WO2013128869A1 - Lighting device - Google Patents

Lighting device Download PDF

Info

Publication number
WO2013128869A1
WO2013128869A1 PCT/JP2013/001045 JP2013001045W WO2013128869A1 WO 2013128869 A1 WO2013128869 A1 WO 2013128869A1 JP 2013001045 W JP2013001045 W JP 2013001045W WO 2013128869 A1 WO2013128869 A1 WO 2013128869A1
Authority
WO
WIPO (PCT)
Prior art keywords
convex portion
optical surface
optical component
lighting device
leds
Prior art date
Application number
PCT/JP2013/001045
Other languages
French (fr)
Japanese (ja)
Inventor
藤田 勝
雄介 日下
栄成 菊池
喜彦 金山
由田 宏史
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2014502017A priority Critical patent/JP6028230B2/en
Publication of WO2013128869A1 publication Critical patent/WO2013128869A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S4/00Lighting devices or systems using a string or strip of light sources
    • F21S4/20Lighting devices or systems using a string or strip of light sources with light sources held by or within elongate supports
    • F21S4/28Lighting devices or systems using a string or strip of light sources with light sources held by or within elongate supports rigid, e.g. LED bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/02Refractors for light sources of prismatic shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2103/00Elongate light sources, e.g. fluorescent tubes
    • F21Y2103/10Elongate light sources, e.g. fluorescent tubes comprising a linear array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a lighting device using a light emitting diode as a light source.
  • LEDs light emitting diodes
  • the second reason is that the fluorescent lamp needs an inverter and a ballast, but it is not necessary for the lighting device using the LED, and the power consumption can be reduced.
  • incandescent bulbs do not have problems such as mercury and inverters, but their luminous efficiency is low and their lifetime is short compared to fluorescent lamps, so power consumption can be reduced and lifetime can be reduced by replacing them with lighting devices using LEDs. Can be extended.
  • the illumination device using the LED has a problem that the front of the LED is bright but the surrounding portion is dark because the directivity of light emitted from the LED as the light source is strong.
  • the shadow is divided into as many as the number of the light sources of the LED, and multiple shadows are generated. For this reason, there existed a subject of giving a user's discomfort.
  • FIG. 25A shows a perspective view of the lighting device body 20 in which an opening is provided in at least a part of the bottom surface.
  • a Fresnel lens 21 having a plurality of linear prisms on the surface is installed in the opening.
  • FIG. 25B is a cross-sectional view of FIG. 25A and shows a state in which the lighting device body 20, the Fresnel lens 21, the LED 39, and the substrate 3 are configured.
  • the instrument of Patent Document 1 is characterized in that the light of the LED 39 can be dispersed by the Fresnel lens 21.
  • Patent Document 2 which is a conventional optical component will be described with reference to FIG.
  • the sheet-like prism sheet 31 is arranged with respect to the plurality of arranged LEDs 37, and the light of the LEDs 37 is scattered.
  • the prism sheet 31 includes a sheet-like main body 32, a main body 32, a light diffusion layer 33, and a prism layer 34.
  • the prism layer 34 has a plurality of convex portions 36 protruding outward.
  • the light diffusing layer 33 granular materials made of light diffusing particles alone or aggregates are dispersed in a resin binder.
  • the surface of the light diffusion layer 33 on the prism layer 34 side is a rough surface.
  • the refractive index of the resin binder and the refractive index of the prism layer 34 are different.
  • the main body 32 is a sheet that supports the light diffusion layer 33.
  • This prism sheet 31 has both a light collecting function by a plurality of convex portions 36 and a light diffusion function by internal roughening.
  • the brightness in the front direction is bright due to the condensing function, and it is possible to prevent the light source image from being seen brightly in a dot shape due to the light diffusion function.
  • a Fresnel lens 21 is provided on the front surface to make light distribution characteristics uniform.
  • the Fresnel lens 21 has an effect of condensing light in a certain direction, it cannot be expected to have an effect of spreading to the surroundings, and the uneven brightness of the illumination light cannot be resolved.
  • directivity of each LED 39 cannot be uniformly distributed, multiple shadows cannot be eliminated.
  • the light source light emitted from the LED 37 passes through the prism sheet 31 and becomes illumination light.
  • the light diffusion layer 33 in the inside functions to diffuse light.
  • the positional relationship between the resin binder in the light diffusion layer 33 and the prism layer 34 is uneven, and the directivity of strong light from the LED 37 cannot be erased.
  • the luminance difference between the light with strong directivity of the LED 37 and the portion not so is large, and unevenness is emphasized.
  • the pitch interval of the LEDs 37 is widened, it cannot be further uniformed.
  • the optical member that covers the upper surface of the LED, and the optical member has a convex portion on the inner surface facing the LED surface
  • a lighting device is used, which has a convex portion on the outer surface opposite to the above.
  • the highly directional light of the LED is dispersed by the convex portions located on both sides of the optical component of the illumination device of the present invention, and uniform light is provided to the periphery.
  • FIG. 1A is a perspective view of the lighting apparatus according to Embodiment 1 of the present invention.
  • FIG. 1B is a cross-sectional view perpendicular to the Y axis of the lighting apparatus according to Embodiment 1 of the present invention.
  • FIG. 1C is a cross-sectional view taken along line ab of the illumination device according to the first embodiment of the present invention.
  • FIG. 1D is a partially enlarged view of FIG. 1C.
  • FIG. 1E is a partially enlarged perspective view of a dotted line portion in FIG. 1A.
  • FIG. 2A is a cross-sectional view in the Y-axis direction of a modification of the illumination device according to Embodiment 1 of the present invention.
  • FIG. 1A is a cross-sectional view in the Y-axis direction of a modification of the illumination device according to Embodiment 1 of the present invention.
  • FIG. 1A is a cross-sectional view in the Y-axis direction of a modification
  • FIG. 2B is a cross-sectional view in the X-axis direction of the lighting apparatus according to Embodiment 1 of the present invention.
  • FIG. 3A is a luminance distribution graph of a light emission state of a preferred example (Example 1 of the present invention).
  • FIG. 3B is a luminance distribution graph of a light emission state of an unfavorable example (conventional example).
  • FIG. 3C is a diagram illustrating the contrast of the luminance distribution.
  • FIG. 4A is a cross-sectional view of the optical surface of the optical component according to Embodiment 1 of the present invention.
  • FIG. 4B is a partial cross-sectional view of the optical surface of the optical component according to Embodiment 1 of the present invention.
  • FIG. 4C is a partial cross-sectional view of the optical surface of the optical component according to Embodiment 1 of the present invention.
  • FIG. 5A is a luminance distribution graph of the light emission state of the illumination device using the optical component of Comparative Example 1.
  • FIG. 5B is a graph of the luminance distribution in the light emission state of the illumination device using the optical component according to the second embodiment of the present invention.
  • FIG. 6A is a graph of the luminance distribution in the light emission state of the illumination device using the optical component according to the third embodiment of the present invention.
  • FIG. 6B is a graph of the luminance distribution in the light emission state of the illumination device using the optical component according to Example 4 of the present invention.
  • FIG. 5A is a luminance distribution graph of the light emission state of the illumination device using the optical component of Comparative Example 1.
  • FIG. 5B is a graph of the luminance distribution in the light emission state of the illumination device using the optical component according to the second embodiment of the present invention.
  • FIG. 6A is
  • FIG. 7A is a cross-sectional view of the optical surface of another example of the optical component according to Examples 3 and 4 of the present invention.
  • FIG. 7B is a partial cross-sectional view of the optical surface of the optical component according to Examples 3 and 4 of the present invention.
  • FIG. 8A is a graph of the luminance distribution in the light emission state of the illumination device using the optical component according to Example 5 of the present invention.
  • FIG. 8B is a graph of the luminance distribution in the light emission state of the illumination device using the optical component of Comparative Example 2.
  • FIG. 9 is a graph of an allowable region of the luminance distribution in the light emission state of the illumination device using the optical component according to the sixth embodiment of the present invention.
  • FIG. 10 is a partial cross-sectional schematic view of the optical surface of the optical component of the present invention.
  • FIG. 11A is a cross-sectional view of an optical surface of an optical component according to Example 7 of the present invention.
  • FIG. 11B is a partial cross-sectional view of the optical surface of the optical component according to Embodiment 7 of the present invention.
  • FIG. 11C is a cross-sectional view of the optical surface portion of the optical component according to Embodiment 7 of the present invention.
  • FIG. 12A is a graph of the luminance distribution in the light emission state of the illumination device using the optical component according to Example 7 of the present invention.
  • 12B is a graph of the luminance distribution in the light emission state of the illumination device using the optical component of Comparative Example 3.
  • FIG. 13A is a cross-sectional view of the optical surface of the optical component according to Embodiment 8 of the present invention.
  • FIG. 13B is a partial cross-sectional view of the optical surface of the optical component according to Example 8 of the present invention.
  • FIG. 13C is a partial cross-sectional view of the optical surface of the optical component according to Example 8 of the present invention.
  • FIG. 14 is a graph of the luminance distribution in the light emission state of the illumination device using the optical component according to the eighth embodiment of the present invention.
  • FIG. 15A is a cross-sectional view of the optical surface of the optical component according to Embodiment 9 of the present invention.
  • FIG. 15B is a partial cross-sectional view of the optical surface of the optical component according to Embodiment 9 of the present invention.
  • FIG. 15A is a cross-sectional view of the optical surface of the optical component according to Embodiment 9 of the present invention.
  • FIG. 15B is a partial cross-sectional view of the optical
  • FIG. 15C is a partial cross-sectional view of the optical surface of the optical component according to Embodiment 9 of the present invention.
  • FIG. 16 is a graph of the luminance distribution in the light emission state of the illumination device using the optical component according to the ninth embodiment of the present invention.
  • FIG. 17A is a cross-sectional view of the optical surface of the optical component according to Embodiment 10 of the present invention.
  • FIG. 17B is a partial cross-sectional view of the optical surface of the optical component according to Example 10 of the present invention.
  • FIG. 17C is a partial cross-sectional view of the optical surface of the optical component according to Example 10 of the present invention.
  • FIG. 18 is a graph of the luminance distribution in the light emission state of the illumination device using the optical component according to the tenth embodiment of the present invention.
  • FIG. 19A is a cross-sectional view of an optical surface of an optical component according to Example 11 of the present invention.
  • FIG. 19B is a partial cross-sectional view of the optical surface of the optical component according to Example 11 of the present invention.
  • FIG. 19C is a partial cross-sectional view of the optical surface of the optical component according to Example 11 of the present invention.
  • FIG. 20 is a graph of the luminance distribution in the light emission state of the illumination device using the optical component according to the eleventh embodiment of the present invention.
  • FIG. 21A is a cross-sectional view of the optical surface of the optical component according to Embodiment 12 of the present invention.
  • FIG. 21B is a partial cross-sectional view of the optical surface of the optical component according to Example 12 of the present invention.
  • FIG. 21C is a partial cross-sectional view of the optical surface of the optical component according to Example 12 of the present invention.
  • FIG. 22 is a graph of the luminance distribution in the light emission state of the illumination device using the optical component according to the twelfth embodiment of the present invention.
  • FIG. 23 is a perspective view of an illumination device using an optical component according to Example 14 of the present invention.
  • FIG. 24 is a perspective view of an illumination device using an optical component according to Example 15 of the present invention.
  • FIG. 25A is a perspective view of the illumination device of Patent Document 1 of the related art.
  • FIG. 25B is a cross-sectional view of the illumination device of Patent Document 1 of the related art.
  • FIG. 26 is a cross-sectional view of the illumination device of Patent Document 2 of the prior art.
  • Embodiment 1 Embodiments of the present invention will be described below with reference to the drawings. An illumination device according to Embodiment 1 of the present invention will be described with reference to FIGS. 1A to 1E.
  • FIG. 1A is a perspective view of the lighting device
  • FIG. 1B is a cross-sectional view perpendicular to the Y axis of the lighting device of FIG. 1A
  • 1C is a cross-sectional view of the ab plane of the lighting device of FIG. 1A.
  • FIG. 1D is a partially enlarged view of the optical component 1 of FIG. 1C.
  • FIG. 1E is a perspective view of an upper surface of a portion surrounded by a dotted-line square in FIG. 1A, viewed from the X direction.
  • the illumination device includes an LED 2 that is a light source, a substrate 3 on which the LED 2 is mounted, and an optical component 1.
  • the LEDs 2 are arranged in a straight line in the Y direction at a substantially constant interval PL.
  • the optical component 1 is half the shape of a hollow cylinder.
  • the outer optical surface 1B on the outer side of the optical component 1 and the inner optical surface 1A on the inner side have wavy convex portions.
  • the wavy convex portion indicates a state like a mountain range with protrusions connected in a straight line. Waves in the direction of LED2 alignment. The direction in which the LEDs 2 are arranged and the linear direction of the protrusion are perpendicular to each other. The direction in which the LEDs 2 are arranged is parallel to the wave traveling direction of the convex portion.
  • the optical component 1 is made of a transparent resin that transmits light such as an acrylic resin or a polycarbonate resin.
  • the substrate 3 is made of aluminum.
  • the wavy convex portions have the same height in FIG. 1E, but the conical convex portions may be adjacent to each other. That is, the top may be uneven. However, it is not good if the conical convex portions do not overlap and are separated.
  • the height of the convex portion is defined as the height when the height is the same, and the average height when the height is uneven.
  • the optical component 1 has a cylindrical inner diameter of R10 mm.
  • the inner optical surface 1A and the outer optical surface 1B are formed on the entire front and back surfaces of the semicylindrical optical component 1.
  • FIG. 2A is a cross-sectional view of the optical component 1 that is the same as that of FIG.
  • the spread angle of the illuminance of the LED 2 is 60 ° on one side.
  • FIG. 2A shows a light irradiation region LD to which the light of the LED 2 is irradiated. If the light irradiation regions LD do not overlap, the homogeneity of the light will deteriorate.
  • the case of FIG. 2A is the limit positional relationship.
  • the value of distance D / pitch PL is 0.29, and a value larger than that is necessary.
  • the light overlaps and works to improve the uniformity.
  • the lighting device becomes large. If the number of LEDs 2 is increased and the pitch PL is shortened, the light overlaps and becomes homogeneous, but a large number of LEDs 2 are required, and extra power is required.
  • the distance D is small, and in the case of a limited number of LEDs 2, the directivity of the light of the LEDs 2 can be dispersed and made uniform.
  • FIG. 2B corresponds to FIG. 1B.
  • the convex portion need not be on the entire surface of the optical component 1 but may be on the upper part of the arc as shown by the arrow.
  • the lower part of the optical component 1 may be a straight line instead of an arc.
  • ⁇ Luminance evaluation> A method for evaluating the luminance distribution of the illumination device by optical simulation will be described. Evaluation was made from the two directions shown in FIG. 1A, that is, from the front E direction and the diagonal F direction of 45 °. The results are shown in FIGS. 3A and 3B. The luminance distribution when viewed from the E direction is indicated by a solid line, and the luminance distribution viewed from the F direction is indicated by a dotted line. The horizontal axis is the Y-axis direction, and the vertical axis is the luminance. The lighting device of FIGS. 1A to 1E is intended. The number of LEDs 2 is 5, the pitch PL is 12 mm, the thickness T is 2 mm, and the distance D is 10 mm. In the luminance evaluation of the following embodiments, evaluation is performed by changing only the surface shape of the optical component 1 with the same verification device. The following example is the same.
  • FIG. 3A shows the result of a preferable case. It can be seen that the luminance difference between the LED 2 and the portion between the LEDs 2, that is, the contrast value is small, and light is emitted on the line. In addition, as shown in the luminance distribution when viewed from the F direction in the 45 ° direction, it is satisfied that even if the angle is inclined, the light emission is maintained in a linear shape and the luminance is not uneven.
  • FIG. 3B shows the result when it is not preferable. It is the example of the conventional FIG.
  • the number of LEDs 2, the pitch PL, and the distance D were the same as in FIG. 3A. It can be seen that the luminance unevenness in the arrangement direction of the LEDs 2 is large.
  • FIG. 3C is a schematic diagram illustrating the relationship between the position of the illumination device and the luminance.
  • the contrast calculation formula is Kmax as the luminance undulation of the luminance waveform, and Kmin as the MIN value of the luminance undulation.
  • the luminance difference As the luminance difference, the difference between the average luminance of the five peaks in the E direction in FIG. 3A and the average luminance of the five peaks in the F direction was evaluated.
  • the five peaks correspond to the light from the five LEDs.
  • the luminance difference is large, the appearance of the lighting device is affected. A difference in luminance occurs in the viewing direction, resulting in poor appearance.
  • the contrast C value is 35% or less, and the luminance difference in the F direction is less than 40% with respect to the luminance in the E direction.
  • pass / fail was determined based on the above values.
  • the contrast of 35% is a limit value that cannot be seen as uneven brightness.
  • a luminance difference of less than 40% is an acceptable level of the appearance of light emission as a product.
  • FIG. 4A is an enlarged cross-sectional view of the optical pattern surface of the optical component 1. It is sectional drawing perpendicular
  • the optical component 1 has a thickness T.
  • the thickness T does not include the height of the convex portion. The same applies to the following embodiments.
  • FIG. 4B is an enlarged cross-sectional view of the outer optical surface 1B of the optical component 1.
  • a convex part is the pitch PB and the front-end
  • tip is R shape (arc). It consists of a part of a circle (R part) and a straight line part (H part) extending as a tangent at its end. An angle formed by two straight lines extending in the tangential direction is an angle ⁇ TB. It has the height HB of the convex part. That is, a convex part consists of R part and a linear part (tangent).
  • the height is the average height of the protrusions.
  • FIG. 4C is an enlarged cross-sectional view of the inner optical surface 1A.
  • Surfaces having an R-shaped (arc) cross section are continuously arranged in a convex shape at a pitch PA.
  • the convex shape is the height HA. That is, there is no straight part and it consists only of the R part of a part of the circle.
  • An angle formed by a straight line extending in the tangential direction at the end is an angle ⁇ TA.
  • the R shape means a shape of a part of a circle.
  • Example 1 In Examples 1 to 4 and Comparative Example 1, evaluation was performed by changing the pitch PA, height HA, and radius R of the inner optical surface 1A. The conditions are shown in Table 1. The shape of the outer optical surface 1B is constant. Table 1 shows the shape of the protrusion and the evaluation results.
  • the thickness T is 2 mm and the height HA and the height HB are 0.3 mm or less, the thickness is larger than the height of the convex portion, and there is no mutual influence. Therefore, the shape of the outer optical surface 1B is constant.
  • the pitch PA / height HA In this PA / HA, the pitch is divided by the height, and thus represents the roughness and fineness of the convex portion. Larger numbers are coarser, smaller numbers are finer. It greatly affects the homogeneity of light.
  • the shape of the outer optical surface 1B and the shape of the inner optical surface 1A are the difference in whether light is incident or emitted, and the preferred shape is the same.
  • the preferred range is the range of the following formula 2 based on this result.
  • FIG. 7A is a diagram showing a cross section of the optical component 1 of Examples 3 and 4, and FIG. 7B is an enlarged view of the shape of the inner optical surface 1A.
  • the convex portions do not overlap, and a flat portion is located between the convex portions.
  • the result of evaluation has passed. Therefore, there may be a flat portion.
  • the pitch is further widened, for example, when the pitch is 1 mm, the luminance unevenness is recognized at that pitch.
  • the pitch PA is 1.00 mm
  • the radius of the circle of the R-shaped convex portion is 0.20 mm
  • the diameter is 0.40 mm. Therefore, the ratio of the convex portion on the surface of the optical component 1 needs to be larger than 40% of the pitch PA from 0.40 / 1.00.
  • Example 4 is preferable. That is, in Example 4, since the pitch is 0.80 mm and the diameter of the circle of the R-shaped convex portion is 0.40 mm, the convex portion is the pitch PA on the surface of the optical component 1 from 0.40 / 1.00. It is necessary to occupy 50% or more.
  • Equation 4 35 ° ⁇ ⁇ TB ⁇ 120 ° (Equation 4) The above is the outer optical surface 1B, but the inner optical surface 1A surface can be considered to have the same result.
  • FIG. 10 schematically showing FIG. 4B will be described.
  • Equation 6 When combined with Equation 3 above, Equation 6 is obtained.
  • Examples 7 and 8 are embodiments in which the shape of the optical component 1 shown in FIGS. 4A to 4C of Example 1 is different. Both the convex portions of the inner optical surface 1A and the outer optical surface 1B are R-shaped patterns.
  • FIGS. 13A to 13C are those of the eighth embodiment.
  • 11A and 13A are cross-sectional views of the optical pattern surface of the optical component 1.
  • 11B and 13B are enlarged sectional views of the outer optical surface 1B of the optical component 1.
  • FIG. 11C and 13C are enlarged cross-sectional views of the inner optical surface 1A.
  • the convex portions of both the inner optical surface 1A and the outer optical surface 1B have an R shape.
  • Examples 7 and 8 and Comparative Example 3 have the above shapes, and were evaluated by changing the shape of the convex portion of the outer optical surface 1B. Table 3 shows the shape conditions and the evaluation results.
  • the luminance distributions of Examples 7 and 8 and Comparative Example 3 are shown in FIGS. 12A, 14 and 12B, respectively.
  • the preferable region of PB / HB is PB / HB ⁇ 7.49.
  • FIG. 13B there is a flat portion between the convex portions, but the flat portion is not large and allowed as in the case of FIG. 7B.
  • Example 9 is a different embodiment of the optical component 1 shown in FIGS. 4A to 4C of Example 1. FIG. This will be described with reference to FIGS. 15A to 15C.
  • the convex part is a triangle and RH shape.
  • FIG. 15A shows a cross-sectional view of the optical component 1.
  • FIG. 15B is an enlarged sectional view of the outer optical surface 1B
  • FIG. 15C is an enlarged sectional view of the inner optical surface 1A.
  • the convex shape of the inner optical surface 1A is a convex shape having a triangular apex angle ⁇ TA, a pitch PA, and a convex portion height HA.
  • the convex shape of the outer optical surface 1B has a pitch PB, an R-shaped cross section, the height of the convex portion is HB, and the angle ⁇ TB. Evaluation was performed under the shape conditions shown in Table 4. The results are shown in FIG. This is an acceptable level for the optical component 1.
  • the angle ⁇ TA was 90 °
  • the angle ⁇ TB was 40 °
  • R was 0.2 mm.
  • Example 10 is a different embodiment of the optical component 1 shown in FIGS. 4A to 4C of Example 1.
  • FIG. The tenth embodiment will be described with reference to FIGS. 17A to 17C.
  • FIG. 17A is a cross-sectional view of the optical pattern surface of the optical component 1.
  • FIG. 17B is an enlarged cross-sectional view of the outer optical surface 1B of the optical component 1.
  • FIG. 17C is an enlarged cross-sectional view of the inner optical surface 1A.
  • the inner optical surface 1A has a triangular apex angle ⁇ TA as shown in FIG. 17C.
  • the convex shape (D shape, trapezoid) having a flat surface at the tip is a pitch PA.
  • Table 4 shows the dimensions of the convex shape of Example 10.
  • the angle ⁇ TA of the triangular apex is 90 °
  • the flat portion length is 0.05 mm
  • the tip R is 0.20 mm
  • the angle ⁇ TB is 40 °.
  • the inner optical surface 1A has a trapezoidal convex portion protruding outward, and a straight line (plane) between the convex portions.
  • the result of evaluating this luminance distribution is shown in FIG. From Table 4, it is a level acceptable as an optical component.
  • Example 11 is a different embodiment of the optical component 1 shown in FIGS. 4A to 4C of Example 1. FIG. This will be described with reference to FIGS. 19A to 19C.
  • FIG. 19A is a cross-sectional view of the optical pattern surface of the optical component 1.
  • FIG. 19B is an enlarged cross-sectional view of the outer optical surface 1B of the optical component 1.
  • FIG. 19C is an enlarged cross-sectional view of the inner optical surface 1A.
  • the convex part of the inner optical surface 1A of the optical component 1 has an R-shaped cross section as shown in FIG. 19C, has a pitch PA, and the height of the convex part is HA.
  • the convex portion of the outer optical surface 1B of the optical component 1 is a convex shape (T shape) having a triangular apex angle ⁇ TB cross section, a pitch PB, and a convex portion height. HB.
  • the convex portion of the inner optical surface 1A is R0.2 mm
  • the angle ⁇ TB of the triangular apex of the convex portion of the outer optical surface 1B is 90 °.
  • Example 12 is a different embodiment of the optical component 1 shown in FIGS. 4A to 4C of Example 1.
  • FIG. Example 12 will be described with reference to FIGS. 21A to 21C.
  • FIG. 21A is a cross-sectional view of the optical pattern surface of the optical component 1.
  • FIG. 21B is an enlarged cross-sectional view of the outer optical surface 1B of the optical component 1.
  • FIG. 21C is an enlarged cross-sectional view of the inner optical surface 1A.
  • the convex part of the inner optical surface 1A has an R shape as shown in FIG. 21C, has a pitch PA, and the height of the convex part shape is HA.
  • the convex portion of the outer optical surface 1B has a triangular shape, a cross section with a vertex angle ⁇ TB, and a convex shape (trapezoidal shape, D shape) having a flat portion at the vertex.
  • the height of the convex portion is HB.
  • the convex portion of the inner optical surface 1A is R0.2 mm
  • the convex portion of the outer optical surface 1B has a triangular apex angle ⁇ TB of 90 °
  • the trapezoidal apex side is 0.05 mm. .
  • the outer optical surface 1B has a trapezoidal convex portion protruding outward, and the convex portion is a straight line (plane).
  • FIG. 22 shows the result of the luminance distribution
  • Table 4 shows the evaluation result. This is an acceptable level for the optical component of the present invention.
  • Example 1-12 Summary of Examples 9-12
  • Table 4 summarizes the convex shape and results of Example 1-12.
  • Example 1-12 the shape of the convex portion was changed. Also in Example 1-12, the characteristics are satisfied.
  • Example 9-12 Expressions 8 and 9 of the result of Example 1-8 are satisfied. Therefore, it can be seen that Expressions 8 and 9 can be applied regardless of the convex shape.
  • Example 13 will be described with reference to FIG. As shown in FIG. 23, the optical component 1, the LED 2, and the substrate 3 are arranged, and the LED 2 is linearly arranged on the substrate 3 with a pitch PL of 12 mm. The difference from the first embodiment is that the optical component 1 is a flat surface.
  • the inner optical surface 1A is formed on the surface facing the LED 2, and the optical surface of Example 1 shown in FIG. 4C is formed on the inner optical surface 1A.
  • the optical surface of Example 1 shown in FIG. 4B is formed on the outer optical surface 1B.
  • the optical component 1 has a flat plate shape with a thickness of 2 mm, and is located at a distance D10 mm from the LED 2. Also in the flat optical component 1 of Example 13, the preferable ranges of the convex portions of the inner optical surface 1A and the outer optical surface 1B are the conditions described above.
  • Example 13 similarly, it is possible to emit light uniformly in a planar shape within the range of the shape of the convex portion shown above.
  • the illumination device of the present invention includes an optical component 1, an LED 2, and a substrate 3.
  • the optical component 1 is planar, and a plurality of examples of the LEDs 2 are arranged on the substrate 3.
  • the optical component 1 at this time is formed with convex portions of the inner optical surface 1A and the outer optical surface 1B similar to the above.
  • the optical component 1 has a thickness T2 mm and is formed in a flat plate shape with a distance D10 mm from the LED 2 so as to cover the light emission range of the LED 2.
  • the pitch of the LEDs 2 is 12 mm.
  • Example 14 it is possible to emit light uniformly in a planar shape within the range of the shape of the convex portion shown above.
  • this optical pattern is configured to create an infinite number of images, an object viewed through the optical component appears as if it is visible through the frosted glass, and also functions as a cover in which the internal organs cannot be seen.
  • this optical component maintains a high transmittance of 83% or more. Further, as a function of this optical component, multiple shadows are not generated by creating innumerable images by the light of the highly directional LED 2. With this optical component, it is possible to realize a high-efficiency light source without unevenness in the light emission state with a small number of LEDs 2, and energy saving can be realized in all lighting devices.
  • Various lighting devices can be used for backlights used for displays, signboards, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Planar Illumination Modules (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

In a light source in which LEDs are arranged in a straight line, the luminance difference between the part of the LEDs having light of a strong directionality and the part of the LEDs having light that is not of a strong directionality is increased, and irregularity is emphasized. In addition, the light from each LED light source, said light being strongly directional LED light, can cause shadows to occur in multiple layers. In the lighting device of the present invention, an optical component (1) comprises an inner-side optical surface having a convex section that faces the light sources of a plurality of LEDs and a thickness (T) on the back surface of the inner-side optical surface, and forms an outer-side optical surface that has a convex section. The lighting device is characterized in that, by means of the optical component (1), the image from the light sources of the plurality of LEDs is divided into multiple images by multi-layer reflection on the inner side optical surface and the outer side optical surface, and exists indefinitely in the direction of the convex shape that exists on the inner-side optical surface and the convex shape that exists on the outer-side optical surface.

Description

照明装置Lighting device
 本発明は、発光ダイオードを光源に用いた照明装置に関する。 The present invention relates to a lighting device using a light emitting diode as a light source.
 蛍光管を使用した照明装置の代わりに、光源に発光ダイオード(LED:Light Emitting Diode)を用いた照明装置への置き換えが進んでいる。 Instead of lighting devices using fluorescent tubes, replacement with lighting devices using light emitting diodes (LEDs) as light sources is progressing.
 この理由の一つにとして、蛍光灯に含まれる微量の水銀のため、環境対応の点で廃棄処理時の問題がある。蛍光灯をLEDに置き換えると、完全に水銀フリーの照明装置を実現できる。 One reason for this is that there is a problem during disposal in terms of environmental friendliness due to the small amount of mercury contained in fluorescent lamps. When a fluorescent lamp is replaced with an LED, a completely mercury-free lighting device can be realized.
 2つ目の理由として、蛍光灯はインバータや安定器が必要であるが、LEDを用いた照明装置ではそれが不要となり、消費電力を低減できるという理由がある。 The second reason is that the fluorescent lamp needs an inverter and a ballast, but it is not necessary for the lighting device using the LED, and the power consumption can be reduced.
 一方、白熱電球では水銀やインバータ等の問題こそないが、蛍光灯に比べて発光効率が低く寿命も短いので、やはりLEDを用いた照明装置に置き換えることによって、消費電力を低減でき、且つ寿命も延長できる。 On the other hand, incandescent bulbs do not have problems such as mercury and inverters, but their luminous efficiency is low and their lifetime is short compared to fluorescent lamps, so power consumption can be reduced and lifetime can be reduced by replacing them with lighting devices using LEDs. Can be extended.
 この様な背景から、各種LEDを用いた照明装置が提案され、また実用化されている。ただし、LEDを用いた照明装置では、光源とするLEDから放出する光の指向性が強い為に、LEDの正面は明るいが、その周囲の部分は暗いという問題がある。 From such a background, lighting devices using various LEDs have been proposed and put into practical use. However, the illumination device using the LED has a problem that the front of the LED is bright but the surrounding portion is dark because the directivity of light emitted from the LED as the light source is strong.
 しかも、LEDを複数個配置しても、この傾向が残り、LED間は暗くなり、LEDを密に配置しないと、その配置に合わせて、点状の明るさのムラが生じ易いという課題があった。 In addition, even if a plurality of LEDs are arranged, this tendency remains, the distance between the LEDs becomes dark, and if the LEDs are not arranged closely, there is a problem that unevenness of dot-like brightness easily occurs according to the arrangement. It was.
 また、LEDの強い光りの指向性の影響で、LEDをならべた照明装置において、影がLEDの光源数分、分かれて影ができる多重影が発生する。このため、使用者の不快感を与えるという課題があった。 Also, due to the influence of directivity of strong light of the LED, in the lighting device arranged with the LED, the shadow is divided into as many as the number of the light sources of the LED, and multiple shadows are generated. For this reason, there existed a subject of giving a user's discomfort.
 この問題を解決するための特許文献1を、図25Aと図25Bを用いて説明する。図25Aは、底面の少なくとも一部分に開口を設けた照明装置本体20の斜視図を示す。表面に複数の直線状プリズムを設けたフレネルレンズ21が、その開口に設置されている。 Patent Document 1 for solving this problem will be described with reference to FIGS. 25A and 25B. FIG. 25A shows a perspective view of the lighting device body 20 in which an opening is provided in at least a part of the bottom surface. A Fresnel lens 21 having a plurality of linear prisms on the surface is installed in the opening.
 図25Bは、図25Aの断面図であり、照明装置本体20と、フレネルレンズ21と、LED39と、基板3とから構成されている状態を示す。この特許文献1の器具においては、フレネルレンズ21により、LED39の光を分散させることができることを特徴としている。 FIG. 25B is a cross-sectional view of FIG. 25A and shows a state in which the lighting device body 20, the Fresnel lens 21, the LED 39, and the substrate 3 are configured. The instrument of Patent Document 1 is characterized in that the light of the LED 39 can be dispersed by the Fresnel lens 21.
 一方、従来の光学部品である特許文献2の場合を、図26を用いて説明する。従来の光学部品は、複数配置したLED37に対して、シート状のプリズムシート31を配置し、LED37の光を散乱させる。 Meanwhile, the case of Patent Document 2 which is a conventional optical component will be described with reference to FIG. In the conventional optical component, the sheet-like prism sheet 31 is arranged with respect to the plurality of arranged LEDs 37, and the light of the LEDs 37 is scattered.
 プリズムシート31は、シート状の本体部32と、本体部32と光拡散層33とプリズム層34とが積層されている。 The prism sheet 31 includes a sheet-like main body 32, a main body 32, a light diffusion layer 33, and a prism layer 34.
 プリズム層34は、外部へ突出した、複数の凸部36を有する。 The prism layer 34 has a plurality of convex portions 36 protruding outward.
 光拡散層33は、光拡散性粒子の単体又は凝集体からなる粒状体が樹脂バインダ中に分散されている。光拡散層33のプリズム層34側の表面は、粗面となっている。樹脂バインダの屈折率とプリズム層34との屈折率は異なる。 In the light diffusing layer 33, granular materials made of light diffusing particles alone or aggregates are dispersed in a resin binder. The surface of the light diffusion layer 33 on the prism layer 34 side is a rough surface. The refractive index of the resin binder and the refractive index of the prism layer 34 are different.
 本体部32は、光拡散層33を支持するシートである。 The main body 32 is a sheet that supports the light diffusion layer 33.
 このプリズムシート31は、複数の凸部36による集光機能と、内部の粗面化による光拡散機能との両方の機能を有する。 This prism sheet 31 has both a light collecting function by a plurality of convex portions 36 and a light diffusion function by internal roughening.
 その結果、集光機能によって正面方向の輝度が明るく、且つ、光拡散機能によって、点状に明るく光源像が見えるのを防げる。 As a result, the brightness in the front direction is bright due to the condensing function, and it is possible to prevent the light source image from being seen brightly in a dot shape due to the light diffusion function.
 特許文献1の図25A、図25Bでは、前面に、フレネルレンズ21を設け、配光特性を均一化している。しかし、フレネルレンズ21は光を一定方向に集光させる効果はあるが、周囲に広げる効果は期待できず、照明光の明るさのムラは解消できない。また、LED39の各々の指向性を均一に分散することはできないため、多重影も解消することはできない。 In FIGS. 25A and 25B of Patent Document 1, a Fresnel lens 21 is provided on the front surface to make light distribution characteristics uniform. However, although the Fresnel lens 21 has an effect of condensing light in a certain direction, it cannot be expected to have an effect of spreading to the surroundings, and the uneven brightness of the illumination light cannot be resolved. In addition, since directivity of each LED 39 cannot be uniformly distributed, multiple shadows cannot be eliminated.
 従来の特許文献2の図26では、LED37からの放出された光源光がプリズムシート31を透過して照明光となる。この時に、その内部の光拡散層33にて光を拡散機能している。しかし、光拡散層33中の樹脂バインダと、プリズム層34との位置関係にムラがあり、LED37からの強い光りの指向性を消すことはできない。 In FIG. 26 of the conventional Patent Document 2, the light source light emitted from the LED 37 passes through the prism sheet 31 and becomes illumination light. At this time, the light diffusion layer 33 in the inside functions to diffuse light. However, the positional relationship between the resin binder in the light diffusion layer 33 and the prism layer 34 is uneven, and the directivity of strong light from the LED 37 cannot be erased.
 検証した結果では、LED37の指向性の強い光りとそうでない部分との輝度差が大きく、ムラを強調される結果となった。このプリズムシート31では、LED37のピッチ間隔が広がった際は、さらに、均一化させることは出来ない。 As a result of the verification, the luminance difference between the light with strong directivity of the LED 37 and the portion not so is large, and unevenness is emphasized. In the prism sheet 31, when the pitch interval of the LEDs 37 is widened, it cannot be further uniformed.
特開2008-218186号公報JP 2008-218186 A 特開2011-124023号公報JP 2011-1224023 A
 上記課題を解決するために、平面基板上に一定の間隔で配列されたLEDと、LED上面を覆う光学部材とからなり、光学部材は、LED面に面する内面に凸部を有し、内面と逆の外面にも凸部を有することを特徴とする照明装置を用いる。 In order to solve the above-mentioned problem, it is composed of LEDs arranged at regular intervals on a flat substrate and an optical member that covers the upper surface of the LED, and the optical member has a convex portion on the inner surface facing the LED surface, A lighting device is used, which has a convex portion on the outer surface opposite to the above.
 LEDの指向性の強い光りが、本発明の照明装置の光学部品の両面に位置する凸部により分散され、均質な光が周辺へ提供される。 The highly directional light of the LED is dispersed by the convex portions located on both sides of the optical component of the illumination device of the present invention, and uniform light is provided to the periphery.
図1Aは、本発明の実施の形態1の照明装置の斜視図である。FIG. 1A is a perspective view of the lighting apparatus according to Embodiment 1 of the present invention. 図1Bは、本発明の実施の形態1の照明装置のY軸に垂直な断面図である。FIG. 1B is a cross-sectional view perpendicular to the Y axis of the lighting apparatus according to Embodiment 1 of the present invention. 図1Cは、本発明の実施の形態1の照明装置のa-b断面図である。FIG. 1C is a cross-sectional view taken along line ab of the illumination device according to the first embodiment of the present invention. 図1Dは、図1Cの部分拡大図である。FIG. 1D is a partially enlarged view of FIG. 1C. 図1Eは、図1Aの点線部分の部分拡大斜視図である。FIG. 1E is a partially enlarged perspective view of a dotted line portion in FIG. 1A. 図2Aは、本発明の実施の形態1の照明装置の変形例のY軸方向の断面図である。FIG. 2A is a cross-sectional view in the Y-axis direction of a modification of the illumination device according to Embodiment 1 of the present invention. 図2Bは、本発明の実施の形態1の照明装置のX軸方向の断面図である。FIG. 2B is a cross-sectional view in the X-axis direction of the lighting apparatus according to Embodiment 1 of the present invention. 図3Aは、好ましい例(本発明の実施例1)の発光状態の輝度分布グラフである。FIG. 3A is a luminance distribution graph of a light emission state of a preferred example (Example 1 of the present invention). 図3Bは、好ましくない例(従来例)の発光状態の輝度分布グラフである。FIG. 3B is a luminance distribution graph of a light emission state of an unfavorable example (conventional example). 図3Cは、輝度分布のコントラストを説明する図である。FIG. 3C is a diagram illustrating the contrast of the luminance distribution. 図4Aは、本発明の実施例1の光学部品の光学面の断面図である。FIG. 4A is a cross-sectional view of the optical surface of the optical component according to Embodiment 1 of the present invention. 図4Bは、本発明の実施例1の光学部品の光学面の部分断面図である。FIG. 4B is a partial cross-sectional view of the optical surface of the optical component according to Embodiment 1 of the present invention. 図4Cは、本発明の実施例1の光学部品の光学面の部分断面図である。FIG. 4C is a partial cross-sectional view of the optical surface of the optical component according to Embodiment 1 of the present invention. 図5Aは、比較例1の光学部品使用の照明装置の発光状態の輝度分布グラフである。FIG. 5A is a luminance distribution graph of the light emission state of the illumination device using the optical component of Comparative Example 1. 図5Bは、本発明の実施例2の光学部品使用の照明装置の発光状態の輝度分布のグラフである。FIG. 5B is a graph of the luminance distribution in the light emission state of the illumination device using the optical component according to the second embodiment of the present invention. 図6Aは、本発明の実施例3の光学部品使用の照明装置の発光状態の輝度分布のグラフである。FIG. 6A is a graph of the luminance distribution in the light emission state of the illumination device using the optical component according to the third embodiment of the present invention. 図6Bは、本発明の実施例4の光学部品使用の照明装置の発光状態の輝度分布のグラフである。FIG. 6B is a graph of the luminance distribution in the light emission state of the illumination device using the optical component according to Example 4 of the present invention. 図7Aは、本発明の実施例3、4の光学部品の別の実施例の光学面の断面図である。FIG. 7A is a cross-sectional view of the optical surface of another example of the optical component according to Examples 3 and 4 of the present invention. 図7Bは、本発明の実施例3、4の光学部品の光学面の部分断面図である。FIG. 7B is a partial cross-sectional view of the optical surface of the optical component according to Examples 3 and 4 of the present invention. 図8Aは、本発明の実施例5の光学部品使用の照明装置の発光状態の輝度分布のグラフである。FIG. 8A is a graph of the luminance distribution in the light emission state of the illumination device using the optical component according to Example 5 of the present invention. 図8Bは、比較例2の光学部品使用の照明装置の発光状態の輝度分布のグラフである。FIG. 8B is a graph of the luminance distribution in the light emission state of the illumination device using the optical component of Comparative Example 2. 図9は、本発明の実施例6の光学部品使用の照明装置の発光状態の輝度分布の許容できる領域のグラフである。FIG. 9 is a graph of an allowable region of the luminance distribution in the light emission state of the illumination device using the optical component according to the sixth embodiment of the present invention. 図10は、本発明の光学部品の光学面の部分断面模式図である。FIG. 10 is a partial cross-sectional schematic view of the optical surface of the optical component of the present invention. 図11Aは、本発明の実施例7の光学部品の光学面の断面図である。FIG. 11A is a cross-sectional view of an optical surface of an optical component according to Example 7 of the present invention. 図11Bは、本発明の実施例7の光学部品の光学面の部分断面図である。FIG. 11B is a partial cross-sectional view of the optical surface of the optical component according to Embodiment 7 of the present invention. 図11Cは、本発明の実施例7の光学部品の光学面の部分の断面図である。FIG. 11C is a cross-sectional view of the optical surface portion of the optical component according to Embodiment 7 of the present invention. 図12Aは、本発明の実施例7の光学部品使用の照明装置の発光状態の輝度分布のグラフである。FIG. 12A is a graph of the luminance distribution in the light emission state of the illumination device using the optical component according to Example 7 of the present invention. 図12Bは、比較例3の光学部品使用の照明装置の発光状態の輝度分布のグラフである。12B is a graph of the luminance distribution in the light emission state of the illumination device using the optical component of Comparative Example 3. FIG. 図13Aは、本発明の実施例8の光学部品の光学面の断面図である。FIG. 13A is a cross-sectional view of the optical surface of the optical component according to Embodiment 8 of the present invention. 図13Bは、本発明の実施例8の光学部品の光学面の部分断面図である。FIG. 13B is a partial cross-sectional view of the optical surface of the optical component according to Example 8 of the present invention. 図13Cは、本発明の実施例8の光学部品の光学面の部分断面図である。FIG. 13C is a partial cross-sectional view of the optical surface of the optical component according to Example 8 of the present invention. 図14は、本発明の実施例8の光学部品使用の照明装置の発光状態の輝度分布のグラフである。FIG. 14 is a graph of the luminance distribution in the light emission state of the illumination device using the optical component according to the eighth embodiment of the present invention. 図15Aは、本発明の実施例9の光学部品の光学面の断面図である。FIG. 15A is a cross-sectional view of the optical surface of the optical component according to Embodiment 9 of the present invention. 図15Bは、本発明の実施例9の光学部品の光学面の部分断面図である。FIG. 15B is a partial cross-sectional view of the optical surface of the optical component according to Embodiment 9 of the present invention. 図15Cは、本発明の実施例9の光学部品の光学面の部分断面図である。FIG. 15C is a partial cross-sectional view of the optical surface of the optical component according to Embodiment 9 of the present invention. 図16は、本発明の実施例9の光学部品使用の照明装置の発光状態の輝度分布のグラフである。FIG. 16 is a graph of the luminance distribution in the light emission state of the illumination device using the optical component according to the ninth embodiment of the present invention. 図17Aは、本発明の実施例10の光学部品の光学面の断面図である。FIG. 17A is a cross-sectional view of the optical surface of the optical component according to Embodiment 10 of the present invention. 図17Bは、本発明の実施例10の光学部品の光学面の部分断面図である。FIG. 17B is a partial cross-sectional view of the optical surface of the optical component according to Example 10 of the present invention. 図17Cは、本発明の実施例10の光学部品の光学面の部分断面図である。FIG. 17C is a partial cross-sectional view of the optical surface of the optical component according to Example 10 of the present invention. 図18は、本発明の実施例10の光学部品使用の照明装置の発光状態の輝度分布のグラフである。FIG. 18 is a graph of the luminance distribution in the light emission state of the illumination device using the optical component according to the tenth embodiment of the present invention. 図19Aは、本発明の実施例11の光学部品の光学面の断面図である。FIG. 19A is a cross-sectional view of an optical surface of an optical component according to Example 11 of the present invention. 図19Bは、本発明の実施例11の光学部品の光学面の部分断面図である。FIG. 19B is a partial cross-sectional view of the optical surface of the optical component according to Example 11 of the present invention. 図19Cは、本発明の実施例11の光学部品の光学面の部分断面図である。FIG. 19C is a partial cross-sectional view of the optical surface of the optical component according to Example 11 of the present invention. 図20は、本発明の実施例11の光学部品使用の照明装置の発光状態の輝度分布のグラフである。FIG. 20 is a graph of the luminance distribution in the light emission state of the illumination device using the optical component according to the eleventh embodiment of the present invention. 図21Aは、本発明の実施例12の光学部品の光学面の断面図である。FIG. 21A is a cross-sectional view of the optical surface of the optical component according to Embodiment 12 of the present invention. 図21Bは、本発明の実施例12の光学部品の光学面の部分断面図である。FIG. 21B is a partial cross-sectional view of the optical surface of the optical component according to Example 12 of the present invention. 図21Cは、本発明の実施例12の光学部品の光学面の部分断面図である。FIG. 21C is a partial cross-sectional view of the optical surface of the optical component according to Example 12 of the present invention. 図22は、本発明の実施例12の光学部品使用の照明装置の発光状態の輝度分布のグラフである。FIG. 22 is a graph of the luminance distribution in the light emission state of the illumination device using the optical component according to the twelfth embodiment of the present invention. 図23は、本発明の実施例14の光学部品の使用の照明装置の斜視図である。FIG. 23 is a perspective view of an illumination device using an optical component according to Example 14 of the present invention. 図24は、本発明の実施例15の光学部品の使用の照明装置の斜視図である。FIG. 24 is a perspective view of an illumination device using an optical component according to Example 15 of the present invention. 図25Aは、従来技術の特許文献1の照明装置の斜視図である。FIG. 25A is a perspective view of the illumination device of Patent Document 1 of the related art. 図25Bは、従来技術の特許文献1の照明装置の断面図である。FIG. 25B is a cross-sectional view of the illumination device of Patent Document 1 of the related art. 図26は、従来技術の特許文献2の照明装置の断面図である。FIG. 26 is a cross-sectional view of the illumination device of Patent Document 2 of the prior art.
 (実施の形態1)
 以下本発明の実施の形態について、図面を参照しながら説明する。本発明の実施の形態1における照明装置について、図1A~図1Eを用いて説明する。
(Embodiment 1)
Embodiments of the present invention will be described below with reference to the drawings. An illumination device according to Embodiment 1 of the present invention will be described with reference to FIGS. 1A to 1E.
 図1Aは、照明装置の斜視図であり、図1Bは、図1Aの照明装置のY軸に垂直な断面図である。図1Cは、図1Aの照明装置のa-b面の断面図である。図1Dは、図1Cの光学部品1の部分拡大図である。図1Eは、図1Aの点線四角で囲った部分の上面を切り出した、X方向から見た斜視図である。 1A is a perspective view of the lighting device, and FIG. 1B is a cross-sectional view perpendicular to the Y axis of the lighting device of FIG. 1A. 1C is a cross-sectional view of the ab plane of the lighting device of FIG. 1A. FIG. 1D is a partially enlarged view of the optical component 1 of FIG. 1C. FIG. 1E is a perspective view of an upper surface of a portion surrounded by a dotted-line square in FIG. 1A, viewed from the X direction.
 照明装置は、光源であるLED2と、LED2が実装された基板3と、光学部品1とを含む。LED2は、ほぼ一定の間隔PLで直線状にY方向に並ぶ。 The illumination device includes an LED 2 that is a light source, a substrate 3 on which the LED 2 is mounted, and an optical component 1. The LEDs 2 are arranged in a straight line in the Y direction at a substantially constant interval PL.
 図1A、図1Bに示すように、光学部品1は、中空の円筒の半分の形状である。 As shown in FIG. 1A and FIG. 1B, the optical component 1 is half the shape of a hollow cylinder.
 図1C、図1D、図1Eに示すように、光学部品1の外側の外側光学面1Bと、内側の内側光学面1Aとに、波状の凸部を有する。 As shown in FIG. 1C, FIG. 1D, and FIG. 1E, the outer optical surface 1B on the outer side of the optical component 1 and the inner optical surface 1A on the inner side have wavy convex portions.
 図1Eで示しているように、波状の凸部とは、突起が直線状につながり、山脈のような状態を示す。LED2の並び方向へ波を打ち。LED2の並びの方向と、突起の直線方向とは垂直である。LED2の並びの方向と、凸部の波の進行方向とは平行である。光学部品1は、材料がアクリル樹脂やポリカーボネート樹脂などの光を透過する透明樹脂によって製作される。基板3はアルミニウムで作製されている。ここで、波状の凸部は、図1Eでは、その高さが同じであるが、円錐状の凸部が隣接していてもよい。つまり、頂上に凹凸があってもよい。ただし、円錐状の凸部が重ならず、離れるとよくない。以下、凸部の高さは、高さが同じ場合はその高さとし、頂上に凹凸がある場合は平均の高さと定義する。 As shown in FIG. 1E, the wavy convex portion indicates a state like a mountain range with protrusions connected in a straight line. Waves in the direction of LED2 alignment. The direction in which the LEDs 2 are arranged and the linear direction of the protrusion are perpendicular to each other. The direction in which the LEDs 2 are arranged is parallel to the wave traveling direction of the convex portion. The optical component 1 is made of a transparent resin that transmits light such as an acrylic resin or a polycarbonate resin. The substrate 3 is made of aluminum. Here, the wavy convex portions have the same height in FIG. 1E, but the conical convex portions may be adjacent to each other. That is, the top may be uneven. However, it is not good if the conical convex portions do not overlap and are separated. Hereinafter, the height of the convex portion is defined as the height when the height is the same, and the average height when the height is uneven.
 このとき、図1Bに示すように、光学部品1は、円筒の内径はR10mmで、形成されている。内側光学面1Aと外側光学面1Bは、半円筒形状の光学部品1の表、裏全面に形成されている。 At this time, as shown in FIG. 1B, the optical component 1 has a cylindrical inner diameter of R10 mm. The inner optical surface 1A and the outer optical surface 1B are formed on the entire front and back surfaces of the semicylindrical optical component 1.
 <距離DとピッチPLとの比>
 図2Aは、光学部品1の図1Cと同じ断面図であり、LED2と光学部品1との位置関係の例を表す。ここで、LED2の照度の広がり角は、片側60°である。LED2の光が照射される光照射領域LDを図2Aに示めしている。光照射領域LDが重ならないと、光の均質性が悪くなる。図2Aの場合がその限界の位置関係である。図2Aでは、距離D/ピッチPLの値が、0.29であり、それ以上の値が必要である。
<Ratio of distance D to pitch PL>
FIG. 2A is a cross-sectional view of the optical component 1 that is the same as that of FIG. Here, the spread angle of the illuminance of the LED 2 is 60 ° on one side. FIG. 2A shows a light irradiation region LD to which the light of the LED 2 is irradiated. If the light irradiation regions LD do not overlap, the homogeneity of the light will deteriorate. The case of FIG. 2A is the limit positional relationship. In FIG. 2A, the value of distance D / pitch PL is 0.29, and a value larger than that is necessary.
 距離Dを大きくすると、光は重なりあい、均一性が向上する方向に働く。しかし、照明装置が大きくなってしまう。LED2の数を増やすし、ピッチPLを短くすると、光が重なり、均質となるが、LED2が多く必要となり、電力が余分に必要となる。 When the distance D is increased, the light overlaps and works to improve the uniformity. However, the lighting device becomes large. If the number of LEDs 2 is increased and the pitch PL is shortened, the light overlaps and becomes homogeneous, but a large number of LEDs 2 are required, and extra power is required.
 本照明装置では、距離Dが小さく、限られたLED2の数の場合において、LED2の光の指向性を分散させ、均一化できるものである。 In the present lighting device, the distance D is small, and in the case of a limited number of LEDs 2, the directivity of the light of the LEDs 2 can be dispersed and made uniform.
 <光学部品の全体形状>
 図2Bは、図1Bに相当する図である。上記と同様に、光の広がりから、凸部は、光学部品1の全面になくとも、矢印で示すように、円弧上の上部にあればよい、図2Bに示すように、LED2から30°以上の部分に凸部があればよい。30°より小さい部分にはなくともよい。そのため、図2Bに示すように、光学部品1は、その下部が、円弧状でなく、直線であってもよい。
<Overall shape of optical components>
FIG. 2B corresponds to FIG. 1B. Similarly to the above, because of the spread of light, the convex portion need not be on the entire surface of the optical component 1 but may be on the upper part of the arc as shown by the arrow. As shown in FIG. It suffices if there is a convex part in the part. It does not have to be in a portion smaller than 30 °. Therefore, as shown in FIG. 2B, the lower part of the optical component 1 may be a straight line instead of an arc.
 <輝度評価>
 照明装置の輝度分布を光学シミュレーションにて評価する方法を説明する。図1Aに示す2方向、つまり、正面のE方向と、斜め45°のF方向から評価した。結果を図3A,図3Bに示す。E方向から見た際の輝度分布を実線で示し、F方向から見た輝度分布を点線で示す。横軸は、Y軸方向で、縦軸は、輝度である。図1A~図1Eの照明装置を対象としている。LED2は5個で、ピッチPLは12mm、厚さTは2mm、距離Dは10mmである。以下の実施の形態の輝度評価では、同じ証明装置で、光学部品1の表面形状のみ変えて評価している。以下の例も同じである。
<Luminance evaluation>
A method for evaluating the luminance distribution of the illumination device by optical simulation will be described. Evaluation was made from the two directions shown in FIG. 1A, that is, from the front E direction and the diagonal F direction of 45 °. The results are shown in FIGS. 3A and 3B. The luminance distribution when viewed from the E direction is indicated by a solid line, and the luminance distribution viewed from the F direction is indicated by a dotted line. The horizontal axis is the Y-axis direction, and the vertical axis is the luminance. The lighting device of FIGS. 1A to 1E is intended. The number of LEDs 2 is 5, the pitch PL is 12 mm, the thickness T is 2 mm, and the distance D is 10 mm. In the luminance evaluation of the following embodiments, evaluation is performed by changing only the surface shape of the optical component 1 with the same verification device. The following example is the same.
 図3Aは、好ましい場合の結果である。LED2の直上と、LED2の間の部分との、輝度の差、すなわち、コントラストの値が小さく、線上に発光していることがわかる。また、45°方向のF方向から見た時の輝度分布のように、角度を傾けた状態でも線状に発光することを維持し輝度ムラにならないことも満足している。 FIG. 3A shows the result of a preferable case. It can be seen that the luminance difference between the LED 2 and the portion between the LEDs 2, that is, the contrast value is small, and light is emitted on the line. In addition, as shown in the luminance distribution when viewed from the F direction in the 45 ° direction, it is satisfied that even if the angle is inclined, the light emission is maintained in a linear shape and the luminance is not uneven.
 これに対して、好ましくない場合の結果を、図3Bに示す。従来の図26の例である。LED2の数、ピッチPL、距離Dは、図3Aの場合と同じとした。LED2の配列方向の輝度ムラが大きいことがわかる。 In contrast, FIG. 3B shows the result when it is not preferable. It is the example of the conventional FIG. The number of LEDs 2, the pitch PL, and the distance D were the same as in FIG. 3A. It can be seen that the luminance unevenness in the arrangement direction of the LEDs 2 is large.
 今回、ムラとなるか、ならないかの指標として、輝度の起伏差から算出する下記値、光学的に濃淡の鮮明さを表すコントラストの値として評価した。図3Cは、照明装置の位置と輝度との関係を示す模式図である。図3Cで示すように、コントラストの算出式は、輝度の波状に起伏している輝度のMAX値をKmaxと、波状に起伏している輝度のMIN値をKminとを測定し、以下の式1で計算される。 This time, as an index of whether or not it becomes uneven, it was evaluated as the following value calculated from the undulation difference of brightness, and the contrast value representing the sharpness of light and shade. FIG. 3C is a schematic diagram illustrating the relationship between the position of the illumination device and the luminance. As shown in FIG. 3C, the contrast calculation formula is Kmax as the luminance undulation of the luminance waveform, and Kmin as the MIN value of the luminance undulation. Calculated by
 C(コントラスト)=(Kmax-Kmin)/(Kmax+Kmin)×100%・・・・・・・・・・・(式1)
 このコントラストCの値が小さければ小さいほど、輝度の起伏が小さくムラがないということになる。
C (contrast) = (Kmax−Kmin) / (Kmax + Kmin) × 100% (Equation 1)
The smaller the value of the contrast C, the smaller the brightness undulations and the less unevenness.
 輝度差として、図3AのE方向の5つのピークの輝度の平均と、F方向の5つのピークの輝度の平均との差を評価した。なお、5つのピークは、5つのLEDからの光に相当する。輝度差が大きいと、照明装置として外観に影響がでる。見る方向で輝度に差がでてしまい、外観不良となる。 As the luminance difference, the difference between the average luminance of the five peaks in the E direction in FIG. 3A and the average luminance of the five peaks in the F direction was evaluated. The five peaks correspond to the light from the five LEDs. When the luminance difference is large, the appearance of the lighting device is affected. A difference in luminance occurs in the viewing direction, resulting in poor appearance.
 コントラストC値が35%以下で、E方向の輝度に対してF方向の輝度差が40%未満であることを目的としている。以下の評価では、上記の値で合否を判断した。 The objective is that the contrast C value is 35% or less, and the luminance difference in the F direction is less than 40% with respect to the luminance in the E direction. In the following evaluations, pass / fail was determined based on the above values.
 コントラスト35%は、輝度のムラと見えない限界値である。輝度差が40%未満というのは、商品として発光外観の許容できるレベルである。 The contrast of 35% is a limit value that cannot be seen as uneven brightness. A luminance difference of less than 40% is an acceptable level of the appearance of light emission as a product.
 <凸部の粗さの評価>
 (実施例1~4)
 図4Aは、光学部品1の光学パターン面の拡大断面図である。照明装置のX軸に垂直な断面図である。凸部の波の進行方向の断面図である。光学部品1は厚みTを有する。ここで厚みTは、凸部の高さを含んでいない。以下の実施例でも同じである。
<Evaluation of roughness of convex part>
(Examples 1 to 4)
FIG. 4A is an enlarged cross-sectional view of the optical pattern surface of the optical component 1. It is sectional drawing perpendicular | vertical to the X-axis of an illuminating device. It is sectional drawing of the advancing direction of the wave of a convex part. The optical component 1 has a thickness T. Here, the thickness T does not include the height of the convex portion. The same applies to the following embodiments.
 図4Bは、光学部品1の外側光学面1Bの拡大断面図である。図4Bに示すように、凸部はピッチPBで、先端がR状(円弧)である。円の一部分(R部)と、その端部で接線として伸びる直線部(H部)とからなる。この接線方向に伸びる線の2直線のなす角度が、角度∠TBとなっている。凸部の高さHBを有する。つまり、凸部は、R部分と直線部(接線)とからなる。以下、図4Bの凸部の形状をRH形状とする。ここで高さを凸部の平均高さである。 4B is an enlarged cross-sectional view of the outer optical surface 1B of the optical component 1. FIG. As shown to FIG. 4B, a convex part is the pitch PB and the front-end | tip is R shape (arc). It consists of a part of a circle (R part) and a straight line part (H part) extending as a tangent at its end. An angle formed by two straight lines extending in the tangential direction is an angle ∠TB. It has the height HB of the convex part. That is, a convex part consists of R part and a linear part (tangent). Hereinafter, the shape of the convex part of FIG. Here, the height is the average height of the protrusions.
 図4Cは、内側光学面1Aの拡大断面図である。R状(円弧)の断面をもつ面が、ピッチPAで連続して凸部形状でつらなって並んでいる。凸部形状は高さHAである。つまり、直線部がなく円の一部分のR部分のみからなる。端部での接線方向に伸びる直線のなす角度が、角度∠TAとなっている。以下、R形状とする。R形状とは、円の一部の形状であることを意味する。 FIG. 4C is an enlarged cross-sectional view of the inner optical surface 1A. Surfaces having an R-shaped (arc) cross section are continuously arranged in a convex shape at a pitch PA. The convex shape is the height HA. That is, there is no straight part and it consists only of the R part of a part of the circle. An angle formed by a straight line extending in the tangential direction at the end is an angle ∠TA. Hereinafter, it is assumed as an R shape. The R shape means a shape of a part of a circle.
 実施例1~4、比較例1では、内側光学面1AのピッチPA、高さHA、半径Rを変えて評価をした。条件は、表1に示す。外側光学面1Bの形状は一定である。凸部の形状、評価結果を、表1に示す。 In Examples 1 to 4 and Comparative Example 1, evaluation was performed by changing the pitch PA, height HA, and radius R of the inner optical surface 1A. The conditions are shown in Table 1. The shape of the outer optical surface 1B is constant. Table 1 shows the shape of the protrusion and the evaluation results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1、2、3、4、比較例1の輝度分布を評価した結果を、図3A、図5B、図6A、図6B、図5Aに示す。 Results of evaluating the luminance distribution of Examples 1, 2, 3, 4 and Comparative Example 1 are shown in FIGS. 3A, 5B, 6A, 6B, and 5A.
 ここで、外側光学面1Bの形状と、内側光学面1Aの形状とは、相互作用はない。厚みTが、2mmであり、高さHA、高さHBが0.3mm以下のため、凸部高さに比べ、厚みが大きく、相互の影響がでない。そのため、外側光学面1Bの形状は一定にした。 Here, there is no interaction between the shape of the outer optical surface 1B and the shape of the inner optical surface 1A. Since the thickness T is 2 mm and the height HA and the height HB are 0.3 mm or less, the thickness is larger than the height of the convex portion, and there is no mutual influence. Therefore, the shape of the outer optical surface 1B is constant.
 少なくとも、外側光学面1Bと内側光学面1Aの凸部の高さの合計が、厚みTの半分以下の場合、両凸部の形状の相互作用はほとんどない。 When at least the total height of the convex portions of the outer optical surface 1B and the inner optical surface 1A is less than half of the thickness T, there is almost no interaction between the shapes of the two convex portions.
 また、ここで、ピッチPA/高さHAを考える。このPA/HAは、ピッチを高さで割っているので、凸部の粗さ、細かさを表している。数値が大きいと粗く、数値が小さいと細かい。光の均質性に大きく影響する。 Also, consider the pitch PA / height HA. In this PA / HA, the pitch is divided by the height, and thus represents the roughness and fineness of the convex portion. Larger numbers are coarser, smaller numbers are finer. It greatly affects the homogeneity of light.
 さらに、外側光学面1Bの形状と、内側光学面1Aの形状とは、光が入射するか、光を放出するかの違いであり、好ましい形状は同じである。 Furthermore, the shape of the outer optical surface 1B and the shape of the inner optical surface 1A are the difference in whether light is incident or emitted, and the preferred shape is the same.
 表1から、本結果をもとに、好ましい範囲は下記式2の範囲である。 From Table 1, the preferred range is the range of the following formula 2 based on this result.
 PA/HA <10・・・・・・・・・・・・・・・・・・・・・・(式2)
 外側光学面1Bでも同様に、
 PB/HB <10・・・・・・・・・・・・・・・・・・・・・・(式3)
 となる。
PA / HA <10 ... (Formula 2)
Similarly for the outer optical surface 1B,
PB / HB <10 .................. (Formula 3)
It becomes.
 ここで、実施例3の場合を考える。 Here, consider the case of Example 3.
 図7Aは実施例3、4の光学部品1の断面を示す図であり、図7Bは、内側光学面1Aの形状の拡大図である。図7Bでわかるように、凸部間が重ならず、平坦な部分が凸部間に位置する。しかし、評価の結果は、合格している。よって、平坦な部分があってもよい。ただし、これ以上ピッチを広げた場合、例えば、1mmのピッチであるとそのピッチで輝度ムラと認識されることになる。 FIG. 7A is a diagram showing a cross section of the optical component 1 of Examples 3 and 4, and FIG. 7B is an enlarged view of the shape of the inner optical surface 1A. As can be seen in FIG. 7B, the convex portions do not overlap, and a flat portion is located between the convex portions. However, the result of evaluation has passed. Therefore, there may be a flat portion. However, when the pitch is further widened, for example, when the pitch is 1 mm, the luminance unevenness is recognized at that pitch.
 つまり、この場合、ピッチPAが、1.00mmで、R状凸部の円の半径が0.20mm、直径が0.40mmである。よって、光学部品1表面で、凸部が占める割合は、0.40/1.00から、ピッチPAの40%より大きい必要がある。好ましくは、実施例4の場合である。つまり、実施例4では、ピッチ0.80mm、R状凸部の円の直径が、0.40mmであるので、0.40/1.00から、凸部は、光学部品1表面で、ピッチPAの50%以上占める必要がある。 That is, in this case, the pitch PA is 1.00 mm, the radius of the circle of the R-shaped convex portion is 0.20 mm, and the diameter is 0.40 mm. Therefore, the ratio of the convex portion on the surface of the optical component 1 needs to be larger than 40% of the pitch PA from 0.40 / 1.00. The case of Example 4 is preferable. That is, in Example 4, since the pitch is 0.80 mm and the diameter of the circle of the R-shaped convex portion is 0.40 mm, the convex portion is the pitch PA on the surface of the optical component 1 from 0.40 / 1.00. It is necessary to occupy 50% or more.
 <凸部の頂部角度の評価>
 (実施例1、5,6)
 次に、外側光学面1Bの角度∠TB(図4B)を評価した。表2に示すように、実施例1、5、6、比較例2で、外側光学面1Bの角度∠TBを変えて評価をした。内側光学面1Aは、同じ形状とした。実施例1、5、6と比較例2とを評価した結果を表2に示す。実施例1、5、6、比較例2の評価した輝度分布の結果を、図3A、図8A、図9、図8Bにそれぞれ示す。
<Evaluation of top angle of convex part>
(Examples 1, 5 and 6)
Next, the angle ∠TB (FIG. 4B) of the outer optical surface 1B was evaluated. As shown in Table 2, in Examples 1, 5, 6 and Comparative Example 2, the evaluation was performed by changing the angle ∠TB of the outer optical surface 1B. The inner optical surface 1A has the same shape. The results of evaluating Examples 1, 5, 6 and Comparative Example 2 are shown in Table 2. The results of the luminance distribution evaluated in Examples 1, 5, 6 and Comparative Example 2 are shown in FIGS. 3A, 8A, 9, and 8B, respectively.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の結果から、外側光学面1Bの角度∠TBの好ましい角度は、式4である。 From the results of Table 2, the preferred angle of the angle ∠TB of the outer optical surface 1B is Equation 4.
 35°≦∠TB≦120°・・・・(式4)
 上記は、外側光学面1Bであったが、内側光学面1A面も同様の結果と考えることができる。
35 ° ≦ ∠TB ≦ 120 ° (Equation 4)
The above is the outer optical surface 1B, but the inner optical surface 1A surface can be considered to have the same result.
 ここで、∠TBの角度が35°の状態を考える。図4Bを模式化した図10で説明する。角∠TBの角度が35°、ピッチ(PB)0.5mmでの三角状プリズムの凸部の高さHB=0.25/TAN(17.5°)=0.793となる。凸部の高さHBは、0.793mmとなり、このとき、PB/HB=0.5/0.793=0.63となり、この結果から、PB/HBの値の小さい領域の好ましい推定範囲は、以下の式5となる。 Suppose that the angle of ∠TB is 35 °. FIG. 10 schematically showing FIG. 4B will be described. The height HB = 0.25 / TAN (17.5 °) = 0.793 of the convex portion of the triangular prism when the angle ∠TB is 35 ° and the pitch (PB) is 0.5 mm. The height HB of the convex portion is 0.793 mm, and at this time, PB / HB = 0.5 / 0.793 = 0.63. From this result, the preferable estimation range of the region where the value of PB / HB is small is The following formula 5 is obtained.
 0.63≦ PB/HB・・・・・・・・・・・・・・・・・・・(式5)
 上記の式3と合わせると、式6となる。
0.63 ≤ PB / HB (5)
When combined with Equation 3 above, Equation 6 is obtained.
 0.63≦PB/HB<10・・・・・・・・・・・・・・・・・(式6) 0.63 ≦ PB / HB <10 (Equation 6)
  <凸部がR―R形状時の評価>
  (実施例7,8)
 実施例7,8は、実施例1の図4A~図4Cに示す光学部品1の形状が異なる実施の形態である。内側光学面1Aと外側光学面1Bの両方の凸部とも、R状パターンの場合である。
<Evaluation when convex part is RR shape>
(Examples 7 and 8)
Examples 7 and 8 are embodiments in which the shape of the optical component 1 shown in FIGS. 4A to 4C of Example 1 is different. Both the convex portions of the inner optical surface 1A and the outer optical surface 1B are R-shaped patterns.
 図11A~図11Cは、実施例7のもの、図13A~図13Cは、実施例8のものである。 11A to 11C are those of the seventh embodiment, and FIGS. 13A to 13C are those of the eighth embodiment.
 図11A、図13Aは、光学部品1の光学パターン面の断面図である。図11B、図13Bは、光学部品1の外側光学面1Bの拡大断面図である。図11C、図13Cは、内側光学面1Aの拡大断面図である。内側光学面1A、外側光学面1Bともに、凸部はR形状である。実施例7、8、比較例3は、上記形状を有し、外側光学面1Bの凸部形状を変化させ、評価した。形状条件、評価結果を表3に示す。実施例7、8、比較例3のそれぞれの輝度分布を図12A,図14、図12Bにそれぞれ示す。 11A and 13A are cross-sectional views of the optical pattern surface of the optical component 1. 11B and 13B are enlarged sectional views of the outer optical surface 1B of the optical component 1. FIG. 11C and 13C are enlarged cross-sectional views of the inner optical surface 1A. The convex portions of both the inner optical surface 1A and the outer optical surface 1B have an R shape. Examples 7 and 8 and Comparative Example 3 have the above shapes, and were evaluated by changing the shape of the convex portion of the outer optical surface 1B. Table 3 shows the shape conditions and the evaluation results. The luminance distributions of Examples 7 and 8 and Comparative Example 3 are shown in FIGS. 12A, 14 and 12B, respectively.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 比較例3の時が、良い範囲の限界であるため、PB/HBの好ましい領域は、PB/HB<7.49となる。 Since the time of Comparative Example 3 is the limit of the good range, the preferable region of PB / HB is PB / HB <7.49.
 ここで、比較例3では、E方向のC値が37.58%であり、基準の35%に近く、比較例3の
PB/HB=7.49の非常に近傍まで合格すると推定できる。よって、
 PB/HB<7.49・・・・・・・・・(式7)
 (式6)と合わせると、
 0.63≦PB/HB<7.49・・・・・・・・・・・・・(式8)
となる。同様に、0.63≦PA/HA<7.49・・・・・・(式9)
 となる。
Here, in Comparative Example 3, the C value in the E direction is 37.58%, which is close to 35% of the reference, and can be estimated to pass to the very vicinity of PB / HB = 7.49 of Comparative Example 3. Therefore,
PB / HB <7.49 (7)
When combined with (Equation 6),
0.63 ≦ PB / HB <7.49 (Equation 8)
It becomes. Similarly, 0.63 ≦ PA / HA <7.49 (Equation 9)
It becomes.
 なお、図13Bにおいて、凸部間に平坦部分が存在するが、図7Bの場合と同様、平坦部分が大きくなく、許される。 In FIG. 13B, there is a flat portion between the convex portions, but the flat portion is not large and allowed as in the case of FIG. 7B.
  <凸部が三角形、RH形状時の評価>
 (実施例9)
 実施例9は、実施例1の図4A~図4Cに示す光学部品1の異なる実施の形態である。図15A~図15Cを用いて説明する。その凸部が、三角形、RH形状である。
<Evaluation when the convex part is triangular and RH shape>
Example 9
Example 9 is a different embodiment of the optical component 1 shown in FIGS. 4A to 4C of Example 1. FIG. This will be described with reference to FIGS. 15A to 15C. The convex part is a triangle and RH shape.
 図15Aに、光学部品1の断面図を示す。図15Bは、外側光学面1Bの拡大断面図、図15Cは、内側光学面1Aの拡大断面図である。 FIG. 15A shows a cross-sectional view of the optical component 1. FIG. 15B is an enlarged sectional view of the outer optical surface 1B, and FIG. 15C is an enlarged sectional view of the inner optical surface 1A.
 内側光学面1Aの凸部形状は、図15Cに示すように、三角形状の頂点の角度∠TAの断面を持つ凸部形状で、ピッチPA、凸部高さがHAである。 As shown in FIG. 15C, the convex shape of the inner optical surface 1A is a convex shape having a triangular apex angle ∠TA, a pitch PA, and a convex portion height HA.
 外側光学面1Bの凸部形状は、図15Bに示すように、ピッチPBで、R状の断面をもち、凸部の高さがHB、角度∠TBである。表4に示す形状条件で、評価した。その結果を図16と表4に示す。光学部品1として許容できるレベルである。その他、形状は、角度∠TAが90°、角度∠TBが40°、Rが0.2mmであった。 As shown in FIG. 15B, the convex shape of the outer optical surface 1B has a pitch PB, an R-shaped cross section, the height of the convex portion is HB, and the angle ∠TB. Evaluation was performed under the shape conditions shown in Table 4. The results are shown in FIG. This is an acceptable level for the optical component 1. In addition, as for the shape, the angle ∠TA was 90 °, the angle ∠TB was 40 °, and R was 0.2 mm.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
  <凸部が台形、R形状時の評価>
 (実施例10)
 実施例10は、実施例1の図4A~図4Cに示す光学部品1の異なる実施の形態である。実施例10について、図17A~図17Cを用いて説明する。
<Evaluation when the convex part is trapezoidal and R-shaped>
(Example 10)
Example 10 is a different embodiment of the optical component 1 shown in FIGS. 4A to 4C of Example 1. FIG. The tenth embodiment will be described with reference to FIGS. 17A to 17C.
 図17Aは、光学部品1の光学パターン面の断面図である。図17Bは、光学部品1の外側光学面1Bの拡大断面図である。図17Cは、内側光学面1Aの拡大断面図である。 FIG. 17A is a cross-sectional view of the optical pattern surface of the optical component 1. FIG. 17B is an enlarged cross-sectional view of the outer optical surface 1B of the optical component 1. FIG. 17C is an enlarged cross-sectional view of the inner optical surface 1A.
 内側光学面1Aには、図17Cに示すように、三角形状の頂点の角度∠TAである。その先端にフラット面をもつ断面形状の凸部形状(D形状、台形)が、ピッチPAである。凸部高さがHAである内側光学面1Aと、その内側光学面1Aの裏面側に、ピッチPBで、R状の断面をもち、凸部の高さがHBである外側光学面1Bをもった壁に形成されている。 The inner optical surface 1A has a triangular apex angle ∠TA as shown in FIG. 17C. The convex shape (D shape, trapezoid) having a flat surface at the tip is a pitch PA. An inner optical surface 1A having a convex portion height HA and an outer optical surface 1B having an R-shaped cross section with a pitch PB and a convex portion height HB on the back side of the inner optical surface 1A. Formed on the wall.
 実施例10の凸部形状の寸法を表4に示す。その他、三角形状の頂点の角度∠TAが90°、フラット部長さが、0.05mm、先端Rが0.20mm、角度∠TBが40°である。 Table 4 shows the dimensions of the convex shape of Example 10. In addition, the angle ∠TA of the triangular apex is 90 °, the flat portion length is 0.05 mm, the tip R is 0.20 mm, and the angle ∠TB is 40 °.
 この場合、内側光学面1Aは、台形形状の凸部が外へ飛び出しており、凸部間は直線(平面)である。この輝度分布を評価した結果を、図18に示す。表4から、光学部品として許容できるレベルである。 In this case, the inner optical surface 1A has a trapezoidal convex portion protruding outward, and a straight line (plane) between the convex portions. The result of evaluating this luminance distribution is shown in FIG. From Table 4, it is a level acceptable as an optical component.
 <凸部が三角形、R形状時の評価>
 (実施例11)
 実施例11は、実施例1の図4A~図4Cに示す光学部品1の異なる実施の形態である。図19A~Cを用いて説明する。
<Evaluation when the convex part is triangular and rounded>
(Example 11)
Example 11 is a different embodiment of the optical component 1 shown in FIGS. 4A to 4C of Example 1. FIG. This will be described with reference to FIGS. 19A to 19C.
 図19Aは、光学部品1の光学パターン面の断面図である。図19Bは、光学部品1の外側光学面1Bの拡大断面図である。図19Cは、内側光学面1Aの拡大断面図である。 FIG. 19A is a cross-sectional view of the optical pattern surface of the optical component 1. FIG. 19B is an enlarged cross-sectional view of the outer optical surface 1B of the optical component 1. FIG. 19C is an enlarged cross-sectional view of the inner optical surface 1A.
 光学部品1の内側光学面1Aの凸部は、図19Cに示すように、R形状の断面をもち、ピッチPAで、凸部形状の高さがHAである。光学部品1の外側光学面1Bの凸部は、図19Bで示すように、三角形状の頂点の角度∠TBの断面を持つ凸部形状(T形状)で、ピッチPBで、凸部高さがHBである。 The convex part of the inner optical surface 1A of the optical component 1 has an R-shaped cross section as shown in FIG. 19C, has a pitch PA, and the height of the convex part is HA. As shown in FIG. 19B, the convex portion of the outer optical surface 1B of the optical component 1 is a convex shape (T shape) having a triangular apex angle ∠TB cross section, a pitch PB, and a convex portion height. HB.
 この実施例において、形状の詳細を表4に示す。その他、内側光学面1Aの凸部で、R0.2mmであり、外側光学面1Bの凸部の三角形状の頂点の角度∠TBが90°である。 The details of the shape in this example are shown in Table 4. In addition, the convex portion of the inner optical surface 1A is R0.2 mm, and the angle 三角形 TB of the triangular apex of the convex portion of the outer optical surface 1B is 90 °.
 この光学シミュレーションした結果を図20と表4に示す。本発明の光学部品1として許容できるレベルである。なお、表4以外の条件は、Rが、0.2mm、角度∠TBが90°であった。 The results of this optical simulation are shown in FIG. This is an acceptable level for the optical component 1 of the present invention. The conditions other than those in Table 4 were as follows: R was 0.2 mm and angle ∠TB was 90 °.
 <凸部が台形、R形状時の評価>
 (実施例12)
 実施例12は、実施例1の図4A~図4Cに示す光学部品1の異なる実施の形態である。実施例12について、図21A~図21Cを用いて説明する。
<Evaluation when the convex part is trapezoidal and R-shaped>
Example 12
Example 12 is a different embodiment of the optical component 1 shown in FIGS. 4A to 4C of Example 1. FIG. Example 12 will be described with reference to FIGS. 21A to 21C.
 図21Aは、光学部品1の光学パターン面の断面図である。図21Bは、光学部品1の外側光学面1Bの拡大断面図である。図21Cは、内側光学面1Aの拡大断面図である。 FIG. 21A is a cross-sectional view of the optical pattern surface of the optical component 1. FIG. 21B is an enlarged cross-sectional view of the outer optical surface 1B of the optical component 1. FIG. 21C is an enlarged cross-sectional view of the inner optical surface 1A.
 内側光学面1Aの凸部は、図21Cに示すように、R状であり、ピッチPAで、凸部形状の高さがHAである。 The convex part of the inner optical surface 1A has an R shape as shown in FIG. 21C, has a pitch PA, and the height of the convex part shape is HA.
 外側光学面1Bの凸部は、図21Bに示すように、三角形状で、頂点の角度∠TBの断面で、かつ、頂点に平坦部を持つ凸部形状(台形形状、D形状)である。ピッチPBで、凸部高さがHBである。 As shown in FIG. 21B, the convex portion of the outer optical surface 1B has a triangular shape, a cross section with a vertex angle ∠TB, and a convex shape (trapezoidal shape, D shape) having a flat portion at the vertex. At the pitch PB, the height of the convex portion is HB.
 この実施例において、形状の詳細を表4に示す。その他、内側光学面1Aの凸部で、R0.2mmであり、外側光学面1Bの凸部が、三角形状の頂点の角度∠TBが90°で、台形の頂上の辺が0.05mmである。 The details of the shape in this example are shown in Table 4. In addition, the convex portion of the inner optical surface 1A is R0.2 mm, the convex portion of the outer optical surface 1B has a triangular apex angle ∠TB of 90 °, and the trapezoidal apex side is 0.05 mm. .
 この場合、外側光学面1Bは、台形形状の凸部が外へ飛び出しており、凸部間は直線(平面)である。輝度分布の結果を図22、評価結果を表4に示す。本発明の光学部品として許容できるレベルである。 In this case, the outer optical surface 1B has a trapezoidal convex portion protruding outward, and the convex portion is a straight line (plane). FIG. 22 shows the result of the luminance distribution, and Table 4 shows the evaluation result. This is an acceptable level for the optical component of the present invention.
 (実施例9-12のまとめ)
 表4に、実施例1-12の凸部形状とその結果をまとめた。実施例1-12では、凸部の形状を変化させた。実施例1-12でも、特性は満たしている。実施例9-12では、実施例1-8の結果の式8、9を満たしている。よって、式8、9は、凸部形状に関わらず適用できることがわかる。
<光学部品が平面の場合>
 (実施の形態2)
 実施例13を、図23で説明する。図23に示すように、光学部品1とLED2と基板3からなっており、LED2が基板3に直線状にピッチPL12mmで配置されている。実施の形態1と異なるのは、光学部品1が平面であることである。
(Summary of Examples 9-12)
Table 4 summarizes the convex shape and results of Example 1-12. In Example 1-12, the shape of the convex portion was changed. Also in Example 1-12, the characteristics are satisfied. In Example 9-12, Expressions 8 and 9 of the result of Example 1-8 are satisfied. Therefore, it can be seen that Expressions 8 and 9 can be applied regardless of the convex shape.
<When optical parts are flat>
(Embodiment 2)
Example 13 will be described with reference to FIG. As shown in FIG. 23, the optical component 1, the LED 2, and the substrate 3 are arranged, and the LED 2 is linearly arranged on the substrate 3 with a pitch PL of 12 mm. The difference from the first embodiment is that the optical component 1 is a flat surface.
 内側光学面1AがLED2と対向する面に形成されており、内側光学面1Aには、図4Cに示す実施例1の光学面が形成されている。外側光学面1Bには、図4Bに示す実施例1の光学面が形成されている。 The inner optical surface 1A is formed on the surface facing the LED 2, and the optical surface of Example 1 shown in FIG. 4C is formed on the inner optical surface 1A. The optical surface of Example 1 shown in FIG. 4B is formed on the outer optical surface 1B.
 光学部品1は、厚さ2mmの平板状であり、LED2から、距離D10mmのところに位置する。実施例13の平板状の光学部品1においても、内側光学面1A、外側光学面1Bの凸部の好ましい範囲は上記に示した条件である。 The optical component 1 has a flat plate shape with a thickness of 2 mm, and is located at a distance D10 mm from the LED 2. Also in the flat optical component 1 of Example 13, the preferable ranges of the convex portions of the inner optical surface 1A and the outer optical surface 1B are the conditions described above.
 この実施例13の平板状においても、上記で示した凸部の形状の範囲なら、同様に、面状に均一に発光することが可能となる。 Also in the flat plate shape of Example 13, similarly, it is possible to emit light uniformly in a planar shape within the range of the shape of the convex portion shown above.
 <LED2が多数列の場合>
 (実施の形態3)
 実施例14について、図24で説明する。図24に示すように、本発明の照明装置は、光学部品1とLED2と基板3からなっている。実施の形態1との違いは、光学部品1が平面状であること、LED2が、基板3に、複数例、配置されていることである。
<When LED2 is in multiple rows>
(Embodiment 3)
Example 14 will be described with reference to FIG. As shown in FIG. 24, the illumination device of the present invention includes an optical component 1, an LED 2, and a substrate 3. The difference from the first embodiment is that the optical component 1 is planar, and a plurality of examples of the LEDs 2 are arranged on the substrate 3.
 このときの光学部品1には、上記と同様の内側光学面1A、外側光学面1Bの凸部が形成されている。 The optical component 1 at this time is formed with convex portions of the inner optical surface 1A and the outer optical surface 1B similar to the above.
 光学部品1は、厚さT2mmで、平板状に、LED2の発光範囲を覆うように、LED2から、距離D10mmを持って形成されている。LED2のピッチは、12mmである。 The optical component 1 has a thickness T2 mm and is formed in a flat plate shape with a distance D10 mm from the LED 2 so as to cover the light emission range of the LED 2. The pitch of the LEDs 2 is 12 mm.
 この実施例14の平板状においても、上記で示した凸部の形状の範囲なら、同様に、面状に均一に発光することが可能である。 Also in the flat plate shape of Example 14, it is possible to emit light uniformly in a planar shape within the range of the shape of the convex portion shown above.
 以上のように本発明によれば、LED2のピッチが離れて並んでいても、ひとつの線状に発光することができ、正面方向(E方向)、斜め方向(F方向)からみても、ムラのない線状の光源となる。または、面状の光源が実現できる。 As described above, according to the present invention, even if the pitches of the LEDs 2 are arranged apart from each other, light can be emitted in one line shape, and unevenness can be seen from the front direction (E direction) and the oblique direction (F direction). It becomes a linear light source without any. Alternatively, a planar light source can be realized.
 また、この光学パターンは無数の像をつくる構成になっているため、光学部品を通して見る物体は、曇りガラスを通して見えるような形で見え、内臓物の見えないカバーとしての機能もはたす。 In addition, since this optical pattern is configured to create an infinite number of images, an object viewed through the optical component appears as if it is visible through the frosted glass, and also functions as a cover in which the internal organs cannot be seen.
 そして、曇りガラス状に見えても、光学効率は83%以上と高い透過率を維持していることを確認している。また、この光学部品の機能として、指向性の強いLED2の光りによる無数の像をつくることで、多重影も発生することはない。この光学部品によって、発光状態のムラのない、高効率の光源を、少ないLED2の数で実現することが可能となり、あらゆる照明装置で省エネルギー化の実現が可能となる。 And even if it looks like a frosted glass, it has been confirmed that the optical efficiency maintains a high transmittance of 83% or more. Further, as a function of this optical component, multiple shadows are not generated by creating innumerable images by the light of the highly directional LED 2. With this optical component, it is possible to realize a high-efficiency light source without unevenness in the light emission state with a small number of LEDs 2, and energy saving can be realized in all lighting devices.
 各種照明装置は、デイスプレイ、看板等に用いられるバックライト等にもちいることができる。 Various lighting devices can be used for backlights used for displays, signboards, and the like.
 1  光学部品
 1A  内側光学面
 1B  外側光学面
 2,37,39  LED
 3  基板
 20  照明装置本体
 21  フレネルレンズ
 31  プリズムシート
 32  本体部
 33  光拡散層
 34  プリズム層
 36  凸部
DESCRIPTION OF SYMBOLS 1 Optical component 1A Inner optical surface 1B Outer optical surface 2,37,39 LED
3 Substrate 20 Lighting Device Body 21 Fresnel Lens 31 Prism Sheet 32 Body Part 33 Light Diffusing Layer 34 Prism Layer 36 Convex Part

Claims (13)

  1. 平面基板上に一定の間隔で配列された複数のLEDと、
    前記複数のLED上面を覆う光学部材とからなり、
    前記光学部材は、
    前記複数のLEDに面する内面に凸部を有し、前記内面と対向する外面にも凸部を有することを特徴とする照明装置。
    A plurality of LEDs arranged at regular intervals on a flat substrate;
    An optical member covering the upper surface of the plurality of LEDs,
    The optical member is
    An illumination device comprising a convex portion on an inner surface facing the plurality of LEDs and a convex portion on an outer surface facing the inner surface.
  2. 前記内面の凸部と前記外面の凸部とは、波状の凸部である請求項1記載の照明装置。 The lighting device according to claim 1, wherein the convex portion on the inner surface and the convex portion on the outer surface are wavy convex portions.
  3. 前記波状の凸部の波の進行方向が、前記LEDの配列方向と平行である請求項2記載の照明装置。 The lighting device according to claim 2, wherein a wave traveling direction of the wavy convex portion is parallel to an arrangement direction of the LEDs.
  4. 前記光学部材は、半円筒形状である請求項1記載の照明装置。 The lighting device according to claim 1, wherein the optical member has a semi-cylindrical shape.
  5. 前記内面の凸部は、前記波の進行方向の断面が円弧であり、前記外面の前記凸部は、前記波の進行方向断面が円弧と直線とを合わせた形状である請求項2記載の照明装置。 3. The illumination according to claim 2, wherein the convex portion of the inner surface has a circular cross section in the traveling direction of the wave, and the convex portion of the outer surface has a shape in which the cross section in the traveling direction of the wave is an arc and a straight line. apparatus.
  6. 前記内面の前記凸部は、前記波の進行方向断面が円弧であり、前記外面の前記凸部は、前記波の進行方向断面が円弧、または、台形である請求項2記載の照明装置。 The lighting device according to claim 2, wherein the convex portion of the inner surface has a circular cross section in the wave traveling direction, and the convex portion of the outer surface has a circular cross section in the traveling direction of the wave or a trapezoid.
  7. 前記外面の前記凸部は、前記波の進行方向断面が円弧であり、前記内面の前記凸部は、前記波の進行方向断面が三角形、または、台形である請求項2記載の照明装置。 The lighting device according to claim 2, wherein the convex portion on the outer surface has a circular cross section in the wave traveling direction, and the convex portion on the inner surface has a triangular or trapezoidal cross section in the wave traveling direction.
  8. 前記内面の前記凸部は、前記波の進行方向断面が三角形状であり、前記外面の前記凸部は、前記波の進行方向断面が円弧と直線とを合わせた形状である請求項2記載の照明装置。 The convex portion of the inner surface has a triangular cross section in the wave traveling direction, and the convex portion of the outer surface has a shape in which the cross section in the wave traveling direction is a combination of an arc and a straight line. Lighting device.
  9. 前記内面の前記凸部のピッチPAと前記凸部の高さHAとの関係が次式に従う範囲である請求項1から8のいずれか1項に記載の照明装置。
        0.63≦PA/HA<7.49
    The lighting device according to any one of claims 1 to 8, wherein a relationship between a pitch PA of the protrusions on the inner surface and a height HA of the protrusions is in a range according to the following expression.
    0.63 ≦ PA / HA <7.49
  10. 前記外面の前記凸部のピッチPBと前記凸部の高さHBとの関係が次式に従う範囲である請求項1から8のいずれか1項記載の照明装置。
        0.63≦PB/HB<7.49
    The lighting device according to any one of claims 1 to 8, wherein a relationship between a pitch PB of the protrusions on the outer surface and a height HB of the protrusions is in a range according to the following equation.
    0.63 ≦ PB / HB <7.49
  11. 前記円弧と直線とを合わせた形状は、先端の円弧と前記円弧に接する2つの直線とからなることを特徴とする請求項5または8に記載の照明装置。 The lighting device according to claim 5 or 8, wherein a shape obtained by combining the arc and the straight line includes a circular arc at a tip and two straight lines in contact with the arc.
  12. 前記2つの直線間の成す角度が35°以上、120°以下であることを特徴とする請求項11記載の照明装置。 The lighting device according to claim 11, wherein an angle formed between the two straight lines is 35 ° or more and 120 ° or less.
  13. 前記LEDの間隔をPL、前記内面と前記LEDとの距離Dとした場合、次式で表されることを特徴とする請求項1から8のいずれか1項に記載の照明装置。
            0.29≦ D/PL
    9. The illumination device according to claim 1, wherein the distance between the LEDs is PL, and the distance D between the inner surface and the LED is represented by the following formula.
    0.29 ≦ D / PL
PCT/JP2013/001045 2012-02-29 2013-02-25 Lighting device WO2013128869A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014502017A JP6028230B2 (en) 2012-02-29 2013-02-25 Lighting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012042957 2012-02-29
JP2012-042957 2012-02-29

Publications (1)

Publication Number Publication Date
WO2013128869A1 true WO2013128869A1 (en) 2013-09-06

Family

ID=49082082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001045 WO2013128869A1 (en) 2012-02-29 2013-02-25 Lighting device

Country Status (2)

Country Link
JP (1) JP6028230B2 (en)
WO (1) WO2013128869A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008198497A (en) * 2007-02-13 2008-08-28 Kondo Kogei:Kk Lighting unit and lighting system
JP2009086208A (en) * 2007-09-28 2009-04-23 Toppan Printing Co Ltd Optical sheet, backlight unit, and display device
WO2011087017A1 (en) * 2010-01-16 2011-07-21 Chen Liang-Cheng Led lamp

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101196582B (en) * 2006-12-08 2011-11-16 鸿富锦精密工业(深圳)有限公司 Optical plate
JP2009103762A (en) * 2007-10-19 2009-05-14 Hitachi Maxell Ltd Lens sheet used for backlight, backlight using the same and liquid crystal display device
TW200947065A (en) * 2008-01-30 2009-11-16 Zeon Corp Direct backlighting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008198497A (en) * 2007-02-13 2008-08-28 Kondo Kogei:Kk Lighting unit and lighting system
JP2009086208A (en) * 2007-09-28 2009-04-23 Toppan Printing Co Ltd Optical sheet, backlight unit, and display device
WO2011087017A1 (en) * 2010-01-16 2011-07-21 Chen Liang-Cheng Led lamp

Also Published As

Publication number Publication date
JP6028230B2 (en) 2016-11-16
JPWO2013128869A1 (en) 2015-07-30

Similar Documents

Publication Publication Date Title
US20090294786A1 (en) Light emitting diode device
US20120033420A1 (en) Led lamp having broad and uniform light distribution
US20120102798A1 (en) Lighting device
JP5254138B2 (en) LED lighting equipment
JP5140745B2 (en) Illumination device and light guide plate
JP2015090763A (en) Lighting device
JP2012114081A (en) Glare-reduced lighting system
WO2012141098A1 (en) Lighting device and display device
JP2015046357A (en) Lighting device
JP2010123344A (en) Luminaire
JP2007294252A (en) Light emitting panel, luminaire, and electric illumination panel
JP6028230B2 (en) Lighting device
US20130272024A1 (en) Diffusion structure and lighting device with such diffusion structure
JP2011233308A (en) Lighting system
JP2004192909A (en) Light guide plate, surface light source device using it, and display device using it
JP4840170B2 (en) Surface light source device, transmissive display device
US20090122540A1 (en) Lighting device
JP2012156123A (en) Lighting device
KR100980496B1 (en) Combination sheet for improving hot spot and back light unit using the same
JP2010129507A (en) Lighting apparatus
JP2008242268A (en) Optical sheet and back light unit using the same
JP2015141766A (en) illumination device and Fresnel lens sheet
JP6452073B2 (en) LIGHT EMITTING DEVICE AND APPARATUS HAVING LIGHT EMITTING DEVICE
JP3566399B2 (en) Surface illumination device and method for increasing brightness of the surface illumination device
CN216868235U (en) Lamp body capable of emitting light uniformly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13754069

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014502017

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13754069

Country of ref document: EP

Kind code of ref document: A1