JP2008091100A - Square lithium-ion battery - Google Patents

Square lithium-ion battery Download PDF

Info

Publication number
JP2008091100A
JP2008091100A JP2006268544A JP2006268544A JP2008091100A JP 2008091100 A JP2008091100 A JP 2008091100A JP 2006268544 A JP2006268544 A JP 2006268544A JP 2006268544 A JP2006268544 A JP 2006268544A JP 2008091100 A JP2008091100 A JP 2008091100A
Authority
JP
Japan
Prior art keywords
separator
bag
positive electrode
negative electrode
ion battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006268544A
Other languages
Japanese (ja)
Inventor
Hitoshi Maeda
仁史 前田
Masayuki Fujiwara
雅之 藤原
Atsuhiro Funabashi
淳浩 船橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006268544A priority Critical patent/JP2008091100A/en
Publication of JP2008091100A publication Critical patent/JP2008091100A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a square lithium ion battery in which on an assumption that undulation or warping are apt to occur in a separator when the separator is manufactured by heat fusion-bonding, even if lamination deviation of a positive electrode and a negative electrode occurs, the lamination deviation can be identified easily, and by this, the lamination deviation can be corrected, and the battery having a superior precision can be manufactured. <P>SOLUTION: In the square lithium ion battery that has the positive electrode 1, the negative electrode 2, and the bag-formed separators 3 equipped with a fused part 4 in which peripheries of two sheets of rectangular separators 3a are mutually fused and the positive electrode 1 is arranged in the inside, and that is equipped with the lamination electrode body 10 in which this bag-formed separator 3 and the negative electrode 2 are alternately arranged, the fused parts 4 are formed on three sides of the bag-formed separators 3, and the ends 4a of the fused parts 4 are extendingly installed toward the outer edges 3b of the bag-formed separators 3, and the outer edge positions of the fused part 4 are arranged at the same position by the respective bag-formed separators 3. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ロボット、電気自動車、バックアップ電源などに使用される角型リチウムイオン電池に関する。   The present invention relates to a prismatic lithium ion battery used for a robot, an electric vehicle, a backup power source and the like.

近年、電池は、携帯電話、ノートパソコン、PDA等の移動情報端末の電源のみならず、ロボット、電気自動車、バックアップ電源などに使用されるようになってきており、さらなる高容量化が要求されるようになってきている。このような要求に対し、リチウムイオン二次電池は、高いエネルギー密度を有し、高容量であるので、上記のような駆動電源として広く利用されている。   In recent years, batteries have been used not only for power sources of mobile information terminals such as mobile phones, notebook personal computers, and PDAs, but also for robots, electric vehicles, backup power sources, etc., and further increase in capacity is required. It has become like this. In response to such demands, lithium ion secondary batteries have high energy density and high capacity, and are therefore widely used as drive power sources as described above.

このようなリチウムイオン二次電池の電池形態としては、大別して、渦巻状の電極体を有底円筒状の外装体に封入した円筒型のものと、方形状電極を複数積層した積層電極体を2枚のラミネートフィルムを溶着することにより作製した外装体に封入した角型のものとがある。   As a battery form of such a lithium ion secondary battery, it is roughly divided into a cylindrical type in which a spiral electrode body is enclosed in a bottomed cylindrical exterior body, and a laminated electrode body in which a plurality of rectangular electrodes are laminated. There is a square type encapsulated in an exterior body produced by welding two laminated films.

これらリチウムイオン二次電池のうち後者の電池の積層電極体の具体的な構成は、正極リードを有するシート状の正極と、負極リードを有するシート状の負極とを、負極と実質的に同形状の方形状のセパレータを介して必要な数だけ積層した構造となっている。この場合、充放電が円滑に行なわれるように、正極の寸法が負極の寸法よりも小さくなるような構造となっている。   Among these lithium ion secondary batteries, the specific structure of the laminated electrode body of the latter battery is that a sheet-like positive electrode having a positive electrode lead and a sheet-like negative electrode having a negative electrode lead are substantially the same shape as the negative electrode. The required number of layers are stacked via a square separator. In this case, the structure is such that the dimensions of the positive electrode are smaller than the dimensions of the negative electrode so that charging and discharging can be performed smoothly.

しかしながら、上記従来の構造では、正極と負極とをセパレータを介して積層する場合、積層ずれが生じやすくなる。これは、リチウムイオン電池の電極は、正負両極とも数10〜数100μmの厚みであり、且つ、上記セパレータも数10μmの厚みであるため、いずれも紙のようにこしがなく、積層時に滑りが生じたりしわが生じたりすることに起因するものと考えられる。そして、このように積層ずれが生じると、充放電の繰り返しによる電極端部へのリチウム析出によりサイクル特性が低下したり、あるいは正極と負極とが接触することにより電池内でのショートの発生等が生じやすくなるという問題があった。   However, in the conventional structure, when the positive electrode and the negative electrode are stacked via a separator, stacking deviation is likely to occur. This is because the electrode of the lithium ion battery has a thickness of several tens to several hundreds of μm for both positive and negative electrodes, and the separator is also several tens of μm thick. This is thought to be caused by the occurrence of wrinkles or wrinkles. When the stacking deviation occurs in this way, cycle characteristics deteriorate due to lithium deposition on the electrode end due to repeated charge / discharge, or short circuit in the battery occurs due to contact between the positive electrode and the negative electrode. There was a problem that it was likely to occur.

そこで、互いに隣接する少なくとも2つの辺部のそれぞれに、少なくとも一つの融着部を形成することにより、隣接する2枚のセパレータを袋状とし、その袋状セパレータ中で正極を位置決めするような提案がなされている(下記特許文献1参照)。このような構成であれば、袋状セパレータ中に正極が配置されているので、正負極が直接接触するのが抑制され、電池内でのショートの発生をある程度抑えることができる。   Therefore, a proposal to form two adjacent separators in a bag shape by positioning at least one fused portion on each of at least two sides adjacent to each other, and to position the positive electrode in the bag-shaped separator. (See Patent Document 1 below). With such a configuration, since the positive electrode is disposed in the bag-like separator, direct contact between the positive and negative electrodes is suppressed, and the occurrence of a short circuit in the battery can be suppressed to some extent.

しかしながら、セパレータの材質はポリエチレン製やポリプロピレン製であることから、熱融着により袋状にセパレータを加工すると、セパレータに波打ちや反りが起こりやすくなる。このようにセパレータの波打ちや反りが生じると、正極と負極との積層ずれが生じるため、精度よい電池を作製することができず、サイクル特性の向上等を図れないという課題を有していた。
このようなことを考慮して、二枚のセパレータの周辺部を融着して袋状とする場合に、これらセパレータ周辺部に非融着部を残しつつ部分的に融着を行うような提案がなされている(下記特許文献2参照)。
However, since the material of the separator is made of polyethylene or polypropylene, when the separator is processed into a bag shape by heat fusion, the separator is likely to be wavy or warped. When the separators are wavy or warped as described above, there is a problem that stacking deviation between the positive electrode and the negative electrode occurs, so that an accurate battery cannot be manufactured and cycle characteristics cannot be improved.
In consideration of this, when the peripheral parts of two separators are fused to form a bag, a proposal is made to perform partial fusion while leaving the non-fused parts around these separators. (See Patent Document 2 below).

特開平7−302616号公報Japanese Patent Laid-Open No. 7-302616

特開平9−213377号公報JP-A-9-213377

しかしながら、上記のような構成であっても、熱融着によりセパレータを加工するという工程があるので、セパレータに波打ちや反りが生じるのを完全に防止することができず、やはり積層ずれが生じる。また、このような積層ずれは微少なずれであるため(約、1mm程度)、その積層ずれを確認するのが困難である。この結果、精度よい電池を作製できないという課題を解決するには至らない。   However, even with the configuration as described above, since there is a step of processing the separator by thermal fusion, it is not possible to completely prevent the separator from being wavy or warped, and a laminating deviation also occurs. In addition, since such a stacking shift is a slight shift (about 1 mm), it is difficult to confirm the stacking shift. As a result, the problem that an accurate battery cannot be produced cannot be solved.

本発明は、このようなことを考慮してなされたものであって、熱融着によりセパレータを加工した場合に、セパレータに波打ちや反りが生じるということを前提としつつ、正極と負極との積層ずれが生じた場合であっても当該積層ずれを容易に確認でき、これによって積層ずれを修正して、精度よい電池を作製してサイクル特性の向上等を図ることができる角型リチウムイオン電池を提供することを目的とする。   The present invention has been made in consideration of the above, and is a lamination of a positive electrode and a negative electrode, assuming that the separator is wavy or warped when the separator is processed by heat fusion. A prismatic lithium ion battery capable of easily confirming the stacking deviation even if a shift occurs, thereby correcting the stacking shift, producing an accurate battery, and improving cycle characteristics, etc. The purpose is to provide.

上記目的を達成するために、本発明は、方形状のシートから成る正極用導電性芯体の少なくとも一方の面に正極活物質層が形成された正極と、上記正極用導電性芯体の一辺から突出する正極集電タブと、方形状のシートから成る負極用導電性芯体の少なくとも一方の面に負極活物質層が形成され且つ上記正極より四辺寸法が大きな負極と、上記負極用導電性芯体の一辺から突出する負極集電タブと、2枚の方形状のセパレータの周辺部同士が融着された融着部を備え且つ上記正極が内部に配置された袋状セパレータとを有すると共に、この袋状セパレータと上記負極とが交互に配置されて積層電極体を構成し、この積層電極体から上記正極集電タブと上記負極集電タブとが突出する構造の角型リチウムイオン電池において、上記融着部は上記袋状セパレータの少なくとも2辺に形成され、且つ、当該融着部の一部が袋状セパレータの外縁にまで延設されると共に、上記融着部の外縁位置が各袋状セパレータで同一位置に配置されることを特徴とする。   In order to achieve the above object, the present invention provides a positive electrode having a positive electrode active material layer formed on at least one surface of a positive electrode conductive core made of a rectangular sheet, and one side of the positive electrode conductive core. A negative electrode having a negative electrode active material layer formed on at least one surface of a negative electrode conductive core made of a rectangular sheet and having a larger side dimension than the positive electrode, and the negative electrode conductive material A negative electrode current collecting tab protruding from one side of the core body, and a bag-like separator having a fusion part in which the peripheral parts of two rectangular separators are fused together, and the positive electrode disposed inside In the prismatic lithium ion battery having a structure in which the bag-shaped separator and the negative electrode are alternately arranged to form a laminated electrode body, and the positive electrode current collecting tab and the negative electrode current collecting tab protrude from the laminated electrode body. The fused part is the above Formed on at least two sides of the separator, and a part of the fusion part is extended to the outer edge of the bag separator, and the outer edge of the fusion part is arranged at the same position in each bag separator. It is characterized by being.

上記構成の如く、融着部の一部が袋状セパレータの外縁にまで延設され、しかも融着部の外縁位置が各袋状セパレータで同一位置に配置されていれば、正極が内部に配置された袋状セパレータと負極とを交互に配置して積層電極体を作製した場合に、袋状セパレータに積層ずれが生じると、積層方向から確認したときに外縁位置に存在する融着部が一直線状とならないので、当該積層ずれを容易に確認できる。したがって、積層ずれを見逃すことなく、積層ずれを確実に修正することができるので、精度よい電池を作製することができる。この結果、充放電の繰り返しによる電極端部へのリチウム析出によるサイクル特性の低下、あるいは正負極が直接接触することによる電池内でのショートの発生等を抑制することができる。尚、融着部は他の部位よりも厚みが小さくなっているということから、目視のみならずセンサ等によっても確認できる。   As in the above configuration, if a part of the fusion part extends to the outer edge of the bag-like separator and the outer edge position of the fusion part is arranged at the same position in each bag-like separator, the positive electrode is arranged inside. When a laminated electrode body is produced by alternately arranging the bag-shaped separators and the negative electrodes, when the stacking deviation occurs in the bag-shaped separator, the fusion part existing at the outer edge position is aligned in a straight line when confirmed from the laminating direction. Therefore, the stacking deviation can be easily confirmed. Therefore, since the stacking deviation can be corrected without missing the stacking deviation, an accurate battery can be manufactured. As a result, it is possible to suppress deterioration in cycle characteristics due to lithium deposition on the electrode end due to repeated charge / discharge, or occurrence of short circuit in the battery due to direct contact between the positive and negative electrodes. In addition, since the thickness of the fused part is smaller than other parts, it can be confirmed not only by visual observation but also by a sensor or the like.

また、充放電を繰り返すことにより負極の周辺部にリチウムが析出することを防止すべく、正極の寸法を負極の寸法よりも小さくなるような構造とする必要があるが、上述の如く積層ずれを容易に修正することができれば、正極の寸法と負極の寸法との差異を小さくすることができる。即ち、正極を大きくしても、積層時に正極が負極からはみ出すのを抑制できる。この結果、電池の容量を増大させることができる。   In addition, in order to prevent lithium from precipitating around the negative electrode due to repeated charge and discharge, it is necessary to make the positive electrode dimension smaller than the negative electrode dimension. If it can be easily corrected, the difference between the dimensions of the positive electrode and the negative electrode can be reduced. That is, even if the positive electrode is enlarged, the positive electrode can be prevented from protruding from the negative electrode during lamination. As a result, the capacity of the battery can be increased.

尚、融着部を袋状セパレータの少なくとも2辺に形成するのは、以下に示す理由による。即ち、正極と負極との積層ずれが、融着部が形成された辺と平行方向のずれであれば、融着部を袋状セパレータの1辺に形成していれば積層ずれを確認できるが、正極と負極との積層ずれが各辺と角度をなしてずれている(回転方向にずれている)と、融着部を袋状セパレータの1辺に形成しているだけでは積層ずれを確認できない場合がある。したがって、回転方向にずれている場合でも容易に修正することができるように、融着部を袋状セパレータの少なくとも2辺に形成している。   The reason for forming the fusion part on at least two sides of the bag-like separator is as follows. That is, if the stacking misalignment between the positive electrode and the negative electrode is a shift in a direction parallel to the side where the fused part is formed, the stacking misalignment can be confirmed if the fused part is formed on one side of the bag-shaped separator. If the misalignment between the positive electrode and the negative electrode deviates from each side at an angle (deviation in the rotational direction), the misalignment is confirmed only by forming the fused portion on one side of the bag-shaped separator. There are cases where it is not possible. Therefore, the fusion part is formed on at least two sides of the bag-like separator so that it can be easily corrected even when it is displaced in the rotational direction.

上記袋状セパレータの3辺に上記融着部が設けられていることが望ましい。
袋状セパレータの2辺のみに溶着部が設けられている場合には、袋状セパレータ内で正極が移動して、正極と負極との間でずれが生じる場合がありうるが、袋状セパレータの3辺に融着部が設けられていれば、袋状セパレータ内での正極の移動が一層抑制される。したがって、正極と負極との積層ずれが生じるのがより抑えられる。
It is desirable that the fused portion is provided on three sides of the bag-shaped separator.
When the welded portion is provided on only two sides of the bag-shaped separator, the positive electrode may move within the bag-shaped separator, and a deviation may occur between the positive electrode and the negative electrode. If the fusion part is provided on the three sides, the movement of the positive electrode in the bag-like separator is further suppressed. Therefore, the occurrence of misalignment between the positive electrode and the negative electrode is further suppressed.

また、袋状セパレータの2辺に融着部が設けられている場合であって、対向する2辺に融着部が設けられている場合には、これらの辺と垂直方向にずれている場合には積層ずれを確認できない場合がある。更に、このような不都合を回避すべく、隣接する2辺に融着部を設けることも考えられるが、この場合には正極が容易に袋状セパレータからはみ出してしまうという不都合が新たに生じる。したがって、これらの不都合を回避するためには、袋状セパレータの3辺に融着部が設けられているのが好ましい。   Further, when the fusion part is provided on two sides of the bag-like separator and the fusion part is provided on two opposite sides, the case is shifted in a direction perpendicular to these sides. In some cases, the misalignment cannot be confirmed. Furthermore, in order to avoid such an inconvenience, it is conceivable to provide a fusion part on two adjacent sides. However, in this case, there arises a new inconvenience that the positive electrode easily protrudes from the bag-shaped separator. Therefore, in order to avoid these inconveniences, it is preferable that fusion portions are provided on the three sides of the bag-shaped separator.

尚、袋状セパレータの4辺に上記融着部を設けるような構成としても良いが、この場合にはセパレータの波打ちや反りが大きくなるので、積層するときに積層ずれが発生し易くなる。したがって、袋状セパレータの3辺に融着部を設けるのが最も望ましい。   In addition, although it is good also as a structure which provides the said melt | fusion part in four sides of a bag-shaped separator, since the wave | undulation and curvature of a separator become large in this case, when it laminates | stacks, it will become easy to generate | occur | produce stacking | stacking deviation. Therefore, it is most desirable to provide a fusion part on the three sides of the bag-shaped separator.

上記袋状セパレータにおける融着部が設けられていない辺から、上記正極集電タブと上記負極集電タブとが突出していることが望ましい。
このような構成が望ましいのは、両集電タブが突出している辺に融着部を設けると、両集電タブに応力が加わって、両集電タブが変形したりするおそれがあること、両集電タブが存在する部分は融着できないので、融着力が低下するおそれがあること、及び、両集電タブの突出位置は電池の種類等によって変更されることがあるため、当該位置に融着部を設けると、設備の変更等が必要となって、製造コストが高騰するからである。また、両集電タブが突出している辺に融着部を設けると、両集電タブの存在により、融着部を確認し難くなるが、両集電タブが突出していない辺に融着部を設ければこのような不都合を回避できるという利点もある。
It is desirable that the positive electrode current collecting tab and the negative electrode current collecting tab protrude from a side where the fused portion is not provided in the bag-shaped separator.
Such a configuration is desirable because, when a fusion part is provided on the side where both current collecting tabs protrude, stress is applied to both current collecting tabs, and both current collecting tabs may be deformed, Since the portion where both current collecting tabs are present cannot be fused, the fusion force may be reduced, and the protruding position of both current collecting tabs may be changed depending on the type of battery. This is because if the fusion part is provided, it is necessary to change the equipment, and the manufacturing cost increases. In addition, if a fusion part is provided on the side where both current collecting tabs protrude, it is difficult to check the fusion part due to the presence of both current collecting tabs, but the fusion part is located on the side where both current collecting tabs do not protrude. If there is provided, there is also an advantage that such inconvenience can be avoided.

上記袋状セパレータにおける上記融着部が設けられている辺には非融着部が設けられていることが望ましい。
融着部が設けられている辺に非融着部が設けられていないと、融着に伴うセパレータの収縮の逃げがないため、セパレータの波打ちや反りが大きくなって、積層ずれが発生し易くなるからである。
It is desirable that a non-fused portion is provided on the side of the bag-like separator where the fused portion is provided.
If the non-fused part is not provided on the side where the fused part is provided, there will be no escape from the shrinkage of the separator caused by the fusion, so the undulation and warpage of the separator will increase, and stacking deviation will easily occur. Because it becomes.

上記袋状セパレータの角部領域に非融着部が設けられていることが望ましい。
袋状セパレータの角部領域は中間領域と比較して、融着に伴うセパレータの収縮の逃げがより少なくなるため、セパレータの波打ちや反りが特に大きくなって、積層ずれが一層発生し易い。そこで、袋状セパレータの角部領域に非融着部を設けることにより、積層ずれの発生を抑止せんとしている。
尚、後述の如く角部領域は極めて限定された領域であるため、当該領域に非融着部を設けても、正極がセパレータからはみ出したり、脱落したりするといった問題が発生する確率は、当該領域に融着部を設けた場合と大差ないので、機能上の問題は無いものと考えられる。
It is desirable that non-fused portions are provided in the corner regions of the bag-like separator.
Since the corner region of the bag-like separator is less susceptible to shrinkage of the separator due to fusion compared to the intermediate region, the waviness and warpage of the separator are particularly large, and stacking deviation is more likely to occur. Therefore, the occurrence of misalignment is prevented by providing a non-fused portion in the corner region of the bag-like separator.
Since the corner region is a very limited region as will be described later, even if a non-fused portion is provided in the region, the probability that the positive electrode protrudes or falls off from the separator is Since there is no great difference from the case where the fusion part is provided in the region, it is considered that there is no functional problem.

上記セパレータを100℃で1時間保存したときの熱収縮率が10%以下であることが望ましい。
上記構成の如く熱収縮率が小さい材質のものをセパレータの材料として用いることで、セパレータの波打ちや反りを抑制できるので、積層ずれの発生がより抑えられる。尚、このような材質のものとしては、ポリエチレン(PE)、ポリプロピレン(PP)ならびにPEとPPとの複合体が例示される。
It is desirable that the thermal shrinkage rate when the separator is stored at 100 ° C. for 1 hour is 10% or less.
By using a material having a small thermal shrinkage as the material of the separator as in the above configuration, it is possible to suppress the waviness and warpage of the separator, thereby further suppressing the occurrence of misalignment. Examples of such materials include polyethylene (PE), polypropylene (PP), and a composite of PE and PP.

上記積層電極体は単数で、又は複数積層した状態で可撓性を有する外装体内に収納されていても良い。
可撓性を有する外装体は可撓性を有しない外装体に比べて薄型化が可能であるので、可撓性を有する外装体を用いた場合には、発電に直接関与しない部材の占有堆積が小さくなり、体積当りの容量を増大させることができる。尚、可撓性を有する外装体としてはラミネートフィルムが例示される。
The above-mentioned laminated electrode body may be housed in a single package or a flexible outer package in a state where a plurality of laminated electrode bodies are laminated.
Since a flexible exterior body can be made thinner than a non-flexible exterior body, when a flexible exterior body is used, the occupational accumulation of members not directly involved in power generation And the capacity per volume can be increased. In addition, a laminated film is illustrated as an exterior body which has flexibility.

本発明によれば、正極と負極との積層ずれが生じた場合であっても、当該積層ずれを容易に確認でき、これによって積層ずれを修正して、精度よい電池を作製することができるという優れた効果を奏する。   According to the present invention, even when a stacking error occurs between the positive electrode and the negative electrode, it is possible to easily check the stacking error, thereby correcting the stacking error and manufacturing an accurate battery. Excellent effect.

以下、本発明に係る角型リチウムイオン電池を、図1〜図5に基づいて説明する。なお、本発明における角型リチウムイオン電池は、下記の形態に示したものに限定されず、その要旨を変更しない範囲において適宜変更して実施できるものである。   Hereinafter, a prismatic lithium ion battery according to the present invention will be described with reference to FIGS. In addition, the prismatic lithium ion battery in the present invention is not limited to the one shown in the following embodiment, and can be implemented with appropriate modifications within a range not changing the gist thereof.

(角型リチウムイオン電池の構造)
図4及び図5に示すように、本発明の角型リチウムイオン電池は、2枚のセパレータから成り内部に正極1が配置された袋状セパレータ3と負極2とが交互に配置され、且つ、最外位置には負極2が配置される構造の積層電極体10を有している。この積層電極体10は複数積層された状態で、図示しないラミネートフィルムから成る外装体の内部に、電解液と共に封入されている。
(Structure of prismatic lithium-ion battery)
As shown in FIGS. 4 and 5, the prismatic lithium ion battery of the present invention includes bag-like separators 3 and negative electrodes 2 each having two separators and having positive electrodes 1 arranged therein, and A laminated electrode body 10 having a structure in which the negative electrode 2 is disposed is provided at the outermost position. A plurality of the laminated electrode bodies 10 are encapsulated together with an electrolytic solution inside an exterior body made of a laminate film (not shown).

上記正極1は、図1(a)に示すように、図示しない略正方形状のアルミニウム箔から成る正極用導電性芯体の両面の全面に、LiCoOから成る正極活物質と、カーボンブラックから成る導電剤と、ポリフッ化ビニリデンから成る結着剤とから構成される正極活物質層1aが設けられる構造となっている。上記正極1の幅L1は90mm、高さL2は
85mmとなっており、また、正極1の一辺からは、上記正極用導電性芯体と一体形成された正極集電タブ11が設けられ、この正極集電タブ11は上記積層電極体10から突出する構造となっている。
As shown in FIG. 1A, the positive electrode 1 is made of a positive electrode active material made of LiCoO 2 and carbon black on both surfaces of a positive electrode conductive core made of a substantially square aluminum foil (not shown). The positive electrode active material layer 1a composed of a conductive agent and a binder made of polyvinylidene fluoride is provided. The positive electrode 1 has a width L1 of 90 mm and a height L2 of 85 mm, and a positive electrode current collecting tab 11 formed integrally with the positive electrode conductive core from one side of the positive electrode 1. The positive electrode current collecting tab 11 has a structure protruding from the laminated electrode body 10.

上記袋状セパレータ3は、図1(c)に示すように、2枚のポリプロピレン(PP)製のセパレータ3a(温度100℃で1時間保存したときの熱収縮率が15%)を重ね合わせ、これらセパレータ3aの周辺部の一部(後述の角部領域を除く中間領域であって、上記正極集電タブ11が突出する周辺部は除く)にセパレータ3a同士を融着する融着部4を設けるような構成である。また、上記セパレータ3aは、図1(b)に示すように、幅L3は95mm、高さL4は90mmの略正方形状を成している。上記の如く、周辺部の一部にのみ融着部4を設ける(即ち、周辺部には非融着部が存在する)ことにより、融着に伴うセパレータ3aの収縮の逃げが確保されるので、セパレータ3aの波打ちや反りが抑制される。
また、上記融着部4は、各辺とは所定の角度を成すように形成されており、当該融着部4の一端4aは袋状セパレータ3の外縁3bにまで延設される。
As shown in FIG. 1 (c), the bag-like separator 3 is composed of two polypropylene (PP) separators 3a (heat shrinkage rate of 15% when stored at a temperature of 100 ° C. for 1 hour), A fusion part 4 for fusing the separators 3a to a part of the peripheral part of the separator 3a (excluding the peripheral part excluding the corner part described later and excluding the peripheral part from which the positive electrode current collecting tab 11 protrudes). It is the structure which provides. Further, as shown in FIG. 1B, the separator 3a has a substantially square shape with a width L3 of 95 mm and a height L4 of 90 mm. As described above, by providing the fusion part 4 only in a part of the peripheral part (that is, the non-fusion part exists in the peripheral part), the escape of contraction of the separator 3a accompanying the fusion is ensured. The undulation and warpage of the separator 3a are suppressed.
The fusion part 4 is formed so as to form a predetermined angle with each side, and one end 4 a of the fusion part 4 extends to the outer edge 3 b of the bag-like separator 3.

一方、図1(c)の如く、融着部4が袋状セパレータ3の対向する周辺部に設けられている場合には、融着部4の他端4b、4b間の距離L5は、上記正極1の幅L1より大きくなるように構成される。これにより、袋状セパレータ3の内部に上記正極1を収納できる。更に、上記袋状セパレータ3における上記融着部4の外縁位置(上記一端4aの位置)は各袋状セパレータで同一位置となるように構成されている。これにより、袋状セパレータ3と負極2とを交互に配置して積層電極体10を作製した場合に、袋状セパレータ3の積層ずれが生じていないときは、積層方向から確認すると上記融着部4の外縁位置(上記一端4aの位置)は一直線状となっている一方(図5参照)、袋状セパレータ3の積層ずれが生じると、積層方向から確認すると上記融着部4の外縁位置(上記一端4aの位置)は一直線状とならないので、当該積層ずれを容易に確認できる(図10参照)。   On the other hand, as shown in FIG. 1 (c), when the fusion part 4 is provided in the opposing peripheral part of the bag-like separator 3, the distance L5 between the other ends 4b and 4b of the fusion part 4 is as described above. The positive electrode 1 is configured to be larger than the width L1. Thereby, the positive electrode 1 can be stored inside the bag-shaped separator 3. Furthermore, the outer edge position (position of the said one end 4a) of the said fusion | fusion part 4 in the said bag-shaped separator 3 is comprised so that it may become the same position in each bag-shaped separator. Thus, when the laminated separator 10 and the negative electrode 2 are alternately arranged to produce the laminated electrode body 10, when the lamination deviation of the bag-like separator 3 does not occur, the above fusion part is confirmed from the lamination direction. 4, the outer edge position (the position of the one end 4a) is straight (see FIG. 5), and when the stacking deviation of the bag-like separator 3 occurs, the outer edge position ( Since the position of the one end 4a is not linear, the misalignment can be easily confirmed (see FIG. 10).

ここで、上述の如く、袋状セパレータ3の周辺部のうち融着部4が存在する領域には非融着部分が設けてあるが、上記袋状セパレータ3の角部領域にも非融着部が設けられている。これは、袋状セパレータ3の角部領域は上記中間領域と比較して、融着に伴うセパレータの収縮の逃げがより少なくなるため、セパレータの波打ちや反りが特に大きくなる。そこで、上記の如く袋状セパレータ3の角部領域に非融着部を設けることにより、積層ずれの発生を抑止するためである。尚、本明細書において角部領域とは、図2に示すように、セパレータ3aの隅部3dと、この隅部3dからの距離L6がセパレータ3aの幅L3の1/20となる点3eと、上記隅部3dからの距離L7がセパレータ3aの高さL4の1/20となる点3fと、上記点3eと点3fとからそれぞれ各辺に平行に延ばした線分の交点3gとで囲まれる領域(図2のハッチングで示す領域)をいうものとする。   Here, as described above, in the peripheral portion of the bag-shaped separator 3, the region where the fused portion 4 exists is provided with a non-fused portion, but the corner portion of the bag-shaped separator 3 is also non-fused. Is provided. This is because the corner region of the bag-like separator 3 is less susceptible to shrinkage of the separator due to fusion compared to the intermediate region, so that the waviness and warpage of the separator are particularly large. Therefore, by providing the non-fused portion in the corner region of the bag-like separator 3 as described above, the occurrence of misalignment is suppressed. In the present specification, as shown in FIG. 2, the corner region is a corner 3d of the separator 3a, and a point 3e where the distance L6 from the corner 3d is 1/20 of the width L3 of the separator 3a. And a point 3f at which the distance L7 from the corner 3d is 1/20 of the height L4 of the separator 3a, and an intersection 3g of line segments extending in parallel to each side from the points 3e and 3f. Region (region indicated by hatching in FIG. 2).

上記負極2は、図3に示すように、図示しない略正方形状の負極導電性芯体の両面の前面に、黒鉛から成る負極活物質と、ポリフッ化ビニリデンから成る結着剤とから構成される負極活物質層2aが設けられる構造となっている。上記負極2の幅L8は95mm、高さL9は90mmであり、セパレータ3aと同様の大きさとなっており、また、負極2の一辺からは、上記負極用導電性芯体と一体形成された負極集電タブ12が設けられ、この負極集電タブ12は上記積層電極体10から突出する構造となっている。   As shown in FIG. 3, the negative electrode 2 is composed of a negative electrode active material made of graphite and a binder made of polyvinylidene fluoride on the front surfaces of both sides of a substantially square negative electrode conductive core (not shown). The negative electrode active material layer 2a is provided. The negative electrode 2 has a width L8 of 95 mm and a height L9 of 90 mm, the same size as the separator 3a, and a negative electrode integrally formed with the negative electrode conductive core from one side of the negative electrode 2. A current collecting tab 12 is provided, and the negative electrode current collecting tab 12 protrudes from the laminated electrode body 10.

(角型リチウムイオン電池の作製方法)
〔正極の作製〕
正極活物質としてのLiCoOを90質量%と、導電剤としてのカーボンブラックを5質量%と、結着剤としてのポリフッ化ビニリデンを5質量%と、溶剤としてのN−メチル−2−ピロリドン(NMP)溶液とを混合して正極用スラリーを調製した。次に、この正極用スラリーを、正極集電体としてのアルミニウム箔(厚み:15μm)の両面に塗布した。その後、溶剤を乾燥し、ローラーで所定の厚みにまで圧縮した後、上述した幅L1及び高さL2になり且つ正極集電タブが突出するように切断して正極を作製した。
(Preparation method of prismatic lithium ion battery)
[Production of positive electrode]
90% by mass of LiCoO 2 as a positive electrode active material, 5% by mass of carbon black as a conductive agent, 5% by mass of polyvinylidene fluoride as a binder, N-methyl-2-pyrrolidone as a solvent ( NMP) solution was mixed to prepare a positive electrode slurry. Next, this positive electrode slurry was applied to both surfaces of an aluminum foil (thickness: 15 μm) as a positive electrode current collector. Then, after drying the solvent and compressing to a predetermined thickness with a roller, the positive electrode current collector tab was cut | disconnected so that it might become width L1 and height L2 mentioned above, and the positive electrode current collection tab protruded, and the positive electrode was produced.

〔正極が内部に配置された袋状セパレータの作製〕
PP製セパレータを2枚用意し、当該セパレータ間に正極を配置した後、セパレータ周辺部を熱溶着して、正極が内部に配置された袋状セパレータを作製した。
[Production of bag-shaped separator with positive electrode arranged inside]
After preparing two PP separators and arranging the positive electrode between the separators, the periphery of the separator was thermally welded to produce a bag-like separator in which the positive electrode was arranged inside.

〔負極の作製〕
負極活物質としての黒鉛粉末を95質量%と、結着剤としてのポリフッ化ビニリデンを5質量%と、溶剤としてのNMP溶液とを混合してスラリーを調製した後、このスラリーを負極集電体としての銅箔(厚み:10μm)の両面に塗布した。その後、溶剤を乾燥し、ローラーで所定の厚みにまで圧縮した後、上述した幅L8及び高さL9になり且つ負極集電タブが突出するように切断して負極を作製した。
(Production of negative electrode)
A slurry was prepared by mixing 95% by mass of graphite powder as a negative electrode active material, 5% by mass of polyvinylidene fluoride as a binder, and an NMP solution as a solvent. As a copper foil (thickness: 10 μm). Thereafter, the solvent was dried and compressed to a predetermined thickness with a roller, and then cut to have the above-described width L8 and height L9 and the negative electrode current collecting tab protruded to produce a negative electrode.

〔電池の作製〕
上述のようにして得られた負極11枚と、正極が内部に配置された袋状セパレータ10枚とを交互に積層して積層電極体を作製した。尚、この積層電極体における積層方向の端部には負極を配置した。次に、略方形状を成す2枚のラミネートフィルム間に積層電極体を配置した後、ラミネートフィルムの3片を溶着することにより積層電極体を外装体内に配置した。最後に、外装体の開口部から非水電解液を注液した後、外装体の開口部を溶着することにより電池を作製した。尚、上記非水電解液としては、エチレンカーボネート(EC)とメチルエチルカーボネート(MEC)とが体積比で30:70の割合で混合された混合溶媒に、LiPFが1M(モル/リットル)の割合で溶解されたものを使用した。
[Production of battery]
11 sheets of negative electrodes obtained as described above and 10 sheets of bag-shaped separators with positive electrodes arranged therein were alternately stacked to prepare a stacked electrode body. In addition, the negative electrode was arrange | positioned at the edge part of the lamination direction in this laminated electrode body. Next, after arranging a laminated electrode body between two laminated films having a substantially square shape, the laminated electrode body was arranged in the exterior body by welding three pieces of the laminated film. Finally, after pouring a non-aqueous electrolyte from the opening of the outer package, the battery was fabricated by welding the opening of the outer package. As the non-aqueous electrolyte, a mixed solvent in which ethylene carbonate (EC) and methyl ethyl carbonate (MEC) are mixed at a volume ratio of 30:70, LiPF 6 is 1 M (mol / liter). What was melt | dissolved in the ratio was used.

(実施例1)
実施例1の角型リチウムイオン電池としては、上記発明を実施するための最良の形態で説明した電池と同様に作製したものを用いた。
このようにして作製した電池を、以下、本発明電池A1と称する。
(Example 1)
As the prismatic lithium ion battery of Example 1, a battery manufactured in the same manner as the battery described in the best mode for carrying out the invention was used.
The battery thus produced is hereinafter referred to as the present invention battery A1.

(実施例2)
図6に示すように、これら袋状セパレータ3の周辺部の一部に設けられた融着部4の形状が異なる(くの字状とした)他は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、本発明電池A2と称する。
(Example 2)
As shown in FIG. 6, a battery is formed in the same manner as in Example 1 except that the fused portion 4 provided in a part of the peripheral portion of the bag-like separator 3 has a different shape (in a U shape). Was made.
The battery thus produced is hereinafter referred to as the present invention battery A2.

(実施例3)
図7に示すように、これら袋状セパレータ3の周辺部の一部に設けられた融着部4の形状が異なる(各辺に平行に、若干太い融着部4を設けた)他は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、本発明電池A3と称する。
(Example 3)
As shown in FIG. 7, the shape of the fused part 4 provided in a part of the peripheral part of these bag-like separators 3 is different (a slightly thick fused part 4 is provided in parallel to each side), A battery was fabricated in the same manner as in Example 1 above.
The battery thus produced is hereinafter referred to as the present invention battery A3.

(実施例4)
温度100℃で1時間保存したときの熱収縮率が10%以下のポリプロピレン製セパレータを用いた他は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、本発明電池A4と称する。
Example 4
A battery was fabricated in the same manner as in Example 1 except that a polypropylene separator having a thermal shrinkage of 10% or less when stored at a temperature of 100 ° C. for 1 hour was used.
The battery thus produced is hereinafter referred to as the present invention battery A4.

(比較例1)
図8に示すように、袋状セパレータ3の周辺部の全周囲(正極集電タブ11が突出する部位は除くが、4隅の隅部領域を含む)に融着部4を設け、この融着部4が袋状セパレータ3の外縁にまで延設されていない他は、実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、比較電池Z1と称する。
(Comparative Example 1)
As shown in FIG. 8, the fusion part 4 is provided around the entire periphery of the bag-like separator 3 (excluding the part where the positive electrode current collecting tab 11 protrudes, but including the four corner areas). A battery was fabricated in the same manner as in Example 1 except that the attaching portion 4 did not extend to the outer edge of the bag-like separator 3.
The battery thus manufactured is hereinafter referred to as a comparative battery Z1.

(比較例2)
図9に示すように、袋状セパレータ3の周辺部のうち3辺(正極集電タブ11が突出する辺は除くが、4隅の隅部領域を含む)に融着部4を設け、この融着部4が袋状セパレータ3の外縁にまで延設されていない他は、実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、比較電池Z2と称する。
(Comparative Example 2)
As shown in FIG. 9, the fusion part 4 is provided on three sides (excluding the side where the positive electrode current collecting tab 11 protrudes, but including the four corners) of the peripheral part of the bag-like separator 3. A battery was fabricated in the same manner as in Example 1 except that the fused portion 4 did not extend to the outer edge of the bag-like separator 3.
The battery thus produced is hereinafter referred to as a comparative battery Z2.

(実験)
上記本発明電池A1〜A4及び比較電池Z1、Z2の作製時において、積層ずれの有無及び、積層ずれが生じた場合の視認性について調べたので、その結果表1に示す。
(Experiment)
Since the presence or absence of misalignment and the visibility when misalignment occurred during the production of the above-described inventive batteries A1 to A4 and comparative batteries Z1 and Z2, Table 1 shows the results.

表1から明らかなように、本発明電池A1〜A4は比較電池Z1、Z2に比べて、積層ずれが少なく且つ積層ずれが生じた場合の視認性に優れていることが認められる。これは、以下に示す理由によるものと考えられる。   As is apparent from Table 1, it is recognized that the batteries A1 to A4 of the present invention are less misaligned than the comparative batteries Z1 and Z2, and have excellent visibility when misalignment occurs. This is considered to be due to the following reasons.

(1)本発明電池A1〜A4が比較電池Z1、Z2に比べて積層ずれが少ない理由
・比較電池Z1、Z2では袋状セパレータの周辺部のうち少なくとも3辺に連続的に融着部が設けられているので、融着に伴うセパレータの収縮の逃げがなく、波打ちや反りが大きくなるのに対して、本発明電池A1〜A4では間隔をおいて融着部が設けられているので、融着に伴うセパレータの収縮の逃げがある程度確保され、波打ちや反りが抑制できるからである。
(1) Reason why the batteries A1 to A4 of the present invention have less stacking deviation than the comparative batteries Z1 and Z2. In the comparative batteries Z1 and Z2, fusion parts are continuously provided on at least three sides of the peripheral part of the bag-shaped separator. Therefore, there is no escape of the shrinkage of the separator due to fusion, and undulation and warpage increase. On the other hand, in the batteries A1 to A4 of the present invention, the fusion parts are provided at intervals. This is because some relief from the shrinkage of the separator due to wearing is ensured to suppress waviness and warping.

・袋状セパレータの角部領域は中間領域と比較して、融着に伴うセパレータの収縮の逃げがより少なくなるため、セパレータの波打ちや反りが特に大きくなるが、比較電池Z1、Z2では当該角部領域にも融着部が存在するが、本発明電池A1〜A4では当該角部領域には融着部が存在しないからである。 The corner region of the bag-like separator is less susceptible to shrinkage of the separator due to fusion compared to the intermediate region, so that the separator waviness and warpage are particularly large. This is because the fusion part exists in the partial region, but in the batteries A1 to A4 of the present invention, there is no fusion part in the corner region.

・尚、本発明電池A1が本発明電池A2、A3に比べて積層ずれが少ないのは、本発明電池A2では、くの字の頂部に熱が集中するため、当該部分において融着に伴うセパレータの収縮の逃げが少なくなって、セパレータの波打ちや反りが若干大きくなり、また、本発明電池A3では本発明電池A1、A2よりも融着部が太いので、融着に伴うセパレータの収縮の逃げが少なくなって、セパレータの波打ちや反りが若干大きくなる。これに対して、本発明電池A1では熱が集中する部分がなく、しかも融着部が細いので、融着に伴うセパレータの収縮の逃げがある程度確保され、セパレータの波打ちや反りが抑制されるからである。
また、本発明電池A4が本発明電池A1に比べて積層ずれが更に少ないのは、本発明電池A4のセパレータは、温度100℃で1時間保存したときの熱収縮率が10%以下であるので、融着に伴うセパレータの収縮が一層抑制されたことによるものと考えられる。
-Note that the present invention battery A1 has less stacking deviation than the present invention batteries A2 and A3. In the present invention battery A2, heat concentrates on the top of the cross-section, so that a separator accompanying fusion at that portion. The shrinkage escape of the separator is reduced, and the waving and warping of the separator is slightly increased, and the battery A3 of the present invention has a thicker fusion part than the batteries A1 and A2 of the present invention. Decreases, and the waviness and warpage of the separator slightly increase. On the other hand, in the battery A1 of the present invention, there is no portion where heat is concentrated, and the fusion part is thin, and therefore, the escape of the shrinkage of the separator accompanying the fusion is secured to some extent, and the ripple and warpage of the separator are suppressed. It is.
The reason why the battery A4 of the present invention has a smaller stacking deviation than the battery A1 of the present invention is that the separator of the battery A4 of the present invention has a thermal shrinkage rate of 10% or less when stored at 100 ° C. for 1 hour. This is considered to be because the shrinkage of the separator accompanying the fusion was further suppressed.

(2)本発明電池A1〜A4は比較電池Z1、Z2に比べて積層ずれが生じた場合の視認性に優れている理由
本発明電池A1〜A4では、融着部の一端は袋状セパレータの外縁にまで延設され且つ融着部の外縁位置は各袋状セパレータで同一位置となるように構成されているので、袋状セパレータと負極とを交互に配置して積層電極体を作製した場合に、袋状セパレータの積層ずれが生じると、図10に示すように、積層方向からの確認時に融着部の外縁位置(一端4aの位置)は一直線状とならないので、当該積層ずれを容易に確認できる。これに対して、比較電池Z1、Z2では融着部の一端が袋状セパレータの外縁にまで延設されていないので、袋状セパレータと負極とを交互に配置して積層電極体を作製した場合に、袋状セパレータの積層ずれが生じても確認することはできないからである。
(2) Reason why the batteries A1 to A4 of the present invention are superior in visibility when the stacking deviation occurs compared to the comparative batteries Z1 and Z2. In the batteries A1 to A4 of the present invention, one end of the fusion part is a bag-shaped separator. Since the outer edge position of the fused portion is extended to the outer edge and is configured to be the same position in each bag-shaped separator, a laminated electrode body is produced by alternately arranging bag-shaped separators and negative electrodes In addition, when the stacking deviation of the bag-shaped separator occurs, the outer edge position (position of the one end 4a) of the fusion part is not straight when checking from the stacking direction as shown in FIG. I can confirm. On the other hand, in comparative batteries Z1 and Z2, one end of the fused portion is not extended to the outer edge of the bag-shaped separator, so that a laminated electrode body is produced by alternately arranging bag-shaped separators and negative electrodes. In addition, even if a stacking deviation of the bag-shaped separator occurs, it cannot be confirmed.

尚、本発明電池A1〜A3を下記充放電条件で充放電を行なったところ、3サイクル目の放電容量は全て2400mAであり、良好な充放電特性を示すことが認められた。
[充放電条件]
充電電流2400mA(1.0It)で充電終止電位4.2Vまで充電した後、放電電流2400mA(1.0It)で放電終止電位2.8Vまで放電するという条件。
In addition, when this invention battery A1-A3 was charged / discharged on the following charging / discharging conditions, all the discharge capacity of the 3rd cycle was 2400 mA, and it was recognized that a favorable charging / discharging characteristic is shown.
[Charging / discharging conditions]
A condition that the battery is charged to a charge end potential of 4.2 V at a charge current of 2400 mA (1.0 It) and then discharged to a discharge end potential of 2.8 V at a discharge current of 2400 mA (1.0 It).

(その他の事項)
(1)上記実施例では袋状セパレータ3の3辺に融着部4が設けられているがこのような構成に限定するものではなく、図11に示すように、袋状セパレータ3の2辺に融着部4が設けられていれば良い。但し、袋状セパレータ3の2辺に融着部4を設けた場合には袋状セパレータ3内で正極1が移動するおそれがある。また、図12に示すように、袋状セパレータ3の2辺に融着部4を設けただけでは、融着部4が設けられた辺と垂直方向に袋状セパレータ3がずれた場合には積層ずれを確認できない場合もありうる。これらのことから、袋状セパレータ3の3辺に融着部4を設けるのが望ましい。
(Other matters)
(1) In the above embodiment, the fusion part 4 is provided on the three sides of the bag-like separator 3, but the present invention is not limited to such a configuration, and as shown in FIG. What is necessary is just to provide the melt | fusion part 4 in this. However, when the fusion part 4 is provided on two sides of the bag-shaped separator 3, the positive electrode 1 may move within the bag-shaped separator 3. In addition, as shown in FIG. 12, when the fusion separator 4 is provided only on the two sides of the bag-like separator 3, the bag-like separator 3 is displaced in the direction perpendicular to the side where the fusion part 4 is provided. There may be a case where the stacking error cannot be confirmed. For these reasons, it is desirable to provide the fusion part 4 on three sides of the bag-like separator 3.

(2)上記実施例では、各袋状セパレータ3に設けられる融着部4の形状を同一形状としたが、図13〜図15に示すように、融着部4は異なる形状であっても良い。但し、融着部4の一端4aの外縁位置は各袋状セパレータで同一位置となるように構成されていなければならないので、隅部3dからの距離は同一であり(L20=L22=L24)、その太さも同一(L21=L23=L25)とする必要がある。但し、各辺に設ける融着部4の数は5つに限定するものではなく、1以上設ければ良い。 (2) In the above embodiment, the shape of the fusion part 4 provided in each bag-like separator 3 is the same shape, but the fusion part 4 may have a different shape as shown in FIGS. good. However, since the outer edge position of the one end 4a of the fused part 4 must be configured to be the same in each bag-like separator, the distance from the corner 3d is the same (L20 = L22 = L24), The thicknesses must also be the same (L21 = L23 = L25). However, the number of the fusion | melting parts 4 provided in each edge | side is not limited to five, What is necessary is just to provide one or more.

(3)正極1、負極2、及びセパレータ3aの形状は正方形状に限定するものではなく、長方形状であっても良い。
(4)正極活物質としては、上記LiCoOに限定するものではなく、LiNiO、LiMnO或いはこれらの複合体等であっても良く、負極活物質としては上記天然黒鉛に限定するものではなく、人造黒鉛等であっても良い。
(3) The shapes of the positive electrode 1, the negative electrode 2, and the separator 3a are not limited to a square shape, and may be a rectangular shape.
(4) The positive electrode active material is not limited to the above LiCoO 2 but may be LiNiO 2 , LiMnO 4 or a composite thereof, and the negative electrode active material is not limited to the above natural graphite. Artificial graphite or the like may be used.

(5)上記実施例では、全ての負極2につき、負極用導電性芯体の両面に負極活物質層を形成したが、正極と対向していない部位の負極活物質層(具体的には、最外に配置された負極の外側に存在する負極活物質層)はなくても良い。そして、このような構造とすれば、積層電極体の厚みが小さくなるので、電池の高容量密度化を達成できる。 (5) In the above examples, the negative electrode active material layers were formed on both surfaces of the negative electrode conductive core for all the negative electrodes 2, but the negative electrode active material layers (specifically, not facing the positive electrode) There may be no negative electrode active material layer) present outside the outermost negative electrode. And if it is such a structure, since the thickness of a laminated electrode body will become small, the high capacity density of a battery can be achieved.

本発明は、例えばロボット、電気自動車、バックアップ電源に適用することができる。   The present invention can be applied to, for example, a robot, an electric vehicle, and a backup power source.

本発明の角型リチウムイオン電池の一部を示す図であって、同図(a)は正極の平面図、同図(b)はセパレータの平面図、同図(c)は正極が内部に配置された袋状セパレータを示す平面図である。It is a figure which shows a part of prismatic lithium ion battery of this invention, Comprising: The same figure (a) is a top view of a positive electrode, The same figure (b) is a top view of a separator, The same figure (c) is a positive electrode inside. It is a top view which shows the bag-shaped separator arrange | positioned. 本発明の角型リチウムイオン電池に用いるセパレータの平面図である。It is a top view of the separator used for the prismatic lithium ion battery of this invention. 本発明の角型リチウムイオン電池に用いる負極の平面図である。It is a top view of the negative electrode used for the prismatic lithium ion battery of this invention. 本発明の角型リチウムイオン電池に用いる積層電極体の分解斜視図である。It is a disassembled perspective view of the laminated electrode body used for the square lithium ion battery of this invention. 本発明の角型リチウムイオン電池に用いる積層電極体の側面図である。It is a side view of the laminated electrode body used for the square lithium ion battery of this invention. 本発明の角型リチウムイオン電池に用いる袋状セパレータの変形例を示す平面図である。It is a top view which shows the modification of the bag-shaped separator used for the square lithium ion battery of this invention. 本発明の角型リチウムイオン電池に用いる袋状セパレータの他の変形例を示す平面図である。It is a top view which shows the other modification of the bag-shaped separator used for the square lithium ion battery of this invention. 従来の角型リチウムイオン電池に用いる袋状セパレータを示す平面図である。It is a top view which shows the bag-shaped separator used for the conventional square lithium ion battery. 従来の角型リチウムイオン電池に用いる袋状セパレータの他の例を示す平面図である。It is a top view which shows the other example of the bag-shaped separator used for the conventional square lithium ion battery. 本発明の角型リチウムイオン電池に用いる積層電極体に積層ずれが生じた場合の側面図である。It is a side view at the time of lamination | stacking shift | offset | difference having arisen in the lamination | stacking electrode body used for the square lithium ion battery of this invention. 本発明の角型リチウムイオン電池に用いる袋状セパレータの更に他の変形例を示す正面図である。It is a front view which shows the other modification of the bag-shaped separator used for the square lithium ion battery of this invention. 本発明の角型リチウムイオン電池に用いる積層電極体に積層ずれが生じた場合の平面図である。It is a top view at the time of lamination | stacking shift | offset | difference arising in the laminated electrode body used for the square lithium ion battery of this invention. 本発明の角型リチウムイオン電池に用いる袋状セパレータの融着部の変形例を示す部分平面図である。It is a fragmentary top view which shows the modification of the melt | fusion part of the bag-shaped separator used for the square lithium ion battery of this invention. 本発明の角型リチウムイオン電池に用いる袋状セパレータの融着部の他の変形例を示す部分平面図である。It is a fragmentary top view which shows the other modification of the melt | fusion part of the bag-shaped separator used for the square lithium ion battery of this invention. 本発明の角型リチウムイオン電池に用いる袋状セパレータの融着部の更に他の変形例を示す部分平面図である。It is a fragmentary top view which shows the other modification of the melt | fusion part of the bag-shaped separator used for the square lithium ion battery of this invention.

符号の説明Explanation of symbols

1:正極
1a:正極活物質層
2:負極
2a:負極活物質層
3:袋状セパレータ
3a:セパレータ
3b:外縁
4:融着部
4a:端部
10:積層電極体
11:正極集電タブ
12:負極集電タブ
DESCRIPTION OF SYMBOLS 1: Positive electrode 1a: Positive electrode active material layer 2: Negative electrode 2a: Negative electrode active material layer 3: Bag-shaped separator 3a: Separator 3b: Outer edge 4: Fusion part 4a: End part 10: Laminated electrode body 11: Positive electrode current collection tab 12 : Negative electrode current collector tab

Claims (7)

方形状のシートから成る正極用導電性芯体の少なくとも一方の面に正極活物質層が形成された正極と、上記正極用導電性芯体の一辺から突出する正極集電タブと、方形状のシートから成る負極用導電性芯体の少なくとも一方の面に負極活物質層が形成され且つ上記正極より四辺寸法が大きな負極と、上記負極用導電性芯体の一辺から突出する負極集電タブと、2枚の方形状のセパレータの周辺部同士が融着された融着部を備え且つ上記正極が内部に配置された袋状セパレータとを有すると共に、この袋状セパレータと上記負極とが交互に配置されて積層電極体を構成し、この積層電極体から上記正極集電タブと上記負極集電タブとが突出する構造の角型リチウムイオン電池において、
上記融着部は上記袋状セパレータの少なくとも2辺に形成され、且つ、当該融着部の一部が袋状セパレータの外縁にまで延設されると共に、上記融着部の外縁位置が各袋状セパレータで同一位置となるように構成されることを特徴とする角型リチウムイオン電池。
A positive electrode having a positive electrode active material layer formed on at least one surface of a positive electrode conductive core made of a rectangular sheet; a positive electrode current collecting tab protruding from one side of the positive electrode conductive core; A negative electrode having a negative electrode active material layer formed on at least one surface of a negative electrode conductive core and having a larger four-sided dimension than the positive electrode; and a negative electrode current collecting tab protruding from one side of the negative electrode conductive core; A bag-shaped separator having a fused portion in which peripheral portions of two rectangular separators are fused to each other and having the positive electrode disposed therein, and the bag-shaped separator and the negative electrode are alternately arranged. In a prismatic lithium ion battery having a structure in which a laminated electrode body is arranged and the positive electrode current collecting tab and the negative electrode current collecting tab protrude from the laminated electrode body,
The fusion part is formed on at least two sides of the bag-like separator, and a part of the fusion part extends to the outer edge of the bag-like separator, and the outer edge position of the fusion part is set to each bag. A prismatic lithium ion battery characterized by being configured to be in the same position with a cylindrical separator.
上記袋状セパレータの3辺に上記融着部が設けられている、請求項1記載の角型リチウムイオン電池。   The prismatic lithium ion battery according to claim 1, wherein the fusion part is provided on three sides of the bag-like separator. 上記袋状セパレータにおける融着部が設けられていない辺から、上記正極集電タブと上記負極集電タブとが突出している、請求項2記載の角型リチウムイオン電池。   The prismatic lithium ion battery according to claim 2, wherein the positive electrode current collecting tab and the negative electrode current collecting tab protrude from a side of the bag-shaped separator where no fused portion is provided. 上記袋状セパレータにおける上記融着部が設けられている辺には非融着部が設けられている、請求項1〜3記載のいずれか1項に記載の角型リチウムイオン電池。   The prismatic lithium ion battery according to any one of claims 1 to 3, wherein a non-fused portion is provided on a side of the bag-shaped separator where the fused portion is provided. 上記袋状セパレータの角部領域に非融着部が設けられている、請求項1〜4のいずれか1項に記載の角型リチウムイオン電池。   The prismatic lithium ion battery according to any one of claims 1 to 4, wherein a non-fused portion is provided in a corner region of the bag-shaped separator. 上記セパレータを100℃で1時間保存したときの熱収縮率が10%以下である、請求項1〜5のいずれか1項に記載の角型リチウムイオン電池。   The prismatic lithium ion battery according to any one of claims 1 to 5, wherein a thermal shrinkage rate when the separator is stored at 100 ° C for 1 hour is 10% or less. 上記積層電極体は単数で、又は複数積層した状態で可撓性を有する外装体内に収納されている、請求項1〜6のいずれか1項に記載の角型リチウムイオン電池。   The prismatic lithium ion battery according to any one of claims 1 to 6, wherein the laminated electrode body is housed in a flexible exterior body in a single or a plurality of laminated body.
JP2006268544A 2006-09-29 2006-09-29 Square lithium-ion battery Withdrawn JP2008091100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006268544A JP2008091100A (en) 2006-09-29 2006-09-29 Square lithium-ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006268544A JP2008091100A (en) 2006-09-29 2006-09-29 Square lithium-ion battery

Publications (1)

Publication Number Publication Date
JP2008091100A true JP2008091100A (en) 2008-04-17

Family

ID=39375055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006268544A Withdrawn JP2008091100A (en) 2006-09-29 2006-09-29 Square lithium-ion battery

Country Status (1)

Country Link
JP (1) JP2008091100A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065345A1 (en) 2009-11-27 2011-06-03 日立マクセル株式会社 Flat nonaqueous secondary battery
EP2337107A1 (en) * 2009-12-17 2011-06-22 Samsung SDI Co., Ltd. Rechargeable battery
JP2012009210A (en) * 2010-06-23 2012-01-12 Mitsubishi Heavy Ind Ltd Battery
EP2413398A1 (en) 2010-07-30 2012-02-01 Sanyo Electric Co., Ltd. Prismatic secondary battery
JP2012510141A (en) * 2008-11-28 2012-04-26 ギーサン オートメーション テクノロジー カンパニー リミテッド Battery plate bag manufacturing equipment
EP2533341A1 (en) * 2010-02-05 2012-12-12 NEC Energy Devices, Ltd. Laminated secondary battery
KR101286910B1 (en) 2010-10-19 2013-07-16 닛산 지도우샤 가부시키가이샤 Laminate type battery
JP2013182715A (en) * 2012-02-29 2013-09-12 Nissan Motor Co Ltd Separator integral electrode, battery, and battery manufacturing method
US20140147724A1 (en) * 2011-04-07 2014-05-29 Nissan Motor Co., Ltd. Battery, battery manufacturing method, and packaged electrode
JP2014188776A (en) * 2013-03-27 2014-10-06 Nec Corp Fusion joint structure of resin film, and method for forming fusion joint structure of resin film
WO2014168046A1 (en) * 2013-04-09 2014-10-16 株式会社 豊田自動織機 Accumulator device
JP2014207205A (en) * 2013-04-16 2014-10-30 株式会社リチウムエナジージャパン Electricity storage element, power-supply module, and method for manufacturing electricity storage element
WO2015079365A1 (en) * 2013-11-28 2015-06-04 Semiconductor Energy Laboratory Co., Ltd. Power storage unit and electronic device including the same
JP2017091929A (en) * 2015-11-13 2017-05-25 日本電気株式会社 Separator for battery, battery including the separator, method for manufacturing the separator, and method for manufacturing the battery

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012510141A (en) * 2008-11-28 2012-04-26 ギーサン オートメーション テクノロジー カンパニー リミテッド Battery plate bag manufacturing equipment
WO2011065345A1 (en) 2009-11-27 2011-06-03 日立マクセル株式会社 Flat nonaqueous secondary battery
US8802269B2 (en) 2009-11-27 2014-08-12 Hitachi Maxell, Ltd. Flat nonaqueous secondary battery
KR101223631B1 (en) * 2009-12-17 2013-01-17 삼성에스디아이 주식회사 Rechargeable battery
JP2011129523A (en) * 2009-12-17 2011-06-30 Samsung Sdi Co Ltd Rechargeable battery
CN102104128A (en) * 2009-12-17 2011-06-22 三星Sdi株式会社 Rechargeable battery and forming method thereof
US8486160B2 (en) 2009-12-17 2013-07-16 Samsung Sdi Co., Ltd. Rechargeable battery
EP2337107A1 (en) * 2009-12-17 2011-06-22 Samsung SDI Co., Ltd. Rechargeable battery
EP2533341A1 (en) * 2010-02-05 2012-12-12 NEC Energy Devices, Ltd. Laminated secondary battery
EP2533341A4 (en) * 2010-02-05 2014-04-23 Nec Energy Devices Ltd Laminated secondary battery
JP2012009210A (en) * 2010-06-23 2012-01-12 Mitsubishi Heavy Ind Ltd Battery
EP2413398A1 (en) 2010-07-30 2012-02-01 Sanyo Electric Co., Ltd. Prismatic secondary battery
CN102347514A (en) * 2010-07-30 2012-02-08 三洋电机株式会社 Prismatic secondary battery
KR101286910B1 (en) 2010-10-19 2013-07-16 닛산 지도우샤 가부시키가이샤 Laminate type battery
US20140147724A1 (en) * 2011-04-07 2014-05-29 Nissan Motor Co., Ltd. Battery, battery manufacturing method, and packaged electrode
JP2013182715A (en) * 2012-02-29 2013-09-12 Nissan Motor Co Ltd Separator integral electrode, battery, and battery manufacturing method
JP2014188776A (en) * 2013-03-27 2014-10-06 Nec Corp Fusion joint structure of resin film, and method for forming fusion joint structure of resin film
WO2014168046A1 (en) * 2013-04-09 2014-10-16 株式会社 豊田自動織機 Accumulator device
JP2014203776A (en) * 2013-04-09 2014-10-27 株式会社豊田自動織機 Power storage device
JP5637245B2 (en) * 2013-04-09 2014-12-10 株式会社豊田自動織機 Power storage device
CN105103335A (en) * 2013-04-09 2015-11-25 株式会社丰田自动织机 Accumulator device
US9741987B2 (en) 2013-04-09 2017-08-22 Kabushiki Kaisha Toyota Jidoshokki Accumulator device
JP2014207205A (en) * 2013-04-16 2014-10-30 株式会社リチウムエナジージャパン Electricity storage element, power-supply module, and method for manufacturing electricity storage element
WO2015079365A1 (en) * 2013-11-28 2015-06-04 Semiconductor Energy Laboratory Co., Ltd. Power storage unit and electronic device including the same
US10219395B2 (en) 2013-11-28 2019-02-26 Semiconductor Energy Laboratory Co., Ltd. Power storage unit and electronic device including the same
JP2017091929A (en) * 2015-11-13 2017-05-25 日本電気株式会社 Separator for battery, battery including the separator, method for manufacturing the separator, and method for manufacturing the battery

Similar Documents

Publication Publication Date Title
JP2008091100A (en) Square lithium-ion battery
JP5252937B2 (en) Stacked battery and method for manufacturing the same
JP5451694B2 (en) Non-aqueous electrolyte battery module
JP6250921B2 (en) battery
JP5252871B2 (en) Stacked battery
EP2779269B1 (en) Battery cell having a novel structure
US20120202105A1 (en) Stack type battery and method of manufacturing the same
JP6780766B2 (en) Secondary battery and its manufacturing method
US20110070477A1 (en) Stack type battery
JP2008091099A (en) Laminated lithium ion battery
US10622615B2 (en) Electrochemical device
US20110076544A1 (en) Stack type battery
JP2012033399A (en) Rectangular secondary battery
US20210119285A1 (en) Battery cell
KR20200143979A (en) Electrode assembly and secondary battery having the same
JP2018181510A (en) Secondary battery
WO2014141640A1 (en) Laminate exterior cell
JP5676095B2 (en) Multilayer secondary battery
JP6881108B2 (en) Rechargeable battery manufacturing method and rechargeable battery
WO2020218217A1 (en) Secondary battery
US20190296399A1 (en) Secondary battery
JP5664068B2 (en) Multilayer battery and method of manufacturing multilayer battery
WO2020218213A1 (en) Secondary battery
JP6773133B2 (en) Rechargeable battery
JP6773208B2 (en) Secondary battery and its manufacturing method

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091201