WO2013128757A1 - Battery-state control method and device - Google Patents

Battery-state control method and device Download PDF

Info

Publication number
WO2013128757A1
WO2013128757A1 PCT/JP2012/082198 JP2012082198W WO2013128757A1 WO 2013128757 A1 WO2013128757 A1 WO 2013128757A1 JP 2012082198 W JP2012082198 W JP 2012082198W WO 2013128757 A1 WO2013128757 A1 WO 2013128757A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
ccv
soc
ocv
upper limit
Prior art date
Application number
PCT/JP2012/082198
Other languages
French (fr)
Japanese (ja)
Inventor
田中 克典
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2013128757A1 publication Critical patent/WO2013128757A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries

Definitions

  • the present invention relates to a battery state control method and apparatus for controlling battery use.
  • a secondary battery (hereinafter simply referred to as a battery) is used as a drive power source for a vehicle driving force motor.
  • the battery is charged by the generated power when the electric motor generates regenerative power or the generated power of the generator that generates power as the engine rotates.
  • the remaining capacity (SOC: State ⁇ of Charge) with respect to the full charge of the battery is estimated in order to prevent the battery from being severely used so as to cause deterioration of the battery, and based on the estimated SOC.
  • the battery state is controlled. Specifically, based on the estimated SOC, output restriction of an electric motor that obtains output from the battery, generation of a battery charge request or charge / discharge prohibition command, and the like are performed.
  • Patent Document 1 includes a method for estimating the SOC based on the open circuit voltage (OCV) of the battery, and an SOC based on the accumulated current value of the battery. The method of estimating is mentioned.
  • Patent Document 2 listed below includes a method of estimating the SOC of the battery based on the OCV of the battery and correcting the estimated SOC based on the integrated current value.
  • the battery state control is performed on the assumption that the estimated SOC includes an error. For example, if it is considered that the estimation error is about ⁇ 10%, it is originally intended to use the battery in the range of 0% to 100%, but in the range of about 20% to 80% in consideration of safety. I am trying to use batteries. If this safety width is increased, the range of use is further narrowed. That is, in the conventional method, the battery cannot be effectively utilized in order to avoid the occurrence of overcharge and overdischarge of the battery.
  • the present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide a battery state control method capable of more effectively utilizing the battery while avoiding the occurrence of overcharge and overdischarge of the battery. And providing an apparatus.
  • the SOC is estimated based on at least one of the battery OCV and the current integrated value, and when the SOC reaches an upper limit value or a lower limit value within a predetermined range, the OCV and the SOC are determined.
  • the pseudo SOC is estimated by using CCV instead of the OCV, and the use of the battery is controlled based on the pseudo SOC estimation.
  • the battery state control device estimates the SOC based on at least one of the battery OCV and the current integrated value, and when the SOC reaches an upper limit value or a lower limit value within a predetermined range, A control device body is provided that performs pseudo SOC estimation by using CCV instead of OCV for information indicating the relationship between the SOC and the SOC, and controls the use of the battery based on the pseudo SOC estimation. .
  • the battery state control method and apparatus of the present invention when the SOC reaches the upper limit value or the lower limit value of the predetermined range, CCV is used instead of OCV for information indicating the relationship between OCV and SOC.
  • the pseudo SOC is estimated, and the use of the battery is controlled based on the pseudo SOC estimation. Therefore, the battery can be used more effectively while avoiding the occurrence of overcharge and overdischarge of the battery.
  • FIG. 1 It is a block diagram which shows the battery state control apparatus for enforcing the battery state control method by Embodiment 1 of this invention. It is a flowchart which shows the battery state control operation which a control apparatus main body performs, when the battery of FIG. 1 is discharged. It is a flowchart which shows the battery state control operation which a control apparatus main body performs when the battery of FIG. 1 is charged.
  • FIG. 1 is a block diagram showing a battery state control apparatus for carrying out a battery state control method according to Embodiment 1 of the present invention.
  • a vehicle 1 such as a hybrid vehicle or an electric vehicle is equipped with at least one battery 10, a switching means 11, an in-vehicle device 12, and a control device main body 13.
  • the battery 10 is composed of an assembled battery in which a plurality of battery cells (for example, lithium ion batteries) are connected in series and / or in parallel.
  • the battery 10 is connected to the in-vehicle device 12 via the switching means 11.
  • the switching means 11 is constituted by a relay or the like, for example, and is opened and closed according to a control command from the control device body 13.
  • the battery 10 is electrically connected to the in-vehicle device 12 by closing the switching means 11, and the battery 10 is disconnected from the in-vehicle device 12 by opening the switching means 11.
  • the in-vehicle device 12 includes a power consuming device 12a, a power generating device 12b, and a charger 12c.
  • the power consuming device 12 a is configured by, for example, a driving motor for the vehicle 1 and consumes the power of the battery 10.
  • the power generation device 12 b is configured by, for example, a regenerative generator or an alternator that generates power during regenerative braking of the vehicle 1, and supplies power to the battery 10.
  • the charger 12 c receives AC power from an external power source 2 such as a charging stand, converts it into DC power, and supplies it to the battery 10.
  • the battery 10 is discharged according to the operation of the power consuming device 12a and charged according to the operations of the power generation device 12b and the charger 12c.
  • the operations of the power consuming device 12a, the power generating device 12b, and the charger 12c are controlled in accordance with a control command from the control device body 13.
  • the control device body 13 is constituted by, for example, a computer that operates in accordance with a predetermined program, and constitutes the battery state control device of the present embodiment. As is well known, the control device main body 13 determines the remaining capacity (SOC: State) with respect to the full charge of the battery 10 based on at least one of the open voltage (OCV: Open Circuit Voltage) (V) and the current integrated value (A). of Charge) (%) is estimated.
  • SOC State
  • OCV Open Circuit Voltage
  • A Current integrated value
  • an SOC range is set in advance so as not to be in a severe use state that causes deterioration of the battery 10.
  • the use of the battery 10 is controlled based on the SOC estimated as described above. Specifically, based on the SOC, the output of the electric motor that obtains the output from the battery, the request for charging the battery, or the generation of a charge / discharge prohibition command are performed. Such control based on the SOC estimated based on at least one of the OCV and the current integrated value is referred to as normal control.
  • the SOC range is set to about 20% to 80%. Even if it is originally desired to use the battery 10 in the range of 0% to 100%, the range is as described above in consideration of the estimation error included in the SOC based on at least one of the OCV and the current integrated value. .
  • CCV closed circuit voltage
  • the CCV When the battery 10 is discharged, since I becomes a negative value, the CCV is always smaller than the OCV. That is, if CCV is used instead of OCV for information indicating the relationship between OCV and SOC, such as a table or a function expression indicating the relationship between OCV and SOC, SOC based on CCV (hereinafter referred to as pseudo SOC and Is always lower than the SOC based on the OCV when the battery 10 is discharged.
  • pseudo SOC SOC based on CCV
  • Is always lower than the SOC based on the OCV when the battery 10 is discharged.
  • the CCV when the battery 10 is charged, since I is a positive value, the CCV is always larger than the OCV. That is, the pseudo SOC is always higher than the SOC based on the OCV when the battery 10 is charged.
  • the lower limit value at the time of discharging is set to 0% and at the time of charging. Even if the upper limit value and lower limit value are set such that the upper limit value is set to 100% so that it is within the range of use of the battery 10 that is originally intended to be used, it is always safe when converted to the SOC based on the OCV. become.
  • the control device main body 13 determines that the SOC estimated based on at least one of the OCV and the current integrated value is an upper limit value (for example, 80%, etc .; hereinafter, this upper limit value is referred to as a first upper limit value) or a lower limit value ( For example, when the lower limit value is hereinafter referred to as the first lower limit value), pseudo SOC is obtained by using CCV instead of OCV for information indicating the relationship between OCV and SOC. And the use of the battery is controlled based on this pseudo SOC estimation.
  • an upper limit value for example, 80%, etc .; hereinafter, this upper limit value is referred to as a first upper limit value
  • a lower limit value for example, when the lower limit value is hereinafter referred to as the first lower limit value
  • pseudo SOC is obtained by using CCV instead of OCV for information indicating the relationship between OCV and SOC. And the use of the battery is controlled based on this pseudo SOC estimation.
  • the operating SOC at the time of discharge falls in accordance with the discharge of the battery 10.
  • the control device body 13 starts the estimation of the pseudo SOC, and then the SOC based on the OCV is a second lower limit value (for example, 0%) that is smaller than the first lower limit value (for example, 20%).
  • the switching means 11 is opened, Discontinue use. That is, when it is determined that the pseudo SOC is not in a state larger than the second lower limit value, the control device body 13 stops using the battery 10.
  • the use of the battery 10 is stopped when the battery 10 is used beyond this state. This is because the possibility of overdischarge of the battery 10 is increased.
  • the control device body 13 determines that the CCV is greater than the lower limit voltage, the control device body 13 continues to use the battery 10. This is because it is considered that a safe value remains when converted to the SOC based on the OCV. Thereby, compared with the case where the battery 10 is used only up to the first lower limit value using the SOC based on the OCV, more energy stored in the battery can be used, and the battery can be used more effectively.
  • the first lower limit value is set to 20% or the like in consideration of the estimation error
  • the second lower limit value is set to 0% or the like that is the lower limit of the range that is originally desired to be used.
  • the lower limit voltage of the OCV estimated to be 0% based on the OCV is, for example, 3V.
  • control device body 13 determines whether or not the CCV is equal to the lower limit voltage after starting the pseudo SOC estimation and before determining whether or not the CCV is larger than the lower limit voltage. If it is determined that the CCV is equal to the lower limit voltage, it is determined whether the CCV is greater than the lower limit voltage after limiting the discharge of the battery. Limiting the discharge of the battery is to suppress the operation of the power consuming device 12a, for example, by reducing the rotational speed of the driving motor.
  • the control device body 13 opens the switching means 11 and stops using the battery 10. This is because it is considered that the battery energy can be sufficiently utilized within a range in which overdischarge does not occur.
  • the control device body 13 determines whether or not the CCV is larger than the lower limit voltage before starting the estimation of the pseudo SOC, and the CCV is lower than the lower limit voltage.
  • the state is not greater than the lower limit voltage
  • the use of the battery 10 is stopped.
  • the battery 10 since the battery 10 is in a state close to overdischarge, it is difficult to further use the energy of the battery 10 while preventing overdischarge even if pseudo SOC estimation is performed.
  • the CCV Since the SOC is lowered during operation discharge during charging, the CCV is compared with a predetermined lower limit value. However, since the SOC is increased during charging, the CCV is compared with a predetermined upper limit value. . That is, when the battery 10 is discharged, the control device main body 13 starts a pseudo SOC estimation, and then the SOC based on the OCV has a second upper limit value (for example, 80%) greater than the first upper limit value (for example, 80%). 100%), when it is determined whether the CCV is lower than the upper limit voltage of the OCV, and when it is determined that the CCV is not lower than the upper limit voltage, the switching means 11 is opened to Stop using 10.
  • a second upper limit value for example, 80%
  • the control device body 13 stops using the battery 10 when it is determined that the pseudo SOC is not in a state smaller than the second upper limit value.
  • the CCV is not in a state smaller than the upper limit voltage (a state in which the pseudo SOC is smaller than the second upper limit value)
  • the use of the battery 10 is stopped when the battery 10 is used beyond this state. This is because the possibility of overcharging the battery 10 is increased.
  • the control device body 13 determines that the CCV is lower than the upper limit voltage, the control device body 13 continues to use the battery 10. This is because it is considered that a safe value remains when converted to the SOC based on the OCV. Thereby, compared with the case where the battery 10 is charged only to the first upper limit value using the SOC based on the OCV, the capacity of the battery 10 can be used more effectively, and the energy of the battery 10 can be used more effectively.
  • the first upper limit value is set to 80% or the like in consideration of the estimation error
  • the second upper limit value is set to 100% or the like that is the upper limit of the range to be originally used.
  • the upper limit voltage of the OCV estimated that the SOC based on the OCV is 100% is, for example, 4.1V.
  • control device body 13 determines whether or not CCV is equal to the upper limit voltage after starting pseudo SOC estimation and before determining whether or not CCV is lower than the upper limit voltage. If it is determined that the CCV is equal to the upper limit voltage, it is determined whether or not the CCV is lower than the upper limit voltage after limiting the charging of the battery.
  • Limiting the charging of the battery means, for example, suppressing the power generation by the regenerative generator or consuming the power generated by the regenerative generator by another device, or suppressing the operation of the power generating device 12b or the power consuming device 12a It is to perform power consumption.
  • the control device main body 13 opens the switching means 11 and stops using the battery 10. This is because it is considered that the battery 10 can be sufficiently charged within a range where overcharging does not occur.
  • the control device main body 13 determines whether or not the CCV is smaller than the upper limit voltage before starting the estimation of the pseudo SOC, and the CCV is the upper limit voltage. If it is determined that the state is not smaller than the upper limit voltage, it is determined again whether the CCV is lower than the upper limit voltage after limiting the charging of the battery, and it is determined again that the CCV is not lower than the upper limit voltage. In case, stop using the battery. In this case, since the battery 10 is in a state close to overcharging, it is difficult to further charge the battery 10 while preventing overcharging even if pseudo SOC estimation is performed.
  • FIG. 2 is a flowchart showing a battery state control operation performed by the control device body 13 when the battery 10 of FIG. 1 is discharged.
  • the SOC is estimated based on at least one of the OCV and the current integrated value of the battery 10, and the normal control is performed based on the estimated SOC (step S1). ).
  • normal control is continued.
  • step S3 it is determined whether CCV is greater than 3V.
  • 3V used for this determination is a lower limit voltage of the OCV estimated that the SOC based on the OCV becomes 0% (second lower limit value).
  • pseudo SOC estimation is started by using CCV instead of OCV for information indicating the relationship between OCV and SOC (step S4). ).
  • step S5 it is determined whether or not the CCV is equal to 3V. At this time, if it is determined that the CCV is not equal to 3V, it is determined whether or not the CCV is greater than 3V (step S6). If it is further determined at this determination that the CCV is greater than 3V, the use of the battery 10 is continued while the determination operations in steps S5 and S6 are repeated. That is, as long as it is determined that the CCV is greater than 3V, the use of the battery 10 is continued, and the battery 10 is overdischarged as compared with the case where the battery 10 is used only up to 20% using the SOC based on the OCV. The battery energy is used more effectively while avoiding the above.
  • step S6 If it is determined at step S6 that the CCV is not greater than 3V, the switching means 11 is opened and the battery 10 is disconnected from the in-vehicle device 12 to stop using the battery 10 (step S6). S7). Thus, the use of the battery 10 is stopped, so that the battery 10 is prevented from being overdischarged.
  • the switching means 11 When the charge / discharge state of the battery 10 is switched after the use of the battery 10 is stopped (when charging of the battery 10 is started), the switching means 11 is closed and the battery 10 is It is electrically connected to the power generation device 12b.
  • step S5 If it is determined at step S5 that the CCV is equal to 3V, the operation of the power consuming device 12a is suppressed, thereby limiting the discharge of the battery 10 (step S8). Is determined to be greater than 3V (step S6). As described above, when it is determined that the CCV is equal to 3V, it is determined whether or not the CCV is greater than 3V after the discharge of the battery 10 is limited. The battery energy can be utilized more.
  • step S3 determines whether the CCV is larger than 3V. If it is determined again that the CCV is not greater than 3V at the time of this determination, the switching means 11 is opened and the battery 10 is disconnected from the in-vehicle device 12, thereby stopping the use of the battery 10 (step S7). ). The reason why the use of the battery 10 is stopped in this way is that it is difficult to use the battery 10 any more even if the estimation of the pseudo SOC is started.
  • step S4 if a positive determination is made at the time of determination in step S10, pseudo SOC estimation is started (step S4), and the above-described determinations in steps S5 and S6 are performed. This is because, when the discharge of the battery 10 is restricted in this way and the CCV becomes larger than 3V, the battery 10 can be used more effectively by estimating the pseudo SOC.
  • FIG. 3 is a flowchart showing a battery state control operation performed by the control device body 13 when the battery 10 of FIG. 1 is charged. Note that the same operations as those in discharging shown in FIG. 2 will be described using the reference numerals used in FIG.
  • the SOC is estimated based on at least one of the OCV and the current integrated value of the battery 10, and normal control is performed based on the estimated SOC (step S1). ).
  • the CCV is 4.1 V (the OCV upper limit voltage estimated that the SOC based on the OCV is 100% (second upper limit value)). It is determined whether it is smaller than (step S21). 4.1 V used for this determination is the upper limit voltage of the OCV estimated that the SOC based on the OCV becomes 100% (second upper limit value). At this time, if it is determined that CCV is smaller than 4.1V, pseudo SOC estimation is started by using CCV instead of OCV for information indicating the relationship between OCV and SOC ( Step S4).
  • step S22 When the estimation of the pseudo SOC is started, it is determined whether or not the CCV is equal to 4.1V (step S22). At this time, if it is determined that the CCV is not equal to 4.1V, it is determined whether or not the CCV is smaller than 4.1V (step S23). If it is further determined at this determination that the CCV is smaller than 4.1 V, the use of the battery 10 is continued while the determination operations in steps S22 and S23 are repeated. That is, as long as it is determined that the CCV is smaller than 4.1 V, the use of the battery 10 is continued. Compared to the case where the battery 10 is used only up to 80% using the SOC based on the OCV, the battery 10 Battery energy is used more effectively while avoiding overcharging.
  • Step S7 If it is determined at step S23 that the CCV is not smaller than 4.1V, the switching means 11 is opened and the battery 10 is disconnected from the in-vehicle device 12, whereby the use of the battery 10 is stopped. (Step S7). Thus, the use of the battery 10 is stopped, so that the battery 10 is prevented from being overcharged. If the charge / discharge state of the battery 10 is switched after the use of the battery 10 is stopped (when the discharge of the battery 10 is started), the switching means 11 is closed and the battery 10 is It is electrically connected to the power consuming device 12a.
  • step S22 If it is determined at step S22 that the CCV is equal to 4.1, power generation by the power generation device 12b is suppressed, or power generated by the power generation device 12b is consumed by other devices. Thus, charging of the battery 10 is restricted (step S24), and then it is determined whether or not the CCV is smaller than 4.1V (step S23). Thus, when it is determined that the CCV is equal to 4.1V, it is determined whether the CCV is smaller than 4.1V after the charging of the battery 10 is limited, The use of the battery 10 can be continued, and the battery capacity can be further utilized.
  • step S21 determines whether or not the CCV is smaller than 4.1V. If it is determined again that the CCV is not smaller than 4.1 V at the time of this determination, the switching means 11 is opened and the battery 10 is disconnected from the in-vehicle device 12, thereby stopping the use of the battery 10 (Ste S7). The reason why the use of the battery 10 is stopped in this way is that it is difficult to use the battery 10 any more even if the estimation of the pseudo SOC is started.
  • step S4 if a positive determination is made at the time of determination in step S26, pseudo SOC estimation is started (step S4), and the above-described determinations in steps S22 and S23 are performed. This is because, when the charging of the battery 10 is limited in this way and the CCV becomes smaller than 4.1V, the battery 10 can be used more effectively by estimating the pseudo SOC.
  • the SOC is estimated based on at least one of the OCV and the current integrated value of the battery 10, and the SOC reaches the first upper limit value or the first lower limit value within a predetermined range.
  • pseudo SOC estimation is performed by using CCV instead of OCV for information indicating the relationship between OCV and SOC, and use of battery 10 is controlled based on pseudo SOC estimation. Therefore, the battery 10 can be used more effectively while avoiding the occurrence of overcharge and overdischarge of the battery 10.
  • the CCV is lower than the lower limit voltage of the OCV estimated that the SOC based on the OCV becomes the second lower limit value smaller than the first lower limit value after the pseudo SOC estimation is started.
  • the use of the battery 10 is stopped. Energy can be used more effectively.
  • the CCV is lower than the lower limit voltage of the OCV estimated that the SOC based on the OCV becomes a second lower limit value smaller than the lower limit value.
  • it is determined whether or not the CCV is not greater than the lower limit voltage it is determined whether or not the CCV is greater than the lower limit voltage after limiting the discharge of the battery 10.
  • the use of the battery 10 is stopped, so that it is possible to avoid the start of pseudo SOC estimation when the battery 10 is in a state of near overdischarge.
  • overdischarge of the battery 10 can be prevented more reliably.
  • the CCV when the battery 10 is charged, after the estimation of the pseudo SOC is started, the CCV is smaller than the upper limit voltage of the OCV estimated that the SOC based on the OCV becomes the second upper limit value larger than the upper limit value. If it is determined whether or not the CCV is not smaller than the upper limit voltage, the use of the battery 10 is stopped. Therefore, the battery capacity can be increased while avoiding the overcharge of the battery 10 more reliably. It can be used more effectively.
  • the CCV is higher than the upper limit voltage of the OCV estimated that the SOC based on the OCV becomes a second upper limit value that is larger than the upper limit value. It is determined whether or not the state is small, and when it is determined that the CCV is not smaller than the upper limit voltage, it is determined again whether or not the CCV is smaller than the upper limit voltage after limiting the discharge of the battery 10; When it is determined again that the CCV is not lower than the upper limit voltage, the use of the battery 10 is stopped, so that it is possible to avoid the start of pseudo SOC estimation when the battery 10 is in a state close to overcharging. Thus, overcharge of the battery 10 can be prevented more reliably.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

If the SOC of a battery has reached a prescribed ceiling, said SOC being estimated on the basis of the OCV of the battery and/or an integrated current, the use of said battery is controlled on the basis of a pseudo-SOC estimation performed by using CCV in place of OCV with information indicating the OCV-SOC relationship.

Description

電池の状態制御方法及び装置Battery state control method and apparatus
 本発明は、電池の使用を制御する電池の状態制御方法及び装置に関するものである。 The present invention relates to a battery state control method and apparatus for controlling battery use.
 例えばハイブリッド自動車の電源システムでは、二次電池(以下、単に電池と呼ぶ)に蓄電された電力が車両駆動力用電動機の駆動電源として用いられる。電池は、電動機が回生発電したときの発電電力や、エンジンの回転に伴って発電する発電機の発電電力によって充電される。このようなシステムでは、電池の劣化を招くような過酷な使用状態とならないようにするために、電池の満充電に対する残存容量(SOC:State of Charge)を推定し、この推定されたSOCに基づいて電池の状態制御が行われる。具体的には、推定されたSOCに基づき、電池からの出力を得る電動機の出力制限や、電池の充電要求又は充放電禁止指令の生成などが行われる。 For example, in a power supply system of a hybrid vehicle, electric power stored in a secondary battery (hereinafter simply referred to as a battery) is used as a drive power source for a vehicle driving force motor. The battery is charged by the generated power when the electric motor generates regenerative power or the generated power of the generator that generates power as the engine rotates. In such a system, the remaining capacity (SOC: State 使用 of Charge) with respect to the full charge of the battery is estimated in order to prevent the battery from being severely used so as to cause deterioration of the battery, and based on the estimated SOC. The battery state is controlled. Specifically, based on the estimated SOC, output restriction of an electric motor that obtains output from the battery, generation of a battery charge request or charge / discharge prohibition command, and the like are performed.
 従来用いられているSOCを推定する方法として、下記の引用文献1には、電池の開放電圧(OCV:Open Circuit Voltage)に基づいてSOCを推定する方法、及び電池の電流積算値に基づいてSOCを推定する方法が挙げられている。また、下記の特許文献2には、電池のOCVに基づいて電池のSOCを推定するとともに、推定されたSOCに対して電流積算値に基づいて補正を加える方法が挙げられている。 As a conventional method for estimating the SOC, the following cited reference 1 includes a method for estimating the SOC based on the open circuit voltage (OCV) of the battery, and an SOC based on the accumulated current value of the battery. The method of estimating is mentioned. Patent Document 2 listed below includes a method of estimating the SOC of the battery based on the OCV of the battery and correcting the estimated SOC based on the integrated current value.
特開2000-150003号公報JP 2000-150003 A 特開2000-306613号公報JP 2000-306613 A
 上記のような従来方法では、推定精度を向上させるために種々の方策が採られているが、依然として100%の精度でSOCを推定できるわけではない。このため、推定されたSOCに誤差が含まれるものとして、電池の状態制御が行われる。例えば、推定誤差が±10%程度であると考えられる場合には、本来であれば0%~100%の範囲で電池を使用したいところを、安全を考慮して20%~80%程度の範囲で電池を使用するようにしている。この安全の幅を大きく取ると、使用範囲はさらに狭くなる。すなわち、従来方法では、電池の過充電及び過放電の発生を回避するために、電池を有効に活用できていない。 In the conventional method as described above, various measures are taken to improve the estimation accuracy, but the SOC cannot still be estimated with 100% accuracy. For this reason, the battery state control is performed on the assumption that the estimated SOC includes an error. For example, if it is considered that the estimation error is about ± 10%, it is originally intended to use the battery in the range of 0% to 100%, but in the range of about 20% to 80% in consideration of safety. I am trying to use batteries. If this safety width is increased, the range of use is further narrowed. That is, in the conventional method, the battery cannot be effectively utilized in order to avoid the occurrence of overcharge and overdischarge of the battery.
 本発明は、上記のような課題を解決するためになされたものであり、その目的は、電池の過充電及び過放電の発生を回避しつつ、電池をより有効に活用できる電池の状態制御方法及び装置を提供することである。 The present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide a battery state control method capable of more effectively utilizing the battery while avoiding the occurrence of overcharge and overdischarge of the battery. And providing an apparatus.
 本発明に係る電池の状態制御方法は、電池のOCV及び電流積算値の少なくとも一方に基づいてSOCを推定するとともに、該SOCが所定範囲の上限値又は下限値に達した場合に、OCVとSOCとの関係を示す情報に対して、OCVに代えてCCVを用いることで疑似的なSOCの推定を行い、疑似的なSOCの推定に基づいて電池の使用を制御する。 According to the battery state control method of the present invention, the SOC is estimated based on at least one of the battery OCV and the current integrated value, and when the SOC reaches an upper limit value or a lower limit value within a predetermined range, the OCV and the SOC are determined. For the information indicating the relationship, the pseudo SOC is estimated by using CCV instead of the OCV, and the use of the battery is controlled based on the pseudo SOC estimation.
 また、本発明に係る電池の状態制御装置は、電池のOCV及び電流積算値の少なくとも一方に基づいてSOCを推定するとともに、該SOCが所定範囲の上限値又は下限値に達した場合に、OCVとSOCとの関係を示す情報に対して、OCVに代えてCCVを用いることで疑似的なSOCの推定を行い、疑似的なSOCの推定に基づいて電池の使用を制御する制御装置本体を備える。 In addition, the battery state control device according to the present invention estimates the SOC based on at least one of the battery OCV and the current integrated value, and when the SOC reaches an upper limit value or a lower limit value within a predetermined range, A control device body is provided that performs pseudo SOC estimation by using CCV instead of OCV for information indicating the relationship between the SOC and the SOC, and controls the use of the battery based on the pseudo SOC estimation. .
 本発明の電池の状態制御方法及び装置によれば、SOCが所定範囲の上限値又は下限値に達した場合に、OCVとSOCとの関係を示す情報に対して、OCVに代えてCCVを用いることで疑似的なSOCの推定を行い、疑似的なSOCの推定に基づいて電池の使用を制御するので、電池の過充電及び過放電の発生を回避しつつ、電池をより有効に活用できる。 According to the battery state control method and apparatus of the present invention, when the SOC reaches the upper limit value or the lower limit value of the predetermined range, CCV is used instead of OCV for information indicating the relationship between OCV and SOC. Thus, the pseudo SOC is estimated, and the use of the battery is controlled based on the pseudo SOC estimation. Therefore, the battery can be used more effectively while avoiding the occurrence of overcharge and overdischarge of the battery.
本発明の実施の形態1による電池の状態制御方法を実施するための電池の状態制御装置を示すブロック図である。It is a block diagram which shows the battery state control apparatus for enforcing the battery state control method by Embodiment 1 of this invention. 図1の電池が放電されている際に制御装置本体が行う電池状態制御動作を示すフローチャートである。It is a flowchart which shows the battery state control operation which a control apparatus main body performs, when the battery of FIG. 1 is discharged. 図1の電池が充電されている際に制御装置本体が行う電池状態制御動作を示すフローチャートである。It is a flowchart which shows the battery state control operation which a control apparatus main body performs when the battery of FIG. 1 is charged.
 以下、本発明を実施するための形態について、図面を参照して説明する。
 実施の形態1.
 図1は、本発明の実施の形態1による電池の状態制御方法を実施するための電池の状態制御装置を示すブロック図である。図において、例えばハイブリッド自動車又は電気自動車等の車両1には、少なくとも1つの電池10と、スイッチング手段11と、車載機器12と、制御装置本体13とが搭載されている。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a block diagram showing a battery state control apparatus for carrying out a battery state control method according to Embodiment 1 of the present invention. In the figure, for example, a vehicle 1 such as a hybrid vehicle or an electric vehicle is equipped with at least one battery 10, a switching means 11, an in-vehicle device 12, and a control device main body 13.
 電池10は、複数の電池セル(例えばリチウムイオン電池等)が互いに直列及び/又は並列に接続された組電池により構成されている。この電池10は、スイッチング手段11を介して車載機器12に接続されている。 The battery 10 is composed of an assembled battery in which a plurality of battery cells (for example, lithium ion batteries) are connected in series and / or in parallel. The battery 10 is connected to the in-vehicle device 12 via the switching means 11.
 スイッチング手段11は、例えばリレー等により構成されており、制御装置本体13からの制御指令に応じて開成及び閉成される。スイッチング手段11が閉成されることで電池10が車載機器12に電気的に接続され、スイッチング手段11が開成されることで電池10が車載機器12から切り離される。 The switching means 11 is constituted by a relay or the like, for example, and is opened and closed according to a control command from the control device body 13. The battery 10 is electrically connected to the in-vehicle device 12 by closing the switching means 11, and the battery 10 is disconnected from the in-vehicle device 12 by opening the switching means 11.
 車載機器12には、電力消費機器12aと発電機器12bと充電器12cとが含まれている。電力消費機器12aは、例えば車両1の駆動用電動機等により構成されており、電池10の電力を消費するものである。発電機器12bは、例えば車両1の回生ブレーキ時に発電する回生発電機やオルタネータ等により構成されており、電池10に電力を供給するものである。充電器12cは、例えば充電スタンド等の外部電源2から交流電力を受けてこれを直流電力に変換して電池10に供給するものである。電池10は、電力消費機器12aの動作に応じて放電されるとともに、発電機器12b及び充電器12cの動作に応じて充電される。制御装置本体13からの制御指令に応じて、電力消費機器12a、発電機器12b及び充電器12cの動作が制御される。 The in-vehicle device 12 includes a power consuming device 12a, a power generating device 12b, and a charger 12c. The power consuming device 12 a is configured by, for example, a driving motor for the vehicle 1 and consumes the power of the battery 10. The power generation device 12 b is configured by, for example, a regenerative generator or an alternator that generates power during regenerative braking of the vehicle 1, and supplies power to the battery 10. The charger 12 c receives AC power from an external power source 2 such as a charging stand, converts it into DC power, and supplies it to the battery 10. The battery 10 is discharged according to the operation of the power consuming device 12a and charged according to the operations of the power generation device 12b and the charger 12c. The operations of the power consuming device 12a, the power generating device 12b, and the charger 12c are controlled in accordance with a control command from the control device body 13.
 制御装置本体13は、例えば所定のプログラムに応じて動作するコンピュータ等により構成されており、本実施の形態の電池の状態制御装置を構成している。制御装置本体13は、周知のように電池10の開放電圧(OCV: Open Circuit Voltage)(V)及び電流積算値(A)の少なくとも一方に基づいて電池10の満充電に対する残存容量(SOC:State of Charge)(%)を推定する。 The control device body 13 is constituted by, for example, a computer that operates in accordance with a predetermined program, and constitutes the battery state control device of the present embodiment. As is well known, the control device main body 13 determines the remaining capacity (SOC: State) with respect to the full charge of the battery 10 based on at least one of the open voltage (OCV: Open Circuit Voltage) (V) and the current integrated value (A). of Charge) (%) is estimated.
 制御装置本体13には、電池10の劣化を招くような過酷な使用状態とならないようにするために、SOCの範囲が予め設定されている。この範囲内にSOCが収まっているときは、上述のように推定されたSOCに基づいて、電池10の使用を制御する。具体的には、当該SOCに基づいて、電池からの出力を得る電動機の出力制限や、電池の充電要求又は充放電禁止指令の生成などが行われる。このようなOCV及び電流積算値の少なくとも一方に基づいて推定されたSOCに基づく制御を通常制御と呼ぶこととする。なお、SOCの範囲は20%~80%程度に設定されている。本来であれば0%~100%の範囲で電池10を使用したい場合でも、OCV及び電流積算値の少なくとも一方に基づくSOCに含まれる推定誤差を考慮して、上記のような範囲とされている。 In the control device main body 13, an SOC range is set in advance so as not to be in a severe use state that causes deterioration of the battery 10. When the SOC is within this range, the use of the battery 10 is controlled based on the SOC estimated as described above. Specifically, based on the SOC, the output of the electric motor that obtains the output from the battery, the request for charging the battery, or the generation of a charge / discharge prohibition command are performed. Such control based on the SOC estimated based on at least one of the OCV and the current integrated value is referred to as normal control. The SOC range is set to about 20% to 80%. Even if it is originally desired to use the battery 10 in the range of 0% to 100%, the range is as described above in consideration of the estimation error included in the SOC based on at least one of the OCV and the current integrated value. .
 ここで、電池10の電圧指標としては、上述のようなOCVの他に、下記の式(1)により表すことができる閉回路電圧(CCV:Closed circuit voltage)(V)がある。但し、Iは充放電電流(A)であり、Rは内部抵抗(Ω)である。
 CCV=OCV+I×R   ・・・式(1)
Here, as a voltage index of the battery 10, there is a closed circuit voltage (CCV) (V) that can be expressed by the following equation (1) in addition to the OCV as described above. Here, I is the charge / discharge current (A), and R is the internal resistance (Ω).
CCV = OCV + I × R (1)
 電池10が放電されているときは、Iが負の値になるため、CCVはOCVよりも必ず小さくなる。すなわち、OCVとSOCとの関係を示す表や関数式等のOCVとSOCとの関係を示す情報に対して、OCVに代えてCCVを用いれば、CCVに基づくSOC(以下、擬似的なSOCと呼ぶ)は、電池10の放電時には、OCVに基づくSOCよりも必ず低い値になる。また、電池10が充電されているときは、Iが正の値になるため、CCVはOCVよりも必ず大きくなる。すなわち、擬似的なSOCは、電池10の充電時には、OCVに基づくSOCよりも必ず高い値になる。 When the battery 10 is discharged, since I becomes a negative value, the CCV is always smaller than the OCV. That is, if CCV is used instead of OCV for information indicating the relationship between OCV and SOC, such as a table or a function expression indicating the relationship between OCV and SOC, SOC based on CCV (hereinafter referred to as pseudo SOC and Is always lower than the SOC based on the OCV when the battery 10 is discharged. In addition, when the battery 10 is charged, since I is a positive value, the CCV is always larger than the OCV. That is, the pseudo SOC is always higher than the SOC based on the OCV when the battery 10 is charged.
 従って、CCVを用いてSOCの擬似的な推定を行うとともに、このSOCの擬似的な推定に基づいて電池の使用を制御すれば、例えば放電時の下限値を0%に設定するとともに充電時の上限値を100%に設定する等、本来使用したい電池10の使用範囲となるように上限値及び下限値を設定したとしても、OCVに基づくSOCに換算すれば必ず安全な値に留まっていることになる。 Therefore, by performing a pseudo estimation of the SOC using the CCV and controlling the use of the battery based on the pseudo estimation of the SOC, for example, the lower limit value at the time of discharging is set to 0% and at the time of charging. Even if the upper limit value and lower limit value are set such that the upper limit value is set to 100% so that it is within the range of use of the battery 10 that is originally intended to be used, it is always safe when converted to the SOC based on the OCV. become.
 制御装置本体13は、OCV及び電流積算値の少なくとも一方に基づいて推定されたSOCが所定範囲の上限値(例えば80%等。以下、この上限値を第1上限値と呼ぶ)又は下限値(例えば20%等。以下、この下限値を第1下限値と呼ぶ)に達した場合に、OCVとSOCとの関係を示す情報に対して、OCVに代えてCCVを用いることで疑似的なSOCの推定を行い、この疑似的なSOCの推定に基づいて電池の使用を制御する。 The control device main body 13 determines that the SOC estimated based on at least one of the OCV and the current integrated value is an upper limit value (for example, 80%, etc .; hereinafter, this upper limit value is referred to as a first upper limit value) or a lower limit value ( For example, when the lower limit value is hereinafter referred to as the first lower limit value), pseudo SOC is obtained by using CCV instead of OCV for information indicating the relationship between OCV and SOC. And the use of the battery is controlled based on this pseudo SOC estimation.
 放電時の動作
 SOCは、電池10の放電に応じて降下する。
 制御装置本体13は、電池10が放電されている場合、疑似的なSOCの推定を開始した後に、OCVに基づくSOCが第1下限値(例えば20%)より小さい第2下限値(例えば0%)になると推定されるOCVの下限電圧よりもCCVが大きい状態か否かを判定し、CCVが下限電圧よりも大きい状態ではないと判定した場合に、スイッチング手段11を開成させて、電池10の使用を中止する。すなわち、制御装置本体13は、疑似的なSOCが第2下限値よりも大きい状態ではないと判定した場合に、電池10の使用を中止する。CCVが下限電圧より大きい状態(疑似的なSOCが第2下限値よりも大きい状態)ではないと判定される場合に電池10の使用を中止するのは、この状態を超えて電池10を使用すると、電池10の過放電を招く可能性が高くなるためである。
The operating SOC at the time of discharge falls in accordance with the discharge of the battery 10.
When the battery 10 is discharged, the control device body 13 starts the estimation of the pseudo SOC, and then the SOC based on the OCV is a second lower limit value (for example, 0%) that is smaller than the first lower limit value (for example, 20%). ) Is determined to determine whether the CCV is greater than the lower limit voltage of the OCV, and when it is determined that the CCV is not greater than the lower limit voltage, the switching means 11 is opened, Discontinue use. That is, when it is determined that the pseudo SOC is not in a state larger than the second lower limit value, the control device body 13 stops using the battery 10. When it is determined that the CCV is not in a state greater than the lower limit voltage (a state in which the pseudo SOC is greater than the second lower limit value), the use of the battery 10 is stopped when the battery 10 is used beyond this state. This is because the possibility of overdischarge of the battery 10 is increased.
 一方で、制御装置本体13は、CCVが下限電圧よりも大きい状態であると判定した場合には、電池10の使用を継続する。これは、OCVに基づくSOCに換算すれば安全な値に留まっていると考えられるためである。これにより、OCVに基づくSOCを用いて第1下限値までしか電池10を使用しない場合に比べて、電池に蓄えられたより多くのエネルギを利用でき、電池をより有効に活用できる。なお、推定誤差を考慮して第1下限値が20%等に設定されている場合、第2下限値は本来使用したい範囲の下限である0%等に設定される。OCVに基づくSOCが0%になると推定されるOCVの下限電圧は、例えば3V等である。 On the other hand, if the control device body 13 determines that the CCV is greater than the lower limit voltage, the control device body 13 continues to use the battery 10. This is because it is considered that a safe value remains when converted to the SOC based on the OCV. Thereby, compared with the case where the battery 10 is used only up to the first lower limit value using the SOC based on the OCV, more energy stored in the battery can be used, and the battery can be used more effectively. When the first lower limit value is set to 20% or the like in consideration of the estimation error, the second lower limit value is set to 0% or the like that is the lower limit of the range that is originally desired to be used. The lower limit voltage of the OCV estimated to be 0% based on the OCV is, for example, 3V.
 また、制御装置本体13は、疑似的なSOCの推定を開始した後であって、CCVが下限電圧よりも大きい状態か否かを判定する前に、CCVが下限電圧と等しい状態か否かを判定し、CCVが下限電圧と等しい状態であると判定した場合に、電池の放電を制限した上でCCVが下限電圧よりも大きい状態か否かを判定する。電池の放電を制限するとは、例えば駆動用電動機の回転数を下げる等、電力消費機器12aの動作を抑制することである。 Further, the control device body 13 determines whether or not the CCV is equal to the lower limit voltage after starting the pseudo SOC estimation and before determining whether or not the CCV is larger than the lower limit voltage. If it is determined that the CCV is equal to the lower limit voltage, it is determined whether the CCV is greater than the lower limit voltage after limiting the discharge of the battery. Limiting the discharge of the battery is to suppress the operation of the power consuming device 12a, for example, by reducing the rotational speed of the driving motor.
 電池の放電を制限した場合、上記の式(1)においてIの絶対値が小さくなるため、通常であればCCVは高くなる。上述のようにCCVが下限電圧と等しい状態のときに電池の放電を制限すると、CCVが下限電圧よりも大きくなることが期待される。このため、電池の放電を制限した後であれば、CCVが下限電圧よりも大きい状態か否かの判定を行っても肯定的な判定結果が得られ、可能な限り電池10の使用を継続でき、電池エネルギをより活用できる。 When the discharge of the battery is limited, the absolute value of I in the above formula (1) becomes small, so the CCV is usually high. As described above, when the discharge of the battery is limited when the CCV is equal to the lower limit voltage, the CCV is expected to be larger than the lower limit voltage. For this reason, after limiting the discharge of the battery, even if it is determined whether the CCV is larger than the lower limit voltage, a positive determination result is obtained, and the use of the battery 10 can be continued as much as possible. Battery energy can be utilized more.
 一方で、電池の放電を制限してもCCVが下限電圧よりも大きい状態とならない場合には、制御装置本体13は、スイッチング手段11を開成させて、電池10の使用を中止する。これは、過放電とならない範囲で電池エネルギを十分に利用できたと考えられるためである。 On the other hand, if the CCV does not become larger than the lower limit voltage even if the discharge of the battery is restricted, the control device body 13 opens the switching means 11 and stops using the battery 10. This is because it is considered that the battery energy can be sufficiently utilized within a range in which overdischarge does not occur.
 さらに、制御装置本体13は、電池10が放電されている場合、疑似的なSOCの推定を開始する前に、CCVが上述の下限電圧よりも大きい状態か否かを判定し、CCVが下限電圧よりも大きい状態ではないと判定した場合に、電池の放電を制限した上でCCVが下限電圧よりも大きい状態か否かを改めて判定し、CCVが下限電圧よりも大きい状態ではないと改めて判定した場合に、電池10の使用を中止する。この場合には、電池10が過放電に近い状態のため、疑似的なSOCの推定を行っても過放電を防止しつつ電池10のエネルギをさらに利用することが難しいためである。 Further, when the battery 10 is discharged, the control device body 13 determines whether or not the CCV is larger than the lower limit voltage before starting the estimation of the pseudo SOC, and the CCV is lower than the lower limit voltage. When it is determined that the state is not greater than the lower limit voltage, it is determined again whether the CCV is greater than the lower limit voltage after limiting the discharge of the battery, and it is determined again that the CCV is not greater than the lower limit voltage. In such a case, the use of the battery 10 is stopped. In this case, since the battery 10 is in a state close to overdischarge, it is difficult to further use the energy of the battery 10 while preventing overdischarge even if pseudo SOC estimation is performed.
 充電時の動作
 放電時はSOCが降下されるためCCVを所定の下限値と比較することが行われていたが、充電時はSOCが上昇されるため、CCVは所定の上限値と比較される。
 すなわち、制御装置本体13は、電池10が放電されている場合、疑似的なSOCの推定を開始した後に、OCVに基づくSOCが第1上限値(例えば80%)より大きい第2上限値(例えば100%)になると推定されるOCVの上限電圧よりもCCVが小さい状態か否かを判定し、CCVが上限電圧よりも小さい状態ではないと判定した場合に、スイッチング手段11を開成させて、電池10の使用を中止する。すなわち、制御装置本体13は、疑似的なSOCが第2上限値よりも小さい状態ではないと判定した場合に、電池10の使用を中止する。CCVが上限電圧より小さい状態(疑似的なSOCが第2上限値よりも小さい状態)ではないと判定される場合に電池10の使用を中止するのは、この状態を超えて電池10を使用すると、電池10の過充電を招く可能性が高くなるためである。
Since the SOC is lowered during operation discharge during charging, the CCV is compared with a predetermined lower limit value. However, since the SOC is increased during charging, the CCV is compared with a predetermined upper limit value. .
That is, when the battery 10 is discharged, the control device main body 13 starts a pseudo SOC estimation, and then the SOC based on the OCV has a second upper limit value (for example, 80%) greater than the first upper limit value (for example, 80%). 100%), when it is determined whether the CCV is lower than the upper limit voltage of the OCV, and when it is determined that the CCV is not lower than the upper limit voltage, the switching means 11 is opened to Stop using 10. That is, the control device body 13 stops using the battery 10 when it is determined that the pseudo SOC is not in a state smaller than the second upper limit value. When it is determined that the CCV is not in a state smaller than the upper limit voltage (a state in which the pseudo SOC is smaller than the second upper limit value), the use of the battery 10 is stopped when the battery 10 is used beyond this state. This is because the possibility of overcharging the battery 10 is increased.
 一方で、制御装置本体13は、CCVが上限電圧よりも小さい状態であると判定した場合、電池10の使用を継続する。これは、OCVに基づくSOCに換算すれば安全な値に留まっていると考えられるためである。これにより、OCVに基づくSOCを用いて第1上限値までしか電池10を充電しない場合に比べて、より有効に電池10の容量を利用でき、電池10のエネルギをより有効に利用できる。なお、推定誤差を考慮して第1上限値が80%等に設定されている場合、第2上限値は本来使用したい範囲の上限である100%等に設定される。OCVに基づくSOCが100%になると推定されるOCVの上限電圧は、例えば4.1V等である。 On the other hand, if the control device body 13 determines that the CCV is lower than the upper limit voltage, the control device body 13 continues to use the battery 10. This is because it is considered that a safe value remains when converted to the SOC based on the OCV. Thereby, compared with the case where the battery 10 is charged only to the first upper limit value using the SOC based on the OCV, the capacity of the battery 10 can be used more effectively, and the energy of the battery 10 can be used more effectively. Note that when the first upper limit value is set to 80% or the like in consideration of the estimation error, the second upper limit value is set to 100% or the like that is the upper limit of the range to be originally used. The upper limit voltage of the OCV estimated that the SOC based on the OCV is 100% is, for example, 4.1V.
 また、制御装置本体13は、疑似的なSOCの推定を開始した後であって、CCVが上限電圧よりも小さい状態か否かを判定する前に、CCVが上限電圧と等しい状態か否かを判定し、CCVが上限電圧と等しい状態であると判定した場合に、電池の充電を制限した上でCCVが上限電圧よりも小さい状態か否かを判定する。電池の充電を制限するとは、例えば回生発電機による発電を抑制するか、又は回生発電機で発電された電力を他の機器により消費させる等、発電機器12bの動作抑制又は電力消費機器12aでの電力消費を行うことである。 Further, the control device body 13 determines whether or not CCV is equal to the upper limit voltage after starting pseudo SOC estimation and before determining whether or not CCV is lower than the upper limit voltage. If it is determined that the CCV is equal to the upper limit voltage, it is determined whether or not the CCV is lower than the upper limit voltage after limiting the charging of the battery. Limiting the charging of the battery means, for example, suppressing the power generation by the regenerative generator or consuming the power generated by the regenerative generator by another device, or suppressing the operation of the power generating device 12b or the power consuming device 12a It is to perform power consumption.
 電池の充電を制限した場合、上記の式(1)においてIの絶対値が小さくなるため、通常であればCCVは低くなる。上述のようにCCVが上限電圧と等しい状態のときに電池の充電を制限することで、CCVが上限電圧よりも小さくなることが期待される。このため、電池の充電を制限した後であれば、CCVが上限電圧よりも小さい状態か否かの判定を行っても肯定的な判定結果が得られ、可能な限り電池10の使用を継続でき、電池容量をより活用できる。 When the charging of the battery is restricted, the absolute value of I in the above formula (1) becomes small, so the CCV is usually low. As described above, it is expected that the CCV becomes smaller than the upper limit voltage by limiting the charging of the battery when the CCV is equal to the upper limit voltage. For this reason, after limiting the charging of the battery, a positive determination result can be obtained even if it is determined whether the CCV is lower than the upper limit voltage, and the use of the battery 10 can be continued as much as possible. , You can make better use of battery capacity.
 一方で、電池の充電を制限してもCCVが上限電圧よりも小さい状態とならない場合には、制御装置本体13は、スイッチング手段11を開成させて、電池10の使用を中止する。これは、過充電とならない範囲で電池10を十分に充電できたと考えられるためである。 On the other hand, if the CCV does not become lower than the upper limit voltage even if the charging of the battery is restricted, the control device main body 13 opens the switching means 11 and stops using the battery 10. This is because it is considered that the battery 10 can be sufficiently charged within a range where overcharging does not occur.
 さらに、制御装置本体13は、電池10が充電されている場合、疑似的なSOCの推定を開始する前に、CCVが上述の上限電圧よりも小さい状態か否かを判定し、CCVが上限電圧よりも小さい状態ではないと判定した場合に、電池の充電を制限した上でCCVが上限電圧よりも小さい状態か否かを改めて判定し、CCVが上限電圧よりも小さい状態ではないと改めて判定した場合に、電池の使用を中止する。この場合には、電池10が過充電に近い状態のため、疑似的なSOCの推定を行っても、過充電を防止しつつ電池10をさらに充電することが難しいためである。 Furthermore, when the battery 10 is charged, the control device main body 13 determines whether or not the CCV is smaller than the upper limit voltage before starting the estimation of the pseudo SOC, and the CCV is the upper limit voltage. If it is determined that the state is not smaller than the upper limit voltage, it is determined again whether the CCV is lower than the upper limit voltage after limiting the charging of the battery, and it is determined again that the CCV is not lower than the upper limit voltage. In case, stop using the battery. In this case, since the battery 10 is in a state close to overcharging, it is difficult to further charge the battery 10 while preventing overcharging even if pseudo SOC estimation is performed.
 次に、フローチャートを用いて、制御装置本体13の動作の具体例を説明する。図2は、図1の電池10が放電されている際に制御装置本体13が行う電池状態制御動作を示すフローチャートである。図において、電池10の放電が検出されると、電池10のOCV及び電流積算値の少なくとも一方に基づいてSOCが推定されるとともに、この推定されたSOCに基づいて通常制御が行われる(ステップS1)。その次に、SOCの推定結果が予め設定された範囲の下限値である20%(第1下限値)に達したか否かが判定され(ステップS2)、20%に達していないと判定されると、通常制御が継続される。 Next, a specific example of the operation of the control device main body 13 will be described using a flowchart. FIG. 2 is a flowchart showing a battery state control operation performed by the control device body 13 when the battery 10 of FIG. 1 is discharged. In the figure, when the discharge of the battery 10 is detected, the SOC is estimated based on at least one of the OCV and the current integrated value of the battery 10, and the normal control is performed based on the estimated SOC (step S1). ). Next, it is determined whether or not the SOC estimation result has reached 20% (first lower limit value), which is a lower limit value of a preset range (step S2), and it is determined that it has not reached 20%. Then, normal control is continued.
 これに対して、SOCの推定結果が20%に達したと判定されると、CCVが3Vよりも大きいか否かが判定される(ステップS3)。この判定に用いられる3Vは、OCVに基づくSOCが0%(第2下限値)になると推定されるOCVの下限電圧である。このとき、CCVが3Vよりも大きいと判定されると、OCVとSOCとの関係を示す情報に対して、OCVに代えてCCVを用いることで疑似的なSOCの推定が開始される(ステップS4)。 On the other hand, if it is determined that the SOC estimation result has reached 20%, it is determined whether CCV is greater than 3V (step S3). 3V used for this determination is a lower limit voltage of the OCV estimated that the SOC based on the OCV becomes 0% (second lower limit value). At this time, if it is determined that CCV is greater than 3V, pseudo SOC estimation is started by using CCV instead of OCV for information indicating the relationship between OCV and SOC (step S4). ).
 疑似的なSOCの推定が開始されると、CCVが3Vに等しい状態か否かが判定される(ステップS5)。このとき、CCVが3Vに等しい状態ではないと判定されると、CCVが3Vよりも大きい状態か否かが判定される(ステップS6)。この判定時に、CCVが3Vよりも大きい状態であるとさらに判定されると、これらステップS5,S6の判定動作が繰り返し行われつつ、電池10の使用が継続される。すなわち、CCVが3Vよりも大きい状態であると判定される限り電池10の使用が継続され、OCVに基づくSOCを用いて20%までしか電池10を使用しない場合に比べて、電池10の過放電を回避しつつ、より有効に電池エネルギが利用される。 When the estimation of the pseudo SOC is started, it is determined whether or not the CCV is equal to 3V (step S5). At this time, if it is determined that the CCV is not equal to 3V, it is determined whether or not the CCV is greater than 3V (step S6). If it is further determined at this determination that the CCV is greater than 3V, the use of the battery 10 is continued while the determination operations in steps S5 and S6 are repeated. That is, as long as it is determined that the CCV is greater than 3V, the use of the battery 10 is continued, and the battery 10 is overdischarged as compared with the case where the battery 10 is used only up to 20% using the SOC based on the OCV. The battery energy is used more effectively while avoiding the above.
 ステップS6の判定時に、CCVが3Vよりも大きい状態ではないと判定されると、スイッチング手段11が開成されて電池10が車載機器12から切り離されることで、電池10の使用が中止される(ステップS7)。このように電池10の使用が中止されることで、電池10が過放電となることが回避される。なお、電池10の使用が中止された後に、電池10の充放電状態が切替えられた場合には(電池10の充電が開始された場合には)、スイッチング手段11が閉成されて電池10が発電機器12bに電気的に接続される。 If it is determined at step S6 that the CCV is not greater than 3V, the switching means 11 is opened and the battery 10 is disconnected from the in-vehicle device 12 to stop using the battery 10 (step S6). S7). Thus, the use of the battery 10 is stopped, so that the battery 10 is prevented from being overdischarged. When the charge / discharge state of the battery 10 is switched after the use of the battery 10 is stopped (when charging of the battery 10 is started), the switching means 11 is closed and the battery 10 is It is electrically connected to the power generation device 12b.
 また、ステップS5の判定時に、CCVが3Vと等しい状態であると判定されると、電力消費機器12aの動作を抑制されることにより、電池10の放電が制限され(ステップS8)、その後にCCVが3Vよりも大きい状態か否かが判定される(ステップS6)。このように、CCVが3Vと等しい状態であると判定された際に、電池10の放電が制限された上でCCVが3Vよりも大きい状態か否かが判定されることで、電池10の使用を継続でき、電池エネルギをより活用できる。 If it is determined at step S5 that the CCV is equal to 3V, the operation of the power consuming device 12a is suppressed, thereby limiting the discharge of the battery 10 (step S8). Is determined to be greater than 3V (step S6). As described above, when it is determined that the CCV is equal to 3V, it is determined whether or not the CCV is greater than 3V after the discharge of the battery 10 is limited. The battery energy can be utilized more.
 一方で、ステップS3の判定時に、CCVが3Vよりも大きい状態ではないと判定されると、電力消費機器12aの動作を抑制されることにより電池10の放電が制限された上で(ステップS9)、CCVが3Vよりも大きい状態か否かが改めて判定される(ステップS10)。この判定時に、CCVが3Vよりも大きい状態ではないと改めて判定されると、スイッチング手段11が開成されて電池10が車載機器12から切り離されることで、電池10の使用が中止される(ステップS7)。このように電池10の使用が中止されるのは、疑似的なSOCの推定を開始しても、電池10をこれ以上活用することが難しいためである。 On the other hand, if it is determined at step S3 that the CCV is not larger than 3V, the operation of the power consuming device 12a is suppressed, and the discharge of the battery 10 is limited (step S9). Then, it is determined again whether the CCV is larger than 3V (step S10). If it is determined again that the CCV is not greater than 3V at the time of this determination, the switching means 11 is opened and the battery 10 is disconnected from the in-vehicle device 12, thereby stopping the use of the battery 10 (step S7). ). The reason why the use of the battery 10 is stopped in this way is that it is difficult to use the battery 10 any more even if the estimation of the pseudo SOC is started.
 これに対して、ステップS10の判定時に肯定的に判定された場合には、疑似的なSOCの推定が開始され(ステップS4)、上述したステップS5,S6の判定が行われる。このように電池10の放電が制限されることでCCVが3Vよりも大きい状態となった場合には、疑似的なSOCの推定により電池10をより活用できるためである。 On the other hand, if a positive determination is made at the time of determination in step S10, pseudo SOC estimation is started (step S4), and the above-described determinations in steps S5 and S6 are performed. This is because, when the discharge of the battery 10 is restricted in this way and the CCV becomes larger than 3V, the battery 10 can be used more effectively by estimating the pseudo SOC.
 次に、図3は、図1の電池10が充電されている際に制御装置本体13が行う電池状態制御動作を示すフローチャートである。なお、図2に示す放電時の動作と同じ動作については、図2で用いた符号を用いて説明する。図において、電池10の充電が検出されると、電池10のOCV及び電流積算値の少なくとも一方に基づいてSOCが推定されるとともに、この推定されたSOCに基づいて通常制御が行われる(ステップS1)。その次に、SOCの推定結果が予め設定された範囲の下限値である80%(第1上限値)に達したか否かが判定され(ステップS20)、80%に達していないと判定されると、通常制御が継続される。 Next, FIG. 3 is a flowchart showing a battery state control operation performed by the control device body 13 when the battery 10 of FIG. 1 is charged. Note that the same operations as those in discharging shown in FIG. 2 will be described using the reference numerals used in FIG. In the figure, when charging of the battery 10 is detected, the SOC is estimated based on at least one of the OCV and the current integrated value of the battery 10, and normal control is performed based on the estimated SOC (step S1). ). Next, it is determined whether or not the SOC estimation result has reached 80% (first upper limit), which is a lower limit value of a preset range (step S20), and it is determined that it has not reached 80%. Then, normal control is continued.
 これに対して、SOCの推定結果が80%に達したと判定されると、CCVが4.1V(OCVに基づくSOCが100%(第2上限値)になると推定されるOCVの上限電圧)よりも小さいか否かが判定される(ステップS21)。この判定に用いられる4.1Vは、OCVに基づくSOCが100%(第2上限値)になると推定されるOCVの上限電圧である。このとき、CCVが4.1Vよりも小さいと判定されると、OCVとSOCとの関係を示す情報に対して、OCVに代えてCCVを用いることで疑似的なSOCの推定が開始される(ステップS4)。 On the other hand, when it is determined that the SOC estimation result has reached 80%, the CCV is 4.1 V (the OCV upper limit voltage estimated that the SOC based on the OCV is 100% (second upper limit value)). It is determined whether it is smaller than (step S21). 4.1 V used for this determination is the upper limit voltage of the OCV estimated that the SOC based on the OCV becomes 100% (second upper limit value). At this time, if it is determined that CCV is smaller than 4.1V, pseudo SOC estimation is started by using CCV instead of OCV for information indicating the relationship between OCV and SOC ( Step S4).
 疑似的なSOCの推定が開始されると、CCVが4.1Vに等しい状態か否かが判定される(ステップS22)。このとき、CCVが4.1Vに等しい状態ではないと判定されると、CCVが4.1Vよりも小さい状態か否かが判定される(ステップS23)。この判定時に、CCVが4.1Vよりも小さい状態であるとさらに判定されると、これらステップS22,S23の判定動作が繰り返し行われつつ、電池10の使用が継続される。すなわち、CCVが4.1Vよりも小さい状態であると判定される限り電池10の使用が継続され、OCVに基づくSOCを用いて80%までしか電池10を使用しない場合に比べて、電池10の過充電を回避しつつ、より有効に電池エネルギが利用される。 When the estimation of the pseudo SOC is started, it is determined whether or not the CCV is equal to 4.1V (step S22). At this time, if it is determined that the CCV is not equal to 4.1V, it is determined whether or not the CCV is smaller than 4.1V (step S23). If it is further determined at this determination that the CCV is smaller than 4.1 V, the use of the battery 10 is continued while the determination operations in steps S22 and S23 are repeated. That is, as long as it is determined that the CCV is smaller than 4.1 V, the use of the battery 10 is continued. Compared to the case where the battery 10 is used only up to 80% using the SOC based on the OCV, the battery 10 Battery energy is used more effectively while avoiding overcharging.
 ステップS23の判定時に、CCVが4.1Vよりも小さい状態ではないと判定されると、スイッチング手段11が開成されて電池10が車載機器12から切り離されることで、電池10の使用が中止される(ステップS7)。このように電池10の使用が中止されることで、電池10が過充電となることが回避される。なお、電池10の使用が中止された後に、電池10の充放電状態が切替えられた場合には(電池10の放電が開始された場合には)、スイッチング手段11が閉成されて電池10が電力消費機器12aに電気的に接続される。 If it is determined at step S23 that the CCV is not smaller than 4.1V, the switching means 11 is opened and the battery 10 is disconnected from the in-vehicle device 12, whereby the use of the battery 10 is stopped. (Step S7). Thus, the use of the battery 10 is stopped, so that the battery 10 is prevented from being overcharged. If the charge / discharge state of the battery 10 is switched after the use of the battery 10 is stopped (when the discharge of the battery 10 is started), the switching means 11 is closed and the battery 10 is It is electrically connected to the power consuming device 12a.
 また、ステップS22の判定時に、CCVが4.1と等しい状態であると判定されると、発電機器12bによる発電が抑制されるか、又は発電機器12bで発電された電力が他の機器により消費されることにより、電池10の充電が制限され(ステップS24)、その後にCCVが4.1Vよりも小さい状態か否かが判定される(ステップS23)。このように、CCVが4.1Vと等しい状態であると判定された際に、電池10の充電が制限された上でCCVが4.1Vよりも小さい状態か否かが判定されることで、電池10の使用を継続でき、電池容量をより活用できる。 If it is determined at step S22 that the CCV is equal to 4.1, power generation by the power generation device 12b is suppressed, or power generated by the power generation device 12b is consumed by other devices. Thus, charging of the battery 10 is restricted (step S24), and then it is determined whether or not the CCV is smaller than 4.1V (step S23). Thus, when it is determined that the CCV is equal to 4.1V, it is determined whether the CCV is smaller than 4.1V after the charging of the battery 10 is limited, The use of the battery 10 can be continued, and the battery capacity can be further utilized.
 一方で、ステップS21の判定時に、CCVが4.1Vよりも小さい状態ではないと判定されると、発電機器12bによる発電が抑制されるか、又は発電機器12bで発電された電力が他の機器により消費されることにより、電池10の充電が制限された上で(ステップS25)、CCVが4.1Vよりも小さい状態か否かが改めて判定される(ステップS26)。この判定時に、CCVが4.1Vよりも小さい状態ではないと改めて判定されると、スイッチング手段11が開成されて電池10が車載機器12から切り離されることで、電池10の使用が中止される(ステップS7)。このように電池10の使用が中止されるのは、疑似的なSOCの推定を開始しても、電池10をこれ以上活用することが難しいためである。 On the other hand, if it is determined at step S21 that the CCV is not smaller than 4.1V, the power generation by the power generation device 12b is suppressed, or the power generated by the power generation device 12b is reduced to another device. Thus, after the charging of the battery 10 is restricted (step S25), it is determined again whether or not the CCV is smaller than 4.1V (step S26). If it is determined again that the CCV is not smaller than 4.1 V at the time of this determination, the switching means 11 is opened and the battery 10 is disconnected from the in-vehicle device 12, thereby stopping the use of the battery 10 ( Step S7). The reason why the use of the battery 10 is stopped in this way is that it is difficult to use the battery 10 any more even if the estimation of the pseudo SOC is started.
 これに対して、ステップS26の判定時に肯定的に判定された場合には、疑似的なSOCの推定が開始され(ステップS4)、上述したステップS22,S23の判定が行われる。このように電池10の充電が制限されることでCCVが4.1Vよりも小さい状態となった場合には、疑似的なSOCの推定により電池10をより活用できるためである。 On the other hand, if a positive determination is made at the time of determination in step S26, pseudo SOC estimation is started (step S4), and the above-described determinations in steps S22 and S23 are performed. This is because, when the charging of the battery 10 is limited in this way and the CCV becomes smaller than 4.1V, the battery 10 can be used more effectively by estimating the pseudo SOC.
 このような電池の状態制御方法及び装置では、電池10のOCV及び電流積算値の少なくとも一方に基づいてSOCを推定するとともに、該SOCが所定範囲の第1上限値又は第1下限値に達した場合に、OCVとSOCとの関係を示す情報に対して、OCVに代えてCCVを用いることで疑似的なSOCの推定を行い、疑似的なSOCの推定に基づいて電池10の使用を制御するので、電池10の過充電及び過放電の発生を回避しつつ、電池10をより有効に活用できる。 In such a battery state control method and apparatus, the SOC is estimated based on at least one of the OCV and the current integrated value of the battery 10, and the SOC reaches the first upper limit value or the first lower limit value within a predetermined range. In some cases, pseudo SOC estimation is performed by using CCV instead of OCV for information indicating the relationship between OCV and SOC, and use of battery 10 is controlled based on pseudo SOC estimation. Therefore, the battery 10 can be used more effectively while avoiding the occurrence of overcharge and overdischarge of the battery 10.
 また、電池10が放電されている場合、疑似的なSOCの推定を開始した後に、OCVに基づくSOCが第1下限値より小さい第2下限値になると推定されるOCVの下限電圧よりもCCVが大きい状態か否かを判定し、CCVが下限電圧よりも大きい状態ではないと判定した場合に、電池10の使用を中止するので、より確実に電池10の過放電の発生を回避しつつ、電池エネルギをより有効に活用できる。 Further, when the battery 10 is discharged, the CCV is lower than the lower limit voltage of the OCV estimated that the SOC based on the OCV becomes the second lower limit value smaller than the first lower limit value after the pseudo SOC estimation is started. When it is determined whether or not the battery 10 is in a large state and it is determined that the CCV is not larger than the lower limit voltage, the use of the battery 10 is stopped. Energy can be used more effectively.
 さらに、疑似的なSOCの推定を開始した後であって、CCVが下限電圧よりも大きい状態か否かを判定する前に、CCVが下限電圧と等しい状態か否かを判定し、CCVが下限電圧と等しい状態であると判定した場合に、電池10の放電を制限した上でCCVが下限電圧よりも大きい状態か否かを判定するので、可能な限り電池10の使用を継続でき、電池エネルギをより活用できる。 Further, after starting the estimation of the pseudo SOC and before determining whether or not the CCV is larger than the lower limit voltage, it is determined whether or not the CCV is equal to the lower limit voltage. When it is determined that the state is equal to the voltage, it is determined whether or not the CCV is larger than the lower limit voltage after limiting the discharge of the battery 10, so that the use of the battery 10 can be continued as much as possible. Can be used more.
 さらにまた、電池10が放電されている場合、疑似的なSOCの推定を開始する前に、OCVに基づくSOCが下限値より小さい第2下限値になると推定されるOCVの下限電圧よりもCCVが大きい状態か否かを判定し、CCVが下限電圧よりも大きい状態ではないと判定した場合に、電池10の放電を制限した上でCCVが下限電圧よりも大きい状態か否かを改めて判定し、CCVが下限電圧よりも大きい状態ではないと改めて判定した場合に、電池10の使用を中止するので、電池10が過放電に近い状態の時に疑似的なSOCの推定が開始されることを回避でき、より確実に電池10の過放電を防止できる。 Furthermore, when the battery 10 is discharged, before starting the estimation of the pseudo SOC, the CCV is lower than the lower limit voltage of the OCV estimated that the SOC based on the OCV becomes a second lower limit value smaller than the lower limit value. When it is determined whether or not the CCV is not greater than the lower limit voltage, it is determined whether or not the CCV is greater than the lower limit voltage after limiting the discharge of the battery 10, When it is determined again that the CCV is not larger than the lower limit voltage, the use of the battery 10 is stopped, so that it is possible to avoid the start of pseudo SOC estimation when the battery 10 is in a state of near overdischarge. Thus, overdischarge of the battery 10 can be prevented more reliably.
 また、電池10が充電されている場合、疑似的なSOCの推定を開始した後に、OCVに基づくSOCが上限値より大きい第2上限値になると推定されるOCVの上限電圧よりもCCVが小さい状態か否かを判定し、CCVが上限電圧よりも小さい状態ではないと判定した場合に、電池10の使用を中止するので、より確実に電池10の過充電の発生を回避しつつ、電池容量をより有効に活用できる。 Further, when the battery 10 is charged, after the estimation of the pseudo SOC is started, the CCV is smaller than the upper limit voltage of the OCV estimated that the SOC based on the OCV becomes the second upper limit value larger than the upper limit value. If it is determined whether or not the CCV is not smaller than the upper limit voltage, the use of the battery 10 is stopped. Therefore, the battery capacity can be increased while avoiding the overcharge of the battery 10 more reliably. It can be used more effectively.
 さらに、疑似的なSOCの推定を開始した後であって、CCVが上限電圧よりも小さい状態か否かを判定する前に、CCVが上限電圧と等しい状態か否かを判定し、CCVが上限電圧と等しい状態であると判定した場合に、電池10の充電を制限した上でCCVが上限電圧よりも小さい状態か否かを判定するので、可能な限り電池10の使用を継続でき、電池容量をより活用できる。 Further, after starting the estimation of the pseudo SOC and before determining whether the CCV is smaller than the upper limit voltage, it is determined whether the CCV is equal to the upper limit voltage, and the CCV is the upper limit. When it is determined that the state is equal to the voltage, it is determined whether or not the CCV is lower than the upper limit voltage after limiting the charging of the battery 10, so that the use of the battery 10 can be continued as much as possible. Can be used more.
 さらにまた、電池10が充電されている場合、疑似的なSOCの推定を開始する前に、OCVに基づくSOCが上限値より大きい第2上限値になると推定されるOCVの上限電圧よりもCCVが小さい状態か否かを判定し、CCVが上限電圧よりも小さい状態ではないと判定した場合に、電池10の放電を制限した上でCCVが上限電圧よりも小さい状態か否かを改めて判定し、CCVが上限電圧よりも小さい状態ではないと改めて判定した場合に、電池10の使用を中止するので、電池10が過充電に近い状態の時に疑似的なSOCの推定が開始されることを回避でき、より確実に電池10の過充電を防止できる。 Furthermore, when the battery 10 is charged, before starting the estimation of the pseudo SOC, the CCV is higher than the upper limit voltage of the OCV estimated that the SOC based on the OCV becomes a second upper limit value that is larger than the upper limit value. It is determined whether or not the state is small, and when it is determined that the CCV is not smaller than the upper limit voltage, it is determined again whether or not the CCV is smaller than the upper limit voltage after limiting the discharge of the battery 10; When it is determined again that the CCV is not lower than the upper limit voltage, the use of the battery 10 is stopped, so that it is possible to avoid the start of pseudo SOC estimation when the battery 10 is in a state close to overcharging. Thus, overcharge of the battery 10 can be prevented more reliably.

Claims (8)

  1.  電池のOCV及び電流積算値の少なくとも一方に基づいてSOCを推定するとともに、該SOCが所定範囲の上限値又は下限値に達した場合に、前記OCVと前記SOCとの関係を示す情報に対して、前記OCVに代えてCCVを用いることで疑似的なSOCの推定を行い、前記疑似的なSOCの推定に基づいて前記電池の使用を制御する、電池の状態制御方法。 The SOC is estimated based on at least one of the battery OCV and the current integrated value, and information indicating the relationship between the OCV and the SOC when the SOC reaches an upper limit value or a lower limit value of a predetermined range. A battery state control method of performing pseudo SOC estimation by using CCV instead of the OCV and controlling use of the battery based on the pseudo SOC estimation.
  2.  前記電池が放電されている場合、前記疑似的なSOCの推定を開始した後に、前記OCVに基づく前記SOCが前記下限値より小さい第2下限値になると推定される前記OCVの下限電圧よりも前記CCVが大きい状態か否かを判定し、前記CCVが前記下限電圧よりも大きい状態ではないと判定した場合に、前記電池の使用を中止する、請求項1記載の電池の状態制御方法。 When the battery is discharged, after starting the estimation of the pseudo SOC, the SOC based on the OCV is more than the lower limit voltage of the OCV estimated to be a second lower limit value smaller than the lower limit value. The battery state control method according to claim 1, wherein it is determined whether or not the CCV is large, and when it is determined that the CCV is not larger than the lower limit voltage, use of the battery is stopped.
  3.  前記疑似的なSOCの推定を開始した後であって、前記CCVが前記下限電圧よりも大きい状態か否かを判定する前に、前記CCVが前記下限電圧と等しい状態か否かを判定し、前記CCVが前記下限電圧と等しい状態であると判定した場合に、前記電池の放電を制限した上で前記CCVが前記下限電圧よりも大きい状態か否かを判定する、請求項2記載の電池の状態制御方法。 Determining whether the CCV is equal to the lower limit voltage after starting the pseudo SOC estimation and before determining whether the CCV is greater than the lower limit voltage; 3. The battery according to claim 2, wherein when it is determined that the CCV is equal to the lower limit voltage, it is determined whether the CCV is greater than the lower limit voltage after limiting discharge of the battery. State control method.
  4.  前記電池が放電されている場合、前記疑似的なSOCの推定を開始する前に、前記OCVに基づく前記SOCが前記下限値より小さい第2下限値になると推定される前記OCVの下限電圧よりも前記CCVが大きい状態か否かを判定し、
     前記CCVが前記下限電圧よりも大きい状態ではないと判定した場合に、前記電池の放電を制限した上で前記CCVが前記下限電圧よりも大きい状態か否かを改めて判定し、
     前記CCVが前記下限電圧よりも大きい状態ではないと改めて判定した場合に、前記電池の使用を中止する、
     請求項1から請求項3までのいずれか1項に記載の電池の状態制御方法。
    When the battery is discharged, before starting the estimation of the pseudo SOC, the SOC based on the OCV is estimated to be a second lower limit value smaller than the lower limit value than the lower limit voltage of the OCV. Determining whether the CCV is large,
    When it is determined that the CCV is not larger than the lower limit voltage, it is determined again whether or not the CCV is larger than the lower limit voltage after limiting the discharge of the battery,
    When it is determined again that the CCV is not larger than the lower limit voltage, the use of the battery is stopped.
    The battery state control method according to any one of claims 1 to 3.
  5.  前記電池が充電されている場合、前記疑似的なSOCの推定を開始した後に、前記OCVに基づく前記SOCが前記上限値より大きい第2上限値になると推定される前記OCVの上限電圧よりも前記CCVが小さい状態か否かを判定し、前記CCVが前記上限電圧よりも小さい状態ではないと判定した場合に、前記電池の使用を中止する、請求項1記載の電池の状態制御方法。 When the battery is charged, after starting the estimation of the pseudo SOC, the SOC based on the OCV is more than the upper limit voltage of the OCV estimated to be a second upper limit value larger than the upper limit value. The battery state control method according to claim 1, wherein it is determined whether or not the CCV is small, and when it is determined that the CCV is not smaller than the upper limit voltage, use of the battery is stopped.
  6.  前記疑似的なSOCの推定を開始した後であって、前記CCVが前記上限電圧よりも小さい状態か否かを判定する前に、前記CCVが前記上限電圧と等しい状態か否かを判定し、前記CCVが前記上限電圧と等しい状態であると判定した場合に、前記電池の充電を制限した上で前記CCVが前記上限電圧よりも小さい状態か否かを判定する、請求項5記載の電池の状態制御方法。 After starting the estimation of the pseudo SOC and before determining whether the CCV is smaller than the upper limit voltage, determine whether the CCV is equal to the upper limit voltage; The battery according to claim 5, wherein when it is determined that the CCV is equal to the upper limit voltage, it is determined whether or not the CCV is lower than the upper limit voltage after limiting charging of the battery. State control method.
  7.  前記電池が充電されている場合、前記疑似的なSOCの推定を開始する前に、前記OCVに基づく前記SOCが前記上限値より大きい第2上限値になると推定される前記OCVの上限電圧よりも前記CCVが小さい状態か否かを判定し、
     前記CCVが前記上限電圧よりも小さい状態ではないと判定した場合に、前記電池の放電を制限した上で前記CCVが前記上限電圧よりも小さい状態か否かを改めて判定し、
     前記CCVが前記上限電圧よりも小さい状態ではないと改めて判定した場合に、前記電池の使用を中止する、
     請求項1、請求項5及び請求項6のいずれか1項に記載の電池の状態制御方法。
    When the battery is charged, before starting the estimation of the pseudo SOC, the SOC based on the OCV is higher than the upper limit voltage of the OCV estimated to be a second upper limit value that is larger than the upper limit value. Determine whether the CCV is small,
    When it is determined that the CCV is not in a state lower than the upper limit voltage, it is determined again whether the CCV is lower than the upper limit voltage after limiting the discharge of the battery.
    When it is determined again that the CCV is not smaller than the upper limit voltage, the use of the battery is stopped.
    The battery state control method according to any one of claims 1, 5, and 6.
  8.  電池のOCV及び電流積算値の少なくとも一方に基づいてSOCを推定するとともに、該SOCが所定範囲の上限又は下限に達した場合に、前記OCVと前記SOCとの関係を示す情報に対して、前記OCVに代えてCCVを用いることで疑似的なSOCの推定を行い、前記疑似的なSOCの推定に基づいて前記電池の使用を制御する制御装置本体
     を備えている、電池の状態制御装置。
    The SOC is estimated based on at least one of the battery OCV and the current integrated value, and the information indicating the relationship between the OCV and the SOC when the SOC reaches the upper limit or the lower limit of the predetermined range, A battery state control device comprising: a control device body that performs pseudo SOC estimation by using CCV instead of OCV, and controls use of the battery based on the pseudo SOC estimation.
PCT/JP2012/082198 2012-03-01 2012-12-12 Battery-state control method and device WO2013128757A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-045612 2012-03-01
JP2012045612A JP2013182779A (en) 2012-03-01 2012-03-01 Method and device for controlling battery state

Publications (1)

Publication Number Publication Date
WO2013128757A1 true WO2013128757A1 (en) 2013-09-06

Family

ID=49081976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082198 WO2013128757A1 (en) 2012-03-01 2012-12-12 Battery-state control method and device

Country Status (2)

Country Link
JP (1) JP2013182779A (en)
WO (1) WO2013128757A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6657778B2 (en) * 2015-10-27 2020-03-04 株式会社豊田自動織機 SOC estimation device
JP6855947B2 (en) * 2016-06-15 2021-04-07 株式会社豊田自動織機 Charge rate estimation device and charge rate estimation method
KR102038610B1 (en) * 2016-12-05 2019-10-30 주식회사 엘지화학 Battery management apparatus and method thereof
CN113287242B (en) * 2018-12-21 2024-05-24 康明斯公司 System and method for collaborative estimation of SOC and SOH of electric vehicle
CN110286328B (en) * 2019-06-27 2022-03-01 蜂巢能源科技有限公司 Battery pack simulation power input control method and equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212298A (en) * 2006-02-09 2007-08-23 Toyota Motor Corp Remaining capacity of secondary battery presuming system
JP2009097954A (en) * 2007-10-16 2009-05-07 Sony Corp Battery pack and residual capacity correction method of secondary battery
JP2009201197A (en) * 2008-02-19 2009-09-03 Toyota Motor Corp Vehicle, method of estimating state of charge of secondary battery, and method of controlling vehicle
JP2010124629A (en) * 2008-11-20 2010-06-03 Sony Corp Battery pack
JP2011188588A (en) * 2010-03-05 2011-09-22 Honda Motor Co Ltd Charging cable and charging system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212298A (en) * 2006-02-09 2007-08-23 Toyota Motor Corp Remaining capacity of secondary battery presuming system
JP2009097954A (en) * 2007-10-16 2009-05-07 Sony Corp Battery pack and residual capacity correction method of secondary battery
JP2009201197A (en) * 2008-02-19 2009-09-03 Toyota Motor Corp Vehicle, method of estimating state of charge of secondary battery, and method of controlling vehicle
JP2010124629A (en) * 2008-11-20 2010-06-03 Sony Corp Battery pack
JP2011188588A (en) * 2010-03-05 2011-09-22 Honda Motor Co Ltd Charging cable and charging system

Also Published As

Publication number Publication date
JP2013182779A (en) 2013-09-12

Similar Documents

Publication Publication Date Title
JP5757298B2 (en) Vehicle power supply system and vehicle equipped with the same
JP2018042462A (en) Power storage device
US20140176085A1 (en) Battery controller of vehicle
JP5515897B2 (en) Vehicle control device and vehicle equipped with the same
JP2017508436A (en) Precharge and voltage supply system for DC-AC inverter
WO2015033199A2 (en) Vehicle and control method for vehicle
WO2013128757A1 (en) Battery-state control method and device
JP7016628B2 (en) Combined power storage system
JP2020099111A (en) Battery system, electric vehicle and control method thereof
KR20180057231A (en) Apparatus for preventing trouble of battery
JP2015180140A (en) Power supply system for vehicle
CN108352714A (en) Supply unit and battery unit
JP2015091144A (en) Inverter abnormality determination device
JP2005117722A (en) Charge/discharge control device of battery pack
WO2017188163A1 (en) Power source controller
JP2016059165A (en) Electric-vehicular power supply system
JP5975068B2 (en) Vehicle power supply
JP6024563B2 (en) Vehicle power supply control device
WO2017191818A1 (en) Power supply device
JP2011229275A (en) Charging system for electric vehicle
JP7040489B2 (en) Control device
JP5621873B2 (en) Vehicle power supply system
WO2014171453A1 (en) Vehicle power supply system
CN115701312A (en) Storage battery control device
JP5754304B2 (en) Control apparatus and control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12870131

Country of ref document: EP

Kind code of ref document: A1