphor may be reduced as compared with the case where no phosphor is included.
  • the semiconductor light emitting element and the wavelength conversion member may be separated from each other.
  • the phosphor and the light diffusing element may be mixed in the base material.
  • the phosphor and the light diffusing element may be contained separately from each other in the base material and may have a laminated structure including a phosphor layer and a light diffusing layer. .
  • the distance from the semiconductor light emitting element to the phosphor layer may be smaller or larger than the distance from the semiconductor light emitting element to the light diffusion layer.
  • a refractive index of the light diffusing element is 1.0 or more and 1.9 or less, and a refractive index of the base material is 1.3 or more and 1.7 or less.
  • the base material is preferably made of resin or glass.
  • the resin is at least one resin selected from the group consisting of a polycarbonate resin, a polyester resin, an acrylic resin, an epoxy resin, and a silicone resin.
  • the base material is polycarbonate resin and the light diffusion element is polymethylsilsesquioxane particles.
  • the light emitted from the semiconductor light emitting element that has not been wavelength-converted by the wavelength conversion member and the light converted by the wavelength conversion member may be mixed to emit white light.
  • a mode in which a reflector is provided on the wiring substrate and the area of the portion having a reflectance of 80% or more is 50% or more of the area on the wiring substrate is preferable.
  • the semiconductor light emitting device described above has a frame body, and a reflector is provided on the wiring board and the wall surface in the frame, and the area of the part having a reflectance of 80% or more is on the wall surface in the frame and the wall surface. The aspect which is 50% or more of the area on a wiring board is preferable.
  • a semiconductor light emitting device of the present invention includes a wiring board, a semiconductor light emitting element disposed on a mounting surface of the wiring board, and wavelength conversion of at least a part of incident light.
  • a semiconductor light emitting device including a wavelength conversion member that emits emitted light of different wavelengths, The wavelength conversion member includes a phosphor that absorbs at least a part of incident light and emits outgoing light having a wavelength different from that of the incident light, a light diffusion element that diffuses the incident light and the outgoing light, and the light.
  • the wavelength conversion member of the present invention 0.01 ⁇
  • ⁇ (thickness of wavelength conversion member [mm]) ⁇ (volume fraction of light diffusing element [vol%]) is If it is 0.6 or less, the effect (reduction in luminous efficiency and cost reduction) is remarkably exhibited, and if it is 0.2 or less, the effect is remarkably exhibited.
  • the wavelength conversion member of the present invention
  • ⁇ (thickness of wavelength converting member [mm]) ⁇ (volume fraction of light diffusing element [ vol%]) is 0.02 or more, it is possible to reduce the variation in the luminous efficiency of the semiconductor light emitting device due to the variation in the phosphor content. As a result, the conversion efficiency of the light emitted from the semiconductor light emitting element changes, so that the light emitted from the semiconductor light emitting element (for example, blue light) and the light converted by the wavelength conversion member (for example, yellow) Variation in chromaticity of light (for example, white light) emitted from the semiconductor light emitting device by mixing with the light.
  • the semiconductor light emitting element for example, blue light
  • the wavelength conversion member for example, yellow
  • ⁇ (thickness of wavelength conversion member [mm]) ⁇ (volume fraction of light diffusing element [vol%]) is If it is 0.04 or more, the effect (reduction in variation in light emission efficiency) is remarkably exhibited, and if it is 0.05 or more, the effect is remarkably exhibited.
  • the wavelength conversion member is 0.01 ⁇
  • FIG. 1 is a perspective view showing an outline of an overall configuration of a semiconductor light emitting device according to a first embodiment.
  • 1 is a plan view of a semiconductor light emitting device according to a first embodiment.
  • FIG. 3 is a cross-sectional view of the semiconductor light emitting device taken along line III-III in FIG. 2. It is an expanded sectional view of the principal part in FIG. It is a graph which shows the result of the simulation in the semiconductor light-emitting device concerning a 1st embodiment. It is a graph which shows the result of the simulation in the semiconductor light-emitting device concerning a 1st embodiment. It is the expanded sectional view which showed the principal part of the semiconductor light-emitting device concerning 2nd Embodiment similarly to FIG.
  • FIG. 5 is an enlarged cross-sectional view showing a main part of a semiconductor light emitting device according to a third embodiment in the same manner as FIG. It is the expanded sectional view of the other aspect which showed the principal part of the semiconductor light-emitting device concerning 3rd Embodiment similarly to FIG.
  • Example 2 the change in the amount of phosphor used when the value of [(refractive index of light diffusing element ⁇ refractive index of base material) ⁇ thickness of wavelength converting member ⁇ volume fraction of light diffusing element] was changed. It is a graph which shows the change of luminous flux value. It is a conceptual diagram which shows the structure of the semiconductor light-emitting device which concerns on the embodiment of this invention. It is a conceptual diagram which shows the structure of the semiconductor light-emitting device which concerns on the embodiment of this invention.
  • FIG. 1 is a perspective view schematically showing the overall configuration of the semiconductor light emitting device 1 according to the first embodiment
  • FIG. 2 is a plan view of the semiconductor light emitting device 1 of FIG. 1 and 2
  • one direction in the plan view of the semiconductor light emitting device 1 is the X direction
  • the direction orthogonal to the X direction in the plan view is the Y direction
  • the height direction of the semiconductor light emitting device 1 (the wiring board method). Line direction) is defined as the Z direction.
  • the semiconductor light emitting device 1 is a light source that emits pseudo white light.
  • the semiconductor light-emitting device 1 is a wiring board made of an alumina-based ceramic having excellent electrical insulation, good heat dissipation, and high reflectivity (preferably reflectivity of 80% or more). 2 is provided.
  • On the chip mounting surface 2 a of the wiring substrate 2 four light emitting diode (LED: Light Emitting Diode) chips 3, which are a total of twelve semiconductor light emitting elements, four in the X direction and three in the Y direction are arranged.
  • a wiring pattern for supplying power to each of these LED chips 3 is formed on the wiring board 2 to constitute an electric circuit.
  • the material of the wiring board 2 is not limited to alumina-based ceramics.
  • You may form the main body of the wiring board 2 using.
  • silicone containing white pigment such as alumina powder, silica powder, magnesium oxide, titanium oxide or the like is used. It is preferable to use a resin.
  • the main body of the wiring board 2 may be made of metal such as silver. In such a case, it is necessary to electrically insulate the wiring pattern of the wiring board 2 from the metal body.
  • the chip mounting surface 2a of the wiring board 2 preferably has a part with a reflectance of 90% or more, and the area of the part with a reflectance of 90% or more is 50%. More preferably, it is more preferably 70% or more, and particularly preferably 80% or more.
  • a reflectance means the reflectance of visible region light.
  • An example of a material for achieving such a reflectance is a reflective material in which a filler is contained in a resin.
  • metal oxides are contained in reflectors and ceramics that contain metal oxide fillers such as alumina, titania, silicon oxide, zinc oxide, magnesium oxide in silicone resin, polycarbonate resin, polyphthalamide resin, etc.
  • a reflective material or the like is preferable.
  • the reflective material containing a metal oxide such as titania in polycarbonate resin include Iupilon EHR3100 and EHR3200.
  • the reflective material in which a metal oxide such as alumina or titania is contained in a silicone resin include the reflective materials described in WO2011 / 078239 and WO2011 / 136302.
  • a reflective material in which a metal oxide such as alumina or titania is contained in polyphthalamide is also preferably exemplified.
  • the wavelength conversion member 4 that emits the emitted light as emitted light to the outside of the semiconductor light emitting device 1 is disposed.
  • the shape of the wavelength converting member 4 is hemispherical and has a dome shape (that is, a bowl shape) in which a gap is formed.
  • the wavelength conversion member 4 is separated from the twelve LED chips 3 and covers all the LED chips 3.
  • FIG. 3 is a cross-sectional view of the semiconductor light emitting device 1 taken along the line III-III in FIG. 2, and FIG. 4 is an enlarged view of a main part of the cross-sectional view shown in FIG.
  • the LED chip 3 and the wavelength conversion member 4 will be described in detail with reference to FIGS. 3 and 4.
  • LED chip In the present embodiment, an LED chip that emits blue light having a peak wavelength of 460 nm is used as the LED chip 3.
  • an LED chip for example, there is a GaN-based LED chip in which an InGaN semiconductor is used for a light emitting layer.
  • the type and emission wavelength characteristics of the LED chip 3 are not limited thereto, and various semiconductor light emitting elements such as LED chips can be used without departing from the gist of the present invention.
  • the peak wavelength of the light emitted from the LED chip 3 is preferably in the wavelength range of 360 nm to 480 nm, and more preferably in the wavelength range of 390 nm to 430 nm or in the wavelength range of 430 nm to 480 nm.
  • a p-electrode 5 and an n-electrode 6 are provided on the surface of the LED chip 3 facing the wiring board 2 side.
  • the p-electrode 5 is bonded to the wiring pattern 7 formed on the chip mounting surface 2a of the wiring board 2, and the wiring pattern 8 also formed on the chip mounting surface 2a is n.
  • the electrode 6 is joined.
  • the p electrode 5 and the n electrode 6 are connected to the wiring pattern 7 and the wiring pattern 8 by soldering via metal bumps (not shown).
  • Other LED chips 3 (not shown) are also bonded to the wiring pattern formed on the chip mounting surface 2a of the wiring board 2 corresponding to each LED chip 3 in the same manner.
  • the LED chips 3 may be connected in series via the wiring pattern 7 and the wiring pattern 8, may be connected in parallel, and is further connected in a combination of serial connection and parallel connection. Also good.
  • the mounting method of the LED chip 3 on the wiring board 2 is not limited to this, and an appropriate method can be selected according to the type and structure of the LED chip 3. For example, after the LED chip 3 is bonded and fixed to a predetermined position of the wiring board 2, two electrodes of each LED chip 3 may be connected to a corresponding wiring pattern by wire bonding, or one electrode may be connected as described above. While joining to a corresponding wiring pattern, you may make it connect the other electrode to a corresponding wiring pattern by wire bonding.
  • the wavelength conversion member 4 converts the wavelength of a part of incident light emitted from the LED chip 3 and emits outgoing light having a wavelength different from that of the incident light.
  • the wavelength conversion member 4 absorbs and excites incident light emitted from the LED chip 3, and emits outgoing light having a wavelength different from the incident light when returning to the ground state.
  • the light diffusing element 4b that diffuses the emitted light emitted from the phosphor 4a and guides it to the emitting surface side of the semiconductor light emitting device 1, the phosphor 4a and the light diffusing element 4b are dispersed and held, and wavelength conversion is performed.
  • It has resin 4c which functions as a base material of member 4.
  • FIG. 4 is an enlarged view of a main part of a cross-sectional view of the semiconductor light emitting device 1 when a resin is used as a base material.
  • the light diffusing element 4b is mixed.
  • the wavelength conversion member 4 is separated from the LED chip, the wavelength conversion member 4 is not heated by the heat generated by the LED chip 3, and the wavelength conversion member 4 is not heated.
  • the wavelength conversion function and the light emission efficiency of the semiconductor light emitting device 1 are prevented from decreasing.
  • the wavelength conversion member 4 is separated from the LED chip 3 by about 25 mm.
  • the separation distance is appropriately set depending on the size of the device and the like, and is usually 1 mm or more, preferably 5 mm or more, and usually 500 mm or less, preferably 300 mm or less.
  • the LED chip 3 that emits blue light is used as a semiconductor light emitting element, in order to obtain white light from the semiconductor light emitting device 1, a part of the blue light is wavelength-converted to yellow light. It is necessary to synthesize white light by mixing the yellow light and the blue light that has not been wavelength-converted. Therefore, a yellow phosphor that converts the wavelength of blue light into yellow light is used as the phosphor 4a in the present embodiment.
  • a part of the blue light may be wavelength-converted into red light or green light.
  • a red phosphor or a green phosphor can be used in addition to the yellow phosphor, or a red phosphor and a green phosphor can be used instead of the yellow phosphor.
  • the emission peak wavelength of a specific yellow phosphor is usually 530 nm or more, preferably 540 nm or more, more preferably 550 nm or more, and usually 620 nm or less, preferably 600 nm or less, more preferably 580 nm or less. Is preferred.
  • Y 3 Al 5 O 12 Ce [YAG phosphor], Lu 3 Al 5 O 12 : Ce [LuAG phosphor], (Y, Gd) 3 Al 5 O 12 : Ce, ( Sr, Ca, Ba, Mg) 2 SiO 4 : Eu, (Ca, Sr) Si 2 N 2 O 2 : Eu, ⁇ -sialon, La 3 Si 6 N 11 : Ce (provided that some of them are Ca or O Is optionally substituted).
  • the emission peak wavelength is usually in the wavelength range of 565 nm or more, preferably 575 nm or more, more preferably 580 nm or more, and usually 780 nm or less, preferably 700 nm or less, more preferably 680 nm or less. Is preferred.
  • red phosphors are, for example, CaAlSiN 3 : Eu [CASN phosphor] described in JP-A-2006-008721 and JP-A-2008-7751 (Sr, Ca ) AlSiN 3 : Eu [SCASN phosphor], Ca 1-x Al 1-x Si 1 + x N 3-x O x : Eu [CASON phosphor] and the like described in JP-A-2007-231245
  • the emission peak wavelength is usually larger than 500 nm, preferably 510 nm or more, more preferably 515 nm or more, and usually 550 nm or less, especially 540 nm or less, further 535 nm or less. It is preferable that If this emission peak wavelength is too short, it tends to be bluish, while if it is too long, it tends to be yellowish, and there is a possibility that the characteristics as green light will deteriorate.
  • a green phosphor for example, Y 3 (Al, Ga) 5 O 12 : Ce [G-YAG phosphor], described in International Publication No.
  • 2007/091687 (Ba, Ca, Sr, Mg) 2 SiO 4 : Eu-activated alkaline earth silicate phosphor represented by Eu [BSS phosphor], Si 6-z Al z N 8-z O z described in Japanese Patent No. 3911545 : Eu-activated oxynitride phosphor [ ⁇ -SiAlON phosphor] such as Eu (where 0 ⁇ z ⁇ 4.2), M 3 Si described in International Publication No.
  • 2007/088966 Eu-activated oxynitride phosphor such as 6 O 12 N 2 : Eu (wherein M represents an alkaline earth metal element), BaMgAl described in JP-A-2008-274254 10 17: Eu, it is also possible to use Mn-activated aluminate phosphor [GBAM phosphor.
  • the volume-based median diameter D 50v is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more. Moreover, the thing of 30 micrometers or less is preferable, and the thing of 20 micrometers or less can be used more preferably.
  • the volume-based median diameter D 50v is a volume-based relative when a sample is measured and a particle size distribution (cumulative distribution) is obtained using a particle size distribution measuring apparatus based on a laser diffraction / scattering method. It is defined as the particle size at which the particle amount is 50%.
  • the phosphor 4a is put in ultrapure water, an ultrasonic disperser (manufactured by Kaijo Co., Ltd.) is used, the frequency is 19 KHz, the ultrasonic intensity is 5 W, and the sample is ultrasonicated for 25 seconds
  • the transmittance is adjusted to a range of 88% to 92% using a flow cell, and after confirming that the particles are not aggregated, a laser diffraction particle size distribution analyzer (Horiba LA-300) Examples thereof include a measurement method in a particle size range of 0.1 ⁇ m to 600 ⁇ m.
  • a dispersant may be used.
  • D v / D n is a ratio (D v / D n ) between the volume-based average particle size D v and the number-based average particle size D n of the phosphor 4a.
  • D v / D n is preferably 1.0 or more, more preferably 1.2 or more, and further preferably 1.4 or more.
  • D v / D n is preferably 25 or less, more preferably 10 or less, and particularly preferably 5 or less. If D v / D n is too large, there will be phosphor particles with greatly different weights, and the phosphor particles will tend to be non-uniformly dispersed in the phosphor layer.
  • the phosphor 4a it is possible to use a phosphor whose surface is previously coated with a third component.
  • the type of the third component used for coating and the coating method are not particularly limited, and any known third component and method may be used.
  • the third component examples include organic acids, inorganic acids, silane treating agents, silicone oil, liquid paraffin, and the like.
  • the affinity for the resin 4c, dispersibility, thermal stability, fluorescence coloring property and the like tend to be improved.
  • the surface treatment and the coating amount are usually 0.01 to 10 parts by weight per 100 parts by weight of the phosphor 4a. If the amount is less than 0.01 parts by weight, the affinity, dispersibility, thermal stability, fluorescence coloring property, etc. It is difficult to obtain the improvement effect, and even if the amount exceeds 10 parts by weight, problems such as deterioration of thermal stability, mechanical properties, and fluorescence developability are likely to occur.
  • the content of the phosphor 4a in the wavelength conversion member 4 depends on the types of the light diffusing element 4b and the resin 4c.
  • the content of the phosphor 4a is usually 0. 1 part by weight or more, preferably 0.5 part by weight or more, more preferably 1 part by weight or more, and usually 50 parts by weight or less, preferably 40 parts by weight or less, more preferably 30 parts by weight or less, still more preferably 20 parts by weight or less. If the content of the phosphor 4a is too small, the wavelength conversion effect of the phosphor tends to be difficult to obtain, and if it is too much, the mechanical properties may be deteriorated.
  • Light diffusion element In the present embodiment, it is preferable to use an inorganic light diffusing material, an organic light diffusing material, or air bubbles as the light diffusing element 4b.
  • inorganic light diffusing material for example, inorganic light diffusing materials such as silicon, aluminum, titanium, zirconium, calcium, and barium can be used, and the group consisting of silicon, aluminum, titanium, and zirconium can be used. It is preferable to use an inorganic light diffusing material containing at least one element.
  • organic light diffusing material it is possible to use an acrylic light diffusing material, or an organic light diffusing material containing silicon as an element, or an organic material containing silicon as an element. It is preferable to use a system light diffusing material.
  • inorganic light diffusing materials include silicon dioxide (silica), white carbon, talc, magnesium oxide, zinc oxide, titanium oxide, aluminum oxide, zirconium oxide, boron oxide, calcium carbonate, barium carbonate, magnesium carbonate, water
  • examples thereof include aluminum oxide, calcium hydroxide, magnesium hydroxide, barium sulfate, calcium silicate, magnesium silicate, aluminum silicate, sodium aluminosilicate, zinc silicate, glass, mica and the like.
  • organic light diffusing material examples include styrene (co) polymers, acrylic (co) polymers, siloxane (co) polymers, polyamide (co) polymers, and the like. Some or all of these molecules of the organic diffusing material may or may not be cross-linked.
  • (co) polymer means both “polymer” and “copolymer”.
  • the light diffusion elements described above in order to increase the light diffusion effect with a small amount, it is preferable to select a light diffusion element having a large difference between the refractive index of the base material and the refractive index of the selected light diffusion element. Further, in order not to greatly reduce the luminous efficiency, it is preferable to select a light diffusing element having high transparency.
  • the light diffusing element 4b includes a crosslinked acrylic (co) polymer particle, a crosslinked particle of a copolymer of an acrylic compound and a styrene compound, a siloxane (co) polymer particle, It is preferable to use hybrid crosslinked particles of an acrylic compound and a compound containing a silicon atom, and it is more preferable to use crosslinked acrylic (co) polymer particles and siloxane (co) polymer particles.
  • crosslinked acrylic (co) polymer particles polymer particles composed of a non-crosslinkable acrylic monomer and a crosslinkable monomer are more preferable, and polymer particles obtained by crosslinking methyl methacrylate and trimethylolpropane tri (meth) acrylate are more preferable.
  • siloxane-based (co) polymer polyorganosilsesquioxane particles are more preferable, and polymethylsilsesquioxane particles are more preferable.
  • polymethylsilsesquioxane particles are particularly preferable in terms of excellent thermal stability.
  • the dispersion shape of the light diffusing element 4b in the resin 4c may be any of a substantially spherical shape, a plate shape, a needle shape, and an indefinite shape, but is preferably a substantially spherical shape from the viewpoint that there is no anisotropy in light scattering effect.
  • the average dimension of the light diffusing element 4b is usually 100 ⁇ m or less, preferably 30 ⁇ m or less, more preferably 10 ⁇ m or less, and usually 0.01 ⁇ m or more, preferably 0.1 ⁇ m or more. More preferably, it is 0.5 ⁇ m or more.
  • the average dimension of the light diffusing element 4b is a 50% average dimension based on volume, and is the value of the median diameter (D50) of the volume standard particle size distribution measured by laser or diffraction scattering method.
  • the particle size distribution of the light diffusing element 4b may be a monodispersed system or a polydispersed system having several peak tops, and is a single peak top having a narrow particle size distribution. However, it is preferable that the particle size distribution is narrow and the particle size is almost a single particle size (monodispersion or near monodispersion particle size distribution).
  • D v / D n As an index indicating the degree of particle size distribution of the light diffusing element 4b, there is a ratio (D v / D n ) of the volume-based average particle diameter D v and the number-based average particle diameter D n of the light diffusing element 4b. .
  • D v / D n it is preferred D v / D n is 1.0 or more.
  • D v / D n is 5 or less.
  • the inorganic light diffusing material, the organic light diffusing material, and the bubbles used as the light diffusing element 4b described above may be used singly or in combination of two or more kinds having different materials and dimensions. Good.
  • the refractive index of the light diffusing element 4b is calculated by the volume average of a plurality of light diffusing elements.
  • the refractive index of the light diffusing element 4b is usually 1.0 or more and usually 1.9 or less. The reason will be described when referring to an evaluation result described later.
  • the light diffusing element 4b preferably has high transparency and excellent light transmittance.
  • the extinction coefficient may be 10 ⁇ 2 or less, preferably 10 ⁇ 3 or less, and more preferably. 10 ⁇ 4 or less, particularly preferably 10 ⁇ 6 or less.
  • the refractive index of the light diffusing element 4b can be measured by a liquid immersion method (Aerosol Research Vol. 9, No. 1 Spring pp. 44-50 (1994)) of YOSHIYAMA et al. The measurement temperature is 20 ° C., and the measurement wavelength is 450 nm.
  • Table 1 below shows the refractive indexes of materials generally used as the light diffusing element 4b.
  • the refractive index of each material in Table 1 is a general reference value, and the refractive index of each material is not necessarily limited to the value in Table 1.
  • the content of the light diffusing element 4b in the wavelength conversion member 4 depends on the types of the phosphor 4a and the resin 4c.
  • the resin 4c is a polycarbonate resin
  • the light diffusing element 4b is polymethylsilsesquioxane particles. In some cases, it is usually 0.1 parts by weight or more, preferably 0.3 parts by weight or more, more preferably 0.5 parts by weight or more, and usually 10.0 parts by weight or less with respect to 100 parts by weight of the polycarbonate resin.
  • the amount is preferably 7.0 parts by weight or less, more preferably 3.0 parts by weight or less. If the content of the light diffusing element 4b is too small, the diffusing effect is insufficient, and the effect of reducing the amount of the phosphor 4a tends to be difficult to obtain. .
  • the phosphor 4a described above may also diffuse yellow light. However, in the calculation of the volume fraction of the light diffusing element of the present invention, the phosphor 4a is not included as a part of the light diffusing element 4b. .
  • the base material holds the light diffusing element. Moreover, it is preferable that the light diffusing element is dispersed in the base material. In the present embodiment, it is preferable that the base material holds a phosphor, and the phosphor is dispersed in the base material. As the base material, resin, glass or the like is usually used.
  • the resin 4c that disperses and holds the phosphor 4a and the light diffusing element 4b usually has a refractive index of 1.3 or more and 1.7 or less. The reason will be described when referring to an evaluation result described later.
  • the measuring method of the refractive index of resin 4c is as follows.
  • the measurement temperature is 20 ° C., measured by the prism coupler method.
  • the measurement wavelength is 450 nm.
  • Table 2 below lists the refractive indices of resins generally used as a base material.
  • the refractive index of each resin in Table 2 is a general reference value, and the refractive index of each resin is not necessarily limited to the value in Table 2.
  • polycarbonate resin polycarbonate resin, polyester resin (for example, polyethylene terephthalate resin, polybutylene terephthalate resin), acrylic resin (for example, polymethyl methacrylate resin), epoxy resin, and silicone resin are used. It is preferable.
  • the resin 4c preferably does not absorb light (for example, ultraviolet light, near ultraviolet light, or blue light) emitted from the semiconductor light emitting element or visible light emitted from the wavelength conversion member. Furthermore, it is preferable to have sufficient transparency and durability against blue light emitted from the LED chip 3.
  • these resins used as the resin 4c described above may be used alone or in combination of two or more. Moreover, the copolymer of these resin may be sufficient and it may use it, laminating
  • a polycarbonate resin is most preferably used because it is excellent in transparency, heat resistance, mechanical properties, and flame retardancy.
  • the polycarbonate resin will be described in detail.
  • the polycarbonate resin used in the present invention is a polymer having a basic structure having a carbonic acid bond represented by the following general chemical formula (1).
  • X 1 is generally a hydrocarbon, but X 1 into which a hetero atom or a hetero bond is introduced may be used for imparting various properties.
  • the polycarbonate resin can be classified into an aromatic polycarbonate resin in which the carbon directly bonded to the carbonic acid bond is an aromatic carbon, and an aliphatic polycarbonate resin in which the carbon is an aliphatic carbon, either of which can be used.
  • aromatic polycarbonate resins are preferred from the viewpoints of heat resistance, mechanical properties, electrical characteristics, and the like.
  • the polycarbonate polymer formed by making a dihydroxy compound and a carbonate precursor react is mentioned.
  • a polyhydroxy compound or the like may be reacted.
  • a method of reacting carbon dioxide with a cyclic ether using a carbonate precursor may be used.
  • the polycarbonate polymer may be linear or branched.
  • the polycarbonate polymer may be a homopolymer composed of one type of repeating unit or a copolymer having two or more types of repeating units.
  • the copolymer can be selected from various copolymerization forms such as a random copolymer and a block copolymer.
  • such a polycarbonate polymer is a thermoplastic resin.
  • aromatic dihydroxy compounds include dihydroxy compounds such as 1,2-dihydroxybenzene, 1,3-dihydroxybenzene (ie, resorcinol), 1,4-dihydroxybenzene, and the like.
  • Benzenes such as 2,5-dihydroxybiphenyl, 2,2′-dihydroxybiphenyl, 4,4′-dihydroxybiphenyl; 2,2′-dihydroxy-1,1′-binaphthyl, 1,2-dihydroxy Dihydroxynaphthalenes such as naphthalene, 1,3-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 1,7-dihydroxynaphthalene, 2,7-dihydroxynaphthalene; 2 , 2'- Hydroxydiphenyl ether, 3,3′-dihydroxydiphenyl ether, 4,4′-dihydroxydiphenyl ether, 4,4′-dihydroxy-3,3′-dimethyldiphenyl ether, 1,4-bis (3-hydroxyphenoxy) benzene, 1,3 Dihydroxydiary
  • Dihydroxydiaryl sulfoxides such as 4,4′-dihydroxydiphenylsulfone and 4,4′-dihydroxy-3,3′-dimethyldiphenylsulfone;
  • bis (hydroxyaryl) alkanes are preferred, and bis (4-hydroxyphenyl) alkanes are preferred, and 2,2-bis (4-hydroxyphenyl) propane (ie, in terms of impact resistance and heat resistance) Bisphenol A) is preferred.
  • 1 type may be used for an aromatic dihydroxy compound, and it may use 2 or more types together by arbitrary combinations and a ratio.
  • Examples of monomers used as raw materials for aliphatic polycarbonate resins include ethane-1,2-diol, propane-1,2-diol, propane-1,3-diol, 2,2-dimethylpropane-1, 3-diol, 2-methyl-2-propylpropane-1,3-diol, butane-1,4-diol, pentane-1,5-diol, hexane-1,6-diol, decane-1,10-diol Alkanediols such as cyclopentane-1,2-diol, cyclohexane-1,2-diol, cyclohexane-1,4-diol, 1,4-cyclohexanedimethanol, 4- (2-hydroxyethyl) cyclohexanol, Cycloalkanediols such as 2,2,4,4-tetramethyl-cyclobutane-1,3-di
  • examples of the carbonate precursor include carbonyl halide and carbonate ester.
  • 1 type may be used for a carbonate precursor and it may use 2 or more types together by arbitrary combinations and a ratio.
  • carbonyl halide examples include phosgene, haloformates such as bischloroformate of dihydroxy compounds, and monochloroformate of dihydroxy compounds.
  • carbonate esters include diaryl carbonates such as diphenyl carbonate and ditolyl carbonate; dialkyl carbonates such as dimethyl carbonate and diethyl carbonate; biscarbonate bodies of dihydroxy compounds, monocarbonate bodies of dihydroxy compounds, and cyclic carbonates. And carbonate bodies of dihydroxy compounds such as
  • the method for producing the polycarbonate resin is not particularly limited, and any method can be adopted. Examples thereof include an interfacial polymerization method, a melt transesterification method, a pyridine method, a ring-opening polymerization method of a cyclic carbonate compound, and a solid phase transesterification method of a prepolymer.
  • an interfacial polymerization method a melt transesterification method
  • a pyridine method a ring-opening polymerization method of a cyclic carbonate compound
  • a solid phase transesterification method of a prepolymer a prepolymer.
  • the interfacial polymerization method and the melt transesterification method which are particularly suitable among these methods, will be specifically described.
  • Interfacial polymerization method In the interfacial polymerization method, a dihydroxy compound and a carbonate precursor (preferably phosgene) are reacted in the presence of an organic solvent inert to the reaction and an aqueous alkaline solution, usually at a pH of 9 or higher. Polycarbonate resin is obtained by interfacial polymerization in the presence.
  • a molecular weight adjusting agent terminal terminator
  • an antioxidant may be present to prevent the oxidation of the dihydroxy compound.
  • the dihydroxy compound and the carbonate precursor are as described above.
  • phosgene is preferably used, and a method using phosgene is particularly called a phosgene method.
  • organic solvent inert to the reaction examples include chlorinated hydrocarbons such as dichloromethane, 1,2-dichloroethane, chloroform, monochlorobenzene and dichlorobenzene; aromatic hydrocarbons such as benzene, toluene and xylene. .
  • 1 type may be used for an organic solvent and it may use 2 or more types together by arbitrary combinations and a ratio.
  • alkali compound contained in the alkaline aqueous solution examples include alkali metal compounds and alkaline earth metal compounds such as sodium hydroxide, potassium hydroxide, lithium hydroxide, and sodium hydrogen carbonate, among which sodium hydroxide and water Potassium oxide is preferred.
  • 1 type may be used for an alkali compound and it may use 2 or more types together by arbitrary combinations and a ratio.
  • the concentration of the alkali compound in the alkaline aqueous solution is not limited, but is usually used at 5 to 10% by weight in order to control the pH in the alkaline aqueous solution of the reaction to 10 to 12.
  • the molar ratio of the bisphenol compound to the alkali compound is usually 1: 1.9 or more in order to control the pH of the aqueous phase to be 10 to 12, preferably 10 to 11.
  • the ratio is 1: 2.0 or more, usually 1: 3.2 or less, and more preferably 1: 2.5 or less.
  • polymerization catalyst examples include aliphatic tertiary amines such as trimethylamine, triethylamine, tributylamine, tripropylamine, and trihexylamine; alicyclic rings such as N, N′-dimethylcyclohexylamine and N, N′-diethylcyclohexylamine Tertiary amines; aromatic tertiary amines such as N, N′-dimethylaniline and N, N′-diethylaniline; quaternary ammonium salts such as trimethylbenzylammonium chloride, tetramethylammonium chloride and triethylbenzylammonium chloride; Examples include pyridine, guanine, guanidine salts, and the like. In addition, 1 type may be used for a polymerization catalyst and it may use 2 or more types together by arbitrary combinations and a ratio.
  • the molecular weight modifier examples include aromatic phenols having a monovalent phenolic hydroxyl group; aliphatic alcohols such as methanol and butanol, mercaptans, and phthalimides, among which aromatic phenols are preferred.
  • aromatic phenols include alkyl groups such as m-methylphenol, p-methylphenol, m-propylphenol, p-propylphenol, p-tert-butylphenol, and p-long chain alkyl-substituted phenol.
  • Substituted phenols vinyl group-containing phenols such as isopropanyl phenol, epoxy group-containing phenols, carboxyl group-containing phenols such as o-oxine benzoic acid and 2-methyl-6-hydroxyphenylacetic acid.
  • a molecular weight regulator may use 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
  • the amount of the molecular weight modifier used is usually 0.5 mol or more, preferably 1 mol or more, and usually 50 mol or less, preferably 30 mol or less, per 100 mol of the dihydroxy compound.
  • the order of mixing the reaction substrate, reaction medium, catalyst, additive and the like is arbitrary as long as a desired polycarbonate resin is obtained, and an appropriate order may be arbitrarily set.
  • the molecular weight regulator can be mixed at any time as long as it is between the reaction (phosgenation) of the dihydroxy compound and phosgene and the start of the polymerization reaction.
  • the reaction temperature is usually 0 to 40 ° C.
  • the reaction time is usually several minutes (for example, 10 minutes) to several hours (for example, 6 hours).
  • melt transesterification method for example, a transesterification reaction between a carbonic acid diester and a dihydroxy compound is performed.
  • the dihydroxy compound is as described above.
  • examples of the carbonic acid diester include dialkyl carbonate compounds such as dimethyl carbonate, diethyl carbonate, and di-tert-butyl carbonate; diphenyl carbonate; substituted diphenyl carbonate such as ditolyl carbonate, and the like. Of these, diphenyl carbonate and substituted diphenyl carbonate are preferable, and diphenyl carbonate is particularly preferable.
  • carbonic acid diester may use 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
  • the ratio of the dihydroxy compound and the carbonic acid diester is arbitrary as long as the desired polycarbonate resin can be obtained, but it is preferable to use an equimolar amount or more of the carbonic acid diester with respect to 1 mol of the dihydroxy compound. Is more preferable.
  • the upper limit is usually 1.30 mol or less. By setting it as such a range, the amount of terminal hydroxyl groups can be adjusted to a suitable range.
  • the amount of terminal hydroxyl groups tends to have a large effect on thermal stability, hydrolysis stability, color tone, and the like. For this reason, you may adjust the amount of terminal hydroxyl groups as needed by a well-known arbitrary method.
  • a polycarbonate resin in which the terminal hydroxyl group amount is adjusted can be usually obtained by adjusting the mixing ratio of the carbonic acid diester and the aromatic dihydroxy compound, the degree of vacuum during the transesterification reaction, and the like.
  • the molecular weight of the polycarbonate resin usually obtained can also be adjusted by this operation.
  • the mixing ratio is as described above.
  • a more aggressive adjustment method there may be mentioned a method in which a terminal terminator is mixed separately during the reaction.
  • the terminal terminator at this time include monohydric phenols, monovalent carboxylic acids, carbonic acid diesters, and the like.
  • 1 type may be used for a terminal terminator and it may use 2 or more types together by arbitrary combinations and a ratio.
  • a transesterification catalyst is usually used. Any transesterification catalyst can be used. Among them, it is preferable to use, for example, an alkali metal compound and / or an alkaline earth metal compound. In addition, auxiliary compounds such as basic boron compounds, basic phosphorus compounds, basic ammonium compounds, and amine compounds may be used in combination. In addition, 1 type may be used for a transesterification catalyst and it may use 2 or more types together by arbitrary combinations and a ratio.
  • the reaction temperature is usually 100 to 320 ° C.
  • the pressure during the reaction is usually a reduced pressure condition of 2 mmHg or less.
  • a melt polycondensation reaction may be performed under the above-mentioned conditions while removing a by-product such as an aromatic hydroxy compound.
  • the melt polycondensation reaction can be performed by either a batch method or a continuous method.
  • the order which mixes a reaction substrate, a reaction medium, a catalyst, an additive, etc. is arbitrary as long as a desired aromatic polycarbonate resin is obtained, What is necessary is just to set an appropriate order arbitrarily.
  • the melt polycondensation reaction is preferably carried out continuously.
  • a catalyst deactivator may be used as necessary.
  • a compound that neutralizes the transesterification catalyst can be arbitrarily used. Examples thereof include sulfur-containing acidic compounds and derivatives thereof.
  • 1 type may be used for a catalyst deactivator and it may use 2 or more types together by arbitrary combinations and a ratio.
  • the amount of the catalyst deactivator used is usually 0.5 equivalents or more, preferably 1 equivalent or more, and usually 10 equivalents or less, relative to the alkali metal or alkaline earth metal contained in the transesterification catalyst. Preferably it is 5 equivalents or less. Furthermore, it is 1 ppm or more normally with respect to aromatic polycarbonate resin, and is 100 ppm or less normally, Preferably it is 20 ppm or less.
  • the molecular weight of the polycarbonate resin is arbitrary and may be appropriately selected and determined.
  • the viscosity average molecular weight [Mv] converted from the solution viscosity is usually 10,000 or more, preferably 16,000 or more, more preferably 18, 000 or more, and usually 40,000 or less, preferably 30,000 or less.
  • the viscosity average molecular weight can be equal to or lower than the upper limit of the above range, the polycarbonate resin composition of the present invention can be suppressed and improved in fluidity, and the molding processability can be improved and the molding process can be easily performed.
  • Two or more types of polycarbonate resins having different viscosity average molecular weights may be mixed and used, and in this case, a polycarbonate resin having a viscosity average molecular weight outside the above-mentioned preferred range may be mixed.
  • the intrinsic viscosity [ ⁇ ] is a value calculated by the following formula (1) by measuring the specific viscosity [ ⁇ sp ] at each solution concentration [C] (g / dl).
  • the terminal hydroxyl group concentration of the polycarbonate resin is arbitrary and may be appropriately selected and determined, but is usually 1,000 ppm or less, preferably 800 ppm or less, more preferably 600 ppm or less. Thereby, the residence heat stability and color tone of the polycarbonate resin composition of the present invention can be further improved. Moreover, the minimum is 10 ppm or more normally, Preferably it is 30 ppm or more, More preferably, it is 40 ppm or more. Thereby, the fall of molecular weight can be suppressed and the mechanical characteristic of the polycarbonate resin composition of this invention can be improved more.
  • the unit of the terminal hydroxyl group concentration is the weight of the terminal hydroxyl group expressed in ppm relative to the weight of the polycarbonate resin.
  • the measuring method is a colorimetric determination by the titanium tetrachloride / acetic acid method (the method described in Macromol. Chem. 88 215 (1965)).
  • the polycarbonate resin may be used alone or in combination of two or more in any combination and ratio.
  • the polycarbonate resin is a polycarbonate resin alone (the polycarbonate resin alone is not limited to an embodiment containing only one type of polycarbonate resin, and is used in a sense including an embodiment containing a plurality of types of polycarbonate resins having different monomer compositions and molecular weights, for example. .), Or an alloy (mixture) of a polycarbonate resin and another thermoplastic resin may be used in combination.
  • a polycarbonate resin is copolymerized with an oligomer or polymer having a siloxane structure; for the purpose of further improving thermal oxidation stability and flame retardancy
  • the proportion of the polycarbonate resin in the resin component is preferably 50% by weight or more, more preferably 60% by weight, and further preferably 70% by weight or more. preferable.
  • the polycarbonate resin may contain a polycarbonate oligomer.
  • the viscosity average molecular weight [Mv] of this polycarbonate oligomer is usually 1,500 or more, preferably 2,000 or more, and usually 9,500 or less, preferably 9,000 or less.
  • the polycarbonate ligomer contained is preferably 30% by weight or less of the polycarbonate resin (including the polycarbonate oligomer).
  • the polycarbonate resin may be not only a virgin raw material but also a polycarbonate resin regenerated from a used product (so-called material-recycled polycarbonate resin).
  • used products include: optical recording media such as optical disks; light guide plates; vehicle window glass, vehicle headlamp lenses, windshields and other vehicle transparent members; water bottles and other containers; eyeglass lenses; Examples include architectural members such as glass windows and corrugated sheets.
  • non-conforming products, pulverized products obtained from sprues, runners, etc., or pellets obtained by melting them can be used.
  • the recycled polycarbonate resin is preferably 80% by weight or less, more preferably 50% by weight or less, among the polycarbonate resins contained in the polycarbonate resin composition of the present invention.
  • Recycled polycarbonate resin is likely to have undergone deterioration such as heat deterioration and aging deterioration, so when such polycarbonate resin is used more than the above range, hue and mechanical properties can be reduced. It is because there is sex.
  • various known additives can be added as necessary within the range not impairing the characteristics of the present invention.
  • heat stabilizer, antioxidant, mold release agent, flame retardant, flame retardant aid, UV absorber, lubricant, light stabilizer, plasticizer, antistatic agent, thermal conductivity improver, conductivity improver, Coloring agents, impact resistance improving agents, antibacterial agents, chemical resistance improving agents, reinforcing agents, laser marking improving agents, refractive index adjusting agents and the like can be mentioned.
  • the specific kind and amount of these additives can be selected from known suitable ones for the resin 4c.
  • the heat stabilizer examples include phosphorus compounds. Any known phosphorous compound can be used. Specific examples include phosphorus oxo acids such as phosphoric acid, phosphonic acid, phosphorous acid, phosphinic acid, and polyphosphoric acid; acidic pyrophosphate metal salts such as acidic sodium pyrophosphate, acidic potassium pyrophosphate, and acidic calcium pyrophosphate; phosphoric acid Examples thereof include phosphates of Group 1 or Group 10 metals such as potassium, sodium phosphate, cesium phosphate, and zinc phosphate; organic phosphate compounds, organic phosphite compounds, and organic phosphonite compounds.
  • triphenyl phosphite tris (monononylphenyl) phosphite, tris (monononyl / dinonyl phenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite, monooctyl diphenyl phosphite, Dioctyl monophenyl phosphite, monodecyl diphenyl phosphite, didecyl monophenyl phosphite, tridecyl phosphite, trilauryl phosphite, tristearyl phosphite, 2,2-methylenebis (4,6-di-tert-butylphenyl) ) Organic phosphites such as octyl phosphite are preferred.
  • the content of the heat stabilizer is usually 0.001 parts by weight or more, preferably 0.001 parts by weight or more, more preferably 0.01 parts by weight or more with respect to 100 parts by weight of the polycarbonate resin. It is not more than parts by weight, preferably not more than 0.5 parts by weight, more preferably not more than 0.3 parts by weight, still more preferably not more than 0.1 parts by weight. If the amount of the heat stabilizer is too small, it is difficult to obtain the effect of improving the heat stability.
  • antioxidants examples include hindered phenol antioxidants. Specific examples thereof include pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl).
  • pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate]
  • octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate
  • the content of the antioxidant is usually 0.001 part by weight or more, preferably 0.01 part by weight or more, and usually 1 part by weight or less, preferably 0.5 part by weight with respect to 100 parts by weight of the polycarbonate resin. Part or less, more preferably 0.3 part by weight or less.
  • the content of the antioxidant is less than or equal to the lower limit of the range, the effect as an antioxidant may be insufficient, and when the content of the antioxidant exceeds the upper limit of the range, There is a possibility that the effect reaches its peak and is not economical.
  • release agent examples include aliphatic carboxylic acids, esters of aliphatic carboxylic acids and alcohols, aliphatic hydrocarbon compounds having a number average molecular weight of 200 to 15,000, and polysiloxane silicone oils.
  • the aliphatic carboxylic acid examples include saturated or unsaturated aliphatic monovalent, divalent, or trivalent carboxylic acids.
  • the aliphatic carboxylic acid includes alicyclic carboxylic acid.
  • preferred aliphatic carboxylic acids are monovalent or divalent carboxylic acids having 6 to 36 carbon atoms, and aliphatic saturated monovalent carboxylic acids having 6 to 36 carbon atoms are more preferred.
  • aliphatic carboxylic acids include palmitic acid, stearic acid, caproic acid, capric acid, lauric acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, mellicic acid, tetrariacontanoic acid, montanic acid, adipine Examples include acids and azelaic acid.
  • the aliphatic carboxylic acid in the ester of an aliphatic carboxylic acid and an alcohol for example, the same one as the aliphatic carboxylic acid can be used.
  • the alcohol include saturated or unsaturated monohydric or polyhydric alcohols. These alcohols may have a substituent such as a fluorine atom or an aryl group. Among these, a monovalent or polyvalent saturated alcohol having 30 or less carbon atoms is preferable, and an aliphatic or alicyclic saturated monohydric alcohol or aliphatic saturated polyhydric alcohol having 30 or less carbon atoms is more preferable.
  • alcohols include octanol, decanol, dodecanol, stearyl alcohol, behenyl alcohol, ethylene glycol, diethylene glycol, glycerin, pentaerythritol, 2,2-dihydroxyperfluoropropanol, neopentylene glycol, ditrimethylolpropane, dipentaerythritol and the like. Is mentioned.
  • esters of aliphatic carboxylic acids and alcohols include beeswax (a mixture based on myricyl palmitate), stearyl stearate, behenyl behenate, stearyl behenate, glycerin monopalmitate, glycerin monostearate
  • esters of aliphatic carboxylic acids and alcohols include beeswax (a mixture based on myricyl palmitate), stearyl stearate, behenyl behenate, stearyl behenate, glycerin monopalmitate, glycerin monostearate
  • examples thereof include rate, glycerol distearate, glycerol tristearate, pentaerythritol monopalmitate, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, pentaerythritol tetrastea
  • Examples of the aliphatic hydrocarbon compound having a number average molecular weight of 200 to 15,000 include liquid paraffin, paraffin wax, microwax, polyethylene wax, Fischer-Tropsch wax, and ⁇ -olefin oligomer having 3 to 12 carbon atoms.
  • the aliphatic hydrocarbon includes alicyclic hydrocarbons.
  • paraffin wax polyethylene wax, or a partial oxide of polyethylene wax is preferable, and paraffin wax and polyethylene wax are more preferable.
  • the number average molecular weight of the aliphatic hydrocarbon is preferably 5,000 or less.
  • polysiloxane silicone oil examples include dimethyl silicone oil, phenylmethyl silicone oil, diphenyl silicone oil, and fluorinated alkyl silicone.
  • the content of the release agent is usually 0.001 part by weight or more, preferably 0.01 part by weight or more, and usually 5 parts by weight or less, preferably 3 parts by weight or less, relative to 100 parts by weight of the polycarbonate resin. More preferably, it is 1 part by weight or less, and still more preferably 0.5 part by weight or less.
  • the content of the release agent is not more than the lower limit of the above range, the effect of releasability may not be sufficient, and when the content of the release agent exceeds the upper limit of the above range, hydrolysis resistance And mold contamination during injection molding may occur.
  • Examples of the flame retardant include halogen-based, phosphorus-based, organic acid metal salt-based, and silicone-based flame retardants, and examples of the flame retardant aid include fluororesin-based flame retardant aids.
  • a flame retardant and a flame retardant aid can be used in combination, or a plurality of flame retardants can be used in combination. Among these, phosphorus flame retardants, organic acid metal salt flame retardants, and fluororesin flame retardant aids are preferred.
  • Examples of phosphorus-based flame retardants include aromatic phosphate esters and phosphazene compounds.
  • organic acid metal salt flame retardant an organic sulfonic acid metal salt is preferable, and a fluorine-containing organic sulfonic acid metal salt is particularly preferable. Specific examples thereof include potassium perfluorobutane sulfonate.
  • fluorine-based flame retardant aid a fluoroolefin resin is preferable, and a tetrafluoroethylene resin having a fibril structure can be exemplified.
  • the fluorine-based flame retardant aid may be in a powder form, a dispersion form, a powder form in which a fluororesin is coated with another resin, or any form.
  • the blending ratio of these flame retardants and flame retardant aids may be blended in the amount necessary to achieve the desired flame retardant level, but is usually in the case of phosphorus flame retardants relative to 100 parts by weight of polycarbonate. It is preferably blended in the range of 1 to 20 parts by weight, in the case of organic acid metal salts in the range of 0.01 to 1 part by weight, and in the case of fluororesin-based flame retardant aids in the range of 0.01 to 1 part by weight. . Within the above range, one or more flame retardants and flame retardant aids can be used. If the amount is less than this range, it is difficult to improve the flame retardancy.
  • the flame retardant level can be determined by, for example, a combustion test typified by UL94.
  • ultraviolet absorbers examples include inorganic ultraviolet absorbers such as cerium oxide and zinc oxide; organics such as benzotriazole compounds, benzophenone compounds, salicylate compounds, cyanoacrylate compounds, triazine compounds, oxanilide compounds, malonic ester compounds, and hindered amine compounds. Examples include ultraviolet absorbers. Of these, organic ultraviolet absorbers are preferred, and benzotriazole compounds are more preferred. By selecting an organic ultraviolet absorber, the polycarbonate resin composition of the present invention tends to have good transparency and mechanical properties.
  • benzotriazole compound examples include, for example, 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- [2′-hydroxy-3 ′, 5′-bis ( ⁇ , ⁇ -dimethylbenzyl). ) Phenyl] -benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-tert-butyl-phenyl) -benzotriazole, 2- (2′-hydroxy-3′-tert-butyl-5 ′) -Methylphenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butyl-phenyl) -5-chlorobenzotriazole), 2- (2'-hydroxy-3 ', 5'-di-tert-amyl) -benzotriazole, 2- (2'-hydroxy-5'-tert-octylphenyl) benzotriazole 2,2′-methylenebis [4- (1,
  • benzotriazole compounds include “Seesorb 701”, “Seesorb 702”, “Seesorb 703”, “Seesorb 704”, and “Seesorb 705” manufactured by Sipro Kasei Co., Ltd. (trade names, the same applies hereinafter). , “Seasorb 709”, “Biosorb 520”, “Biosorb 580”, “Biosorb 582”, “Biosorb 583”, manufactured by Kyodo Yakuhin Co., Ltd.
  • UV5411 “UV5411”, “LA-32”, “LA-38”, “LA-36”, “LA-34”, “LA-31” manufactured by Adeka Corporation, “Tinuvin P”, “Cinuvin” manufactured by Ciba Specialty Chemicals 234 ",” Tinubin 326 “,” Tinubin 327 “,” Tinubin 28 “, and the like.
  • the preferable content of the ultraviolet absorber is 0.01 parts by weight or more, more preferably 0.1 parts by weight or more, and 5 parts by weight or less, preferably 3 parts by weight or less with respect to 100 parts by weight of the polycarbonate resin. More preferably, it is 1 part by weight or less, and still more preferably 0.5 part by weight or less. If the content of the UV absorber is below the lower limit of the above range, the effect of improving the weather resistance may be insufficient, and if the content of the UV absorber exceeds the upper limit of the above range, the mold Debogit etc. may occur and cause mold contamination.
  • 1 type may contain the ultraviolet absorber and 2 or more types may contain it by arbitrary combinations and a ratio.
  • the manufacturing method of the resin composition which comprises the wavelength conversion member 4, and the processing method of the wavelength conversion member 4 are not specifically limited, What is necessary is just to use a well-known method as a processing method of resin 4c.
  • the general manufacturing method of the resin composition when the resin 4c is a polycarbonate resin is as follows.
  • the phosphor 4a, the light diffusing element 4b, and other components blended as necessary are added to the polycarbonate resin and mixed with various mixers such as a tumbler mixer and a Henschel mixer. Mixing may be performed by mixing all raw materials at once, or by dividing several raw materials and mixing them. Thereafter, it is melt-kneaded with a Banbury mixer, roll, Brabender, single-screw kneading extruder, twin-screw kneading extruder, kneader or the like to obtain resin composition pellets.
  • various mixers such as a tumbler mixer and a Henschel mixer.
  • Mixing may be performed by mixing all raw materials at once, or by dividing several raw materials and mixing them. Thereafter, it is melt-kneaded with a Banbury mixer, roll, Brabender, single-screw kneading extruder, twin-screw kneading extruder, kne
  • the shaped wavelength conversion member 4 is formed. Among these, it is preferable to adopt an injection molding method. Furthermore, if necessary, the molded body can be further processed by welding, bonding, cutting, and the like.
  • the light diffusing element 4b is a bubble
  • the bubble may be formed in the member by a method such as blending of a blowing agent, nitrogen gas injection, supercritical gas injection, or the like.
  • the resin 4c is a polycarbonate resin and the light diffusing element 4b is other than bubbles, the preferable conditions are illustrated in more detail.
  • the polycarbonate resin, the phosphor 4a, the light diffusing element 4b, and other additives are mixed with a tumbler mixer and then melt-kneaded using a single screw or twin screw extruder.
  • a screw composed mainly of a forward-flight flight screw element is used as a screw so as not to apply excessive pruning force.
  • the frequent use of a screw element that strongly applies a cutting force, such as a reverse feed flight screw or a kneading screw element, is undesirable because it causes discoloration of the resin.
  • the phosphor 4a is hard, it is preferable to use a material that has been subjected to an abrasion-resistant treatment that is difficult to scrape as the material of the screw and cylinder.
  • the kneading temperature is preferably in the range of 230 to 340 ° C. If the measured resin temperature exceeds 340 ° C., discoloration tends to occur, which is not preferable. If the resin temperature is less than 230 ° C., the melt viscosity of the polycarbonate resin is too high, and the mechanical load on the extruder increases.
  • a particularly preferable kneading temperature is in the range of 240 to 300 ° C.
  • the screw rotation speed and discharge amount may be appropriately selected in view of the production speed, the load on the extruder, and the state of the resin pellets. Moreover, it is preferable to install one or more vent structures in the extruder for releasing air entrained with the raw material and gas generated by heating out of the extruder system.
  • the semiconductor light emitting device 1 of the present embodiment having the configuration as described above can be used as general illumination.
  • the light emitted from the semiconductor light emitting device 1 (specifically, white light that is a combined light of blue light and yellow light) has a deviation duv of ⁇ 0.0200 to 0.0200 from the black body radiation locus.
  • the color temperature is preferably in the range of 1,600K to 7,000K.
  • the semiconductor light emitting device 1 of the present embodiment having the above-described configuration can be used as a backlight in addition to general illumination.
  • light emitted from the semiconductor light emitting device 1 (specifically, white light which is a combined light of blue light and yellow light) usually has a color temperature of 5,000K to Within the range of 20,000K.
  • the materials and characteristics of the YAG phosphor 4a, the light diffusing element 4b, and the resin 4c are changed, and the light emission efficiency of each semiconductor light emitting device is calculated by simulation, and the calculation is performed.
  • the results (simulation results) were evaluated.
  • the characteristics (refractive index, extinction coefficient, quantum efficiency) of the phosphor 4a are known publications “Zongyuan Liu” and three others, “YAG for white light emitting diode package: “Measurement and numerical studies of optical properties of YAG: Ce phosphor for white light-emitting diode packaging”, APPLIED OPTICS, January 10, 2010, No.
  • the visible light reflectance of the wiring board 2 was 90%
  • the extinction coefficient of the light diffusing element 4b was 10 ⁇ 6 or less
  • the extinction coefficient of the light absorption coefficient of the resin 4c was 10 ⁇ 6 or less.
  • the average particle size and particle size distribution of the light diffusing element 4b and the average particle size and particle size distribution of the phosphor 4a are assumed to be various, and LightTools (registered as lighting design analysis software of ORA (currently Synopsis)) is registered. (Trademark) was used for the simulation by the ray tracing method.
  • the simulation results will be described in detail with reference to Tables 3 to 8 and FIGS. 5 and 6, and favorable conditions of the wavelength conversion member 4 will be described.
  • the value of “volume fraction of light diffusing element” is expressed by rounding off the third decimal place to the second decimal place, but “refractive index difference ⁇ thickness ⁇ volume fraction”.
  • the volume fraction of the light diffusing element is calculated by using the numerical value up to the fourth decimal place, so the value of “refractive index difference ⁇ thickness ⁇ volume fraction” There may be a gap between the notation and the actual calculated value.
  • the wavelength conversion member 4 was composed of the phosphor 4a and the polycarbonate resin as the resin 4c without including the silicon dioxide as the light diffusion element 4b in the wavelength conversion member 4 in the sample 1-1.
  • the wavelength converting members 4 of Samples 1-2 to 1-20 contain silicon dioxide as the light diffusing element 4b, and the wavelength converting member 4 is made of the phosphor 4a, the light diffusing element 4b, and the polycarbonate resin as the resin 4c.
  • the content of the light diffusing element 4b was increased as the sample number increased, and the volume fraction (vol%) of the light diffusing element 4b was increased.
  • the refractive index at 450 nm at a measurement temperature of 20 ° C. was 1.45 for the light diffusing element 4b and the resin 4c.
  • the density of the light diffusing element 4b was 2.20 g / cm 3 and the density of the resin 4c was 1.20 g / cm 3 .
  • the thickness of the wavelength conversion member 4 itself was set to 1.00 mm.
  • Table 3 below shows “volume fraction of light diffusing element 4b (vol%)”, “difference of refractive index ⁇ thickness of wavelength conversion member 4 itself ⁇ volume of light diffusing element 4b” in each sample (semiconductor light emitting device 1). Rate “,” use concentration of phosphor 4a (wt%) “,” decrease rate of use concentration of phosphor 4a (%) “,” emission efficiency (lm / W) “, and” emission efficiency maintenance rate (%) ) “.
  • the “decrease rate (%) of the use concentration of the phosphor 4a” is the difference between the use concentration of the phosphor 4a in the sample 1-1 and the use concentration of the phosphor 4a in each of the other samples.
  • the “luminance efficiency maintenance ratio (%)” is a numerical value obtained by dividing the luminous efficiency of each of the other samples by the luminous efficiency of the sample 1-1 with the luminous efficiency of the sample 1-1 as a reference (100%). 100 times.
  • the refractive index difference between the light diffusing element and the base material ⁇ the thickness of the light conversion member ⁇ the volume fraction of the light diffusing element is 0.743, and the phosphor 4a
  • the concentration used could be reduced by 85.8%, and the luminous efficiency maintenance rate was 91.5%.
  • the usage concentration of the phosphor 4a is reduced by 91.1%.
  • the maintenance ratio of the luminous efficiency was 75.7%. Even in this case, it is possible to secure a value (70% or more) of the luminous efficiency maintenance rate that can generally obtain good characteristics.
  • the reduction rate of the use concentration of the phosphor 4a is 90.7%.
  • the maintenance ratio of the luminous efficiency is less than 70%.
  • the concentration of the phosphor 4a is adjusted by setting the difference in refractive index between the light diffusing element and the base material ⁇ the thickness of the light conversion member ⁇ the volume fraction of the light diffusing element within an appropriate range. It was found that the light emission efficiency can be reduced and the luminous efficiency can be sufficiently maintained.
  • the wavelength conversion member 4 was composed of the phosphor 4a and the silicone resin as the resin 4c without including the silicon dioxide as the light diffusing element 4b in the wavelength conversion member 4 in the sample 2-1.
  • the wavelength conversion members 4 of Sample 2-2 to Sample 2-19 contain silicon dioxide as the light diffusion element 4b, and the wavelength conversion member 4 is converted from the phosphor 4a, the light diffusion element 4b, and the silicone resin as the resin 4c.
  • the content of the light diffusing element 4b was increased as the sample number increased, and the volume fraction (vol%) of the light diffusing element 4b was increased.
  • the refractive index at 450 nm at a measurement temperature of 20 ° C. was 1.45 for the light diffusing element 4b and the resin 4c.
  • the density of the light diffusing elements 4b 2.20 g / cm 3 was 1.00 g / cm 3.
  • the thickness of the wavelength conversion member 4 itself was set to 1.00 mm.
  • Table 4 shows “volume fraction of light diffusing element 4b (vol%)”, “difference in refractive index ⁇ thickness of wavelength conversion member 4 itself ⁇ volume of light diffusing element 4b” in each sample (semiconductor light emitting device 1). Rate “,” use concentration of phosphor 4a (wt%) “,” decrease rate of use concentration of phosphor 4a (%) “,” emission efficiency (lm / W) “, and” emission efficiency maintenance rate (%) ) “. The “decrease rate (%) of use concentration of phosphor 4a” and “maintenance rate (%) of luminous efficiency” are the same as those defined in Table 3.
  • the difference in refractive index between the light diffusing element and the base material ⁇ the thickness of the light conversion member ⁇ the volume fraction of the light diffusing element is 0.240, and the phosphor 4a
  • the concentration used could be reduced by 55.0%, and the maintenance rate of the luminous efficiency was 95.2%.
  • the usage concentration of the phosphor 4a is reduced by 82.1%.
  • the maintenance ratio of the luminous efficiency was 90.4%. Even in this case, it is possible to secure a value (70% or more) of the luminous efficiency maintenance rate that can generally obtain good characteristics.
  • the wavelength conversion member 4 was made of the phosphor 4a and the polycarbonate resin, which is the resin 4c, without containing the aluminum oxide as the light diffusing element 4b in the wavelength conversion member 4 in the sample 3-1.
  • the wavelength converting members 4 of Samples 3-2 to 3-20 contain aluminum oxide as the light diffusing element 4b, and the wavelength converting member 4 is made of the phosphor 4a, the light diffusing element 4b, and the polycarbonate resin as the resin 4c.
  • the content of the light diffusing element 4b was increased as the sample number increased, and the volume fraction (vol%) of the light diffusing element 4b was increased.
  • the light diffusing element 4b was made of aluminum oxide and the resin 4c was made of polycarbonate resin. Therefore, the light diffusing element 4b was 1.75 and the resin 4c as a refractive index at 450 nm at a measurement temperature of 20 ° C. was 1.58. Further, the density of the light diffusing elements 4b 4.00 g / cm 3, and the density of the resin 4c and 1.20 g / cm 3. Furthermore, the thickness of the wavelength conversion member 4 itself (that is, the thickness of the resin 4c) was set to 1.00 mm.
  • the difference in refractive index between the light diffusing element and the base material ⁇ the thickness of the light conversion member ⁇ the volume fraction of the light diffusing element is 0.548, and the phosphor 4a
  • the working concentration could be reduced by 87.2%, and the luminous efficiency maintenance rate was 90.1%.
  • the use concentration of the phosphor 4a is reduced by 91.2%.
  • the maintenance ratio of the luminous efficiency was 84.1%. Even in this case, it is possible to secure a value (70% or more) of the luminous efficiency maintenance rate that can generally obtain good characteristics.
  • the reduction rate of the use concentration of the phosphor 4a is 91.7%.
  • the maintenance ratio of the luminous efficiency is less than 70%.
  • the value of the difference in refractive index between the light diffusing element and the base material ⁇ the thickness of the light conversion member ⁇ the volume fraction of the light diffusing element is set to an appropriate range, thereby being the same as in the first sample group.
  • the use concentration of the phosphor 4a can be reduced and the luminous efficiency can be sufficiently maintained.
  • the amount of use (volume fraction) of aluminum oxide that is the light diffusing element 4b is changed.
  • the light emission efficiency (lm / W) of each semiconductor light emitting device was calculated by simulation.
  • the wavelength conversion member 4 was composed of the phosphor 4a and the silicone resin as the resin 4c without including the aluminum oxide as the light diffusion element 4b in the wavelength conversion member 4 in the sample 4-1.
  • the wavelength conversion members 4 of Sample 4-2 to Sample 4-19 contain aluminum oxide as the light diffusion element 4b, and the wavelength conversion member 4 is formed from the phosphor 4a, the light diffusion element 4b, and the silicone resin as the resin 4c.
  • the content of the light diffusing element 4b was increased as the sample number increased, and the volume fraction (vol%) of the light diffusing element 4b was increased.
  • the light diffusing element 4b since the light diffusing element 4b is assumed to be aluminum oxide and the resin 4c is assumed to be a silicone resin, the light diffusing element 4b has a refractive index at 450 nm at a measurement temperature of 20 ° C. Was 1.40. Further, the density of the light diffusing elements 4b 4.00 g / cm 3, the density of the resin 4c was 1.00 g / cm 3. Furthermore, the thickness of the wavelength conversion member 4 itself (that is, the thickness of the resin 4c) was set to 1.00 mm.
  • the difference in refractive index between the light diffusing element and the base material ⁇ the thickness of the light conversion member ⁇ the volume fraction of the light diffusing element is 0.178, and the phosphor 4a
  • the concentration used could be reduced to 80.4% and the luminous efficiency maintenance rate was 91.1%.
  • the concentration of the phosphor 4a used is reduced by 93.0%.
  • the maintenance ratio of the luminous efficiency was 71.7%. Even in this case, it is possible to secure a value (70% or more) of the luminous efficiency maintenance rate that can generally obtain good characteristics.
  • the reduction ratio of the concentration of the phosphor 4a used is 93.0%.
  • the maintenance ratio of the luminous efficiency is less than 70%.
  • the value of the refractive index difference between the light diffusing element and the base material ⁇ the thickness of the light conversion member ⁇ the volume fraction of the light diffusing element is set to an appropriate range, thereby being the same as in the first sample group.
  • the use concentration of the phosphor 4a can be reduced and the luminous efficiency can be sufficiently maintained.
  • each semiconductor when the content (volume fraction) of the bubbles which are the light diffusion elements 4b is changed The luminous efficiency (lm / W) of the light emitting device was calculated by simulation.
  • the wavelength conversion member 4 was made of the phosphor 4a and the polycarbonate resin as the resin 4c without including the bubbles as the light diffusion element 4b in the wavelength conversion member 4 in the sample 5-1.
  • the wavelength conversion member 4 of Samples 5-2 to 5-7 contains bubbles as the light diffusion element 4b, and the wavelength conversion member 4 is made of the phosphor 4a, the light diffusion element 4b, and the polycarbonate resin as the resin 4c.
  • the content of the light diffusing element 4b was increased as the sample number was increased, and the volume fraction (vol%) of the light diffusing element 4b was increased.
  • the light diffusion element 4b is a bubble and the resin 4c is a polycarbonate resin. Therefore, the refractive index at 450 nm at a measurement temperature of 20 ° C. is 1.00 and the resin 4c is 1.00. 1.58.
  • the density of the light diffusing element 4b was 0.001 g / cm 3 and the density of the resin 4c was 1.2 g / cm 3 .
  • the thickness of the wavelength conversion member 4 itself was set to 1.00 mm.
  • the difference in refractive index between the light diffusing element and the base material ⁇ the thickness of the light conversion member ⁇ the volume fraction of the light diffusing element is 0.415, and the phosphor 4a
  • the concentration used could be reduced to 88.0%, and the luminous efficiency maintenance rate was 90.2%.
  • the reduction rate of the use concentration of the phosphor 4a is 88.0%.
  • the maintenance ratio of the luminous efficiency was less than 90%.
  • the wavelength conversion member 4 was composed of the phosphor 4a and the silicone resin as the resin 4c without including the barium fluoride as the light diffusion element 4b in the wavelength conversion member 4 in the sample 6-1.
  • the wavelength conversion members 4 of the samples 6-2 to 6-20 contain barium fluoride as the light diffusing element 4b, and the wavelength converting members are converted from the phosphor 4a, the light diffusing element 4b, and the silicone resin as the resin 4c. 4, the content of the light diffusing element 4b was increased as the sample number increased, and the volume fraction (vol%) of the light diffusing element 4b was increased.
  • the light diffusion element 4b is assumed to be barium fluoride and the resin 4c is assumed to be a silicone resin
  • the light diffusion element 4b is 1.48 as a refractive index at a measurement temperature of 20 ° C. and 450 nm. 4c was set to 1.40.
  • the density of the light diffusing element 4b was 4.9 g / cm 3 and the density of the resin 4c was 1.0 g / cm 3 .
  • the thickness of the wavelength conversion member 4 itself was set to 1.00 mm.
  • Table 8 shows “volume fraction of light diffusing element 4b (vol%)”, “difference in refractive index ⁇ thickness of wavelength conversion member 4 itself ⁇ volume of light diffusing element 4b” in each sample (semiconductor light emitting device 1). Rate “,” use concentration of phosphor 4a (wt%) “,” decrease rate of use concentration of phosphor 4a (%) “,” emission efficiency (lm / W) “, and” emission efficiency maintenance rate (%) ) “. The “decrease rate (%) of use concentration of phosphor 4a” and “maintenance rate (%) of luminous efficiency” are the same as those defined in Table 3.
  • the phosphor 4a is used.
  • the concentration could be reduced to 80.8%, and the luminous efficiency maintenance rate was 92.0%.
  • the reduction rate of the use concentration of the phosphor 4a is 85.0%.
  • the maintenance ratio of the luminous efficiency was less than 90%.
  • the content rate of the phosphor 4a is ensured while maintaining a luminous efficiency maintenance rate of 90% or more when compared with a sample in which the wavelength conversion member 4 does not contain the light diffusion element 4b.
  • the condition shown in the following mathematical formula (4) was found as a condition for reducing the above.
  • the light diffusion element 4b has a refractive index of 1.0 or more and 1.9 or less. It is preferable to select a resin 4c having a refractive index of 1.3 or more and 1.7 or less.
  • the difference between the refractive index of the light diffusing element 4b and the refractive index of the resin 4c as the base material is preferably 0.07 or more, more preferably 0.10 or more.
  • the reduction ratio of the phosphor 4a was 3.0% to 93% when satisfying the above-described formula (2) and the refractive index conditions of the light diffusing element 4b and the resin 4c.
  • the numerical value is based on the simulation results of Sample 2-4 and Sample 4-16.
  • the reduction ratio of the phosphor 4a is 3.0% to 91% when the above-described mathematical formula (3) and the refractive index conditions of the light diffusing element 4b and the resin 4c are satisfied.
  • the numerical value is based on the simulation results of Sample 2-4 and Sample 5-7.
  • the reduction ratio of the phosphor 4a is 3.0% to 86% when the above-described formula (4) and the refractive index conditions of the light diffusing element 4b and the resin 4c are satisfied.
  • the numerical value is based on the simulation results of Sample 2-4 and Sample 5-4.
  • the decrease rate of the content concentration [wt%] of the phosphor 4a is always within the range of 3.0% to 86% with reference to the content concentration [wt%] of the phosphor 4a.
  • the retention rate of the light emission efficiency of the semiconductor light emitting device 1 can be ensured to be 90% or more while reducing the use amount of the light emitting device.
  • the minimum value of the luminous efficiency maintenance ratio is reduced to 80%, but the range of the reduction ratio is 3.0. % To 91%, and the amount of phosphor 4a used can be reduced.
  • the minimum value of the luminous efficiency maintenance ratio decreases to 70%, but the range of the reduction ratio is 3
  • the amount of phosphor 4a used can be reduced. Note that it is considered that a light emitting device having good characteristics can be provided if the maintenance ratio of the luminous efficiency is 70% or more, preferably 80% or more, more preferably 90% or more, and particularly preferably 95%. That's it.
  • the slope (dy / dx) was calculated by dividing (dy) by the difference (dx) between the values on the horizontal axis.
  • the difference (dy) in the value on the vertical axis is not the actual difference of “(use concentration of phosphor 4a) ⁇ (thickness of wavelength conversion member 4 itself)”, but the decrease rate of use concentration of phosphor ( %) Difference.
  • the sample with the largest sample number (Sample 1-20, Sample 2-19, Sample 3-20, Sample 4-19, Sample 5-7, Sample 6-20)
  • the slope is not calculated. Note that values with negative inclinations are uniformly set to zero “0”.
  • x is
  • y represents the decreasing rate of the concentration of the phosphor 4a used.
  • the variation in the light emission efficiency of the semiconductor light emitting device 1 due to the variation in the content of the phosphor 4a is 0.05. It can reduce reliably compared with the case of less than. As a result, the conversion efficiency of the light emitted from the semiconductor light emitting element changes, so that the light emitted from the semiconductor light emitting element (blue light) and the light converted by the wavelength conversion member (yellow light) Variation in chromaticity of light (white light) mixed and emitted from the semiconductor light emitting device can be reduced.
  • the wavelength conversion member 4 has the following relationship:
  • x is
  • thickness of wavelength conversion member [mm])
  • volume fraction of light diffusing element [ vol%]
  • y represents the decreasing rate of the concentration of the phosphor 4a used.
  • the fluorescent substance 4a mentioned above may also diffuse yellow light
  • the fluorescent substance 4a is not included in the light diffusion element 4b, and the fluorescent substance 4a is not considered as a part of the light diffusion element 4b.
  • the raw materials of the resin compositions of Examples 1-1 and 1-2 used for producing the wavelength conversion member 4 are as follows.
  • Light diffusing element 4b polymethylsilsesquioxane spherical particles, manufactured by Momentive, trade name “Tospearl 120”, average particle size 2 ⁇ m, refractive index 1.42, density 1.3 g / cm 3
  • Phosphor 4a a mixture of a phosphor manufactured by Mitsubishi Chemical Corporation, YAG (yellow phosphor), CASN (red phosphor), SCASN (short wavelength red phosphor), and G-YAG (green phosphor
  • the manufacturing conditions of the resin composition used for the wavelength conversion member 4 and the molding conditions of the wavelength conversion member 4 are as follows.
  • the phosphor 4a, the light diffusing element 4b, and the resin 4c are blended in predetermined amounts shown in Table 10, mixed with a tumbler mixer, and then cylinder temperature using a 40 mm single-screw extruder (made by Isuzu Processing Co., Ltd., full flight screw). Melting and kneading were performed under the conditions of 280 ° C. setting, screw rotation speed 75 rpm, production rate 18 kg / h, and vacuum vent 0.08 MPa to obtain resin composition pellets.
  • an injection molding machine (“NS40” manufactured by Nissei Co., Ltd.) uses a cylinder temperature of 280 ° C., a mold temperature of 80 ° C., an injection holding time of 3 sec, and a cooling time of 10 sec.
  • the conversion member 4 was produced.
  • Table 10 shows “volume fraction of light diffusing element 4b (vol%)”, “difference in refractive index ⁇ thickness of wavelength converting member 4 itself ⁇ volume of light diffusing element 4b” in each sample (semiconductor light emitting device 1). "Rate”, “Used concentration of phosphor 4a (wt%)”, and “Luminescence efficiency (lm / W)”.
  • the raw materials of the resin compositions of Examples 2-1 to 2-4 and Comparative Example 1 used for manufacturing the wavelength conversion member 4 are as follows.
  • Light diffusion element 4b Alumina particles, manufactured by Micron, trade name “AX3-32”, average particle size 3 ⁇ m, refractive index 1.78, density 4.0 g / cm 3
  • Phosphor 4a a phosphor manufactured by Mitsubishi Chemical Corporation, YAG (yellow phosphor)
  • the manufacturing conditions of the resin composition used for the wavelength conversion member 4 and the molding conditions of the wavelength conversion member 4 are as follows.
  • Phosphor 4a, light diffusing element 4b, and resin 4c were blended in the prescribed amounts shown in Table 11 (total weight 10 g), and defoamed at 1200 rpm for 3 minutes at room temperature using a vacuum defoaming kneader V-mini300 manufactured by EME. The mixture was kneaded to obtain a phosphor-containing silicone resin composition. The obtained resin composition was cast so as to have a diameter of 62 mm and a thickness of 1 mm, and was molded by heating and curing at 150 ° C. for 5 minutes and then at 200 ° C. for 20 minutes, whereby the wavelength conversion member 4 was obtained.
  • the refractive index of the light diffusing element, the volume fraction of the light diffusing element, and the refractive index of the base material are in the state before the light diffusing element is mixed into the base material, the amount of each material and the manufacturing process are grasped. By doing so, it is possible to accurately calculate (that is, the true value), and it is possible to easily use the above-described mathematical expressions.
  • the refractive index of the light diffusing element, the volume fraction of the light diffusing element, and the refractive index of the base material are from the state after the light diffusing element is mixed into the base material (that is, the state of the wavelength conversion member), It is difficult to calculate accurately.
  • the volume fraction of the light diffusing element it is impossible to calculate the actual volume fraction of the light diffusing element from the state after the light diffusing element is mixed into the base material.
  • the refractive index of the light diffusing element, the volume fraction of the light diffusing element, and the refractive index of the base material are true by the following method.
  • Value actual value
  • the target wavelength conversion member that is, the light diffusion element is mixed in the base material
  • Specific verification and evaluation of the light diffusing element includes analysis of the base material (estimating the refractive index from the type of base material), analysis of the light diffusing element (estimating the refractive index from the type of the light diffusing element), and light diffusing element. It is done by quantitative determination.
  • the qualitative analysis of the base material is performed by infrared spectroscopy or the like, and the qualitative analysis of the light diffusing element is performed by SEM-EDS, nuclear magnetic resonance (NMR) or the like, and the quantitative analysis of the light diffusing element. Is performed by image analysis of a cross-sectional SEM image.
  • the qualitative analysis of the base material and the light diffusing element can also be performed by a known method such as IR or pyrolysis GC / MS.
  • the analysis of the base material is performed using a commercially available infrared spectrometer, for example, NEXUS670 and Nic-Plan manufactured by Thermo Fisher Scientific. By comparing the obtained spectrum with the database, the type of the base material can be specified. Then, the refractive index of the identified base material can be determined by referring to Table 2 described above.
  • the analysis and quantification of the light diffusion element is performed according to the following procedure. Specifically, a cross section of the wavelength conversion member is created using a cross section polisher manufactured by JEOL, and SEM images of phosphors and light diffusing elements contained in the base material are taken. For SEM, for example, Ultra 55 manufactured by Carl Zeiss may be used.
  • the phosphor and the light diffusing element are distinguished from each other by SEM-EDS analysis.
  • XRD X-ray Diffraction
  • the phosphor candidates included in the wavelength conversion member are previously determined. It is good to narrow down.
  • silicon or oxygen is observed as the main element of the light diffusing element
  • the type of the light diffusing element is presumed to be glass or silicone resin.
  • carbon or oxygen is observed as the main element of the light diffusing element, it is presumed that an organic resin is used, and an acrylic or styrene resin (see Table 1) is used for the light diffusing element.
  • oxygen is detected in addition to carbon in the case of acrylic, but only carbon is detected in the case of styrene (however, a trace amount of oxygen may be detected due to the influence of impurities, etc.) is there).
  • the type is identified by NMR or the like.
  • the refractive index of the specified light diffusing element can be determined by referring to Table 1 described above.
  • Quantification of the light diffusing element is performed by image analysis of the secondary electron image or reflected electron composition image of the SEM. Specifically, first, the phosphor is distinguished from the contrast (brightness) of the secondary electron image or the reflected electron composition image. Here, it is sufficient that the light diffusing element can be specified from the contrast of the secondary electron image or the reflected electron composition image. Therefore, it is not necessary to perform SEM-EDS analysis on all light diffusing elements.
  • the magnification of the cross-sectional SEM image to be photographed is set so that the maximum particle size (diameter) of the observed light diffusing element is 20 times or more the image pixel size.
  • a cross-sectional SEM image of 0.1 ⁇ m or less per pixel is taken.
  • the number of cross-sectional SEM images used for quantification is set so that the total number of light diffusing elements is 1000 or more.
  • image analysis is performed by binarization processing by a computer.
  • ImageProPlus manufactured by Media Cybernetics is used.
  • the total number N of light diffusing elements in the wavelength conversion member and the average area of the light diffusing elements in the cross-sectional SEM image are extracted by binarizing the cross-sectional SEM image, and a circle is assumed from the average area.
  • the value obtained by multiplying the average diameter of the circle calculated by ⁇ / 4 is the particle size D [ ⁇ m] of the light diffusing element, and the total area of the cross-sectional SEM image used in the above calculation is S [ ⁇ m 2 ],
  • the concentration (volume fraction) C [vol%] of the light diffusing element is calculated according to the following formula (8).
  • the target wavelength conversion member When the target wavelength conversion member is verified and evaluated using the method described above, the true values of the refractive index of the light diffusing element, the volume fraction of the light diffusing element, and the refractive index of the base material are obtained. In contrast, when the wavelength conversion member was verified and evaluated, the error was about 10% to 20%. When the error is 10%, the above formulas (2) to (4) and (6) can be expressed as the following formulas (2 ') to (4') and (6 ').
  • the evaluation result uses a true value. It was found that there was no inferiority compared to the evaluation results, and an excellent evaluation accuracy equivalent to the evaluation using the true value was realized.
  • the phosphor 4a does not decrease the luminous efficiency of the semiconductor light emitting device 1 when it is provided in the semiconductor light emitting device 1. The content can be reduced to reduce the cost.
  • the wavelength conversion member 4 is 0.01 ⁇
  • C N ⁇ 4 ⁇ / 3 ⁇ (D / 2) 3 / (S ⁇ D) ⁇ 100 (where C: volume fraction [vol%] of light diffusion element 4b, N: cross-sectional SEM image)
  • the particle diameter [ ⁇ m] of the light diffusing element 4b obtained by multiplying the average diameter of the circle calculated from the area by assuming a circle by ⁇ / 4, and S: the total area [ ⁇ m 2 ] of the cross-sectional SEM image) Is calculated using the true value of the volume fraction of the light diffusing element 4b. And it is possible to achieve comparable accurate verification and evaluation and for evaluation.
  • the resin 4c as described above is used as the base material of the wavelength conversion member 4.
  • the present invention is not limited to this, and glass or the like can also be used.
  • the LED chip 3 that emits blue light is used as the light source of the semiconductor light emitting device 1.
  • the LED chip that emits blue light is used.
  • an LED chip that emits ultraviolet light may be used.
  • the wavelength converting member 4 absorbs ultraviolet rays and emits red light, red phosphors that absorb ultraviolet rays and emits green light, and green phosphors that absorb ultraviolet rays and emits blue light, and emits blue light. The blue phosphor is dispersed and held.
  • the emission peak wavelength of a specific red phosphor is usually 570 nm or more, preferably 580 nm or more, more preferably 585 nm or more, and usually 780 nm or less, preferably 700 nm or less, more preferably 680 nm or less. Is preferred.
  • red phosphor for example, (Ca, Sr, Ba) 2 Si 5 (N, O) 8 : Eu, (Ca, Sr, Ba) Si (N, O) 2 : Eu, (Ca, Sr, Ba) ) AlSi (N, O) 3 : Eu, (Sr, Ba) 3 SiO 5 : Eu, (Ca, Sr) S: Eu, SrAlSi 4 N 7 : Eu, (La, Y) 2 O 2 S: Eu, Eu (dibenzoylmethane) beta-diketone Eu complex such as 3-1,10-phenanthroline complex, a carboxylic acid Eu complex, K 2 SiF 6: Mn is preferred, (Ca, Sr, Ba) 2 Si 5 (N , O) 8 : Eu, (Sr, Ca) AlSi (N, O) 3 : Eu, SrAlSi 4 N 7 : Eu, (La, Y) 2 O 2 S: Eu, K 2 SiF 6: Mn is preferred
  • the emission peak wavelength of a specific green phosphor is usually 500 nm or more, preferably 510 nm or more, more preferably 515 nm or more, and usually less than 550 nm, preferably 542 nm or less, more preferably 535 nm or less. Is preferred.
  • the emission peak wavelength of a specific blue phosphor is usually 420 nm or more, preferably 430 nm or more, more preferably 440 nm or more, usually less than 500 nm, preferably 490 nm or less, more preferably 480 nm or less, and even more preferably 470 nm or less. Particularly preferred are those in the wavelength range of 460 nm or less.
  • (Ca, Sr, Ba) MgAl 10 O 17 : Eu, (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 (Cl, F) 2 : Eu, (Ba, Ca , Mg, Sr) 2 SiO 4 : Eu, (Ba, Ca, Sr) 3 MgSi 2 O 8 : Eu are preferred, (Ba, Sr) MgAl 10 O 17 : Eu, (Ca, Sr, Ba) 10 (PO 4 ) 6 (Cl, F) 2 : Eu, Ba 3 MgSi 2 O 8 : Eu are more preferable, and Sr 10 (PO 4 ) 6 Cl 2 : Eu, BaMgAl 10 O 17 : Eu is particularly preferable.
  • the blue light emitted from the LED chip 3 and the yellow light emitted from the phosphor 4a which is a yellow phosphor are synthesized, and pseudo white light is emitted from the semiconductor light emitting device 1.
  • the phosphor contained in the wavelength conversion member 4 may be replaced with the red phosphor and the green phosphor described above.
  • the blue light emitted from the LED chip 3, the red light emitted from the red phosphor, and the green light emitted from the green phosphor are synthesized, and the semiconductor light emitting device 1 is simulated. Will emit white light.
  • the LED chip 3 and the wavelength conversion member 4 were arrange
  • FIG. 12 is a schematic diagram of a light emitting device according to an embodiment of the present invention.
  • the light emitting device 100 includes at least a blue semiconductor light emitting element 101 and a wavelength conversion member 103 as its constituent members.
  • the blue semiconductor light emitting element 101 emits excitation light for exciting the phosphor contained in the wavelength conversion member 103.
  • the blue semiconductor light emitting device 101 usually emits excitation light having a peak wavelength of 425 nm to 475 nm, and preferably emits excitation light having a peak wavelength of 430 nm to 470 nm.
  • the number of blue semiconductor light emitting elements 101 can be appropriately set depending on the intensity of excitation light required by the apparatus.
  • the violet semiconductor light emitting device usually emits excitation light having a peak wavelength of 390 nm to 425 nm, and preferably emits excitation light having a peak wavelength of 395 to 415 nm.
  • the blue semiconductor light emitting element 1011 is mounted on the chip mounting surface 102 a of the wiring substrate 102.
  • a wiring pattern (not shown) for supplying electrodes to these blue semiconductor light emitting elements 101 is formed on the wiring substrate 102, and constitutes an electric circuit.
  • FIG. 12 it is displayed that the wavelength conversion member 103 is placed on the wiring board 102, but this is not restrictive, and the wiring board 102 and the wavelength conversion member 103 may be arranged via other members.
  • the wiring substrate 102 and the wavelength conversion member 103 are arranged via the frame body 104.
  • the frame body 104 may have a tapered shape in order to give light directivity. Further, the frame body 104 may be a reflective material.
  • the wiring board 102 is preferably excellent in electrical insulation, has good heat dissipation, and preferably has a high reflectance.
  • a reflective plate having a high reflectance can be provided on a surface where the blue semiconductor light emitting element 101 does not exist or on at least a part of the inner surface of another member connecting the wiring substrate 102 and the wavelength conversion member 103.
  • the reflectance of the reflector used in such a wiring board or the reflectance of the reflector covering a part of the wiring board is preferably 80% or more, and the area of the part where the reflectance is 80% or more is More preferably, it is 50% or more of the area of the wiring board, more preferably 70% or more, particularly preferably 80% or more, and further, it has a part having a reflectance of 90% or more.
  • the area of the part having a reflectivity of 90% or more is more preferably 50% or more of the area of the wiring board, still more preferably 70% or more, and particularly preferably 80% or more.
  • a reflectance means the reflectance of visible region light.
  • the reflectance of the reflector used for the frame or the reflectance of the reflector covering a part of the frame is preferably 80% or more, and the reflectance is The area of 80% or more of the part is more preferably 50% or more of the area of the frame body and the wiring board, more preferably 70% or more, and particularly preferably 80% or more. Furthermore, it is preferable to have a part with a reflectance of 90% or more, and the area of the part with a reflectance of 90% or more is more preferably 50% or more of the area of the frame and the wiring board, and 70% or more. More preferably, it is more preferably 80% or more.
  • a reflectance means the reflectance of visible region light.
  • An example of a material for achieving such a reflectance is a reflective material in which a filler is contained in a resin.
  • metal oxides are contained in reflectors and ceramics that contain metal oxide fillers such as alumina, titania, silicon oxide, zinc oxide, magnesium oxide in silicone resin, polycarbonate resin, polyphthalamide resin, etc.
  • a reflective material or the like is preferable.
  • the reflective material containing a metal oxide such as titania in polycarbonate resin include Iupilon EHR3100 and EHR3200.
  • Examples of the reflective material in which a metal oxide such as alumina or titania is contained in a silicone resin include the reflective materials described in WO2011 / 078239 and WO2011 / 136302.
  • a reflective material in which a metal oxide such as alumina or titania is contained in polyphthalamide is also preferably exemplified.
  • the phosphor 4a and the light diffusing element 4b are mixed in the resin 4c.
  • the structure of the wavelength conversion member 4 is not limited to the structure shown in FIG. It may replace with the wavelength conversion member which has a structure, and demonstrates below the wavelength conversion member 24 which has such a structure as 2nd Embodiment.
  • 7 is an enlarged cross-sectional view of a main part of the semiconductor light emitting device 21 shown in the same manner as FIG. 4. The same reference numerals are given to the same components as those in the first embodiment, and the description thereof is omitted.
  • the plurality of phosphors 24a and the plurality of light diffusion elements 24b are contained separately in the resin 24c.
  • a phosphor layer 24d is formed from the plurality of phosphors 24a and the resin 24c
  • a light diffusion layer 24e is formed from the plurality of light diffusion elements 24b and the resin 24c. That is, in the wavelength conversion member 24 in the present embodiment, the light diffusion layer 24e in which the resin 24c contains only the light diffusion element 24b is formed on the phosphor layer 24d in which the resin 24c contains only the phosphor 24a. It has a laminated two-layer structure.
  • the phosphor layer 24d is arranged so as to face the LED chip 3. That is, the distance from the LED chip 3 to the phosphor layer 24d is smaller than the distance from the LED chip to the light diffusion layer 24e.
  • the same effect as in the first embodiment described above can be obtained when the above-described mathematical formula (2) and the refractive index of the light diffusing element and the resin are satisfied.
  • the semiconductor light emitting device 21 according to the present embodiment has a relatively high luminous efficiency and is suitable for general lighting applications and backlight applications. Furthermore, since the phosphor layer 24d and the light diffusion layer 24e are stacked in contact with each other, it is easy to reduce the size of the semiconductor light emitting device 21.
  • the wavelength conversion member 24 includes a phosphor layer 24d formed from a plurality of phosphors 24a and a resin 24c, and a light diffusion layer 24e formed from a plurality of light diffusion elements 24b and a resin 24c.
  • the structure of the wavelength conversion member 24 is not limited to this, and the wavelength conversion member having the structure as shown in FIG. 9 may be used, and the wavelength conversion member 34 having such a structure is used in the third embodiment.
  • FIG. 9 is an enlarged cross-sectional view of the main part of the semiconductor light emitting device 31 shown in the same manner as FIGS. 4 and 7, and the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. To do.
  • the resin 34c is separated into two layers through a gap layer 34f.
  • a plurality of phosphors 34a are dispersed and held in one layer of the resin 34c, thereby forming a phosphor layer 34d.
  • a plurality of light diffusion elements 34b are dispersed and held in the other layer of the resin 34c, thereby forming a light diffusion layer 34e. That is, the wavelength conversion member 34 in the present embodiment has a three-layer structure in which the phosphor layer 34d, the gap layer 34f, and the light diffusion layer 34e are sequentially stacked.
  • the phosphor layer 34d is disposed so as to face the LED chip 3. That is, the distance from the LED chip 3 to the phosphor layer 34d is smaller than the distance from the LED chip to the light diffusion layer 34e.
  • the same effect as in the first embodiment described above can be obtained when the above-described mathematical formula (2) and the refractive index of the light diffusing element and the resin are satisfied.
  • the thickness of the wavelength conversion member in the above formulas (2) to (6) is not the entire thickness of the wavelength conversion member 34, but the thickness of the phosphor layer 34d and the thickness of the light diffusion layer 34e. Is the sum of That is, the thickness is obtained by subtracting the thickness of the gap layer 34f from the thickness of the entire wavelength conversion member 34.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

The present invention addresses the problem of providing a wavelength conversion member which, when provided on a semiconductor light-emitting device, decreases the contained amount of fluorescent body and thus achieves cost reduction without decreasing the light-emission efficiency of the semiconductor light-emitting device, and a semiconductor light-emitting device using the wavelength conversion member. The problem can be solved by a wavelength conversion member which converts the wavelength of at least part of incident light and emits outgoing light with a wavelength different from the wavelength of the incident light, wherein the wavelength conversion member includes a fluorescent body for absorbing at least part of said incident light and emitting outgoing light with a wavelength different from the wavelength of said incident light, a light diffusion element for diffusing said incident light and said outgoing light, and a base material for holding said light diffusion element, and satisfies the following formula: 0.01 ≤ |(refractive index of light diffusion element) − (refractive index of base material)| × (thickness of wavelength conversion member [mm]) × (volume fraction of light diffusion element [vol%]) ≤ 1.0.

Description

波長変換部材及びこれを用いた半導体発光装置Wavelength converting member and semiconductor light emitting device using the same
 本発明は、入射光の少なくとも一部を波長変換して当該入射光とは異なる波長の出射光を放出する波長変換部材、及び当該波長変換部材と半導体発光素子とを用いた半導体発光装置に関する。 The present invention relates to a wavelength conversion member that converts the wavelength of at least part of incident light and emits outgoing light having a wavelength different from that of the incident light, and a semiconductor light emitting device using the wavelength conversion member and a semiconductor light emitting element.
 発光装置の光源として白熱電球や蛍光灯が従来より広く用いられている。近年では、これらに加え、発光ダイオード(LED:Light Emitting Diode)や有機EL(OLED)等の半導体発光素子を光源とした半導体発光装置が開発され使用されつつある。これらの半導体発光素子では、様々な発光色を得ることが可能であるため、発光色の異なる複数の半導体発光素子を組み合わせ、それぞれの発光色を合成して所望の色の合成光を得るようにした半導体発光装置も開発され使用され始めている。 Incandescent bulbs and fluorescent lamps have been widely used as light sources for light-emitting devices. In recent years, in addition to these, semiconductor light-emitting devices that use semiconductor light-emitting elements such as light-emitting diodes (LEDs) and organic ELs (OLEDs) as light sources have been developed and used. Since these semiconductor light emitting elements can obtain various emission colors, a plurality of semiconductor light emitting elements having different emission colors are combined, and the respective emission colors are combined to obtain a combined light of a desired color. Such semiconductor light emitting devices have been developed and used.
 例えば、発光色が赤色のLEDチップを用いた赤色LEDと、発光色が緑色のLEDチップを用いた緑色LEDと、発光色が青色のLEDチップを用いた青色LEDとを組み合わせ、各LEDに供給する駆動電流を調整して各LEDから発せられた光を合成することにより、所望の白色光を放射させるようにした半導体発光装置が特許文献1に開示されている。 For example, a red LED using an LED chip whose emission color is red, a green LED using an LED chip whose emission color is green, and a blue LED using an LED chip whose emission color is blue are combined and supplied to each LED. Japanese Patent Application Laid-Open No. 2004-151867 discloses a semiconductor light emitting device that emits desired white light by adjusting the driving current to be synthesized and combining the light emitted from each LED.
 元来、LEDチップ自体の発光スペクトル幅は比較的狭いため、LEDチップ自体が発する光をそのまま照明に用いた場合、一般的な照明光において重要となる演色性が低下するという問題がある。そこで、このような問題を解消すべく、LEDチップが発する光を蛍光体などの波長変換部材によって波長変換し、波長変換によって得られた光を放射するようにしたLEDが開発され、このようなLEDを組み合わせた半導体発光装置が、例えば特許文献2に開示されている。 Originally, since the emission spectrum width of the LED chip itself is relatively narrow, when light emitted from the LED chip itself is used for illumination as it is, there is a problem that color rendering, which is important in general illumination light, is reduced. Therefore, in order to solve such problems, an LED has been developed in which the light emitted from the LED chip is wavelength-converted by a wavelength conversion member such as a phosphor, and the light obtained by the wavelength conversion is emitted. A semiconductor light emitting device combining LEDs is disclosed in, for example, Patent Document 2.
 特許文献2に開示されている半導体発光装置においては、青色の光を発するLEDチップを接触しつつ覆うように透明樹脂が設けられ、当該透明樹脂の内部に黄色蛍光体が含有されている。すなわち、特許文献2に開示されている半導体発光装置は、LEDチップを直接的に覆うように波長変換部材が設けられている。しかしながら、このような構造を有する半導体発光装置においては、半導体発光装置の輝度のばらつき及び色ムラが大きかった。このような問題を解決するために、LEDチップから蛍光体を含有する樹脂(すなわち、波長変換部材)を離間して配置した構造を有する半導体発光装置の研究開発及び製品化が、近年においては盛んに行われている。このような構造を有する半導体発光装置は、例えば特許文献3に開示されている。 In the semiconductor light emitting device disclosed in Patent Document 2, a transparent resin is provided so as to cover an LED chip that emits blue light while being in contact with it, and a yellow phosphor is contained inside the transparent resin. That is, the semiconductor light emitting device disclosed in Patent Document 2 is provided with a wavelength conversion member so as to directly cover the LED chip. However, in the semiconductor light emitting device having such a structure, variations in luminance and color unevenness of the semiconductor light emitting device are large. In order to solve such problems, research and development and commercialization of a semiconductor light emitting device having a structure in which a resin containing a phosphor (that is, a wavelength conversion member) is arranged apart from an LED chip have been actively performed in recent years. Has been done. A semiconductor light emitting device having such a structure is disclosed in Patent Document 3, for example.
特開2006-4839号公報JP 2006-4839 A 特開2007-122950号公報JP 2007-122950 A 特開2011-159813号公報JP 2011-159813 A
 しかしながら、LEDチップから離間して波長変換部材を設ける構造は、LEDチップを接触して覆うように波長変換部材を設ける構造と比較して、波長変換部材の寸法が大きくなり、これによって樹脂に含有される蛍光体の量が増加する。一般的に、LEDチップから波長変換部材を離間する場合には、LEDチップを波長変換部材で直接的に覆う場合と同一の発光効率を得るために、従来よりも数倍以上の蛍光体が必要となる。従って、波長変換部材に使用する蛍光体量を削減することが求められている。 However, the structure in which the wavelength conversion member is provided apart from the LED chip is larger in the size of the wavelength conversion member than the structure in which the wavelength conversion member is provided so as to cover the LED chip so as to cover the LED chip. The amount of phosphor produced is increased. In general, when the wavelength conversion member is separated from the LED chip, a phosphor several times more than the conventional phosphor is required to obtain the same light emission efficiency as when the LED chip is directly covered with the wavelength conversion member. It becomes. Therefore, it is required to reduce the amount of phosphor used for the wavelength conversion member.
 従って、LEDチップから離間して波長変換部材を設ける構造を有する半導体発光装置においては、従来よりも蛍光体の量が増加し、波長変換部材及び半導体発光装置のコストが増加する問題が生じていた。特に、多数のLEDチップに対して単一の波長変換部材を設ける場合には、製品コストが増加していた。 Therefore, in the semiconductor light emitting device having a structure in which the wavelength conversion member is provided apart from the LED chip, there is a problem that the amount of the phosphor is increased as compared with the conventional case, and the cost of the wavelength conversion member and the semiconductor light emitting device is increased. . In particular, when a single wavelength conversion member is provided for a large number of LED chips, the product cost has increased.
 本発明はこのような課題に鑑みてなされたものであり、その目的とするところは、半導体発光装置に設けられた際に当該半導体発光装置の発光効率を低下させることなく、蛍光体の含有量を減少させてコスト低減を図ることができる波長変換部材、及び当該波長変換部材を用いた半導体発光装置を提供することにある。 The present invention has been made in view of such problems, and the object of the present invention is to provide a phosphor content without reducing the light emission efficiency of the semiconductor light emitting device when provided in the semiconductor light emitting device. It is providing the wavelength conversion member which can aim at cost reduction by reducing, and the semiconductor light-emitting device using the said wavelength conversion member.
 上記目的を達成するため、本発明の波長変換部材は、入射光の少なくとも一部を波長変換して前記入射光とは異なる波長の出射光を放出する波長変換部材であって、前記入射光の少なくとも一部を吸収して前記入射光とは異なる波長の出射光を放出する蛍光体と、前記入射光および前記出射光を拡散する光拡散要素と、前記光拡散要素を保持する母材と、を含み、
0.01 ≦ |(光拡散要素の屈折率)-(母材の屈折率)|×(波長変換部材の厚み[mm])×(光拡散要素の体積分率[vol%]) ≦ 1.0
の数式を満たすことを特徴とする。
In order to achieve the above object, the wavelength conversion member of the present invention is a wavelength conversion member that emits outgoing light having a wavelength different from that of the incident light by converting the wavelength of at least part of the incident light. A phosphor that absorbs at least a portion and emits outgoing light having a wavelength different from that of the incident light; a light diffusion element that diffuses the incident light and the outgoing light; and a base material that holds the light diffusion element; Including
0.01 ≦ | (refractive index of light diffusing element) − (refractive index of base material) | × (thickness of wavelength conversion member [mm]) × (volume fraction of light diffusing element [vol%]) ≦ 1. 0
It satisfies the following formula.
 また、上述した波長変換部材において、前記数式における|(光拡散要素の屈折率)-(母材の屈折率)|×(波長変換部材の厚み[mm])×(光拡散要素の体積分率[vol%])の値は、0.6以下であることが好ましく、0.2以下であることが更に好ましい。 In the wavelength conversion member described above, | (refractive index of light diffusing element) − (refractive index of base material) | × (thickness of wavelength converting member [mm]) × (volume fraction of light diffusing element) in the above formula. The value of [vol%] is preferably 0.6 or less, and more preferably 0.2 or less.
 また、上述した波長変換部材において、前記数式における|(光拡散要素の屈折率)-(母材の屈折率)|の値は、0.07以上であることが好ましい。 In the wavelength conversion member described above, the value of | (refractive index of light diffusing element) − (refractive index of base material) | in the above formula is preferably 0.07 or more.
 更に、上述した波長変換部材において、前記光拡散要素を含まないで、同一色度の出射光を放射する波長変換部材を作成した場合の前記蛍光体の含有濃度[wt%]を基準として、前記蛍光体の含有濃度[wt%]の減少比率が、3.0%~86%であってもよい。 Further, in the above-described wavelength conversion member, the phosphor content concentration [wt%] when a wavelength conversion member that does not include the light diffusing element and emits emitted light of the same chromaticity is created as a reference. The decreasing rate of the phosphor concentration (wt%) may be 3.0% to 86%.
 そして、上述した波長変換部材において、前記数式における|(光拡散要素の屈折率)-(母材の屈折率)|×(波長変換部材の厚み[mm])×(光拡散要素の体積分率[vol%])の値は、0.04以上であることが好ましく、0.05以上であることが更に好ましい。 In the wavelength conversion member described above, | (refractive index of light diffusing element) − (refractive index of base material) | × (thickness of wavelength converting member [mm]) × (volume fraction of light diffusing element) [Vol%]) is preferably 0.04 or more, and more preferably 0.05 or more.
 上述した波長変換部材は、
 28 ≦ dy/dx ≦ 447
 x:|(光拡散要素の屈折率)-(母材の屈折率)|×(波長変換部材の厚み[mm])×(光拡散要素の体積分率[vol%])
 y:前記光拡散要素を含まないで、同一色度の出射光を放射する波長変換部材を作成した場合の前記蛍光体の含有濃度[wt%]を基準として、前記蛍光体の含有濃度[wt%]の減少比率
の数式を満たしてもよい。
The wavelength conversion member described above is
28 ≤ dy / dx ≤ 447
x: | (refractive index of light diffusing element) − (refractive index of base material) | × (thickness of wavelength conversion member [mm]) × (volume fraction of light diffusing element [vol%])
y: Concentration [wt] of the phosphor based on the concentration [wt%] of the phosphor when a wavelength conversion member that emits outgoing light of the same chromaticity without including the light diffusing element is created. %] Reduction ratio may be satisfied.
 上述した波長変換部材において、前記蛍光体及び前記光拡散要素は、前記母材内に混在していてもよい。また、前記蛍光体及び前記光拡散要素は、前記母材内に互いに分離して含有されるとともに、蛍光体層及び光拡散層を形成していてもよい。この場合に、前記蛍光体層及び前記光拡散層は互いに接触しつつ積層されていてもよく、或いは、前記母材は、前記蛍光体層と前記光拡散層とを離間する空隙層を有していてもよい。 In the wavelength conversion member described above, the phosphor and the light diffusing element may be mixed in the base material. The phosphor and the light diffusing element may be separately contained in the base material, and may form a phosphor layer and a light diffusing layer. In this case, the phosphor layer and the light diffusion layer may be laminated while being in contact with each other, or the base material has a void layer that separates the phosphor layer and the light diffusion layer. It may be.
 上述した波長変換部材において、前記光拡散要素の屈折率が、1.0以上1.9以下であり、前記母材の屈折率が、1.3以上1.7以下であることが好ましい。 In the wavelength conversion member described above, it is preferable that a refractive index of the light diffusing element is 1.0 or more and 1.9 or less, and a refractive index of the base material is 1.3 or more and 1.7 or less.
 上述した波長変換部材において、前記光拡散要素は、珪素、アルミニウム、チタン、及び、ジルコニウムからなる群の少なくとも1つの元素を含む無機系光拡散材、又は、有機系光拡散材であることが好ましい。この場合に、前記有機系光拡散材が、元素として珪素を含む有機系光拡散材、又は、アクリル系光拡散材であることがより好ましい。 In the wavelength conversion member described above, the light diffusing element is preferably an inorganic light diffusing material or an organic light diffusing material containing at least one element of the group consisting of silicon, aluminum, titanium, and zirconium. . In this case, the organic light diffusing material is more preferably an organic light diffusing material containing silicon as an element or an acrylic light diffusing material.
 上述した波長変換部材において、前記光拡散要素は、気泡からなっていてもよい。 In the wavelength conversion member described above, the light diffusing element may be formed of bubbles.
 上述した波長変換部材において、前記母材が、樹脂またはガラスからなることが好ましい。この場合に、前記樹脂が、ポリカーボネート樹脂、ポリエステル系樹脂、アクリル系樹脂、エポキシ樹脂、及びシリコーン系樹脂からなる群から選ばれる少なくとも1つの樹脂であることがより好ましい。 In the wavelength conversion member described above, it is preferable that the base material is made of resin or glass. In this case, it is more preferable that the resin is at least one resin selected from the group consisting of a polycarbonate resin, a polyester resin, an acrylic resin, an epoxy resin, and a silicone resin.
 上述した波長変換部材において、前記母材がポリカーボネート樹脂、前記光拡散要素がポリメチルシルセスキオキサン粒子であることがより好ましい。 In the wavelength conversion member described above, it is more preferable that the base material is polycarbonate resin and the light diffusion element is polymethylsilsesquioxane particles.
 上記目的を達成するため、本発明の半導体発光装置は、配線基板と、前記配線基板の実装面に配置された半導体発光素子と、入射光の少なくとも一部を波長変換して前記入射光とは異なる波長の出射光を放出する波長変換部材を含む、半導体発光装置であって、
 前記波長変換部材は、入射光の少なくとも一部を吸収して前記入射光とは異なる波長の出射光を放出する蛍光体と、前記入射光および前記出射光を拡散する光拡散要素と、前記光拡散要素を保持する母材と、を含み、かつ
0.01 ≦ |(光拡散要素の屈折率)-(母材の屈折率)|×(波長変換部材の厚み[mm])×(光拡散要素の体積分率[vol%]) ≦ 1.0
の数式を満たすことを特徴とする。
In order to achieve the above object, a semiconductor light emitting device of the present invention includes a wiring board, a semiconductor light emitting element disposed on a mounting surface of the wiring board, and wavelength conversion of at least a part of incident light. A semiconductor light emitting device including a wavelength conversion member that emits emitted light of different wavelengths,
The wavelength conversion member includes a phosphor that absorbs at least a part of incident light and emits outgoing light having a wavelength different from that of the incident light, a light diffusion element that diffuses the incident light and the outgoing light, and the light. And a base material holding the diffusing element, and 0.01 ≦ | (refractive index of the light diffusing element) − (refractive index of the base material) | × (thickness of wavelength conversion member [mm]) × (light diffusion) Element volume fraction [vol%]) ≦ 1.0
It satisfies the following formula.
 また、上述した半導体発光装置において、前記数式における|(光拡散要素の屈折率)-(母材の屈折率)|×(波長変換部材の厚み[mm])×(光拡散要素の体積分率[vol%])の値は、0.6以下であることが好ましく、0.2以下であることが好ましい。 In the semiconductor light emitting device described above, | (refractive index of light diffusing element) − (refractive index of base material) | × (thickness of wavelength conversion member [mm]) × (volume fraction of light diffusing element) in the above formula. The value of [vol%] is preferably 0.6 or less, and preferably 0.2 or less.
 また、上述した半導体発光装置において、前記数式における|(光拡散要素の屈折率)-(母材の屈折率)|の値は、0.07以上であることが好ましい。 In the semiconductor light emitting device described above, the value of | (refractive index of light diffusing element) − (refractive index of base material) | in the above formula is preferably 0.07 or more.
 上述した半導体発光装置において、前記光拡散要素を含まない場合の発光効率(lm/W)を基準として、発光効率(lm/W)の維持率が90%以上であり、且つ、前記光拡散要素を含まない場合と比較して前記蛍光体の含有濃度[wt%]が減少していてもよい。 In the semiconductor light emitting device described above, the light emission efficiency (lm / W) maintenance rate is 90% or more on the basis of the light emission efficiency (lm / W) when the light diffusion element is not included, and the light diffusion element The content concentration [wt%] of the phosphor may be reduced as compared with the case where no phosphor is included.
 また、上述した半導体発光装置において、前記半導体発光素子と前記波長変換部材とは、離間していてもよい。 In the semiconductor light emitting device described above, the semiconductor light emitting element and the wavelength conversion member may be separated from each other.
 更に、上述した半導体発光装置において、前記蛍光体及び前記光拡散要素は、前記母材内に混在していてもよい。また、上述した半導体発光装置において、前記蛍光体及び前記光拡散要素は、前記母材内に互いに分離して含有されるとともに、蛍光体層及び光拡散層からなる積層構造を形成してもよい。このような場合に、前記半導体発光素子から前記蛍光体層までの距離は、前記半導体発光素子から前記光拡散層までの距離よりも小さくても、又は大きくてもよい。 Furthermore, in the semiconductor light emitting device described above, the phosphor and the light diffusing element may be mixed in the base material. In the semiconductor light emitting device described above, the phosphor and the light diffusing element may be contained separately from each other in the base material and may have a laminated structure including a phosphor layer and a light diffusing layer. . In such a case, the distance from the semiconductor light emitting element to the phosphor layer may be smaller or larger than the distance from the semiconductor light emitting element to the light diffusion layer.
 上述した半導体発光装置において、前記光拡散要素の屈折率が、1.0以上1.9以下であり、前記母材の屈折率が、1.3以上1.7以下であることが好ましい。 In the semiconductor light emitting device described above, it is preferable that a refractive index of the light diffusing element is 1.0 or more and 1.9 or less, and a refractive index of the base material is 1.3 or more and 1.7 or less.
 上述した半導体発光装置において、前記母材が、樹脂またはガラスからなることが好ましい。この場合に、前記樹脂が、ポリカーボネート樹脂、ポリエステル系樹脂、アクリル系樹脂、エポキシ樹脂、及びシリコーン系樹脂からなる群から選ばれる少なくとも1つの樹脂であることがより好ましい。 In the semiconductor light emitting device described above, the base material is preferably made of resin or glass. In this case, it is more preferable that the resin is at least one resin selected from the group consisting of a polycarbonate resin, a polyester resin, an acrylic resin, an epoxy resin, and a silicone resin.
 上述した半導体発光装置において、前記母材がポリカーボネート樹脂、前記光拡散要素がポリメチルシルセスキオキサン粒子であることがさらに好ましい。 In the semiconductor light emitting device described above, it is more preferable that the base material is polycarbonate resin and the light diffusion element is polymethylsilsesquioxane particles.
 上述した半導体発光装置において、前記波長変換部材で波長変換されなかった前記半導体発光素子から放射される光と、前記波長変換部材で変換された光が混合して白色光を放射してもよい。
 上述した半導体発光装置は、前記配線基板上に反射板が設けられ、反射率が80%以上である部位の面積が、該該配線基板上の面積の50%以上である態様が好ましい。
 また、上述した半導体発光装置は枠体を有し、前記配線基板上及び枠体内壁面上に反射板が設けられ、反射率が80%以上である部位の面積が、該枠体内壁面上及び該配線基板上の面積の50%以上である態様が好ましい。
In the semiconductor light emitting device described above, the light emitted from the semiconductor light emitting element that has not been wavelength-converted by the wavelength conversion member and the light converted by the wavelength conversion member may be mixed to emit white light.
In the semiconductor light emitting device described above, a mode in which a reflector is provided on the wiring substrate and the area of the portion having a reflectance of 80% or more is 50% or more of the area on the wiring substrate is preferable.
Further, the semiconductor light emitting device described above has a frame body, and a reflector is provided on the wiring board and the wall surface in the frame, and the area of the part having a reflectance of 80% or more is on the wall surface in the frame and the wall surface. The aspect which is 50% or more of the area on a wiring board is preferable.
 上記目的を達成するため、本発明の半導体発光装置は、配線基板と、前記配線基板の実装面に配置された半導体発光素子と、入射光の少なくとも一部を波長変換して前記入射光とは異なる波長の出射光を放出する波長変換部材を含む、半導体発光装置であって、
 前記波長変換部材は、入射光の少なくとも一部を吸収して前記入射光とは異なる波長の出射光を放出する蛍光体と、前記入射光および前記出射光を拡散する光拡散要素と、前記光拡散要素を保持する母材と、を含み、かつ
0.01 ≦ |(光拡散要素の屈折率)-(母材の屈折率)|×(波長変換部材の厚み[mm])×(光拡散要素の体積分率[vol%]) ≦ 1.0
の数式を満たし、
前記数式における(光拡散要素の体積分率[vol%])は、前記波長変換部材の断面SEM像の画像解析結果を用い、
C=N×4π/3×(D/2)/(S×D)×100
C:光拡散要素の体積分率[vol%]
N:断面SEM像の二値化処理によって算出される波長変換部材中の光拡散要素の総数[個]
D:断面SEM像の二値化処理によって算出される断面SEM像中の光拡散要素の平均面積から円を仮定して算出した円の平均直径にπ/4を乗じて得られる光拡散要素の粒径[μm]
S:断面SEM像の総面積[μm
の数式から算出されることを特徴とする。
In order to achieve the above object, a semiconductor light emitting device of the present invention includes a wiring board, a semiconductor light emitting element disposed on a mounting surface of the wiring board, and wavelength conversion of at least a part of incident light. A semiconductor light emitting device including a wavelength conversion member that emits emitted light of different wavelengths,
The wavelength conversion member includes a phosphor that absorbs at least a part of incident light and emits outgoing light having a wavelength different from that of the incident light, a light diffusion element that diffuses the incident light and the outgoing light, and the light. And a base material holding the diffusing element, and 0.01 ≦ | (refractive index of the light diffusing element) − (refractive index of the base material) | × (thickness of wavelength conversion member [mm]) × (light diffusion) Element volume fraction [vol%]) ≦ 1.0
Satisfy the formula of
The (volume fraction [vol%] of the light diffusing element) in the above formula uses the image analysis result of the cross-sectional SEM image of the wavelength conversion member,
C = N × 4π / 3 × (D / 2) 3 / (S × D) × 100
C: Volume fraction [vol%] of the light diffusing element
N: Total number of light diffusing elements in the wavelength conversion member calculated by binarization processing of the cross-sectional SEM image [pieces]
D: of the light diffusing element obtained by multiplying the average diameter of the circle calculated by assuming the circle from the average area of the light diffusing element in the cross-sectional SEM image calculated by the binarization processing of the cross-sectional SEM image by π / 4 Particle size [μm]
S: Total area of cross-sectional SEM image [μm 2 ]
It is calculated from the following formula.
 本発明の波長変換部材においては、0.01 ≦ |(光拡散要素の屈折率)-(母材の屈折率)|×(波長変換部材の厚み[mm])×(光拡散要素の体積分率[vol%]) ≦ 1.0の数式を満たしているため、半導体発光装置に設けられた際に当該半導体発光装置の発光効率を低下させることなく、蛍光体の含有量を減少させてコスト低減を図ることができる。これは、波長変換部材に含まれる蛍光体単位重量当たりの波長変換される半導体発光素子から放射される光の割合を増加させることができることによるものと推察される。この場合に、|(光拡散要素の屈折率)-(母材の屈折率)|×(波長変換部材の厚み[mm])×(光拡散要素の体積分率[vol%])の値が、0.6以下であると当該効果(発光効率の低下及びコスト低減)が顕著に奏され、0.2以下であると当該効果がより一層顕著に奏されることになる。 In the wavelength conversion member of the present invention, 0.01 ≦ | (refractive index of light diffusing element) − (refractive index of base material) | × (thickness of wavelength converting member [mm]) × (volume of light diffusing element) Rate [vol%]) ≦≦ 1.0 satisfies the mathematical formula, so that when the semiconductor light emitting device is provided in the semiconductor light emitting device, the phosphor content is reduced without reducing the light emitting efficiency of the semiconductor light emitting device. Reduction can be achieved. This is presumably because the ratio of the light emitted from the semiconductor light emitting element subjected to wavelength conversion per unit weight of the phosphor contained in the wavelength conversion member can be increased. In this case, the value of | (refractive index of light diffusing element) − (refractive index of base material) | × (thickness of wavelength conversion member [mm]) × (volume fraction of light diffusing element [vol%]) is If it is 0.6 or less, the effect (reduction in luminous efficiency and cost reduction) is remarkably exhibited, and if it is 0.2 or less, the effect is remarkably exhibited.
 また、本発明の波長変換部材においては、|(光拡散要素の屈折率)-(母材の屈折率)|×(波長変換部材の厚み[mm])×(光拡散要素の体積分率[vol%])の値が0.02以上である場合には、蛍光体の含有量のばらつきに起因する半導体発光装置の発光効率のばらつきを低減することができる。このことは、ひいては、半導体発光素子から放射される光の変換効率が変化することから、半導体発光素子から放射される光(例えば、青色光)と波長変換部材によって変換された光(例えば、黄色光)とが混合して半導体発光装置から放射される光(例えば、白色光)の色度のばらつきを低減することができる。この場合に、|(光拡散要素の屈折率)-(母材の屈折率)|×(波長変換部材の厚み[mm])×(光拡散要素の体積分率[vol%])の値が、0.04以上であると当該効果(発光効率のばらつきの低減)が顕著に奏され、0.05以上であると当該効果がより一層顕著に奏されることになる。 In the wavelength conversion member of the present invention, | (refractive index of light diffusing element) − (refractive index of base material) | × (thickness of wavelength converting member [mm]) × (volume fraction of light diffusing element [ vol%]) is 0.02 or more, it is possible to reduce the variation in the luminous efficiency of the semiconductor light emitting device due to the variation in the phosphor content. As a result, the conversion efficiency of the light emitted from the semiconductor light emitting element changes, so that the light emitted from the semiconductor light emitting element (for example, blue light) and the light converted by the wavelength conversion member (for example, yellow) Variation in chromaticity of light (for example, white light) emitted from the semiconductor light emitting device by mixing with the light. In this case, the value of | (refractive index of light diffusing element) − (refractive index of base material) | × (thickness of wavelength conversion member [mm]) × (volume fraction of light diffusing element [vol%]) is If it is 0.04 or more, the effect (reduction in variation in light emission efficiency) is remarkably exhibited, and if it is 0.05 or more, the effect is remarkably exhibited.
 更に、本発明の半導体発光装置においては、波長変換部材が、0.01 ≦ |(光拡散要素の屈折率)-(母材の屈折率)|×(波長変換部材の厚み[mm])×(光拡散要素の体積分率[vol%]) ≦ 1.0の数式を満たしているため、発光効率を低下させることなく、蛍光体の含有量を減少させてコスト低減を図ることができる。 Further, in the semiconductor light-emitting device of the present invention, the wavelength conversion member is 0.01 ≦≦ | (refractive index of the light diffusing element) − (refractive index of the base material) | × (thickness [mm] of the wavelength conversion member) × (Volume volume ratio of light diffusing element [vol%]) ≤ Since 1.0 is satisfied, the phosphor content can be reduced and the cost can be reduced without lowering the luminous efficiency.
 そして、半導体発光装置に含まれる波長変換部材を検証及び評価する際、上述した数式における(光拡散要素の体積分率[vol%])を、波長変換部材の断面SEM像の画像解析結果を用い、C=N×4π/3×(D/2)/(S×D)×100(ここで、C:光拡散要素の体積分率[vol%]、N:断面SEM像の二値化処理によって算出される波長変換部材中の光拡散要素の総数[個]、D:断面SEM像の二値化処理によって算出される断面SEM像中の光拡散要素の平均面積から円を仮定して算出した円の平均直径にπ/4を乗じて得られる光拡散要素の粒径[μm]、S:断面SEM像の総面積[μm]である)の数式を用いて算出することにより、光拡散要素の体積分率の真の値を用いた検証及び評価の場合と同等の高精度な検証及び評価の実現が可能になる。 Then, when verifying and evaluating the wavelength conversion member included in the semiconductor light emitting device, (the volume fraction [vol%] of the light diffusing element) in the above-described formula is used as the image analysis result of the cross-sectional SEM image of the wavelength conversion member. , C = N × 4π / 3 × (D / 2) 3 / (S × D) × 100 (where C: volume fraction of light diffusing element [vol%], N: binarization of cross-sectional SEM image) The total number of light diffusing elements in the wavelength conversion member calculated by the processing [D], D: assuming a circle from the average area of the light diffusing elements in the cross-sectional SEM image calculated by the binarization processing of the cross-sectional SEM image By calculating using the mathematical formula of the particle diameter [μm] of the light diffusing element obtained by multiplying the calculated average diameter of the circle by π / 4, S: the total area [μm 2 ] of the cross-sectional SEM image), High precision equivalent to the case of verification and evaluation using the true volume fraction of the light diffusing element It is possible to realize a Do verification and evaluation.
第1実施形態に係る半導体発光装置の全体構成の概略を示す斜視図である。1 is a perspective view showing an outline of an overall configuration of a semiconductor light emitting device according to a first embodiment. 第1実施形態に係る半導体発光装置の平面図である。1 is a plan view of a semiconductor light emitting device according to a first embodiment. 図2中のIII-III線に沿う半導体発光装置の断面図である。FIG. 3 is a cross-sectional view of the semiconductor light emitting device taken along line III-III in FIG. 2. 図3における要部の拡大断面図である。It is an expanded sectional view of the principal part in FIG. 第1実施形態に係る半導体発光装置におけるシミュレーションの結果を示すグラフである。It is a graph which shows the result of the simulation in the semiconductor light-emitting device concerning a 1st embodiment. 第1実施形態に係る半導体発光装置におけるシミュレーションの結果を示すグラフである。It is a graph which shows the result of the simulation in the semiconductor light-emitting device concerning a 1st embodiment. 第2実施形態に係る半導体発光装置の要部を図4と同様に示した拡大断面図である。It is the expanded sectional view which showed the principal part of the semiconductor light-emitting device concerning 2nd Embodiment similarly to FIG. 第2実施形態に係る半導体発光装置の要部を図4と同様に示した他の態様の拡大断面図である。It is the expanded sectional view of the other aspect which showed the principal part of the semiconductor light-emitting device concerning 2nd Embodiment similarly to FIG. 第3実施形態に係る半導体発光装置の要部を図4と同様に示した拡大断面図である。FIG. 5 is an enlarged cross-sectional view showing a main part of a semiconductor light emitting device according to a third embodiment in the same manner as FIG. 第3実施形態に係る半導体発光装置の要部を図4と同様に示した他の態様の拡大断面図である。It is the expanded sectional view of the other aspect which showed the principal part of the semiconductor light-emitting device concerning 3rd Embodiment similarly to FIG. 実施例2において、[(光拡散要素の屈折率-母材の屈折率)×波長変換部材の厚み×光拡散要素の体積分率]の値を変化させた際の、蛍光体使用量の変化及び光束値の変化を示すグラフである。In Example 2, the change in the amount of phosphor used when the value of [(refractive index of light diffusing element−refractive index of base material) × thickness of wavelength converting member × volume fraction of light diffusing element] was changed. It is a graph which shows the change of luminous flux value. 本発明の実施態様に係る半導体発光装置の構成を示す概念図である。It is a conceptual diagram which shows the structure of the semiconductor light-emitting device which concerns on the embodiment of this invention. 本発明の実施態様に係る半導体発光装置の構成を示す概念図である。It is a conceptual diagram which shows the structure of the semiconductor light-emitting device which concerns on the embodiment of this invention.
 以下、図面を参照し、本発明の実施の形態について、いくつかの実施形態に基づき詳細に説明する。なお、本発明は以下に説明する内容に限定されるものではなく、その要旨を変更しない範囲において任意に変更して実施することが可能である。また、各実施形態の説明に用いる図面は、いずれも本発明による半導体発光装置を模式的に示すものであって、理解を深めるべく部分的な強調、拡大、縮小、または省略などを行っており、各構成部材の縮尺や形状等を正確に表すものとはなっていない場合がある。更に、各実施形態で用いる様々な数値は、いずれも一例を示すものであり、必要に応じて様々に変更することが可能である。 Hereinafter, embodiments of the present invention will be described in detail based on some embodiments with reference to the drawings. In addition, this invention is not limited to the content demonstrated below, In the range which does not change the summary, it can change arbitrarily and can implement. The drawings used for describing each embodiment schematically show a semiconductor light emitting device according to the present invention, and are partially emphasized, enlarged, reduced, or omitted to deepen understanding. In some cases, it does not accurately represent the scale or shape of each component. Furthermore, all the various numerical values used in each embodiment show an example, and can be changed variously as necessary.
<第1実施形態>
(半導体発光装置の構成)
 図1は、第1実施形態に係る半導体発光装置1の全体構成の概略を示す斜視図であり、図2は図1の半導体発光装置1の平面図である。なお、図1及び図2において、半導体発光装置1の平面図における一方向をX方向、当該平面図においてX方向と直交する方向をY方向、半導体発光装置1の高さ方向(配線基板の法線方向)をZ方向と定義する。
<First Embodiment>
(Configuration of semiconductor light emitting device)
FIG. 1 is a perspective view schematically showing the overall configuration of the semiconductor light emitting device 1 according to the first embodiment, and FIG. 2 is a plan view of the semiconductor light emitting device 1 of FIG. 1 and 2, one direction in the plan view of the semiconductor light emitting device 1 is the X direction, the direction orthogonal to the X direction in the plan view is the Y direction, and the height direction of the semiconductor light emitting device 1 (the wiring board method). Line direction) is defined as the Z direction.
 本実施形態において、半導体発光装置1は、擬似的な白色光を放射する光源である。図1に示すように、半導体発光装置1は電気絶縁性に優れて良好な放熱性を有し、かつ、反射率の高い(好ましくは反射率が80%以上の)アルミナ系セラミックからなる配線基板2を備える。配線基板2のチップ実装面2aには、X方向に4個、Y方向に3個、合計12個の半導体発光素子である発光ダイオード(LED:Light Emitting Diode)チップ3が配列されている。図1には示していないが、配線基板2には、これらLEDチップ3のそれぞれに電力を供給するための配線パターンが形成され、電気回路を構成している。 In this embodiment, the semiconductor light emitting device 1 is a light source that emits pseudo white light. As shown in FIG. 1, the semiconductor light-emitting device 1 is a wiring board made of an alumina-based ceramic having excellent electrical insulation, good heat dissipation, and high reflectivity (preferably reflectivity of 80% or more). 2 is provided. On the chip mounting surface 2 a of the wiring substrate 2, four light emitting diode (LED: Light Emitting Diode) chips 3, which are a total of twelve semiconductor light emitting elements, four in the X direction and three in the Y direction are arranged. Although not shown in FIG. 1, a wiring pattern for supplying power to each of these LED chips 3 is formed on the wiring board 2 to constitute an electric circuit.
 なお、配線基板2の材質はアルミナ系セラミックに限定されるものではなく、例えば、電気絶縁性に優れた材料として、樹脂、ガラスエポキシ、樹脂中にフィラーを含有した複合樹脂などから選択された材料を用いて配線基板2の本体を形成してもよい。或いは、配線基板2のチップ実装面2aにおける光の反射性を良くして半導体発光装置1の発光効率を向上させる上では、アルミナ粉末、シリカ粉末、酸化マグネシウム、酸化チタンなどの白色顔料を含むシリコーン樹脂を用いることが好ましい。一方、より優れた放熱性及び反射性を得るため、配線基板2の本体を銀等の金属製としてもよい。このような場合には、配線基板2の配線パターンなどを金属製の本体から電気的に絶縁する必要がある。 Note that the material of the wiring board 2 is not limited to alumina-based ceramics. For example, a material selected from resin, glass epoxy, a composite resin containing a filler in the resin, and the like as a material excellent in electrical insulation. You may form the main body of the wiring board 2 using. Alternatively, in order to improve the light reflectivity on the chip mounting surface 2a of the wiring board 2 and improve the light emission efficiency of the semiconductor light emitting device 1, silicone containing white pigment such as alumina powder, silica powder, magnesium oxide, titanium oxide or the like is used. It is preferable to use a resin. On the other hand, in order to obtain more excellent heat dissipation and reflectivity, the main body of the wiring board 2 may be made of metal such as silver. In such a case, it is necessary to electrically insulate the wiring pattern of the wiring board 2 from the metal body.
 半導体発光装置1の発光効率を向上させる観点から、配線基板2のチップ実装面2aは、反射率が90%以上の部位を有することが好ましく、反射率が90%以上の部位の面積が50%以上であることがより好ましく、70%以上であることが更に好ましく、80%以上であることが特に好ましい。
 なお、反射率は、可視光領域光の反射率を意味する。
 このような反射率を達成するための材料としては、樹脂中にフィラーを含有させた反射材があげられる。具体的には、シリコーン樹脂、ポリカーボネート樹脂、ポリフタルアミド樹脂などに、アルミナ、チタニア、酸化ケイ素、酸化亜鉛、酸化マグネシウムなどの金属酸化物フィラーを含有させた反射材やセラミックに金属酸化物を含有させた反射材などが好ましい。
 ポリカーボネート樹脂にチタニアなどの金属酸化物を含有させた反射材としては、例えばユーピロンEHR3100、EHR3200などがあげられる。
 シリコーン樹脂にアルミナ、チタニアなどの金属酸化物を含有させた反射材としては、例えばWO2011/078239、WO2011/136302に記載の反射材があげられる。
 また、ポリフタルアミドに、アルミナ、チタニアなどの金属酸化物を含有させた反射材も好ましく例示される。
From the viewpoint of improving the light emission efficiency of the semiconductor light emitting device 1, the chip mounting surface 2a of the wiring board 2 preferably has a part with a reflectance of 90% or more, and the area of the part with a reflectance of 90% or more is 50%. More preferably, it is more preferably 70% or more, and particularly preferably 80% or more.
In addition, a reflectance means the reflectance of visible region light.
An example of a material for achieving such a reflectance is a reflective material in which a filler is contained in a resin. Specifically, metal oxides are contained in reflectors and ceramics that contain metal oxide fillers such as alumina, titania, silicon oxide, zinc oxide, magnesium oxide in silicone resin, polycarbonate resin, polyphthalamide resin, etc. A reflective material or the like is preferable.
Examples of the reflective material containing a metal oxide such as titania in polycarbonate resin include Iupilon EHR3100 and EHR3200.
Examples of the reflective material in which a metal oxide such as alumina or titania is contained in a silicone resin include the reflective materials described in WO2011 / 078239 and WO2011 / 136302.
Moreover, a reflective material in which a metal oxide such as alumina or titania is contained in polyphthalamide is also preferably exemplified.
 また、図1に示すように、LEDチップ3が実装された配線基板2のチップ実装面2aには、LEDチップ3から入射する入射光の少なくとも一部を異なる波長に波長変換し、当該波長変換された光を出射光として半導体発光装置1の外部に放射する波長変換部材4が配設されている。波長変換部材4の形状は、半球状であってその内部に空隙が形成されているドーム状(すなわち、椀状)である。そして、波長変換部材4は、12個のLEDチップ3から離間し、全てのLEDチップ3を覆っている。 Further, as shown in FIG. 1, on the chip mounting surface 2a of the wiring board 2 on which the LED chip 3 is mounted, at least part of incident light incident from the LED chip 3 is wavelength-converted to a different wavelength, and the wavelength conversion is performed. A wavelength conversion member 4 that emits the emitted light as emitted light to the outside of the semiconductor light emitting device 1 is disposed. The shape of the wavelength converting member 4 is hemispherical and has a dome shape (that is, a bowl shape) in which a gap is formed. The wavelength conversion member 4 is separated from the twelve LED chips 3 and covers all the LED chips 3.
 図3は、図2中のIII-III線に沿う半導体発光装置1の断面図であり、図4は図3に示された断面図の要部拡大図である。以下において、図3及び図4を参照しつつ、LEDチップ3、波長変換部材4の詳細な説明をする。 FIG. 3 is a cross-sectional view of the semiconductor light emitting device 1 taken along the line III-III in FIG. 2, and FIG. 4 is an enlarged view of a main part of the cross-sectional view shown in FIG. Hereinafter, the LED chip 3 and the wavelength conversion member 4 will be described in detail with reference to FIGS. 3 and 4.
(LEDチップ)
 本実施形態においてLEDチップ3には、460nmのピーク波長を有した青色光を発するLEDチップを用いる。具体的には、このようなLEDチップとして、例えばInGaN半導体が発光層に用いられるGaN系LEDチップがある。なお、LEDチップ3の種類や発光波長特性はこれに限定されるものではなく、本発明の要旨から逸脱しない限りにおいて、様々なLEDチップなどの半導体発光素子を用いることができる。本実施形態においてLEDチップ3が発する光のピーク波長は、360nm~480nmの波長範囲内にあるのが好ましく、390nm~430nmの波長範囲内又は430nm~480nmの波長範囲内にあることがより好ましい。
(LED chip)
In the present embodiment, an LED chip that emits blue light having a peak wavelength of 460 nm is used as the LED chip 3. Specifically, as such an LED chip, for example, there is a GaN-based LED chip in which an InGaN semiconductor is used for a light emitting layer. Note that the type and emission wavelength characteristics of the LED chip 3 are not limited thereto, and various semiconductor light emitting elements such as LED chips can be used without departing from the gist of the present invention. In this embodiment, the peak wavelength of the light emitted from the LED chip 3 is preferably in the wavelength range of 360 nm to 480 nm, and more preferably in the wavelength range of 390 nm to 430 nm or in the wavelength range of 430 nm to 480 nm.
 図4に示すように、LEDチップ3の配線基板2側に向く面には、p電極5とn電極6とが設けられている。図4に示すLEDチップ3の場合、配線基板2のチップ実装面2aに形成されている配線パターン7にp電極5が接合されると共に、同じくチップ実装面2aに形成された配線パターン8にn電極6が接合されている。これらp電極5及びn電極6の配線パターン7及び配線パターン8への接続は、図示しない金属バンプを介し、ハンダ付けによって行っている。図示されていない他のLEDチップ3も、それぞれのLEDチップ3に対応して配線基板2のチップ実装面2aに形成された配線パターンに、それぞれのp電極5及びn電極6が同様にして接合されている。ここで、LEDチップ3同士は、配線パターン7及び配線パターン8を介して直列接続さていてもよく、並列接続されていてもよく、更には直列接続及び並列接続を組み合わせた接続がなされていてもよい。 As shown in FIG. 4, a p-electrode 5 and an n-electrode 6 are provided on the surface of the LED chip 3 facing the wiring board 2 side. In the case of the LED chip 3 shown in FIG. 4, the p-electrode 5 is bonded to the wiring pattern 7 formed on the chip mounting surface 2a of the wiring board 2, and the wiring pattern 8 also formed on the chip mounting surface 2a is n. The electrode 6 is joined. The p electrode 5 and the n electrode 6 are connected to the wiring pattern 7 and the wiring pattern 8 by soldering via metal bumps (not shown). Other LED chips 3 (not shown) are also bonded to the wiring pattern formed on the chip mounting surface 2a of the wiring board 2 corresponding to each LED chip 3 in the same manner. Has been. Here, the LED chips 3 may be connected in series via the wiring pattern 7 and the wiring pattern 8, may be connected in parallel, and is further connected in a combination of serial connection and parallel connection. Also good.
 なお、LEDチップ3の配線基板2への実装方法は、これに限定されるものではなく、LEDチップ3の種類や構造などに応じて適切な方法を選択可能である。例えば、LEDチップ3を配線基板2の所定位置に接着固定した後、各LEDチップ3の2つの電極をワイヤボンディングで対応する配線パターンに接続してもよいし、一方の電極を上述のように対応する配線パターンに接合すると共に、他方の電極をワイヤボンディングで対応する配線パターンに接続するようにしてもよい。 In addition, the mounting method of the LED chip 3 on the wiring board 2 is not limited to this, and an appropriate method can be selected according to the type and structure of the LED chip 3. For example, after the LED chip 3 is bonded and fixed to a predetermined position of the wiring board 2, two electrodes of each LED chip 3 may be connected to a corresponding wiring pattern by wire bonding, or one electrode may be connected as described above. While joining to a corresponding wiring pattern, you may make it connect the other electrode to a corresponding wiring pattern by wire bonding.
(波長変換部材)
 上述したように、波長変換部材4は、LEDチップ3から放射される入射光の一部を波長変換し、当該入射光とは異なる波長の出射光を放射する。より具体的な構成として、波長変換部材4は、LEDチップ3から放射される入射光を吸収して励起し、基底状態に戻る際に入射光とは異なる波長を有する出射光を放射する蛍光体4aと、蛍光体4aから放射される出射光を拡散して半導体発光装置1の出射面側へ導く光拡散要素4bと、蛍光体4a及び光拡散要素4bを分散して保持するとともに、波長変換部材4の母材として機能する樹脂4cとを有している。図4は、母材として樹脂を用いた場合の半導体発光装置1の断面図の要部拡大図であり、図4の本実施形態における波長変換部材4においては、樹脂4c内に蛍光体4a及び光拡散要素4bが混在している。
(Wavelength conversion member)
As described above, the wavelength conversion member 4 converts the wavelength of a part of incident light emitted from the LED chip 3 and emits outgoing light having a wavelength different from that of the incident light. As a more specific configuration, the wavelength conversion member 4 absorbs and excites incident light emitted from the LED chip 3, and emits outgoing light having a wavelength different from the incident light when returning to the ground state. 4a, the light diffusing element 4b that diffuses the emitted light emitted from the phosphor 4a and guides it to the emitting surface side of the semiconductor light emitting device 1, the phosphor 4a and the light diffusing element 4b are dispersed and held, and wavelength conversion is performed. It has resin 4c which functions as a base material of member 4. FIG. 4 is an enlarged view of a main part of a cross-sectional view of the semiconductor light emitting device 1 when a resin is used as a base material. In the wavelength conversion member 4 in the present embodiment of FIG. The light diffusing element 4b is mixed.
 また、本実施形態の半導体発光装置1においては、波長変換部材4がLEDチップから離間しているため、LEDチップ3が発する熱によって波長変換部材4が加熱されることがなく、波長変換部材4の波長変換機能及び半導体発光装置1の発光効率の低下が抑制されている。本実施形態において、波長変換部材4は、LEDチップ3から約25mm離間している。波長変換部材とLEDチップが離間する態様において、離間距離はデバイスの大きさ等により適宜設定され、通常1mm以上、好ましくは5mm以上離間され、通常500mm以下、好ましくは300mm以下である。 Further, in the semiconductor light emitting device 1 of the present embodiment, since the wavelength conversion member 4 is separated from the LED chip, the wavelength conversion member 4 is not heated by the heat generated by the LED chip 3, and the wavelength conversion member 4 is not heated. The wavelength conversion function and the light emission efficiency of the semiconductor light emitting device 1 are prevented from decreasing. In the present embodiment, the wavelength conversion member 4 is separated from the LED chip 3 by about 25 mm. In the aspect in which the wavelength conversion member and the LED chip are separated from each other, the separation distance is appropriately set depending on the size of the device and the like, and is usually 1 mm or more, preferably 5 mm or more, and usually 500 mm or less, preferably 300 mm or less.
〔蛍光体〕
 本実施形態において、青色光を放射するLEDチップ3を半導体発光素子として使用しているため、半導体発光装置1から白色光を得るためには、当該青色光の一部を黄色光に波長変換し、当該黄色光及び波長変換されなかった青色光の混合により白色光を合成する必要がある。従って、本実施形態における蛍光体4aには、青色光を黄色光に波長変換する黄色蛍光体が使用されている。
[Phosphor]
In this embodiment, since the LED chip 3 that emits blue light is used as a semiconductor light emitting element, in order to obtain white light from the semiconductor light emitting device 1, a part of the blue light is wavelength-converted to yellow light. It is necessary to synthesize white light by mixing the yellow light and the blue light that has not been wavelength-converted. Therefore, a yellow phosphor that converts the wavelength of blue light into yellow light is used as the phosphor 4a in the present embodiment.
 また、白色光の色度や色温度を調整したり、演色性を上げるために、当該青色光の一部を赤色光や緑色光に波長変換する場合がある。この場合は、黄色蛍光体に加えて赤色蛍光体や緑色蛍光体を使用したり、黄色蛍光体に代えて赤色蛍光体と緑色蛍光体を使用したりすることができる。 In addition, in order to adjust the chromaticity and color temperature of white light or to improve color rendering, a part of the blue light may be wavelength-converted into red light or green light. In this case, a red phosphor or a green phosphor can be used in addition to the yellow phosphor, or a red phosphor and a green phosphor can be used instead of the yellow phosphor.
 具体的な黄色蛍光体の発光ピーク波長は、通常は530nm以上、好ましくは540nm以上、より好ましくは550nm以上で、通常は620nm以下、好ましくは600nm以下、より好ましくは580nm以下の波長範囲にあるものが好適である。中でも、黄色蛍光体として例えば、YAl12:Ce[YAG蛍光体]、LuAl12:Ce[LuAG蛍光体]、(Y,Gd)Al12:Ce、(Sr,Ca,Ba,Mg)SiO:Eu、(Ca,Sr)Si:Eu、α-サイアロン、LaSi11:Ce(但し、その一部がCaやOで置換されていてもよい)が好ましい。 The emission peak wavelength of a specific yellow phosphor is usually 530 nm or more, preferably 540 nm or more, more preferably 550 nm or more, and usually 620 nm or less, preferably 600 nm or less, more preferably 580 nm or less. Is preferred. Among them, as the yellow phosphor, for example, Y 3 Al 5 O 12 : Ce [YAG phosphor], Lu 3 Al 5 O 12 : Ce [LuAG phosphor], (Y, Gd) 3 Al 5 O 12 : Ce, ( Sr, Ca, Ba, Mg) 2 SiO 4 : Eu, (Ca, Sr) Si 2 N 2 O 2 : Eu, α-sialon, La 3 Si 6 N 11 : Ce (provided that some of them are Ca or O Is optionally substituted).
 赤色蛍光体を用いる場合、その発光ピーク波長は、通常565nm以上、好ましくは575nm以上、より好ましくは580nm以上、また、通常780nm以下、好ましくは700nm以下、より好ましくは680nm以下の波長範囲にあることが好適である。このような赤色蛍光体として、例えば、例えば、特開2006-008721号公報に記載されているCaAlSiN:Eu[CASN蛍光体]、特開2008-7751号公報に記載されている(Sr,Ca)AlSiN:Eu[SCASN蛍光体]、特開2007-231245号公報に記載されているCa1-xAl1-xSi1+x3-x:Eu[CASON蛍光体]等のEu付活酸化物、窒化物又は酸窒化物蛍光体、3.5MgO・0.5gF・GeO:Mn等のMn付活ゲルマン酸塩蛍光体、Mn4+付活フッ化物錯体蛍光体等を用いることも可能である。 When a red phosphor is used, the emission peak wavelength is usually in the wavelength range of 565 nm or more, preferably 575 nm or more, more preferably 580 nm or more, and usually 780 nm or less, preferably 700 nm or less, more preferably 680 nm or less. Is preferred. Examples of such red phosphors are, for example, CaAlSiN 3 : Eu [CASN phosphor] described in JP-A-2006-008721 and JP-A-2008-7751 (Sr, Ca ) AlSiN 3 : Eu [SCASN phosphor], Ca 1-x Al 1-x Si 1 + x N 3-x O x : Eu [CASON phosphor] and the like described in JP-A-2007-231245 Use active oxide, nitride or oxynitride phosphor, 3.5MgO · 0.5gF 2 · GeO 2 : Mn activated germanate phosphor such as Mn, Mn 4+ activated fluoride complex phosphor, etc. Is also possible.
 また、緑色蛍光体を用いる場合、その発光ピーク波長は、通常500nmより大きく、中でも510nm以上、さらには515nm以上であることが好ましく、また、通常550nm以下、中でも540nm以下、さらには535nm以下の範囲であることが好ましい。この発光ピーク波長が短過ぎると青味を帯びる傾向がある一方で、長過ぎると黄味を帯びる傾向があり、何れも緑色光としての特性が低下する可能性がある。このような緑色蛍光体として、例えば、Y(Al,Ga)12:Ce[G-YAG蛍光体]、国際公開第2007/091687号公報に記載されている(Ba,Ca,Sr,Mg)SiO:Euで表されるEu付活アルカリ土類シリケート系蛍光体[BSS蛍光体]、特許第3921545号明細書に記載されているSi6-zAl8-z:Eu(但し、0<z≦4.2である。)等のEu付活酸窒化物蛍光体[β-SiAlON蛍光体]、国際公開第2007/088966号公報に記載されているMSi12:Eu(但し、Mはアルカリ土類金属元素を表す。)等のEu付活酸窒化物蛍光体[BSON蛍光体]、特開2008-274254号公報に記載されているBaMgAl1017:Eu,Mn付活アルミン酸塩蛍光体[GBAM蛍光体]を用いることも可能である。 In the case of using a green phosphor, the emission peak wavelength is usually larger than 500 nm, preferably 510 nm or more, more preferably 515 nm or more, and usually 550 nm or less, especially 540 nm or less, further 535 nm or less. It is preferable that If this emission peak wavelength is too short, it tends to be bluish, while if it is too long, it tends to be yellowish, and there is a possibility that the characteristics as green light will deteriorate. As such a green phosphor, for example, Y 3 (Al, Ga) 5 O 12 : Ce [G-YAG phosphor], described in International Publication No. 2007/091687 (Ba, Ca, Sr, Mg) 2 SiO 4 : Eu-activated alkaline earth silicate phosphor represented by Eu [BSS phosphor], Si 6-z Al z N 8-z O z described in Japanese Patent No. 3911545 : Eu-activated oxynitride phosphor [β-SiAlON phosphor] such as Eu (where 0 <z ≦ 4.2), M 3 Si described in International Publication No. 2007/088966 Eu-activated oxynitride phosphor [BSON phosphor] such as 6 O 12 N 2 : Eu (wherein M represents an alkaline earth metal element), BaMgAl described in JP-A-2008-274254 10 17: Eu, it is also possible to use Mn-activated aluminate phosphor [GBAM phosphor.
 蛍光体4aの粒径は、通常体積基準のメディアン径D50vが0.1μm以上のものが好ましく、1μm以上のものがより好ましく使用できる。また、30μm以下のものが好ましく、20μm以下のものがより好ましく使用できる。ここで体積基準のメディアン径D50vとは、レーザー回折・散乱法を測定原理とする粒度分布測定装置を用いて、試料を測定し、粒度分布(累積分布)を求めたときの体積基準の相対粒子量が50%になる粒子径と定義される。測定方法としては例えば、超純水中に蛍光体4aを入れ、超音波分散器((株)カイジョ製)を用いて周波数を19KHz、超音波の強さを5Wとし、25秒間試料を超音波で分散させた後に、フローセルを用いて透過率88%から92%の範囲に調整し、凝集していないことを確認した上で、レーザー回折式粒度分布測定装置(堀場製作所 LA-300)により、粒径範囲0.1μm~600μmにて測定する方法が挙げられる。また、上述の方法では蛍光体粒子が凝集してしまう場合には、分散剤をもちいてもよく、例としてはタモール(BASF社製)などを0.0003重量%を含む水溶液中に蛍光体4aを入れ、上述の方法と同様に超音波で分散させた上で測定してもよい。 As for the particle diameter of the phosphor 4a, the volume-based median diameter D 50v is preferably 0.1 μm or more, more preferably 1 μm or more. Moreover, the thing of 30 micrometers or less is preferable, and the thing of 20 micrometers or less can be used more preferably. Here, the volume-based median diameter D 50v is a volume-based relative when a sample is measured and a particle size distribution (cumulative distribution) is obtained using a particle size distribution measuring apparatus based on a laser diffraction / scattering method. It is defined as the particle size at which the particle amount is 50%. As a measuring method, for example, the phosphor 4a is put in ultrapure water, an ultrasonic disperser (manufactured by Kaijo Co., Ltd.) is used, the frequency is 19 KHz, the ultrasonic intensity is 5 W, and the sample is ultrasonicated for 25 seconds After being dispersed by the above method, the transmittance is adjusted to a range of 88% to 92% using a flow cell, and after confirming that the particles are not aggregated, a laser diffraction particle size distribution analyzer (Horiba LA-300) Examples thereof include a measurement method in a particle size range of 0.1 μm to 600 μm. Further, when the phosphor particles aggregate in the above-described method, a dispersant may be used. For example, phosphor 4a in an aqueous solution containing 0.0003% by weight of Tamol (manufactured by BASF) or the like. And may be measured after being dispersed with ultrasonic waves in the same manner as described above.
 粒子径の分布の度合いを示す指標としては、蛍光体4aの体積基準の平均粒子径Dと個数基準の平均粒子径Dの比(D/D)がある。本願発明においては、D/Dが1.0以上であることが好ましく、1.2以上がより好ましく、1.4以上がさらに好ましい。一方で、D/Dが25以下であることが好ましく、10以下がさらに好ましく、5以下が特に好ましい。D/Dが大きすぎる場合には重量が大きく異なる蛍光体粒子が存在することになり、蛍光体層中において蛍光体粒子の分散が不均一となる傾向がある。 As an index indicating the degree of particle size distribution, there is a ratio (D v / D n ) between the volume-based average particle size D v and the number-based average particle size D n of the phosphor 4a. In the present invention, D v / D n is preferably 1.0 or more, more preferably 1.2 or more, and further preferably 1.4 or more. On the other hand, D v / D n is preferably 25 or less, more preferably 10 or less, and particularly preferably 5 or less. If D v / D n is too large, there will be phosphor particles with greatly different weights, and the phosphor particles will tend to be non-uniformly dispersed in the phosphor layer.
 また、蛍光体4aとしては、その表面を第3成分により予めコーティングしたものを用いることも可能である。コーティングに用いる第3成分の種類、コーティングの手法は特に限定されず、公知の任意の第3成分及び手法を用いればよい。 Further, as the phosphor 4a, it is possible to use a phosphor whose surface is previously coated with a third component. The type of the third component used for coating and the coating method are not particularly limited, and any known third component and method may be used.
 第3成分としては、例えば、有機酸、無機酸、シラン処理剤、シリコーンオイル、流動パラフィン等が挙げられる。これらの第3成分を用いて、蛍光体4aを表面処理、被覆することにより、樹脂4cへの親和性、分散性、熱安定性、蛍光発色性等が改善される傾向にある。表面処理、被覆量としては、通常、100重量部の蛍光体4aあたり0.01~10重量部であり、0.01重量部より少ないと親和性、分散性、熱安定性、蛍光発色性等の改善効果が得難く、10重量部より多くても熱安定性、機械的特性、蛍光発色性が低下するなどの不具合を生じやすくなる。 Examples of the third component include organic acids, inorganic acids, silane treating agents, silicone oil, liquid paraffin, and the like. By using these third components to surface-treat and coat the phosphor 4a, the affinity for the resin 4c, dispersibility, thermal stability, fluorescence coloring property and the like tend to be improved. The surface treatment and the coating amount are usually 0.01 to 10 parts by weight per 100 parts by weight of the phosphor 4a. If the amount is less than 0.01 parts by weight, the affinity, dispersibility, thermal stability, fluorescence coloring property, etc. It is difficult to obtain the improvement effect, and even if the amount exceeds 10 parts by weight, problems such as deterioration of thermal stability, mechanical properties, and fluorescence developability are likely to occur.
 波長変換部材4中の蛍光体4aの含有量は、光拡散要素4b、樹脂4cの種類にもよるが、例えば、樹脂4cがポリカーボネート樹脂の場合、ポリカーボネート樹脂100重量部に対して、通常0.1重量部以上、好ましくは0.5重量部以上、より好ましくは1重量部以上であり、また、通常50重量部以下、好ましくは40重量部以下、より好ましくは30重量部以下、さらに好ましくは20重量部以下である。蛍光体4aの含有量が少なすぎると蛍光体の波長変換効果が得難くなる傾向にあり、多すぎると機械的特性が低下する場合があり好ましくない。 The content of the phosphor 4a in the wavelength conversion member 4 depends on the types of the light diffusing element 4b and the resin 4c. For example, when the resin 4c is a polycarbonate resin, the content of the phosphor 4a is usually 0. 1 part by weight or more, preferably 0.5 part by weight or more, more preferably 1 part by weight or more, and usually 50 parts by weight or less, preferably 40 parts by weight or less, more preferably 30 parts by weight or less, still more preferably 20 parts by weight or less. If the content of the phosphor 4a is too small, the wavelength conversion effect of the phosphor tends to be difficult to obtain, and if it is too much, the mechanical properties may be deteriorated.
〔光拡散要素〕
 本実施形態において、光拡散要素4bとしては、無機系光拡散材、有機系光拡散材又は気泡を用いることが好ましい。
(Light diffusion element)
In the present embodiment, it is preferable to use an inorganic light diffusing material, an organic light diffusing material, or air bubbles as the light diffusing element 4b.
 無機系光拡散材としては、例えば、珪素、アルミニウム、チタン、ジルコニウム、カルシウム及びバリウム等の無機系光拡散材を用いることが可能であり、また、珪素、アルミニウム、チタン、及びジルコニウムからなる群の少なくとも1つの元素を含む無機系光拡散材を用いることが好ましい。有機系光拡散材としては、アクリル系、スチレン系、ポリアミド系若しくは元素として珪素を含む有機系光拡散材を用いることが可能であり、中でも、アクリル系光拡散材、又は元素として珪素を含む有機系光拡散材を用いることが好ましい。 As the inorganic light diffusing material, for example, inorganic light diffusing materials such as silicon, aluminum, titanium, zirconium, calcium, and barium can be used, and the group consisting of silicon, aluminum, titanium, and zirconium can be used. It is preferable to use an inorganic light diffusing material containing at least one element. As the organic light diffusing material, it is possible to use an acrylic light diffusing material, or an organic light diffusing material containing silicon as an element, or an organic material containing silicon as an element. It is preferable to use a system light diffusing material.
 無機系光拡散材の具体例としては、二酸化ケイ素(シリカ)、ホワイトカーボン、タルク、酸化マグネシウム、酸化亜鉛、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化ホウ素、炭酸カルシウム、炭酸バリウム、炭酸マグネシウム、水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウム、硫酸バリウム、珪酸カルシウム、珪酸マグネシウム、珪酸アルミニウム、珪酸アルミ化ナトリウム、珪酸亜鉛、ガラス、マイカ等が挙げられる。 Specific examples of inorganic light diffusing materials include silicon dioxide (silica), white carbon, talc, magnesium oxide, zinc oxide, titanium oxide, aluminum oxide, zirconium oxide, boron oxide, calcium carbonate, barium carbonate, magnesium carbonate, water Examples thereof include aluminum oxide, calcium hydroxide, magnesium hydroxide, barium sulfate, calcium silicate, magnesium silicate, aluminum silicate, sodium aluminosilicate, zinc silicate, glass, mica and the like.
 有機系光拡散材としては、スチレン系(共)重合体、アクリル系(共)重合体、シロキサン系(共)重合体、ポリアミド系(共)重合体等が挙げられる。これら、有機系拡散材の分子の一部又は全部は、架橋していても架橋していなくてもよい。ここで、「(共)重合体」とは「重合体」及び「共重合体」の双方を意味する。 Examples of the organic light diffusing material include styrene (co) polymers, acrylic (co) polymers, siloxane (co) polymers, polyamide (co) polymers, and the like. Some or all of these molecules of the organic diffusing material may or may not be cross-linked. Here, “(co) polymer” means both “polymer” and “copolymer”.
 上述した光拡散要素のうち、少量で光拡散効果を大きくするためには、母材の屈折率と選択した光拡散要素の屈折率との差が大きい光拡散要素を選ぶことが好ましい。また、発光効率を大きく低下させないためには、高い透明性を有している光拡散要素を選ぶことが好ましい。 Among the light diffusion elements described above, in order to increase the light diffusion effect with a small amount, it is preferable to select a light diffusion element having a large difference between the refractive index of the base material and the refractive index of the selected light diffusion element. Further, in order not to greatly reduce the luminous efficiency, it is preferable to select a light diffusing element having high transparency.
 例えば、樹脂4cがポリカーボネート樹脂の場合、光拡散要素4bとしては架橋アクリル系(共)重合体粒子、アクリル系化合物とスチレン系化合物の共重合体の架橋粒子、シロキサン系(共)重合体粒子、アクリル系化合物とケイ素原子を含む化合物のハイブリッド型架橋粒子を用いることが好ましく、架橋アクリル系(共)重合体粒子、シロキサン系(共)重合体粒子を用いることがより好ましい。 For example, when the resin 4c is a polycarbonate resin, the light diffusing element 4b includes a crosslinked acrylic (co) polymer particle, a crosslinked particle of a copolymer of an acrylic compound and a styrene compound, a siloxane (co) polymer particle, It is preferable to use hybrid crosslinked particles of an acrylic compound and a compound containing a silicon atom, and it is more preferable to use crosslinked acrylic (co) polymer particles and siloxane (co) polymer particles.
 架橋アクリル系(共)重合体粒子としては、非架橋性アクリルモノマーと架橋性モノマーからなる重合体粒子がより好ましく、メチルメタクリレートとトリメチロールプロパントリ(メタ)アクリレートが架橋した重合体粒子がさらに好ましい。シロキサン系(共)重合体としては、ポリオルガノシルセスキオキサン粒子がより好ましく、ポリメチルシルセキスキオキサン粒子がさらに好ましい。 As the crosslinked acrylic (co) polymer particles, polymer particles composed of a non-crosslinkable acrylic monomer and a crosslinkable monomer are more preferable, and polymer particles obtained by crosslinking methyl methacrylate and trimethylolpropane tri (meth) acrylate are more preferable. . As the siloxane-based (co) polymer, polyorganosilsesquioxane particles are more preferable, and polymethylsilsesquioxane particles are more preferable.
 本発明においては、とりわけポリメチルシルセスキオキサン粒子が、熱安定性に優れる点で好ましい。 In the present invention, polymethylsilsesquioxane particles are particularly preferable in terms of excellent thermal stability.
 樹脂4c中での光拡散要素4bの分散形状は、略球状、板状、針状、不定形の何れでもよいが、光散乱効果に異方性がない点で、略球状であることが好ましい。光拡散要素4bの平均的な寸法は、通常100μm以下であり、好ましくは30μm以下であり、より好ましくは10μm以下であり、また、通常0.01μm以上であり、好ましくは0.1μm以上であり、さらに好ましくは0.5μm以上である。光拡散要素4bの平均的な寸法が上記範囲から外れる場合は、光拡散要素4bの微妙な含有量の差異や粒子径の差異によって光拡散性が大きく変動しやすくなり、光拡散性を安定的にコントロールすることが難しくなり、本発明で必要とされる十分な光拡散性を発揮することが困難となる場合がある。また、これにより、結果的に波長変換効率を好ましい範囲で安定制御することが難しくなる可能性が生じる。ここで、光拡散要素4bの平均的な寸法とは、体積基準による50%平均寸法であり、レーザー又は回折散乱法によって測定される体積基準粒度分布のメジアン径(D50)の値である。 The dispersion shape of the light diffusing element 4b in the resin 4c may be any of a substantially spherical shape, a plate shape, a needle shape, and an indefinite shape, but is preferably a substantially spherical shape from the viewpoint that there is no anisotropy in light scattering effect. . The average dimension of the light diffusing element 4b is usually 100 μm or less, preferably 30 μm or less, more preferably 10 μm or less, and usually 0.01 μm or more, preferably 0.1 μm or more. More preferably, it is 0.5 μm or more. When the average size of the light diffusing element 4b is out of the above range, the light diffusibility is likely to fluctuate greatly due to a subtle difference in the content of the light diffusing element 4b or a difference in the particle diameter, thereby stabilizing the light diffusibility It may be difficult to control the light diffusibility required in the present invention. As a result, it may become difficult to stably control the wavelength conversion efficiency within a preferable range. Here, the average dimension of the light diffusing element 4b is a 50% average dimension based on volume, and is the value of the median diameter (D50) of the volume standard particle size distribution measured by laser or diffraction scattering method.
 また、光拡散要素4bの粒径分布は、単分散系でも、幾つかのピークトップを有する多分散系であってもよく、また、1つのピークトップであって、その粒径分布が狭くても広くてもよいが、好ましくは粒径分布が狭くほぼ単一の粒径であること(単分散又は単分散に近い粒径分布)が好ましい。 Further, the particle size distribution of the light diffusing element 4b may be a monodispersed system or a polydispersed system having several peak tops, and is a single peak top having a narrow particle size distribution. However, it is preferable that the particle size distribution is narrow and the particle size is almost a single particle size (monodispersion or near monodispersion particle size distribution).
 光拡散要素4bの粒子径の分布の度合いを示す指標としては、光拡散要素4bの体積基準の平均粒子径Dと個数基準の平均粒子径Dの比(D/D)がある。本願発明においては、D/Dが1.0以上であることが好ましい。一方で、D/Dが5以下であることが好ましい。D/Dが大きすぎる場合には重量が大きく異なる光拡散要素4bが存在することになり、波長変換部材4中において光拡散要素4bの分散が不均一となる傾向がある。 As an index indicating the degree of particle size distribution of the light diffusing element 4b, there is a ratio (D v / D n ) of the volume-based average particle diameter D v and the number-based average particle diameter D n of the light diffusing element 4b. . In the present invention, it is preferred D v / D n is 1.0 or more. On the other hand, it is preferred D v / D n is 5 or less. When D v / D n is too large, there is a light diffusing element 4 b having a significantly different weight, and the dispersion of the light diffusing element 4 b tends to be non-uniform in the wavelength conversion member 4.
 上述した光拡散要素4bとして用いられる無機系光拡散材、有機系光拡散材、及び気泡は、1種類を単独で用いてもよく、材質や寸法の異なるものを2種類以上組み合わせて用いてもよい。2種類以上を組み合わせて用いる場合に、光拡散要素4bの屈折率は、複数の光拡散要素の体積平均によって算出される。 The inorganic light diffusing material, the organic light diffusing material, and the bubbles used as the light diffusing element 4b described above may be used singly or in combination of two or more kinds having different materials and dimensions. Good. When two or more types are used in combination, the refractive index of the light diffusing element 4b is calculated by the volume average of a plurality of light diffusing elements.
 光拡散要素4bの屈折率は、通常1.0以上であり、また、通常1.9以下である。当該理由については、後述する評価結果を参照する際に説明する。また、光拡散要素4bは、透明性が高く、光透過性に優れることが好ましく、例えば、消衰係数が10-2以下であってもよく、好ましくは10-3以下であり、更に好ましくは10-4以下であり、特に好ましくは10-6以下である。なお、光拡散要素4bの屈折率は、YOSHIYAMAらの液浸法(エアロゾル研究 Vol.9, No.1 Spring pp.44-50 (1994))によって測定することができる。測定温度は20℃、測定波長は450nmである。 The refractive index of the light diffusing element 4b is usually 1.0 or more and usually 1.9 or less. The reason will be described when referring to an evaluation result described later. The light diffusing element 4b preferably has high transparency and excellent light transmittance. For example, the extinction coefficient may be 10 −2 or less, preferably 10 −3 or less, and more preferably. 10 −4 or less, particularly preferably 10 −6 or less. The refractive index of the light diffusing element 4b can be measured by a liquid immersion method (Aerosol Research Vol. 9, No. 1 Spring pp. 44-50 (1994)) of YOSHIYAMA et al. The measurement temperature is 20 ° C., and the measurement wavelength is 450 nm.
 以下の表1に、光拡散要素4bとして一般的に用いられる材料の屈折率を記載する。なお、表1における各材料の屈折率は一般的な参考値であり、各材料の屈折率が必ずしも表1における値に限定されるわけではない。 Table 1 below shows the refractive indexes of materials generally used as the light diffusing element 4b. In addition, the refractive index of each material in Table 1 is a general reference value, and the refractive index of each material is not necessarily limited to the value in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 波長変換部材4中の光拡散要素4bの含有量は、蛍光体4a、樹脂4cの種類にもよるが、例えば、樹脂4cがポリカーボネート樹脂で、光拡散要素4bがポリメチルシルセスキオキサン粒子である場合、ポリカーボネート樹脂100重量部に対して、通常0.1重量部以上、好ましくは0.3重量部以上、より好ましくは0.5重量部以上であり、また、通常10.0重量部以下、好ましくは7.0重量部以下、より好ましくは3.0重量部以下である。光拡散要素4bの含有量が少なすぎると拡散効果が不十分となり、また蛍光体4aの量を減量させる効果も得難くなる傾向にあり、多すぎると機械的特定が低下する場合があり好ましくない。 The content of the light diffusing element 4b in the wavelength conversion member 4 depends on the types of the phosphor 4a and the resin 4c. For example, the resin 4c is a polycarbonate resin, and the light diffusing element 4b is polymethylsilsesquioxane particles. In some cases, it is usually 0.1 parts by weight or more, preferably 0.3 parts by weight or more, more preferably 0.5 parts by weight or more, and usually 10.0 parts by weight or less with respect to 100 parts by weight of the polycarbonate resin. The amount is preferably 7.0 parts by weight or less, more preferably 3.0 parts by weight or less. If the content of the light diffusing element 4b is too small, the diffusing effect is insufficient, and the effect of reducing the amount of the phosphor 4a tends to be difficult to obtain. .
 なお、上述した蛍光体4aも黄色光を拡散することもあるが、本願発明の光拡散要素の体積分率の計算においては、蛍光体4aを光拡散要素4bの一部として含めないものとする。 The phosphor 4a described above may also diffuse yellow light. However, in the calculation of the volume fraction of the light diffusing element of the present invention, the phosphor 4a is not included as a part of the light diffusing element 4b. .
〔母材〕
 母材は、光拡散要素を保持する。また、光拡散要素を母材中に分散していることが好ましい。本実施形態において、母材は、蛍光体を保持しており、蛍光体は母材中に分散していることが好ましい。母材としては、通常、樹脂、ガラス等が用いられる。
[Base material]
The base material holds the light diffusing element. Moreover, it is preferable that the light diffusing element is dispersed in the base material. In the present embodiment, it is preferable that the base material holds a phosphor, and the phosphor is dispersed in the base material. As the base material, resin, glass or the like is usually used.
〔樹脂〕
 蛍光体4a及び光拡散要素4bを分散して保持する樹脂4cは、通常1.3以上1.7以下の屈折率を有している。当該理由については、後述する評価結果を参照する際に説明する。なお、樹脂4cの屈折率の測定方法は、以下の通りである。測定温度は20℃であり、プリズムカプラー法にて測定する。測定波長は450nmである。
〔resin〕
The resin 4c that disperses and holds the phosphor 4a and the light diffusing element 4b usually has a refractive index of 1.3 or more and 1.7 or less. The reason will be described when referring to an evaluation result described later. In addition, the measuring method of the refractive index of resin 4c is as follows. The measurement temperature is 20 ° C., measured by the prism coupler method. The measurement wavelength is 450 nm.
 以下の表2に、母材として一般的に用いられる樹脂の屈折率を記載する。なお、表2における各樹脂の屈折率は一般的な参考値であり、各樹脂の屈折率が必ずしも表2における値に限定されるわけではない。 Table 2 below lists the refractive indices of resins generally used as a base material. In addition, the refractive index of each resin in Table 2 is a general reference value, and the refractive index of each resin is not necessarily limited to the value in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 より具体的な樹脂4cとしては、ポリカーボネート樹脂、ポリエステル系樹脂(例えば、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂)、アクリル系樹脂(例えば、ポリメタクリル酸メチル樹脂)、エポキシ樹脂、及びシリコーン系樹脂を用いることが好ましい。また、樹脂4cは、半導体発光素子から放出される光(例えば、紫外光、近紫外光、又は青色光等)、または、波長変換部材から放出される可視光を吸収しないことが好ましい。更には、LEDチップ3から発せられる青色光に対して十分な透明性と耐久性とを有していることが好ましい。 As the more specific resin 4c, polycarbonate resin, polyester resin (for example, polyethylene terephthalate resin, polybutylene terephthalate resin), acrylic resin (for example, polymethyl methacrylate resin), epoxy resin, and silicone resin are used. It is preferable. The resin 4c preferably does not absorb light (for example, ultraviolet light, near ultraviolet light, or blue light) emitted from the semiconductor light emitting element or visible light emitted from the wavelength conversion member. Furthermore, it is preferable to have sufficient transparency and durability against blue light emitted from the LED chip 3.
 上述した樹脂4cとして用いられるこれらの樹脂は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。また、これらの樹脂の共重合体であってもよく、2種類以上を積層して使用してもよい。2種類以上を組み合わせて用いる場合に、樹脂4cの屈折率は、複数の樹脂の体積平均によって算出される。 These resins used as the resin 4c described above may be used alone or in combination of two or more. Moreover, the copolymer of these resin may be sufficient and it may use it, laminating | stacking 2 or more types. When two or more types are used in combination, the refractive index of the resin 4c is calculated by the volume average of a plurality of resins.
 樹脂4cとしては、ポリカーボネート樹脂が、透明性、耐熱性、機械的特性、難燃性に優れる点で、最も好ましく使用できる。以下に、ポリカーボネート樹脂について詳細に説明する。 As the resin 4c, a polycarbonate resin is most preferably used because it is excellent in transparency, heat resistance, mechanical properties, and flame retardancy. Hereinafter, the polycarbonate resin will be described in detail.
 本発明に用いるポリカーボネート樹脂は、下記の一般的な化学式(1)で表される、炭酸結合を有する基本構造の重合体である。
Figure JPOXMLDOC01-appb-C000003

 
The polycarbonate resin used in the present invention is a polymer having a basic structure having a carbonic acid bond represented by the following general chemical formula (1).
Figure JPOXMLDOC01-appb-C000003

 化学式(1)中、X1は一般には炭化水素であるが、種々の特性付与のためヘテロ原子、ヘテロ結合の導入されたX1を用いてもよい。 In the chemical formula (1), X 1 is generally a hydrocarbon, but X 1 into which a hetero atom or a hetero bond is introduced may be used for imparting various properties.
 また、ポリカーボネート樹脂は、炭酸結合に直接結合する炭素がそれぞれ芳香族炭素である芳香族ポリカーボネート樹脂、及び脂肪族炭素である脂肪族ポリカーボネート樹脂に分類できるが、いずれを用いることもできる。なかでも、耐熱性、機械的物性、電気的特性等の観点から、芳香族ポリカーボネート樹脂が好ましい。 The polycarbonate resin can be classified into an aromatic polycarbonate resin in which the carbon directly bonded to the carbonic acid bond is an aromatic carbon, and an aliphatic polycarbonate resin in which the carbon is an aliphatic carbon, either of which can be used. Of these, aromatic polycarbonate resins are preferred from the viewpoints of heat resistance, mechanical properties, electrical characteristics, and the like.
 ポリカーボネート樹脂の具体的な種類に制限はないが、例えば、ジヒドロキシ化合物とカーボネート前駆体とを反応させてなるポリカーボネート重合体が挙げられる。この際、ジヒドロキシ化合物及びカーボネート前駆体に加えて、ポリヒドロキシ化合物等を反応させるようにしてもよい。また、二酸化炭素をカーボネート前駆体として、環状エーテルと反応させる方法も用いてもよい。また、ポリカーボネート重合体は、直鎖状でもよく、分岐鎖状でもよい。さらに、ポリカーボネート重合体は1種の繰り返し単位からなる単独重合体であってもよく、2種以上の繰り返し単位を有する共重合体であってもよい。このとき共重合体は、ランダム共重合体、ブロック共重合体等、種々の共重合形態を選択することができる。なお、通常、このようなポリカーボネート重合体は、熱可塑性の樹脂となる。 Although there is no restriction | limiting in the specific kind of polycarbonate resin, For example, the polycarbonate polymer formed by making a dihydroxy compound and a carbonate precursor react is mentioned. At this time, in addition to the dihydroxy compound and the carbonate precursor, a polyhydroxy compound or the like may be reacted. Further, a method of reacting carbon dioxide with a cyclic ether using a carbonate precursor may be used. The polycarbonate polymer may be linear or branched. Further, the polycarbonate polymer may be a homopolymer composed of one type of repeating unit or a copolymer having two or more types of repeating units. At this time, the copolymer can be selected from various copolymerization forms such as a random copolymer and a block copolymer. In general, such a polycarbonate polymer is a thermoplastic resin.
 芳香族ポリカーボネート樹脂の原料となるモノマーのうち、芳香族ジヒドロキシ化合物の例を挙げると、1,2-ジヒドロキシベンゼン、1,3-ジヒドロキシベンゼン(即ち、レゾルシノール)、1,4-ジヒドロキシベンゼン等のジヒドロキシベンゼン類;2,5-ジヒドロキシビフェニル、2,2'-ジヒドロキシビフェニル、4,4'-ジヒドロキシビフェニル等のジヒドロキシビフェニル類;2,2'-ジヒドロキシ-1,1'-ビナフチル、1,2-ジヒドロキシナフタレン、1,3-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、1,7-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン等のジヒドロキシナフタレン類;2,2'-ジヒドロキシジフェニルエーテル、3,3'-ジヒドロキシジフェニルエーテル、4,4'-ジヒドロキシジフェニルエーテル、4,4'-ジヒドロキシ-3,3'-ジメチルジフェニルエーテル、1,4-ビス(3-ヒドロキシフェノキシ)ベンゼン、1,3-ビス(4-ヒドロキシフェノキシ)ベンゼン等のジヒドロキシジアリールエーテル類;2,2-ビス(4-ヒドロキシフェニル)プロパン(即ち、ビスフェノールA)、1,1-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-メトキシ-4-ヒドロキシフェニル)プロパン、2-(4-ヒドロキシフェニル)-2-(3-メトキシ-4-ヒドロキシフェニル)プロパン、1,1-ビス(3-tert-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、2-(4-ヒドロキシフェニル)-2-(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、α,α’-ビス(4-ヒドロキシフェニル)-1,4-ジイソプロピルベンゼン、1,3-ビス[2-(4-ヒドロキシフェニル)-2-プロピル]ベンゼン、ビス(4-ヒドロキシフェニル)メタン、ビス(4-ヒドロキシフェニル)シクロヘキシルメタン、ビス(4-ヒドロキシフェニル)フェニルメタン、ビス(4-ヒドロキシフェニル)(4-プロペニルフェニル)メタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、ビス(4-ヒドロキシフェニル)ナフチルメタン、1-ビス(4-ヒドロキシフェニル)エタン、2-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシフェニル)-1-ナフチルエタン、1-ビス(4-ヒドロキシフェニル)ブタン、2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、1,1-ビス(4-ヒドロキシフェニル)ヘキサン、2,2-ビス(4-ヒドロキシフェニル)ヘキサン、1-ビス(4-ヒドロキシフェニル)オクタン、2-ビス(4-ヒドロキシフェニル)オクタン、1-ビス(4-ヒドロキシフェニル)ヘキサン、2-ビス(4-ヒドロキシフェニル)ヘキサン、4,4-ビス(4-ヒドロキシフェニル)ヘプタン、2,2-ビス(4-ヒドロキシフェニル)ノナン、10-ビス(4-ヒドロキシフェニル)デカン、1-ビス(4-ヒドロキシフェニル)ドデカン等のビス(ヒドロキシアリール)アルカン類;1-ビス(4-ヒドロキシフェニル)シクロペンタン、1-ビス(4-ヒドロキシフェニル)シクロヘキサン、4-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3-ジメチルシクロヘキサン、1-ビス(4-ヒドロキシフェニル)-3,4-ジメチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,5-ジメチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3-プロピル-5-メチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3-tert-ブチル-シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3-tert-ブチル-シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3-フェニルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-4-フェニルシクロヘキサン等のビス(ヒドロキシアリール)シクロアルカン類;9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン等のカルド構造含有ビスフェノール類;4,4'-ジヒドロキシジフェニルスルフィド、4,4'-ジヒドロキシ-3,3'-ジメチルジフェニルスルフィド等のジヒドロキシジアリールスルフィド類;4,4'-ジヒドロキシジフェニルスルホキシド、4,4'-ジヒドロキシ-3,3'-ジメチルジフェニルスルホキシド等のジヒドロキシジアリールスルホキシド類;4,4'-ジヒドロキシジフェニルスルホン、4,4'-ジヒドロキシ-3,3'-ジメチルジフェニルスルホン等のジヒドロキシジアリールスルホン類等が挙げられる。 Among monomers used as raw materials for aromatic polycarbonate resins, examples of aromatic dihydroxy compounds include dihydroxy compounds such as 1,2-dihydroxybenzene, 1,3-dihydroxybenzene (ie, resorcinol), 1,4-dihydroxybenzene, and the like. Benzenes; dihydroxybiphenyls such as 2,5-dihydroxybiphenyl, 2,2′-dihydroxybiphenyl, 4,4′-dihydroxybiphenyl; 2,2′-dihydroxy-1,1′-binaphthyl, 1,2-dihydroxy Dihydroxynaphthalenes such as naphthalene, 1,3-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 1,7-dihydroxynaphthalene, 2,7-dihydroxynaphthalene; 2 , 2'- Hydroxydiphenyl ether, 3,3′-dihydroxydiphenyl ether, 4,4′-dihydroxydiphenyl ether, 4,4′-dihydroxy-3,3′-dimethyldiphenyl ether, 1,4-bis (3-hydroxyphenoxy) benzene, 1,3 Dihydroxydiaryl ethers such as bis (4-hydroxyphenoxy) benzene; 2,2-bis (4-hydroxyphenyl) propane (ie bisphenol A), 1,1-bis (4-hydroxyphenyl) propane, 2, 2-bis (3-methyl-4-hydroxyphenyl) propane, 2,2-bis (3-methoxy-4-hydroxyphenyl) propane, 2- (4-hydroxyphenyl) -2- (3-methoxy-4- Hydroxyphenyl) propane, 1,1-bis (3-tert- Til-4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 2,2-bis (3-cyclohexyl-4-hydroxyphenyl) propane, 2- (4- Hydroxyphenyl) -2- (3-cyclohexyl-4-hydroxyphenyl) propane, α, α'-bis (4-hydroxyphenyl) -1,4-diisopropylbenzene, 1,3-bis [2- (4-hydroxy Phenyl) -2-propyl] benzene, bis (4-hydroxyphenyl) methane, bis (4-hydroxyphenyl) cyclohexylmethane, bis (4-hydroxyphenyl) phenylmethane, bis (4-hydroxyphenyl) (4-propenylphenyl) ) Methane, bis (4-hydroxyphenyl) diphenylmethane, bis (4 Hydroxyphenyl) naphthylmethane, 1-bis (4-hydroxyphenyl) ethane, 2-bis (4-hydroxyphenyl) ethane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 1,1-bis (4-hydroxyphenyl) -1-naphthylethane, 1-bis (4-hydroxyphenyl) butane, 2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) pentane, 1,1 -Bis (4-hydroxyphenyl) hexane, 2,2-bis (4-hydroxyphenyl) hexane, 1-bis (4-hydroxyphenyl) octane, 2-bis (4-hydroxyphenyl) octane, 1-bis (4 -Hydroxyphenyl) hexane, 2-bis (4-hydroxyphenyl) hexane, 4,4-bis (4-hydride) Bis (hydroxyaryl) alkanes such as loxyphenyl) heptane, 2,2-bis (4-hydroxyphenyl) nonane, 10-bis (4-hydroxyphenyl) decane, 1-bis (4-hydroxyphenyl) dodecane; 1 -Bis (4-hydroxyphenyl) cyclopentane, 1-bis (4-hydroxyphenyl) cyclohexane, 4-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3-dimethyl Cyclohexane, 1-bis (4-hydroxyphenyl) -3,4-dimethylcyclohexane, 1,1-bis (4-hydroxyphenyl) -3,5-dimethylcyclohexane, 1,1-bis (4-hydroxyphenyl)- 3,3,5-trimethylcyclohexane, 1,1-bis (4-hydroxy -3,5-dimethylphenyl) -3,3,5-trimethylcyclohexane, 1,1-bis (4-hydroxyphenyl) -3-propyl-5-methylcyclohexane, 1,1-bis (4-hydroxyphenyl) -3-tert-butyl-cyclohexane, 1,1-bis (4-hydroxyphenyl) -3-tert-butyl-cyclohexane, 1,1-bis (4-hydroxyphenyl) -3-phenylcyclohexane, 1,1- Bis (hydroxyaryl) cycloalkanes such as bis (4-hydroxyphenyl) -4-phenylcyclohexane; 9,9-bis (4-hydroxyphenyl) fluorene, 9,9-bis (4-hydroxy-3-methylphenyl) ) Cardiostructure-containing bisphenols such as fluorene; 4,4'-dihydroxydiphenyls Dihydroxy diaryl sulfides such as 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfide; 4,4'-dihydroxydiphenyl sulfoxide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfoxide, etc. Dihydroxydiaryl sulfoxides; dihydroxydiaryl sulfones such as 4,4′-dihydroxydiphenylsulfone and 4,4′-dihydroxy-3,3′-dimethyldiphenylsulfone;
 これらの中でもビス(ヒドロキシアリール)アルカン類が好ましく、中でもビス(4-ヒドロキシフェニル)アルカン類が好ましく、特に耐衝撃性、耐熱性の点から2,2-ビス(4-ヒドロキシフェニル)プロパン(即ち、ビスフェノールA)が好ましい。 Of these, bis (hydroxyaryl) alkanes are preferred, and bis (4-hydroxyphenyl) alkanes are preferred, and 2,2-bis (4-hydroxyphenyl) propane (ie, in terms of impact resistance and heat resistance) Bisphenol A) is preferred.
 なお、芳香族ジヒドロキシ化合物は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 In addition, 1 type may be used for an aromatic dihydroxy compound, and it may use 2 or more types together by arbitrary combinations and a ratio.
 また、脂肪族ポリカーボネート樹脂の原料となるモノマーの例を挙げると、エタン-1,2-ジオール、プロパン-1,2-ジオール、プロパン-1,3-ジオール、2,2-ジメチルプロパン-1,3-ジオール、2-メチル-2-プロピルプロパン-1,3-ジオール、ブタン-1,4-ジオール、ペンタン-1,5-ジオール、ヘキサン-1,6-ジオール、デカン-1,10-ジオール等のアルカンジオール類;シクロペンタン-1,2-ジオール、シクロヘキサン-1,2-ジオール、シクロヘキサン-1,4-ジオール、1,4-シクロヘキサンジメタノール、4-(2-ヒドロキシエチル)シクロヘキサノール、2,2,4,4-テトラメチル-シクロブタン-1,3-ジオール等のシクロアルカンジオール類;2,2'-オキシジエタノール(即ち、エチレングリコール)、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、スピログリコール等のグリコール類;1,2-ベンゼンジメタノール、1,3-ベンゼンジメタノール、1,4-ベンゼンジメタノール、1,4-ベンゼンジエタノール、1,3-ビス(2-ヒドロキシエトキシ)ベンゼン、1,4-ビス(2-ヒドロキシエトキシ)ベンゼン、2,3-ビス(ヒドロキシメチル)ナフタレン、1,6-ビス(ヒドロキシエトキシ)ナフタレン、4,4'-ビフェニルジメタノール、4,4'-ビフェニルジエタノール、1,4-ビス(2-ヒドロキシエトキシ)ビフェニル、ビスフェノールAビス(2-ヒドロキシエチル)エーテル、ビスフェノールSビス(2-ヒドロキシエチル)エーテル等のアラルキルジオール類;1,2-エポキシエタン(即ち、エチレンオキシド)、1,2-エポキシプロパン(即ち、プロピレンオキシド)、1,2-エポキシシクロペンタン、1,2-エポキシシクロヘキサン、1,4-エポキシシクロヘキサン、1-メチル-1,2-エポキシシクロヘキサン、2,3-エポキシノルボルナン、1,3-エポキシプロパン等の環状エーテル類が挙げられ、これらは1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 Examples of monomers used as raw materials for aliphatic polycarbonate resins include ethane-1,2-diol, propane-1,2-diol, propane-1,3-diol, 2,2-dimethylpropane-1, 3-diol, 2-methyl-2-propylpropane-1,3-diol, butane-1,4-diol, pentane-1,5-diol, hexane-1,6-diol, decane-1,10-diol Alkanediols such as cyclopentane-1,2-diol, cyclohexane-1,2-diol, cyclohexane-1,4-diol, 1,4-cyclohexanedimethanol, 4- (2-hydroxyethyl) cyclohexanol, Cycloalkanediols such as 2,2,4,4-tetramethyl-cyclobutane-1,3-diol; Glycols such as xidiethanol (ie ethylene glycol), diethylene glycol, triethylene glycol, propylene glycol, spiroglycol, etc .; 1,2-benzenedimethanol, 1,3-benzenedimethanol, 1,4-benzenedimethanol, 1 , 4-benzenediethanol, 1,3-bis (2-hydroxyethoxy) benzene, 1,4-bis (2-hydroxyethoxy) benzene, 2,3-bis (hydroxymethyl) naphthalene, 1,6-bis (hydroxy Ethoxy) naphthalene, 4,4′-biphenyldimethanol, 4,4′-biphenyldiethanol, 1,4-bis (2-hydroxyethoxy) biphenyl, bisphenol A bis (2-hydroxyethyl) ether, bisphenol S bis (2 -Hydroxyethyl Aralkyldiols such as ether; 1,2-epoxyethane (ie, ethylene oxide), 1,2-epoxypropane (ie, propylene oxide), 1,2-epoxycyclopentane, 1,2-epoxycyclohexane, 1,4 -Cyclic ethers such as epoxycyclohexane, 1-methyl-1,2-epoxycyclohexane, 2,3-epoxynorbornane, 1,3-epoxypropane, etc., may be used alone, or two or more May be used in any combination and ratio.
 芳香族ポリカーボネート樹脂の原料となるモノマーのうち、カーボネート前駆体の例を挙げると、カルボニルハライド、カーボネートエステル等が挙げられる。なお、カーボネート前駆体は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 Among the monomers used as the raw material for the aromatic polycarbonate resin, examples of the carbonate precursor include carbonyl halide and carbonate ester. In addition, 1 type may be used for a carbonate precursor and it may use 2 or more types together by arbitrary combinations and a ratio.
 カルボニルハライドとしては、具体的には例えば、ホスゲンや、ジヒドロキシ化合物のビスクロロホルメート体、ジヒドロキシ化合物のモノクロロホルメート体等のハロホルメート等が挙げられる。 Specific examples of the carbonyl halide include phosgene, haloformates such as bischloroformate of dihydroxy compounds, and monochloroformate of dihydroxy compounds.
 カーボネートエステルとしては、具体的には例えば、ジフェニルカーボネート、ジトリルカーボネート等のジアリールカーボネート類;ジメチルカーボネート、ジエチルカーボネート等のジアルキルカーボネート類;ジヒドロキシ化合物のビスカーボネート体、ジヒドロキシ化合物のモノカーボネート体、環状カーボネート等のジヒドロキシ化合物のカーボネート体等が挙げられる。 Specific examples of carbonate esters include diaryl carbonates such as diphenyl carbonate and ditolyl carbonate; dialkyl carbonates such as dimethyl carbonate and diethyl carbonate; biscarbonate bodies of dihydroxy compounds, monocarbonate bodies of dihydroxy compounds, and cyclic carbonates. And carbonate bodies of dihydroxy compounds such as
 ポリカーボネート樹脂の製造方法は、特に限定されるものではなく、任意の方法を採用できる。その例を挙げると、界面重合法、溶融エステル交換法、ピリジン法、環状カーボネート化合物の開環重合法、プレポリマーの固相エステル交換法などを挙げることができる。以下、これらの方法のうち特に好適な、界面重合法及び溶融エステル交換法について具体的に説明する。 The method for producing the polycarbonate resin is not particularly limited, and any method can be adopted. Examples thereof include an interfacial polymerization method, a melt transesterification method, a pyridine method, a ring-opening polymerization method of a cyclic carbonate compound, and a solid phase transesterification method of a prepolymer. Hereinafter, the interfacial polymerization method and the melt transesterification method, which are particularly suitable among these methods, will be specifically described.
(界面重合法)
 界面重合法では、反応に不活性な有機溶媒及びアルカリ水溶液の存在下で、通常pHを9以上に保ち、ジヒドロキシ化合物とカーボネート前駆体(好ましくは、ホスゲン)とを反応させた後、重合触媒の存在下で界面重合を行うことによってポリカーボネート樹脂を得る。なお、反応系には、必要に応じて分子量調整剤(末端停止剤)を存在させるようにしてもよく、ジヒドロキシ化合物の酸化防止のために酸化防止剤を存在させるようにしてもよい。
(Interfacial polymerization method)
In the interfacial polymerization method, a dihydroxy compound and a carbonate precursor (preferably phosgene) are reacted in the presence of an organic solvent inert to the reaction and an aqueous alkaline solution, usually at a pH of 9 or higher. Polycarbonate resin is obtained by interfacial polymerization in the presence. In the reaction system, a molecular weight adjusting agent (terminal terminator) may be present as necessary, or an antioxidant may be present to prevent the oxidation of the dihydroxy compound.
 ジヒドロキシ化合物及びカーボネート前駆体は、前述のとおりである。なお、カーボネート前駆体の中でもホスゲンを用いることが好ましく、ホスゲンを用いた場合の方法は特にホスゲン法と呼ばれる。 The dihydroxy compound and the carbonate precursor are as described above. Of the carbonate precursors, phosgene is preferably used, and a method using phosgene is particularly called a phosgene method.
 反応に不活性な有機溶媒としては、例えば、ジクロロメタン、1,2-ジクロロエタン、クロロホルム、モノクロロベンゼン、ジクロロベンゼン等の塩素化炭化水素等;ベンゼン、トルエン、キシレン等の芳香族炭化水素等が挙げられる。なお、有機溶媒は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 Examples of the organic solvent inert to the reaction include chlorinated hydrocarbons such as dichloromethane, 1,2-dichloroethane, chloroform, monochlorobenzene and dichlorobenzene; aromatic hydrocarbons such as benzene, toluene and xylene. . In addition, 1 type may be used for an organic solvent and it may use 2 or more types together by arbitrary combinations and a ratio.
 アルカリ水溶液に含有されるアルカリ化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸水素ナトリウム等のアルカリ金属化合物やアルカリ土類金属化合物が挙げられるが、中でも水酸化ナトリウム及び水酸化カリウムが好ましい。なお、アルカリ化合物は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 Examples of the alkali compound contained in the alkaline aqueous solution include alkali metal compounds and alkaline earth metal compounds such as sodium hydroxide, potassium hydroxide, lithium hydroxide, and sodium hydrogen carbonate, among which sodium hydroxide and water Potassium oxide is preferred. In addition, 1 type may be used for an alkali compound and it may use 2 or more types together by arbitrary combinations and a ratio.
 アルカリ水溶液中のアルカリ化合物の濃度に制限はないが、通常、反応のアルカリ水溶液中のpHを10~12にコントロールするために、5~10重量%で使用される。また、例えばホスゲンを吹き込むに際しては、水相のpHが10~12、好ましくは10~11になる様にコントロールするために、ビスフェノール化合物とアルカリ化合物とのモル比を、通常1:1.9以上、中でも1:2.0以上、また、通常1:3.2以下、中でも1:2.5以下とすることが好ましい。 The concentration of the alkali compound in the alkaline aqueous solution is not limited, but is usually used at 5 to 10% by weight in order to control the pH in the alkaline aqueous solution of the reaction to 10 to 12. For example, when phosgene is blown, the molar ratio of the bisphenol compound to the alkali compound is usually 1: 1.9 or more in order to control the pH of the aqueous phase to be 10 to 12, preferably 10 to 11. Among these, it is preferable that the ratio is 1: 2.0 or more, usually 1: 3.2 or less, and more preferably 1: 2.5 or less.
 重合触媒としては、例えば、トリメチルアミン、トリエチルアミン、トリブチルアミン、トリプロピルアミン、トリヘキシルアミン等の脂肪族三級アミン;N,N’-ジメチルシクロヘキシルアミン、N,N’-ジエチルシクロヘキシルアミン等の脂環式三級アミン;N,N’-ジメチルアニリン、N,N’-ジエチルアニリン等の芳香族三級アミン;トリメチルベンジルアンモニウムクロライド、テトラメチルアンモニウムクロライド、トリエチルベンジルアンモニウムクロライド等の第四級アンモニウム塩、ピリジン、グアニン、グアニジンの塩等が挙げられる。なお、重合触媒は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 Examples of the polymerization catalyst include aliphatic tertiary amines such as trimethylamine, triethylamine, tributylamine, tripropylamine, and trihexylamine; alicyclic rings such as N, N′-dimethylcyclohexylamine and N, N′-diethylcyclohexylamine Tertiary amines; aromatic tertiary amines such as N, N′-dimethylaniline and N, N′-diethylaniline; quaternary ammonium salts such as trimethylbenzylammonium chloride, tetramethylammonium chloride and triethylbenzylammonium chloride; Examples include pyridine, guanine, guanidine salts, and the like. In addition, 1 type may be used for a polymerization catalyst and it may use 2 or more types together by arbitrary combinations and a ratio.
 分子量調整剤としては、例えば、一価のフェノール性水酸基を有する芳香族フェノール;メタノール、ブタノールなどの脂肪族アルコール、メルカプタン、フタル酸イミド等が挙げられるが、中でも芳香族フェノールが好ましい。このような芳香族フェノールとしては、具体的に、m-メチルフェノール、p-メチルフェノール、m-プロピルフェノール、p-プロピルフェノール、p-tert-ブチルフェノール、p-長鎖アルキル置換フェノール等のアルキル基置換フェノール;イソプロパニルフェノール等のビニル基含有フェノール、エポキシ基含有フェノール、o-オキシン安息香酸、2-メチル-6-ヒドロキシフェニル酢酸等のカルボキシル基含有フェノール等が挙げられる。なお、分子量調整剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 Examples of the molecular weight modifier include aromatic phenols having a monovalent phenolic hydroxyl group; aliphatic alcohols such as methanol and butanol, mercaptans, and phthalimides, among which aromatic phenols are preferred. Specific examples of such aromatic phenols include alkyl groups such as m-methylphenol, p-methylphenol, m-propylphenol, p-propylphenol, p-tert-butylphenol, and p-long chain alkyl-substituted phenol. Substituted phenols: vinyl group-containing phenols such as isopropanyl phenol, epoxy group-containing phenols, carboxyl group-containing phenols such as o-oxine benzoic acid and 2-methyl-6-hydroxyphenylacetic acid. In addition, a molecular weight regulator may use 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
 分子量調整剤の使用量は、ジヒドロキシ化合物100モルに対して、通常0.5モル以上、好ましくは1モル以上であり、また、通常50モル以下、好ましくは30モル以下である。分子量調整剤の使用量をこの範囲とすることで、ポリカーボネート樹脂組成物の熱安定性及び耐加水分解性を向上させることができる。 The amount of the molecular weight modifier used is usually 0.5 mol or more, preferably 1 mol or more, and usually 50 mol or less, preferably 30 mol or less, per 100 mol of the dihydroxy compound. By making the usage-amount of a molecular weight modifier into this range, the thermal stability and hydrolysis resistance of a polycarbonate resin composition can be improved.
 反応の際に、反応基質、反応媒、触媒、添加剤等を混合する順番は、所望のポリカーボネート樹脂が得られる限り任意であり、適切な順番を任意に設定すればよい。例えば、カーボネート前駆体としてホスゲンを用いた場合には、分子量調節剤はジヒドロキシ化合物とホスゲンとの反応(ホスゲン化)の時から重合反応開始時までの間であれば任意の時期に混合できる。なお、反応温度は通常0~40℃であり、反応時間は通常は数分(例えば、10分)~数時間(例えば、6時間)である。 In the reaction, the order of mixing the reaction substrate, reaction medium, catalyst, additive and the like is arbitrary as long as a desired polycarbonate resin is obtained, and an appropriate order may be arbitrarily set. For example, when phosgene is used as the carbonate precursor, the molecular weight regulator can be mixed at any time as long as it is between the reaction (phosgenation) of the dihydroxy compound and phosgene and the start of the polymerization reaction. The reaction temperature is usually 0 to 40 ° C., and the reaction time is usually several minutes (for example, 10 minutes) to several hours (for example, 6 hours).
(溶融エステル交換法)
 溶融エステル交換法では、例えば、炭酸ジエステルとジヒドロキシ化合物とのエステル交換反応を行う。
(Melted ester exchange method)
In the melt transesterification method, for example, a transesterification reaction between a carbonic acid diester and a dihydroxy compound is performed.
 ジヒドロキシ化合物は、前述の通りである。一方、炭酸ジエステルとしては、例えば、ジメチルカーボネート、ジエチルカーボネート、ジ-tert-ブチルカーボネート等の炭酸ジアルキル化合物;ジフェニルカーボネート;ジトリルカーボネート等の置換ジフェニルカーボネートなどが挙げられる。中でも、ジフェニルカーボネート及び置換ジフェニルカーボネートが好ましく、特にジフェニルカーボネートが好ましい。なお、炭酸ジエステルは1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 The dihydroxy compound is as described above. On the other hand, examples of the carbonic acid diester include dialkyl carbonate compounds such as dimethyl carbonate, diethyl carbonate, and di-tert-butyl carbonate; diphenyl carbonate; substituted diphenyl carbonate such as ditolyl carbonate, and the like. Of these, diphenyl carbonate and substituted diphenyl carbonate are preferable, and diphenyl carbonate is particularly preferable. In addition, carbonic acid diester may use 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
 ジヒドロキシ化合物と炭酸ジエステルとの比率は所望のポリカーボネート樹脂が得られる限り任意であるが、ジヒドロキシ化合物1モルに対して、炭酸ジエステルを等モル量以上用いることが好ましく、中でも1.01モル以上用いることがより好ましい。なお、上限は通常1.30モル以下である。このような範囲にすることで、末端水酸基量を好適な範囲に調整できる。 The ratio of the dihydroxy compound and the carbonic acid diester is arbitrary as long as the desired polycarbonate resin can be obtained, but it is preferable to use an equimolar amount or more of the carbonic acid diester with respect to 1 mol of the dihydroxy compound. Is more preferable. The upper limit is usually 1.30 mol or less. By setting it as such a range, the amount of terminal hydroxyl groups can be adjusted to a suitable range.
 ポリカーボネート樹脂では、その末端水酸基量が熱安定性、加水分解安定性、色調等に大きな影響を及ぼす傾向がある。このため、公知の任意の方法によって末端水酸基量を必要に応じて調整してもよい。エステル交換反応においては、通常、炭酸ジエステルと芳香族ジヒドロキシ化合物との混合比率、エステル交換反応時の減圧度などを調整することにより、末端水酸基量を調整したポリカーボネート樹脂を得ることができる。なお、この操作により、通常は得られるポリカーボネート樹脂の分子量を調整することもできる。 In polycarbonate resins, the amount of terminal hydroxyl groups tends to have a large effect on thermal stability, hydrolysis stability, color tone, and the like. For this reason, you may adjust the amount of terminal hydroxyl groups as needed by a well-known arbitrary method. In the transesterification reaction, a polycarbonate resin in which the terminal hydroxyl group amount is adjusted can be usually obtained by adjusting the mixing ratio of the carbonic acid diester and the aromatic dihydroxy compound, the degree of vacuum during the transesterification reaction, and the like. In addition, the molecular weight of the polycarbonate resin usually obtained can also be adjusted by this operation.
 炭酸ジエステルとジヒドロキシ化合物との混合比率を調整して末端水酸基量を調整する場合、その混合比率は前記の通りである。また、より積極的な調整方法としては、反応時に別途、末端停止剤を混合する方法が挙げられる。この際の末端停止剤としては、例えば、一価フェノール類、一価カルボン酸類、炭酸ジエステル類などが挙げられる。なお、末端停止剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 When adjusting the amount of terminal hydroxyl groups by adjusting the mixing ratio of carbonic acid diester and dihydroxy compound, the mixing ratio is as described above. Further, as a more aggressive adjustment method, there may be mentioned a method in which a terminal terminator is mixed separately during the reaction. Examples of the terminal terminator at this time include monohydric phenols, monovalent carboxylic acids, carbonic acid diesters, and the like. In addition, 1 type may be used for a terminal terminator and it may use 2 or more types together by arbitrary combinations and a ratio.
 溶融エステル交換法によりポリカーボネート樹脂を製造する際には、通常、エステル交換触媒が使用される。エステル交換触媒は任意のものを使用できる。なかでも、例えばアルカリ金属化合物及び/又はアルカリ土類金属化合物を用いることが好ましい。また補助的に、例えば塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物、アミン系化合物などの塩基性化合物を併用してもよい。なお、エステル交換触媒は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 When a polycarbonate resin is produced by the melt transesterification method, a transesterification catalyst is usually used. Any transesterification catalyst can be used. Among them, it is preferable to use, for example, an alkali metal compound and / or an alkaline earth metal compound. In addition, auxiliary compounds such as basic boron compounds, basic phosphorus compounds, basic ammonium compounds, and amine compounds may be used in combination. In addition, 1 type may be used for a transesterification catalyst and it may use 2 or more types together by arbitrary combinations and a ratio.
 溶融エステル交換法において、反応温度は通常100~320℃である。また、反応時の圧力は通常2mmHg以下の減圧条件である。具体的操作としては、前記の条件で、芳香族ヒドロキシ化合物等の副生成物を除去しながら、溶融重縮合反応を行えばよい。 In the melt transesterification method, the reaction temperature is usually 100 to 320 ° C. The pressure during the reaction is usually a reduced pressure condition of 2 mmHg or less. As a specific operation, a melt polycondensation reaction may be performed under the above-mentioned conditions while removing a by-product such as an aromatic hydroxy compound.
 溶融重縮合反応は、バッチ式、連続式の何れの方法でも行うことができる。バッチ式で行う場合、反応基質、反応媒、触媒、添加剤等を混合する順番は、所望の芳香族ポリカーボネート樹脂が得られる限り任意であり、適切な順番を任意に設定すればよい。ただし中でも、ポリカーボネート樹脂及びポリカーボネート樹脂組成物の安定性等を考慮すると、溶融重縮合反応は連続式で行うことが好ましい。 The melt polycondensation reaction can be performed by either a batch method or a continuous method. When performing by a batch type, the order which mixes a reaction substrate, a reaction medium, a catalyst, an additive, etc. is arbitrary as long as a desired aromatic polycarbonate resin is obtained, What is necessary is just to set an appropriate order arbitrarily. However, considering the stability of the polycarbonate resin and the polycarbonate resin composition, the melt polycondensation reaction is preferably carried out continuously.
 溶融エステル交換法においては、必要に応じて、触媒失活剤を用いてもよい。触媒失活剤としてはエステル交換触媒を中和する化合物を任意に用いることができる。その例を挙げると、イオウ含有酸性化合物及びその誘導体などが挙げられる。なお、触媒失活剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 In the melt transesterification method, a catalyst deactivator may be used as necessary. As the catalyst deactivator, a compound that neutralizes the transesterification catalyst can be arbitrarily used. Examples thereof include sulfur-containing acidic compounds and derivatives thereof. In addition, 1 type may be used for a catalyst deactivator and it may use 2 or more types together by arbitrary combinations and a ratio.
 触媒失活剤の使用量は、前記のエステル交換触媒が含有するアルカリ金属又はアルカリ土類金属に対して、通常0.5当量以上、好ましくは1当量以上であり、また、通常10当量以下、好ましくは5当量以下である。更には、芳香族ポリカーボネート樹脂に対して、通常1ppm以上であり、また、通常100ppm以下、好ましくは20ppm以下である。 The amount of the catalyst deactivator used is usually 0.5 equivalents or more, preferably 1 equivalent or more, and usually 10 equivalents or less, relative to the alkali metal or alkaline earth metal contained in the transesterification catalyst. Preferably it is 5 equivalents or less. Furthermore, it is 1 ppm or more normally with respect to aromatic polycarbonate resin, and is 100 ppm or less normally, Preferably it is 20 ppm or less.
 ポリカーボネート樹脂の分子量は任意であり、適宜選択して決定すればよいが、溶液粘度から換算した粘度平均分子量[Mv]は、通常10,000以上、好ましくは16,000以上、より好ましくは18,000以上であり、また、通常40,000以下、好ましくは30,000以下である。粘度平均分子量を前記範囲の下限値以上とすることにより本発明のポリカーボネート樹脂組成物の機械的強度をより向上させることができ、機械的強度の要求の高い用途に用いる場合により好ましいものとなる。一方、粘度平均分子量を前記範囲の上限値以下とすることにより本発明のポリカーボネート樹脂組成物の流動性低下を抑制して改善でき、成形加工性を高めて成形加工を容易に行えるようになる。なお、粘度平均分子量の異なる2種類以上のポリカーボネート樹脂を混合して用いてもよく、この場合には、粘度平均分子量が上記の好適な範囲外であるポリカーボネート樹脂を混合してもよい。 The molecular weight of the polycarbonate resin is arbitrary and may be appropriately selected and determined. The viscosity average molecular weight [Mv] converted from the solution viscosity is usually 10,000 or more, preferably 16,000 or more, more preferably 18, 000 or more, and usually 40,000 or less, preferably 30,000 or less. By setting the viscosity average molecular weight to be equal to or higher than the lower limit of the above range, the mechanical strength of the polycarbonate resin composition of the present invention can be further improved, which is more preferable when used for applications requiring high mechanical strength. On the other hand, by setting the viscosity average molecular weight to be equal to or lower than the upper limit of the above range, the polycarbonate resin composition of the present invention can be suppressed and improved in fluidity, and the molding processability can be improved and the molding process can be easily performed. Two or more types of polycarbonate resins having different viscosity average molecular weights may be mixed and used, and in this case, a polycarbonate resin having a viscosity average molecular weight outside the above-mentioned preferred range may be mixed.
 なお、粘度平均分子量[Mv]とは、溶媒としてメチレンクロライドを使用し、ウベローデ粘度計を用いて温度20℃での極限粘度[η](単位dl/g)を求め、Schnellの粘度式、すなわち、η=1.23×10-4Mv0.83から算出される値を意味する。また極限粘度[η]とは、各溶液濃度[C](g/dl)での比粘度[ηsp]を測定し、下記数式(1)により算出した値である。 The viscosity average molecular weight [Mv] is obtained by using methylene chloride as a solvent and obtaining an intrinsic viscosity [η] (unit: dl / g) at a temperature of 20 ° C. using an Ubbelohde viscometer. , Η = 1.23 × 10 −4 Mv 0.83 . The intrinsic viscosity [η] is a value calculated by the following formula (1) by measuring the specific viscosity [η sp ] at each solution concentration [C] (g / dl).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ポリカーボネート樹脂の末端水酸基濃度は任意であり、適宜選択して決定すればよいが、通常1,000ppm以下、好ましくは800ppm以下、より好ましくは600ppm以下である。これにより本発明のポリカーボネート樹脂組成物の滞留熱安定性及び色調をより向上させることができる。また、その下限は、通常10ppm以上、好ましくは30ppm以上、より好ましくは40ppm以上である。これにより、分子量の低下を抑制し、本発明のポリカーボネート樹脂組成物の機械的特性をより向上させることができる。なお、末端水酸基濃度の単位は、ポリカーボネート樹脂の重量に対する、末端水酸基の重量をppmで表示したものである。その測定方法は、四塩化チタン/酢酸法による比色定量(Macromol.Chem.88 215(1965)に記載の方法)である。 The terminal hydroxyl group concentration of the polycarbonate resin is arbitrary and may be appropriately selected and determined, but is usually 1,000 ppm or less, preferably 800 ppm or less, more preferably 600 ppm or less. Thereby, the residence heat stability and color tone of the polycarbonate resin composition of the present invention can be further improved. Moreover, the minimum is 10 ppm or more normally, Preferably it is 30 ppm or more, More preferably, it is 40 ppm or more. Thereby, the fall of molecular weight can be suppressed and the mechanical characteristic of the polycarbonate resin composition of this invention can be improved more. The unit of the terminal hydroxyl group concentration is the weight of the terminal hydroxyl group expressed in ppm relative to the weight of the polycarbonate resin. The measuring method is a colorimetric determination by the titanium tetrachloride / acetic acid method (the method described in Macromol. Chem. 88 215 (1965)).
 ポリカーボネート樹脂は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 The polycarbonate resin may be used alone or in combination of two or more in any combination and ratio.
 ポリカーボネート樹脂は、ポリカーボネート樹脂単独(ポリカーボネート樹脂単独とは、ポリカーボネート樹脂の1種のみを含む態様に限定されず、例えば、モノマー組成や分子量が互いに異なる複数種のポリカーボネート樹脂を含む態様を含む意味で用いる。)で用いてもよく、ポリカーボネート樹脂と他の熱可塑性樹脂とのアロイ(混合物)とを組み合わせて用いてもよい。さらに、例えば、難燃性や耐衝撃性をさらに高める目的で、ポリカーボネート樹脂を、シロキサン構造を有するオリゴマーまたはポリマーとの共重合体;熱酸化安定性や難燃性をさらに向上させる目的でリン原子を有するモノマー、オリゴマーまたはポリマーとの共重合体;熱酸化安定性を向上させる目的で、ジヒドロキシアントラキノン構造を有するモノマー、オリゴマーまたはポリマーとの共重合体;光学的性質を改良するためにポリスチレン等のオレフィン系構造を有するオリゴマーまたはポリマーとの共重合体;耐薬品性を向上させる目的でポリエステル樹脂オリゴマーまたはポリマーとの共重合体等の、ポリカーボネート樹脂を主体とする共重合体として構成してもよい。他の熱可塑性樹脂と組み合わせて用いる場合は、樹脂成分中のポリカーボネート樹脂の割合が50重量%以上であることが好ましく、60重量%であることがより好ましく、70重量%以上であることがさらに好ましい。 The polycarbonate resin is a polycarbonate resin alone (the polycarbonate resin alone is not limited to an embodiment containing only one type of polycarbonate resin, and is used in a sense including an embodiment containing a plurality of types of polycarbonate resins having different monomer compositions and molecular weights, for example. .), Or an alloy (mixture) of a polycarbonate resin and another thermoplastic resin may be used in combination. Further, for example, for the purpose of further improving flame retardancy and impact resistance, a polycarbonate resin is copolymerized with an oligomer or polymer having a siloxane structure; for the purpose of further improving thermal oxidation stability and flame retardancy A monomer, oligomer or polymer having a copolymer; a monomer, oligomer or polymer having a dihydroxyanthraquinone structure for the purpose of improving thermal oxidation stability; Copolymers with oligomers or polymers having an olefin-based structure; for the purpose of improving chemical resistance, they may be configured as copolymers mainly composed of polycarbonate resins, such as copolymers with polyester resin oligomers or polymers. . When used in combination with other thermoplastic resins, the proportion of the polycarbonate resin in the resin component is preferably 50% by weight or more, more preferably 60% by weight, and further preferably 70% by weight or more. preferable.
 また、成形品の外観の向上や流動性の向上を図るため、ポリカーボネート樹脂は、ポリカーボネートオリゴマーを含有していてもよい。このポリカーボネートオリゴマーの粘度平均分子量[Mv]は、通常1,500以上、好ましくは2,000以上であり、また、通常9,500以下、好ましくは9,000以下である。さらに、含有されるポリカーボネートリゴマーは、ポリカーボネート樹脂(ポリカーボネートオリゴマーを含む)の30重量%以下とすることが好ましい。 Further, in order to improve the appearance of the molded product and the fluidity, the polycarbonate resin may contain a polycarbonate oligomer. The viscosity average molecular weight [Mv] of this polycarbonate oligomer is usually 1,500 or more, preferably 2,000 or more, and usually 9,500 or less, preferably 9,000 or less. Furthermore, the polycarbonate ligomer contained is preferably 30% by weight or less of the polycarbonate resin (including the polycarbonate oligomer).
 さらに、ポリカーボネート樹脂は、バージン原料だけでなく、使用済みの製品から再生されたポリカーボネート樹脂(いわゆるマテリアルリサイクルされたポリカーボネート樹脂)であってもよい。前記の使用済みの製品としては、例えば、光学ディスク等の光記録媒体;導光板;自動車窓ガラス、自動車ヘッドランプレンズ、風防等の車両透明部材;水ボトル等の容器;メガネレンズ;防音壁、ガラス窓、波板等の建築部材などが挙げられる。また、製品の不適合品、スプルー、ランナー等から得られた粉砕品またはそれらを溶融して得たペレット等も使用可能である。 Furthermore, the polycarbonate resin may be not only a virgin raw material but also a polycarbonate resin regenerated from a used product (so-called material-recycled polycarbonate resin). Examples of the used products include: optical recording media such as optical disks; light guide plates; vehicle window glass, vehicle headlamp lenses, windshields and other vehicle transparent members; water bottles and other containers; eyeglass lenses; Examples include architectural members such as glass windows and corrugated sheets. Also, non-conforming products, pulverized products obtained from sprues, runners, etc., or pellets obtained by melting them can be used.
 ただし、再生されたポリカーボネート樹脂は、本発明のポリカーボネート樹脂組成物に含まれるポリカーボネート樹脂のうち、80重量%以下であることが好ましく、中でも50重量%以下であることがより好ましい。再生されたポリカーボネート樹脂は、熱劣化や経年劣化等の劣化を受けている可能性が高いため、このようなポリカーボネート樹脂を前記の範囲よりも多く用いた場合、色相や機械的物性を低下させる可能性があるためである。 However, the recycled polycarbonate resin is preferably 80% by weight or less, more preferably 50% by weight or less, among the polycarbonate resins contained in the polycarbonate resin composition of the present invention. Recycled polycarbonate resin is likely to have undergone deterioration such as heat deterioration and aging deterioration, so when such polycarbonate resin is used more than the above range, hue and mechanical properties can be reduced. It is because there is sex.
 上述した樹脂4cには、本発明の特性を損なわない範囲において必要に応じて公知の各種添加剤を含有させることができる。例えば、熱安定剤、酸化防止剤、離型剤、難燃剤、難燃助剤、紫外線吸収剤、滑剤、光安定剤、可塑剤、帯電防止剤、熱伝導性改良剤、導電性改良剤、着色剤、耐衝撃性改良剤、抗菌剤、耐薬品性改良剤、強化剤、レーザーマーキング改良剤、屈折率調整剤などが挙げられる。これらの添加剤の具体的な種類や量は、樹脂4cに対して公知の好適なものを選択することができる。 In the resin 4c described above, various known additives can be added as necessary within the range not impairing the characteristics of the present invention. For example, heat stabilizer, antioxidant, mold release agent, flame retardant, flame retardant aid, UV absorber, lubricant, light stabilizer, plasticizer, antistatic agent, thermal conductivity improver, conductivity improver, Coloring agents, impact resistance improving agents, antibacterial agents, chemical resistance improving agents, reinforcing agents, laser marking improving agents, refractive index adjusting agents and the like can be mentioned. The specific kind and amount of these additives can be selected from known suitable ones for the resin 4c.
 ここで、ポリカーボネート樹脂に配合する好ましい添加剤について例示する。 Here, preferable additives to be blended in the polycarbonate resin will be exemplified.
 熱安定剤としては、例えばリン系化合物が挙げられる。リン系化合物としては、公知の任意のものを使用できる。具体例を挙げると、リン酸、ホスホン酸、亜燐酸、ホスフィン酸、ポリリン酸などのリンのオキソ酸;酸性ピロリン酸ナトリウム、酸性ピロリン酸カリウム、酸性ピロリン酸カルシウムなどの酸性ピロリン酸金属塩;リン酸カリウム、リン酸ナトリウム、リン酸セシウム、リン酸亜鉛など第1族または第10族金属のリン酸塩;有機ホスフェート化合物、有機ホスファイト化合物、有機ホスホナイト化合物などが挙げられる。 Examples of the heat stabilizer include phosphorus compounds. Any known phosphorous compound can be used. Specific examples include phosphorus oxo acids such as phosphoric acid, phosphonic acid, phosphorous acid, phosphinic acid, and polyphosphoric acid; acidic pyrophosphate metal salts such as acidic sodium pyrophosphate, acidic potassium pyrophosphate, and acidic calcium pyrophosphate; phosphoric acid Examples thereof include phosphates of Group 1 or Group 10 metals such as potassium, sodium phosphate, cesium phosphate, and zinc phosphate; organic phosphate compounds, organic phosphite compounds, and organic phosphonite compounds.
 なかでも、トリフェニルホスファイト、トリス(モノノニルフェニル)ホスファイト、トリス(モノノニル/ジノニル・フェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、モノオクチルジフェニルホスファイト、ジオクチルモノフェニルホスファイト、モノデシルジフェニルホスファイト、ジデシルモノフェニルホスファイト、トリデシルホスファイト、トリラウリルホスファイト、トリステアリルホスファイト、2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト等の有機ホスファイトが好ましい。 Among them, triphenyl phosphite, tris (monononylphenyl) phosphite, tris (monononyl / dinonyl phenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite, monooctyl diphenyl phosphite, Dioctyl monophenyl phosphite, monodecyl diphenyl phosphite, didecyl monophenyl phosphite, tridecyl phosphite, trilauryl phosphite, tristearyl phosphite, 2,2-methylenebis (4,6-di-tert-butylphenyl) ) Organic phosphites such as octyl phosphite are preferred.
 熱安定剤の含有量は、ポリカーボネート樹脂100重量部に対して、通常0.001重量部以上、好ましくは0.001重量部以上、より好ましくは0.01重量部以上であり、また、通常1重量部以下、好ましくは0.5重量部以下、より好ましくは0.3重量部以下、さらに好ましくは0.1重量部以下である。熱安定剤が少なすぎると熱安定性改良効果が得難く、多すぎると逆に熱安定性が低下する場合がある。 The content of the heat stabilizer is usually 0.001 parts by weight or more, preferably 0.001 parts by weight or more, more preferably 0.01 parts by weight or more with respect to 100 parts by weight of the polycarbonate resin. It is not more than parts by weight, preferably not more than 0.5 parts by weight, more preferably not more than 0.3 parts by weight, still more preferably not more than 0.1 parts by weight. If the amount of the heat stabilizer is too small, it is difficult to obtain the effect of improving the heat stability.
 酸化防止剤としては、例えば、ヒンダードフェノール系酸化防止剤が挙げられる。その具体例としては、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、チオジエチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N'-ヘキサン-1,6-ジイルビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニルプロピオナミド)、2,4-ジメチル-6-(1-メチルペンタデシル)フェノール、ジエチル[[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]ホスフォエート、3,3’,3’’,5,5’,5’’-ヘキサ-tert-ブチル-a,a’,a’’-(メシチレン-2,4,6-トリイル)トリ-p-クレゾール、4,6-ビス(オクチルチオメチル)-o-クレゾール、エチレンビス(オキシエチレン)ビス[3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート]、ヘキサメチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、2,6-ジ-tert-ブチル-4-(4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イルアミノ)フェノール等が挙げられる。 Examples of the antioxidant include hindered phenol antioxidants. Specific examples thereof include pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl). ) Propionate, thiodiethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], N, N′-hexane-1,6-diylbis [3- (3,5-di-) tert-butyl-4-hydroxyphenylpropionamide), 2,4-dimethyl-6- (1-methylpentadecyl) phenol, diethyl [[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl ] Methyl] phosphoate, 3,3 ′, 3 ″, 5,5 ′, 5 ″ -hexa-tert-butyl-a, a ′, a ''-(Mesitylene-2,4,6-triyl) tri-p-cresol, 4,6-bis (octylthiomethyl) -o-cresol, ethylenebis (oxyethylene) bis [3- (5-tert- Butyl-4-hydroxy-m-tolyl) propionate], hexamethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 1,3,5-tris (3,5- Di-tert-butyl-4-hydroxybenzyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, 2,6-di-tert-butyl-4- (4 And 6-bis (octylthio) -1,3,5-triazin-2-ylamino) phenol.
 なかでも、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネートが好ましい。 Among them, pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate preferable.
 酸化防止剤の含有量は、ポリカーボネート樹脂100重量部に対して、通常0.001重量部以上、好ましくは0.01重量部以上であり、また、通常1重量部以下、好ましくは0.5重量部以下、より好ましくは0.3重量部以下である。酸化防止剤の含有量が前記範囲の下限値以下の場合は、酸化防止剤としての効果が不十分となる可能性があり、酸化防止剤の含有量が前記範囲の上限値を超える場合は、効果が頭打ちとなり経済的でなくなる可能性がある。 The content of the antioxidant is usually 0.001 part by weight or more, preferably 0.01 part by weight or more, and usually 1 part by weight or less, preferably 0.5 part by weight with respect to 100 parts by weight of the polycarbonate resin. Part or less, more preferably 0.3 part by weight or less. When the content of the antioxidant is less than or equal to the lower limit of the range, the effect as an antioxidant may be insufficient, and when the content of the antioxidant exceeds the upper limit of the range, There is a possibility that the effect reaches its peak and is not economical.
 離型剤としては、例えば、脂肪族カルボン酸、脂肪族カルボン酸とアルコールとのエステル、数平均分子量200~15,000の脂肪族炭化水素化合物、ポリシロキサン系シリコーンオイルなどが挙げられる。 Examples of the release agent include aliphatic carboxylic acids, esters of aliphatic carboxylic acids and alcohols, aliphatic hydrocarbon compounds having a number average molecular weight of 200 to 15,000, and polysiloxane silicone oils.
 脂肪族カルボン酸としては、例えば、飽和または不飽和の脂肪族一価、二価または三価カルボン酸を挙げることができる。ここで脂肪族カルボン酸とは、脂環式のカルボン酸も包含する。これらの中で好ましい脂肪族カルボン酸は炭素数6~36の一価または二価カルボン酸であり、炭素数6~36の脂肪族飽和一価カルボン酸がさらに好ましい。かかる脂肪族カルボン酸の具体例としては、パルミチン酸、ステアリン酸、カプロン酸、カプリン酸、ラウリン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、メリシン酸、テトラリアコンタン酸、モンタン酸、アジピン酸、アゼライン酸などが挙げられる。 Examples of the aliphatic carboxylic acid include saturated or unsaturated aliphatic monovalent, divalent, or trivalent carboxylic acids. Here, the aliphatic carboxylic acid includes alicyclic carboxylic acid. Among these, preferred aliphatic carboxylic acids are monovalent or divalent carboxylic acids having 6 to 36 carbon atoms, and aliphatic saturated monovalent carboxylic acids having 6 to 36 carbon atoms are more preferred. Specific examples of such aliphatic carboxylic acids include palmitic acid, stearic acid, caproic acid, capric acid, lauric acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, mellicic acid, tetrariacontanoic acid, montanic acid, adipine Examples include acids and azelaic acid.
 脂肪族カルボン酸とアルコールとのエステルにおける脂肪族カルボン酸としては、例えば、前記脂肪族カルボン酸と同じものが使用できる。一方、アルコールとしては、例えば、飽和または不飽和の一価または多価アルコールが挙げられる。これらのアルコールは、フッ素原子、アリール基などの置換基を有していてもよい。これらの中では、炭素数30以下の一価または多価の飽和アルコールが好ましく、炭素数30以下の脂肪族又は脂環式飽和一価アルコールまたは脂肪族飽和多価アルコールがさらに好ましい。 As the aliphatic carboxylic acid in the ester of an aliphatic carboxylic acid and an alcohol, for example, the same one as the aliphatic carboxylic acid can be used. On the other hand, examples of the alcohol include saturated or unsaturated monohydric or polyhydric alcohols. These alcohols may have a substituent such as a fluorine atom or an aryl group. Among these, a monovalent or polyvalent saturated alcohol having 30 or less carbon atoms is preferable, and an aliphatic or alicyclic saturated monohydric alcohol or aliphatic saturated polyhydric alcohol having 30 or less carbon atoms is more preferable.
 かかるアルコールの具体例としては、オクタノール、デカノール、ドデカノール、ステアリルアルコール、ベヘニルアルコール、エチレングリコール、ジエチレングリコール、グリセリン、ペンタエリスリトール、2,2-ジヒドロキシペルフルオロプロパノール、ネオペンチレングリコール、ジトリメチロールプロパン、ジペンタエリスリトール等が挙げられる。 Specific examples of such alcohols include octanol, decanol, dodecanol, stearyl alcohol, behenyl alcohol, ethylene glycol, diethylene glycol, glycerin, pentaerythritol, 2,2-dihydroxyperfluoropropanol, neopentylene glycol, ditrimethylolpropane, dipentaerythritol and the like. Is mentioned.
 脂肪族カルボン酸とアルコールとのエステルの具体例としては、蜜ロウ(ミリシルパルミテートを主成分とする混合物)、ステアリン酸ステアリル、ベヘン酸ベヘニル、ベヘン酸ステアリル、グリセリンモノパルミテート、グリセリンモノステアレート、グリセリンジステアレート、グリセリントリステアレート、ペンタエリスリトールモノパルミテート、ペンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ペンタエリスリトールトリステアレート、ペンタエリスリトールテトラステアレート等が挙げられる。 Specific examples of esters of aliphatic carboxylic acids and alcohols include beeswax (a mixture based on myricyl palmitate), stearyl stearate, behenyl behenate, stearyl behenate, glycerin monopalmitate, glycerin monostearate Examples thereof include rate, glycerol distearate, glycerol tristearate, pentaerythritol monopalmitate, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, pentaerythritol tetrastearate and the like.
 数平均分子量200~15,000の脂肪族炭化水素化合物としては、例えば、流動パラフィン、パラフィンワックス、マイクロワックス、ポリエチレンワックス、フィッシャ-トロプシュワックス、炭素数3~12のα-オレフィンオリゴマー等が挙げられる。なお、ここで脂肪族炭化水素としては、脂環式炭化水素も含まれる。 Examples of the aliphatic hydrocarbon compound having a number average molecular weight of 200 to 15,000 include liquid paraffin, paraffin wax, microwax, polyethylene wax, Fischer-Tropsch wax, and α-olefin oligomer having 3 to 12 carbon atoms. . Here, the aliphatic hydrocarbon includes alicyclic hydrocarbons.
 これらの中では、パラフィンワックス、ポリエチレンワックスまたはポリエチレンワックスの部分酸化物が好ましく、パラフィンワックス、ポリエチレンワックスがさらに好ましい。 Among these, paraffin wax, polyethylene wax, or a partial oxide of polyethylene wax is preferable, and paraffin wax and polyethylene wax are more preferable.
 また、前記の脂肪族炭化水素の数平均分子量は、好ましくは5,000以下である。 The number average molecular weight of the aliphatic hydrocarbon is preferably 5,000 or less.
 ポリシロキサン系シリコーンオイルとしては、例えば、ジメチルシリコーンオイル、フェニルメチルシリコーンオイル、ジフェニルシリコーンオイル、フッ素化アルキルシリコーン等が挙げられる。 Examples of the polysiloxane silicone oil include dimethyl silicone oil, phenylmethyl silicone oil, diphenyl silicone oil, and fluorinated alkyl silicone.
 離型剤の含有量は、ポリカーボネート樹脂100重量部に対して、通常0.001重量部以上、好ましくは0.01重量部以上であり、また、通常5重量部以下、好ましくは3重量部以下、より好ましくは1重量部以下、さらに好ましくは0.5重量部以下である。離型剤の含有量が前記範囲の下限値以下の場合は、離型性の効果が十分でない場合があり、離型剤の含有量が前記範囲の上限値を超える場合は、耐加水分解性の低下、射出成形時の金型汚染などが生じる可能性がある。 The content of the release agent is usually 0.001 part by weight or more, preferably 0.01 part by weight or more, and usually 5 parts by weight or less, preferably 3 parts by weight or less, relative to 100 parts by weight of the polycarbonate resin. More preferably, it is 1 part by weight or less, and still more preferably 0.5 part by weight or less. When the content of the release agent is not more than the lower limit of the above range, the effect of releasability may not be sufficient, and when the content of the release agent exceeds the upper limit of the above range, hydrolysis resistance And mold contamination during injection molding may occur.
 難燃剤としては、ハロゲン系、リン系、有機酸金属塩系、シリコーン系の難燃剤、難燃助剤としては、フッ素樹脂系難燃助剤が挙げられる。難燃剤及び難燃助剤は併用することも可能であり、また、複数を組み合わせて使用することもできる。中でも好ましいのは、リン系難燃剤、有機酸金属塩系難燃剤、フッ素樹脂系難燃助剤である。 Examples of the flame retardant include halogen-based, phosphorus-based, organic acid metal salt-based, and silicone-based flame retardants, and examples of the flame retardant aid include fluororesin-based flame retardant aids. A flame retardant and a flame retardant aid can be used in combination, or a plurality of flame retardants can be used in combination. Among these, phosphorus flame retardants, organic acid metal salt flame retardants, and fluororesin flame retardant aids are preferred.
 リン系難燃剤としては芳香族リン酸エステルやホスファゼン化合物が挙げられる。有機酸金属塩系難燃剤としては、有機スルホン酸金属塩が好ましく含フッ素の有機スルホン酸金属塩が特に好ましく、具体的にはパーフルオロブタンスルホン酸カリウム等を例示できる。フッ素系難燃助剤としては、フルオロオレフィン樹脂が好ましく、フィブリル構造を有するテトラフルオロエチレン樹脂が例示できる。フッ素系難燃助剤はパウダー状でもディスパージョン状でも、フッ素樹脂を別の樹脂で被覆したパウダー状でも何れの形態であってもよい。 Examples of phosphorus-based flame retardants include aromatic phosphate esters and phosphazene compounds. As the organic acid metal salt flame retardant, an organic sulfonic acid metal salt is preferable, and a fluorine-containing organic sulfonic acid metal salt is particularly preferable. Specific examples thereof include potassium perfluorobutane sulfonate. As the fluorine-based flame retardant aid, a fluoroolefin resin is preferable, and a tetrafluoroethylene resin having a fibril structure can be exemplified. The fluorine-based flame retardant aid may be in a powder form, a dispersion form, a powder form in which a fluororesin is coated with another resin, or any form.
 これらの難燃剤、難燃助剤の配合比率は所望の難燃レベルを達成するために必要な量を配合すればよいが、通常はポリカーボネート100重量部に対して、リン系難燃剤の場合で1~20重量部の範囲、有機酸金属塩の場合は0.01~1重量部の範囲、フッ素樹脂系難燃助剤の場合で0.01~1重量部の範囲で配合することが好ましい。上記範囲で難燃剤、難燃助剤を1種類もしくは2種類以上を使用することができる。この範囲より少ないと難燃性の改良効果が出難くなり、これより多いと熱安定性、機械的特性が低下する傾向にあり好ましくない。なお、難燃レベルは、例えばUL94に代表される燃焼試験などにより判定することができる。 The blending ratio of these flame retardants and flame retardant aids may be blended in the amount necessary to achieve the desired flame retardant level, but is usually in the case of phosphorus flame retardants relative to 100 parts by weight of polycarbonate. It is preferably blended in the range of 1 to 20 parts by weight, in the case of organic acid metal salts in the range of 0.01 to 1 part by weight, and in the case of fluororesin-based flame retardant aids in the range of 0.01 to 1 part by weight. . Within the above range, one or more flame retardants and flame retardant aids can be used. If the amount is less than this range, it is difficult to improve the flame retardancy. The flame retardant level can be determined by, for example, a combustion test typified by UL94.
 紫外線吸収剤としては、例えば、酸化セリウム、酸化亜鉛などの無機紫外線吸収剤;ベンゾトリアゾール化合物、ベンゾフェノン化合物、サリシレート化合物、シアノアクリレート化合物、トリアジン化合物、オギザニリド化合物、マロン酸エステル化合物、ヒンダードアミン化合物などの有機紫外線吸収剤などが挙げられる。これらのうち、有機紫外線吸収剤が好ましく、中でもベンゾトリアゾール化合物がより好ましい。有機紫外線吸収剤を選択することで、本発明のポリカーボネート樹脂組成物の透明性や機械物性が良好なものになる傾向にある。 Examples of ultraviolet absorbers include inorganic ultraviolet absorbers such as cerium oxide and zinc oxide; organics such as benzotriazole compounds, benzophenone compounds, salicylate compounds, cyanoacrylate compounds, triazine compounds, oxanilide compounds, malonic ester compounds, and hindered amine compounds. Examples include ultraviolet absorbers. Of these, organic ultraviolet absorbers are preferred, and benzotriazole compounds are more preferred. By selecting an organic ultraviolet absorber, the polycarbonate resin composition of the present invention tends to have good transparency and mechanical properties.
 ベンゾトリアゾール化合物の具体例としては、例えば、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-[2’-ヒドロキシ-3’,5’-ビス(α,α-ジメチルベンジル)フェニル]-ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-ブチル-フェニル)-ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-tert-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-ブチル-フェニル)-5-クロロベンゾトリアゾール)、2-(2’-ヒドロキシ-3’,5’-ジ-tert-アミル)-ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-tert-オクチルフェニル)ベンゾトリアゾール、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2N-ベンゾトリアゾール-2-イル)フェノール]等が挙げられ、なかでも2-(2’-ヒドロキシ-5’-tert-オクチルフェニル)ベンゾトリアゾール、2,2'-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2N-ベンゾトリアゾール-2-イル)フェノール]が好ましく、特に2-(2’-ヒドロキシ-5’-tert-オクチルフェニル)ベンゾトリアゾールが好ましい。 Specific examples of the benzotriazole compound include, for example, 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- [2′-hydroxy-3 ′, 5′-bis (α, α-dimethylbenzyl). ) Phenyl] -benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-tert-butyl-phenyl) -benzotriazole, 2- (2′-hydroxy-3′-tert-butyl-5 ′) -Methylphenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butyl-phenyl) -5-chlorobenzotriazole), 2- (2'-hydroxy-3 ', 5'-di-tert-amyl) -benzotriazole, 2- (2'-hydroxy-5'-tert-octylphenyl) benzotriazole 2,2′-methylenebis [4- (1,1,3,3-tetramethylbutyl) -6- (2N-benzotriazol-2-yl) phenol], among others, 2- (2 ′ -Hydroxy-5′-tert-octylphenyl) benzotriazole, 2,2′-methylenebis [4- (1,1,3,3-tetramethylbutyl) -6- (2N-benzotriazol-2-yl) phenol In particular, 2- (2′-hydroxy-5′-tert-octylphenyl) benzotriazole is preferable.
 このようなベンゾトリアゾール化合物としては、具体的には例えば、シプロ化成社製(商品名、以下同じ)「シーソーブ701」、「シーソーブ702」、「シーソーブ703」、「シーソーブ704」、「シーソーブ705」、「シーソーブ709」、共同薬品社製「バイオソーブ520」、「バイオソーブ580」、「バイオソーブ582」、「バイオソーブ583」、ケミプロ化成社製「ケミソーブ71」、「ケミソーブ72」、サイテックインダストリーズ社製「サイアソーブUV5411」、アデカ社製「LA-32」、「LA-38」、「LA-36」、「LA-34」、「LA-31」、チバ・スペシャルティ・ケミカルズ社製「チヌビンP」、「チヌビン234」、「チヌビン326」、「チヌビン327」、「チヌビン328」等が挙げられる。 Specific examples of such benzotriazole compounds include “Seesorb 701”, “Seesorb 702”, “Seesorb 703”, “Seesorb 704”, and “Seesorb 705” manufactured by Sipro Kasei Co., Ltd. (trade names, the same applies hereinafter). , “Seasorb 709”, “Biosorb 520”, “Biosorb 580”, “Biosorb 582”, “Biosorb 583”, manufactured by Kyodo Yakuhin Co., Ltd. “UV5411”, “LA-32”, “LA-38”, “LA-36”, “LA-34”, “LA-31” manufactured by Adeka Corporation, “Tinuvin P”, “Cinuvin” manufactured by Ciba Specialty Chemicals 234 "," Tinubin 326 "," Tinubin 327 "," Tinubin 28 ", and the like.
 紫外線吸収剤の好ましい含有量は、ポリカーボネート樹脂100重量部に対して、0.01重量部以上、より好ましくは0.1重量部以上であり、また、5重量部以下、好ましくは3重量部以下、より好ましくは1重量部以下、さらに好ましくは0.5重量部以下である。紫外線吸収剤の含有量が前記範囲の下限値以下の場合は、耐候性の改良効果が不十分となる可能性があり、紫外線吸収剤の含有量が前記範囲の上限値を超える場合は、モールドデボジット等が生じ、金型汚染を引き起こす可能性がある。なお、紫外線吸収剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていてもよい。 The preferable content of the ultraviolet absorber is 0.01 parts by weight or more, more preferably 0.1 parts by weight or more, and 5 parts by weight or less, preferably 3 parts by weight or less with respect to 100 parts by weight of the polycarbonate resin. More preferably, it is 1 part by weight or less, and still more preferably 0.5 part by weight or less. If the content of the UV absorber is below the lower limit of the above range, the effect of improving the weather resistance may be insufficient, and if the content of the UV absorber exceeds the upper limit of the above range, the mold Debogit etc. may occur and cause mold contamination. In addition, 1 type may contain the ultraviolet absorber and 2 or more types may contain it by arbitrary combinations and a ratio.
〔波長変換部材4を構成する樹脂組成物の製造方法〕
 波長変換部材4を構成する樹脂組成物の製造方法、波長変換部材4の加工方法は特に限定されず、樹脂4cの加工法として公知の手法を用いればよい。例えば、樹脂4cがポリカーボネート樹脂の場合の、樹脂組成物の一般的な製造方法は次の通りである。
[Method for producing resin composition constituting wavelength conversion member 4]
The manufacturing method of the resin composition which comprises the wavelength conversion member 4, and the processing method of the wavelength conversion member 4 are not specifically limited, What is necessary is just to use a well-known method as a processing method of resin 4c. For example, the general manufacturing method of the resin composition when the resin 4c is a polycarbonate resin is as follows.
 ポリカーボネート樹脂に蛍光体4a、光拡散要素4b、及び必要に応じて配合されるその他の成分を加え、タンブラーミキサーやヘンシェルミキサーなどの各種混合機で混合する。混合は全原料一括混合でも、幾つかの原料を分割して混合してもよい。その後に、バンバリーミキサー、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダーなどで溶融混練して樹脂組成物ペレットを得る。 The phosphor 4a, the light diffusing element 4b, and other components blended as necessary are added to the polycarbonate resin and mixed with various mixers such as a tumbler mixer and a Henschel mixer. Mixing may be performed by mixing all raw materials at once, or by dividing several raw materials and mixing them. Thereafter, it is melt-kneaded with a Banbury mixer, roll, Brabender, single-screw kneading extruder, twin-screw kneading extruder, kneader or the like to obtain resin composition pellets.
 得られた樹脂組成物ペレットを用いて、シート・フィルムなどの押出成形、異型押出成形、真空成形、射出成形、ブロー成形、インジェクションブロー成形、回転成形、発泡成形など任意の成形方法により、必要な形状の波長変換部材4を成形する。中でも、射出成形法を採用することが好ましい。さらに、必要に応じてその成形体を更に溶着、接着、切削など加工することもできる。また、光拡散要素4bが気泡の場合は、発泡剤配合、窒素ガス注入、超臨界ガス注入などの手法により部材内に気泡を構成させればよい。 Using the obtained resin composition pellets, required by any molding method such as sheet / film extrusion molding, profile extrusion molding, vacuum molding, injection molding, blow molding, injection blow molding, rotational molding, foam molding, etc. The shaped wavelength conversion member 4 is formed. Among these, it is preferable to adopt an injection molding method. Furthermore, if necessary, the molded body can be further processed by welding, bonding, cutting, and the like. When the light diffusing element 4b is a bubble, the bubble may be formed in the member by a method such as blending of a blowing agent, nitrogen gas injection, supercritical gas injection, or the like.
 樹脂4cがポリカーボネート樹脂の場合で、光拡散要素4bが気泡以外の場合について、さらに詳しく好ましい条件を例示する。 In the case where the resin 4c is a polycarbonate resin and the light diffusing element 4b is other than bubbles, the preferable conditions are illustrated in more detail.
 ポリカーボネート樹脂と蛍光体4a、光拡散要素4b、その他添加剤をタンブラーミキサーで混合後、単軸或いは二軸押出機を用いて溶融混練する。溶融混練条件としては、剪段力を加え過ぎない様に、スクリューとして順送りのフライトスクリューエレメントを中心に構成されたスクリューを使用する。逆送りのフライトスクリュー、ニーディングスクリューエレメントなどの剪段力を強く負荷するスクリューエレメントの多用は、樹脂の変色を招き好ましくない。また、蛍光体4aが固い場合、スクリュー、シリンダーの材質として、削れ難い耐摩処理の施された材質のものを用いることが好ましい。 The polycarbonate resin, the phosphor 4a, the light diffusing element 4b, and other additives are mixed with a tumbler mixer and then melt-kneaded using a single screw or twin screw extruder. As a melt-kneading condition, a screw composed mainly of a forward-flight flight screw element is used as a screw so as not to apply excessive pruning force. The frequent use of a screw element that strongly applies a cutting force, such as a reverse feed flight screw or a kneading screw element, is undesirable because it causes discoloration of the resin. In addition, when the phosphor 4a is hard, it is preferable to use a material that has been subjected to an abrasion-resistant treatment that is difficult to scrape as the material of the screw and cylinder.
 また、混練温度は230~340℃の範囲が好ましい。実測樹脂温度として340℃を超えると変色しやすくなるため好ましくなく、樹脂温度が230℃未満ではポリカーボネート樹脂の溶融粘度が高過ぎて押出機への機械的負荷が大きくなり好ましくない。特に好ましい混練温度は240~300℃の範囲である。 The kneading temperature is preferably in the range of 230 to 340 ° C. If the measured resin temperature exceeds 340 ° C., discoloration tends to occur, which is not preferable. If the resin temperature is less than 230 ° C., the melt viscosity of the polycarbonate resin is too high, and the mechanical load on the extruder increases. A particularly preferable kneading temperature is in the range of 240 to 300 ° C.
 スクリュー回転数、吐出量は生産速度、押出機への負荷、樹脂ペレットの状態を鑑みて適宜選択すればよい。また、押出機には原料と共に巻き込んだ空気、加熱により発生したガスを押出機系外に放出するベント構造を1カ所以上設置することが好ましい。 The screw rotation speed and discharge amount may be appropriately selected in view of the production speed, the load on the extruder, and the state of the resin pellets. Moreover, it is preferable to install one or more vent structures in the extruder for releasing air entrained with the raw material and gas generated by heating out of the extruder system.
 以上により得られたポリカーボネート樹脂組成物ペレットを用いて、任意の加工法で所望の形状に成形及び加工すればよい。 What is necessary is just to shape | mold and process into a desired shape by arbitrary processing methods using the polycarbonate resin composition pellet obtained by the above.
 上述したような構成を有する本実施形態の半導体発光装置1は、一般照明として用いることができる。このような場合、半導体発光装置1が発する光(具体的には、青色光と黄色光との合成光である白色光)は、黒体輻射軌跡から偏差duvが-0.0200~0.0200であることが好ましく、色温度が1,600K~7,000Kの範囲内にあることが好ましい。 The semiconductor light emitting device 1 of the present embodiment having the configuration as described above can be used as general illumination. In such a case, the light emitted from the semiconductor light emitting device 1 (specifically, white light that is a combined light of blue light and yellow light) has a deviation duv of −0.0200 to 0.0200 from the black body radiation locus. The color temperature is preferably in the range of 1,600K to 7,000K.
 また、上述したような構成を有する本実施形態の半導体発光装置1は、一般照明以外にも、バックライトとして用いることも可能である。ディスプレイのバックライトのLED光源として用いる場合は、半導体発光装置1が発する光(具体的には、青色光と黄色光との合成光である白色光)は、通常、色温度が5,000K~20,000Kの範囲内である。 Further, the semiconductor light emitting device 1 of the present embodiment having the above-described configuration can be used as a backlight in addition to general illumination. When used as an LED light source for a backlight of a display, light emitted from the semiconductor light emitting device 1 (specifically, white light which is a combined light of blue light and yellow light) usually has a color temperature of 5,000K to Within the range of 20,000K.
(シミュレーションによる評価)
 次に、本実施形態における半導体発光装置1について、YAG系の蛍光体4a、光拡散要素4b及び樹脂4cの材料及び特性を変更し、各半導体発光装置の発光効率をシミュレーションによって算出し、当該算出結果(シミュレーション結果)の評価を行った。より具体的な条件として、蛍光体4aの特性(屈折率、消衰係数、量子効率)は公知刊行物『ツォンギュアン・リュー(Zongyuan Liu)、他3名,「白色発光ダイオードのパッケージ用のYAG:Ce蛍光体の光学特性の測定及び数値的研究(Measurement and numerical studies of optical properties of YAG:Ce phosphor for white light-emitting diode packaging)」,応用光学(APPLIED OPTICS),2010年1月10日,第49巻,第2号,p.247-257』を参考とした。また、配線基板2の可視光の反射率は90%、光拡散要素4bの消衰係数は10-6以下、樹脂4cの光吸収率の消衰係数は10-6以下とした。更に、半導体発光装置1のターゲット色度をx=0.30、y=0.31とした。そして、光拡散要素4bの平均粒径及び粒度分布、並びに蛍光体4aの平均粒径及び粒度分布は種々の場合を想定し、ORA社(現Synopsis社)の照明設計解析ソフトウェアであるLightTools(登録商標)を用いて光線追跡法により、シミュレーションを実施した。当該シミュレーション結果を、表3乃至表8、並びに図5及び図6を参照しつつ詳細に説明するとともに、波長変換部材4の良好な条件について説明する。なお、表3乃至表8では、「光拡散要素の体積分率」の値は、小数点3位を四捨五入して小数点第2位までの表記としているが、「屈折率差×厚み×体積分率」の値の計算の際には、「光拡散要素の体積分率」は小数点第4位までの数値を用いて計算しているため、「屈折率差×厚み×体積分率」の値の表記と実際の計算値との間にズレが生じる場合がある。
(Evaluation by simulation)
Next, for the semiconductor light emitting device 1 in this embodiment, the materials and characteristics of the YAG phosphor 4a, the light diffusing element 4b, and the resin 4c are changed, and the light emission efficiency of each semiconductor light emitting device is calculated by simulation, and the calculation is performed. The results (simulation results) were evaluated. As more specific conditions, the characteristics (refractive index, extinction coefficient, quantum efficiency) of the phosphor 4a are known publications “Zongyuan Liu” and three others, “YAG for white light emitting diode package: “Measurement and numerical studies of optical properties of YAG: Ce phosphor for white light-emitting diode packaging”, APPLIED OPTICS, January 10, 2010, No. 1 49, No. 2, p. 247-257 ”. Further, the visible light reflectance of the wiring board 2 was 90%, the extinction coefficient of the light diffusing element 4b was 10 −6 or less, and the extinction coefficient of the light absorption coefficient of the resin 4c was 10 −6 or less. Furthermore, the target chromaticity of the semiconductor light emitting device 1 was set to x = 0.30 and y = 0.31. The average particle size and particle size distribution of the light diffusing element 4b and the average particle size and particle size distribution of the phosphor 4a are assumed to be various, and LightTools (registered as lighting design analysis software of ORA (currently Synopsis)) is registered. (Trademark) was used for the simulation by the ray tracing method. The simulation results will be described in detail with reference to Tables 3 to 8 and FIGS. 5 and 6, and favorable conditions of the wavelength conversion member 4 will be described. In Tables 3 to 8, the value of “volume fraction of light diffusing element” is expressed by rounding off the third decimal place to the second decimal place, but “refractive index difference × thickness × volume fraction”. In calculating the value of “,” the volume fraction of the light diffusing element is calculated by using the numerical value up to the fourth decimal place, so the value of “refractive index difference × thickness × volume fraction” There may be a gap between the notation and the actual calculated value.
 第1試料群として、光拡散要素4bに二酸化ケイ素、樹脂4cにポリカーボネート樹脂を用いた場合を想定し、光拡散要素4bである二酸化ケイ素の使用量(体積分率)を変化させた際における、各半導体発光装置の発光効率(lm/W)をシミュレーションによって算出した。具体的な条件として、試料1-1には光拡散要素4bである二酸化ケイ素を波長変換部材4に含有させず、蛍光体4a及び樹脂4cであるポリカーボネート樹脂から波長変換部材4を構成した。そして、試料1-2~試料1-20の波長変換部材4には光拡散要素4bである二酸化ケイ素を含有させ、蛍光体4a、光拡散要素4b及び樹脂4cであるポリカーボネート樹脂から波長変換部材4を構成し、試料番号が大きくなるにつれて光拡散要素4bの含有量を増加させ、光拡散要素4bの体積分率(vol%)を増加させた。 Assuming the case where silicon dioxide is used for the light diffusing element 4b and polycarbonate resin is used for the resin 4c as the first sample group, when the amount of silicon dioxide used as the light diffusing element 4b (volume fraction) is changed, The light emission efficiency (lm / W) of each semiconductor light emitting device was calculated by simulation. As a specific condition, the wavelength conversion member 4 was composed of the phosphor 4a and the polycarbonate resin as the resin 4c without including the silicon dioxide as the light diffusion element 4b in the wavelength conversion member 4 in the sample 1-1. The wavelength converting members 4 of Samples 1-2 to 1-20 contain silicon dioxide as the light diffusing element 4b, and the wavelength converting member 4 is made of the phosphor 4a, the light diffusing element 4b, and the polycarbonate resin as the resin 4c. The content of the light diffusing element 4b was increased as the sample number increased, and the volume fraction (vol%) of the light diffusing element 4b was increased.
 また、第1試料群のシミュレーションにおいては、光拡散要素4bに二酸化ケイ素、樹脂4cにポリカーボネート樹脂を想定したため、測定温度20℃で450nmにおける屈折率として、光拡散要素4bは1.45、樹脂4cは1.58とした。また、光拡散要素4bの密度を2.20g/cm、樹脂4cの密度を1.20g/cmとした。更に、波長変換部材4自体の厚み(すなわち、樹脂4cの厚み)を1.00mmとした。 In the simulation of the first sample group, silicon dioxide was assumed for the light diffusing element 4b and polycarbonate resin was assumed for the resin 4c. Therefore, the refractive index at 450 nm at a measurement temperature of 20 ° C. was 1.45 for the light diffusing element 4b and the resin 4c. Was 1.58. The density of the light diffusing element 4b was 2.20 g / cm 3 and the density of the resin 4c was 1.20 g / cm 3 . Furthermore, the thickness of the wavelength conversion member 4 itself (that is, the thickness of the resin 4c) was set to 1.00 mm.
 以下の表3に、各試料(半導体発光装置1)における「光拡散要素4bの体積分率(vol%)」、「屈折率差×波長変換部材4自体の厚み×光拡散要素4bの体積分率」、「蛍光体4aの使用濃度(wt%)」、「蛍光体4aの使用濃度の減少率(%)」、「発光効率(lm/W)」、及び「発光効率の維持率(%)」を示す。ここで、「蛍光体4aの使用濃度の減少率(%)」とは、試料1-1における蛍光体4aの使用濃度と他の各試料における蛍光体4aの使用濃度との差を、試料1-1における蛍光体4aの使用濃度で除し、当該除した数値を100倍したものである。また、「発光効率の維持率(%)」とは、試料1-1における発光効率を基準(100%)とし、他の各試料の発光効率を試料1-1における発光効率で除した数値を100倍したものである。 Table 3 below shows “volume fraction of light diffusing element 4b (vol%)”, “difference of refractive index × thickness of wavelength conversion member 4 itself × volume of light diffusing element 4b” in each sample (semiconductor light emitting device 1). Rate "," use concentration of phosphor 4a (wt%) "," decrease rate of use concentration of phosphor 4a (%) "," emission efficiency (lm / W) ", and" emission efficiency maintenance rate (%) ) ". Here, the “decrease rate (%) of the use concentration of the phosphor 4a” is the difference between the use concentration of the phosphor 4a in the sample 1-1 and the use concentration of the phosphor 4a in each of the other samples. Divided by the working concentration of phosphor 4a at -1, and the divided value is multiplied by 100. The “luminance efficiency maintenance ratio (%)” is a numerical value obtained by dividing the luminous efficiency of each of the other samples by the luminous efficiency of the sample 1-1 with the luminous efficiency of the sample 1-1 as a reference (100%). 100 times.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表3に示すように、第1試料群においては、光拡散要素と母材の屈折率差×光変換部材の厚み×光拡散要素の体積分率の値が0.743において、蛍光体4aの使用濃度を85.8%減少させることができ、また、発光効率の維持率は91.5%であった。 As shown in Table 3, in the first sample group, the refractive index difference between the light diffusing element and the base material × the thickness of the light conversion member × the volume fraction of the light diffusing element is 0.743, and the phosphor 4a The concentration used could be reduced by 85.8%, and the luminous efficiency maintenance rate was 91.5%.
 また、光拡散要素と母材の屈折率差×光変換部材の厚み×光拡散要素の体積分率の値が2.463においては、蛍光体4aの使用濃度を91.1%も減少させることができ、この際の発光効率の維持率は75.7%であった。この場合においても、一般的に良好な特性を得ることができる発光効率の維持率の値(70%以上)を確保することができている。 In addition, when the difference in refractive index between the light diffusing element and the base material × the thickness of the light conversion member × the volume fraction of the light diffusing element is 2.463, the usage concentration of the phosphor 4a is reduced by 91.1%. In this case, the maintenance ratio of the luminous efficiency was 75.7%. Even in this case, it is possible to secure a value (70% or more) of the luminous efficiency maintenance rate that can generally obtain good characteristics.
 更に、光拡散要素と母材の屈折率差×光変換部材の厚み×光拡散要素の体積分率の値が3.467を超えると、蛍光体4aの使用濃度の減少比率は90.7%も減少させることができるが、発光効率の維持率が70%未満になることがわかった。 Furthermore, when the value of the difference in refractive index between the light diffusing element and the base material × the thickness of the light conversion member × the volume fraction of the light diffusing element exceeds 3.467, the reduction rate of the use concentration of the phosphor 4a is 90.7%. However, it has been found that the maintenance ratio of the luminous efficiency is less than 70%.
 すなわち、第1試料群においては、光拡散要素と母材の屈折率差×光変換部材の厚み×光拡散要素の体積分率の値を適切な範囲にすることにより、蛍光体4aの使用濃度を減少させることができ、かつ、発光効率を十分に維持できることがわかった。 That is, in the first sample group, the concentration of the phosphor 4a is adjusted by setting the difference in refractive index between the light diffusing element and the base material × the thickness of the light conversion member × the volume fraction of the light diffusing element within an appropriate range. It was found that the light emission efficiency can be reduced and the luminous efficiency can be sufficiently maintained.
 第2試料群として、光拡散要素4bに二酸化ケイ素、樹脂4cにシリコーン樹脂を用いた場合を想定し、光拡散要素4bである二酸化ケイ素の使用量(体積分率)を変化させた際における、各半導体発光装置の発光効率(lm/W)をシミュレーションによって算出した。具体的な条件として、試料2-1には光拡散要素4bである二酸化ケイ素を波長変換部材4に含有させず、蛍光体4a及び樹脂4cであるシリコーン樹脂から波長変換部材4を構成した。そして、試料2-2~試料2-19の波長変換部材4には光拡散要素4bである二酸化ケイ素を含有させ、蛍光体4a、光拡散要素4b及び樹脂4cであるシリコーン樹脂から波長変換部材4を構成し、試料番号が大きくなるにつれて光拡散要素4bの含有量を増加させ、光拡散要素4bの体積分率(vol%)を増加させた。 Assuming a case where silicon dioxide is used for the light diffusing element 4b and a silicone resin is used for the resin 4c as the second sample group, when the amount of silicon dioxide used as the light diffusing element 4b (volume fraction) is changed, The light emission efficiency (lm / W) of each semiconductor light emitting device was calculated by simulation. As specific conditions, the wavelength conversion member 4 was composed of the phosphor 4a and the silicone resin as the resin 4c without including the silicon dioxide as the light diffusing element 4b in the wavelength conversion member 4 in the sample 2-1. Then, the wavelength conversion members 4 of Sample 2-2 to Sample 2-19 contain silicon dioxide as the light diffusion element 4b, and the wavelength conversion member 4 is converted from the phosphor 4a, the light diffusion element 4b, and the silicone resin as the resin 4c. The content of the light diffusing element 4b was increased as the sample number increased, and the volume fraction (vol%) of the light diffusing element 4b was increased.
 また、第2試料群のシミュレーションにおいては、光拡散要素4bに二酸化ケイ素、樹脂4cにシリコーン樹脂を想定したため、測定温度20℃で450nmにおける屈折率として、光拡散要素4bは1.45、樹脂4cは1.40とした。また、光拡散要素4bの密度を2.20g/cm、樹脂4cの密度を1.00g/cmとした。更に、波長変換部材4自体の厚み(すなわち、樹脂4cの厚み)を1.00mmとした。 In the simulation of the second sample group, silicon dioxide was assumed for the light diffusing element 4b and silicone resin was assumed for the resin 4c. Therefore, the refractive index at 450 nm at a measurement temperature of 20 ° C. was 1.45 for the light diffusing element 4b and the resin 4c. Was 1.40. Further, the density of the light diffusing elements 4b 2.20 g / cm 3, the density of the resin 4c was 1.00 g / cm 3. Furthermore, the thickness of the wavelength conversion member 4 itself (that is, the thickness of the resin 4c) was set to 1.00 mm.
 以下の表4に、各試料(半導体発光装置1)における「光拡散要素4bの体積分率(vol%)」、「屈折率差×波長変換部材4自体の厚み×光拡散要素4bの体積分率」、「蛍光体4aの使用濃度(wt%)」、「蛍光体4aの使用濃度の減少率(%)」、「発光効率(lm/W)」、及び「発光効率の維持率(%)」を示す。なお、「蛍光体4aの使用濃度の減少率(%)」及び「発光効率の維持率(%)」とは、表3における定義と同一である。 Table 4 below shows “volume fraction of light diffusing element 4b (vol%)”, “difference in refractive index × thickness of wavelength conversion member 4 itself × volume of light diffusing element 4b” in each sample (semiconductor light emitting device 1). Rate "," use concentration of phosphor 4a (wt%) "," decrease rate of use concentration of phosphor 4a (%) "," emission efficiency (lm / W) ", and" emission efficiency maintenance rate (%) ) ". The “decrease rate (%) of use concentration of phosphor 4a” and “maintenance rate (%) of luminous efficiency” are the same as those defined in Table 3.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表4に示すように、第2試料群においては、光拡散要素と母材の屈折率差×光変換部材の厚み×光拡散要素の体積分率の値が0.240において、蛍光体4aの使用濃度を55.0%減少させることができ、また、発光効率の維持率は95.2%であった。 As shown in Table 4, in the second sample group, the difference in refractive index between the light diffusing element and the base material × the thickness of the light conversion member × the volume fraction of the light diffusing element is 0.240, and the phosphor 4a The concentration used could be reduced by 55.0%, and the maintenance rate of the luminous efficiency was 95.2%.
 また、光拡散要素と母材の屈折率差×光変換部材の厚み×光拡散要素の体積分率の値が1.563においては、蛍光体4aの使用濃度を82.1%も減少させることができ、この際の発光効率の維持率は90.4%であった。この場合においても、一般的に良好な特性を得ることができる発光効率の維持率の値(70%以上)を確保することができている。 Further, when the value of the refractive index difference between the light diffusing element and the base material × the thickness of the light conversion member × the volume fraction of the light diffusing element is 1.563, the usage concentration of the phosphor 4a is reduced by 82.1%. In this case, the maintenance ratio of the luminous efficiency was 90.4%. Even in this case, it is possible to secure a value (70% or more) of the luminous efficiency maintenance rate that can generally obtain good characteristics.
 すなわち、第2試料群においても、光拡散要素と母材の屈折率差×光変換部材の厚み×光拡散要素の体積分率の値を適切な範囲にすることにより、第1試料群ほどの発光効率維持効果はないものの、蛍光体4aの使用濃度を減少させることができ、かつ、発光効率を十分に維持できることがわかった。 That is, also in the second sample group, by setting the value of the refractive index difference between the light diffusing element and the base material × the thickness of the light conversion member × the volume fraction of the light diffusing element to an appropriate range, Although there was no effect of maintaining the luminous efficiency, it was found that the use concentration of the phosphor 4a can be reduced and the luminous efficiency can be sufficiently maintained.
 第3試料群として、光拡散要素4bに酸化アルミニウム、樹脂4cにポリカーボネート樹脂を用いた場合を想定し、光拡散要素4bである酸化アルミニウムの使用量(体積分率)を変化させた際における、各半導体発光装置の発光効率(lm/W)をシミュレーションによって算出した。具体的な条件として、試料3-1には光拡散要素4bである酸化アルミニウムを波長変換部材4に含有させず、蛍光体4a及び樹脂4cであるポリカーボネート樹脂から波長変換部材4を構成した。そして、試料3-2~試料3-20の波長変換部材4には光拡散要素4bである酸化アルミニウムを含有させ、蛍光体4a、光拡散要素4b及び樹脂4cであるポリカーボネート樹脂から波長変換部材4を構成し、試料番号が大きくなるにつれて光拡散要素4bの含有量を増加させ、光拡散要素4bの体積分率(vol%)を増加させた。 Assuming the case where aluminum oxide is used for the light diffusing element 4b and polycarbonate resin is used for the resin 4c as the third sample group, when the amount of aluminum oxide used as the light diffusing element 4b (volume fraction) is changed, The light emission efficiency (lm / W) of each semiconductor light emitting device was calculated by simulation. As specific conditions, the wavelength conversion member 4 was made of the phosphor 4a and the polycarbonate resin, which is the resin 4c, without containing the aluminum oxide as the light diffusing element 4b in the wavelength conversion member 4 in the sample 3-1. The wavelength converting members 4 of Samples 3-2 to 3-20 contain aluminum oxide as the light diffusing element 4b, and the wavelength converting member 4 is made of the phosphor 4a, the light diffusing element 4b, and the polycarbonate resin as the resin 4c. The content of the light diffusing element 4b was increased as the sample number increased, and the volume fraction (vol%) of the light diffusing element 4b was increased.
 また、第3試料群のシミュレーションにおいては、光拡散要素4bに酸化アルミニウム、樹脂4cにポリカーボネート樹脂を想定したため、測定温度20℃で450nmにおける屈折率として、光拡散要素4bは1.75、樹脂4cは1.58とした。また、光拡散要素4bの密度を4.00g/cm、樹脂4cの密度を1.20g/cmとした。更に、波長変換部材4自体の厚み(すなわち、樹脂4cの厚み)を1.00mmとした。 In the simulation of the third sample group, it was assumed that the light diffusing element 4b was made of aluminum oxide and the resin 4c was made of polycarbonate resin. Therefore, the light diffusing element 4b was 1.75 and the resin 4c as a refractive index at 450 nm at a measurement temperature of 20 ° C. Was 1.58. Further, the density of the light diffusing elements 4b 4.00 g / cm 3, and the density of the resin 4c and 1.20 g / cm 3. Furthermore, the thickness of the wavelength conversion member 4 itself (that is, the thickness of the resin 4c) was set to 1.00 mm.
 以下の表5に、各試料(半導体発光装置1)における「光拡散要素4bの体積分率(vol%)」、「屈折率差×波長変換部材4自体の厚み×光拡散要素4bの体積分率」、「蛍光体4aの使用濃度(wt%)」、「蛍光体4aの使用濃度の減少率(%)」、「発光効率(lm/W)」、及び「発光効率の維持率(%)」を示す。なお、「蛍光体4aの使用濃度の減少率(%)」及び「発光効率の維持率(%)」とは、表3における定義と同一である。 In Table 5 below, “volume fraction of light diffusing element 4b (vol%)”, “difference of refractive index × thickness of wavelength converting member 4 itself × volume of light diffusing element 4b” in each sample (semiconductor light emitting device 1). Rate "," use concentration of phosphor 4a (wt%) "," decrease rate of use concentration of phosphor 4a (%) "," emission efficiency (lm / W) ", and" emission efficiency maintenance rate (%) ) ". The “decrease rate (%) of use concentration of phosphor 4a” and “maintenance rate (%) of luminous efficiency” are the same as those defined in Table 3.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表5に示すように、第3試料群においては、光拡散要素と母材の屈折率差×光変換部材の厚み×光拡散要素の体積分率の値が0.548において、蛍光体4aの使用濃度を87.2%減少させることができ、また、発光効率の維持率は90.1%であった。 As shown in Table 5, in the third sample group, the difference in refractive index between the light diffusing element and the base material × the thickness of the light conversion member × the volume fraction of the light diffusing element is 0.548, and the phosphor 4a The working concentration could be reduced by 87.2%, and the luminous efficiency maintenance rate was 90.1%.
 また、光拡散要素と母材の屈折率差×光変換部材の厚み×光拡散要素の体積分率の値が1.186においては、蛍光体4aの使用濃度を91.2%も減少させることができ、この際の発光効率の維持率は84.1%であった。この場合においても、一般的に良好な特性を得ることができる発光効率の維持率の値(70%以上)を確保することができている。 In addition, when the value of the difference in refractive index between the light diffusing element and the base material × the thickness of the light conversion member × the volume fraction of the light diffusing element is 1.186, the use concentration of the phosphor 4a is reduced by 91.2%. In this case, the maintenance ratio of the luminous efficiency was 84.1%. Even in this case, it is possible to secure a value (70% or more) of the luminous efficiency maintenance rate that can generally obtain good characteristics.
 更に、光拡散要素と母材の屈折率差×光変換部材の厚み×光拡散要素の体積分率の値が1.937を超えると、蛍光体4aの使用濃度の減少比率は91.7%を超えるが、発光効率の維持率が70%未満になることがわかった。 Further, when the value of the difference in refractive index between the light diffusing element and the base material × the thickness of the light conversion member × the volume fraction of the light diffusing element exceeds 1.937, the reduction rate of the use concentration of the phosphor 4a is 91.7%. However, it has been found that the maintenance ratio of the luminous efficiency is less than 70%.
 すなわち、第3試料群においても、光拡散要素と母材の屈折率差×光変換部材の厚み×光拡散要素の体積分率の値を適切な範囲にすることにより、第1試料群と同様に、蛍光体4aの使用濃度を減少させることができ、かつ、発光効率を十分に維持できることがわかった。 That is, also in the third sample group, the value of the difference in refractive index between the light diffusing element and the base material × the thickness of the light conversion member × the volume fraction of the light diffusing element is set to an appropriate range, thereby being the same as in the first sample group. In addition, it was found that the use concentration of the phosphor 4a can be reduced and the luminous efficiency can be sufficiently maintained.
 第4試料群として、光拡散要素4bに酸化アルミニウム、樹脂4cにシリコーン樹脂を用いた場合を想定し、光拡散要素4bである酸化アルミニウムの使用量(体積分率)を変化させた際における、各半導体発光装置の発光効率(lm/W)をシミュレーションによって算出した。具体的な条件として、試料4-1には光拡散要素4bである酸化アルミニウムを波長変換部材4に含有させず、蛍光体4a及び樹脂4cであるシリコーン樹脂から波長変換部材4を構成した。そして、試料4-2~試料4-19の波長変換部材4には光拡散要素4bである酸化アルミニウムを含有させ、蛍光体4a、光拡散要素4b及び樹脂4cであるシリコーン樹脂から波長変換部材4を構成し、試料番号が大きくなるにつれて光拡散要素4bの含有量を増加させ、光拡散要素4bの体積分率(vol%)を増加させた。 Assuming a case where aluminum oxide is used for the light diffusing element 4b and silicone resin is used for the resin 4c as the fourth sample group, the amount of use (volume fraction) of aluminum oxide that is the light diffusing element 4b is changed. The light emission efficiency (lm / W) of each semiconductor light emitting device was calculated by simulation. As a specific condition, the wavelength conversion member 4 was composed of the phosphor 4a and the silicone resin as the resin 4c without including the aluminum oxide as the light diffusion element 4b in the wavelength conversion member 4 in the sample 4-1. Then, the wavelength conversion members 4 of Sample 4-2 to Sample 4-19 contain aluminum oxide as the light diffusion element 4b, and the wavelength conversion member 4 is formed from the phosphor 4a, the light diffusion element 4b, and the silicone resin as the resin 4c. The content of the light diffusing element 4b was increased as the sample number increased, and the volume fraction (vol%) of the light diffusing element 4b was increased.
 また、第4試料群のシミュレーションにおいては、光拡散要素4bに酸化アルミニウム、樹脂4cにシリコーン樹脂を想定したため、測定温度20℃で450nmにおける屈折率として、光拡散要素4bは1.75、樹脂4cは1.40とした。また、光拡散要素4bの密度を4.00g/cm、樹脂4cの密度を1.00g/cmとした。更に、波長変換部材4自体の厚み(すなわち、樹脂4cの厚み)を1.00mmとした。 In the simulation of the fourth sample group, since the light diffusing element 4b is assumed to be aluminum oxide and the resin 4c is assumed to be a silicone resin, the light diffusing element 4b has a refractive index at 450 nm at a measurement temperature of 20 ° C. Was 1.40. Further, the density of the light diffusing elements 4b 4.00 g / cm 3, the density of the resin 4c was 1.00 g / cm 3. Furthermore, the thickness of the wavelength conversion member 4 itself (that is, the thickness of the resin 4c) was set to 1.00 mm.
 以下の表6に、各試料(半導体発光装置1)における「光拡散要素4bの体積分率(vol%)」、「屈折率差×波長変換部材4自体の厚み×光拡散要素4bの体積分率」、「蛍光体4aの使用濃度(wt%)」、「蛍光体4aの使用濃度の減少率(%)」、「発光効率(lm/W)」、及び「発光効率の維持率(%)」を示す。なお、「蛍光体4aの使用濃度の減少率(%)」及び「発光効率の維持率(%)」とは、表3における定義と同一である。 In Table 6 below, “volume fraction of light diffusing element 4b (vol%)”, “difference in refractive index × thickness of wavelength converting member 4 itself × volume of light diffusing element 4b” in each sample (semiconductor light emitting device 1). Rate "," use concentration of phosphor 4a (wt%) "," decrease rate of use concentration of phosphor 4a (%) "," emission efficiency (lm / W) ", and" emission efficiency maintenance rate (%) ) ". The “decrease rate (%) of use concentration of phosphor 4a” and “maintenance rate (%) of luminous efficiency” are the same as those defined in Table 3.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表6に示すように、第4試料群においては、光拡散要素と母材の屈折率差×光変換部材の厚み×光拡散要素の体積分率の値が0.178において、蛍光体4aの使用濃度を80.4%まで減少させることができ、また、発光効率の維持率が91.1%であった。 As shown in Table 6, in the fourth sample group, the difference in refractive index between the light diffusing element and the base material × the thickness of the light conversion member × the volume fraction of the light diffusing element is 0.178, and the phosphor 4a The concentration used could be reduced to 80.4% and the luminous efficiency maintenance rate was 91.1%.
 また、光拡散要素と母材の屈折率差×光変換部材の厚み×光拡散要素の体積分率の値が0.946においては、蛍光体4aの使用濃度を93.0%も減少させることができ、この際の発光効率の維持率は71.7%であった。この場合においても、一般的に良好な特性を得ることができる発光効率の維持率の値(70%以上)を確保することができている。 In addition, when the value of the refractive index difference between the light diffusing element and the base material × the thickness of the light conversion member × the volume fraction of the light diffusing element is 0.946, the concentration of the phosphor 4a used is reduced by 93.0%. In this case, the maintenance ratio of the luminous efficiency was 71.7%. Even in this case, it is possible to secure a value (70% or more) of the luminous efficiency maintenance rate that can generally obtain good characteristics.
 更に、光拡散要素と母材の屈折率差×光変換部材の厚み×光拡散要素の体積分率の値が0.946を超えると、蛍光体4aの使用濃度の減少比率は93.0%を超えるが、発光効率の維持率が70%未満になることがわかった。 Further, when the value of the difference in refractive index between the light diffusing element and the base material × the thickness of the light converting member × the volume fraction of the light diffusing element exceeds 0.946, the reduction ratio of the concentration of the phosphor 4a used is 93.0%. However, it has been found that the maintenance ratio of the luminous efficiency is less than 70%.
 すなわち、第4試料群においても、光拡散要素と母材の屈折率差×光変換部材の厚み×光拡散要素の体積分率の値を適切な範囲にすることにより、第1試料群と同様に、蛍光体4aの使用濃度を減少させることができ、かつ、発光効率を十分に維持できることがわかった。 That is, also in the fourth sample group, the value of the refractive index difference between the light diffusing element and the base material × the thickness of the light conversion member × the volume fraction of the light diffusing element is set to an appropriate range, thereby being the same as in the first sample group. In addition, it was found that the use concentration of the phosphor 4a can be reduced and the luminous efficiency can be sufficiently maintained.
 第5試料群として、光拡散要素4bに気泡、樹脂4cにポリカーボネート樹脂を用いた場合を想定し、光拡散要素4bである気泡の含有量(体積分率)を変化させた際における、各半導体発光装置の発光効率(lm/W)をシミュレーションによって算出した。具体的な条件として、試料5-1には光拡散要素4bである気泡を波長変換部材4に含有させず、蛍光体4a及び樹脂4cであるポリカーボネート樹脂から波長変換部材4を構成した。そして、試料5-2~試料5-7の波長変換部材4には光拡散要素4bである気泡を含有させ、蛍光体4a、光拡散要素4b及び樹脂4cであるポリカーボネート樹脂から波長変換部材4を構成し、試料番号が大きくなるにつれて光拡散要素4bの含有量を増加させ、光拡散要素4bの体積分率(vol%)を増加させた。 Assuming the case where bubbles are used for the light diffusion element 4b and polycarbonate resin is used for the resin 4c as the fifth sample group, each semiconductor when the content (volume fraction) of the bubbles which are the light diffusion elements 4b is changed The luminous efficiency (lm / W) of the light emitting device was calculated by simulation. As a specific condition, the wavelength conversion member 4 was made of the phosphor 4a and the polycarbonate resin as the resin 4c without including the bubbles as the light diffusion element 4b in the wavelength conversion member 4 in the sample 5-1. Then, the wavelength conversion member 4 of Samples 5-2 to 5-7 contains bubbles as the light diffusion element 4b, and the wavelength conversion member 4 is made of the phosphor 4a, the light diffusion element 4b, and the polycarbonate resin as the resin 4c. The content of the light diffusing element 4b was increased as the sample number was increased, and the volume fraction (vol%) of the light diffusing element 4b was increased.
 また、第5試料群のシミュレーションにおいては、光拡散要素4bに気泡、樹脂4cにポリカーボネート樹脂を想定したため、測定温度20℃で450nmにおける屈折率として、光拡散要素4bは1.00、樹脂4cは1.58とした。また、光拡散要素4bの密度を0.001g/cm、樹脂4cの密度を1.2g/cmとした。更に、波長変換部材4自体の厚み(すなわち、樹脂4cの厚み)を1.00mmとした。 Further, in the simulation of the fifth sample group, it is assumed that the light diffusion element 4b is a bubble and the resin 4c is a polycarbonate resin. Therefore, the refractive index at 450 nm at a measurement temperature of 20 ° C. is 1.00 and the resin 4c is 1.00. 1.58. The density of the light diffusing element 4b was 0.001 g / cm 3 and the density of the resin 4c was 1.2 g / cm 3 . Furthermore, the thickness of the wavelength conversion member 4 itself (that is, the thickness of the resin 4c) was set to 1.00 mm.
 以下の表7に、各試料(半導体発光装置1)における「光拡散要素4bの体積分率(vol%)」、「屈折率差×波長変換部材4自体の厚み×光拡散要素4bの体積分率」、「蛍光体4aの使用濃度(wt%)」、「蛍光体4aの使用濃度の減少率(%)」、「発光効率(lm/W)」、及び「発光効率の維持率(%)」を示す。なお、「蛍光体4aの使用濃度の減少率(%)」及び「発光効率の維持率(%)」とは、表3における定義と同一である。 In Table 7 below, “volume fraction of light diffusing element 4b (vol%)”, “difference of refractive index × thickness of wavelength converting member 4 itself × volume of light diffusing element 4b” in each sample (semiconductor light emitting device 1). Rate "," use concentration of phosphor 4a (wt%) "," decrease rate of use concentration of phosphor 4a (%) "," emission efficiency (lm / W) ", and" emission efficiency maintenance rate (%) ) ". The “decrease rate (%) of use concentration of phosphor 4a” and “maintenance rate (%) of luminous efficiency” are the same as those defined in Table 3.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表7に示すように、第5試料群においては、光拡散要素と母材の屈折率差×光変換部材の厚み×光拡散要素の体積分率の値が0.415において、蛍光体4aの使用濃度を88.0%まで減少させることができ、また、発光効率の維持率が90.2%であった。 As shown in Table 7, in the fifth sample group, the difference in refractive index between the light diffusing element and the base material × the thickness of the light conversion member × the volume fraction of the light diffusing element is 0.415, and the phosphor 4a The concentration used could be reduced to 88.0%, and the luminous efficiency maintenance rate was 90.2%.
 また、光拡散要素と母材の屈折率差×光変換部材の厚み×光拡散要素の体積分率の値が0.415を超えると、蛍光体4aの使用濃度の減少比率は88.0%を超えるが、発光効率の維持率が90%未満になることがわかった。しかしながら、この場合においても、一般的に良好な特性を得ることができる発光効率の維持率の値(70%以上)を確保することができている。 Further, when the difference in refractive index between the light diffusing element and the base material × the thickness of the light conversion member × the volume fraction of the light diffusing element exceeds 0.415, the reduction rate of the use concentration of the phosphor 4a is 88.0%. However, it was found that the maintenance ratio of the luminous efficiency was less than 90%. However, even in this case, it is possible to ensure a value (70% or more) of the luminous efficiency maintenance rate that can generally obtain good characteristics.
 第6試料群として、光拡散要素4bにフッ化バリウム、樹脂4cにシリコーン樹脂を用いた場合を想定し、光拡散要素4bであるフッ化バリウムの含有量(体積分率)を変化させた際における、各半導体発光装置の発光効率(lm/W)をシミュレーションによって算出した。具体的な条件として、試料6-1には光拡散要素4bであるフッ化バリウムを波長変換部材4に含有させず、蛍光体4a及び樹脂4cであるシリコーン樹脂から波長変換部材4を構成した。そして、試料6-2~試料6-20の波長変換部材4には光拡散要素4bであるフッ化バリウムを含有させ、蛍光体4a、光拡散要素4b及び樹脂4cであるシリコーン樹脂から波長変換部材4を構成し、試料番号が大きくなるにつれて光拡散要素4bの含有量を増加させ、光拡散要素4bの体積分率(vol%)を増加させた。 Assuming a case where barium fluoride is used for the light diffusing element 4b and silicone resin is used for the resin 4c as the sixth sample group, when the content (volume fraction) of barium fluoride which is the light diffusing element 4b is changed The light emission efficiency (lm / W) of each semiconductor light emitting device was calculated by simulation. As a specific condition, the wavelength conversion member 4 was composed of the phosphor 4a and the silicone resin as the resin 4c without including the barium fluoride as the light diffusion element 4b in the wavelength conversion member 4 in the sample 6-1. The wavelength conversion members 4 of the samples 6-2 to 6-20 contain barium fluoride as the light diffusing element 4b, and the wavelength converting members are converted from the phosphor 4a, the light diffusing element 4b, and the silicone resin as the resin 4c. 4, the content of the light diffusing element 4b was increased as the sample number increased, and the volume fraction (vol%) of the light diffusing element 4b was increased.
 また、第6試料群のシミュレーションにおいては、光拡散要素4bにフッ化バリウム、樹脂4cにシリコーン樹脂を想定したため、測定温度20℃で450nmにおける屈折率として、光拡散要素4bは1.48、樹脂4cは1.40とした。また、光拡散要素4bの密度を4.9g/cm、樹脂4cの密度を1.0g/cmとした。更に、波長変換部材4自体の厚み(すなわち、樹脂4cの厚み)を1.00mmとした。 In the simulation of the sixth sample group, since the light diffusion element 4b is assumed to be barium fluoride and the resin 4c is assumed to be a silicone resin, the light diffusion element 4b is 1.48 as a refractive index at a measurement temperature of 20 ° C. and 450 nm. 4c was set to 1.40. In addition, the density of the light diffusing element 4b was 4.9 g / cm 3 and the density of the resin 4c was 1.0 g / cm 3 . Furthermore, the thickness of the wavelength conversion member 4 itself (that is, the thickness of the resin 4c) was set to 1.00 mm.
 以下の表8に、各試料(半導体発光装置1)における「光拡散要素4bの体積分率(vol%)」、「屈折率差×波長変換部材4自体の厚み×光拡散要素4bの体積分率」、「蛍光体4aの使用濃度(wt%)」、「蛍光体4aの使用濃度の減少率(%)」、「発光効率(lm/W)」、及び「発光効率の維持率(%)」を示す。なお、「蛍光体4aの使用濃度の減少率(%)」及び「発光効率の維持率(%)」とは、表3における定義と同一である。 Table 8 below shows “volume fraction of light diffusing element 4b (vol%)”, “difference in refractive index × thickness of wavelength conversion member 4 itself × volume of light diffusing element 4b” in each sample (semiconductor light emitting device 1). Rate "," use concentration of phosphor 4a (wt%) "," decrease rate of use concentration of phosphor 4a (%) "," emission efficiency (lm / W) ", and" emission efficiency maintenance rate (%) ) ". The “decrease rate (%) of use concentration of phosphor 4a” and “maintenance rate (%) of luminous efficiency” are the same as those defined in Table 3.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表8示すように、第6試料群においては、光拡散要素と母材の屈折率差×光変換部材の厚み×光拡散要素の体積分率の値が0.760において、蛍光体4aの使用濃度を80.8%まで減少させることができ、また、発光効率の維持率が92.0%であった。 As shown in Table 8, in the sixth sample group, when the refractive index difference between the light diffusing element and the base material × the thickness of the light conversion member × the volume fraction of the light diffusing element is 0.760, the phosphor 4a is used. The concentration could be reduced to 80.8%, and the luminous efficiency maintenance rate was 92.0%.
 また、光拡散要素と母材の屈折率差×光変換部材の厚み×光拡散要素の体積分率の値が1.5を超えると、蛍光体4aの使用濃度の減少比率は85.0%を超えるが、発光効率の維持率が90%未満になることがわかった。しかしながら、この場合においても、一般的に良好な特性を得ることができる発光効率の維持率の値(70%以上)を確保することができている。 Further, when the value of the refractive index difference between the light diffusing element and the base material × the thickness of the light conversion member × the volume fraction of the light diffusing element exceeds 1.5, the reduction rate of the use concentration of the phosphor 4a is 85.0%. However, it was found that the maintenance ratio of the luminous efficiency was less than 90%. However, even in this case, it is possible to ensure a value (70% or more) of the luminous efficiency maintenance rate that can generally obtain good characteristics.
 表3乃至表8の結果に基づいて、第1試料群から第6試料群までの各試料における、「(光拡散要素4bと樹脂4cとの屈折率差の絶対値)×(波長変換部材4自体の厚み)×(光拡散要素4bの体積分率)」と「(蛍光体4aの使用濃度)×(波長変換部材4自体の厚み)」と関係、及び、「(光拡散要素4bと樹脂4cとの屈折率差の絶対値)×(波長変換部材4自体の厚み)×(光拡散要素4bの体積分率)」と「発光効率」との関係をグラフにした。図5が前者を表すグラフであり、図6が後者を表すグラフである。 Based on the results of Tables 3 to 8, “(absolute value of refractive index difference between light diffusing element 4b and resin 4c) × (wavelength conversion member 4) in each sample from the first sample group to the sixth sample group. Relationship between “thickness of itself” × (volume fraction of light diffusing element 4b) ”and“ (concentration of phosphor 4a) × (thickness of wavelength converting member 4 itself) ”and“ (light diffusing element 4b and resin) The relationship between the absolute value of the difference in refractive index with respect to 4c) × (the thickness of the wavelength conversion member 4 itself) × (the volume fraction of the light diffusing element 4b) ”and“ luminous efficiency ”is graphed. FIG. 5 is a graph representing the former, and FIG. 6 is a graph representing the latter.
 上述したシミュレーションの結果から、波長変換部材4に光拡散要素4bを含有されていない試料と比較した場合に、70%以上の発光効率の維持率を確保しつつ、蛍光体4aの含有率を低減できる条件として、以下の数式(2)に示す条件を見出した。 As a result of the above-described simulation, when compared with a sample that does not contain the light diffusing element 4b in the wavelength conversion member 4, the content rate of the phosphor 4a is reduced while securing a maintenance efficiency of 70% or higher. As a possible condition, the following condition (2) was found.
 0.01 ≦ |(光拡散要素の屈折率)-(母材の屈折率)|×(波長変換部材の厚み[mm])×(光拡散要素の体積分率[vol%]) ≦ 1.0   (2) 0.01 ≦ | (refractive index of light diffusing element) − (refractive index of base material) | × (thickness of wavelength conversion member [mm]) × (volume fraction of light diffusing element [vol%]) ≦ 1. 0 (2)
 また、上述したシミュレーションの結果から、波長変換部材4に光拡散要素4bを含有されていない試料と比較した場合に、80%以上の発光効率の維持率を確保しつつ、蛍光体4aの含有率を低減できる条件として、以下の数式(3)に示す条件を見出した。 Moreover, when compared with the sample which does not contain the light-diffusion element 4b in the wavelength conversion member 4 from the result of the simulation mentioned above, content rate of the fluorescent substance 4a is ensured while ensuring the maintenance rate of the luminous efficiency of 80% or more. The condition shown in the following mathematical formula (3) was found as a condition for reducing the above.
 0.01 ≦ |(光拡散要素の屈折率)-(母材の屈折率)|×(波長変換部材の厚み[mm])×(光拡散要素の体積分率[vol%]) ≦ 0.6   (3) 0.01 ≦ | (refractive index of light diffusing element) − (refractive index of base material) | × (thickness of wavelength conversion member [mm]) × (volume fraction of light diffusing element [vol%]) ≦ 0. 6 (3)
 更に、上述したシミュレーションの結果から、波長変換部材4に光拡散要素4bを含有されていない試料と比較した場合に、90%以上の発光効率の維持率を確保しつつ、蛍光体4aの含有率を低減できる条件として、以下の数式(4)に示す条件を見出した。 Furthermore, from the result of the simulation described above, the content rate of the phosphor 4a is ensured while maintaining a luminous efficiency maintenance rate of 90% or more when compared with a sample in which the wavelength conversion member 4 does not contain the light diffusion element 4b. The condition shown in the following mathematical formula (4) was found as a condition for reducing the above.
 0.01 ≦ |(光拡散要素の屈折率)-(母材の屈折率)|×(波長変換部材の厚み[mm])×(光拡散要素の体積分率[vol%]) ≦ 0.2   (4) 0.01 ≦ | (refractive index of light diffusing element) − (refractive index of base material) | × (thickness of wavelength conversion member [mm]) × (volume fraction of light diffusing element [vol%]) ≦ 0. 2 (4)
 また、上述した数式(2)乃至(4)のいずれかを満たすことを前提として、上述したシミュレーションの結果に基づくと、光拡散要素4bには屈折率が1.0以上1.9以下ものを選択し、樹脂4cには屈折率が1.3以上1.7以下のものを選択することが好ましい。そして、光拡散要素4bの屈折率と母材である樹脂4cの屈折率との差は、0.07以上であることが好ましく、より好ましくは0.10以上である。 Moreover, based on the result of the simulation described above on the assumption that any one of the above-described mathematical formulas (2) to (4) is satisfied, the light diffusion element 4b has a refractive index of 1.0 or more and 1.9 or less. It is preferable to select a resin 4c having a refractive index of 1.3 or more and 1.7 or less. The difference between the refractive index of the light diffusing element 4b and the refractive index of the resin 4c as the base material is preferably 0.07 or more, more preferably 0.10 or more.
 次に、上述した数式(2)、並びに光拡散要素4b及び樹脂4cの屈折率の条件を満たす場合には、蛍光体4aの減少比率が3.0%~93%であることがわかった。当該数値は、試料2-4及び試料4-16のシミュレーション結果に基づいている。これは、試料2-4の「(光拡散要素4bと樹脂4cとの屈折率差の絶対値)×(波長変換部材4自体の厚み)×(光拡散要素4bの体積分率)」が、上述した数式(2)の下限値を満たす最小値であり、試料4-16の「(光拡散要素4bと樹脂4cとの屈折率差の絶対値)×(波長変換部材4自体の厚み)×(光拡散要素4bの体積分率)」が、上述した数式(2)の上限値を満たす最大値であるからである。 Next, it was found that the reduction ratio of the phosphor 4a was 3.0% to 93% when satisfying the above-described formula (2) and the refractive index conditions of the light diffusing element 4b and the resin 4c. The numerical value is based on the simulation results of Sample 2-4 and Sample 4-16. This is because “(absolute value of refractive index difference between light diffusing element 4b and resin 4c) × (thickness of wavelength converting member 4 itself) × (volume fraction of light diffusing element 4b)” of sample 2-4 is The minimum value satisfying the lower limit value of the above-described formula (2), and “(absolute value of refractive index difference between the light diffusing element 4b and the resin 4c) × (thickness of the wavelength conversion member 4 itself) × This is because “(the volume fraction of the light diffusing element 4 b)” is the maximum value that satisfies the upper limit value of the mathematical formula (2) described above.
 また、上述した数式(3)、並びに光拡散要素4b及び樹脂4cの屈折率の条件を満たす場合には、蛍光体4aの減少比率が3.0%~91%であることがわかった。当該数値は、試料2-4及び試料5-7のシミュレーション結果に基づいている。これは、試料2-4の「(光拡散要素4bと樹脂4cとの屈折率差の絶対値)×(波長変換部材4自体の厚み)×(光拡散要素4bの体積分率)」が、上述した数式(3)の下限値を満たす最小値であり、試料5-7の「(光拡散要素4bと樹脂4cとの屈折率差の絶対値)×(波長変換部材4自体の厚み)×(光拡散要素4bの体積分率)」が、上述した数式(3)の上限値を満たす最大値であるからである。 Further, it was found that the reduction ratio of the phosphor 4a is 3.0% to 91% when the above-described mathematical formula (3) and the refractive index conditions of the light diffusing element 4b and the resin 4c are satisfied. The numerical value is based on the simulation results of Sample 2-4 and Sample 5-7. This is because “(absolute value of refractive index difference between light diffusing element 4b and resin 4c) × (thickness of wavelength converting member 4 itself) × (volume fraction of light diffusing element 4b)” of sample 2-4 is This is the minimum value satisfying the lower limit value of the mathematical formula (3), and “(absolute value of refractive index difference between the light diffusing element 4b and the resin 4c) × (thickness of the wavelength conversion member 4 itself) × of the sample 5-7 × This is because “(the volume fraction of the light diffusing element 4 b)” is the maximum value that satisfies the upper limit value of the mathematical formula (3) described above.
 更に、上述した数式(4)、並びに光拡散要素4b及び樹脂4cの屈折率の条件を満たす場合には、蛍光体4aの減少比率が3.0%~86%であることがわかった。当該数値は、試料2-4及び試料5-4のシミュレーション結果に基づいている。これは、試料2-4の「(光拡散要素4bと樹脂4cとの屈折率差の絶対値)×(波長変換部材4自体の厚み)×(光拡散要素4bの体積分率)」が、上述した数式(4)の下限値を満たす最小値であり、試料5-4の「(光拡散要素4bと樹脂4cとの屈折率差の絶対値)×(波長変換部材4自体の厚み)×(光拡散要素4bの体積分率)」が、上述した数式(4)の上限値を満たす最大値であるからである。 Furthermore, it was found that the reduction ratio of the phosphor 4a is 3.0% to 86% when the above-described formula (4) and the refractive index conditions of the light diffusing element 4b and the resin 4c are satisfied. The numerical value is based on the simulation results of Sample 2-4 and Sample 5-4. This is because “(absolute value of refractive index difference between light diffusing element 4b and resin 4c) × (thickness of wavelength converting member 4 itself) × (volume fraction of light diffusing element 4b)” of sample 2-4 is The minimum value satisfying the lower limit value of the above-described mathematical formula (4), and “(absolute value of refractive index difference between light diffusing element 4b and resin 4c) × (thickness of wavelength conversion member 4 itself) × of sample 5-4 × This is because “(volume fraction of the light diffusing element 4 b)” is the maximum value that satisfies the upper limit value of the above-described equation (4).
 以上のことから、上述した数式(4)、並びに光拡散要素4b及び樹脂4cの屈折率の条件を満たせば、光拡散要素4bを含まないで、同一色度の出射光を放射する波長変換部材4を作成した場合における蛍光体4aの含有濃度[wt%]を基準として、蛍光体4aの含有濃度[wt%]の減少比率が必ず3.0%~86%の範囲内となり、蛍光体4aの使用量を低減しつつも、半導体発光装置1の発光効率の維持率を90%以上に確保することができる。 From the above, the wavelength conversion member that emits the emitted light of the same chromaticity without including the light diffusing element 4b as long as the above formula (4) and the refractive index conditions of the light diffusing element 4b and the resin 4c are satisfied. 4, the decrease rate of the content concentration [wt%] of the phosphor 4a is always within the range of 3.0% to 86% with reference to the content concentration [wt%] of the phosphor 4a. The retention rate of the light emission efficiency of the semiconductor light emitting device 1 can be ensured to be 90% or more while reducing the use amount of the light emitting device.
 また、上述した数式(3)、並びに光拡散要素4b及び樹脂4cの屈折率の条件を満たせば、発光効率の維持率の最低値が80%まで低下するが、減少比率の範囲が3.0%~91%まで拡大し、蛍光体4aの使用量を低減することができる。更に、また、上述した数式(2)、並びに光拡散要素4b及び樹脂4cの屈折率の条件を満たせば、発光効率の維持率の最低値が70%まで低下するが、減少比率の範囲が3.0%~93%まで拡大し、蛍光体4aの使用量を低減することができる。なお、発光効率の維持率が70%以上であれば、良好な特性を有する発光装置を提供することができると考えられ、好ましくは80%以上、より好ましくは90%以上、特に好ましくは95%以上である。 Further, if the above formula (3) and the refractive index conditions of the light diffusing element 4b and the resin 4c are satisfied, the minimum value of the luminous efficiency maintenance ratio is reduced to 80%, but the range of the reduction ratio is 3.0. % To 91%, and the amount of phosphor 4a used can be reduced. Furthermore, if the above-described mathematical formula (2) and the refractive index conditions of the light diffusing element 4b and the resin 4c are satisfied, the minimum value of the luminous efficiency maintenance ratio decreases to 70%, but the range of the reduction ratio is 3 Thus, the amount of phosphor 4a used can be reduced. Note that it is considered that a light emitting device having good characteristics can be provided if the maintenance ratio of the luminous efficiency is 70% or more, preferably 80% or more, more preferably 90% or more, and particularly preferably 95%. That's it.
 また、図5における横軸の値(x)である「(光拡散要素4bと樹脂4cとの屈折率差の絶対値)×(波長変換部材4自体の厚み)×(光拡散要素4bの体積分率)」と、図5における縦軸の値(y)である「(蛍光体4aの使用濃度)×(波長変換部材4自体の厚み)」とを用いて、図5における各試料の傾き(dy/dx)について評価すると、以下の表9の結果が得られた。具体的な傾きの算出方法として、試料ごとに、次の試料番号に対する図5の横軸の値の差(dx)及び縦軸の値の差(dy)を算出し、縦軸の値の差(dy)を横軸の値の差(dx)で除して傾き(dy/dx)を算出した。ここで、縦軸の値の差(dy)については、実際の「(蛍光体4aの使用濃度)×(波長変換部材4自体の厚み)」の差ではなく、蛍光体使用濃度の減少率(%)の差に置き換えている。そして、各試料群のなかで、最大の試料番号が付されている試料(試料1-20、試料2-19、試料3-20、試料4-19、試料5-7、試料6-20)については、傾きを算出していない。なお、傾きがマイナスになる値については、一律してゼロ「0」としている。 Further, “(absolute value of the difference in refractive index between the light diffusing element 4b and the resin 4c) × (thickness of the wavelength conversion member 4 itself) × (volume of the light diffusing element 4b” is the value (x) on the horizontal axis in FIG. 5), and the value (y) on the vertical axis in FIG. 5 is “(concentration used of phosphor 4a) × (thickness of wavelength converting member 4 itself)”. When evaluated for (dy / dx), the results in Table 9 below were obtained. As a specific method of calculating the inclination, for each sample, the difference (dx) in the horizontal axis in FIG. 5 and the difference (dy) in the vertical axis in FIG. The slope (dy / dx) was calculated by dividing (dy) by the difference (dx) between the values on the horizontal axis. Here, the difference (dy) in the value on the vertical axis is not the actual difference of “(use concentration of phosphor 4a) × (thickness of wavelength conversion member 4 itself)”, but the decrease rate of use concentration of phosphor ( %) Difference. In each sample group, the sample with the largest sample number (Sample 1-20, Sample 2-19, Sample 3-20, Sample 4-19, Sample 5-7, Sample 6-20) For, the slope is not calculated. Note that values with negative inclinations are uniformly set to zero “0”.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 ここで、表9に示すように、上述した数式(4)の下限値を満たす最小値を有する試料2-4の傾きは447であり、上述した数式(4)の上限値を満たす最大値を有する試料5-4の傾きは19であった。このことから、傾きが比較的小さい値、すなわち傾きが適度になだらかである範囲では、波長変換部材の厚みの変化や蛍光体使用濃度の変化による、出射される光の色度のバラツキを抑制することができる。上述した数式(4)を図5における傾きを用いて示すと、以下の数式(5)として示すことができる。 Here, as shown in Table 9, the slope of the sample 2-4 having the minimum value satisfying the lower limit value of the above-described equation (4) is 447, and the maximum value satisfying the upper limit value of the above-described equation (4) is The slope of Sample 5-4 that it had was 19. For this reason, in the range where the slope is relatively small, that is, in the range where the slope is moderately gentle, the variation in the chromaticity of the emitted light due to the change in the thickness of the wavelength conversion member or the change in the phosphor concentration is suppressed. be able to. When Expression (4) described above is shown using the slope in FIG. 5, it can be expressed as the following Expression (5).
 19 ≦ dy/dx ≦ 447   (5) 19 ≤ dy / dx ≤ 447 (5)
 但し、上記数式(5)において、xは|(光拡散要素の屈折率)-(母材の屈折率)|×(波長変換部材の厚み[mm])×(光拡散要素の体積分率[vol%])を表し、yは蛍光体4aの使用濃度の減少比率を表す。 In the above formula (5), x is | (refractive index of the light diffusing element) − (refractive index of the base material) | × (thickness [mm] of the wavelength conversion member) × (volume fraction of the light diffusing element [ vol%]), and y represents the decreasing rate of the concentration of the phosphor 4a used.
 更に、図5及び表9を総合的に勘案すると、第1試料群、第3試料群、第4試料群、第5試料群のいずれにおいても、「(光拡散要素4bと樹脂4cとの屈折率差の絶対値)×(波長変換部材4自体の厚み)×(光拡散要素4bの体積分率)」の値(図5における横軸の値(x))が0~0.02の範囲内においては、「(蛍光体4aの使用濃度)×(波長変換部材4自体の厚み)」の値(図5における縦軸の値(y))が特に急峻に減少し、図5における横軸の値(x)が0.02~0.04の範囲内においては、「(蛍光体4aの使用濃度)×(波長変換部材4自体の厚み)」の値(図5における縦軸の値(y))が急峻に減少し、図5における横軸の値(x)が0.04~0.05の範囲内においては、「(蛍光体4aの使用濃度)×(波長変換部材4自体の厚み)」の値(図5における縦軸の値(y))が、上述した範囲の減少率ほどではないが減少している。一方、図5における横軸の値(x)が0.05以上の範囲においては、図5における縦軸の値(y)がなだらかに減少しているか、又はほぼ減少していない。 Furthermore, considering FIG. 5 and Table 9 comprehensively, in all of the first sample group, the third sample group, the fourth sample group, and the fifth sample group, “(refraction of the light diffusing element 4b and the resin 4c”. The value of (absolute value of rate difference) × (thickness of wavelength conversion member 4 itself) × (volume fraction of light diffusing element 4b) ”(value (x) on the horizontal axis in FIG. 5) is in the range of 0 to 0.02. In FIG. 5, the value of “(concentration of phosphor 4a) × (thickness of wavelength converting member 4 itself)” (value (y) on the vertical axis in FIG. 5) decreases particularly steeply, and the horizontal axis in FIG. Is within the range of 0.02 to 0.04, the value of “(concentration of phosphor 4a) × (thickness of wavelength converting member 4 itself)” (the value on the vertical axis in FIG. 5) y)) sharply decreases, and when the value (x) on the horizontal axis in FIG. 5 is in the range of 0.04 to 0.05, “(the concentration of phosphor 4a used) × ( The value of “the thickness of the wavelength conversion member 4 itself” (the value (y) on the vertical axis in FIG. 5) is decreased, though not as much as the decrease rate in the above-described range. On the other hand, in the range where the value (x) on the horizontal axis in FIG. 5 is 0.05 or more, the value (y) on the vertical axis in FIG. 5 is gradually decreasing or almost not decreasing.
 このことから、図5における横軸の値(x)である「(光拡散要素4bと樹脂4cとの屈折率差の絶対値)×(波長変換部材4自体の厚み)×(光拡散要素4bの体積分率)」の値を0.02以上とすることにより、0.02未満の場合と比較して、蛍光体4aの含有量のばらつきに起因する半導体発光装置1の発光効率のばらつきを低減することができる。また、図5における横軸の値(x)の値を0.04以上にすることにより、蛍光体4aの含有量のばらつきに起因する半導体発光装置1の発光効率のばらつきをより低減することができる。更には、図5における横軸の値(x)の値を0.05以上とすることにより、蛍光体4aの含有量のばらつきに起因する半導体発光装置1の発光効率のばらつきを、0.05未満の場合と比較して確実に低減することができる。このことから、ひいては、半導体発光素子から放射される光の変換効率が変化することから、半導体発光素子から放射される光(青色光)と波長変換部材によって変換された光(黄色光)とが混合して半導体発光装置から放射される光(白色光)の色度のばらつきを低減することができる。従って、波長変換部材4は、|(光拡散要素の屈折率)-(母材の屈折率)|×(波長変換部材の厚み[mm])×(光拡散要素の体積分率[vol%])の値が0.02以上であることが好ましく、より好ましくは当該値が0.04以上であり、特に好ましくは以下の数式(6)を満たすことである。 From this, “(absolute value of refractive index difference between light diffusing element 4b and resin 4c) × (thickness of wavelength converting member 4 itself) × (light diffusing element 4b)” is the value (x) on the horizontal axis in FIG. By setting the value of “volume fraction” of 0.02 or more to a value less than 0.02, the variation in the luminous efficiency of the semiconductor light emitting device 1 due to the variation in the content of the phosphor 4a is reduced. Can be reduced. Further, by setting the value (x) on the horizontal axis in FIG. 5 to 0.04 or more, it is possible to further reduce the variation in the light emission efficiency of the semiconductor light emitting device 1 due to the variation in the content of the phosphor 4a. it can. Furthermore, by setting the value (x) on the horizontal axis in FIG. 5 to be 0.05 or more, the variation in the light emission efficiency of the semiconductor light emitting device 1 due to the variation in the content of the phosphor 4a is 0.05. It can reduce reliably compared with the case of less than. As a result, the conversion efficiency of the light emitted from the semiconductor light emitting element changes, so that the light emitted from the semiconductor light emitting element (blue light) and the light converted by the wavelength conversion member (yellow light) Variation in chromaticity of light (white light) mixed and emitted from the semiconductor light emitting device can be reduced. Accordingly, the wavelength conversion member 4 has the following relationship: | (refractive index of light diffusing element) − (refractive index of base material) | × (thickness of wavelength converting member [mm]) × (volume fraction of light diffusing element [vol%] ) Is preferably 0.02 or more, more preferably the value is 0.04 or more, and particularly preferably, the following formula (6) is satisfied.
 0.05 ≦ |(光拡散要素の屈折率)-(母材の屈折率)|×(波長変換部材の厚み[mm])×(光拡散要素の体積分率[vol%]) ≦ 0.2   (6) 0.05 ≦≦ (refractive index of light diffusing element) − (refractive index of base material) | × (thickness of wavelength conversion member [mm]) × (volume fraction of light diffusing element [vol%]) ≦ 0. 2 (6)
 ここで、表9に示すように、試料1-7の傾き(dy/dx)が233であり、試料2-7の傾き(dy/dx)が399、試料4-5の傾き(dy/dx)が376、試料5-2の傾き(dy/dx)が176であった。これらの傾きを考慮して上述した数式(6)を図5における傾きを用いて示すと、以下の数式(7)として示すことができる。 Here, as shown in Table 9, the slope of the sample 1-7 (dy / dx) is 233, the slope of the sample 2-7 (dy / dx) is 399, and the slope of the sample 4-5 (dy / dx) ) Was 376, and the slope (dy / dx) of Sample 5-2 was 176. When the above equation (6) is shown using the gradient in FIG. 5 in consideration of these inclinations, it can be expressed as the following equation (7).
 400 ≦ dy/dx ≦ 447   (7) 400 ≤ dy / dx ≤ 447 (7)
 但し、上記数式(7)において、xは|(光拡散要素の屈折率)-(母材の屈折率)|×(波長変換部材の厚み[mm])×(光拡散要素の体積分率[vol%])を表し、yは蛍光体4aの使用濃度の減少比率を表す。 In the above formula (7), x is | (refractive index of light diffusing element) − (refractive index of base material) | × (thickness of wavelength conversion member [mm]) × (volume fraction of light diffusing element [ vol%]), and y represents the decreasing rate of the concentration of the phosphor 4a used.
 なお、上述した蛍光体4aも黄色光を拡散することもあるが、上述した数式において、光拡散要素4bに蛍光体4aを含めず、蛍光体4aを光拡散要素4bの一部として考慮しないものとする。 In addition, although the fluorescent substance 4a mentioned above may also diffuse yellow light, in the numerical formula mentioned above, the fluorescent substance 4a is not included in the light diffusion element 4b, and the fluorescent substance 4a is not considered as a part of the light diffusion element 4b. And
(実際の試料評価)
<実施例1-1、1-2>
 次に、本実施形態における半導体発光装置1について、蛍光体4aの混合比、及び蛍光体4aの使用濃度(wt%)を変更して、半導体発光装置1から放出される光の目標色度点(x、y)=(0.46、0.41)になるように調整した。そして、各半導体発光装置の発光効率を実際に測定し、当該測定結果の評価を行った。なお、配線基板2としては、反射率90%以上のホワイトアルミナを用いた。当該評価結果を、表10を参照しつつ詳細に説明する。
(Actual sample evaluation)
<Examples 1-1 and 1-2>
Next, with respect to the semiconductor light emitting device 1 in the present embodiment, the target chromaticity point of light emitted from the semiconductor light emitting device 1 is changed by changing the mixing ratio of the phosphors 4a and the use concentration (wt%) of the phosphors 4a. Adjustments were made so that (x, y) = (0.46, 0.41). And the luminous efficiency of each semiconductor light-emitting device was actually measured, and the said measurement result was evaluated. As the wiring board 2, white alumina having a reflectance of 90% or more was used. The evaluation result will be described in detail with reference to Table 10.
 波長変換部材4を作製するために用いた実施例1-1、1-2の樹脂組成物の原材料は以下の通りである。
光拡散要素4b:ポリメチルシルセスキオキサン球状粒子、モメンティブ社製、商品名「トスパール120」、平均粒径2μm、屈折率1.42、密度1.3g/cm
樹脂4c:ポリカーボネート樹脂(ビスフェノールAを出発原料として界面重合法で製造したポリカーボネート樹脂のグラニュール)、三菱エンジニアリングプラスチックス社製、商品名「ユーピロンS-3000FN」、粘度平均分子量21,000、密度=1.2g/cm3(23℃)、屈折率1.58
蛍光体4a:三菱化学社製の蛍光体、YAG(黄色蛍光体)、CASN(赤色蛍光体)、SCASN(短波長赤色蛍光体)、G-YAG(緑色蛍光体)の混合物。混合比は、(YAG+G-YAG):(CASN+SCASN)=8:2である。
The raw materials of the resin compositions of Examples 1-1 and 1-2 used for producing the wavelength conversion member 4 are as follows.
Light diffusing element 4b: polymethylsilsesquioxane spherical particles, manufactured by Momentive, trade name “Tospearl 120”, average particle size 2 μm, refractive index 1.42, density 1.3 g / cm 3
Resin 4c: Polycarbonate resin (a polycarbonate resin granule produced by an interfacial polymerization method using bisphenol A as a starting material), manufactured by Mitsubishi Engineering Plastics Co., Ltd., trade name “Iupilon S-3000FN”, viscosity average molecular weight 21,000, density = 1.2 g / cm 3 (23 ° C.), refractive index 1.58
Phosphor 4a: a mixture of a phosphor manufactured by Mitsubishi Chemical Corporation, YAG (yellow phosphor), CASN (red phosphor), SCASN (short wavelength red phosphor), and G-YAG (green phosphor). The mixing ratio is (YAG + G−YAG) :( CASN + SCASN) = 8: 2.
 波長変換部材4に使用した樹脂組成物の製造条件及び波長変換部材4の成形条件は以下の通りである。 The manufacturing conditions of the resin composition used for the wavelength conversion member 4 and the molding conditions of the wavelength conversion member 4 are as follows.
 蛍光体4a、光拡散要素4b、樹脂4cを表10に記載の所定量配合し、タンブラーミキサーで混合後、40mm単軸押出機(いすず加工機社製、フルフライトスクリュー)を用いて、シリンダー温度280℃設定、スクリュー回転数75rpm、生産速度18kg/h、真空ベント0.08MPaの条件にて溶融混練し、樹脂組成物ペレットを得た。次いで得られたペレットを用い、射出成形機(日精社製「NS40」)にて、シリンダー温度280℃設定、金型温度80℃、射出保圧時間3sec、冷却時間10secの条件で1mm厚の波長変換部材4を作製した。 The phosphor 4a, the light diffusing element 4b, and the resin 4c are blended in predetermined amounts shown in Table 10, mixed with a tumbler mixer, and then cylinder temperature using a 40 mm single-screw extruder (made by Isuzu Processing Co., Ltd., full flight screw). Melting and kneading were performed under the conditions of 280 ° C. setting, screw rotation speed 75 rpm, production rate 18 kg / h, and vacuum vent 0.08 MPa to obtain resin composition pellets. Next, using the obtained pellets, an injection molding machine (“NS40” manufactured by Nissei Co., Ltd.) uses a cylinder temperature of 280 ° C., a mold temperature of 80 ° C., an injection holding time of 3 sec, and a cooling time of 10 sec. The conversion member 4 was produced.
 以下の表10に、各試料(半導体発光装置1)における「光拡散要素4bの体積分率(vol%)」、「屈折率差×波長変換部材4自体の厚み×光拡散要素4bの体積分率」、「蛍光体4aの使用濃度(wt%)」、及び「発光効率(lm/W)」を示す。 Table 10 below shows “volume fraction of light diffusing element 4b (vol%)”, “difference in refractive index × thickness of wavelength converting member 4 itself × volume of light diffusing element 4b” in each sample (semiconductor light emitting device 1). "Rate", "Used concentration of phosphor 4a (wt%)", and "Luminescence efficiency (lm / W)".
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表10に示すように、蛍光体4aの使用濃度が変わったとしても、上述した数式(2)乃至(4)のいずれかの条件を満たせば、比較的に高い発光効率が得られることがわかった。なお、本評価においては、蛍光体の使用濃度(wt%)が減少すると、発光効率が増加するような結果となっており、上述したシミュレーションの結果と異なっている。これは、半導体発光装置1の発光効率が光拡散要素4bの添加以外の他の要因(例えば、蛍光体4aの混合比率)の影響を受けるためである。 As shown in Table 10, it can be seen that even if the concentration of the phosphor 4a used is changed, a relatively high luminous efficiency can be obtained if any one of the above-described formulas (2) to (4) is satisfied. It was. In this evaluation, when the use concentration (wt%) of the phosphor is decreased, the light emission efficiency is increased, which is different from the simulation result described above. This is because the luminous efficiency of the semiconductor light emitting device 1 is affected by other factors (for example, the mixing ratio of the phosphor 4a) other than the addition of the light diffusing element 4b.
<実施例2-1~2-4、比較例1>
 本実施形態における半導体発光装置1について、光拡散要素4bの添加の有無による蛍光体の使用濃度、及び半導体発光装置の発光効率の変化を評価した。半導体発光装置1から放出される光は、目標色度点(x、y)=(0.26、0.25)になるように調整した。そして、各半導体発光装置の発光効率を実際に測定し、当該測定結果の評価を行った。なお、配線基板2としては、反射率90%以上のホワイトアルミナを用いた。当該評価結果を、表11を参照しつつ詳細に説明する。
<Examples 2-1 to 2-4, Comparative Example 1>
With respect to the semiconductor light emitting device 1 in the present embodiment, the usage concentration of the phosphor and the change in the light emission efficiency of the semiconductor light emitting device with and without the addition of the light diffusing element 4b were evaluated. The light emitted from the semiconductor light emitting device 1 was adjusted so that the target chromaticity point (x, y) = (0.26, 0.25). And the luminous efficiency of each semiconductor light-emitting device was actually measured, and the said measurement result was evaluated. As the wiring board 2, white alumina having a reflectance of 90% or more was used. The evaluation result will be described in detail with reference to Table 11.
 波長変換部材4を作製するために用いた実施例2-1~2-4、及び比較例1の樹脂組成物の原材料は以下の通りである。
光拡散要素4b:アルミナ粒子、マイクロン社製、商品名「AX3-32」、平均粒径3μm、屈折率1.78、密度4.0g/cm
樹脂4c:シリコーン樹脂、東レ・ダウコーニング社製、商品名「OE6336A/B」、密度=1.0g/cm3(23℃)、屈折率1.42
蛍光体4a:三菱化学社製の蛍光体、YAG(黄色蛍光体)
The raw materials of the resin compositions of Examples 2-1 to 2-4 and Comparative Example 1 used for manufacturing the wavelength conversion member 4 are as follows.
Light diffusion element 4b: Alumina particles, manufactured by Micron, trade name “AX3-32”, average particle size 3 μm, refractive index 1.78, density 4.0 g / cm 3
Resin 4c: Silicone resin, manufactured by Toray Dow Corning, trade name “OE6336A / B”, density = 1.0 g / cm 3 (23 ° C.), refractive index 1.42
Phosphor 4a: a phosphor manufactured by Mitsubishi Chemical Corporation, YAG (yellow phosphor)
 波長変換部材4に使用した樹脂組成物の製造条件及び波長変換部材4の成形条件は以下の通りである。 The manufacturing conditions of the resin composition used for the wavelength conversion member 4 and the molding conditions of the wavelength conversion member 4 are as follows.
 蛍光体4a、光拡散要素4b、樹脂4cを表11に記載の所定量配合(総重量10g)し、EME社製真空脱泡混練機V-mini300を用いて室温下、1200rpmで3分間脱泡混練し、蛍光体含有シリコーン樹脂組成物を得た。得られた樹脂組成物を62mmΦ厚み1mmとなるよう注型し、150℃5分、続いて200℃20分加熱硬化することで成形し、波長変換部材4を得た。 Phosphor 4a, light diffusing element 4b, and resin 4c were blended in the prescribed amounts shown in Table 11 (total weight 10 g), and defoamed at 1200 rpm for 3 minutes at room temperature using a vacuum defoaming kneader V-mini300 manufactured by EME. The mixture was kneaded to obtain a phosphor-containing silicone resin composition. The obtained resin composition was cast so as to have a diameter of 62 mm and a thickness of 1 mm, and was molded by heating and curing at 150 ° C. for 5 minutes and then at 200 ° C. for 20 minutes, whereby the wavelength conversion member 4 was obtained.
 以下の表11に、各試料(半導体発光装置1)における「光拡散要素4bの体積分率(vol%)」、「屈折率差×波長変換部材4自体の厚み×光拡散要素4bの体積分率」、「相対蛍光体使用量(比較例1を1.00とする)」、及び「相対光束値(比較例1を1.00とする)」を示す。 In Table 11 below, “volume fraction of light diffusing element 4b (vol%)”, “difference in refractive index × thickness of wavelength converting member 4 itself × volume of light diffusing element 4b” in each sample (semiconductor light emitting device 1). "Rate", "Relative phosphor usage (Comparative Example 1 is 1.00)", and "Relative luminous flux value (Comparative Example 1 is 1.00)".
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 光拡散要素の屈折率、光拡散要素の体積分率、及び母材の屈折率は、母材に光拡散要素が混入される前の状態であれば、各材料の量や、製造工程を把握することで、正確に(すなわち、真の値が)算出することができ、上述した数式を容易に用いることができる。一方、光拡散要素の屈折率、光拡散要素の体積分率、及び母材の屈折率は、母材に光拡散要素が混入された後の状態(すなわち、波長変換部材の状態)からは、正確に算出することは困難である。特に、光拡散要素の体積分率については、母材に光拡散要素が混入された後の状態から実際の光拡散要素の体積分率を算出することは不可能である。しかしながら、母材に光拡散要素が混入された後の状態であっても、以下のような方法により、光拡散要素の屈折率、光拡散要素の体積分率、及び母材の屈折率の真の値(実際の値)とほぼ同等の値を算出することができ、当該算出された値を上述した数式に当てはめることにより、対象となる波長変換部材(すなわち、母材に光拡散要素が混入された後の状態の部材)を検証及び評価することができる。 If the refractive index of the light diffusing element, the volume fraction of the light diffusing element, and the refractive index of the base material are in the state before the light diffusing element is mixed into the base material, the amount of each material and the manufacturing process are grasped. By doing so, it is possible to accurately calculate (that is, the true value), and it is possible to easily use the above-described mathematical expressions. On the other hand, the refractive index of the light diffusing element, the volume fraction of the light diffusing element, and the refractive index of the base material are from the state after the light diffusing element is mixed into the base material (that is, the state of the wavelength conversion member), It is difficult to calculate accurately. In particular, regarding the volume fraction of the light diffusing element, it is impossible to calculate the actual volume fraction of the light diffusing element from the state after the light diffusing element is mixed into the base material. However, even in a state after the light diffusing element is mixed into the base material, the refractive index of the light diffusing element, the volume fraction of the light diffusing element, and the refractive index of the base material are true by the following method. Value (actual value) can be calculated, and by applying the calculated value to the above formula, the target wavelength conversion member (that is, the light diffusion element is mixed in the base material) The member in a state after being applied) can be verified and evaluated.
 具体的な光拡散要素の検証及び評価は、母材の分析(母材の種類から屈折率を推定)、光拡散要素の分析(光拡散要素の種類から屈折率を推定)、及び光拡散要素の定量によって行われる。ここで、母材の定性分析は赤外分光法等によって行われ、光拡散要素の定性分析はSEM-EDS及び核磁気共鳴(NMR:Nuclear Magnetic Resonance)等によって行われ、光拡散要素の定量分析は断面SEM像の画像解析によって行われる。なお、母材及び光拡散要素の定性分析は、公知の方法、例えば、IR、又は熱分解GC/MS等により行うこともできる。 Specific verification and evaluation of the light diffusing element includes analysis of the base material (estimating the refractive index from the type of base material), analysis of the light diffusing element (estimating the refractive index from the type of the light diffusing element), and light diffusing element. It is done by quantitative determination. Here, the qualitative analysis of the base material is performed by infrared spectroscopy or the like, and the qualitative analysis of the light diffusing element is performed by SEM-EDS, nuclear magnetic resonance (NMR) or the like, and the quantitative analysis of the light diffusing element. Is performed by image analysis of a cross-sectional SEM image. The qualitative analysis of the base material and the light diffusing element can also be performed by a known method such as IR or pyrolysis GC / MS.
 母材の分析は、市販されている赤外分光装置、例えば、Thermo Fisher Scientific社製のNEXUS670及びNic-Planを使って行われる。得られたスペクトルとデータベースとの照合を行うことにより、母材の種類を特定することができる。そして、特定された母材の屈折率は、上述した表2を参照することによって決定することができる。 The analysis of the base material is performed using a commercially available infrared spectrometer, for example, NEXUS670 and Nic-Plan manufactured by Thermo Fisher Scientific. By comparing the obtained spectrum with the database, the type of the base material can be specified. Then, the refractive index of the identified base material can be determined by referring to Table 2 described above.
 光拡散要素の分析及び定量は、以下の手順に従って行われる。具体的には、日本電子製のクロスセクションポリッシャを用いて波長変換部材の断面を作成し、母材中に含まれている蛍光体及び光拡散要素のSEM像を撮影する。SEMには、例えばCarl Zeiss製のUltra55を用いてもよい。 The analysis and quantification of the light diffusion element is performed according to the following procedure. Specifically, a cross section of the wavelength conversion member is created using a cross section polisher manufactured by JEOL, and SEM images of phosphors and light diffusing elements contained in the base material are taken. For SEM, for example, Ultra 55 manufactured by Carl Zeiss may be used.
 ここで、蛍光体と光拡散要素との区別はSEM-EDS分析によって行われるが、X線回折(XRD:X-ray Diffraction)の定性分析により、波長変換部材に含まれる蛍光体の候補をあらかじめ絞り込んでおくと良い。光拡散要素の主要元素としてシリコンや酸素が観測された場合、その光拡散要素の種類はガラス又はシリコーン樹脂と推定される。光拡散要素の主要元素として炭素や酸素が観測された場合は有機系、その光拡散要素にはアクリル系あるいはスチレン系のいずれかの樹脂(表1参照)が使われていると推定される。ここで、アクリル系の場合には炭素に加えて酸素も検出されるが、スチレン系の場合には炭素のみが検出される(但し、不純物などの影響で微量の酸素は検出される可能性がある)。SEM-EDSで両者の区別が困難である場合はNMR等によって種類の特定を行う。なお、含有量が少ない等という理由により、NMR等を用いた蛍光体と光拡散要素との区別が困難な場合には、必要に応じて、溶解、濾別して行えばよい。そして、母材の屈折率の決定と同様に、特定された光拡散要素の屈折率は、上述した表1を参照することによって決定することができる。 Here, the phosphor and the light diffusing element are distinguished from each other by SEM-EDS analysis. By qualitative analysis of X-ray diffraction (XRD: X-ray Diffraction), the phosphor candidates included in the wavelength conversion member are previously determined. It is good to narrow down. When silicon or oxygen is observed as the main element of the light diffusing element, the type of the light diffusing element is presumed to be glass or silicone resin. When carbon or oxygen is observed as the main element of the light diffusing element, it is presumed that an organic resin is used, and an acrylic or styrene resin (see Table 1) is used for the light diffusing element. Here, oxygen is detected in addition to carbon in the case of acrylic, but only carbon is detected in the case of styrene (however, a trace amount of oxygen may be detected due to the influence of impurities, etc.) is there). If it is difficult to distinguish between the two by SEM-EDS, the type is identified by NMR or the like. When it is difficult to distinguish between a phosphor using NMR or the like and a light diffusing element due to a low content, etc., it may be dissolved and filtered as necessary. Then, similarly to the determination of the refractive index of the base material, the refractive index of the specified light diffusing element can be determined by referring to Table 1 described above.
 光拡散要素の定量は、SEMの二次電子像又は反射電子組成像の画像解析によって行われる。具体的には、先ず、二次電子像又は反射電子組成像のコントラスト(明るさ)から蛍光体との区別を行う。ここでは、二次電子像又は反射電子組成像のコントラストから光拡散要素を特定することができればよい。従って、全ての光拡散要素についてSEM-EDS分析を行う必要は無い。そして、撮影する断面SEM像の倍率は、観察される光拡散要素の最大粒子サイズ(直径)が画像ピクセルサイズの20倍以上になるようにする。例えば、最大直径が2μmの光拡散要素の粒子であれば、1ピクセル0.1μm以下の断面SEM像を撮影する。また、統計的な誤差を小さくするために、定量に用いる断面SEM像の枚数は光拡散要素の総数が1000個以上となるようにする。 Quantification of the light diffusing element is performed by image analysis of the secondary electron image or reflected electron composition image of the SEM. Specifically, first, the phosphor is distinguished from the contrast (brightness) of the secondary electron image or the reflected electron composition image. Here, it is sufficient that the light diffusing element can be specified from the contrast of the secondary electron image or the reflected electron composition image. Therefore, it is not necessary to perform SEM-EDS analysis on all light diffusing elements. The magnification of the cross-sectional SEM image to be photographed is set so that the maximum particle size (diameter) of the observed light diffusing element is 20 times or more the image pixel size. For example, in the case of a light diffusing element particle having a maximum diameter of 2 μm, a cross-sectional SEM image of 0.1 μm or less per pixel is taken. In order to reduce statistical errors, the number of cross-sectional SEM images used for quantification is set so that the total number of light diffusing elements is 1000 or more.
 次に、コンピューターによる二値化処理によって画像解析を行う。例えば、Media Cybernetics社製のImageProPlusを用いる。具体的には、断面SEM像の二値化処理によって波長変換部材中の光拡散要素の総数N[個]及び断面SEM像における光拡散要素の平均面積を抽出し、当該平均面積から円を仮定して算出した円の平均直径にπ/4を乗じて得られる値を光拡散要素の粒径D[μm]とし、上記計算に用いた断面SEM像の総面積をS[μm]とし、以下の数式(8)に従って光拡散要素の濃度(体積分率)C[vol%]が算出される。 Next, image analysis is performed by binarization processing by a computer. For example, ImageProPlus manufactured by Media Cybernetics is used. Specifically, the total number N of light diffusing elements in the wavelength conversion member and the average area of the light diffusing elements in the cross-sectional SEM image are extracted by binarizing the cross-sectional SEM image, and a circle is assumed from the average area. The value obtained by multiplying the average diameter of the circle calculated by π / 4 is the particle size D [μm] of the light diffusing element, and the total area of the cross-sectional SEM image used in the above calculation is S [μm 2 ], The concentration (volume fraction) C [vol%] of the light diffusing element is calculated according to the following formula (8).
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 そして、上述した母材の分析(母材の種類から屈折率を推定)、光拡散要素の分析(光拡散要素の種類から屈折率を推定)、及び光拡散要素の定量によって算出されることになる、光拡散要素の屈折率、光拡散要素の体積分率、及び母材の屈折率の値を上述した数式(2)乃至(4)及び(6)のいずれかに当てはめることにより、対象となる波長変換部材(すなわち、母材に光拡散要素が混入された後の状態の部材)を検証及び評価することができる。 It is calculated by the above-described analysis of the base material (estimating the refractive index from the type of base material), analysis of the light diffusing element (estimating the refractive index from the type of light diffusing element), and quantification of the light diffusing element. By applying the values of the refractive index of the light diffusing element, the volume fraction of the light diffusing element, and the refractive index of the base material to any of the above formulas (2) to (4) and (6), The wavelength conversion member (that is, the member in a state after the light diffusing element is mixed into the base material) can be verified and evaluated.
 上述した方法を用いて対象となる波長変換部材の検証及び評価を行った場合には、光拡散要素の屈折率、光拡散要素の体積分率、及び母材の屈折率の真の値を得た後に波長変換部材の検証及び評価を行った場合に対して、その誤差は1割~2割程度であった。誤差が1割である場合、上述した数式(2)乃至(4)及び(6)は、以下の数式(2’)乃至(4’)及び(6’)として表すことができる。 When the target wavelength conversion member is verified and evaluated using the method described above, the true values of the refractive index of the light diffusing element, the volume fraction of the light diffusing element, and the refractive index of the base material are obtained. In contrast, when the wavelength conversion member was verified and evaluated, the error was about 10% to 20%. When the error is 10%, the above formulas (2) to (4) and (6) can be expressed as the following formulas (2 ') to (4') and (6 ').
 0.01±0.001 ≦ |(光拡散要素の屈折率)-(母材の屈折率)|×(波長変換部材の厚み[mm])×(光拡散要素の体積分率[vol%]) ≦ 1.0±0.1   (2’) 0.01 ± 0.001 ≦ | (refractive index of light diffusing element) − (refractive index of base material) | × (thickness of wavelength conversion member [mm]) × (volume fraction of light diffusing element [vol%] ) ≤ 1.0 ± 0.1 (2 ')
 0.01±0.001 ≦ |(光拡散要素の屈折率)-(母材の屈折率)|×(波長変換部材の厚み[mm])×(光拡散要素の体積分率[vol%]) ≦ 0.6±0.06   (3’) 0.01 ± 0.001 ≦ | (refractive index of light diffusing element) − (refractive index of base material) | × (thickness of wavelength conversion member [mm]) × (volume fraction of light diffusing element [vol%] ) ≤ 0.6 ± 0.06 (3 ')
 0.01±0.001 ≦ |(光拡散要素の屈折率)-(母材の屈折率)|×(波長変換部材の厚み[mm])×(光拡散要素の体積分率[vol%]) ≦ 0.2±0.02   (4’) 0.01 ± 0.001 ≦ | (refractive index of light diffusing element) − (refractive index of base material) | × (thickness of wavelength conversion member [mm]) × (volume fraction of light diffusing element [vol%] ) ≤ 0.2 ± 0.02 (4 ')
 0.05±0.005 ≦ |(光拡散要素の屈折率)-(母材の屈折率)|×(波長変換部材の厚み[mm])×(光拡散要素の体積分率[vol%])
 ≦ 0.2±0.02   (6’)
0.05 ± 0.005 ≦ | (refractive index of light diffusing element) − (refractive index of base material) | × (thickness of wavelength conversion member [mm]) × (volume fraction of light diffusing element [vol%] )
≦ 0.2 ± 0.02 (6 ′)
 上記数式(2’)乃至(4’)及び(6’)から、上述した方法を用いて対象となる波長変換部材を検証及び評価を行ったとしても、その評価結果は真の値を用いて評価した結果と比較して何ら遜色がなく、真の値を用いた評価と同等レベルの優れた評価精度を実現できていることが分かった。 Even if the target wavelength conversion member is verified and evaluated using the above-described method from the above formulas (2 ′) to (4 ′) and (6 ′), the evaluation result uses a true value. It was found that there was no inferiority compared to the evaluation results, and an excellent evaluation accuracy equivalent to the evaluation using the true value was realized.
(本実施形態による効果)
 本実施形態の波長変換部材4においては、0.01 ≦ |(光拡散要素4bの屈折率)-(樹脂4cの屈折率)|×(波長変換部材4の厚み[mm])×(光拡散要素4bの体積分率[vol%]) ≦ 1.0の数式が満されているため、半導体発光装置1に設けられた際に半導体発光装置1の発光効率を低下させることなく、蛍光体4aの含有量を減少させてコスト低減を図ることができる。この場合に、|(光拡散要素4bの屈折率)-(樹脂4cの屈折率)|×(波長変換部材4の厚み[mm])×(光拡散要素4bの体積分率[vol%])の値が、0.6以下であると当該効果(発光効率の低下及びコスト低減)が顕著に奏され、0.2以下であると当該効果がより一層顕著に奏されることになる。
(Effects of this embodiment)
In the wavelength conversion member 4 of the present embodiment, 0.01 ≦ | (refractive index of the light diffusing element 4b) − (refractive index of the resin 4c) | × (thickness [mm] of the wavelength conversion member 4) × (light diffusion) Since the volume fraction of element 4b [vol%]) ≦ 1.0 is satisfied, the phosphor 4a does not decrease the luminous efficiency of the semiconductor light emitting device 1 when it is provided in the semiconductor light emitting device 1. The content can be reduced to reduce the cost. In this case, | (refractive index of light diffusing element 4b) − (refractive index of resin 4c) | × (thickness of wavelength conversion member 4 [mm]) × (volume fraction of light diffusing element 4b [vol%]) If the value is 0.6 or less, the effect (reduction in luminous efficiency and cost reduction) is remarkably exhibited, and if it is 0.2 or less, the effect is remarkably exhibited.
 また、本実施形態の波長変換部材4においては、|(光拡散要素4bの屈折率)-(樹脂4cの屈折率)|×(波長変換部材4の厚み[mm])×(光拡散要素4bの体積分率[vol%])の値が0.02以上である場合には、蛍光体4aの含有量のばらつきに起因する半導体発光装置1の発光効率のばらつきを低減することができる。この場合に、|(光拡散要素4bの屈折率)-(樹脂4cの屈折率)|×(波長変換部材4の厚み[mm])×(光拡散要素4bの体積分率[vol%])の値が、0.04以上であると当該効果(発光効率のばらつきの低減)が顕著に奏され、0.05以上であると当該効果がより一層顕著に奏されることになる。 In the wavelength conversion member 4 of the present embodiment, | (refractive index of the light diffusing element 4b) − (refractive index of the resin 4c) | × (thickness [mm] of the wavelength converting member 4) × (light diffusing element 4b). When the value of the volume fraction [vol%] is 0.02 or more, it is possible to reduce the variation in the luminous efficiency of the semiconductor light emitting device 1 due to the variation in the content of the phosphor 4a. In this case, | (refractive index of light diffusing element 4b) − (refractive index of resin 4c) | × (thickness of wavelength conversion member 4 [mm]) × (volume fraction of light diffusing element 4b [vol%]) If the value is 0.04 or more, the effect (reduction in variation in light emission efficiency) is remarkably exhibited, and if the value is 0.05 or more, the effect is remarkably exhibited.
 更に、本実施形態の半導体発光装置1においては、波長変換部材4が、0.01 ≦ |(光拡散要素4bの屈折率)-(樹脂4cの屈折率)|×(波長変換部材4の厚み[mm])×(光拡散要素4bの体積分率[vol%]) ≦ 1.0の数式を満たしているため、発光効率を低下させることなく、蛍光体4aの含有量を減少させてコスト低減を図ることができる。 Furthermore, in the semiconductor light emitting device 1 of the present embodiment, the wavelength conversion member 4 is 0.01 ≦≦ | (refractive index of the light diffusing element 4b) − (refractive index of the resin 4c) | × (thickness of the wavelength conversion member 4). [Mm]) × (volume fraction of light diffusing element 4b [vol%]) ≦ 1.0 satisfies the formula of 1.0, so the content of phosphor 4a is reduced without reducing the luminous efficiency and the cost Reduction can be achieved.
 そして、半導体発光装置1に含まれる波長変換部材4を検証及び評価する際、上述した数式における(光拡散要素の体積分率[vol%])を、波長変換部材4の断面SEM像の画像解析結果を用い、C=N×4π/3×(D/2)/(S×D)×100(ここで、C:光拡散要素4bの体積分率[vol%]、N:断面SEM像の二値化処理によって算出される波長変換部材4中の光拡散要素4bの総数[個]、D:断面SEM像の二値化処理によって算出される断面SEM像中の光拡散要素4bの平均面積から円を仮定して算出した円の平均直径にπ/4を乗じて得られる光拡散要素4bの粒径[μm]、S:断面SEM像の総面積[μm]である)の数式を用いて算出することにより、光拡散要素4bの体積分率の真の値を用いた検証及び評価の場合と同等の高精度な検証及び評価の実現が可能になる。 Then, when verifying and evaluating the wavelength conversion member 4 included in the semiconductor light emitting device 1, (the volume fraction of the light diffusing element [vol%]) in the above-described mathematical formula is used as the image analysis of the cross-sectional SEM image of the wavelength conversion member 4. Using the results, C = N × 4π / 3 × (D / 2) 3 / (S × D) × 100 (where C: volume fraction [vol%] of light diffusion element 4b, N: cross-sectional SEM image) The total number of light diffusing elements 4b in the wavelength conversion member 4 calculated by the binarization process of [D]: D: average of the light diffusing elements 4b in the cross-sectional SEM image calculated by the binarization process of the cross-sectional SEM image The particle diameter [μm] of the light diffusing element 4b obtained by multiplying the average diameter of the circle calculated from the area by assuming a circle by π / 4, and S: the total area [μm 2 ] of the cross-sectional SEM image) Is calculated using the true value of the volume fraction of the light diffusing element 4b. And it is possible to achieve comparable accurate verification and evaluation and for evaluation.
 なお、本実施形態においては、波長変換部材4の母材として上述したような樹脂4cを用いたが、これに限定されることなく、ガラス等を用いることもできる。 In the present embodiment, the resin 4c as described above is used as the base material of the wavelength conversion member 4. However, the present invention is not limited to this, and glass or the like can also be used.
 また、本実施形態においては、半導体発光装置1の光源として青色光を放射するLEDチップ3を用いたが、半導体発光装置1から白色光を放射することができれば、青色光を放射するLEDチップに限定されることなく、例えば、紫外線を放射するLEDチップを用いてもよい。このような場合、波長変換部材4は、紫外線を吸収して赤色光を放射する赤色蛍光体、紫外線を吸収して緑色光を放射する緑色蛍光体、及び紫外線を吸収して青色光を放射する青色蛍光体を分散保持することになる。 In this embodiment, the LED chip 3 that emits blue light is used as the light source of the semiconductor light emitting device 1. However, if white light can be emitted from the semiconductor light emitting device 1, the LED chip that emits blue light is used. Without limitation, for example, an LED chip that emits ultraviolet light may be used. In such a case, the wavelength converting member 4 absorbs ultraviolet rays and emits red light, red phosphors that absorb ultraviolet rays and emits green light, and green phosphors that absorb ultraviolet rays and emits blue light, and emits blue light. The blue phosphor is dispersed and held.
 具合的な赤色蛍光体の発光ピーク波長は、通常は570nm以上、好ましくは580nm以上、より好ましくは585nm以上で、通常は780nm以下、好ましくは700nm以下、より好ましくは680nm以下の波長範囲にあるものが好適である。中でも、赤色蛍光体として例えば、(Ca,Sr,Ba)Si(N,O):Eu、(Ca,Sr,Ba)Si(N,O):Eu、(Ca,Sr,Ba)AlSi(N,O):Eu、(Sr,Ba)SiO:Eu、(Ca,Sr)S:Eu、SrAlSi:Eu、(La,Y)S:Eu、Eu(ジベンゾイルメタン)・1,10-フェナントロリン錯体などのβ-ジケトン系Eu錯体、カルボン酸系Eu錯体、KSiF:Mnが好ましく、(Ca,Sr,Ba)Si(N,O):Eu、(Sr,Ca)AlSi(N,O):Eu、SrAlSi:Eu、(La,Y)S:Eu、KSiF:Mn(但し、Siの一部がAlやNaで置換されていてもよい)がより好ましい。 The emission peak wavelength of a specific red phosphor is usually 570 nm or more, preferably 580 nm or more, more preferably 585 nm or more, and usually 780 nm or less, preferably 700 nm or less, more preferably 680 nm or less. Is preferred. Among them, as the red phosphor, for example, (Ca, Sr, Ba) 2 Si 5 (N, O) 8 : Eu, (Ca, Sr, Ba) Si (N, O) 2 : Eu, (Ca, Sr, Ba) ) AlSi (N, O) 3 : Eu, (Sr, Ba) 3 SiO 5 : Eu, (Ca, Sr) S: Eu, SrAlSi 4 N 7 : Eu, (La, Y) 2 O 2 S: Eu, Eu (dibenzoylmethane) beta-diketone Eu complex such as 3-1,10-phenanthroline complex, a carboxylic acid Eu complex, K 2 SiF 6: Mn is preferred, (Ca, Sr, Ba) 2 Si 5 (N , O) 8 : Eu, (Sr, Ca) AlSi (N, O) 3 : Eu, SrAlSi 4 N 7 : Eu, (La, Y) 2 O 2 S: Eu, K 2 SiF 6 : Mn Part of Si may be replaced with Al or Na Is more preferable.
 具体的な緑色蛍光体の発光ピーク波長は、通常は500nm以上、好ましくは510nm以上、より好ましくは515nm以上で、通常は550nm未満、好ましくは542nm以下、より好ましくは535nm以下の波長範囲にあるものが好適である。中でも、緑色蛍光体として例えば、Y(Al,Ga)12:Ce、CaSc:Ce、Ca(Sc,Mg)Si12:Ce、(Sr,Ba)SiO:Eu、(Si,Al)(O,N):Eu(β-サイアロン)、(Ba,Sr)Si12:N:Eu、SrGa:Eu、BaMgAl1017:Eu,Mnが好ましい。 The emission peak wavelength of a specific green phosphor is usually 500 nm or more, preferably 510 nm or more, more preferably 515 nm or more, and usually less than 550 nm, preferably 542 nm or less, more preferably 535 nm or less. Is preferred. Among them, as the green phosphor, for example, Y 3 (Al, Ga) 5 O 12 : Ce, CaSc 2 O 4 : Ce, Ca 3 (Sc, Mg) 2 Si 3 O 12 : Ce, (Sr, Ba) 2 SiO 4 : Eu, (Si, Al) 6 (O, N) 8 : Eu (β-sialon), (Ba, Sr) 3 Si 6 O 12 : N 2 : Eu, SrGa 2 S 4 : Eu, BaMgAl 10 O 17 : Eu and Mn are preferable.
 具体的な青色蛍光体の発光ピーク波長は、通常は420nm以上、好ましくは430nm以上、より好ましくは440nm以上で、通常は500nm未満、好ましくは490nm以下、より好ましくは480nm以下、更に好ましくは470nm以下、特に好ましくは460nm以下の波長範囲にあるものが好適である。中でも、青色蛍光体として例えば、(Ca,Sr,Ba)MgAl1017:Eu、(Sr,Ca,Ba,Mg)10(PO(Cl,F):Eu、(Ba,Ca,Mg,Sr)SiO:Eu、(Ba,Ca,Sr)MgSi:Euが好ましく、(Ba,Sr)MgAl1017:Eu、(Ca,Sr,Ba)10(PO(Cl,F):Eu、BaMgSi:Euがより好ましく、Sr10(POCl:Eu、BaMgAl1017:Euが特に好ましい。 The emission peak wavelength of a specific blue phosphor is usually 420 nm or more, preferably 430 nm or more, more preferably 440 nm or more, usually less than 500 nm, preferably 490 nm or less, more preferably 480 nm or less, and even more preferably 470 nm or less. Particularly preferred are those in the wavelength range of 460 nm or less. Among them, as a blue phosphor, for example, (Ca, Sr, Ba) MgAl 10 O 17 : Eu, (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 (Cl, F) 2 : Eu, (Ba, Ca , Mg, Sr) 2 SiO 4 : Eu, (Ba, Ca, Sr) 3 MgSi 2 O 8 : Eu are preferred, (Ba, Sr) MgAl 10 O 17 : Eu, (Ca, Sr, Ba) 10 (PO 4 ) 6 (Cl, F) 2 : Eu, Ba 3 MgSi 2 O 8 : Eu are more preferable, and Sr 10 (PO 4 ) 6 Cl 2 : Eu, BaMgAl 10 O 17 : Eu is particularly preferable.
 更に、本実施形態において、LEDチップ3から放射される青色光と、黄色蛍光体である蛍光体4aから放射される黄色光とを合成し、半導体発光装置1から擬似的に白色光を放射していたが、黄色光は赤色光と緑色光との合成光であるため、波長変換部材4が含有する蛍光体を上述した赤色蛍光体及び緑色蛍光体に代えてもよい。このような場合には、LEDチップ3から放射される青色光と、赤色蛍光体から放射される赤色光と、緑色蛍光体から放射される緑色光とを合成し、半導体発光装置1から擬似的に白色光を放射することになる。 Furthermore, in the present embodiment, the blue light emitted from the LED chip 3 and the yellow light emitted from the phosphor 4a which is a yellow phosphor are synthesized, and pseudo white light is emitted from the semiconductor light emitting device 1. However, since yellow light is the combined light of red light and green light, the phosphor contained in the wavelength conversion member 4 may be replaced with the red phosphor and the green phosphor described above. In such a case, the blue light emitted from the LED chip 3, the red light emitted from the red phosphor, and the green light emitted from the green phosphor are synthesized, and the semiconductor light emitting device 1 is simulated. Will emit white light.
 そして、本実施形態における半導体発光装置1においては、LEDチップ3と波長変換部材4とを離間して配置していたが、LEDチップ3を覆うように波長変換部材4を配置してもよい。 And in the semiconductor light-emitting device 1 in this embodiment, although the LED chip 3 and the wavelength conversion member 4 were arrange | positioned spaced apart, you may arrange | position the wavelength conversion member 4 so that LED chip 3 may be covered.
 上述したような変形例であっても、上述した数式(2)、並びに光拡散要素4b及び樹脂4cの屈折率の条件を満たす場合には、上述した本実施形態と同一の効果を得ることができる。 Even in the modified example as described above, the same effect as in the above-described embodiment can be obtained when the above-described mathematical formula (2) and the refractive index conditions of the light diffusing element 4b and the resin 4c are satisfied. it can.
 図12は、本発明の実施形態に係る発光装置の模式図である。
 発光装置100は、その構成部材として、少なくとも青色半導体発光素子101と波長変換部材103を有する。青色半導体発光素子101は、波長変換部材103に含有される蛍光体を励起するための励起光を発する。
 青色半導体発光素子101は、通常ピーク波長が425nm~475nmの励起光を発し、好ましくはピーク波長が430nm~470nmの励起光を発する。青色半導体発光素子101の数は、装置が必要とする励起光の強さにより適宜設定することが可能である。
 一方青色半導体発光素子101の代わりに、紫色半導体発光素子を用いることができる。紫色半導体発光素子は、通常ピーク波長が390nm~425nmの励起光を発し、好ましくはピーク波長が395~415nmの励起光を発する。
FIG. 12 is a schematic diagram of a light emitting device according to an embodiment of the present invention.
The light emitting device 100 includes at least a blue semiconductor light emitting element 101 and a wavelength conversion member 103 as its constituent members. The blue semiconductor light emitting element 101 emits excitation light for exciting the phosphor contained in the wavelength conversion member 103.
The blue semiconductor light emitting device 101 usually emits excitation light having a peak wavelength of 425 nm to 475 nm, and preferably emits excitation light having a peak wavelength of 430 nm to 470 nm. The number of blue semiconductor light emitting elements 101 can be appropriately set depending on the intensity of excitation light required by the apparatus.
On the other hand, a purple semiconductor light emitting element can be used instead of the blue semiconductor light emitting element 101. The violet semiconductor light emitting device usually emits excitation light having a peak wavelength of 390 nm to 425 nm, and preferably emits excitation light having a peak wavelength of 395 to 415 nm.
 青色半導体発光素子1011は、配線基板102のチップ実装面102aに実装される。配線基板102には、これら青色半導体発光素子101に電極を供給するための配線パターン(図示せず)が形成され、電気回路を構成する。図12中、配線基板102に波長変換部材103が載っているように表示されているがこの限りではなく、配線基板102と波長変換部材103が他の部材を介して配置されていてもよい。
 例えば図13では、配線基板102と波長変換部材103が、枠体104を介して配置される。枠体104は、光に指向性を持たせるために、テーパ状になっていてもよい。また、枠体104は反射材であってもよい。
The blue semiconductor light emitting element 1011 is mounted on the chip mounting surface 102 a of the wiring substrate 102. A wiring pattern (not shown) for supplying electrodes to these blue semiconductor light emitting elements 101 is formed on the wiring substrate 102, and constitutes an electric circuit. In FIG. 12, it is displayed that the wavelength conversion member 103 is placed on the wiring board 102, but this is not restrictive, and the wiring board 102 and the wavelength conversion member 103 may be arranged via other members.
For example, in FIG. 13, the wiring substrate 102 and the wavelength conversion member 103 are arranged via the frame body 104. The frame body 104 may have a tapered shape in order to give light directivity. Further, the frame body 104 may be a reflective material.
 発光装置100の発光効率を向上させる観点から、配線基板102は、電気絶縁性に優れて良好な放熱性を有し、かつ、反射率が高いことが好ましいが、配線基板102のチップ実装面上で青色半導体発光素子101の存在しない面上、もしくは配線基板102と波長変換部材103を接続する他の部材の内面の少なくとも一部に反射率の高い反射板を設ける事もできる。
 このような配線基板に用いる反射板の反射率、又は、配線基板の一部を覆う反射板の反射率としては、80%以上であることが好ましく、反射率が80%以上の部位の面積が配線基板の面積の50%以上であることがより好ましく、70%以上であることが更に好ましく、80%以上であることが特に好ましく、さらには、反射率が90%以上の部位を有することが好ましく、反射率が90%以上の部位の面積が配線基板の面積の50%以上であることがより好ましく、70%以上であることが更に好ましく、80%以上であることが特に好ましい。なお、反射率は、可視光領域光の反射率を意味する。
 同様に、枠体を使用する場合は、枠体に用いる反射板の反射率、又は、枠体の一部を覆う反射板の反射率としては、80%以上であることが好ましく、反射率が80%以上の部位の面積が、枠体及び配線基板の面積の50%以上であることがより好ましく、70%以上であることが更に好ましく、80%以上であることが特に好ましい。さらには、その反射率が90%以上の部位を有することが好ましく、反射率が90%以上の部位の面積が枠体及び配線基板の面積の50%以上であることがより好ましく、70%以上であることが更に好ましく、80%以上であることが特に好ましい。なお、反射率は、可視光領域光の反射率を意味する。
 このような反射率を達成するための材料としては、樹脂中にフィラーを含有させた反射材があげられる。具体的には、シリコーン樹脂、ポリカーボネート樹脂、ポリフタルアミド樹脂などに、アルミナ、チタニア、酸化ケイ素、酸化亜鉛、酸化マグネシウムなどの金属酸化物フィラーを含有させた反射材やセラミックに金属酸化物を含有させた反射材などが好ましい。
 ポリカーボネート樹脂にチタニアなどの金属酸化物を含有させた反射材としては、例えばユーピロンEHR3100、EHR3200などがあげられる。
 シリコーン樹脂にアルミナ、チタニアなどの金属酸化物を含有させた反射材としては、例えばWO2011/078239、WO2011/136302に記載の反射材があげられる。
 また、ポリフタルアミドに、アルミナ、チタニアなどの金属酸化物を含有させた反射材も好ましく例示される。
From the viewpoint of improving the light emission efficiency of the light emitting device 100, the wiring board 102 is preferably excellent in electrical insulation, has good heat dissipation, and preferably has a high reflectance. In addition, a reflective plate having a high reflectance can be provided on a surface where the blue semiconductor light emitting element 101 does not exist or on at least a part of the inner surface of another member connecting the wiring substrate 102 and the wavelength conversion member 103.
The reflectance of the reflector used in such a wiring board or the reflectance of the reflector covering a part of the wiring board is preferably 80% or more, and the area of the part where the reflectance is 80% or more is More preferably, it is 50% or more of the area of the wiring board, more preferably 70% or more, particularly preferably 80% or more, and further, it has a part having a reflectance of 90% or more. Preferably, the area of the part having a reflectivity of 90% or more is more preferably 50% or more of the area of the wiring board, still more preferably 70% or more, and particularly preferably 80% or more. In addition, a reflectance means the reflectance of visible region light.
Similarly, when a frame is used, the reflectance of the reflector used for the frame or the reflectance of the reflector covering a part of the frame is preferably 80% or more, and the reflectance is The area of 80% or more of the part is more preferably 50% or more of the area of the frame body and the wiring board, more preferably 70% or more, and particularly preferably 80% or more. Furthermore, it is preferable to have a part with a reflectance of 90% or more, and the area of the part with a reflectance of 90% or more is more preferably 50% or more of the area of the frame and the wiring board, and 70% or more. More preferably, it is more preferably 80% or more. In addition, a reflectance means the reflectance of visible region light.
An example of a material for achieving such a reflectance is a reflective material in which a filler is contained in a resin. Specifically, metal oxides are contained in reflectors and ceramics that contain metal oxide fillers such as alumina, titania, silicon oxide, zinc oxide, magnesium oxide in silicone resin, polycarbonate resin, polyphthalamide resin, etc. A reflective material or the like is preferable.
Examples of the reflective material containing a metal oxide such as titania in polycarbonate resin include Iupilon EHR3100 and EHR3200.
Examples of the reflective material in which a metal oxide such as alumina or titania is contained in a silicone resin include the reflective materials described in WO2011 / 078239 and WO2011 / 136302.
Moreover, a reflective material in which a metal oxide such as alumina or titania is contained in polyphthalamide is also preferably exemplified.
<参考例:反射率の高い反射材を用いた発光装置>
 同一の波長変換部材(光拡散要素の屈折率は1.45、樹脂の屈折率は1.58、光拡散要素の体積分率は0.5Vol%、波長変換部材自体の厚み2.00mm、(1.58-1.45)×0.5×2=0.13)を用いて、発光装置の配線基板(反射率80%未満)上および枠体(反射率80%未満)の内壁面上に反射率93~95%の反射材を(配線基板の場合は半導体発光素子の存在しない面上に)設置した場合の発光効率の向上を、前述と同様の発光・測定方法において確認した。発光Lumen値、Ra(演色性)およびCCT(発光色温度)測定結果を表12に示す。反射率は、日立ハイテク社製U-3310を用い、硫酸バリウムを標準試料として測定した。
<Reference example: Light emitting device using a reflective material with high reflectivity>
Same wavelength conversion member (refractive index of the light diffusing element is 1.45, refractive index of the resin is 1.58, volume fraction of the light diffusing element is 0.5 Vol%, the thickness of the wavelength converting member itself is 2.00 mm, ( 1.58-1.45) × 0.5 × 2 = 0.13) on the wiring board (with a reflectance of less than 80%) and the inner wall of the frame (with a reflectance of less than 80%). The improvement in luminous efficiency when a reflective material having a reflectivity of 93 to 95% (on the surface where no semiconductor light emitting element is present in the case of a wiring board) was confirmed by the same light emission and measurement method as described above. The luminescence Lumen value, Ra (color rendering) and CCT (luminescence color temperature) measurement results are shown in Table 12. The reflectance was measured using U-3310 manufactured by Hitachi High-Tech Co., with barium sulfate as a standard sample.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 高反射率を有する反射材を一定割合以上用いることで、本波長変換部材を用いた発光装置において高効率が達成しうることがわかる。 It can be seen that high efficiency can be achieved in a light emitting device using the present wavelength conversion member by using a reflecting material having a high reflectance over a certain ratio.
<第2実施形態>
 上述した第1実施形態においては、樹脂4c内に蛍光体4a及び光拡散要素4bが混在していたが、このような波長変換部材4の構造に限定されることなく、図7に示すような構造を有する波長変換部材に代えてもよく、このような構造を有する波長変換部材24を第2実施形態として、以下に説明する。なお、図7は、図4と同様にして示す半導体発光装置21の要部拡大断面図であり、第1実施形態と同様の構成については同一の符号を付し、その説明は省略する。
<Second Embodiment>
In the first embodiment described above, the phosphor 4a and the light diffusing element 4b are mixed in the resin 4c. However, the structure of the wavelength conversion member 4 is not limited to the structure shown in FIG. It may replace with the wavelength conversion member which has a structure, and demonstrates below the wavelength conversion member 24 which has such a structure as 2nd Embodiment. 7 is an enlarged cross-sectional view of a main part of the semiconductor light emitting device 21 shown in the same manner as FIG. 4. The same reference numerals are given to the same components as those in the first embodiment, and the description thereof is omitted.
 図7に示すように、複数の蛍光体24a及び複数の光拡散要素24bは、樹脂24c内において互いに分離して含有されている。そして、複数の蛍光体24a及び樹脂24cから蛍光体層24dが形成され、複数の光拡散要素24b及び樹脂24cから光拡散層24eが形成されている。すなわち、本実施形態における波長変換部材24は、樹脂24cが蛍光体24aのみを含有した状態の蛍光体層24dの上に、樹脂24cが光拡散要素24bのみを含有した状態の光拡散層24eが積層された2層構造を有している。 As shown in FIG. 7, the plurality of phosphors 24a and the plurality of light diffusion elements 24b are contained separately in the resin 24c. A phosphor layer 24d is formed from the plurality of phosphors 24a and the resin 24c, and a light diffusion layer 24e is formed from the plurality of light diffusion elements 24b and the resin 24c. That is, in the wavelength conversion member 24 in the present embodiment, the light diffusion layer 24e in which the resin 24c contains only the light diffusion element 24b is formed on the phosphor layer 24d in which the resin 24c contains only the phosphor 24a. It has a laminated two-layer structure.
 また、本実施形態において、蛍光体層24dがLEDチップ3と対向するように配置されている。すなわち、LEDチップ3から蛍光体層24dまでの距離は、LEDチップから光拡散層24eまでの距離よりも小さくなっている。 In the present embodiment, the phosphor layer 24d is arranged so as to face the LED chip 3. That is, the distance from the LED chip 3 to the phosphor layer 24d is smaller than the distance from the LED chip to the light diffusion layer 24e.
 なお、図8に示すように、光拡散層24eがLEDチップ3と対向するように配置してもよい。すなわち、LEDチップ3から蛍光体層24dまでの距離は、LEDチップから光拡散層24eまでの距離よりも大きくなっている。 In addition, as shown in FIG. 8, you may arrange | position so that the light-diffusion layer 24e may oppose the LED chip 3. FIG. That is, the distance from the LED chip 3 to the phosphor layer 24d is larger than the distance from the LED chip to the light diffusion layer 24e.
 本実施形態においても、上述した数式(2)、並びに光拡散要素及び樹脂の屈折率の条件を満たす場合には、上述した第1実施形態と同一の効果を得ることができる。本実施形態に係る半導体発光装置21は、比較的に高い発光効率を有し、一般照明用途及びバックライト用途として適している。更に、蛍光体層24d及び光拡散層24eが互いに接触して積層されているため、半導体発光装置21として、小型化を図ることが容易になる。 Also in the present embodiment, the same effect as in the first embodiment described above can be obtained when the above-described mathematical formula (2) and the refractive index of the light diffusing element and the resin are satisfied. The semiconductor light emitting device 21 according to the present embodiment has a relatively high luminous efficiency and is suitable for general lighting applications and backlight applications. Furthermore, since the phosphor layer 24d and the light diffusion layer 24e are stacked in contact with each other, it is easy to reduce the size of the semiconductor light emitting device 21.
<第3実施形態>
 上述した第2実施形態において、波長変換部材24は、複数の蛍光体24a及び樹脂24cから形成される蛍光体層24dと、複数の光拡散要素24b及び樹脂24cから形成される光拡散層24eとが積層された2層構造を有していた。しかしながら、このような波長変換部材24の構造に限定されることなく、図9に示すような構造を有する波長変換部材に代えてもよく、このような構造を有する波長変換部材34を第3実施形態として、以下に説明する。なお、図9は、図4及び図7と同様にして示す半導体発光装置31の要部拡大断面図であり、第1実施形態と同様の構成については同一の符号を付し、その説明は省略する。
<Third Embodiment>
In the second embodiment described above, the wavelength conversion member 24 includes a phosphor layer 24d formed from a plurality of phosphors 24a and a resin 24c, and a light diffusion layer 24e formed from a plurality of light diffusion elements 24b and a resin 24c. Had a two-layered structure. However, the structure of the wavelength conversion member 24 is not limited to this, and the wavelength conversion member having the structure as shown in FIG. 9 may be used, and the wavelength conversion member 34 having such a structure is used in the third embodiment. As a form, it demonstrates below. FIG. 9 is an enlarged cross-sectional view of the main part of the semiconductor light emitting device 31 shown in the same manner as FIGS. 4 and 7, and the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. To do.
 図9に示すように、樹脂34cは空隙層34fを介して2つの層に分離されている。そして、樹脂34cの一方の層内には、複数の蛍光体34aが分散して保持されており、これによって蛍光体層34dが形成されている。また、樹脂34cの他方の層内には、複数の光拡散要素34bが分散して保持されており、これによって光拡散層34eが形成されている。すなわち、本実施形態における波長変換部材34は、蛍光体層34d、空隙層34f、及び光拡散層34eが順次積層された3層構造を有している。 As shown in FIG. 9, the resin 34c is separated into two layers through a gap layer 34f. A plurality of phosphors 34a are dispersed and held in one layer of the resin 34c, thereby forming a phosphor layer 34d. A plurality of light diffusion elements 34b are dispersed and held in the other layer of the resin 34c, thereby forming a light diffusion layer 34e. That is, the wavelength conversion member 34 in the present embodiment has a three-layer structure in which the phosphor layer 34d, the gap layer 34f, and the light diffusion layer 34e are sequentially stacked.
 また、本実施形態において、蛍光体層34dがLEDチップ3と対向するように配置されている。すなわち、LEDチップ3から蛍光体層34dまでの距離は、LEDチップから光拡散層34eまでの距離よりも小さくなっている。 In the present embodiment, the phosphor layer 34d is disposed so as to face the LED chip 3. That is, the distance from the LED chip 3 to the phosphor layer 34d is smaller than the distance from the LED chip to the light diffusion layer 34e.
 なお、図10に示すように、光拡散層34eがLEDチップ3と対向するように配置してもよい。すなわち、LEDチップ3から蛍光体層34dまでの距離は、LEDチップから光拡散層34eまでの距離よりも大きくなっている。このような場合であっても、図9に記載された半導体発光装置31比較して発光効率が低減することなく、一般照明用途及びバックライト用途として十分に使用することができる。 In addition, as shown in FIG. 10, you may arrange | position so that the light-diffusion layer 34e may oppose the LED chip 3. FIG. That is, the distance from the LED chip 3 to the phosphor layer 34d is larger than the distance from the LED chip to the light diffusion layer 34e. Even in such a case, the light emitting efficiency is not reduced as compared with the semiconductor light emitting device 31 described in FIG. 9, and the light emitting efficiency can be sufficiently used as a general lighting application and a backlight application.
 本実施形態においても、上述した数式(2)、並びに光拡散要素及び樹脂の屈折率の条件を満たす場合には、上述した第1実施形態と同一の効果を得ることができる。なお、上述した数式(2)乃至(6)における波長変換部材の厚みとは、本実施形態では波長変換部材34全体の厚みではなく、蛍光体層34dの層厚及び光拡散層34eの層厚の合計である。すなわち、波長変換部材34全体の厚みから空隙層34fの層厚を差し引いた厚みである。 Also in the present embodiment, the same effect as in the first embodiment described above can be obtained when the above-described mathematical formula (2) and the refractive index of the light diffusing element and the resin are satisfied. In the present embodiment, the thickness of the wavelength conversion member in the above formulas (2) to (6) is not the entire thickness of the wavelength conversion member 34, but the thickness of the phosphor layer 34d and the thickness of the light diffusion layer 34e. Is the sum of That is, the thickness is obtained by subtracting the thickness of the gap layer 34f from the thickness of the entire wavelength conversion member 34.
 1,21,31  半導体発光装置
 2  配線基板
 2a  チップ実装面
 3  LEDチップ(半導体発光素子)
 4,24,34  波長変換部材
 4a,24a,34a  蛍光体
 4b,24b,34b  光拡散要素
 4c,24c,34c  樹脂(母材)
 5  p電極
 6  n電極
 7  配線パターン7
 8  配線パターン8
 24d,34d  蛍光体層
 24e,34e  光拡散層
 34f  空隙層
 100 半導体発光装置
 101 LEDチップ(半導体発光素子)
 102 配線基板
 102a チップ実装面
 103 波長変換部材
1, 21, 31 Semiconductor light emitting device 2 Wiring board 2a Chip mounting surface 3 LED chip (semiconductor light emitting element)
4, 24, 34 Wavelength conversion member 4a, 24a, 34a Phosphor 4b, 24b, 34b Light diffusing element 4c, 24c, 34c Resin (base material)
5 p electrode 6 n electrode 7 wiring pattern 7
8 Wiring pattern 8
24d, 34d phosphor layer 24e, 34e light diffusion layer 34f gap layer 100 semiconductor light emitting device 101 LED chip (semiconductor light emitting element)
102 Wiring board 102a Chip mounting surface 103 Wavelength conversion member

Claims (37)

  1.  入射光の少なくとも一部を波長変換して前記入射光とは異なる波長の出射光を放出する波長変換部材であって、
     前記入射光の少なくとも一部を吸収して前記入射光とは異なる波長の出射光を放出する蛍光体と、
     前記入射光および前記出射光を拡散する光拡散要素と、
     前記光拡散要素を保持する母材と、を含み、
     0.01 ≦ |(光拡散要素の屈折率)-(母材の屈折率)|×(波長変換部材の厚み[mm])×(光拡散要素の体積分率[vol%]) ≦ 1.0
    の数式を満たすことを特徴とする波長変換部材。
    A wavelength conversion member that wavelength-converts at least part of incident light and emits outgoing light having a wavelength different from that of the incident light;
    A phosphor that absorbs at least part of the incident light and emits outgoing light having a wavelength different from that of the incident light;
    A light diffusing element that diffuses the incident light and the outgoing light;
    A base material for holding the light diffusing element,
    0.01 ≦ | (refractive index of light diffusing element) − (refractive index of base material) | × (thickness of wavelength conversion member [mm]) × (volume fraction of light diffusing element [vol%]) ≦ 1. 0
    The wavelength conversion member characterized by satisfying the formula:
  2.  前記数式における|(光拡散要素の屈折率)-(母材の屈折率)|×(波長変換部材の厚み[mm])×(光拡散要素の体積分率[vol%])の値は、0.6以下であることを特徴とする請求項1に記載の波長変換部材。 The value of | (refractive index of light diffusing element) − (refractive index of base material) | × (wavelength conversion member thickness [mm]) × (volume fraction of light diffusing element [vol%]) in the above equation is: The wavelength conversion member according to claim 1, wherein the wavelength conversion member is 0.6 or less.
  3.  前記数式における|(光拡散要素の屈折率)-(母材の屈折率)|×(波長変換部材の厚み[mm])×(光拡散要素の体積分率[vol%])の値は、0.2以下であることを特徴とする請求項1に記載の波長変換部材。 The value of | (refractive index of light diffusing element) − (refractive index of base material) | × (wavelength conversion member thickness [mm]) × (volume fraction of light diffusing element [vol%]) in the above equation is: It is 0.2 or less, The wavelength conversion member of Claim 1 characterized by the above-mentioned.
  4.  前記数式における|(光拡散要素の屈折率)-(母材の屈折率)|の値は、0.07以上であることを特徴とする請求項1乃至3のいずれか1項に記載の波長変換部材。 4. The wavelength according to claim 1, wherein a value of | (refractive index of light diffusing element) − (refractive index of base material) | in the mathematical formula is 0.07 or more. 5. Conversion member.
  5.  前記光拡散要素を含まないで、同一色度の出射光を放射する波長変換部材を作成した場合の前記蛍光体の含有濃度[wt%]を基準として、前記蛍光体の含有濃度[wt%]の減少比率が、3.0%~86%であることを特徴とする請求項1乃至4のいずれか1項に記載の波長変換部材。 Content concentration [wt%] of the phosphor based on the content concentration [wt%] of the phosphor when a wavelength conversion member that emits emitted light of the same chromaticity without including the light diffusing element is created. The wavelength conversion member according to any one of claims 1 to 4, wherein the decrease ratio is 3.0% to 86%.
  6.  前記数式における|(光拡散要素の屈折率)-(母材の屈折率)|×(波長変換部材の厚み[mm])×(光拡散要素の体積分率[vol%])の値は、0.04以上であることを特徴とする請求項1乃至5のいずれか1項に記載の波長変換部材。 The value of | (refractive index of light diffusing element) − (refractive index of base material) | × (wavelength conversion member thickness [mm]) × (volume fraction of light diffusing element [vol%]) in the above equation is: It is 0.04 or more, The wavelength conversion member of any one of Claim 1 thru | or 5 characterized by the above-mentioned.
  7.  前記数式における|(光拡散要素の屈折率)-(母材の屈折率)|×(波長変換部材の厚み[mm])×(光拡散要素の体積分率[vol%])の値は、0.05以上であることを特徴とする請求項6に記載の波長変換部材。 The value of | (refractive index of light diffusing element) − (refractive index of base material) | × (wavelength conversion member thickness [mm]) × (volume fraction of light diffusing element [vol%]) in the above equation is: It is 0.05 or more, The wavelength conversion member of Claim 6 characterized by the above-mentioned.
  8.  28 ≦ dy/dx ≦ 447
     x:|(光拡散要素の屈折率)-(母材の屈折率)|×(波長変換部材の厚み[mm])×(光拡散要素の体積分率[vol%])
     y:前記光拡散要素を含まないで、同一色度の出射光を放射する波長変換部材を作成した場合の前記蛍光体の含有濃度[wt%]を基準として、前記蛍光体の含有濃度[wt%]の減少比率
    の数式を満たすことを特徴とする請求項1乃至7のいずれか1項に記載の波長変換部材。
    28 ≤ dy / dx ≤ 447
    x: | (refractive index of light diffusing element) − (refractive index of base material) | × (thickness of wavelength conversion member [mm]) × (volume fraction of light diffusing element [vol%])
    y: Concentration [wt] of the phosphor based on the concentration [wt%] of the phosphor when a wavelength conversion member that emits outgoing light of the same chromaticity without including the light diffusing element is created. The wavelength conversion member according to any one of claims 1 to 7, wherein a numerical expression of a reduction ratio of%] is satisfied.
  9.  前記蛍光体及び前記光拡散要素は、前記母材内に混在していることを特徴とする請求項1乃至8のいずれか1項に記載の波長変換部材。 The wavelength conversion member according to any one of claims 1 to 8, wherein the phosphor and the light diffusing element are mixed in the base material.
  10.  前記蛍光体及び前記光拡散要素は、前記母材内に互いに分離して含有されるとともに、蛍光体層及び光拡散層を形成することを特徴とする請求項1乃至8のいずれか1項に記載の波長変換部材。 9. The phosphor according to claim 1, wherein the phosphor and the light diffusing element are contained separately from each other in the base material, and form a phosphor layer and a light diffusing layer. The wavelength conversion member as described.
  11.  前記蛍光体層及び前記光拡散層は、互いに接触しつつ積層されていることを特徴とする請求項10に記載の波長変換部材。 The wavelength conversion member according to claim 10, wherein the phosphor layer and the light diffusion layer are laminated while being in contact with each other.
  12.  前記母材は、前記蛍光体層と前記光拡散層とを離間する空隙層を有することを特徴とする請求項10に記載の波長変換部材。 The wavelength conversion member according to claim 10, wherein the base material has a void layer that separates the phosphor layer and the light diffusion layer.
  13.  前記光拡散要素の屈折率が、1.0以上1.9以下であり、
     前記母材の屈折率が、1.3以上1.7以下であることを特徴とする請求項1乃至12のいずれか1項に記載の波長変換部材。
    The refractive index of the light diffusing element is 1.0 or more and 1.9 or less,
    The wavelength conversion member according to any one of claims 1 to 12, wherein a refractive index of the base material is 1.3 or more and 1.7 or less.
  14.  前記光拡散要素は、珪素、アルミニウム、チタン、及び、ジルコニウムからなる群の少なくとも1つの元素を含む無機系光拡散材、又は、有機系光拡散材であることを特徴とする請求項1乃至13のいずれか1項に記載の波長変換部材。 14. The light diffusing element is an inorganic light diffusing material or an organic light diffusing material containing at least one element of the group consisting of silicon, aluminum, titanium, and zirconium. The wavelength conversion member according to any one of the above.
  15.  前記有機系光拡散材が、元素として珪素を含む有機系光拡散材、又は、アクリル系光拡散材であることを特徴とする請求項14に記載の波長変換部材。 The wavelength conversion member according to claim 14, wherein the organic light diffusing material is an organic light diffusing material containing silicon as an element or an acrylic light diffusing material.
  16.  前記光拡散要素は、気泡からなることを特徴とする請求項1乃至13のいずれか1項に記載の波長変換部材。 The wavelength conversion member according to any one of claims 1 to 13, wherein the light diffusion element is formed of bubbles.
  17.  前記母材が、樹脂またはガラスからなることを特徴とする請求項1乃至16のいずれか1項に記載の波長変換部材。 The wavelength conversion member according to any one of claims 1 to 16, wherein the base material is made of resin or glass.
  18.  前記樹脂が、ポリカーボネート樹脂、ポリエステル系樹脂、アクリル系樹脂、エポキシ樹脂、及びシリコーン系樹脂からなる群から選ばれる少なくとも1つの樹脂であることを特徴とする請求項17に記載の波長変換部材。 The wavelength conversion member according to claim 17, wherein the resin is at least one resin selected from the group consisting of a polycarbonate resin, a polyester resin, an acrylic resin, an epoxy resin, and a silicone resin.
  19.  前記樹脂がポリカーボネート樹脂であり、前記光拡散要素がポリメチルシルセスキオキサン粒子であることを特徴とする請求項17に記載の波長変換部材。 The wavelength conversion member according to claim 17, wherein the resin is a polycarbonate resin, and the light diffusion element is polymethylsilsesquioxane particles.
  20.  配線基板と、
     前記配線基板の実装面に配置された半導体発光素子と、
     入射光の少なくとも一部を波長変換して前記入射光とは異なる波長の出射光を放出する波長変換部材を含む、半導体発光装置であって、
     前記波長変換部材は、入射光の少なくとも一部を吸収して前記入射光とは異なる波長の出射光を放出する蛍光体と、前記入射光および前記出射光を拡散する光拡散要素と、前記光拡散要素を保持する母材と、を含み、
     前記波長変換部材は、
    0.01 ≦ |(光拡散要素の屈折率)-(母材の屈折率)|×(波長変換部材の厚み[mm])×(光拡散要素の体積分率[vol%]) ≦ 1.0
    の数式を満たすことを特徴とする半導体発光装置。
    A wiring board;
    A semiconductor light emitting device disposed on a mounting surface of the wiring board;
    A semiconductor light emitting device comprising a wavelength conversion member that converts the wavelength of at least part of incident light and emits outgoing light having a wavelength different from that of the incident light,
    The wavelength conversion member includes a phosphor that absorbs at least a part of incident light and emits outgoing light having a wavelength different from that of the incident light, a light diffusion element that diffuses the incident light and the outgoing light, and the light. A base material holding the diffusing element,
    The wavelength conversion member is
    0.01 ≦ | (refractive index of light diffusing element) − (refractive index of base material) | × (thickness of wavelength conversion member [mm]) × (volume fraction of light diffusing element [vol%]) ≦ 1. 0
    A semiconductor light emitting device satisfying the following formula:
  21.  前記数式における|(光拡散要素の屈折率)-(母材の屈折率)|×(波長変換部材の厚み[mm])×(光拡散要素の体積分率[vol%])の値は、0.6以下であることを特徴とする請求項20に記載の半導体発光装置。 The value of | (refractive index of light diffusing element) − (refractive index of base material) | × (wavelength conversion member thickness [mm]) × (volume fraction of light diffusing element [vol%]) in the above equation is: 21. The semiconductor light emitting device according to claim 20, wherein the semiconductor light emitting device is 0.6 or less.
  22.  前記数式における|(光拡散要素の屈折率)-(母材の屈折率)|×(波長変換部材の厚み[mm])×(光拡散要素の体積分率[vol%])の値は、0.2以下であることを特徴とする請求項20に記載の半導体発光装置。 The value of | (refractive index of light diffusing element) − (refractive index of base material) | × (wavelength conversion member thickness [mm]) × (volume fraction of light diffusing element [vol%]) in the above equation is: 21. The semiconductor light emitting device according to claim 20, wherein the semiconductor light emitting device is 0.2 or less.
  23.  前記数式における|(光拡散要素の屈折率)-(母材の屈折率)|の値は、0.07以上であることを特徴とする請求項20乃至22のいずれか1項に記載の半導体発光装置。 23. The semiconductor according to claim 20, wherein a value of | (refractive index of light diffusing element) − (refractive index of base material) | in the mathematical formula is 0.07 or more. Light emitting device.
  24.  前記光拡散要素を含まない場合の発光効率(lm/W)を基準として、発光効率(lm/W)の維持率が90%以上であり、且つ、前記光拡散要素を含まない場合と比較して前記蛍光体の含有濃度[wt%]が減少していることを特徴とする請求項20乃至23のいずれか1項に記載の半導体発光装置。 Based on the luminous efficiency (lm / W) when the light diffusing element is not included as a reference, the maintenance ratio of the luminous efficiency (lm / W) is 90% or more, and compared with the case where the light diffusing element is not included. 24. The semiconductor light emitting device according to claim 20, wherein the phosphor concentration [wt%] is reduced.
  25.  前記半導体発光素子と前記波長変換部材とは、離間していることを特徴とする請求項20乃至24のいずれか1項に記載の半導体発光装置。 The semiconductor light-emitting device according to any one of claims 20 to 24, wherein the semiconductor light-emitting element and the wavelength conversion member are separated from each other.
  26.  前記蛍光体及び前記光拡散要素は、前記母材内に混在していることを特徴とする請求項20乃至25のいずれか1項に記載の半導体発光装置。 The semiconductor light emitting device according to any one of claims 20 to 25, wherein the phosphor and the light diffusing element are mixed in the base material.
  27.  前記蛍光体及び前記光拡散要素は、前記母材内に互いに分離して含有されるとともに、蛍光体層及び光拡散層からなる積層構造を形成することを特徴とする請求項20乃至25のいずれか1項に記載の半導体発光装置。 The phosphor and the light diffusing element are contained separately from each other in the base material, and form a laminated structure including a phosphor layer and a light diffusing layer. 2. A semiconductor light emitting device according to claim 1.
  28.  前記半導体発光素子から前記蛍光体層までの距離は、前記半導体発光素子から前記光拡散層までの距離よりも小なることを特徴とする請求項27に記載の半導体発光装置。 28. The semiconductor light emitting device according to claim 27, wherein a distance from the semiconductor light emitting element to the phosphor layer is smaller than a distance from the semiconductor light emitting element to the light diffusion layer.
  29.  前記半導体発光素子から前記蛍光体層までの距離は、前記半導体発光素子から前記光拡散層までの距離よりも大なることを特徴とする請求項27に記載の半導体発光装置。 28. The semiconductor light emitting device according to claim 27, wherein a distance from the semiconductor light emitting element to the phosphor layer is larger than a distance from the semiconductor light emitting element to the light diffusion layer.
  30.  前記光拡散要素の屈折率が、1.0以上1.9以下であり、
     前記母材の屈折率が、1.3以上1.7以下であることを特徴とする請求項20乃至29のいずれか1項に記載の半導体発光装置。
    The refractive index of the light diffusing element is 1.0 or more and 1.9 or less,
    30. The semiconductor light emitting device according to claim 20, wherein a refractive index of the base material is 1.3 or more and 1.7 or less.
  31.  前記母材が、樹脂またはガラスからなることを特徴とする請求項20乃至30のいずれか1項に記載の半導体発光装置。 31. The semiconductor light-emitting device according to claim 20, wherein the base material is made of resin or glass.
  32.  前記樹脂が、ポリカーボネート樹脂、ポリエステル系樹脂、アクリル系樹脂、エポキシ樹脂、及びシリコーン系樹脂からなる群から選ばれる少なくとも1つの樹脂であることを特徴とする請求項31に記載の半導体発光装置。 32. The semiconductor light emitting device according to claim 31, wherein the resin is at least one resin selected from the group consisting of polycarbonate resin, polyester resin, acrylic resin, epoxy resin, and silicone resin.
  33.  前記樹脂が、ポリカーボネート樹脂であり、前記光拡散要素がポリメチルシルセスキオキサン粒子であることを特徴とする請求項31に記載の半導体発光装置。 32. The semiconductor light-emitting device according to claim 31, wherein the resin is a polycarbonate resin, and the light diffusion element is polymethylsilsesquioxane particles.
  34.  前記波長変換部材で波長変換されなかった前記半導体発光素子から放射される光と、前記波長変換部材で変換された光が混合して白色光を放射することを特徴とする請求項20乃至33のいずれか1項に記載の半導体発光装置。 34. The light emitted from the semiconductor light emitting element that has not been wavelength-converted by the wavelength conversion member and the light that has been converted by the wavelength conversion member are mixed to radiate white light. The semiconductor light-emitting device of any one of Claims.
  35.  前記半導体発光装置の前記配線基板上に反射板が設けられ、反射率が80%以上である部位の面積が、該該配線基板上の面積の50%以上である、請求項20乃至34のいずれか1項に記載の半導体発光装置。 35. Any one of claims 20 to 34, wherein a reflector is provided on the wiring substrate of the semiconductor light emitting device, and an area of a portion having a reflectance of 80% or more is 50% or more of the area on the wiring substrate. 2. A semiconductor light emitting device according to claim 1.
  36.  前記半導体発光装置は枠体を有し、前記配線基板上及び枠体内壁面上に反射板が設けられ、反射率が80%以上である部位の面積が、該枠体内壁面上及び該配線基板上の面積の50%以上である、請求項20乃至34のいずれか1項に記載の半導体発光装置。 The semiconductor light emitting device has a frame, and a reflector is provided on the wiring board and on the wall surface of the frame, and the area of the part having a reflectance of 80% or more is on the wall surface of the frame and on the wiring board. The semiconductor light-emitting device according to claim 20, wherein the semiconductor light-emitting device is 50% or more of the area.
  37.  配線基板と、
     前記配線基板の実装面に配置された半導体発光素子と、
     入射光の少なくとも一部を波長変換して前記入射光とは異なる波長の出射光を放出する波長変換部材を含む、半導体発光装置であって、
     前記波長変換部材は、入射光の少なくとも一部を吸収して前記入射光とは異なる波長の出射光を放出する蛍光体と、前記入射光および前記出射光を拡散する光拡散要素と、前記光拡散要素を保持する母材と、を含み、
     前記波長変換部材は、
    0.01 ≦ |(光拡散要素の屈折率)-(母材の屈折率)|×(波長変換部材の厚み[mm])×(光拡散要素の体積分率[vol%]) ≦ 1.0
    の数式を満たし、
     前記数式における(光拡散要素の体積分率[vol%])は、前記波長変換部材の断面SEM像の画像解析結果を用い、
    C=N×4π/3×(D/2)/(S×D)×100
    C:光拡散要素の体積分率[vol%]
    N:断面SEM像の二値化処理によって算出される波長変換部材中の光拡散要素の総数[個]
    D:断面SEM像の二値化処理によって算出される断面SEM像中の光拡散要素の平均面積から円を仮定して算出した円の平均直径にπ/4を乗じて得られる光拡散要素の粒径[μm]
    S:断面SEM像の総面積[μm2
    の数式から算出されることを特徴とする半導体発光装置。
    A wiring board;
    A semiconductor light emitting device disposed on a mounting surface of the wiring board;
    A semiconductor light emitting device comprising a wavelength conversion member that converts the wavelength of at least part of incident light and emits outgoing light having a wavelength different from that of the incident light,
    The wavelength conversion member includes a phosphor that absorbs at least a part of incident light and emits outgoing light having a wavelength different from that of the incident light, a light diffusion element that diffuses the incident light and the outgoing light, and the light. A base material holding the diffusing element,
    The wavelength conversion member is
    0.01 ≦ | (refractive index of light diffusing element) − (refractive index of base material) | × (thickness of wavelength conversion member [mm]) × (volume fraction of light diffusing element [vol%]) ≦ 1. 0
    Satisfy the formula of
    The (volume fraction [vol%] of the light diffusing element) in the above formula uses the image analysis result of the cross-sectional SEM image of the wavelength conversion member,
    C = N × 4π / 3 × (D / 2) 3 / (S × D) × 100
    C: Volume fraction [vol%] of the light diffusing element
    N: Total number of light diffusing elements in the wavelength conversion member calculated by binarization processing of the cross-sectional SEM image [pieces]
    D: of the light diffusing element obtained by multiplying the average diameter of the circle calculated by assuming the circle from the average area of the light diffusing element in the cross-sectional SEM image calculated by the binarization processing of the cross-sectional SEM image by π / 4 Particle size [μm]
    S: Total area of cross-sectional SEM image [μm 2 ]
    A semiconductor light emitting device calculated from the following formula.
PCT/JP2013/055140 2012-02-27 2013-02-27 Wavelength conversion member and semiconductor light-emitting device using same WO2013129477A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012040402 2012-02-27
JP2012-040402 2012-02-27
JP2012-160514 2012-07-19
JP2012160514 2012-07-19

Publications (1)

Publication Number Publication Date
WO2013129477A1 true WO2013129477A1 (en) 2013-09-06

Family

ID=49082671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055140 WO2013129477A1 (en) 2012-02-27 2013-02-27 Wavelength conversion member and semiconductor light-emitting device using same

Country Status (3)

Country Link
JP (1) JP2014039006A (en)
TW (1) TW201347242A (en)
WO (1) WO2013129477A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014122274A (en) * 2012-12-21 2014-07-03 Toray Ind Inc Silicone resin composition
WO2016133825A1 (en) * 2015-02-19 2016-08-25 Osram Sylvania Inc. Led light source with diffuser
CN114316978A (en) * 2020-09-30 2022-04-12 日亚化学工业株式会社 Wavelength conversion member and light emitting device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9929319B2 (en) * 2014-06-13 2018-03-27 General Electric Company LED package with red-emitting phosphors
KR101608597B1 (en) 2014-11-08 2016-04-12 주식회사 효성 Phosphor film comprising rare earth metal oxide particles, light-emitting divice using the same, and method of manufacturing thereof
JP6471756B2 (en) * 2014-12-09 2019-02-20 信越化学工業株式会社 LED light source for in-vehicle headlights
WO2016139954A1 (en) 2015-03-05 2016-09-09 Nichia Corporation Light emitting device
JP6925100B2 (en) 2015-05-21 2021-08-25 日亜化学工業株式会社 Light emitting device
JP2017043682A (en) * 2015-08-25 2017-03-02 デクセリアルズ株式会社 Wavelength conversion member, phosphor sheet, white light source device, and display device
JP6524474B2 (en) * 2016-01-22 2019-06-05 日本特殊陶業株式会社 Wavelength conversion member and light emitting device
JP2018148016A (en) * 2017-03-06 2018-09-20 株式会社ディスコ Method for manufacturing light-emitting diode chip and light-emitting diode chip
CN107393912A (en) * 2017-07-31 2017-11-24 佛山市南海区正东照明有限公司 The COB encapsulating structures and its technique, mould of a kind of low thermal resistance high light efficiency LED lamp
JP6776422B2 (en) * 2019-09-05 2020-10-28 デクセリアルズ株式会社 Wavelength conversion member, phosphor sheet, white light source device, and display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61160981A (en) * 1985-01-08 1986-07-21 Toshiba Silicone Co Ltd Resin-sealed light emitter and manufacture thereof
JP2001111117A (en) * 1999-09-03 2001-04-20 Agilent Technol Inc Light emitting device using light emitting diodes and manufacturing method thereof
JP2006321832A (en) * 2005-05-17 2006-11-30 Konishi Kagaku Ind Co Ltd Resin composition for sealing optical semiconductor and optical semiconductor device using the same
JP2011151311A (en) * 2010-01-25 2011-08-04 Panasonic Electric Works Co Ltd Light emitting device
JP2011159813A (en) * 2010-02-01 2011-08-18 Panasonic Electric Works Co Ltd Light-emitting device
JP2011258634A (en) * 2010-06-07 2011-12-22 Nitto Denko Corp Sealing sheet for optical semiconductor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4890766B2 (en) * 2005-01-28 2012-03-07 帝人化成株式会社 Light diffusing aromatic polycarbonate resin composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61160981A (en) * 1985-01-08 1986-07-21 Toshiba Silicone Co Ltd Resin-sealed light emitter and manufacture thereof
JP2001111117A (en) * 1999-09-03 2001-04-20 Agilent Technol Inc Light emitting device using light emitting diodes and manufacturing method thereof
JP2006321832A (en) * 2005-05-17 2006-11-30 Konishi Kagaku Ind Co Ltd Resin composition for sealing optical semiconductor and optical semiconductor device using the same
JP2011151311A (en) * 2010-01-25 2011-08-04 Panasonic Electric Works Co Ltd Light emitting device
JP2011159813A (en) * 2010-02-01 2011-08-18 Panasonic Electric Works Co Ltd Light-emitting device
JP2011258634A (en) * 2010-06-07 2011-12-22 Nitto Denko Corp Sealing sheet for optical semiconductor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014122274A (en) * 2012-12-21 2014-07-03 Toray Ind Inc Silicone resin composition
WO2016133825A1 (en) * 2015-02-19 2016-08-25 Osram Sylvania Inc. Led light source with diffuser
CN114316978A (en) * 2020-09-30 2022-04-12 日亚化学工业株式会社 Wavelength conversion member and light emitting device

Also Published As

Publication number Publication date
JP2014039006A (en) 2014-02-27
TW201347242A (en) 2013-11-16

Similar Documents

Publication Publication Date Title
WO2013129477A1 (en) Wavelength conversion member and semiconductor light-emitting device using same
JP2013211250A (en) Wavelength conversion member, and semiconductor light-emitting device using the same
US20160208164A1 (en) Light-emitting device, wavelength conversion member, phosphor composition and phosphor mixture
US9490405B2 (en) Light emitting diode device and method for production thereof containing conversion material chemistry
JP2014143344A (en) Wavelength conversion member and semiconductor light-emitting device using the same
CN104918992B (en) Light emitting diode devices, method of manufacture, uses thereof
US20130221837A1 (en) Polycarbonate made from low sulfur bisphenol a and containing converions material chemistry, and articles made therefrom
JP2014145012A (en) Resin composition, wavelength conversion member, light-emitting device, led lighting equipment, and optical member
US20130241390A1 (en) Metal-containing encapsulant compositions and methods
JP5919903B2 (en) Package for semiconductor light emitting device, semiconductor light emitting device having the package, and method for manufacturing the same
US20190123248A1 (en) Method for Producing an Optoelectronic Component, and Optoelectronic Component
WO2014014079A1 (en) Light emitting device, wavelength conversion member, phosphor composition, and phosphor mixture
JP2013183013A (en) Package sheet for semiconductor light emitting device, manufacturing method of the same, package for semiconductor light emitting device, manufacturing method of package for semiconductor light emitting device, and semiconductor light emitting device
JP2014125597A (en) Thermoplastic resin composition, wavelength conversion member, light-emitting device, and led luminaire
JP6204839B2 (en) Light emitting device and wavelength conversion member
JP5598593B2 (en) Light emitting device, wavelength conversion member, phosphor composition, and phosphor mixture
JP2014093398A (en) Semiconductor light-emitting device, lighting device and wavelength conversion member
JP2014170895A (en) Wavelength conversion member and light-emitting device using the same
JP2014175322A (en) Light-emitting device, luminaire having the same, image display device, fluorescent material composition, and wavelength conversion member arranged by shaping fluorescent material composition
JP5371646B2 (en) Polycarbonate resin composition and molded article comprising the same
JP2014192251A (en) Wavelength conversion member and semiconductor light-emitting device using the same
JP2014079905A (en) Method for manufacturing wavelength conversion member and method for manufacturing light-emitting device
WO2013129509A1 (en) Wavelength conversion member and method for manufacturing same, light-emitting device and lighting fixture including wavelength conversion member, and resin composition
JP2014112630A (en) Wavelength conversion member, method for manufacturing the same, light emitting device and lighting fixture each including the wavelength conversion member therein, and resin composition
JP2014139977A (en) Wavelength conversion member and semiconductor light emitting device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13755309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13755309

Country of ref document: EP

Kind code of ref document: A1