WO2013129228A1 - Separator-integrated electrode, battery, and battery manufacturing method - Google Patents

Separator-integrated electrode, battery, and battery manufacturing method Download PDF

Info

Publication number
WO2013129228A1
WO2013129228A1 PCT/JP2013/054322 JP2013054322W WO2013129228A1 WO 2013129228 A1 WO2013129228 A1 WO 2013129228A1 JP 2013054322 W JP2013054322 W JP 2013054322W WO 2013129228 A1 WO2013129228 A1 WO 2013129228A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
separator
heat welding
disposed
heat
Prior art date
Application number
PCT/JP2013/054322
Other languages
French (fr)
Japanese (ja)
Inventor
泰元 金
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2013129228A1 publication Critical patent/WO2013129228A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0459Cells or batteries with folded separator between plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/466U-shaped, bag-shaped or folded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a separator integrated electrode, a battery, and a battery manufacturing method.
  • a conventional laminated battery has a laminate in which a positive electrode (electrode), a separator, a negative electrode (electrode), and a separator are sequentially laminated in this order. Therefore, when the electrode and the separator are misaligned when the electrode and the separator are laminated or assembled, there is a possibility that the battery capacity is reduced (a reduction in the effective power generation area) or a short circuit is caused. Therefore, the positional deviation at the time of lamination
  • the positional deviation between the electrode and the separator at the time of stacking and assembly is somewhat improved by bringing the welding position of the separator closer to the positive electrode.
  • the positive electrode can move inside the bag-shaped separator, the positional deviation between the electrode and the separator could not be sufficiently suppressed.
  • the present invention has been made to solve the problems associated with the prior art, and is a separator integrated electrode, battery, and battery manufacturing that can further suppress misalignment between the electrode and the separator during lamination and assembly. It aims to provide a method.
  • a separator integrated electrode of the present invention includes an electrode composed of a negative electrode or a positive electrode, a plurality of separators arranged with the electrode interposed therebetween, and a first heat that joins the plurality of separators to each other.
  • a welding portion and a second thermal welding portion, and the electrode has one side on which a current collecting foil for taking out generated electricity to the outside is disposed, and the current collecting foil is formed from one side of the electrode.
  • the first heat welding part is arranged at a position overlapping the pair of side parts of the current collector foil
  • the second heat welding part is one side of the electrode It is arrange
  • the battery of the present invention for achieving the above object has a laminate of the separator integrated electrode and a second electrode having a polarity different from that of the electrode.
  • a battery manufacturing method of the present invention is a separator in which a first electrode composed of a negative electrode or a positive electrode and a plurality of separators arranged with the first electrode interposed therebetween are integrated.
  • the electrode has one side on which a current collecting foil for taking out the generated electricity to the outside is disposed, the current collecting foil protrudes from one side of the electrode and has a pair of side portions on both sides,
  • a first heat welding portion and a second heat welding portion for joining the plurality of separators to each other are formed, and the first heat welding portion is a pair of sides of the current collector foil.
  • the second heat welding is arranged overlapping the part , Rather than the other side which is located opposite the side of the electrode is arranged outside and is spaced apart from said first heat seal parts.
  • FIG. 1 is a perspective view of a stacked battery according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the stacked battery shown in FIG. 1. It is a top view for demonstrating the separator integrated electrode shown by FIG. It is a principal part enlarged view of FIG.
  • FIG. 5 is a sectional view taken along line VV in FIG. 4. It is a conceptual diagram for demonstrating the manufacturing method of the laminated battery shown by FIG. (A) shows a state in which the positive electrode is stacked on the first separator, (b) shows a state in which the second separator is stacked on the positive electrode in (a), and (c) shows one sheet. The state which joined the separators of the eyes and the second sheet is shown.
  • FIG. (A) and (b) correspond to FIG. 6 (b), and (c) corresponds to FIG. 6 (c).
  • It is a top view for demonstrating the modification 2 which concerns on embodiment of this invention.
  • It is a top view for demonstrating the modification 3 which concerns on embodiment of this invention.
  • It is a top view for demonstrating the modification 4 which concerns on embodiment of this invention.
  • It is a perspective view for demonstrating the modification 5 which concerns on embodiment of this invention.
  • It is a perspective view for demonstrating the modification 6 which concerns on embodiment of this invention.
  • FIG. 1 is a perspective view for explaining a stacked battery according to an embodiment of the present invention
  • FIG. 2 is an exploded perspective view of the stacked battery shown in FIG.
  • a stacked battery (battery) 100 is, for example, a lithium ion secondary battery, and has a flat rectangular shape as shown in FIG.
  • the stacked battery 100 includes a power generation element (battery element) 130 in which a charge / discharge reaction occurs, an exterior material 110 that houses the power generation element (battery element) 130, a positive electrode lead 120 and a negative electrode for taking out the generated electricity to the outside.
  • Lead 122 is, for example, a lithium ion secondary battery, and has a flat rectangular shape as shown in FIG.
  • the stacked battery 100 includes a power generation element (battery element) 130 in which a charge / discharge reaction occurs, an exterior material 110 that houses the power generation element (battery element) 130, a positive electrode lead 120 and a negative electrode for taking out the generated electricity to the outside.
  • Lead 122 is, for example, a lithium ion secondary battery, and has a flat rectangular shape as shown in FIG.
  • the stacked battery 100 includes a power generation element (batter
  • the exterior material 110 includes an upper side exterior material 112 and a lower side exterior material 114, and is used to prevent external impact and environmental degradation.
  • the exterior material 110 is formed by joining a part or all of the outer peripheral portions of the sheet material constituting the upper side exterior material 112 and the lower side exterior material 114 to each other by heat fusion.
  • the sheet material is composed of a polymer-metal composite laminate film in which metals (including alloys) such as aluminum, stainless steel, nickel, and copper are covered with an insulator such as a polypropylene film from the viewpoint of weight reduction and thermal conductivity. It is preferable.
  • the positive electrode lead 120 and the negative electrode lead 122 are led out from between the upper side exterior material 112 and the lower side exterior material 114 of the exterior material 110. In order to ensure the hermeticity of the exterior material 110, contact portions between the exterior material 110 and the positive electrode lead 120 and the negative electrode lead 122 are joined.
  • the power generation element (laminated body) 130 is formed by alternately laminating negative electrodes 140 and separator integrated electrodes 150.
  • the number of layers of the negative electrode 140 and the separator integrated electrode 150 is appropriately set in consideration of necessary capacity and the like.
  • the negative electrode (electrode) 140 is formed in a substantially rectangular shape, and an active material layer is formed on both surfaces of a thin sheet-like negative electrode current collector.
  • the negative electrode current collector is made of a highly conductive member and has a tab portion (current collector foil) 142 that is in electrical contact with the negative electrode lead 122.
  • the tab portion 142 is arranged to take out the generated electricity to the outside, and protrudes from one side (front side portion 141) of the negative electrode 140.
  • the active material layer is a region in which a negative electrode active material into which lithium can be inserted and desorbed (contained region) is disposed, and is disposed on both surfaces of the negative electrode current collector excluding the tab portion 142. It is in electrical contact with the electrical object.
  • the separator integrated electrode 150 is formed by sandwiching a positive electrode 160 between a pair (two or more) of separators 170 and 170, as will be described later.
  • the positive electrode 160 is formed in a substantially rectangular shape, and an active material layer is formed on both surfaces of a thin sheet-shaped positive electrode current collector.
  • the positive electrode current collector is made of a highly conductive member and has a tab portion (current collector foil) 162 that is in electrical contact with the positive electrode lead 120.
  • the tab portion 162 is arranged to take out the generated electricity to the outside, and protrudes from one side (front side portion 161) of the positive electrode 160.
  • the active material layer is a region where the positive electrode active material into which lithium can be inserted and desorbed (contained region) is disposed on both sides of the positive electrode current collector excluding the tab portion (current collector foil) 162. Disposed and in electrical contact with the positive electrode current collector. Note that the arrangement size of the positive electrode active material layer is set to be slightly smaller than the arrangement size of the negative electrode active material layer of the negative electrode 140.
  • the separator 170 is formed in a substantially rectangular shape, constitutes an electrolyte layer made of a microporous sheet (membrane) containing an electrolytic solution, and is disposed with the positive electrode 160 interposed therebetween.
  • the size of the separator 170 is set larger than the arrangement size of the active material layer of the positive electrode 160.
  • a negative electrode active material which concerns on the active material layer of the negative electrode 140 it is preferable to apply a carbon material and an alloy type negative electrode material from a viewpoint of a capacity
  • the carbon material include graphite, carbon black, activated carbon, carbon fiber, coke, soft carbon, and hard carbon.
  • the positive electrode active material related to the active material layer of the positive electrode 160 it is preferable to apply a lithium-transition metal composite oxide from the viewpoint of capacity and output characteristics.
  • Lithium - transition metal composite oxide for example, Li ⁇ Co-based composite oxide such as LiCoO 2, Li ⁇ Ni-based composite oxide such as LiNiO 2, Li ⁇ Mn-based composite oxide such as spinel LiMn 2 O 4, LiFeO 2 .
  • the alloy-based negative electrode material is, for example, silicon, silicon oxide, tin dioxide, silicon carbide, or tin, and preferably contains an element that can be alloyed with lithium.
  • the active material layer further contains additives such as a binder and a conductive aid.
  • the binder is, for example, polyamic acid, polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polyether nitrile (PEN), polyimide (PI), polyamide (PA), polytetrafluoroethylene (PTFE), styrene.
  • the conductive assistant is an additive blended to improve the conductivity of the active material layer, and is, for example, a carbon material such as carbon black such as acetylene black, graphite, or vapor grown carbon fiber.
  • the materials of the negative electrode current collector and the positive electrode current collector are, for example, iron, stainless steel, chromium, nickel, manganese, titanium, molybdenum, vanadium, niobium, aluminum, copper, silver, gold, platinum, and carbon. From the viewpoint of electron conductivity and battery operating potential, aluminum and copper are preferred.
  • the separator 170 is made of porous (porous) PE (polyethylene) and has air permeability.
  • PE polyethylene
  • other polyolefins such as PP (polypropylene), a laminate having a three-layer structure of PP / PE / PP, polyamide, polyimide, aramid, and non-woven fabric can be used.
  • Nonwoven fabrics are, for example, cotton, rayon, acetate, nylon, and polyester.
  • the separator 170 exhibits ion permeability and electrical conductivity when the electrolyte permeates.
  • the electrolyte solution contained in the separator 170 is, for example, a liquid electrolyte or a polymer electrolyte.
  • the liquid electrolyte has a form in which a lithium salt as a supporting salt is dissolved in an organic solvent as a plasticizer.
  • organic solvent used as the plasticizer include cyclic carbonates such as propylene carbonate, ethylene carbonate (EC), and vinylene carbonate, and chain carbonates such as dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate (DEC). .
  • Supporting salt is, for example, LiPF 6, LiBF 4, LiClO 4, LiAsF 6, LiTaF 6, LiAlCl 4, Li 2 B 10 or an inorganic acid anion salts 10 such as Cl, LiCF 3 SO 3, Li (CF 3 SO 2 ) is 2 N, Li (C 2 F 5 SO 2) organic acid anion salts such as 2 N.
  • the polymer electrolyte is classified into a gel electrolyte containing an electrolytic solution and an intrinsic polymer electrolyte containing no electrolytic solution.
  • the gel electrolyte has a configuration in which a liquid electrolyte is injected into a matrix polymer made of an ion conductive polymer.
  • the ion conductive polymer is, for example, polyethylene oxide (PEO), polypropylene oxide (PPO), and a copolymer thereof.
  • the intrinsic polymer electrolyte has a structure in which a supporting salt (lithium salt) is dissolved in the matrix polymer, and does not include an organic solvent that is a plasticizer.
  • FIG. 3 is a plan view for explaining the separator integrated electrode shown in FIG. 2
  • FIG. 4 is an enlarged view of a main part of FIG. 3
  • FIG. 5 is a sectional view taken along line VV of FIG.
  • the two separators 170 are joined to each other via the first heat welding portions 180 and 181 and the second heat welding portion 182 having a substantially rectangular shape in plan view.
  • 1st heat welding part 180,181 is arrange
  • the first heat welding parts 180 and 181 are arranged so as to overlap the side parts 162A and 162A in plan view.
  • the second heat welded part 182 is separated from the first heat welded parts 180 and 181 on the other side (rear side part 163) side of the positive electrode 160 facing the one side (front side part 161) where the tab portion 162 is disposed. Is provided.
  • first heat welded portions 180 and 181 are provided on the predetermined one side 171 side of the peripheral edge of the separator 170 having a rectangular shape in plan view, and the other side opposite to the one side 171 (the opposite side across the center of the separator 170).
  • a second heat welding portion 182 is provided on the 172 side.
  • the first heat welded portions 180 and 181 are separated from each other along the X direction (lateral direction in FIG. 3) and overlap both side portions 162 ⁇ / b> A of the tab portion 162 of the positive electrode 160. Placed in position. Moreover, the 1st heat welding part 180,181 and the 2nd heat welding part 182 are spaced apart along the Y direction (vertical direction in FIG. 3).
  • the X direction is a direction along the front side portion 161 (lateral (left and right) direction in FIG. 3), and is an extending direction of one side 171 of the separator 170.
  • the peripheral edge of the positive electrode 160 having a rectangular shape in plan view includes a front side portion 161, a rear side portion 163, and side side portions 165 and 165. Accordingly, the lateral side portion 165 is orthogonal to the front side portion 161 and the rear side portion 163. Therefore, the Y direction is a direction along the lateral side portion 165 (vertical (front-rear) direction in FIG. 3), and is orthogonal to the X direction.
  • the positive electrode 160 can be restrained (fixed) in the X direction and the Y direction with respect to the separator 170, and the movement of the positive electrode 160 in the X direction and the Y direction is reliably restricted.
  • the two separators 170 have two locations (first heat welded portions 180 and 181) corresponding to the side portion 162A of the tab portion 162 of the positive electrode 160 and one location (first location) on the rear side 163 side of the positive electrode 160. 2 heat-welded portions 182).
  • the positive electrode 160 and the separator 170 are integrated, and the positional stability of the positive electrode 160 and the separator 170 is ensured reliably. Therefore, it is possible to suppress the mutual positional deviation between the positive electrode 160 and the separator 170 during lamination and assembly.
  • the 1st heat welding part 180,181 overlaps with the base vicinity of the side part 162A of the tab part 162, and is arrange
  • the second heat welding part 182 is preferably disposed outside the rear side part 163 of the positive electrode 160. Thereby, the heat damage with respect to the positive electrode 160 at the time of forming the 2nd heat welding part 182 is suppressed.
  • the 2nd heat welding part 182 is arrange
  • symbol 186,187 has shown the thermal contraction part adjacent to the 1st heat welding part 180,181. Since the heat-shrinkable portions 186 and 187 are joined to the tab portion 162 through the separator 170, the heat-shrinkable portions 186 and 187 are heat-shrinkable portions without being thermally welded.
  • Reference symbol I1 indicates a boundary between the non-heated portion that is not affected by heating and the first heat-welded portion 181.
  • Reference symbol I2 indicates a boundary between the non-heated portion and the heat shrinkable portion 187 (see FIG. 5). ).
  • FIG. 6 is a conceptual diagram for explaining the manufacturing method of the stacked battery shown in FIG. 1
  • FIG. 7 is a conceptual diagram for explaining the joining shown in FIG.
  • the manufacturing method of the laminated battery 100 generally includes a separator integrated electrode forming step and a laminate forming step.
  • the separator integrated electrode 150 in which the positive electrode 160 and the two separators 170 disposed with the positive electrode 160 interposed therebetween are integrated is formed.
  • the positive electrode 160 is disposed and positioned at a predetermined position above the first separator 170.
  • the second separator 170 is disposed on the positive electrode 160 and positioned.
  • the stacked structure 150A is formed.
  • the first and second separators 170 are joined to each other so that the first heat welded portion 180, 181 and the second heat welding part 182 are formed.
  • the positive electrode 160 and the separator 170 are integrated, and the stacked structure 150 ⁇ / b> A becomes the separator integrated electrode 150.
  • 1st heat welding part 181 is formed by heating by the heating means 190 arrange
  • the heating means 190 incorporates a resistance heating element 192, for example. As shown in FIGS. 7 (a) and 7 (b), in a low temperature state where the resistance heating element 192 is not energized, the heating means 190 descends and approaches the overlapping structure 150A, for example, a height separated by 1 mm or more. The heating means 190 is positioned at the position. Then, the heating means 190 is heated by energizing the resistance heating element 192.
  • the second separator 170 constituting the upper surface of the stacked structure 150A is heated by the radiant heat from the heating means 190 that has become high temperature, and the heat affected zone 194 is formed. .
  • the tab portion 162 of the positive electrode 160 located below (inside) the stacked structure 150A is heated by heat transfer from the heat affected zone 194, and a heat affected zone 195 is formed.
  • the first separator 170 constituting the lower surface of the stacked structure 150 ⁇ / b> A is heated by heat transfer from the heat affected portions 194 and 195, and the heat affected portion 196 is formed.
  • reference numeral I3 indicates a boundary between the non-heated portion and the heat affected portions 194 to 196.
  • the method for forming the first heat welded portion 180 and the second heat welded portion 182 is substantially the same as the method for forming the first heat welded portion 181, and therefore the description thereof is omitted.
  • the formation method of the 1st heat welding part 180,181 and the 2nd heat welding part 182 can also be varied as needed.
  • the separator integrated electrode 150 and the negative electrode (second electrode having a polarity different from that of the positive electrode) 140 are laminated to assemble the laminated body.
  • the separator integrated electrode 150 the positional stability between the positive electrode 160 and the separator 170 is reliably ensured, so that the positional deviation between the positive electrode 160 and the separator 170 during stacking and assembly is suppressed. .
  • the non-contact type heating for forming the first heat welding parts 180 and 181 and the second heat welding part 182 is not limited to a form using radiant heat from the heating means 190 (resistance heating element 192).
  • radiant heat from the heating means 190 (resistance heating element 192).
  • hot air, thermal plasma, arc discharge, laser, high frequency induction heating can be used.
  • FIG. 8 to 10 are plan views for explaining the modified examples 1 to 3.
  • FIG. 8 to 10 are plan views for explaining the modified examples 1 to 3.
  • the first modification has a concave portion 162 ⁇ / b> B formed on one of the side portions 162 ⁇ / b> A of the tab portion 162 of the positive electrode 160, and the first heat welded portion 180 overlaps the concave portion 162 ⁇ / b> B in plan view. Arranged.
  • the positional stability between the positive electrode 160 and the separator 170 is improved. In particular, accurate positioning is possible even if there is a slight gap between the second heat welding part 182 and the rear side part 163 of the positive electrode 160.
  • the recess 162B is preferably arcuate. Thereby, the accuracy of positioning along the Y direction is improved.
  • the concave portion 162B is not limited to the form arranged on one side of the side portion 162A, but may be arranged on the other side of the side portion 162A as shown in FIG. 9 (Modification 2), or as shown in FIG. It is also possible to arrange them in both parts 162A (Modification 3).
  • FIG. 11 is a conceptual diagram for explaining the fourth modification.
  • Modification 4 further includes a step of forming a third heat welding portion 183 having a substantially rectangular shape for joining two separators 170 together.
  • Separator integrated electrode 150 has a third heat welding portion 183.
  • 3rd heat welding part 183 is arrange
  • the side part 165 is a pair of sides that connect and face the end of the front side 161 (one side) and the end of the rear side 163 (other side) of the positive electrode 160. Since the movement of the separator 170 in the X direction is suppressed, the positional stability between the positive electrode 160 and the separator 170 is improved. It is preferable that the 3rd heat welding part 183 is arrange
  • the modified example 5 includes a step of bending and joining one separator material 170A at the center in the longitudinal direction.
  • the separator is composed of one separator material 170A, but is substantially the same as the two separators by bending. Thereby, the number of parts is reduced. That is, in Modification 5, one vertically long separator material 170A extending in the Y direction is bent with the lower half facing upward at the center in the Y direction. Thereafter, the separator integrated electrode 150 is formed by joining predetermined portions.
  • one horizontally long separator material 170A extending in the X direction is bent with the left half facing the right side at the center in the X direction.
  • the separator integrated electrode 150 is formed by joining predetermined portions.
  • FIG. 14 is a conceptual diagram for explaining the modification example 7.
  • FIG. 14 is a conceptual diagram for explaining the modification example 7.
  • the heating means 190 for forming the first heat welding parts 180 and 181 is not limited to the form of being arranged apart from one surface of the stacked structure 150A, and can be arranged on both sides.
  • the two separators overlap two sides (a pair of side portions) of the current collector foil of the electrode (first side). 1 heat welding portion) and one portion (second heat welding portion) on the other side of the electrode.
  • the first heat welded portion is disposed so as to overlap the vicinity of the base of the side portion of the tab portion. Thereby, the positional stability of a positive electrode and a separator improves.
  • the second heat welding portion is disposed outside the rear side portion of the positive electrode. Therefore, the heat damage with respect to the positive electrode at the time of forming a 2nd heat welding part is suppressed.
  • a recess is formed in at least one of the side portions of the tab portion of the positive electrode, and the first heat welded portion is disposed so as to overlap the recess.
  • the recess is preferably arcuate. Thereby, the accuracy of positioning along the Y direction is improved.
  • the first heat welding part without directly contacting the separator and the positive electrode. Thereby, the heat damage with respect to a separator and a positive electrode is suppressed.
  • the separator is composed of a single separator material and is folded and joined at the center. Thereby, the number of parts is reduced.
  • the separator integrated electrode may be composed of a negative electrode and a separator, and the separator integrated electrode and the positive electrode may be stacked in order.
  • it is not limited to the form which makes direction (orientation) of a positive electrode lead, a negative electrode lead, a negative electrode tab part, and a positive electrode tab part correspond.
  • the two separators are arranged at two locations (first heat welding portion) that overlap on both sides (a pair of side portions) of the current collector foil of the electrode and at one location (first location) on the other side of the electrode. 2 heat welded portions).
  • the electrode and the separator are integrated, and the positional stability of the electrode and the separator is reliably ensured. Therefore, it is possible to suppress the mutual displacement between the electrode and the separator during lamination and assembly. That is, it is possible to provide a separator integrated electrode, a battery, and a battery manufacturing method capable of suppressing mutual displacement between the electrode and the separator during lamination and assembly.

Abstract

A separator-integrated electrode has: an electrode (160) consisting of a negative electrode or a positive electrode; and two separators (170) disposed by sandwiching the electrode (160) therebetween and joined through first heat welding portions (180, 181) and a second heat welding portion (182). The electrode (160) has one side (161) on which a collector foil (162) for taking generated electricity to the outside is disposed. The collector foil (162) has a pair of side portions (162A) projecting from the one side (161). The first heat welding portions (180, 181) are disposed overlapping with the pair of side portions (162A) in a plan view. The second heat welding portion (182) is disposed outside the other side (163) disposed on the opposite side of the one side (161). The present invention can sufficiently prevent the position shift between an electrode and a separator from occurring when stacking and assembling are performed.

Description

セパレータ一体化電極、電池および電池製造方法Separator integrated electrode, battery, and battery manufacturing method
 本発明は、セパレータ一体化電極、電池および電池製造方法に関する。 The present invention relates to a separator integrated electrode, a battery, and a battery manufacturing method.
 従来の積層型電池は、正極(電極)、セパレータ、負極(電極)およびセパレータがこれらの順に順次積層して組み立てられた積層体を有している。従って、前記電極とセパレータとを積層する時や組み立てる時に、電極とセパレータとが位置ズレを起こすと、電池容量の低下(有効発電面積の減少)や短絡等を引き起こすおそれがある。そのため、袋状セパレータの内部に正極を配置することで、積層時および組立時の位置ズレを抑制している(例えば、特許文献1参照。)。 A conventional laminated battery has a laminate in which a positive electrode (electrode), a separator, a negative electrode (electrode), and a separator are sequentially laminated in this order. Therefore, when the electrode and the separator are misaligned when the electrode and the separator are laminated or assembled, there is a possibility that the battery capacity is reduced (a reduction in the effective power generation area) or a short circuit is caused. Therefore, the positional deviation at the time of lamination | stacking and an assembly is suppressed by arrange | positioning a positive electrode inside a bag-shaped separator (for example, refer patent document 1).
特開平7-302616号公報JP 7-302616 A
 前記従来技術によれば、積層時および組立時における電極とセパレータとの位置ずれは、セパレータの溶着位置を正極に近づけることで多少は改善される。しかし、正極は、袋状セパレータの内部において移動可能であるため、電極とセパレータとの位置ずれを十分に抑制することができなかった。 According to the prior art, the positional deviation between the electrode and the separator at the time of stacking and assembly is somewhat improved by bringing the welding position of the separator closer to the positive electrode. However, since the positive electrode can move inside the bag-shaped separator, the positional deviation between the electrode and the separator could not be sufficiently suppressed.
 本発明は、前記従来技術に伴う課題を解決するためになされたものであり、積層時および組立時における電極とセパレータとの相互の位置ズレをさらに抑制し得るセパレータ一体化電極、電池および電池製造方法を提供することを目的とする。 The present invention has been made to solve the problems associated with the prior art, and is a separator integrated electrode, battery, and battery manufacturing that can further suppress misalignment between the electrode and the separator during lamination and assembly. It aims to provide a method.
 前記目的を達成するための本発明のセパレータ一体化電極は、負極または正極からなる電極と、前記電極を間に挟んで配置される複数のセパレータと、前記複数のセパレータを互いに接合する第1熱溶着部および第2熱溶着部と、を有し、前記電極は、発電した電気を外部に取り出すための集電箔が配置された一辺を有し、前記集電箔は、前記電極の一辺から突出すると共に両側に一対の側部を有し、前記第1熱溶着部は、前記集電箔の一対の側部に重なった位置に配置され、前記第2熱溶着部は、前記電極の一辺の反対側に配置された他辺よりも外側に配置され、前記第1熱溶着部から離間して設けられる。 In order to achieve the above object, a separator integrated electrode of the present invention includes an electrode composed of a negative electrode or a positive electrode, a plurality of separators arranged with the electrode interposed therebetween, and a first heat that joins the plurality of separators to each other. A welding portion and a second thermal welding portion, and the electrode has one side on which a current collecting foil for taking out generated electricity to the outside is disposed, and the current collecting foil is formed from one side of the electrode. It protrudes and has a pair of side parts on both sides, the first heat welding part is arranged at a position overlapping the pair of side parts of the current collector foil, and the second heat welding part is one side of the electrode It is arrange | positioned on the outer side rather than the other side arrange | positioned on the opposite side, and it is spaced apart from the said 1st heat welding part.
 前記目的を達成するための本発明の電池は、前記セパレータ一体化電極と、前記電極と極性が異なる第2の電極と、の積層体を有する。 The battery of the present invention for achieving the above object has a laminate of the separator integrated electrode and a second electrode having a polarity different from that of the electrode.
 前記目的を達成するための本発明の電池製造方法は、負極または正極からなる第1の電極と、前記第1の電極を間に挟んで配置される複数のセパレータと、が一体化されたセパレータ一体化電極を形成する工程と、前記セパレータ一体化電極と前記第1の電極に対して極性が異なる第2の電極とを積層して、積層体を組立てる工程と、を有し、前記第1の電極は、発電した電気を外部に取り出すための集電箔が配置された一辺を有し、前記集電箔は、前記電極の一辺から突出すると共に両側に一対の側部を有し、前記セパレータ一体化電極を形成する前記工程において、前記複数のセパレータを互いに接合する第1熱溶着部および第2熱溶着部を形成し、前記第1熱溶着部は、前記集電箔の一対の側部に重なって配置され、前記第2熱溶着部は、前記電極の一辺の反対側に配置された他辺よりも外側に配置され、前記第1熱溶着部から離間して設けられる。 In order to achieve the above object, a battery manufacturing method of the present invention is a separator in which a first electrode composed of a negative electrode or a positive electrode and a plurality of separators arranged with the first electrode interposed therebetween are integrated. A step of forming an integrated electrode; and a step of assembling a laminate by laminating the separator integrated electrode and a second electrode having a polarity different from that of the first electrode. The electrode has one side on which a current collecting foil for taking out the generated electricity to the outside is disposed, the current collecting foil protrudes from one side of the electrode and has a pair of side portions on both sides, In the step of forming the separator integrated electrode, a first heat welding portion and a second heat welding portion for joining the plurality of separators to each other are formed, and the first heat welding portion is a pair of sides of the current collector foil. The second heat welding is arranged overlapping the part , Rather than the other side which is located opposite the side of the electrode is arranged outside and is spaced apart from said first heat seal parts.
本発明の実施の形態に係る積層型電池の斜視図である。1 is a perspective view of a stacked battery according to an embodiment of the present invention. 図1に示される積層型電池の分解斜視図である。FIG. 2 is an exploded perspective view of the stacked battery shown in FIG. 1. 図2に示されるセパレータ一体化電極を説明するための平面図である。It is a top view for demonstrating the separator integrated electrode shown by FIG. 図3の要部拡大図である。It is a principal part enlarged view of FIG. 図4のV-V線による断面図である。FIG. 5 is a sectional view taken along line VV in FIG. 4. 図1に示される積層型電池の製造方法を説明するための概念図である。(a)は1枚目のセパレータの上に正極を積み重ねた状態を示し、(b)は(a)の正極の上から2枚目のセパレータを積み重ねた状態を示し、(c)は1枚目と2枚目のセパレータ同士を接合した状態を示している。It is a conceptual diagram for demonstrating the manufacturing method of the laminated battery shown by FIG. (A) shows a state in which the positive electrode is stacked on the first separator, (b) shows a state in which the second separator is stacked on the positive electrode in (a), and (c) shows one sheet. The state which joined the separators of the eyes and the second sheet is shown. 図6に示される接合の手順を説明するための概念図である。(a)および(b)は図6(b)に対応し、(c)は図6(c)に対応する。It is a conceptual diagram for demonstrating the procedure of joining shown by FIG. (A) and (b) correspond to FIG. 6 (b), and (c) corresponds to FIG. 6 (c). 本発明の実施の形態に係る変形例1を説明するための平面図である。It is a top view for demonstrating the modification 1 which concerns on embodiment of this invention. 本発明の実施の形態に係る変形例2を説明するための平面図である。It is a top view for demonstrating the modification 2 which concerns on embodiment of this invention. 本発明の実施の形態に係る変形例3を説明するための平面図である。It is a top view for demonstrating the modification 3 which concerns on embodiment of this invention. 本発明の実施の形態に係る変形例4を説明するための平面図である。It is a top view for demonstrating the modification 4 which concerns on embodiment of this invention. 本発明の実施の形態に係る変形例5を説明するための斜視図である。It is a perspective view for demonstrating the modification 5 which concerns on embodiment of this invention. 本発明の実施の形態に係る変形例6を説明するための斜視図である。It is a perspective view for demonstrating the modification 6 which concerns on embodiment of this invention. 本発明の実施の形態に係る変形例7を説明するための断面図である。It is sectional drawing for demonstrating the modification 7 which concerns on embodiment of this invention.
 以下、本発明の実施の形態を、図面を参照しつつ説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の実施の形態に係る積層型電池を説明するための斜視図、図2は、図1に示される積層型電池の分解斜視図である。 FIG. 1 is a perspective view for explaining a stacked battery according to an embodiment of the present invention, and FIG. 2 is an exploded perspective view of the stacked battery shown in FIG.
 本発明の実施の形態に係る積層型電池(電池)100は、例えば、リチウムイオン二次電池であり、図1に示されるように、扁平な矩形形状を有している。積層型電池100は、充放電反応が生じる発電要素(電池要素)130と、該発電要素(電池要素)130を収容する外装材110と、発電した電気を外部に取り出すための正極リード120および負極リード122と、を有する。 A stacked battery (battery) 100 according to an embodiment of the present invention is, for example, a lithium ion secondary battery, and has a flat rectangular shape as shown in FIG. The stacked battery 100 includes a power generation element (battery element) 130 in which a charge / discharge reaction occurs, an exterior material 110 that houses the power generation element (battery element) 130, a positive electrode lead 120 and a negative electrode for taking out the generated electricity to the outside. Lead 122.
 外装材110は、上部側外装材112および下部側外装材114からなり、外部からの衝撃や環境劣化を防止するために用いられる。上部側外装材112および下部側外装材114を構成するシート材の外周部の一部または全部を、熱融着により互いに接合することで外装材110が形成される。シート材は、軽量化および熱伝導性の観点から、アルミニウム、ステンレス、ニッケル、銅などの金属(合金を含む)をポリプロピレンフィルム等の絶縁体で被覆した高分子-金属複合ラミネートフィルムから構成されることが好ましい。 The exterior material 110 includes an upper side exterior material 112 and a lower side exterior material 114, and is used to prevent external impact and environmental degradation. The exterior material 110 is formed by joining a part or all of the outer peripheral portions of the sheet material constituting the upper side exterior material 112 and the lower side exterior material 114 to each other by heat fusion. The sheet material is composed of a polymer-metal composite laminate film in which metals (including alloys) such as aluminum, stainless steel, nickel, and copper are covered with an insulator such as a polypropylene film from the viewpoint of weight reduction and thermal conductivity. It is preferable.
 正極リード120および負極リード122は、外装材110の上部側外装材112と下部側外装材114との間から外部に導出されている。外装材110の密閉性を確保するため、外装材110と正極リード120および負極リード122との接触部位は接合されている。 The positive electrode lead 120 and the negative electrode lead 122 are led out from between the upper side exterior material 112 and the lower side exterior material 114 of the exterior material 110. In order to ensure the hermeticity of the exterior material 110, contact portions between the exterior material 110 and the positive electrode lead 120 and the negative electrode lead 122 are joined.
 発電要素(積層体)130は、図2に示されるように、負極140とセパレータ一体化電極150とが交互に積層されて形成される。負極140とセパレータ一体化電極150の積層数は、必要な容量などを考慮し、適宜設定される。 As shown in FIG. 2, the power generation element (laminated body) 130 is formed by alternately laminating negative electrodes 140 and separator integrated electrodes 150. The number of layers of the negative electrode 140 and the separator integrated electrode 150 is appropriately set in consideration of necessary capacity and the like.
 負極(電極)140は、略矩形状に形成され、薄いシート状の負極集電体の両面に活物質層が形成されてなる。負極集電体は、高導電性部材からなり、負極リード122と電気的に接触するタブ部分(集電箔)142を有する。タブ部分142は、発電した電気を外部に取り出すために配置されており、負極140の一辺(前方辺部141)から突出している。活物質層は、リチウムを挿入および脱離可能な負極活物質が配置されている領域(含有している領域)であり、タブ部分142を除いた負極集電体の両面に配置され、負極集電体に電気的に接触している。 The negative electrode (electrode) 140 is formed in a substantially rectangular shape, and an active material layer is formed on both surfaces of a thin sheet-like negative electrode current collector. The negative electrode current collector is made of a highly conductive member and has a tab portion (current collector foil) 142 that is in electrical contact with the negative electrode lead 122. The tab portion 142 is arranged to take out the generated electricity to the outside, and protrudes from one side (front side portion 141) of the negative electrode 140. The active material layer is a region in which a negative electrode active material into which lithium can be inserted and desorbed (contained region) is disposed, and is disposed on both surfaces of the negative electrode current collector excluding the tab portion 142. It is in electrical contact with the electrical object.
 セパレータ一体化電極150は、後述するように、正極160が、一対(2枚、複数)のセパレータ170,170により挟み込まれて形成されている。 The separator integrated electrode 150 is formed by sandwiching a positive electrode 160 between a pair (two or more) of separators 170 and 170, as will be described later.
 正極160は、略矩形状に形成され、薄いシート状の正極集電体の両面に活物質層が形成されている。正極集電体は、高導電性部材からなり、正極リード120と電気的に接触するタブ部分(集電箔)162を有する。タブ部分162は、発電した電気を外部に取り出すために配置されており、正極160の一辺(前方辺部161)から突出している。 The positive electrode 160 is formed in a substantially rectangular shape, and an active material layer is formed on both surfaces of a thin sheet-shaped positive electrode current collector. The positive electrode current collector is made of a highly conductive member and has a tab portion (current collector foil) 162 that is in electrical contact with the positive electrode lead 120. The tab portion 162 is arranged to take out the generated electricity to the outside, and protrudes from one side (front side portion 161) of the positive electrode 160.
 活物質層は、リチウムを挿入および脱離可能な正極活物質が配置されている領域(含有している領域)であり、タブ部分(集電箔)162を除いた正極集電体の両面に配置され、正極集電体に電気的に接触している。なお、正極活物質層の配置サイズは、負極140の負極活物質層の配置サイズよりも一回り小さく設定されている。 The active material layer is a region where the positive electrode active material into which lithium can be inserted and desorbed (contained region) is disposed on both sides of the positive electrode current collector excluding the tab portion (current collector foil) 162. Disposed and in electrical contact with the positive electrode current collector. Note that the arrangement size of the positive electrode active material layer is set to be slightly smaller than the arrangement size of the negative electrode active material layer of the negative electrode 140.
 セパレータ170は、略矩形に形成され、電解液を含有する微多孔性シート(膜)からなる電解質層を構成し、正極160を間に挟んで配置される。セパレータ170のサイズは、正極160の活物質層の配置サイズより大きく設定されている。 The separator 170 is formed in a substantially rectangular shape, constitutes an electrolyte layer made of a microporous sheet (membrane) containing an electrolytic solution, and is disposed with the positive electrode 160 interposed therebetween. The size of the separator 170 is set larger than the arrangement size of the active material layer of the positive electrode 160.
 なお、負極140の活物質層に係る負極活物質としては、容量および出力特性の観点から、炭素材料および合金系負極材料を適用することが好ましい。炭素材料は、例えば、グラファイト、カーボンブラック、活性炭、カーボンファイバ、コークス、ソフトカーボン、ハードカーボンである。正極160の活物質層に係る正極活物質としては、容量および出力特性の観点から、リチウム-遷移金属複合酸化物を適用することが好ましい。リチウム-遷移金属複合酸化物は、例えば、LiCoOなどのLi・Co系複合酸化物、LiNiOなどのLi・Ni系複合酸化物、スピネルLiMnなどのLi・Mn系複合酸化物、LiFeOである。合金系負極材料は、例えば、ケイ素、酸化ケイ素、二酸化錫、炭化ケイ素、錫であり、リチウムと合金化し得る元素を含むことが好ましい。 In addition, as a negative electrode active material which concerns on the active material layer of the negative electrode 140, it is preferable to apply a carbon material and an alloy type negative electrode material from a viewpoint of a capacity | capacitance and output characteristics. Examples of the carbon material include graphite, carbon black, activated carbon, carbon fiber, coke, soft carbon, and hard carbon. As the positive electrode active material related to the active material layer of the positive electrode 160, it is preferable to apply a lithium-transition metal composite oxide from the viewpoint of capacity and output characteristics. Lithium - transition metal composite oxide, for example, Li · Co-based composite oxide such as LiCoO 2, Li · Ni-based composite oxide such as LiNiO 2, Li · Mn-based composite oxide such as spinel LiMn 2 O 4, LiFeO 2 . The alloy-based negative electrode material is, for example, silicon, silicon oxide, tin dioxide, silicon carbide, or tin, and preferably contains an element that can be alloyed with lithium.
 活物質層は、バインダや導電助剤等の添加剤をさらに含有する。バインダは、例えば、ポリアミック酸、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリイミド(PI)、ポリアミド(PA)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVdF)、またはこれらの混合物である。導電助剤は、活物質層の導電性を向上させるために配合される添加物であり、例えば、アセチレンブラック等のカーボンブラック、グラファイト、気相成長炭素繊維などの炭素材料である。 The active material layer further contains additives such as a binder and a conductive aid. The binder is, for example, polyamic acid, polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polyether nitrile (PEN), polyimide (PI), polyamide (PA), polytetrafluoroethylene (PTFE), styrene. Butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA), polyvinyl chloride (PVC), polyvinylidene fluoride (PVdF), or mixtures thereof. The conductive assistant is an additive blended to improve the conductivity of the active material layer, and is, for example, a carbon material such as carbon black such as acetylene black, graphite, or vapor grown carbon fiber.
 負極集電体および正極集電体の素材は、例えば、鉄、ステンレス鋼、クロム、ニッケル、マンガン、チタン、モリブデン、バナジウム、ニオブ、アルミニウム、銅、銀、金、白金およびカーボンである。電子伝導性、電池作動電位という観点からは、アルミニウムや銅が好ましい。 The materials of the negative electrode current collector and the positive electrode current collector are, for example, iron, stainless steel, chromium, nickel, manganese, titanium, molybdenum, vanadium, niobium, aluminum, copper, silver, gold, platinum, and carbon. From the viewpoint of electron conductivity and battery operating potential, aluminum and copper are preferred.
 セパレータ170は、多孔性(ポーラス)のPE(ポリエチレン)から形成され、通気性を有する。セパレータの素材として、PP(ポリプロピレン)などの他のポリオレフィン、PP/PE/PPの3層構造をした積層体、ポリアミド、ポリイミド、アラミド、不織布を利用することが可能である。不織布は、例えば、綿、レーヨン、アセテート、ナイロン、ポリエステルである。 The separator 170 is made of porous (porous) PE (polyethylene) and has air permeability. As a material for the separator, other polyolefins such as PP (polypropylene), a laminate having a three-layer structure of PP / PE / PP, polyamide, polyimide, aramid, and non-woven fabric can be used. Nonwoven fabrics are, for example, cotton, rayon, acetate, nylon, and polyester.
 セパレータ170は、電解質が浸透することによって、イオンの透過性および電気伝導性を呈することとなる。セパレータ170が含有する電解液は、例えば、液体電解質、ポリマー電解質である。 The separator 170 exhibits ion permeability and electrical conductivity when the electrolyte permeates. The electrolyte solution contained in the separator 170 is, for example, a liquid electrolyte or a polymer electrolyte.
 液体電解質は、可塑剤である有機溶媒に支持塩であるリチウム塩が溶解した形態を有する。可塑剤として適用される有機溶媒は、例えば、プロピレンカーボネート、エチレンカーボネート(EC)、ビニレンカーボネートなどの環状カーボネート類や、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート(DEC)などの鎖状カーボネート類である。支持塩は、例えば、LiPF、LiBF、LiClO、LiAsF、LiTaF、LiAlCl、Li10Cl10等の無機酸陰イオン塩や、LiCFSO、Li(CFSON、Li(CSON等の有機酸陰イオン塩である。 The liquid electrolyte has a form in which a lithium salt as a supporting salt is dissolved in an organic solvent as a plasticizer. Examples of the organic solvent used as the plasticizer include cyclic carbonates such as propylene carbonate, ethylene carbonate (EC), and vinylene carbonate, and chain carbonates such as dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate (DEC). . Supporting salt is, for example, LiPF 6, LiBF 4, LiClO 4, LiAsF 6, LiTaF 6, LiAlCl 4, Li 2 B 10 or an inorganic acid anion salts 10 such as Cl, LiCF 3 SO 3, Li (CF 3 SO 2 ) is 2 N, Li (C 2 F 5 SO 2) organic acid anion salts such as 2 N.
 ポリマー電解質は、電解液を含むゲル電解質と電解液を含まない真性ポリマー電解質に分類される。ゲル電解質は、イオン伝導性ポリマーからなるマトリックスポリマーに、液体電解質が注入されてなる構成を有する。イオン伝導性ポリマーは、例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、およびこれらの共重合体である。真性ポリマー電解質は、前記のマトリックスポリマーに支持塩(リチウム塩)が溶解してなる構成を有し、可塑剤である有機溶媒を含まない。 The polymer electrolyte is classified into a gel electrolyte containing an electrolytic solution and an intrinsic polymer electrolyte containing no electrolytic solution. The gel electrolyte has a configuration in which a liquid electrolyte is injected into a matrix polymer made of an ion conductive polymer. The ion conductive polymer is, for example, polyethylene oxide (PEO), polypropylene oxide (PPO), and a copolymer thereof. The intrinsic polymer electrolyte has a structure in which a supporting salt (lithium salt) is dissolved in the matrix polymer, and does not include an organic solvent that is a plasticizer.
 次に、セパレータ一体化電極150を詳述する。 Next, the separator integrated electrode 150 will be described in detail.
 図3は図2に示されるセパレータ一体化電極を説明するための平面図、図4は図3の要部拡大図、図5は図4のV-V線による断面図である。 3 is a plan view for explaining the separator integrated electrode shown in FIG. 2, FIG. 4 is an enlarged view of a main part of FIG. 3, and FIG. 5 is a sectional view taken along line VV of FIG.
 セパレータ一体化電極150において、2枚のセパレータ170は、平面視が略長方形状の第1熱溶着部180,181および第2熱溶着部182を介して互いに接合されている。 In the separator integrated electrode 150, the two separators 170 are joined to each other via the first heat welding portions 180 and 181 and the second heat welding portion 182 having a substantially rectangular shape in plan view.
 第1熱溶着部180,181は、タブ部分162の一対の側部(両側)162Aに隣接して配置される。具体的には、タブ部分162の左右両側には、左右一対の側部162A,162Aが形成されている。そして、図3および図4に示すように、第1熱溶着部180,181は、平面視において側部162A,162Aに重なるように配置されている。第2熱溶着部182は、タブ部分162が配置された一辺(前方辺部161)に相対する正極160の他辺(後方辺部163)側に、第1熱溶着部180,181から離間して設けられている。即ち、平面視が矩形状のセパレータ170における周縁の所定の一辺171側に第1熱溶着部180,181を設け、前記一辺171の反対側(セパレータ170の中心を挟んだ反対側)の他辺172側に第2熱溶着部182を設けている。 1st heat welding part 180,181 is arrange | positioned adjacent to a pair of side part (both sides) 162A of the tab part 162. FIG. Specifically, a pair of left and right side portions 162A and 162A are formed on the left and right sides of the tab portion 162. As shown in FIGS. 3 and 4, the first heat welding parts 180 and 181 are arranged so as to overlap the side parts 162A and 162A in plan view. The second heat welded part 182 is separated from the first heat welded parts 180 and 181 on the other side (rear side part 163) side of the positive electrode 160 facing the one side (front side part 161) where the tab portion 162 is disposed. Is provided. In other words, the first heat welded portions 180 and 181 are provided on the predetermined one side 171 side of the peripheral edge of the separator 170 having a rectangular shape in plan view, and the other side opposite to the one side 171 (the opposite side across the center of the separator 170). A second heat welding portion 182 is provided on the 172 side.
 図3に示されるように、第1熱溶着部180,181は、X方向(図3における横方向)に沿って互いに離間しており、かつ、正極160のタブ部分162の両側部162Aに重なる位置に配置されている。また、第1熱溶着部180,181と第2熱溶着部182とは、Y方向(図3における縦方向)に沿って離間している。 As shown in FIG. 3, the first heat welded portions 180 and 181 are separated from each other along the X direction (lateral direction in FIG. 3) and overlap both side portions 162 </ b> A of the tab portion 162 of the positive electrode 160. Placed in position. Moreover, the 1st heat welding part 180,181 and the 2nd heat welding part 182 are spaced apart along the Y direction (vertical direction in FIG. 3).
 ここで、X方向は、前方辺部161に沿った方向(図3における横(左右)方向)であり、セパレータ170の一辺171の延在方向である。なお、平面視が矩形状の正極160の周縁は、前方辺部161、後方辺部163、および側方辺部165,165からなる。従って、側方辺部165は、前方辺部161および後方辺部163に対して直交している。従って、Y方向は、側方辺部165に沿った方向(図3における縦(前後)方向)であり、X方向に直交している。 Here, the X direction is a direction along the front side portion 161 (lateral (left and right) direction in FIG. 3), and is an extending direction of one side 171 of the separator 170. The peripheral edge of the positive electrode 160 having a rectangular shape in plan view includes a front side portion 161, a rear side portion 163, and side side portions 165 and 165. Accordingly, the lateral side portion 165 is orthogonal to the front side portion 161 and the rear side portion 163. Therefore, the Y direction is a direction along the lateral side portion 165 (vertical (front-rear) direction in FIG. 3), and is orthogonal to the X direction.
 以上より、セパレータ170に対して、正極160をX方向およびY方向に拘束(固定)することが可能であり、正極160のX方向およびY方向の動きが確実に規制される。 As described above, the positive electrode 160 can be restrained (fixed) in the X direction and the Y direction with respect to the separator 170, and the movement of the positive electrode 160 in the X direction and the Y direction is reliably restricted.
 つまり、2枚のセパレータ170は、正極160のタブ部分162の側部162Aに対応する2か所(第1熱溶着部180,181)および正極160の後方辺部163側の1か所(第2熱溶着部182)で互いに接合されている。このように、正極160とセパレータ170が一体化されており、正極160とセパレータ170との位置安定性が確実に確保されている。したがって、積層時および組立時における正極160とセパレータ170との相互の位置ズレを抑制することが可能である。 That is, the two separators 170 have two locations (first heat welded portions 180 and 181) corresponding to the side portion 162A of the tab portion 162 of the positive electrode 160 and one location (first location) on the rear side 163 side of the positive electrode 160. 2 heat-welded portions 182). Thus, the positive electrode 160 and the separator 170 are integrated, and the positional stability of the positive electrode 160 and the separator 170 is ensured reliably. Therefore, it is possible to suppress the mutual positional deviation between the positive electrode 160 and the separator 170 during lamination and assembly.
 第1熱溶着部180,181は、タブ部分162の側部162Aの根元近傍に重なって配置されることが好ましい。これにより、正極160とセパレータ170との位置安定性が向上する。第2熱溶着部182は、正極160の後方辺部163よりも外側に配置されることが好ましい。これにより、第2熱溶着部182を形成する際の正極160に対するヒートダメージが抑制される。また、第2熱溶着部182は、正極160の後方辺部163の略中央に対応する部位に配置されることが好ましい。これにより、正極160とセパレータ170との位置安定性が向上する。必要に応じて、正極160の前方辺部161および/又は後方辺部163の外側に、別の熱溶着部を適宜形成することも可能である。 It is preferable that the 1st heat welding part 180,181 overlaps with the base vicinity of the side part 162A of the tab part 162, and is arrange | positioned. Thereby, the positional stability of the positive electrode 160 and the separator 170 is improved. The second heat welding part 182 is preferably disposed outside the rear side part 163 of the positive electrode 160. Thereby, the heat damage with respect to the positive electrode 160 at the time of forming the 2nd heat welding part 182 is suppressed. Moreover, it is preferable that the 2nd heat welding part 182 is arrange | positioned in the site | part corresponding to the approximate center of the back side part 163 of the positive electrode 160. FIG. Thereby, the positional stability of the positive electrode 160 and the separator 170 is improved. If necessary, another heat welding portion can be appropriately formed outside the front side portion 161 and / or the rear side portion 163 of the positive electrode 160.
 なお、符号186,187は、第1熱溶着部180,181に隣接する熱収縮部を示している。熱収縮部186,187は、セパレータ170を介してタブ部分162に接合されているため、熱溶着せずに熱収縮した部位である。符号I1は、加熱の影響を受けていない非加熱部と第1熱溶着部181との境界を示し、符号I2は、非加熱部と熱収縮部187との境界を示している(図5参照)。 In addition, the code | symbol 186,187 has shown the thermal contraction part adjacent to the 1st heat welding part 180,181. Since the heat- shrinkable portions 186 and 187 are joined to the tab portion 162 through the separator 170, the heat- shrinkable portions 186 and 187 are heat-shrinkable portions without being thermally welded. Reference symbol I1 indicates a boundary between the non-heated portion that is not affected by heating and the first heat-welded portion 181. Reference symbol I2 indicates a boundary between the non-heated portion and the heat shrinkable portion 187 (see FIG. 5). ).
 次に、積層型電池100の製造方法を説明する。 Next, a method for manufacturing the stacked battery 100 will be described.
 図6は、図1に示される積層型電池の製造方法を説明するための概念図、図7は、図6に示される接合を説明するための概念図である。 FIG. 6 is a conceptual diagram for explaining the manufacturing method of the stacked battery shown in FIG. 1, and FIG. 7 is a conceptual diagram for explaining the joining shown in FIG.
 積層型電池100の製造方法は、概して、セパレータ一体化電極の形成工程と積層体の形成工程とを有する。 The manufacturing method of the laminated battery 100 generally includes a separator integrated electrode forming step and a laminate forming step.
 セパレータ一体化電極の形成工程においては、正極160と、正極160を間に挟んで配置される2枚のセパレータ170と、が一体化されたセパレータ一体化電極150が形成される。 In the step of forming the separator integrated electrode, the separator integrated electrode 150 in which the positive electrode 160 and the two separators 170 disposed with the positive electrode 160 interposed therebetween are integrated is formed.
 詳述すると、図6(a)に示すように、まず、1枚目のセパレータ170の上側で所定の位置に正極160が配置され、位置決めされる。そして、図6(b)と図7(a)に示すように、2枚目のセパレータ170が正極160の上に配置され、位置決めされる。これにより、積重ね構造体150Aが形成される。その後、図6(c)と図7(b)(c)に示すように、1枚目と2枚目のセパレータ170の3か所同士が接合されることによって、第1熱溶着部180,181および第2熱溶着部182が形成される。これによって、正極160とセパレータ170とが一体化され、積重ね構造体150Aは、セパレータ一体化電極150となる。 More specifically, as shown in FIG. 6A, first, the positive electrode 160 is disposed and positioned at a predetermined position above the first separator 170. Then, as shown in FIGS. 6B and 7A, the second separator 170 is disposed on the positive electrode 160 and positioned. Thereby, the stacked structure 150A is formed. Thereafter, as shown in FIGS. 6 (c) and 7 (b) (c), the first and second separators 170 are joined to each other so that the first heat welded portion 180, 181 and the second heat welding part 182 are formed. As a result, the positive electrode 160 and the separator 170 are integrated, and the stacked structure 150 </ b> A becomes the separator integrated electrode 150.
 第1熱溶着部181は、例えば、図7に示されるように、積重ね構造体150Aから上方に離間して配置される加熱手段190で加熱することにより形成される。 1st heat welding part 181 is formed by heating by the heating means 190 arrange | positioned spaced apart upwards from 150 A of stacked structures, for example, as FIG. 7 shows.
 加熱手段190は、例えば、抵抗発熱体192を内蔵している。図7(a)(b)に示すように、抵抗発熱体192に通電していない低温の状態で、加熱手段190が下降して重ね構造体150Aに近接し、例えば、1mm以上離間した高さ位置で加熱手段190が位置決めされる。そして、抵抗発熱体192に通電することで、加熱手段190が昇温する。 The heating means 190 incorporates a resistance heating element 192, for example. As shown in FIGS. 7 (a) and 7 (b), in a low temperature state where the resistance heating element 192 is not energized, the heating means 190 descends and approaches the overlapping structure 150A, for example, a height separated by 1 mm or more. The heating means 190 is positioned at the position. Then, the heating means 190 is heated by energizing the resistance heating element 192.
 図7(b)に示すように、重ね構造体150Aの上面を構成する2枚目のセパレータ170は、高温となった加熱手段190からの輻射熱によって昇温し、熱影響部194が形成される。積重ね構造体150Aの下方(内部)に位置する正極160のタブ部分162は、熱影響部194からの伝熱によって昇温し、熱影響部195が形成される。積重ね構造体150Aの下面を構成する1枚目のセパレータ170は、熱影響部194,195からの伝熱により、昇温し、熱影響部196が形成される。 As shown in FIG. 7B, the second separator 170 constituting the upper surface of the stacked structure 150A is heated by the radiant heat from the heating means 190 that has become high temperature, and the heat affected zone 194 is formed. . The tab portion 162 of the positive electrode 160 located below (inside) the stacked structure 150A is heated by heat transfer from the heat affected zone 194, and a heat affected zone 195 is formed. The first separator 170 constituting the lower surface of the stacked structure 150 </ b> A is heated by heat transfer from the heat affected portions 194 and 195, and the heat affected portion 196 is formed.
 その後、セパレータ170の熱影響部194,196の温度がセパレータ170の溶着温度を超えると、図7(c)に示すように、熱影響部194,196におけるタブ部分162に面する部位が熱収縮部187となり、タブ部分162に面しない部位が第1熱溶着部181となる。これによりセパレータ一体化電極150が形成されると、抵抗発熱体192の通電が停止され、加熱手段190は、セパレータ一体化電極150から上昇する。 Thereafter, when the temperature of the heat-affected portions 194, 196 of the separator 170 exceeds the welding temperature of the separator 170, the portion facing the tab portion 162 in the heat-affected portions 194, 196 is thermally contracted as shown in FIG. A portion that becomes the portion 187 and does not face the tab portion 162 becomes the first heat welding portion 181. As a result, when the separator integrated electrode 150 is formed, the energization of the resistance heating element 192 is stopped, and the heating means 190 rises from the separator integrated electrode 150.
 加熱手段190は、前述のように、セパレータ170および正極160に直接接触しないため、セパレータ170および正極160に対するヒートダメージを抑制することできる。なお、符号I3は、非加熱部と熱影響部194~196との境界を示している。 Since the heating means 190 does not directly contact the separator 170 and the positive electrode 160 as described above, heat damage to the separator 170 and the positive electrode 160 can be suppressed. Note that reference numeral I3 indicates a boundary between the non-heated portion and the heat affected portions 194 to 196.
 第1熱溶着部180および第2熱溶着部182の形成方法は、第1熱溶着部181の形成方法と略一致しているため、その説明を省略する。なお、必要に応じ、第1熱溶着部180,181および第2熱溶着部182の形成方法を、異ならせることも可能である。 The method for forming the first heat welded portion 180 and the second heat welded portion 182 is substantially the same as the method for forming the first heat welded portion 181, and therefore the description thereof is omitted. In addition, the formation method of the 1st heat welding part 180,181 and the 2nd heat welding part 182 can also be varied as needed.
 積層体の形成工程においては、セパレータ一体化電極150と、負極(正極と極性が異なる第2の電極)140とが積層され、積層体が組立てられる。この際、セパレータ一体化電極150において、正極160とセパレータ170との位置安定性が確実に確保されているため、積層時および組立時における正極160とセパレータ170との相互の位置ズレが抑制される。 In the laminated body forming step, the separator integrated electrode 150 and the negative electrode (second electrode having a polarity different from that of the positive electrode) 140 are laminated to assemble the laminated body. At this time, in the separator integrated electrode 150, the positional stability between the positive electrode 160 and the separator 170 is reliably ensured, so that the positional deviation between the positive electrode 160 and the separator 170 during stacking and assembly is suppressed. .
 なお、第1熱溶着部180,181および第2熱溶着部182を形成するための非接触式加熱は、加熱手段190(抵抗発熱体192)からの輻射熱を利用する形態に限定されない。例えば、熱風、熱プラズマ、アーク放電、レーザ、高周波誘導加熱を利用することが可能である。また、必要に応じて、接触式加熱を適用することも可能である。 In addition, the non-contact type heating for forming the first heat welding parts 180 and 181 and the second heat welding part 182 is not limited to a form using radiant heat from the heating means 190 (resistance heating element 192). For example, hot air, thermal plasma, arc discharge, laser, high frequency induction heating can be used. Moreover, it is also possible to apply contact heating as needed.
 次に、本発明の実施の形態に係る変形例1~7を順次説明する。 Next, Modifications 1 to 7 according to the embodiment of the present invention will be sequentially described.
 図8~10は、変形例1~3を説明するための平面図である。 8 to 10 are plan views for explaining the modified examples 1 to 3. FIG.
 図8に示すように、変形例1においては、正極160のタブ部分162の側部162Aの一方に形成された凹部162Bを有し、第1熱溶着部180は、平面視において凹部162Bに重なって配置される。これにより、正極160とセパレータ170との位置ズレが生じようとしても、第1熱溶着部180と凹部162Bとが接合されていることで、セパレータ170のX方向およびY方向の動きが抑制(係止)されるため、正極160とセパレータ170との位置安定性が向上する。特に、第2熱溶着部182と正極160の後方辺部163との間に多少の隙間が生じても、正確な位置決めが可能である。 As shown in FIG. 8, the first modification has a concave portion 162 </ b> B formed on one of the side portions 162 </ b> A of the tab portion 162 of the positive electrode 160, and the first heat welded portion 180 overlaps the concave portion 162 </ b> B in plan view. Arranged. As a result, even if misalignment between the positive electrode 160 and the separator 170 occurs, the movement of the separator 170 in the X direction and the Y direction is suppressed (responsible) because the first heat welded portion 180 and the concave portion 162B are joined. Therefore, the positional stability between the positive electrode 160 and the separator 170 is improved. In particular, accurate positioning is possible even if there is a slight gap between the second heat welding part 182 and the rear side part 163 of the positive electrode 160.
 凹部162Bは、円弧状であることが好ましい。これにより、Y方向に沿った位置決めの精度が向上する。 The recess 162B is preferably arcuate. Thereby, the accuracy of positioning along the Y direction is improved.
 凹部162Bは、側部162Aの一方に配置する形態に限定されず、図9に示されるように、側部162Aの他方に配置したり(変形例2)、図10に示されるように、側部162Aの両方に配置したり(変形例3)することも可能である。 The concave portion 162B is not limited to the form arranged on one side of the side portion 162A, but may be arranged on the other side of the side portion 162A as shown in FIG. 9 (Modification 2), or as shown in FIG. It is also possible to arrange them in both parts 162A (Modification 3).
 図11は、変形例4を説明するための概念図である。 FIG. 11 is a conceptual diagram for explaining the fourth modification.
 変形例4は、2枚のセパレータ170同士を接合する略長方形状の第3熱溶着部183を形成する工程をさらに有する。セパレータ一体化電極150は、第3熱溶着部183を有する。 Modification 4 further includes a step of forming a third heat welding portion 183 having a substantially rectangular shape for joining two separators 170 together. Separator integrated electrode 150 has a third heat welding portion 183.
 第3熱溶着部183は、正極160の側方辺部165の外側に配置されており、正極160とセパレータ170との一体化をより強固にする。ここで、側方辺部165は、正極160の前方辺部161(一辺)の端部と後方辺部163(他辺)の端部とを連結しかつ相対する一対の辺である。前記セパレータ170のX方向の動きが抑制されるため、正極160とセパレータ170との位置安定性が向上する。第3熱溶着部183は、側方辺部165の略中央に対応する部位に配置されることが好ましい。なお、必要に応じて、正極160の側方辺部165の外側に、別の熱溶着部を適宜形成することも可能である。 3rd heat welding part 183 is arrange | positioned on the outer side of the side part 165 of the positive electrode 160, and solidifies the positive electrode 160 and the separator 170 more firmly. Here, the side part 165 is a pair of sides that connect and face the end of the front side 161 (one side) and the end of the rear side 163 (other side) of the positive electrode 160. Since the movement of the separator 170 in the X direction is suppressed, the positional stability between the positive electrode 160 and the separator 170 is improved. It is preferable that the 3rd heat welding part 183 is arrange | positioned in the site | part corresponding to the approximate center of the side part 165. FIG. Note that another heat-welded portion can be appropriately formed outside the lateral side portion 165 of the positive electrode 160 as necessary.
 図12および図13は、変形例5および変形例6を説明するための概念図である。 12 and 13 are conceptual diagrams for explaining the fifth and sixth modifications.
 図12に示すように、変形例5は、1枚のセパレータ素材170Aを長手方向中央で折り曲げて接合する工程を有する。変形例5において、セパレータは、1枚のセパレータ素材170Aから構成されるが、折り曲げることによって、実質的に2枚のセパレータと同じになる。これにより、部品点数が削減される。即ち、変形例5では、Y方向に延在する縦長の1枚のセパレータ素材170AをY方向中央部を境にして下側半分を上側に向けて折り曲げる。こののち、所定部位を接合することにより、セパレータ一体化電極150が形成される。 As shown in FIG. 12, the modified example 5 includes a step of bending and joining one separator material 170A at the center in the longitudinal direction. In the modified example 5, the separator is composed of one separator material 170A, but is substantially the same as the two separators by bending. Thereby, the number of parts is reduced. That is, in Modification 5, one vertically long separator material 170A extending in the Y direction is bent with the lower half facing upward at the center in the Y direction. Thereafter, the separator integrated electrode 150 is formed by joining predetermined portions.
 なお、図13に示すように、変形例6では、X方向に延在する横長の1枚のセパレータ素材170AをX方向中央部を境にして左側半分を右側に向けて折り曲げる。このように、折り曲げることによって、実質的に2枚のセパレータと同じになる。こののち、所定部位を接合することにより、セパレータ一体化電極150が形成される。 As shown in FIG. 13, in Modification 6, one horizontally long separator material 170A extending in the X direction is bent with the left half facing the right side at the center in the X direction. Thus, by bending, it becomes substantially the same as the two separators. Thereafter, the separator integrated electrode 150 is formed by joining predetermined portions.
 図14は、変形例7を説明するための概念図である。 FIG. 14 is a conceptual diagram for explaining the modification example 7. FIG.
 第1熱溶着部180,181を形成するための加熱手段190は、積重ね構造体150Aの一方の面から離間して配置する形態に限定されず、両面側に配置することも可能である。 The heating means 190 for forming the first heat welding parts 180 and 181 is not limited to the form of being arranged apart from one surface of the stacked structure 150A, and can be arranged on both sides.
 積重ね構造体150Aの両面側から加熱するため、溶着時間を短縮することができる。また、第1熱溶着部180,181の位置を、正極160のタブ部分162の両側に対称に配置することが容易となる。 Since heating is performed from both sides of the stacked structure 150A, the welding time can be shortened. Moreover, it becomes easy to arrange | position the position of the 1st heat welding part 180,181 symmetrically on the both sides of the tab part 162 of the positive electrode 160. FIG.
 以上のように、本実施の形態に係るセパレータ一体化電極、電池および電池製造方法においては、2枚のセパレータは、電極の集電箔の両側(一対の側部)に重なる2か所(第1熱溶着部)および電極の他辺側の1か所(第2熱溶着部)で互いに接合されている。これにより、電極とセパレータが一体化され、電極とセパレータとの相対的な位置安定性が確実に確保される。 As described above, in the separator integrated electrode, battery, and battery manufacturing method according to the present embodiment, the two separators overlap two sides (a pair of side portions) of the current collector foil of the electrode (first side). 1 heat welding portion) and one portion (second heat welding portion) on the other side of the electrode. Thereby, an electrode and a separator are integrated and the relative positional stability of an electrode and a separator is ensured reliably.
 したがって、積層時および組立時における電極とセパレータとの相互の位置ズレを抑制することが可能である。つまり、積層時および組立時における電極とセパレータとの相互の位置ズレを抑制し得るセパレータ一体化電極、電池および電池製造方法を提供することが可能である。 Therefore, it is possible to suppress misalignment between the electrode and the separator during lamination and assembly. That is, it is possible to provide a separator integrated electrode, a battery, and a battery manufacturing method capable of suppressing mutual displacement between the electrode and the separator during lamination and assembly.
 第1熱溶着部は、タブ部分の側部の根元近傍に重なって配置されることが好ましい。これにより、正極とセパレータとの位置安定性が向上する。 It is preferable that the first heat welded portion is disposed so as to overlap the vicinity of the base of the side portion of the tab portion. Thereby, the positional stability of a positive electrode and a separator improves.
 第2熱溶着部は、正極の後方辺部の外側に配置されることが好ましい。これにより、第2熱溶着部を形成する際の正極に対するヒートダメージが抑制される。 It is preferable that the second heat welding portion is disposed outside the rear side portion of the positive electrode. Thereby, the heat damage with respect to the positive electrode at the time of forming a 2nd heat welding part is suppressed.
 正極のタブ部分の側部の少なくとも一方には、凹部を形成し、第1熱溶着部を、凹部に重ねて配置することが好ましい。これにより、セパレータのX方向およびY方向の動きが抑制(係止)されるため、正極とセパレータとの位置安定性が向上する。特に、第2熱溶着部と正極の後方辺部との間に多少の隙間が生じても、確実な位置決めが可能である。 It is preferable that a recess is formed in at least one of the side portions of the tab portion of the positive electrode, and the first heat welded portion is disposed so as to overlap the recess. Thereby, since the movement of the separator in the X direction and the Y direction is suppressed (locked), the positional stability between the positive electrode and the separator is improved. In particular, reliable positioning is possible even if there is a slight gap between the second heat welded portion and the rear side of the positive electrode.
 凹部は、円弧状であることが好ましい。これにより、Y方向に沿った位置決めの精度が向上する。 The recess is preferably arcuate. Thereby, the accuracy of positioning along the Y direction is improved.
 セパレータおよび正極に直接接触しないで第1熱溶着部を形成することが好ましい。これにより、セパレータおよび正極に対するヒートダメージが抑制される。 It is preferable to form the first heat welding part without directly contacting the separator and the positive electrode. Thereby, the heat damage with respect to a separator and a positive electrode is suppressed.
 正極の側方辺部よりも外側に配置される第3熱溶着部を有することが好ましい。これにより、正極とセパレータとの一体化をより強固にし、かつ、セパレータのX方向の動きが抑制されるため、正極とセパレータとの位置安定性が向上する。 It is preferable to have a third heat welding part arranged outside the side part of the positive electrode. Thereby, since the integration of the positive electrode and the separator is further strengthened and the movement of the separator in the X direction is suppressed, the positional stability between the positive electrode and the separator is improved.
 セパレータは、1枚のセパレータ素材から構成して、中央部で折り返して接合することが好ましい。これにより、部品点数が削減される。 It is preferable that the separator is composed of a single separator material and is folded and joined at the center. Thereby, the number of parts is reduced.
 本発明は、前述した実施の形態に限定されるものではなく、本発明の範囲で種々改変することができる。例えば、セパレータ一体化電極を、負極とセパレータによって構成し、セパレータ一体化電極と正極とを順に積層することも可能である。また、正極リード、負極リード、負極のタブ部分および正極のタブ部分の向き(配向)を一致させる形態に限定されない。 The present invention is not limited to the embodiment described above, and various modifications can be made within the scope of the present invention. For example, the separator integrated electrode may be composed of a negative electrode and a separator, and the separator integrated electrode and the positive electrode may be stacked in order. Moreover, it is not limited to the form which makes direction (orientation) of a positive electrode lead, a negative electrode lead, a negative electrode tab part, and a positive electrode tab part correspond.
 なお、特願2012―044353号(出願日:2012年2月29日)の全内容は、ここに援用される。 The entire contents of Japanese Patent Application No. 2012-044353 (filing date: February 29, 2012) are incorporated herein by reference.
 本発明によれば、2枚のセパレータは、電極の集電箔の両側(一対の側部)に重なった2か所(第1熱溶着部)および電極の他辺側の1か所(第2熱溶着部)で互いに接合されている。また、電極とセパレータが一体化されており、電極とセパレータの位置安定性が確実に確保されている。したがって、積層時および組立時における電極とセパレータとの相互の位置ズレを抑制することが可能である。つまり、積層時および組立時における電極とセパレータとの相互の位置ズレを抑制し得るセパレータ一体化電極、電池および電池製造方法を提供することが可能である。 According to the present invention, the two separators are arranged at two locations (first heat welding portion) that overlap on both sides (a pair of side portions) of the current collector foil of the electrode and at one location (first location) on the other side of the electrode. 2 heat welded portions). Moreover, the electrode and the separator are integrated, and the positional stability of the electrode and the separator is reliably ensured. Therefore, it is possible to suppress the mutual displacement between the electrode and the separator during lamination and assembly. That is, it is possible to provide a separator integrated electrode, a battery, and a battery manufacturing method capable of suppressing mutual displacement between the electrode and the separator during lamination and assembly.
100 積層型電池
110 外装材
112 上部
114 下部
120 正極リード
122 負極リード
130 発電要素
140 負極(第2の電極)
141 前方辺部
142 タブ部分(集電箔)
150 セパレータ一体化電極
150A 積重ね構造体
160 正極(電極)(第1の電極)
161 前方辺部(一辺)
162 タブ部分(集電箔)
162A 側部
162B 凹部
163 後方辺部(他辺)
165 側方辺部
170 セパレータ
170A セパレータ素材
180,181 第1熱溶着部
182 第2熱溶着部
183 第3熱溶着部
186,187 熱収縮部
190 加熱手段
192 抵抗発熱体
194,196 セパレータの熱影響部
195 タブ部分の熱影響部
I1 非加熱部と第1熱溶着部との境界
I2 非加熱部と熱収縮部との境界
I3 非加熱部と熱影響部との境界
X 前方辺部に沿った方向
Y 側方辺部に沿った方向
100 Stacked Battery 110 Exterior Material 112 Upper 114 Lower 120 Positive Electrode Lead 122 Negative Electrode Lead 130 Power Generation Element 140 Negative Electrode (Second Electrode)
141 Front side 142 Tab part (current collector foil)
150 Separator integrated electrode 150A Stack structure 160 Positive electrode (electrode) (first electrode)
161 Front side (one side)
162 Tab part (current collector foil)
162A Side part 162B Concave part 163 Back side part (other side)
165 Side side portion 170 Separator 170A Separator material 180, 181 First heat welded portion 182 Second heat welded portion 183 Third heat welded portion 186, 187 Heat shrinkable portion 190 Heating means 192 Resistance heating element 194, 196 Thermal influence of separator Portion 195 Heat-affected zone I1 of the tab portion Boundary I2 between the non-heated portion and the first heat-welded portion I3 Boundary between the non-heated portion and the heat shrinkage portion Boundary X between the non-heated portion and the heat-affected zone Direction Y Direction along the side

Claims (12)

  1.  負極または正極からなる電極と、
     前記電極を間に挟んで配置される複数のセパレータと、
     前記複数のセパレータを互いに接合する第1熱溶着部および第2熱溶着部と、を有し、
     前記電極は、発電した電気を外部に取り出すための集電箔が配置された一辺を有し、
     前記集電箔は、前記電極の一辺から突出すると共に両側に一対の側部を有し、
     前記第1熱溶着部は、前記集電箔の一対の側部に重なった位置に配置され、
     前記第2熱溶着部は、前記電極の一辺の反対側に配置された他辺よりも外側に配置され、前記第1熱溶着部から離間して設けられる
     ことを特徴とするセパレータ一体化電極。
    An electrode composed of a negative electrode or a positive electrode;
    A plurality of separators disposed with the electrodes interposed therebetween;
    A first heat welding part and a second heat welding part for joining the plurality of separators to each other;
    The electrode has one side on which a collector foil for taking out the generated electricity to the outside is arranged,
    The current collector foil protrudes from one side of the electrode and has a pair of side portions on both sides,
    The first heat welding portion is disposed at a position overlapping the pair of side portions of the current collector foil,
    The said 2nd heat welding part is arrange | positioned outside the other side arrange | positioned on the opposite side of the one side of the said electrode, and is spaced apart and provided from the said 1st heat welding part. The separator integrated electrode characterized by the above-mentioned.
  2.  前記第1熱溶着部は、前記集電箔の一対の側部の根元近傍に配置されることを特徴とする請求項1に記載のセパレータ一体化電極。 The separator integrated electrode according to claim 1, wherein the first heat welding portion is disposed in the vicinity of the root of a pair of side portions of the current collector foil.
  3.  前記集電箔の前記一対の側部の少なくとも一方は、凹部を有しており、
     前記第1熱溶着部は、前記凹部に重なった位置に配置されることを特徴とする請求項1又は請求項2に記載のセパレータ一体化電極。
    At least one of the pair of side portions of the current collector foil has a recess,
    The separator integrated electrode according to claim 1, wherein the first heat welding portion is disposed at a position overlapping the concave portion.
  4.  前記凹部は、平面視で円弧状に形成されたことを特徴とする請求項3に記載のセパレータ一体化電極。 The separator integrated electrode according to claim 3, wherein the recess is formed in an arc shape in a plan view.
  5.  前記複数のセパレータが互いに接合される第3熱溶着部をさらに有し、
     前記第3熱溶着部は、前記電極の一辺の端部と他辺の端部とを連結しかつ相対する一対の辺よりも外側に配置されることを特徴とする請求項1~4のいずれか一項に記載のセパレータ一体化電極。
    A third heat-welded portion where the plurality of separators are joined to each other;
    5. The third heat welding portion is arranged outside the pair of sides that connect the end portion of one side of the electrode and the end portion of the other side and that face each other. The separator integrated electrode according to claim 1.
  6.  前記複数のセパレータは、1枚のセパレータ素材を折り曲げて形成されることを特徴とする請求項1~5のいずれか一項に記載のセパレータ一体化電極。 The separator integrated electrode according to any one of claims 1 to 5, wherein the plurality of separators are formed by bending one separator material.
  7.  請求項1~6のいずれか1項に記載のセパレータ一体化電極と、前記電極と極性が異なる第2の電極と、から構成される積層体を有することを特徴とする電池。 A battery comprising a laminate comprising the separator integrated electrode according to any one of claims 1 to 6 and a second electrode having a polarity different from that of the electrode.
  8.  負極または正極からなる第1の電極と、前記第1の電極を間に挟んで配置される複数のセパレータと、が一体化されたセパレータ一体化電極を形成する工程と、
     前記セパレータ一体化電極と前記第1の電極に対して極性が異なる第2の電極とを積層して、積層体を組立てる工程と、を有し、
     前記第1の電極は、発電した電気を外部に取り出すための集電箔が配置された一辺を有し、
     前記集電箔は、前記電極の一辺から突出すると共に両側に一対の側部を有し、
     前記セパレータ一体化電極を形成する前記工程において、前記複数のセパレータを互いに接合する第1熱溶着部および第2熱溶着部を形成し、
     前記第1熱溶着部は、前記集電箔の一対の側部に重なった位置に配置され、
     前記第2熱溶着部は、前記電極の一辺の反対側に配置された他辺よりも外側に配置され、前記第1熱溶着部から離間して設けられる
     ことを特徴とする電池製造方法。
    Forming a separator integrated electrode in which a first electrode composed of a negative electrode or a positive electrode and a plurality of separators arranged with the first electrode interposed therebetween are integrated;
    Laminating the separator integrated electrode and the second electrode having a different polarity with respect to the first electrode, and assembling the laminate,
    The first electrode has one side on which a collector foil for taking out the generated electricity to the outside is arranged,
    The current collector foil protrudes from one side of the electrode and has a pair of side portions on both sides,
    In the step of forming the separator integrated electrode, a first thermal welding portion and a second thermal welding portion that join the plurality of separators to each other are formed,
    The first heat welding portion is disposed at a position overlapping the pair of side portions of the current collector foil,
    The second heat welding portion is disposed on the outer side of the other side disposed on the opposite side of the one side of the electrode, and is provided apart from the first heat welding portion.
  9.  前記第1熱溶着部は、前記集電箔の一対の側部の根元近傍に配置されることを特徴とする請求項8に記載の電池製造方法。 The battery manufacturing method according to claim 8, wherein the first heat-welded portion is disposed in the vicinity of the root of a pair of side portions of the current collector foil.
  10.  前記複数のセパレータが互いに接合される第3熱溶着部を形成する工程をさらに有し、
     前記第3熱溶着部は、前記電極の一辺の端部と他辺の端部とを連結しかつ相対する一対の辺よりも外側に配置されることを特徴とする請求項8又は請求項9に記載の電池製造方法。
    A step of forming a third heat-welded portion where the plurality of separators are joined to each other;
    10. The third heat welding portion is disposed outside a pair of sides that connect an end portion of one side of the electrode and an end portion of the other side and face each other. The battery manufacturing method as described in any one of.
  11.  前記セパレータ一体化電極を形成する前記工程において、
     前記複数のセパレータを、前記複数のセパレータから離間して配置された加熱手段で加熱することにより、前記第1熱溶着部を形成する
     ことを特徴とする請求項8~10のいずれか一項に記載の電池製造方法。
    In the step of forming the separator integrated electrode,
    11. The first heat welding portion is formed by heating the plurality of separators with a heating unit that is disposed apart from the plurality of separators. The battery manufacturing method as described.
  12.  1枚のセパレータ素材を折り曲げて、前記複数のセパレータを形成する工程をさらに有することを特徴とする請求項8~11のいずれか一項に記載の電池製造方法。 The battery manufacturing method according to any one of claims 8 to 11, further comprising a step of forming a plurality of separators by bending a single separator material.
PCT/JP2013/054322 2012-02-29 2013-02-21 Separator-integrated electrode, battery, and battery manufacturing method WO2013129228A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-044353 2012-02-29
JP2012044353A JP5948961B2 (en) 2012-02-29 2012-02-29 Separator integrated electrode, battery, and battery manufacturing method

Publications (1)

Publication Number Publication Date
WO2013129228A1 true WO2013129228A1 (en) 2013-09-06

Family

ID=49082428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054322 WO2013129228A1 (en) 2012-02-29 2013-02-21 Separator-integrated electrode, battery, and battery manufacturing method

Country Status (2)

Country Link
JP (1) JP5948961B2 (en)
WO (1) WO2013129228A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017091929A (en) * 2015-11-13 2017-05-25 日本電気株式会社 Separator for battery, battery including the separator, method for manufacturing the separator, and method for manufacturing the battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196657A (en) * 1984-10-17 1986-05-15 Matsushita Electric Ind Co Ltd Method of fusing separator for battery
JP2003092100A (en) * 2001-09-19 2003-03-28 Nec Corp Laminated cell
JP2007026967A (en) * 2005-07-20 2007-02-01 Shin Kobe Electric Mach Co Ltd Manufacturing method of electrode plate containing bag separator
JP2008269819A (en) * 2007-04-17 2008-11-06 Sony Corp Nonaqueous electrolytic solution secondary battery
JP2009289418A (en) * 2008-05-27 2009-12-10 Nec Tokin Corp Manufacturing method of laminated secondary battery
JP2010277925A (en) * 2009-05-29 2010-12-09 Sanyo Electric Co Ltd Paper battery and its manufacturing method
WO2011099224A1 (en) * 2010-02-10 2011-08-18 Necエナジーデバイス株式会社 Stacked secondary battery
JP2012178326A (en) * 2011-01-31 2012-09-13 Sanyo Electric Co Ltd Lamination type battery and manufacturing method for the same
JP2012204335A (en) * 2011-03-28 2012-10-22 Mitsubishi Heavy Ind Ltd Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09147902A (en) * 1995-11-28 1997-06-06 Furukawa Battery Co Ltd:The Square sealed cell
JP3511443B2 (en) * 1996-12-20 2004-03-29 株式会社リコー Battery device
JP3934888B2 (en) * 2001-06-28 2007-06-20 Necトーキン株式会社 Multilayer secondary battery
JP2003272595A (en) * 2002-03-20 2003-09-26 Tdk Corp Manufacturing method for electrochemical device, manufacturing equipment, and electrochemical device
JP4961673B2 (en) * 2005-03-08 2012-06-27 住友電気工業株式会社 Method for producing tab lead for non-aqueous electrolyte battery
JP2008091100A (en) * 2006-09-29 2008-04-17 Sanyo Electric Co Ltd Square lithium-ion battery
JP5101655B2 (en) * 2010-05-06 2012-12-19 三菱重工業株式会社 battery
JP5594764B2 (en) * 2010-05-18 2014-09-24 Necエナジーデバイス株式会社 Multilayer secondary battery
JP5590608B2 (en) * 2010-09-03 2014-09-17 Necエナジーデバイス株式会社 Multilayer secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196657A (en) * 1984-10-17 1986-05-15 Matsushita Electric Ind Co Ltd Method of fusing separator for battery
JP2003092100A (en) * 2001-09-19 2003-03-28 Nec Corp Laminated cell
JP2007026967A (en) * 2005-07-20 2007-02-01 Shin Kobe Electric Mach Co Ltd Manufacturing method of electrode plate containing bag separator
JP2008269819A (en) * 2007-04-17 2008-11-06 Sony Corp Nonaqueous electrolytic solution secondary battery
JP2009289418A (en) * 2008-05-27 2009-12-10 Nec Tokin Corp Manufacturing method of laminated secondary battery
JP2010277925A (en) * 2009-05-29 2010-12-09 Sanyo Electric Co Ltd Paper battery and its manufacturing method
WO2011099224A1 (en) * 2010-02-10 2011-08-18 Necエナジーデバイス株式会社 Stacked secondary battery
JP2012178326A (en) * 2011-01-31 2012-09-13 Sanyo Electric Co Ltd Lamination type battery and manufacturing method for the same
JP2012204335A (en) * 2011-03-28 2012-10-22 Mitsubishi Heavy Ind Ltd Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017091929A (en) * 2015-11-13 2017-05-25 日本電気株式会社 Separator for battery, battery including the separator, method for manufacturing the separator, and method for manufacturing the battery

Also Published As

Publication number Publication date
JP2013182715A (en) 2013-09-12
JP5948961B2 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
KR101152552B1 (en) Electrode assembly and secondary battery using the same
JP6859059B2 (en) Lithium-ion secondary battery and its manufacturing method
JP4720384B2 (en) Bipolar battery
US10818901B2 (en) Laminated cell and method for manufacturing same
JP6255970B2 (en) Battery system
JP2012124146A (en) Secondary battery, battery unit, and battery module
JP2016146269A (en) Secondary battery and method for manufacturing the same
JP6757499B2 (en) Rechargeable battery
JP2008091100A (en) Square lithium-ion battery
JP4852882B2 (en) Secondary battery and method for manufacturing secondary battery
JP2012204335A (en) Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
WO2017033514A1 (en) Electrochemical device
JP2016146270A (en) Secondary battery and method for manufacturing the same
WO2014141640A1 (en) Laminate exterior cell
JP2009187675A (en) Laminate type secondary battery and method of manufacturing the same
JP2005251617A (en) Secondary battery and battery pack
JP2014007064A (en) Collector for battery and lithium-ion battery
JP2015069812A (en) Laminated battery and method of manufacturing the same
JP5948961B2 (en) Separator integrated electrode, battery, and battery manufacturing method
JP5664068B2 (en) Multilayer battery and method of manufacturing multilayer battery
JP5526514B2 (en) Bipolar battery and battery pack using the same
JP5454656B1 (en) Power storage device and method for manufacturing power storage device
KR101722662B1 (en) Pouch-Type Secondary Battery
JP2007073485A (en) Battery and battery pack
JP6716631B2 (en) Non-aqueous battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13754718

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13754718

Country of ref document: EP

Kind code of ref document: A1